Most groups are hyperbolic, or ... most groups are trivial ?

Enric Ventura

Departament de Matemàtica Aplicada III
Universitat Politècnica de Catalunya

Seminari Grafs, Barcelona

March 18th, 2010.

Outline

(1) A claim due to Gromov
(2) Arzhantseva-Ol'shanskii's proof
(3) A new point of view

4 Stallings' graphs
(5) Counting Stallings' graphs: partial injections

6 Most groups are trivial
(7) Proof of the combinatorial theorem

Outline

(1) A claim due to Gromov
(2) Arzhantseva-Ol'shanskii's proof
(3) A new point of view
(4) Stallings' graphs
(5) Counting Stallings' graphs: partial injections
(6) Most groups are trivial
(7) Proof of the combinatorial theorem

Gromov's claim

Claim (Gromov '87)

Most finite presentations of groups, present an hyperbolic infinite group.

- Stated in his influential paper on hyperbolic groups: "Essays in group theory", 75-263, Springer, 1987,
- no proof, only the idea,
- the meaning of "most" is not precise,
- statement made precise and proved, later by other authors.

Gromov's claim

Claim (Gromov '87)

Most finite presentations of groups, present an hyperbolic infinite group.

- Stated in his influential paper on hyperbolic groups: "Essays in group theory", 75-263, Springer, 1987,
- no proof, only the idea,
- the meaning of "most" is not precise,
- statement made precise and proved, later by other authors.

Gromov's claim

Claim (Gromov '87)

Most finite presentations of groups, present an hyperbolic infinite group.

- Stated in his influential paper on hyperbolic groups: "Essays in group theory", 75-263, Springer, 1987,
- no proof, only the idea,
- the meaning of "most" is not precise,
- statement made precise and proved, later by other authors.

Gromov's claim

Claim (Gromov '87)

Most finite presentations of groups, present an hyperbolic infinite group.

- Stated in his influential paper on hyperbolic groups: "Essays in group theory", 75-263, Springer, 1987,
- no proof, only the idea,
- the meaning of "most" is not precise,
- statement made precise and proved, later by other authors.

Gromov's claim

Claim (Gromov '87)

Most finite presentations of groups, present an hyperbolic infinite group.

- Stated in his influential paper on hyperbolic groups: "Essays in group theory", 75-263, Springer, 1987,
- no proof, only the idea,
- the meaning of "most" is not precise,
- statement made precise and proved, later by other authors.

Presentations of groups

Notation

- $A=\left\{a_{1}, \ldots, a_{k}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}$
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo reduction).
- Every $w \in A^{*}$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_{A} : $|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3, \quad|u v| \leqslant|u|+|v|$.
- The free group F_{A} is usually denoted by:

Presentations of groups

Notation

- $A=\left\{a_{1}, \ldots, a_{k}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{k}, a_{k}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on A^{-1} modulo reduction).
- Every $w \in A^{*}$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_{A} : $|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3, \quad|u v| \leqslant|u|+|v|$.
- The free group F_{A} is usually denoted by:

Presentations of groups

Notation

- $A=\left\{a_{1}, \ldots, a_{k}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{k}, a_{k}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo reduction).
- Every $w \in A^{*}$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_{A} : $|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3, \quad|u v| \leqslant|u|+|v|$.
- The free group F_{A} is usually denoted by:

Presentations of groups

Notation

- $A=\left\{a_{1}, \ldots, a_{k}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{k}, a_{k}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
> - $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo reduction).
> - Every $w \in A^{*}$ has a unique reduced form,
> - 1 denotes the empty word, and \mid. | the (shortest) length in F_{A} :
> - The free group F_{A} is usually denoted by:

Presentations of groups

Notation

- $A=\left\{a_{1}, \ldots, a_{k}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{k}, a_{k}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo reduction).
- Every $w \in A^{*}$ has a unique reduced form,
- 1 denotes the empty word, and \mid. | the (shortest) length in F_{A} :
- The free group F_{A} is usually denoted by:

Presentations of groups

Notation

- $A=\left\{a_{1}, \ldots, a_{k}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{k}, a_{k}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo reduction).
- Every $w \in A^{*}$ has a unique reduced form,

1 denotes the empty word, and $|\cdot|$ the (s
$|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3$,
The free group F_{A} is usually denoted by:

Presentations of groups

Notation

- $A=\left\{a_{1}, \ldots, a_{k}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{k}, a_{k}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo reduction).
- Every $w \in A^{*}$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_{A} :
$|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3, \quad|u v| \leqslant|u|+|v|$.
- The free group F_{A} is usually denoted by:

Presentations of groups

Notation

- $A=\left\{a_{1}, \ldots, a_{k}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{k}, a_{k}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo reduction).
- Every $w \in A^{*}$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_{A} : $|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3, \quad|u v| \leqslant|u|+|v|$.
- The free group F_{A} is usually denoted by:

$$
F_{A}=\left\langle a_{1}, \ldots, a_{r} \mid-\right\rangle
$$

Presentations of groups

Theorem

Every finitely generated group G is a quotient of F_{A} (for some r), i.e.

$$
G \simeq F_{A} / N=\left\langle a_{1}, \ldots, a_{r} \mid w_{1}, w_{2}, \ldots\right\rangle,
$$

where N is the normal closure of $w_{1}, w_{2}, \ldots \in F_{A}$ in F_{A}.

- If G admits a presentation with finitely many w_{i} 's (relations) we say it is finitely presented.
- Very different presentations can give isomorphic groups:

- Deciding whether a finite presentation presents the trivial group is algorithmically unsolvable.

Presentations of groups

Theorem

Every finitely generated group G is a quotient of F_{A} (for some r), i.e.

$$
G \simeq F_{A} / N=\left\langle a_{1}, \ldots, a_{r} \mid w_{1}, w_{2}, \ldots\right\rangle,
$$

where N is the normal closure of $w_{1}, w_{2}, \ldots \in F_{A}$ in F_{A}.

- If G admits a presentation with finitely many w_{i} 's (relations) we say it is finitely presented.
- Very different presentations can give isomorphic groups:
- Deciding whether a finite presentation presents the trivial group is algorithmically unsolvable.

Presentations of groups

Theorem

Every finitely generated group G is a quotient of F_{A} (for some r), i.e.

$$
G \simeq F_{A} / N=\left\langle a_{1}, \ldots, a_{r} \mid w_{1}, w_{2}, \ldots\right\rangle,
$$

where N is the normal closure of $w_{1}, w_{2}, \ldots \in F_{A}$ in F_{A}.

- If G admits a presentation with finitely many w_{i} 's (relations) we say it is finitely presented.
- Very different presentations can give isomorphic groups:

$$
\langle a \mid a\rangle=1=\left\langle a, b \mid a^{-1} b a=b^{2}, b^{-1} a b=a^{2}\right\rangle
$$

- Deciding whether a finite presentation presents the trivial group is algorithmically unsolvable.

Presentations of groups

Theorem

Every finitely generated group G is a quotient of F_{A} (for some r), i.e.

$$
G \simeq F_{A} / N=\left\langle a_{1}, \ldots, a_{r} \mid w_{1}, w_{2}, \ldots\right\rangle,
$$

where N is the normal closure of $w_{1}, w_{2}, \ldots \in F_{A}$ in F_{A}.

- If G admits a presentation with finitely many w_{i} 's (relations) we say it is finitely presented.
- Very different presentations can give isomorphic groups:

$$
\langle a \mid a\rangle=1=\left\langle a, b \mid a^{-1} b a=b^{2}, b^{-1} a b=a^{2}\right\rangle
$$

- Deciding whether a finite presentation presents the trivial group is algorithmically unsolvable.

Presentations of groups

Theorem

Every finitely generated group G is a quotient of F_{A} (for some r), i.e.

$$
G \simeq F_{A} / N=\left\langle a_{1}, \ldots, a_{r} \mid w_{1}, w_{2}, \ldots\right\rangle,
$$

where N is the normal closure of $w_{1}, w_{2}, \ldots \in F_{A}$ in F_{A}.

- If G admits a presentation with finitely many w_{i} 's (relations) we say it is finitely presented.
- Very different presentations can give isomorphic groups:

$$
\langle a \mid a\rangle=1=\left\langle a, b \mid a^{-1} b a=b^{2}, b^{-1} a b=a^{2}\right\rangle
$$

- Deciding whether a finite presentation presents the trivial group is algorithmically unsolvable.

Hyperbolicity

Let G be a group, $S \subseteq G$, and $\chi(G, S)$ the Cayley graph of G w.r.t. S.

- $\chi(G, S)$ is connected if and only if S generates G.
- $\chi(G, S)$ has non-trivial closed paths if and only if S satisfy non-trivial relations.
- $\chi(G, S)$ is a tree if and only if G is free with basis S.

Definition

A aroup G is -hyperbolic if every geodesic triangle in $\chi(G, S)$ is δ-thin. (Free groups are 0-thin with respect to bases).

So, intuitively, hyperbolic groups are "close" to free groups (in a geometric sense).

Hyperbolicity

Let G be a group, $S \subseteq G$, and $\chi(G, S)$ the Cayley graph of G w.r.t. S.

- $\chi(G, S)$ is connected if and only if S generates G.
- $\chi(G, S)$ has non-trivial closed paths if and only if S satisfy non-trivial relations.
- $\quad \chi(G S)$ is a tree if and only if G is free with basis S.

Definition

A group G is -hyperbolic if every geodesic triangle in $\chi(G, S)$ is δ-thin. (Free groups are 0-thin with respect to bases).

So, intuitively, hyperbolic groups are "close" to free groups (in a geometric sense).

Hyperbolicity

Let G be a group, $S \subseteq G$, and $\chi(G, S)$ the Cayley graph of G w.r.t. S.

- $\chi(G, S)$ is connected if and only if S generates G.
- $\chi(G, S)$ has non-trivial closed paths if and only if S satisfy non-trivial relations.
- $\chi(G, S)$ is a tree if and only if G is free with basis S.

Definition
 A group G is -hyperbolic if every geodesic triangle in $\chi(G, S)$ is δ-thin. (Free groups are 0-thin with respect to bases).

So, intuitively, hyperbolic groups are "close" to free groups (in a geometric sense).

Hyperbolicity

Let G be a group, $S \subseteq G$, and $\chi(G, S)$ the Cayley graph of G w.r.t. S.

- $\chi(G, S)$ is connected if and only if S generates G.
- $\chi(G, S)$ has non-trivial closed paths if and only if S satisfy non-trivial relations.
- $\chi(G, S)$ is a tree if and only if G is free with basis S.

Definition
 A group G is -hyperbolic if every geodesic triangle in $\chi(G, S)$ is δ-thin. (Free groups are 0-thin with respect to bases).

