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Motivation

(Joint work with P. Silva and M. Ladra.)

Find a group G where · is “easy" but ( )−1 is “difficult".

Natural candidate: Aut (Fn), where Fr = 〈a1, . . . ,ar | 〉.

F3 = 〈a,b, c | 〉.

φ : F3 → F3 ψ : F3 → F3
a 7→ ab a 7→ bc−1

b 7→ ab2c b 7→ a−1bc
c 7→ bc2 c 7→ c−1.

φψ : F3 → F3
a 7→ bc−1a−1bc
b 7→ bc−1a−1bca−1b
c 7→ a−1bc−1.
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Motivation

F5 = 〈a,b, c,d ,e | 〉.

ψn : F5 → F5 ψ−1
n : F4 → F4

a 7→ a a 7→ a
b 7→ anb b 7→ a−nb
c 7→ bnc c 7→ (b−1an)nc
d 7→ cnd d 7→ (c−1(a−nb)n)nd
e 7→ dne e 7→ (d−1((b−1an)nc)n)ne.

• We have formalized the situation.
• We have seen that inverting in Aut (Fr ) is not that bad.
• We now want to look for worse groups G.
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Main definition

Definition

Let A = {a1, . . . ,ar} be a finite alphabet, and G = 〈A | R 〉 be a finite
presentation for a group G. We have the word metric:

for g ∈ G, |g| = min{n | g = aε1
i1 · · ·a

εn
in }.

Definition

For θ ∈ Aut (G), note θ is determined by a1θ, . . . ,arθ and define

||θ||1 = |a1θ|+ · · ·+ |arθ|,

||θ||∞ = max{|a1θ|, . . . , |arθ|}.

Observation

For every θ ∈ Aut (Fr ), ||θ||∞ 6 ||θ||1 6 r ||θ||∞
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Main definition

Definition

Let G = 〈A | R 〉 be a finite presentation for G. We define the function:

αA(n) = max{||θ−1||1 | θ ∈ Aut (G), ||θ||1 6 n}.

Clearly, αA(n) 6 αA(n + 1).

The bigger is αA, the more “difficult" will be to invert automorphisms
of G (with respect to the given set of generators A).

Question
Determine the asymptotic growth of the function αA.
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Free group case

For the rest of the talk, G = Fr = 〈a1, . . . ,ar | 〉.

Definition

Every w ∈ Fr has its length, |w |, and its cyclic length, ·|w |·:
|a1a−1

1 a2| = |a2| = ·|a2|· = 1,
|a1a2a−2

1 | = 4,
·|a1a2a−2

1 |· = ·|a2a−1
1 |· = 2.

Observation

i) |wn| 6 |n||w | and ·|wn|· = |n|·|w |·;
ii) |vw | 6 |v |+ |w |, but ·|vw |· 6 ·|v |·+ ·|w |· is not true in general.
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Free group case

Definition

For θ ∈ Aut (Fr ), define

||θ||1 = |a1θ|+ · · ·+ |arθ|,

|·|θ|·|1 = ·|a1θ|·+ · · ·+ ·|arθ|·,

|||θ|||1 = min{||θγv ||1 | v ∈ Fr}.

Observation

|·|θ|·|1 6 |||θ|||1 6 ||θ||1, but not equal in general.

Example

Consider θ : F4 → F4, a 7→ a, b 7→ a−1ba, c 7→ a−1ca, d 7→ d. We
have |·|θ|·|1 = 4, |||θ|||1 = 6 and ||θ||1 = 8.
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Free group case

Definition

αr (n) = max{||θ−1||1 | θ ∈ Aut Fr , ||θ||1 6 n},

βr (n) = max{|||θ−1|||1 | θ ∈ Aut Fr , |||θ|||1 6 n},

γr (n) = max{|·|θ−1|·|1 | θ ∈ Aut Fr , |·|θ|·|1 6 n}.

Question
Are these functions equal up to multiplicative constants ?