So, intuitively, hyperbolic groups are "close" to free groups (in a geometric sense).

Hyperbolicity

Let G be a group, $S \subseteq G$, and $\chi(G, S)$ the Cayley graph of G w.r.t. S.

- $\chi(G, S)$ is connected if and only if S generates G.
- $\chi(G, S)$ has non-trivial closed paths if and only if S satisfy non-trivial relations.
- $\chi(G, S)$ is a tree if and only if G is free with basis S.

Definition

A group G is δ-hyperbolic if every geodesic triangle in $\chi(G, S)$ is δ-thin. (Free groups are 0-thin with respect to bases).

So, intuitively, hyperbolic groups are "close" to free groups (in a geometric sense).

Hyperbolicity

Let G be a group, $S \subseteq G$, and $\chi(G, S)$ the Cayley graph of G w.r.t. S.

- $\chi(G, S)$ is connected if and only if S generates G.
- $\chi(G, S)$ has non-trivial closed paths if and only if S satisfy non-trivial relations.
- $\chi(G, S)$ is a tree if and only if G is free with basis S.

Definition

A group G is δ-hyperbolic if every geodesic triangle in $\chi(G, S)$ is δ-thin. (Free groups are 0-thin with respect to bases).

So, intuitively, hyperbolic groups are "close" to free groups (in a geometric sense).

The meaning of "most"

Let X be an infinite set. What is the meaning of sentences like "most elements in X have property \mathcal{P} "?

- Define a notion of size, $|\cdot|: X \rightarrow \mathbb{N}$, with finite preimages.
- Define the balls: $B(n)=\{x \in X| | x \mid \leqslant n\}$ (which are finite).
- Count the proportion $\rho_{n}=\frac{\mid\{x \in X \mid x \text { satisfies } P\} \mid}{|B(n)|}=\frac{|\mathcal{P} \cap B(n)|}{|B(n)|}$
- Define the density of X as $\rho=\lim _{n \rightarrow \infty} \rho_{n}(\in[0,1]$ if it exists).
- \mathcal{P} is generic (or generically many elements satisfy \mathcal{P}) if $\rho=1$
- \mathcal{P} is negligible if $\rho=0$.

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside X.

The meaning of "most"

Let X be an infinite set. What is the meaning of sentences like "most elements in X have property \mathcal{P} "?

- Define a notion of size, $|\cdot|: X \rightarrow \mathbb{N}$, with finite preimages.
- Define the balls: $B(n)=\{x \in X| | x \mid \leqslant n\}$ (which are finite).
- Count the proportion $\rho_{n}=\frac{\mid\{x \in X \mid x \text { satisfies } \mathcal{P}\} \mid}{|B(n)|}=\frac{|\mathcal{P} \cap B(n)|}{|B(n)|}$
- Define the density of X as $\rho=\lim _{n \rightarrow \infty} \rho_{n}(\in[0,1]$ if it exists $)$
- \mathcal{P} is generic (or generically many elements satisfy \mathcal{P}) if $\rho=1$
- \mathcal{P} is negligible if $\rho=0$.

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside X.

The meaning of "most"

Let X be an infinite set. What is the meaning of sentences like "most elements in X have property \mathcal{P} "?

- Define a notion of size, $|\cdot|: X \rightarrow \mathbb{N}$, with finite preimages.
- Define the balls: $B(n)=\{x \in X| | x \mid \leqslant n\}$ (which are finite).
- Count the proportion $\rho_{n}=\frac{\mid\{x \in X \mid x \text { satisfies } \mathcal{P}\} \mid}{|B(n)|}=\frac{\mid P \cap B(n)}{|B(n)|}$
- Define the density of X as $\rho=\lim _{n \rightarrow \infty} \rho_{n}(\in[0,1]$ if it exists $)$
- \mathcal{P} is generic (or aenerically many elements satisfy \mathcal{P}) if $\rho=1$
- \mathcal{P} is negligible if $\rho=0$.

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside X.

The meaning of "most"

Let X be an infinite set. What is the meaning of sentences like "most elements in X have property \mathcal{P} "?

- Define a notion of size, $|\cdot|: X \rightarrow \mathbb{N}$, with finite preimages.
- Define the balls: $B(n)=\{x \in X| | x \mid \leqslant n\}$ (which are finite).
- Count the proportion $\rho_{n}=\frac{\mid\{x \in X \mid x \text { satisfies } \mathcal{P}\} \mid}{|B(n)|}=\frac{|\mathcal{P} \cap B(n)|}{|B(n)|}$.
- Define the density of X as $\rho=\lim _{n \rightarrow \infty} \rho_{n}(\in[0,1]$ if it exists $)$
- \mathcal{P} is generic (or generically many elements satisfy \mathcal{P}) if $\rho=1$
- \mathcal{P} is negligible if $\rho=0$.

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside X.

The meaning of "most"

Let X be an infinite set. What is the meaning of sentences like "most elements in X have property \mathcal{P} " ?

- Define a notion of size, $|\cdot|: X \rightarrow \mathbb{N}$, with finite preimages.
- Define the balls: $B(n)=\{x \in X| | x \mid \leqslant n\}$ (which are finite).
- Count the proportion $\rho_{n}=\frac{\mid\{x \in X \mid x \text { satisfies } \mathcal{P}\} \mid}{|B(n)|}=\frac{|\mathcal{P} \cap B(n)|}{|B(n)|}$.
- Define the density of X as $\rho=\lim _{n \rightarrow \infty} \rho_{n}(\in[0,1]$ if it exists).
- \mathcal{P} is generic (or generically many elements satisfy \mathcal{P}) if $\rho=1$
- \mathcal{P} is negligible if $\rho=0$.

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside X.

The meaning of "most"

Let X be an infinite set. What is the meaning of sentences like "most elements in X have property \mathcal{P} " ?

- Define a notion of size, $|\cdot|: X \rightarrow \mathbb{N}$, with finite preimages.
- Define the balls: $B(n)=\{x \in X| | x \mid \leqslant n\}$ (which are finite).
- Count the proportion $\rho_{n}=\frac{\mid\{x \in X \mid x \text { satisfies } \mathcal{P}\} \mid}{|B(n)|}=\frac{|\mathcal{P} \cap B(n)|}{|B(n)|}$.
- Define the density of X as $\rho=\lim _{n \rightarrow \infty} \rho_{n}(\in[0,1]$ if it exists).
- \mathcal{P} is generic (or generically many elements satisfy \mathcal{P}) if $\rho=1$.
- \mathcal{P} is negligible if $\rho=0$.

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside X.

The meaning of "most"

Let X be an infinite set. What is the meaning of sentences like "most elements in X have property \mathcal{P} " ?

- Define a notion of size, $|\cdot|: X \rightarrow \mathbb{N}$, with finite preimages.
- Define the balls: $B(n)=\{x \in X| | x \mid \leqslant n\}$ (which are finite).
- Count the proportion $\rho_{n}=\frac{\mid\{x \in X \mid x \text { satisfies } \mathcal{P}\} \mid}{|B(n)|}=\frac{|\mathcal{P} \cap B(n)|}{|B(n)|}$.
- Define the density of X as $\rho=\lim _{n \rightarrow \infty} \rho_{n}(\in[0,1]$ if it exists).
- \mathcal{P} is generic (or generically many elements satisfy \mathcal{P}) if $\rho=1$.
- \mathcal{P} is negligible if $\rho=0$.

Of course, everything depends on the chosen size function, i.e. on the

 direction to infinity inside X.
The meaning of "most"

Let X be an infinite set. What is the meaning of sentences like "most elements in X have property \mathcal{P} " ?

- Define a notion of size, $|\cdot|: X \rightarrow \mathbb{N}$, with finite preimages.
- Define the balls: $B(n)=\{x \in X| | x \mid \leqslant n\}$ (which are finite).
- Count the proportion $\rho_{n}=\frac{\mid\{x \in X \mid x \text { satisfies } \mathcal{P}\} \mid}{|B(n)|}=\frac{|\mathcal{P} \cap B(n)|}{|B(n)|}$.
- Define the density of X as $\rho=\lim _{n \rightarrow \infty} \rho_{n}(\in[0,1]$ if it exists).
- \mathcal{P} is generic (or generically many elements satisfy \mathcal{P}) if $\rho=1$.
- \mathcal{P} is negligible if $\rho=0$.

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside X.

Classical example: visible points

Definition

A point $\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}^{k}$ is visible if $\operatorname{gcd}\left(x_{1}, \ldots, x_{k}\right)=1$.

Theorem (Mertens, 1874 (case $k=2$))
 The density of visible points in \mathbb{T}^{k} is $1 / \zeta(k)$, where $\zeta(k)=\sum_{n=1}^{\infty} \frac{1}{n^{k}}$ is the Riemann zeta-function (with respect to ||•|| $\left.\right|_{1}$).
 In particular, visible points in the plane have density $\frac{6}{\pi^{2}}$.

With artificial definitions of size, one can force it to be any $\alpha \in[0,1]$.

Classical example: visible points

Definition

A point $\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}^{k}$ is visible if $\operatorname{gcd}\left(x_{1}, \ldots, x_{k}\right)=1$.

Theorem (Mertens, 1874 (case $k=2$))

The density of visible points in \mathbb{Z}^{k} is $1 / \zeta(k)$, where $\zeta(k)=\sum_{n=1}^{\infty} \frac{1}{n^{k}}$ is the Riemann zeta-function (with respect to $\|\cdot\|_{1}$).

In particular, visible points in the plane have density $\frac{6}{\pi^{2}}$.

With artificial definitions of size, one can force it to be any $\alpha \in[0,1]$.

Classical example: visible points

Definition

A point $\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}^{k}$ is visible if $\operatorname{gcd}\left(x_{1}, \ldots, x_{k}\right)=1$.

Theorem (Mertens, 1874 (case $k=2$))

The density of visible points in \mathbb{Z}^{k} is $1 / \zeta(k)$, where $\zeta(k)=\sum_{n=1}^{\infty} \frac{1}{n^{k}}$ is the Riemann zeta-function (with respect to $\|\cdot\|_{1}$).
In particular, visible points in the plane have density $\frac{6}{\pi^{2}}$.

With artificial definitions of size, one can force it to be any $\alpha \in[0,1]$.

Classical example: visible points

Definition

A point $\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}^{k}$ is visible if $\operatorname{gcd}\left(x_{1}, \ldots, x_{k}\right)=1$.

Theorem (Mertens, 1874 (case $k=2$))

The density of visible points in \mathbb{Z}^{k} is $1 / \zeta(k)$, where $\zeta(k)=\sum_{n=1}^{\infty} \frac{1}{n^{k}}$ is the Riemann zeta-function (with respect to $\|\cdot\|_{1}$).
In particular, visible points in the plane have density $\frac{6}{\pi^{2}}$.

With artificial definitions of size, one can force it to be any $\alpha \in[0,1]$.

Outline

(9) A claim due to Gromov
(2) Arzhantseva-Ol'shanskii's proof
(3) A new point of view

4 Stallings' graphs
(5) Counting Stallings' graphs: partial injections
(6) Most groups are trivial
(7) Proof of the combinatorial theorem

Arzhantseva-Ol'shanskii's proof

- Fix $r \geqslant 2$ and $k \geqslant 1$.
- Consider the free group $F_{A}=\left\langle a_{1}, \ldots, a_{r} \mid-\right\rangle$.
- In F_{A} we have the natural notion of size and balls.
- For $w_{1}, \ldots, w_{k} \in F_{A}$, let $G_{w_{1} \ldots . w_{k}}=\left\langle a_{1}, \ldots, a_{r} \mid w_{1}, \ldots, w_{k}\right\rangle$.

Theorem (Arzhantseva-Ol'shanskii, '96)

- Hence, generically many presentations present an infinite hyperbolic group.
- The proof is a detailed counting, using the notion of small cancelation.

Arzhantseva-Ol'shanskii's proof

- Fix $r \geqslant 2$ and $k \geqslant 1$.
- Consider the free group $F_{A}=\left\langle a_{1}, \ldots, a_{r} \mid-\right\rangle$.
- In F_{A} we have the natural notion of size and balls.
- For $w_{1}, \ldots, w_{k} \in F_{A}$, let $G_{w_{1}, \ldots, w_{k}}=\left\langle a_{1}, \ldots, a_{r}\right| w_{1}$

Theorem (Arzhantseva-Olishanskii, '96)

- Hence, generically many presentations present an infinite hyperbolic group.
- The proof is a detailed counting, using the notion of small cancelation.

Arzhantseva-Ol'shanskii's proof

- Fix $r \geqslant 2$ and $k \geqslant 1$.
- Consider the free group $F_{A}=\left\langle a_{1}, \ldots, a_{r} \mid-\right\rangle$.
- In F_{A} we have the natural notion of size and balls.

Theorem (Arzhantseva-Ol'shanskii, '96)

- Hence, generically many presentations present an infinite hyperbolic group.
- The proof is a detailed counting, using the notion of small cancelation.

Arzhantseva-Ol'shanskii's proof

- Fix $r \geqslant 2$ and $k \geqslant 1$.
- Consider the free group $F_{A}=\left\langle a_{1}, \ldots, a_{r} \mid-\right\rangle$.
- In F_{A} we have the natural notion of size and balls.
- For $w_{1}, \ldots, w_{k} \in F_{A}$, let $G_{w_{1}, \ldots, w_{k}}=\left\langle a_{1}, \ldots, a_{r} \mid w_{1}, \ldots, w_{k}\right\rangle$.

Theorem (Arzhantseva-Ol'shanskii, '96)

- Hence, generically many presentations present an infinite hyperbolic group.
- The proof is a detailed counting, using the notion of small cancelation.

Arzhantseva-Ol'shanskii's proof

- Fix $r \geqslant 2$ and $k \geqslant 1$.
- Consider the free group $F_{A}=\left\langle a_{1}, \ldots, a_{r} \mid-\right\rangle$.
- In F_{A} we have the natural notion of size and balls.
- For $w_{1}, \ldots, w_{k} \in F_{A}$, let $G_{w_{1}, \ldots, w_{k}}=\left\langle a_{1}, \ldots, a_{r} \mid w_{1}, \ldots, w_{k}\right\rangle$.

Theorem (Arzhantseva-Ol'shanskii, '96)

$\exists \lim _{n \rightarrow \infty} \frac{\mid\left\{\left(w_{1}, \ldots, w_{k}\right) \in B(n)^{k} \mid G_{w_{1}, \ldots, w_{k}} \text { is infinite hyperbolic }\right\} \mid}{|B(n)|^{k}}=1$.

- Hence, generically many presentations present an infinite hyperbolic group.
 - The proof is a detailed counting, using the notion of small cancelation.

Arzhantseva-Ol'shanskii's proof

- Fix $r \geqslant 2$ and $k \geqslant 1$.
- Consider the free group $F_{A}=\left\langle a_{1}, \ldots, a_{r} \mid-\right\rangle$.
- In F_{A} we have the natural notion of size and balls.
- For $w_{1}, \ldots, w_{k} \in F_{A}$, let $G_{w_{1}, \ldots, w_{k}}=\left\langle a_{1}, \ldots, a_{r} \mid w_{1}, \ldots, w_{k}\right\rangle$.

Theorem (Arzhantseva-Ol'shanskii, '96)

$$
\exists \lim _{n \rightarrow \infty} \frac{\mid\left\{\left(w_{1}, \ldots, w_{k}\right) \in B(n)^{k} \mid G_{w_{1}, \ldots, w_{k}} \text { is infinite hyperbolic }\right\} \mid}{|B(n)|^{k}}=1 .
$$

- Hence, generically many presentations present an infinite hyperbolic group.
- The proof is a detailed counting, using the notion of small cancelation.

Arzhantseva-Ol'shanskii's proof

- Fix $r \geqslant 2$ and $k \geqslant 1$.
- Consider the free group $F_{A}=\left\langle a_{1}, \ldots, a_{r} \mid-\right\rangle$.
- In F_{A} we have the natural notion of size and balls.
- For $w_{1}, \ldots, w_{k} \in F_{A}$, let $G_{w_{1}, \ldots, w_{k}}=\left\langle a_{1}, \ldots, a_{r} \mid w_{1}, \ldots, w_{k}\right\rangle$.

Theorem (Arzhantseva-Ol'shanskii, '96)

$$
\exists \quad \lim _{n \rightarrow \infty} \frac{\mid\left\{\left(w_{1}, \ldots, w_{k}\right) \in B(n)^{k} \mid G_{w_{1}, \ldots, w_{k}} \text { is infinite hyperbolic }\right\} \mid}{|B(n)|^{k}}=1 .
$$

- Hence, generically many presentations present an infinite hyperbolic group.
- The proof is a detailed counting, using the notion of small cancelation.

Comments

- This fits the algebraic intuition: the longer the relations are, the closest will the group be to a free group.
- Problem-1: this counts r-generated, k-related groups, with r and k fixed.
- Problem-2: this counts presentations, not really groups !
- maybe different k-tuples (w_{1},
$\left.w_{k}\right) \neq\left(w_{1}^{\prime}, \ldots, w_{k}^{\prime}\right)$ generate the same subgroup $\left\langle w_{1}, \ldots, w_{k}\right\rangle=\left\langle w_{1}^{\prime}\right.$
- maybe $\left\langle w_{1}, \ldots, w_{k}\right\rangle \neq\left\langle w_{1}^{\prime}, \ldots, w_{k}^{\prime}\right\rangle$, but they have the same normal
closure $\left\langle\left\langle w_{1}, \ldots, w_{k}\right\rangle\right\rangle=\left\langle\left\langle w_{1}^{\prime}, \ldots, w_{1}^{\prime}\right\rangle\right\rangle$.
- maybe even ${ }^{\prime} / w_{1}$

Comments

- This fits the algebraic intuition: the longer the relations are, the closest will the group be to a free group.
- Problem-1: this counts r-generated, k-related groups, with r and k fixed.
- Problem-2: this counts presentations, not really groups !
- maybe different k-tuples (w_{1}, $\left.w_{k}\right) \neq\left(w_{1}^{\prime}\right.$,
$\left.w_{k}^{\prime}\right)$ generate the same subgroup $\left\langle w_{1}\right.$
- maybe $\left\langle w_{1}\right.$, closure $\left\langle\left\langle w_{1}\right.\right.$

$\left.w_{k}^{\prime}\right\rangle$, but they have the same normal
- mavbe even $\left\langle\left\langle w_{1}\right.\right.$

Comments

- This fits the algebraic intuition: the longer the relations are, the closest will the group be to a free group.
- Problem-1: this counts r-generated, k-related groups, with r and k fixed.
- Problem-2: this counts presentations, not really groups !
- maybe different k-tuples (w_{1} subgroup $\left\langle w_{1}, \ldots, w_{k}\right\rangle=\left\langle w_{1}^{\prime}\right.$
$\left.w_{k}\right) \neq\left(w_{1}^{\prime}\right.$
$\left.w_{k}^{\prime}\right)$ generate the same
- maybe $\left\langle w_{1}\right.$
closure $\left\langle\left\langle w_{1}\right.\right.$

$\left.w_{k}^{\prime}\right)$, but they have the same normal
- maybe even $\left\langle\left\langle w_{1}\right.\right.$

Comments

- This fits the algebraic intuition: the longer the relations are, the closest will the group be to a free group.
- Problem-1: this counts r-generated, k-related groups, with r and k fixed.
- Problem-2: this counts presentations, not really groups !
- maybe different k-tuples $\left(w_{1}, \ldots, w_{k}\right) \neq\left(w_{1}^{\prime}, \ldots, w_{k}^{\prime}\right)$ generate the same subgroup $\left\langle w_{1}, \ldots, w_{k}\right\rangle=\left\langle w_{1}^{\prime}, \ldots, w_{k}^{\prime}\right\rangle$.

Comments

- This fits the algebraic intuition: the longer the relations are, the closest will the group be to a free group.
- Problem-1: this counts r-generated, k-related groups, with r and k fixed.
- Problem-2: this counts presentations, not really groups !
- maybe different k-tuples $\left(w_{1}, \ldots, w_{k}\right) \neq\left(w_{1}^{\prime}, \ldots, w_{k}^{\prime}\right)$ generate the same subgroup $\left\langle w_{1}, \ldots, w_{k}\right\rangle=\left\langle w_{1}^{\prime}, \ldots, w_{k}^{\prime}\right\rangle$.
- maybe $\left\langle w_{1}, \ldots, w_{k}\right\rangle \neq\left\langle w_{1}^{\prime}, \ldots, w_{k}^{\prime}\right\rangle$, but they have the same normal closure $\left\langle\left\langle w_{1}, \ldots, w_{k}\right\rangle\right\rangle=\left\langle\left\langle w_{1}^{\prime}, \ldots, w_{k}^{\prime}\right\rangle\right\rangle$.