αr and γr are not;
βr is not clear.
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Main results

Theorem
For rank r = 2 we have

(i) for n > 4, α2(n) 6 (n−1)2

2 ,

(ii) for n > n0, α2(n) > n2

16 ,
(iii) for n > 1, β2(n) = n,
(iv) for n > 1, γ2(n) = n.

Theorem

For r > 3 there exist K = K (r) and M = M(r) such that, for n > 1,
(i) αr (n) > Knr ,
(ii) βr (n) 6 KnM ,
(iii) γr (n) > Knr−1.
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A lower bound for γr

Theorem

For r > 2, and n > n0, we have γr (n) > 1
2r r−1 nr−1.

Proof: For r > 2 and n > 1, consider

ψr ,n : Fr → Fr ψ−1
r ,n : Fr → Fr

a1 7→ a1 a1 7→ a1
a2 7→ an

1a2 a2 7→ a−n
1 a2

a3 7→ an
2a3

...
... ai 7→ (a−n

i−1)ψ
−1
r ,n · ai

ar 7→ an
r−1ar (26i6r)

A straightforward calculation shows that
|·|ψr ,n|·|1 = ||ψr ,n||1 = (r − 1)n + r , and
|·|ψ−1

r ,n |·|1 = ||ψ−1
r ,n ||1 = nr−1 + 2nr−2 + · · ·+ (r − 1)n + r > nr−1.
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A lower bound for γr

Hence, for n > r ,

γr (rn) > γr ((r − 1)n + r) > nr−1.

Now, for n big enough, take the closest multiple of r below,

n > rm > n − r ,

and

γr (n) > γr (rm) > mr−1 >

(
n − r

r

)r−1

=
(n

r
− 1

)r−1
>

1
2r r−1 nr−1. �

Finally, conjugating by an appropriate element, we shall win an extra
unit in the exponent.
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A lower bound for αr

Theorem

For r > 2, and n > n0, we have αr (n) > (r−1)r−1

2r2r−1 nr .

Proof: For r > 2 and n > 1, consider ψr ,nγa−m
r a−1

1
, where m = d n

2r−2e.
Writing N = ||ψr ,nγa−m

r a−1
1
||1, straightforward calculations show that,

for n > n0,

||γa1am
r
ψ−1

r ,n ||1 = ||ψ−1
r ,n γ(a1am

r )ψ−1
r,n
||1 >

(r − 1)r−1

2r2r−1 N r .

Hence, αr (n) > (r−1)r−1

2r2r−1 nr . �
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Outer space

To prove the upper bound

(ii) βr (n) 6 KnM ,

we’ll need to use the recently discovered metric in the outer space Xr .

Definition
• By graf Γ we mean a finite, connected graph of rank r , with no

vertices of degree 1 or 2.
• A metric on Γ is a map ` : EΓ → [0,1] such that

∑
e∈EΓ `(e) = 1,

and {e ∈ EΓ | `(e) = 0} is a forest.
• For a graph Γ, ΣΓ = {metrics on Γ} = a simplex with missing

faces.
• If Γ′ = Γ/forest, then we identify points in ΣΓ′ with the

corresponding points in ΣΓ by assigning length 0 to the collapsed
edges.

• A marking on Γ is a homotopy equivalence f : Rr → Γ.
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Outer space

Definition
The outer space Xr is

Xr = { (Γ, f , `) }/ ∼

(where ∼ is an equivalence relation).

Definition

There is a natural action of Aut (Fr ) on Xr , given by

φ · (Γ, f , `) = (Γ, φf , `),

(thinking φ : Rr → Rr ). In fact, this is an action of Out (Fr ).



1. Motivation 2. Free groups 3. Lower bounds 4. Upper bounds 5. The special case of rank 2 5. Fixed subgroups Algorithmic results

Outer space

Definition
The outer space Xr is

Xr = { (Γ, f , `) }/ ∼

(where ∼ is an equivalence relation).

Definition

There is a natural action of Aut (Fr ) on Xr , given by

φ · (Γ, f , `) = (Γ, φf , `),

(thinking φ : Rr → Rr ). In fact, this is an action of Out (Fr ).