Comments

- This fits the algebraic intuition: the longer the relations are, the closest will the group be to a free group.
- Problem-1: this counts r-generated, k-related groups, with r and k fixed.
- Problem-2: this counts presentations, not really groups !
- maybe different k-tuples $\left(w_{1}, \ldots, w_{k}\right) \neq\left(w_{1}^{\prime}, \ldots, w_{k}^{\prime}\right)$ generate the same subgroup $\left\langle w_{1}, \ldots, w_{k}\right\rangle=\left\langle w_{1}^{\prime}, \ldots, w_{k}^{\prime}\right\rangle$.
- maybe $\left\langle w_{1}, \ldots, w_{k}\right\rangle \neq\left\langle w_{1}^{\prime}, \ldots, w_{k}^{\prime}\right\rangle$, but they have the same normal closure $\left\langle\left\langle w_{1}, \ldots, w_{k}\right\rangle\right\rangle=\left\langle\left\langle w_{1}^{\prime}, \ldots, w_{k}^{\prime}\right\rangle\right\rangle$. .
- maybe even $\left\langle\left\langle w_{1}, \ldots, w_{k}\right\rangle\right\rangle \neq\left\langle\left\langle w_{1}^{\prime}, \ldots, w_{k}^{\prime}\right\rangle\right\rangle$, but $\left\langle a_{1}, \ldots, a_{r} \mid w_{1}, \ldots, w_{k}\right\rangle \simeq\left\langle a_{1}, \ldots, a_{r} \mid w_{1}^{\prime}, \ldots, w_{k}^{\prime}\right\rangle$.

Outline

(9) A claim due to Gromov
(2) Arzhantseva-Ol'shanskii's proof
(3) A new point of view

4 Stallings' graphs
(5) Counting Stallings' graphs: partial injections

6 Most groups are trivial
(7) Proof of the combinatorial theorem

A new point of view

Observation

Let $N=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{A}$. Then,

$$
\left\langle a_{1}, \ldots, a_{r} \mid w_{1}, \ldots, w_{k}\right\rangle \simeq\left\langle a_{1}, \ldots, a_{r} \mid N\right\rangle .
$$

and let us count f.g. subgroups N of F_{A}, instead of counting k-tuples of words.

Advantages:

- r still fixed, but not k.
- less redundancy.
- it will be an equally natural way of counting.
but with very different results... this is a very different direction to infinity.

A new point of view

Observation

Let $N=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{A}$. Then,

$$
\left\langle a_{1}, \ldots, a_{r} \mid w_{1}, \ldots, w_{k}\right\rangle \simeq\left\langle a_{1}, \ldots, a_{r} \mid N\right\rangle .
$$

and let us count f.g. subgroups N of F_{A}, instead of counting k-tuples of words.

Advantages:

e r still fixed, but not k.

- less redundancy.
- it will be an equally natural way of counting.
but with very different results... this is a very different direction to infinity.

A new point of view

Observation

Let $N=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{A}$. Then,

$$
\left\langle a_{1}, \ldots, a_{r} \mid w_{1}, \ldots, w_{k}\right\rangle \simeq\left\langle a_{1}, \ldots, a_{r} \mid N\right\rangle .
$$

and let us count f.g. subgroups N of F_{A}, instead of counting k-tuples of words.
Advantages:

- r still fixed, but not k.
- less redundancy.
- it will be an equally natural way of counting.
but with very different results... this is a very different direction to infinity

A new point of view

Observation

Let $N=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{A}$. Then,

$$
\left\langle a_{1}, \ldots, a_{r} \mid w_{1}, \ldots, w_{k}\right\rangle \simeq\left\langle a_{1}, \ldots, a_{r} \mid N\right\rangle .
$$

and let us count f.g. subgroups N of F_{A}, instead of counting k-tuples of words.
Advantages:

- r still fixed, but not k.
- less redundancy.
- it will be an equally natural way of counting.
but with very different results... this is a very different direction to infinity

A new point of view

Observation

Let $N=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{A}$. Then,

$$
\left\langle a_{1}, \ldots, a_{r} \mid w_{1}, \ldots, w_{k}\right\rangle \simeq\left\langle a_{1}, \ldots, a_{r} \mid N\right\rangle .
$$

and let us count f.g. subgroups N of F_{A}, instead of counting k-tuples of words.
Advantages:

- r still fixed, but not k.
- less redundancy.
- it will be an equally natural way of counting.
but with very different results... this is a very different direction to infinity

A new point of view

Observation

Let $N=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{A}$. Then,

$$
\left\langle a_{1}, \ldots, a_{r} \mid w_{1}, \ldots, w_{k}\right\rangle \simeq\left\langle a_{1}, \ldots, a_{r} \mid N\right\rangle .
$$

and let us count f.g. subgroups N of F_{A}, instead of counting k-tuples of words.
Advantages:

- r still fixed, but not k.
- less redundancy.
- it will be an equally natural way of counting.
... but with very different results... this is a very different direction to infinity,

A new point of view

Observation

Let $N=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{A}$. Then,

$$
\left\langle a_{1}, \ldots, a_{r} \mid w_{1}, \ldots, w_{k}\right\rangle \simeq\left\langle a_{1}, \ldots, a_{r} \mid N\right\rangle .
$$

and let us count f.g. subgroups N of F_{A}, instead of counting k-tuples of words.
Advantages:

- r still fixed, but not k.
- less redundancy.
- it will be an equally natural way of counting.
... but with very different results... this is a very different direction to infinity.

Outline

(9) A claim due to Gromov
(2) Arzhantseva-Ol'shanskii's proof
(3) A new point of view

4 Stallings' graphs
(5) Counting Stallings' graphs: partial injections

6 Most groups are trivial
(7) Proof of the combinatorial theorem

Stallings automata

Definition

A Stallings automaton is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:
1- X is connected,
2- no vertex of degree 1 except possibly v (X is a core-graph),
3- no two edges with the same label go out of (or in to) the same vertex.

Stallings automata

Definition

A Stallings automaton is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:
1- X is connected,
2- no vertex of degree 1 except possibly v (X is a core-graph),
3- no two edges with the same label go out of (or in to) the same vertex.
$N O$:

Stallings automata

Definition

A Stallings automaton is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:
1- X is connected,
2- no vertex of degree 1 except possibly v (X is a core-graph),
3- no two edges with the same label go out of (or in to) the same vertex.
$N O:$

YES :

Stallings automata

In the influent paper
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_{A} and Stallings automata:
 $\left\{f . g\right.$. subgroups of $\left.F_{A}\right\} \longleftrightarrow \quad\{$ Stallings automata over $A\}$,

which is crucial for the modern understanding of the lattice of subgroups of F_{A}.

Stallings automata

In the influent paper
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_{A} and Stallings automata:
$\left\{\right.$ f.g. subgroups of $\left.F_{A}\right\} \longleftrightarrow \quad$ \{Stallings automata over $\left.A\right\}$,
which is crucial for the modern understanding of the lattice of subgroups of F_{A}.

Stallings automata

In the influent paper
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_{A} and Stallings automata:
$\left\{\right.$ f.g. subgroups of $\left.F_{A}\right\} \quad \longleftrightarrow \quad\{$ Stallings automata over $A\}$,
which is crucial for the modern understanding of the lattice of subgroups of F_{A}.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$$
\begin{array}{l|ll}
\text { Enric Ventura (UPC) } & \text { Most groups are hyperbolic... or trivial ? } & \text { March 18th, 2010 } 18 / 53
\end{array}
$$

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$$
\begin{aligned}
& \pi(X, \bullet)=\left\{1, a, a^{-1}, b a b, b c^{-1} b,\right. \\
&\left.b a b a b^{-1} c b^{-1}, \ldots\right\} \\
& \pi(X, \bullet) \not \supset \quad b c^{-1} b c a a
\end{aligned}
$$

Membership problem in $\pi(X, \bullet)$ is solvable.

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, a]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And, $|E X-E T|$

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, c e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.

- And, $\mid E X-E T$

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And,

$E X-E T$

$=|E X|-|E T|$

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And,

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And,

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And, $|E X-E T|=|E X|-|E T|$

$$
=|E X|-(|V T|-1)=1-|V X|+|E X| . \square
$$

Example

$H=\langle \rangle$

Example

$$
H=\langle a, \quad\rangle
$$

Example

$H=\langle a, b a b, \quad\rangle$

Example

$H=\left\langle a, b a b, b^{-1} c b^{-1}\right\rangle$

Example

$$
\begin{aligned}
& H=\left\langle a, b a b, b^{-1} c b^{-1}\right\rangle \\
& r k(H)=1-3+5=3 .
\end{aligned}
$$

Example-2

$$
F_{\aleph_{0}} \simeq H=\left\langle\ldots, b^{-2} a b^{2}, b^{-1} a b, a, b a b^{-1}, b^{2} a b^{-2}, \ldots\right\rangle \leqslant F_{2} .
$$

Constructing the automata from the subgroup

In any automaton containing the following situation, for $x \in A^{ \pm 1}$,

we can fold and identify vertices u and v to obtain

This operation, $(X, v) \rightsquigarrow\left(X^{\prime}, v\right)$, is called a Stallings folding.

Constructing the automata from the subgroup

In any automaton containing the following situation, for $x \in A^{ \pm 1}$,

we can fold and identify vertices u and v to obtain

$$
\bullet \xrightarrow{x} u=v .
$$

This operation, $(X, v) \rightsquigarrow\left(X^{\prime}, v\right)$, is called a Stallings folding.

Constructing the automata from the subgroup

In any automaton containing the following situation, for $x \in A^{ \pm 1}$,

we can fold and identify vertices u and v to obtain

This operation, $(X, v) \rightsquigarrow\left(X^{\prime}, v\right)$, is called a Stallings folding.

Constructing the automata from the subgroup

Lemma (Stallings)

If $(X, v) \rightsquigarrow\left(X^{\prime}, v^{\prime}\right)$ is a Stallings folding then $\pi(X, v)=\pi\left(X^{\prime}, v^{\prime}\right)$.

Given a f.g. subgroup $H=\left\langle w_{1}, \ldots w_{m}\right\rangle \leqslant F_{A}$ (we assume w_{i} are reduced words), do the following:
1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Constructing the automata from the subgroup

Lemma (Stallings)

If $(X, v) \rightsquigarrow\left(X^{\prime}, v^{\prime}\right)$ is a Stallings folding then $\pi(X, v)=\pi\left(X^{\prime}, v^{\prime}\right)$.

Given a f.g. subgroup $H=\left\langle w_{1}, \ldots w_{m}\right\rangle \leqslant F_{A}$ (we assume w_{i} are reduced words), do the following:
1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Constructing the automata from the subgroup

Lemma (Stallings)

If $(X, v) \rightsquigarrow\left(X^{\prime}, v^{\prime}\right)$ is a Stallings folding then $\pi(X, v)=\pi\left(X^{\prime}, v^{\prime}\right)$.

Given a f.g. subgroup $H=\left\langle w_{1}, \ldots w_{m}\right\rangle \leqslant F_{A}$ (we assume w_{i} are reduced words), do the following:
1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Flower(H)

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Flower(H)

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#1

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#1.

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#2.

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#2.

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#3.

$\Gamma(H)$

By Stallings Lemma, $\pi(\Gamma(H), \bullet)=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#3.
 $\Gamma(H)$

By Stallings Lemma, $\pi(\Gamma(H), \bullet)=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#3.
 $\Gamma(H)$

By Stallings Lemma, $\pi(\Gamma(H), \bullet)=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$
$=\left\langle b, a b a^{-1}, a^{3}\right\rangle$

Local confluence

It can be shown that

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings.

Proposition
 The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The followinc is a bijection:

Local confluence

It can be shown that

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings.

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The followinc is a bijection:

Local confluence

It can be shown that

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings.

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection:
\{f.g. subgroups of $\left.F_{A}\right\} \quad \longleftrightarrow \quad$ \{Stallings automata\}

$$
\begin{aligned}
H & \rightarrow \Gamma(H) \\
\pi(X, v) & \leftarrow(X, v)
\end{aligned}
$$

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of F_{A} is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of F_{A} is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of F_{A} is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.

Outline

(9) A claim due to Gromov
(2) Arzhantseva-Ol'shanskii's proof
(3) A new point of view

4 Stallings' graphs
(5) Counting Stallings' graphs: partial injections

6 Most groups are trivial
(7) Proof of the combinatorial theorem

Stallings' graphs as partial injections

Definition

Let Γ be a Stallings graph. Every letter in A determines a partial injection of the set of vertices $V \Gamma: a(i)=j \quad$ iff $\quad i \xrightarrow{a} j$.

Observation

And the r partial injections $a_{1} \ldots . . a_{r}$ determine back the graph Γ.

Stallings' graphs as partial injections

Definition

Let Γ be a Stallings graph. Every letter in A determines a partial injection of the set of vertices $V \Gamma: a(i)=j \quad$ iff $\quad i \xrightarrow{a} j$.

Observation

And the r partial injections a_{1}, \ldots, a_{r} determine back the graph Γ.

Stallings' graphs as partial injections

Definition

Let Γ be a Stallings graph. Every letter in A determines a partial injection of the set of vertices $V \Gamma: a(i)=j \quad$ iff $\quad i \xrightarrow{a} j$.

Observation
And the r partial injections a_{1}, \ldots, a_{r} determine back the graph Γ.

Stallings' graphs as partial injections

Definition

Let Γ be a Stallings graph. Every letter in A determines a partial injection of the set of vertices $V \Gamma: a(i)=j \quad$ iff $\quad i \xrightarrow{a} j$.

Observation

And the r partial injections a_{1}, \ldots, a_{r} determine back the graph Γ.

Stallings' graphs as partial injections

Definition

Let Γ be a Stallings graph. Every letter in A determines a partial injection of the set of vertices $V \Gamma: a(i)=j \quad$ iff $\quad i \xrightarrow{a} j$.

$$
\Gamma=
$$

$$
\begin{array}{rllrllrll}
a: V & \rightarrow & V & b: V & \rightarrow & V & c: V & \rightarrow & V \\
1 & \mapsto & 1 & 1 & \mapsto & 2 & 1 & & \\
2 & \mapsto & 3 & 2 & & & 2 & & \\
3 & & & 3 & \mapsto & 1 & 3 & \mapsto & 2
\end{array}
$$

Observation

And the r partial injections a_{1}, \ldots, a_{r} determine back the graph Γ.

Stallings' graphs as partial injections

Definition

Let Γ be a Stallings graph. Every letter in A determines a partial injection of the set of vertices $V \Gamma: a(i)=j \quad$ iff $\quad i \xrightarrow{a} j$.

Observation

And the r partial injections a_{1}, \ldots, a_{r} determine back the graph Γ.

Stallings' graphs as partial injections

Definition

Let I_{n} be the set of partial injections of $[n]=\{1,2, \ldots, n\}$.

A Stallings graph (over A) with n vertices can be thought as a r-tuple of partial injections, plus a base-point, $\sigma \in I_{n}^{r} \times[n]$, such that

- the corresponding graph $\Gamma(\sigma)$ is connected,
- and without degree 1 vertices, except possibly the base-point.

Observation

There are at most $\left|I_{n}\right|^{r} \cdot n$ Stallings graphs with n vertices (over A).

Stallings' graphs as partial injections

Definition

Let I_{n} be the set of partial injections of $[n]=\{1,2, \ldots, n\}$.

A Stallings graph (over A) with n vertices can be thought as a r-tuple of partial injections, plus a base-point, $\sigma \in I_{n}^{r} \times[n]$, such that
> - the corresponding graph $\Gamma(\sigma)$ is connected,
> - and without degree 1 vertices, except possibly the base-point.

Ooservation
 There are at most $\left|I_{n}\right|^{r} \cdot n$ Stallings graphs with n vertices (over A)

Stallings' graphs as partial injections

Definition

Let I_{n} be the set of partial injections of $[n]=\{1,2, \ldots, n\}$.

A Stallings graph (over A) with n vertices can be thought as a r-tuple of partial injections, plus a base-point, $\sigma \in I_{n}^{r} \times[n]$, such that

- the corresponding graph $\Gamma(\sigma)$ is connected,
- and without degree 1 vertices, except possibly the base-point.

Observation

There are at most $\left|I_{n}\right|^{r} \cdot n$ Stallings graphs with n vertices (over A).

Stallings' graphs as partial injections

Definition

Let I_{n} be the set of partial injections of $[n]=\{1,2, \ldots, n\}$.

A Stallings graph (over A) with n vertices can be thought as a r-tuple of partial injections, plus a base-point, $\sigma \in I_{n}^{r} \times[n]$, such that

- the corresponding graph $\Gamma(\sigma)$ is connected,
- and without degree 1 vertices, except possibly the base-point.

Observation

There are at most $\left|I_{n}\right|^{r} \cdot n$ Stallings graphs with n vertices (over A).

Stallings' graphs as partial injections

Definition

Let I_{n} be the set of partial injections of $[n]=\{1,2, \ldots, n\}$.

A Stallings graph (over A) with n vertices can be thought as a r-tuple of partial injections, plus a base-point, $\sigma \in I_{n}^{r} \times[n]$, such that

- the corresponding graph $\Gamma(\sigma)$ is connected,
- and without degree 1 vertices, except possibly the base-point.

Observation

There are at most $\left|I_{n}\right|^{r} \cdot n$ Stallings graphs with n vertices (over A).

Stallings' graphs as partial injections

Theorem (Bassino, Nicaud, Weil, 2008)

a) $\frac{\mid\left\{\sigma \in I_{n}{ }^{r} \times[n] \quad \mid \quad \Gamma(\sigma) \text { not connected }\right\} \mid}{\left|I_{n}\right|^{r} \cdot n}=\mathcal{O}\left(\frac{1}{n^{r-1}}\right)$.

Corollary

Generically, a Stallings graph (over A) with n vertices is just a r-tuple of partial injections, plus a base-point, $I_{n}{ }^{r} \times[n]$.

Hence, counting Stallings graphs reduces to count partial injections: a purely combinatorial matter.

Stallings' graphs as partial injections

Theorem (Bassino, Nicaud, Weil, 2008)

a) $\frac{\mid\left\{\sigma \in I_{n}^{r} \times[n] \quad \mid \quad \Gamma(\sigma) \text { not connected }\right\} \mid}{\left|I_{n}\right|^{r} \cdot n}=\mathcal{O}\left(\frac{1}{n^{r-1}}\right)$.
b) $\frac{\mid\left\{\sigma \in I_{n}{ }^{r} \times[n] \quad \mid \quad \Gamma(\sigma) \text { has a deg. } 1 \text { vertex } \neq \text { bspt. }\right\} \mid}{\left|I_{n}\right|^{r} \cdot n}=O(1)$.

Corollary

Generically, a Stallings graph (over A) with n vertices is just a r-tuple of partial injections, plus a base-point, $I_{n}{ }^{r} \times[n]$

Hence, counting Stallings graphs reduces to count partial injections: a purely combinatorial matter.

Stallings' graphs as partial injections

Theorem (Bassino, Nicaud, Weil, 2008)

a) $\frac{\mid\left\{\sigma \in I_{n}{ }^{r} \times[n] \quad \mid \quad \Gamma(\sigma) \text { not connected }\right\} \mid}{\left|I_{n}\right|^{r} \cdot n}=\mathcal{O}\left(\frac{1}{n^{r-1}}\right)$.
b) $\frac{\mid\left\{\sigma \in I_{n}{ }^{r} \times[n] \quad \mid \quad \Gamma(\sigma) \text { has a deg. } 1 \text { vertex } \neq \text { bspt. }\right\} \mid}{\left|I_{n}\right|^{r} \cdot n}=O(1)$.

Corollary

Generically, a Stallings graph (over A) with n vertices is just a r-tuple of partial injections, plus a base-point, $I_{n}{ }^{r} \times[n]$.

Hence, counting Stallings graphs reduces to count partial injections: a purely combinatorial matter.

Stallings' graphs as partial injections

Theorem (Bassino, Nicaud, Weil, 2008)

a) $\frac{\mid\left\{\sigma \in I_{n}{ }^{r} \times[n] \quad \mid \quad \Gamma(\sigma) \text { not connected }\right\} \mid}{\left|I_{n}\right|^{r} \cdot n}=\mathcal{O}\left(\frac{1}{n^{r-1}}\right)$.
b) $\frac{\mid\left\{\sigma \in I_{n}{ }^{r} \times[n] \quad \mid \quad \Gamma(\sigma) \text { has a deg. } 1 \text { vertex } \neq \text { bspt. }\right\} \mid}{\left|I_{n}\right|^{r} \cdot n}=O(1)$.

Corollary

Generically, a Stallings graph (over A) with n vertices is just a r-tuple of partial injections, plus a base-point, $I_{n}{ }^{r} \times[n]$.

Hence, counting Stallings graphs reduces to count partial injections: a purely combinatorial matter.

Counting partial injections

Observation

Any partial injection $\sigma \in I_{n}$ decomposes in orbits of two types: closed and open (i.e. cycles and segments).

Definition

A partial injection $\sigma \in I_{n}$ is called a

- permutation if all its orbits are closed,
- fragmented permutation if all its orbits are open.

Let S_{n} and J_{n}, resp., be the sets of permutations and fragmented permutations in I_{n}.