1. Motivation 2. Free groups 3. Lower bounds 4. Upper bounds 5. The special case of rank 2 5. Fixed subgroups Algorithmic results

Metric on Xr

Definition

Let x , x ′ ∈ Xr , x = (Γ, f , `), x ′ = (Γ′, f ′, `′). A difference of markings is
a map α : Γ → Γ′, which is linear over edges and fα ' f ′.
For such an α, define σ(α) to be its maximum slope over edges.

Definition
Xr admits the following “metric":

d(x , x ′) = min{log(σ(α)) | α diff. markings }.

This minimum is achieved by Arzela-Ascoli’s theorem.

This is Bestvina-AlgomKfir version of Martino-Francaviglia’s original
metric.
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Metric on Xr

Proposition

(i) d(x , y) > 0, and = 0 ⇔ x = y.
(ii) d(x , z) 6 d(x , y) + d(y , z).
(iii) Out(Fr ) acts by isometries, i.e. d(φ · x , φ · y) = d(x , y).
(iv) But... d(x , y) 6= d(y , x) in general.

Definition
For ε > 0, the ε-thick part of Xr is

Xr (ε) = {(Γ, f , `) ∈ Xr | `(p) > ε ∀ closed path p 6= 1}



1. Motivation 2. Free groups 3. Lower bounds 4. Upper bounds 5. The special case of rank 2 5. Fixed subgroups Algorithmic results

Metric on Xr

Proposition

(i) d(x , y) > 0, and = 0 ⇔ x = y.
(ii) d(x , z) 6 d(x , y) + d(y , z).
(iii) Out(Fr ) acts by isometries, i.e. d(φ · x , φ · y) = d(x , y).
(iv) But... d(x , y) 6= d(y , x) in general.

Definition
For ε > 0, the ε-thick part of Xr is

Xr (ε) = {(Γ, f , `) ∈ Xr | `(p) > ε ∀ closed path p 6= 1}



1. Motivation 2. Free groups 3. Lower bounds 4. Upper bounds 5. The special case of rank 2 5. Fixed subgroups Algorithmic results

Metric on Xr

Proposition

(i) d(x , y) > 0, and = 0 ⇔ x = y.
(ii) d(x , z) 6 d(x , y) + d(y , z).
(iii) Out(Fr ) acts by isometries, i.e. d(φ · x , φ · y) = d(x , y).
(iv) But... d(x , y) 6= d(y , x) in general.

Definition
For ε > 0, the ε-thick part of Xr is

Xr (ε) = {(Γ, f , `) ∈ Xr | `(p) > ε ∀ closed path p 6= 1}



1. Motivation 2. Free groups 3. Lower bounds 4. Upper bounds 5. The special case of rank 2 5. Fixed subgroups Algorithmic results

Metric on Xr

Proposition

(i) d(x , y) > 0, and = 0 ⇔ x = y.
(ii) d(x , z) 6 d(x , y) + d(y , z).
(iii) Out(Fr ) acts by isometries, i.e. d(φ · x , φ · y) = d(x , y).
(iv) But... d(x , y) 6= d(y , x) in general.

Definition
For ε > 0, the ε-thick part of Xr is

Xr (ε) = {(Γ, f , `) ∈ Xr | `(p) > ε ∀ closed path p 6= 1}



1. Motivation 2. Free groups 3. Lower bounds 4. Upper bounds 5. The special case of rank 2 5. Fixed subgroups Algorithmic results

Metric on Xr

Proposition

(i) d(x , y) > 0, and = 0 ⇔ x = y.
(ii) d(x , z) 6 d(x , y) + d(y , z).
(iii) Out(Fr ) acts by isometries, i.e. d(φ · x , φ · y) = d(x , y).
(iv) But... d(x , y) 6= d(y , x) in general.

Definition
For ε > 0, the ε-thick part of Xr is

Xr (ε) = {(Γ, f , `) ∈ Xr | `(p) > ε ∀ closed path p 6= 1}



1. Motivation 2. Free groups 3. Lower bounds 4. Upper bounds 5. The special case of rank 2 5. Fixed subgroups Algorithmic results

Bestvina-AlgomKfir theorem

Theorem (Bestvina-AlgomKfir)

For any ε > 0 there is constant M = M(r , ε) such that for all
x , y ∈ Xr (ε),

d(x , y) 6 M · d(y , x).