Observation

Every partial inje ction is the disjoint union of a permutation and a fragmented
permutation. In particular, $\left|I_{n}\right|=\sum_{k=0}^{n}\binom{n}{k}\left|S_{k}\right|\left|J_{n-k}\right|=\sum_{k=0}^{n} \frac{n!}{(n-k)!}\left|J_{n-k}\right|$

Counting partial injections

Observation

Any partial injection $\sigma \in I_{n}$ decomposes in orbits of two types: closed and open (i.e. cycles and segments).

Definition

A partial injection $\sigma \in I_{n}$ is called a

- permutation if all its orbits are closed,
- fragmented permutation if all its orbits are open.

Let S_{n} and J_{n}, resp., be the sets of permutations and fragmented permutations in I_{n}.

Observation
Every partial injection is the disjoint union of a permutation and a fragmented permutation. In particular, $\left|I_{n}\right|=\sum_{k=0}^{n}\binom{n}{k}\left|S_{k}\right|\left|J_{n-k}\right|=\sum_{k=0}^{n} \frac{n!}{(n-k)!}\left|J_{n-k}\right|$

Counting partial injections

Observation

Any partial injection $\sigma \in I_{n}$ decomposes in orbits of two types: closed and open (i.e. cycles and segments).

Definition

A partial injection $\sigma \in I_{n}$ is called a

- permutation if all its orbits are closed,
- fragmented permutation if all its orbits are open.

Let S_{n} and J_{n}, resp., be the sets of permutations and fragmented permutations in I_{n}.

Observation
Every partial injection is the disjoint union of a permutation and a fragmented permutation. In particular, $\left|I_{n}\right|=\sum_{k=0}^{n}\binom{n}{k}\left|S_{k}\right|\left|J_{n-k}\right|=\sum_{k=0}^{n} \frac{n!}{(n-k)!}\left|J_{n-k}\right|$

Counting partial injections

Observation

Any partial injection $\sigma \in I_{n}$ decomposes in orbits of two types: closed and open (i.e. cycles and segments).

Definition

A partial injection $\sigma \in I_{n}$ is called a

- permutation if all its orbits are closed,
- fragmented permutation if all its orbits are open.

Let S_{n} and J_{n}, resp., be the sets of permutations and fragmented permutations in I_{n}.

Observation
Every partial injection is the disjoint union of a permutation and a fragmented permutation. In particular, $\left|I_{n}\right|=\sum_{k=0}^{n}\binom{n}{k}\left|S_{k}\right|\left|J_{n-k}\right|=\sum_{k=0}^{n} \frac{n!}{(n-k)!}\left|J_{n-k}\right|$

Counting partial injections

Observation

Any partial injection $\sigma \in I_{n}$ decomposes in orbits of two types: closed and open (i.e. cycles and segments).

Definition

A partial injection $\sigma \in I_{n}$ is called a

- permutation if all its orbits are closed,
- fragmented permutation if all its orbits are open.

Let S_{n} and J_{n}, resp., be the sets of permutations and fragmented permutations in I_{n}.

Observation

Every partial injection is the disjoint union of a permutation and a fragmented permutation. In particular, $\left|I_{n}\right|=\sum_{k=0}^{n}\binom{n}{k}\left|S_{k}\right|\left|J_{n-k}\right|=\sum_{k=0}^{n} \frac{n!}{(n-k)!}\left|J_{n-k}\right|$.

Counting partial injections

Definition

a) The EGS for partial injections: $I(z)=\sum_{n=0}^{\infty} \frac{|l n|}{n!} z^{n}$.
b) The EGS for permutations: $S(z)=\sum_{n=0}^{\infty} \frac{S_{n} \mid}{n!} z^{n}=\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}$.
c) The EGS for fragmented permutations: $J(z)=\sum_{n=0}^{\infty} \frac{\left|J_{n}\right|}{n!} z^{n}$.

Theorem

a) $I(z)=\frac{1}{1-z} e^{\frac{z}{1-z}}=1+2 z$
b) $\frac{\left|I_{n}\right|}{n!}=\frac{e^{2 \sqrt{n}}}{2 \sqrt{\pi e}} n^{-\frac{1}{4}}(1+o(1))$.

Theorem

a) $J(z)=e^{\frac{2}{1-z}}=1+z+\frac{3}{2} z^{2}$
b) $\frac{\left|\delta_{n}\right|}{n!}=\frac{e^{2 \sqrt{n}}}{2 \sqrt{\pi e}} n^{-\frac{3}{4}}(1+o(1))$.

Hence,

Counting partial injections

Definition

a) The EGS for partial injections: $I(z)=\sum_{n=0}^{\infty} \frac{\left|I_{n}\right|}{n!} z^{n}$.
b) The EGS for permutations: $S(z)=\sum_{n=0}^{\infty} \frac{\left|S_{n}\right|}{n!} z^{n}=\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}$.
c) The EGS for fragmented permutations.

Theorem

Theorem
a) $J(z)=e^{T-2}=1+z+\frac{3}{2} z^{2}$
b) $\frac{\left|J_{n}\right|}{n!}=\frac{e^{2 \sqrt{n}}}{2 \sqrt{\pi e}} n^{-\frac{3}{4}}(1+o(1))$.

Hence,

Counting partial injections

Definition

a) The EGS for partial injections: $I(z)=\sum_{n=0}^{\infty} \frac{\left|I_{n}\right|}{n!} z^{n}$.
b) The EGS for permutations: $S(z)=\sum_{n=0}^{\infty} \frac{\left|S_{n}\right|}{n!} z^{n}=\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}$.
c) The EGS for fragmented permutations: $J(z)=\sum_{n=0}^{\infty} \frac{\left|J_{n}\right|}{n!} z^{n}$.

Theorem

Theorem
a) $J(z)=e^{\top}=1+z+\frac{3}{2} z^{2}$
b) $\frac{\left|J_{n}\right|}{n!}=\frac{e^{2 \sqrt{n}}}{2 \sqrt{\pi e}} n^{-\frac{3}{4}}(1+o(1))$.

Hence,

Counting partial injections

Definition

a) The EGS for partial injections: $I(z)=\sum_{n=0}^{\infty} \frac{\left|I_{n}\right|}{n!} z^{n}$.
b) The EGS for permutations: $S(z)=\sum_{n=0}^{\infty} \frac{\left|S_{n}\right|}{n!} z^{n}=\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}$.
c) The EGS for fragmented permutations: $J(z)=\sum_{n=0}^{\infty} \frac{\left|J_{n}\right|}{n!} z^{n}$.

Theorem

a) $I(z)=\frac{1}{1-z} e^{\frac{z}{1-2}}=1+2 z+\frac{7}{2} z^{2}+\frac{17}{3} z^{3}+\cdots$.

Theorem

Hence,

Counting partial injections

Definition

a) The EGS for partial injections: $I(z)=\sum_{n=0}^{\infty} \frac{\left|I_{n}\right|}{n!} z^{n}$.
b) The EGS for permutations: $S(z)=\sum_{n=0}^{\infty} \frac{\left|S_{n}\right|}{n!} z^{n}=\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}$.
c) The EGS for fragmented permutations: $J(z)=\sum_{n=0}^{\infty} \frac{\left|J_{n}\right|}{n!} z^{n}$.

Theorem

a) $l(z)=\frac{1}{1-z} e^{\frac{z}{1-2}}=1+2 z+\frac{7}{2} z^{2}+\frac{17}{3} z^{3}+\cdots$.
b) $\frac{\left|I_{n}\right|}{n!}=\frac{e^{2 \sqrt{n}}}{2 \sqrt{\pi e}} n^{-\frac{1}{4}}(1+o(1))$.

Theorem

Hence, $\frac{\left|J_{n}\right|}{\left|I_{n}\right|}=O\left(\frac{1}{n^{1 / 2}}\right)$

Counting partial injections

Definition

a) The EGS for partial injections: $I(z)=\sum_{n=0}^{\infty} \frac{| | l n_{n} \mid}{n!} z^{n}$.
b) The EGS for permutations: $S(z)=\sum_{n=0}^{\infty} \frac{\left|S_{n}\right|}{n!} z^{n}=\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}$.
c) The EGS for fragmented permutations: $J(z)=\sum_{n=0}^{\infty} \frac{\left|J_{n}\right|}{n!} z^{n}$.

Theorem

a) $l(z)=\frac{1}{1-z} e^{\frac{z}{1-2}}=1+2 z+\frac{7}{2} z^{2}+\frac{17}{3} z^{3}+\cdots$.
b) $\frac{\left|I_{n}\right|}{n!}=\frac{e^{2 \sqrt{n}}}{2 \sqrt{\pi e}} n^{-\frac{1}{4}}(1+o(1))$.

Theorem

a) $J(z)=e^{\frac{z}{1-2}}=1+z+\frac{3}{2} z^{2}+\frac{13}{6} z^{3}+\cdots$.

Counting partial injections

Definition

a) The EGS for partial injections: $I(z)=\sum_{n=0}^{\infty} \frac{\left|I_{n}\right|}{n!} z^{n}$.
b) The EGS for permutations: $S(z)=\sum_{n=0}^{\infty} \frac{\left|S_{n}\right|}{n!} z^{n}=\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}$.
c) The EGS for fragmented permutations: $J(z)=\sum_{n=0}^{\infty} \frac{\left|J_{n}\right|}{n!} z^{n}$.

Theorem

a) $I(z)=\frac{1}{1-z} e^{\frac{z}{1-2}}=1+2 z+\frac{7}{2} z^{2}+\frac{17}{3} z^{3}+\cdots$.
b) $\frac{\left|I_{n}\right|}{n!}=\frac{e^{2 \sqrt{n}}}{2 \sqrt{\pi e}} n^{-\frac{1}{4}}(1+o(1))$.

Theorem

a) $J(z)=e^{\frac{z}{1-2}}=1+z+\frac{3}{2} z^{2}+\frac{13}{6} z^{3}+\cdots$.
b) $\frac{\left|J_{n}\right|}{n!}=\frac{e^{2 \sqrt{n}}}{2 \sqrt{\pi e}} n^{-\frac{3}{4}}(1+o(1))$.

Counting partial injections

Definition

a) The EGS for partial injections: $I(z)=\sum_{n=0}^{\infty} \frac{\left|I_{n}\right|}{n!} z^{n}$.
b) The EGS for permutations: $S(z)=\sum_{n=0}^{\infty} \frac{\left|S_{n}\right|}{n!} z^{n}=\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}$.
c) The EGS for fragmented permutations: $J(z)=\sum_{n=0}^{\infty} \frac{\left|J_{n}\right|}{n!} z^{n}$.

Theorem

a) $I(z)=\frac{1}{1-z} e^{\frac{z}{1-2}}=1+2 z+\frac{7}{2} z^{2}+\frac{17}{3} z^{3}+\cdots$.
b) $\frac{\left|I_{n}\right|}{n!}=\frac{e^{2 \sqrt{n}}}{2 \sqrt{\pi e}} n^{-\frac{1}{4}}(1+o(1))$.

Theorem

a) $J(z)=e^{\frac{z}{1-2}}=1+z+\frac{3}{2} z^{2}+\frac{13}{6} z^{3}+\cdots$.
b) $\frac{\left|J_{n}\right|}{n!}=\frac{e^{2 \sqrt{n}}}{2 \sqrt{\pi e}} n^{-\frac{3}{4}}(1+o(1))$.

Hence, $\frac{\left|J_{n}\right|}{\left|n_{n}\right|}=\mathcal{O}\left(\frac{1}{n^{1 / 2}}\right)$.

Outline

(9) A claim due to Gromov
(2) Arzhantseva-Ol'shanskii's proof
(3) A new point of view
(4) Stallings' graphs
(5) Counting Stallings' graphs: partial injections
(6) Most groups are trivial
(7) Proof of the combinatorial theorem

Most groups are trivial

Definition

Let $\sigma \in I_{n}$. Define $\operatorname{gcd}(\sigma)$ as the gcd of the lengths of the closed orbits of σ (if $\sigma \in J_{n}$, put $\left.\operatorname{gcd}(\sigma)=\infty\right)$.

Key observation

Let $\sigma=\left(\sigma_{1}, \ldots, \sigma_{r}, j\right) \in I_{n}{ }^{\prime} \times[n]$, let $\Gamma(\sigma)$ be the corresponding (Stallings) graph, and let $G=\left\langle a_{1}, \ldots, a_{r} \mid \pi(\Gamma(\sigma))\right\rangle$. We have,

- if $\operatorname{gcd}\left(\sigma_{i}\right)=1$ then $\mathrm{a}_{i}=1$ in G,
- if $\operatorname{gcd}\left(\sigma_{1}\right)=\cdots=\operatorname{gcd}\left(\sigma_{r}\right)=1$ then $G=1$.

Most groups are trivial

Definition

Let $\sigma \in I_{n}$. Define $\operatorname{gcd}(\sigma)$ as the gcd of the lengths of the closed orbits of σ (if $\sigma \in J_{n}$, put $\left.\operatorname{gcd}(\sigma)=\infty\right)$.

Key observation

Let $\sigma=\left(\sigma_{1}, \ldots, \sigma_{r}, j\right) \in I_{n}{ }^{r} \times[n]$, let $\Gamma(\sigma)$ be the corresponding (Stallings) graph, and let $G=\left\langle a_{1}, \ldots, a_{r} \mid \pi(\Gamma(\sigma))\right\rangle$. We have,

Most groups are trivial

Definition

Let $\sigma \in I_{n}$. Define $\operatorname{gcd}(\sigma)$ as the gcd of the lengths of the closed orbits of σ (if $\sigma \in J_{n}$, put $\left.\operatorname{gcd}(\sigma)=\infty\right)$.

Key observation

Let $\sigma=\left(\sigma_{1}, \ldots, \sigma_{r}, j\right) \in I_{n}{ }^{r} \times[n]$, let $\Gamma(\sigma)$ be the corresponding (Stallings) graph, and let $G=\left\langle a_{1}, \ldots, a_{r} \mid \pi(\Gamma(\sigma))\right\rangle$. We have,

- if $\operatorname{gcd}\left(\sigma_{i}\right)=1$ then $a_{i}=1$ in G,

Most groups are trivial

Definition

Let $\sigma \in I_{n}$. Define $\operatorname{gcd}(\sigma)$ as the gcd of the lengths of the closed orbits of σ (if $\sigma \in J_{n}$, put $\left.\operatorname{gcd}(\sigma)=\infty\right)$.

Key observation

Let $\sigma=\left(\sigma_{1}, \ldots, \sigma_{r}, j\right) \in I_{n}{ }^{r} \times[n]$, let $\Gamma(\sigma)$ be the corresponding (Stallings) graph, and let $G=\left\langle a_{1}, \ldots, a_{r} \mid \pi(\Gamma(\sigma))\right\rangle$. We have,

- if $\operatorname{gcd}\left(\sigma_{i}\right)=1$ then $a_{i}=1$ in G,
- if $\operatorname{gcd}\left(\sigma_{1}\right)=\cdots=\operatorname{gcd}\left(\sigma_{r}\right)=1$ then $G=1$.

Most groups are trivial

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

$$
\frac{\left|\left\{\sigma \in I_{n} \mid \operatorname{gcd}(\sigma)>1\right\}\right|}{\left|I_{n}\right|}=\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right)
$$

Corollary

Proof.

Most groups are trivial

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

$$
\frac{\left|\left\{\sigma \in I_{n} \mid \operatorname{gcd}(\sigma)>1\right\}\right|}{\left|I_{n}\right|}=\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right)
$$

Corollary

$$
\frac{\mid\left\{\sigma \in I_{n}^{r} \times[n] \mid \Gamma(\sigma) \text { St. gr. \& } G \neq 1\right\} \mid}{\left|\left\{\sigma \in I_{n}^{r} \times[n] \mid \Gamma(\sigma) S t . g r .\right\}\right|}=\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right) .
$$

Proof.

Most groups are trivial

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

$$
\frac{\left|\left\{\sigma \in I_{n} \mid \operatorname{gcd}(\sigma)>1\right\}\right|}{\left|I_{n}\right|}=\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right)
$$

Corollary

$$
\frac{\mid\left\{\sigma \in I_{n}^{r} \times[n] \mid \Gamma(\sigma) \text { St. gr. \& } G \neq 1\right\} \mid}{\left|\left\{\sigma \in I_{n}^{r} \times[n] \mid \Gamma(\sigma) S t . g r .\right\}\right|}=\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right) .
$$

Proof.

$$
=\frac{\left|I_{n}^{r}\right| \cdot n}{\mid\left\{\sigma \in I_{n}{ }^{r} \times[n] \mid \Gamma(\sigma) \text { St. gr. }\right\} \mid} \cdot \frac{\mid\left\{\sigma \in I_{n}^{r} \times[n] \mid \Gamma(\sigma) \text { St. gr. } \& G \neq 1\right\} \mid}{\left|I_{n}^{r}\right| \cdot n}
$$

Most groups are trivial

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

$$
\frac{\left|\left\{\sigma \in I_{n} \mid \operatorname{gcd}(\sigma)>1\right\}\right|}{\left|I_{n}\right|}=\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right)
$$

Corollary

$$
\frac{\mid\left\{\sigma \in I_{n}{ }^{r} \times[n] \mid \Gamma(\sigma) \text { St. gr. \& } G \neq 1\right\} \mid}{\left|\left\{\sigma \in I_{n}^{r} \times[n] \mid \Gamma(\sigma) S t . g r .\right\}\right|}=\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right) .
$$

Proof.

$$
\begin{gathered}
=\frac{\left|I_{n}{ }^{r}\right| \cdot n}{\left|\left\{\sigma \in I_{n}^{r} \times[n] \mid \Gamma(\sigma) S t . \operatorname{gr.}\right\}\right|} \cdot \frac{\mid\left\{\sigma \in I_{n}^{r} \times[n] \mid \Gamma(\sigma) \text { St. gr. \& } G \neq 1\right\} \mid}{\left|I_{n}^{r}\right| \cdot n} \\
\leqslant 2 \cdot \frac{r \cdot\left|I_{n}\right|^{r-1} \cdot n \cdot\left|\left\{\sigma \in I_{n} \mid \operatorname{gcd}(\sigma)>1\right\}\right|}{\left|I_{n}\right|^{r} \cdot n}=
\end{gathered}
$$

Most groups are trivial

$$
=2 r \frac{\left|\left\{\sigma \in I_{n} \mid \operatorname{gcd}(\sigma)>1\right\}\right|}{\left|I_{n}\right|}=\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right) . \quad \square
$$

So, we are reduced to proof the purely combinatorial result:

Most groups are trivial

$$
=2 r \frac{\left|\left\{\sigma \in I_{n} \mid \operatorname{gcd}(\sigma)>1\right\}\right|}{\left|I_{n}\right|}=\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right) .
$$

So, we are reduced to proof the purely combinatorial result:

$$
\frac{\left|\left\{\sigma \in I_{n} \mid \operatorname{gcd}(\sigma)>1\right\}\right|}{\left|I_{n}\right|}=\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right)
$$

Outline

(9) A claim due to Gromov
(2) Arzhantseva-Ol'shanskii's proof
(3) A new point of view

4 Stallings' graphs
(5) Counting Stallings' graphs: partial injections

6 Most groups are trivial
(7) Proof of the combinatorial theorem

Proof of the combinatorial theorem

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

$$
\frac{\left|\left\{\sigma \in I_{n} \mid \operatorname{gcd}(\sigma)>1\right\}\right|}{\left|I_{n}\right|}=\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right)
$$

The permutation case

Definition

For a prime p, let $S_{n}^{(p)}$ be the set of permutations $\sigma \in S_{n}$ with all its cycles having length multiple of p. Clearly, $S_{n}^{(p)} \neq \emptyset \quad \Rightarrow p \mid n$.

Lemma

Let $n \geqslant 2$, and p be a prime divisor of n. Then,

Proof of the combinatorial theorem

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

$$
\frac{\left|\left\{\sigma \in I_{n} \mid \operatorname{gcd}(\sigma)>1\right\}\right|}{\left|I_{n}\right|}=\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right)
$$

The permutation case

Definition

For a prime p, let $S_{n}^{(p)}$ be the set of permutations $\sigma \in S_{n}$ with all its cycles having length multiple of p. Clearly, $S_{n}^{(p)} \neq \emptyset \quad \Rightarrow p \mid n$.

Lemma

Let $n \geqslant 2$, and p be a prime divisor of n. Then,

Proof of the combinatorial theorem

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

$$
\frac{\left|\left\{\sigma \in I_{n} \mid \operatorname{gcd}(\sigma)>1\right\}\right|}{\left|I_{n}\right|}=\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right)
$$

The permutation case

Definition

For a prime p, let $S_{n}^{(p)}$ be the set of permutations $\sigma \in S_{n}$ with all its cycles having length multiple of p.

Let $n \geqslant 2$, and p be a prime divisor of n. Then,

Proof of the combinatorial theorem

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

$$
\frac{\left|\left\{\sigma \in I_{n} \mid \operatorname{gcd}(\sigma)>1\right\}\right|}{\left|I_{n}\right|}=\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right)
$$

The permutation case

Definition

For a prime p, let $S_{n}^{(p)}$ be the set of permutations $\sigma \in S_{n}$ with all its cycles having length multiple of p.Clearly, $S_{n}^{(p)} \neq \emptyset \quad \Rightarrow p \mid n$.