Corollary

For r > 2, there exists M = M(r) such that

βr (n) 6 r nM .
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Proof

Remind βr (n) = max{|||θ−1|||1 | θ ∈ Aut Fr , |||θ|||1 6 n}.

Proof. Given φ ∈ Aut (Fr ), consider x = (Rr , id , `0) ∈ Xr , and
φ · x = (Rr , φ, `0) ∈ Xr , where `0 is the uniform metric.

d(x , φ · x) = min{log(σ(α)) | α diff. markings}
= log

(
min{σ(φγwγp) | w ∈ Fr , p = “half petal"}

)
∼ log

(
min{σ(φγw ) | w ∈ Fr}

)
= log

(
min{||φγw ||∞ | w ∈ Fr}

)
= log(|||φ|||∞)
∼ log(|||φ|||1).

Now, using Bestvina-AlgomKfir theorem,

log(|||φ−1|||1) ∼ d(x , φ−1·x) = d(φ·x , x) 6 Md(x , φ·x) ∼ M log(|||φ|||1).

Hence, for every φ ∈ Aut (Fr ), |||φ−1|||1 6 r |||φ|||M1 . �
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The rank 2 case

These functions for Aut (F2) are much easier to understand due to the
following technical lemmas.

Lemma

Let ϕ ∈ Aut (F2) be positive. Then ϕ−1 is cyclically reduced and
||ϕ−1||1 = ||ϕ||1.

Lemma

For every θ ∈ Aut (F2), there exist two letter permuting autos
ψ1, ψ2 ∈ Aut (F2), a positive one ϕ ∈ Aut +(F2), and an element
g ∈ F2, such that θ = ψ1ϕψ2λg and ||ϕ||1 + 2|g| 6 ||θ||1.
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The rank 2 case: γ2

Theorem

For every θ ∈ Aut (F2), |·|θ−1|·|1 = |·|θ|·|1. Hence, γ2(n) = n.

Proof. Let θ ∈ Aut (F2), decomposed as above, θ = ψ1ϕψ2λg . Then,

|·|θ|·|1 = |·|ψ1ϕψ2λg |·|1 = |·|ψ1ϕψ2|·|1 = |·|ϕ|·|1 = ||ϕ||1.

On the other hand,

|·|θ−1|·|1 = |·|λg−1ψ−1
2 ϕ−1ψ−1

1 |·|1 = |·|ψ−1
2 ϕ−1ψ−1

1 |·|1 =

= |·|ϕ−1|·|1 = ||ϕ−1||1 = ||ϕ||1. �
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The rank 2 case: β2

Theorem

For every θ ∈ Aut (F2), |||θ−1|||1 = |||θ|||1. Hence, β2(n) = n.

Proof. Let θ ∈ Aut (F2), decomposed as above, θ = ψ1ϕψ2λg . Then,

|||θ|||1 = |||ψ1ϕψ2λg |||1 = |||ψ1ϕψ2|||1 = |||ϕ|||1 = ||ϕ||1.

On the other hand,

|||θ−1|||1 = |||λg−1ψ−1
2 ϕ−1ψ−1
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The rank 2 case: α2

Theorem

For n > 4 we have α2(n) 6 (n−1)2

2 .

Proof. Let θ ∈ Aut (F2), decomposed as above, θ = ψ1ϕψ2λg . Then,
θ−1 = λg−1ψ−1

2 ϕ−1ψ−1
1 and

||θ−1||1 6 4|g| · ||ψ−1
2 ϕ−1ψ−1

1 ||∞ = 4|g| · ||ϕ−1||∞ 6

6 4|g|(||ϕ−1||1 − 1) = 4|g|(||ϕ||1 − 1).

Now from ||ϕ||1 + 2|g| 6 ||θ||1 = n, we deduce |g| 6 n−||ϕ||1
2 and so,

‖θ−1‖1 6 2(n − ‖ϕ‖1)(‖ϕ‖1 − 1).

Finally, the parabola f (x) = 2(n − x)(x − 1) takes its maximum at
x = n+1

2 and so,

||θ−1||1 6 2(n−||ϕ||1)(||ϕ||1−1) 6 2
(

n−n + 1
2

)(n + 1
2

−1
)

=
(n − 1)2

2
. �
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The rank 2 case: α2

Theorem

For n > n0 we have α2(n) > n2

16 .

So, the global known picture is

(i) n2

16 6 α2(n) 6 (n−1)2

2 ,
(ii) β2(n) = n,
(iii) γ2(n) = n,

(iv) Knr 6 αr (n),
(v) βr (n) 6 KnM ,
(iii) Knr−1 6 γr (n).

for some constants K = K (r), M = M(r), and for n > n0.
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Fixed subgroups are complicated

φ : F3 → F3
a 7→ a
b 7→ ba
c 7→ ca2

Fixφ = 〈a,bab−1, cac−1〉

ϕ : F4 → F4
a 7→ dac
b 7→ c−1a−1d−1ac
c 7→ c−1a−1b−1ac
d 7→ c−1a−1bc

Fixϕ = 〈w〉,where...

w = c−1a−1bd−1c−1a−1d−1ad−1c−1b−1acdadacdcdbcda−1a−1d−1

a−1d−1c−1a−1d−1c−1b−1d−1c−1d−1c−1daabcdaccdb−1a−1.
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What is known about fixed subgroups ?

Theorem (Dyer-Scott, 75)

Let G 6 Aut (Fn) be a finite group of automorphisms of Fn. Then,
Fix (G) 6ff Fn; in particular, r(Fix (G)) 6 n.

Conjecture (Scott)

For every φ ∈ Aut (Fn), r(Fix (φ)) 6 n.

Theorem (Gersten, 83 (published 87))

Let φ ∈ Aut (Fn). Then r(Fix (φ)) <∞.

Theorem (Thomas, 88)

Let G 6 Aut (Fn) be an arbitrary group of automorphisms of Fn. Then,
r(Fix (G)) <∞.
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Train-tracks

Main result in this story:

Theorem (Bestvina-Handel, 88 (published 92))

Let φ ∈ Aut (Fn). Then r(Fix (φ)) 6 n.

introducing the theory of train-tracks for graphs.

After Bestvina-Handel, live continues ...

Theorem (Imrich-Turner, 89)

Let φ ∈ End (Fn). Then r(Fix (φ)) 6 n.

Theorem (Turner, 96)

Let φ ∈ End (Fn). If φ is not bijective then r(Fix (φ)) 6 n − 1.



1. Motivation 2. Free groups 3. Lower bounds 4. Upper bounds 5. The special case of rank 2 5. Fixed subgroups Algorithmic results

Train-tracks

Main result in this story:

Theorem (Bestvina-Handel, 88 (published 92))

Let φ ∈ Aut (Fn). Then r(Fix (φ)) 6 n.

introducing the theory of train-tracks for graphs.

After Bestvina-Handel, live continues ...

Theorem (Imrich-Turner, 89)

Let φ ∈ End (Fn). Then r(Fix (φ)) 6 n.

Theorem (Turner, 96)

Let φ ∈ End (Fn). If φ is not bijective then r(Fix (φ)) 6 n − 1.



1. Motivation 2. Free groups 3. Lower bounds 4. Upper bounds 5. The special case of rank 2 5. Fixed subgroups Algorithmic results

Train-tracks

Main result in this story:

Theorem (Bestvina-Handel, 88 (published 92))

Let φ ∈ Aut (Fn). Then r(Fix (φ)) 6 n.

introducing the theory of train-tracks for graphs.

After Bestvina-Handel, live continues ...

Theorem (Imrich-Turner, 89)

Let φ ∈ End (Fn). Then r(Fix (φ)) 6 n.