Lemma

Let $n \geqslant 2$, and p be a prime divisor of n. Then,

Proof of the combinatorial theorem

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

$$
\frac{\left|\left\{\sigma \in I_{n} \mid \operatorname{gcd}(\sigma)>1\right\}\right|}{\left|I_{n}\right|}=\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right)
$$

The permutation case

Definition

For a prime p, let $S_{n}^{(p)}$ be the set of permutations $\sigma \in S_{n}$ with all its cycles having length multiple of p. Clearly, $S_{n}^{(p)} \neq \emptyset \quad \Rightarrow p \mid n$.

Lemma

Let $n \geqslant 2$, and p be a prime divisor of n. Then,

$$
\left|S_{n}^{(p)}\right| \leqslant 2 n!n^{\frac{1}{\rho}-1} .
$$

Proof of the combinatorial theorem

Lemma

Let $Q_{n}=\left\{\sigma \in S_{n} \mid \operatorname{gcd}(\sigma)>1\right\}$. Then,

$$
\frac{\left|Q_{n}\right|}{n!} \leqslant \frac{2}{\sqrt{n}}+2 \frac{\log _{3}(n)}{n^{2 / 3}}=\mathcal{O}\left(\frac{1}{\sqrt{n}}\right)
$$

The general case

Lemma

$J_{n!}$ is strictly increasing for $n \geqslant 1$

Now we are ready to proof the theorem

Proof of the combinatorial theorem

Lemma

Let $Q_{n}=\left\{\sigma \in S_{n} \mid \operatorname{gcd}(\sigma)>1\right\}$. Then,

$$
\frac{\left|Q_{n}\right|}{n!} \leqslant \frac{2}{\sqrt{n}}+2 \frac{\log _{3}(n)}{n^{2 / 3}}=\mathcal{O}\left(\frac{1}{\sqrt{n}}\right) .
$$

The general case

Lemma

$\frac{\left|J_{n}\right|}{n!}$ is strictly increasing for $n \geqslant 1$.
Now we are ready to proof the theorem

Proof of the combinatorial theorem

Lemma

Let $Q_{n}=\left\{\sigma \in S_{n} \mid \operatorname{gcd}(\sigma)>1\right\}$. Then,

$$
\frac{\left|Q_{n}\right|}{n!} \leqslant \frac{2}{\sqrt{n}}+2 \frac{\log _{3}(n)}{n^{2 / 3}}=\mathcal{O}\left(\frac{1}{\sqrt{n}}\right) .
$$

The general case

Lemma

$\frac{\left|\mathcal{J}_{n}\right|}{n!}$ is strictly increasing for $n \geqslant 1$.
Now we are ready to proof the theorem

Proof of the combinatorial theorem

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

$$
\frac{\left|\left\{\sigma \in I_{n} \mid \operatorname{gcd}(\sigma)>1\right\}\right|}{\left|I_{n}\right|}=\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right)
$$

Proof.

- Every such $\sigma \in I_{n}$ is the disjoint union of a permutation in S_{k} and a fragmented permutation in J_{n-k}, for some $k=0, \ldots, n$.
- Let's distinguish between k "short" and k "long".

$$
\begin{aligned}
& \frac{\left|\left\{\sigma \in I_{n} \mid \operatorname{gcd}(\sigma)>1\right\}\right|}{\left|I_{n}\right|}=\frac{1}{\left|I_{n}\right|} \sum_{k=0}^{n}\binom{n}{k}\left|Q_{k}\right|\left|J_{n-k}\right| \\
\leqslant & \frac{1}{\left|I_{n}\right|} \sum_{k=0}^{\left\lfloor n^{1 / 3}\right\rfloor} \frac{n!}{(n-k)!}\left|J_{n-k}\right|+\frac{1}{\left|I_{n}\right|} \sum_{k=\left\lceil n^{1 / 3}\right\rceil}^{n} \frac{n!}{(n-k)!} \frac{M}{\sqrt{k}}\left|J_{n-k}\right|
\end{aligned}
$$

Proof of the combinatorial theorem

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

$$
\frac{\left|\left\{\sigma \in I_{n} \mid \operatorname{gcd}(\sigma)>1\right\}\right|}{\left|I_{n}\right|}=\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right)
$$

Proof.

- Every such $\sigma \in I_{n}$ is the disjoint union of a permutation in S_{k} and a fragmented permutation in J_{n-k}, for some $k=0, \ldots, n$.
- Let's distinguish between k "short" and k "long"

Proof of the combinatorial theorem

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

$$
\frac{\left|\left\{\sigma \in I_{n} \mid \operatorname{gcd}(\sigma)>1\right\}\right|}{\left|I_{n}\right|}=\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right)
$$

Proof.

- Every such $\sigma \in I_{n}$ is the disjoint union of a permutation in S_{k} and a fragmented permutation in J_{n-k}, for some $k=0, \ldots, n$.
- Let's distinguish between k "short" and k "long".

Proof of the combinatorial theorem

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

$$
\frac{\left|\left\{\sigma \in I_{n} \mid \operatorname{gcd}(\sigma)>1\right\}\right|}{\left|I_{n}\right|}=\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right)
$$

Proof.

- Every such $\sigma \in I_{n}$ is the disjoint union of a permutation in S_{k} and a fragmented permutation in J_{n-k}, for some $k=0, \ldots, n$.
- Let's distinguish between k "short" and k "long".

$$
\frac{\left|\left\{\sigma \in I_{n} \mid \operatorname{gcd}(\sigma)>1\right\}\right|}{\left|I_{n}\right|}=\frac{1}{\left|I_{n}\right|} \sum_{k=0}^{n}\binom{n}{k}\left|Q_{k}\right|\left|J_{n-k}\right|
$$

Proof of the combinatorial theorem

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

$$
\frac{\left|\left\{\sigma \in I_{n} \mid \operatorname{gcd}(\sigma)>1\right\}\right|}{\left|I_{n}\right|}=\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right)
$$

Proof.

- Every such $\sigma \in I_{n}$ is the disjoint union of a permutation in S_{k} and a fragmented permutation in J_{n-k}, for some $k=0, \ldots, n$.
- Let's distinguish between k "short" and k "long".

$$
\begin{aligned}
& \frac{\left|\left\{\sigma \in I_{n} \mid \operatorname{gcd}(\sigma)>1\right\}\right|}{\left|I_{n}\right|}=\frac{1}{\left|I_{n}\right|} \sum_{k=0}^{n}\binom{n}{k}\left|Q_{k}\right|\left|J_{n-k}\right| \\
\leqslant & \frac{1}{\left|I_{n}\right|} \sum_{k=0}^{\left\lfloor n^{1 / 3}\right\rfloor} \frac{n!}{(n-k)!}\left|J_{n-k}\right|+\frac{1}{\left|I_{n}\right|} \sum_{k=\left\lceil n^{1 / 3}\right\rceil}^{n} \frac{n!}{(n-k)!} \frac{M}{\sqrt{k}}\left|J_{n-k}\right|
\end{aligned}
$$

Proof of the combinatorial theorem

$$
\leqslant \frac{1}{\left|I_{n}\right|} n!\left(1+\left\lfloor n^{1 / 3}\right\rfloor\right) \frac{\left|J_{n}\right|}{n!}+\frac{M}{\left|I_{n}\right| \cdot n^{1 / 6}} \sum_{k=\left\lceil n^{1 / 3}\right\rceil}^{n} \frac{n!}{(n-k)!}\left|J_{n-k}\right|
$$

Proof of the combinatorial theorem

$$
\begin{aligned}
\leqslant & \frac{1}{\left|I_{n}\right|} n!\left(1+\left\lfloor n^{1 / 3}\right\rfloor\right) \frac{\left|J_{n}\right|}{n!}+\frac{M}{\left|I_{n}\right| \cdot n^{1 / 6}} \sum_{k=\left\lceil n^{1 / 3}\right\rceil}^{n} \frac{n!}{(n-k)!}\left|J_{n-k}\right| \\
\leqslant & \left(1+\left\lfloor n^{1 / 3}\right\rfloor\right) \frac{\left|J_{n}\right|}{\left|I_{n}\right|}+\frac{M}{\left|I_{n}\right| \cdot n^{1 / 6}} \sum_{k=0}^{n} \frac{n!}{(n-k)!k!} k!\left|J_{n-k}\right|
\end{aligned}
$$

Proof of the combinatorial theorem

$$
\begin{aligned}
& \leqslant \frac{1}{\left|I_{n}\right|} n!\left(1+\left\lfloor n^{1 / 3}\right\rfloor\right) \frac{\left|J_{n}\right|}{n!}+\frac{M}{\left|I_{n}\right| \cdot n^{1 / 6}} \sum_{k=\left\lceil n^{1 / 3}\right\rceil}^{n} \frac{n!}{(n-k)!}\left|J_{n-k}\right| \\
& \leqslant\left(1+\left\lfloor n^{1 / 3}\right\rfloor\right) \frac{\left|J_{n}\right|}{\left|I_{n}\right|}+\frac{M}{\left|I_{n}\right| \cdot n^{1 / 6}} \sum_{k=0}^{n} \frac{n!}{(n-k)!k!} k!\left|J_{n-k}\right| \\
& \leqslant \mathcal{O}\left(\frac{n^{1 / 3}}{n^{1 / 2}}\right)+\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right)
\end{aligned}
$$

Proof of the combinatorial theorem

$$
\begin{aligned}
& \leqslant \frac{1}{\left|I_{n}\right|} n!\left(1+\left\lfloor n^{1 / 3}\right\rfloor\right) \frac{\left|J_{n}\right|}{n!}+\frac{M}{\left|I_{n}\right| \cdot n^{1 / 6}} \sum_{k=\left\lceil n^{1 / 3}\right\rceil}^{n} \frac{n!}{(n-k)!}\left|J_{n-k}\right| \\
& \leqslant\left(1+\left\lfloor n^{1 / 3}\right\rfloor\right) \frac{\left|J_{n}\right|}{\left|I_{n}\right|}+\frac{M}{\left|I_{n}\right| \cdot n^{1 / 6}} \sum_{k=0}^{n} \frac{n!}{(n-k)!k!} k!\left|J_{n-k}\right| \\
& \leqslant \\
& \leqslant \mathcal{O}\left(\frac{n^{1 / 3}}{n^{1 / 2}}\right)+\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right) \\
& \\
& =\mathcal{O}\left(\frac{1}{n^{1 / 6}}\right) .
\end{aligned}
$$

Thanks