Theorem (Turner, 96)

Let φ ∈ End (Fn). If φ is not bijective then r(Fix (φ)) 6 n − 1.



1. Motivation 2. Free groups 3. Lower bounds 4. Upper bounds 5. The special case of rank 2 5. Fixed subgroups Algorithmic results

Inertia

Definition

A subgroup H 6 Fn is called inert if r(H ∩K ) 6 r(K ) for every K 6 Fn.

Theorem (Dicks-V, 96)

Let G ⊆ Mon (Fn) be an arbitrary set of monomorphisms of Fn. Then,
Fix (G) is inert; in particular, r(Fix (G)) 6 n.

Theorem (Bergman, 99)

Let G ⊆ End (Fn) be an arbitrary set of endomorphisms of Fn. Then,
r(Fix (G)) 6 n.

Conjecture (V.)

Let φ ∈ End (Fn). Then Fix (φ) is inert.
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The four families

Definition
A subgroup H 6 Fn is said to be

1-auto-fixed if H = Fix (φ) for some φ ∈ Aut (Fn),
1-endo-fixed if H = Fix (φ) for some φ ∈ End (Fn),
auto-fixed if H = Fix (S) for some S ⊆ Aut (Fn),
endo-fixed if H = Fix (S) for some S ⊆ End (Fn),

Easy to see that 1-mono-fixed = 1-auto-fixed.
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Relations between them

1− auto − fixed ⊆ 1− endo − fixed

∩| ∩|

auto − fixed ⊆ endo − fixed
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Relations between them

1− auto − fixed
⊆
6= 1− endo − fixed

∩| ∩|

auto − fixed
⊆
6= endo − fixed

Example (Martino-V., 03; Ciobanu-Dicks, 06)

Let F3 = 〈a,b, c〉 and H = 〈b, cacbab−1c−1〉 6 F3. Then,
H = Fix (a 7→ 1, b 7→ b, c 7→ cacbab−1c−1), but H is NOT the fixed
subgroup of any set of automorphism of F3.
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Relations between them

1− auto − fixed
⊆
6= 1− endo − fixed

∩| ‖ ? ∩| ‖ ?

auto − fixed
⊆
6= endo − fixed

Theorem (Martino-V., 00)

Let S ⊆ End (Fn). Then, ∃φ ∈ 〈S〉 such that Fix (S) 6ff Fix (φ).

But... free factors of 1-endo-fixed (1-auto-fixed) subgroups need not
be even endo-fixed (auto-fixed).
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Outline

1 Motivation

2 Free groups

3 Lower bounds: a good enough example

4 Upper bounds: outer space

5 The special case of rank 2

6 Fixed subgroups: a nice story

7 Algorithmic results
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Computing fixed subgroups

Proposition (Turner, 86)

There exists a pseudo-algorithm to compute fix of an endo.

Easy but is not an algorithm...

Theorem (Maslakova, 03)

Fixed subgroups of automorphisms of Fn are computable.

Difficult, using train-tracks. Mistake found,... and fixed by W. Dicks

Theorem (Dicks, 11)

Fixed subgroups of endomorphisms of Fn are computable.
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Deciding fixedness

What about the dual problem ?

Theorem
Given H 6fg Fn, one can algorithmically decide whether

i) H is auto-fixed or not,
ii) H is endo-fixed or not,

and in the affirmative case, find a finite family, S = {φ1, . . . , φm}, of
automorphisms (endomorphisms) of Fn such that Fix (S) = H.

Conjecture

Given H 6fg Fn, one can algorithmically decide whether
i) H is 1-auto-fixed or not,
ii) H is 1-endo-fixed or not,

and in the affirmative case, find one automorphism (endomorphism)
φ of Fn such that Fix (φ) = H.
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Fixed closures

Definition
Given H 6fg Fn, we define the (auto- and endo-) stabilizer of H,
respectively, as

AutH(Fn) = {φ ∈ Aut (Fn) | H 6 Fix (φ)} 6 Aut (Fn)

and
EndH(Fn) = {φ ∈ End (Fn) | H 6 Fix (φ)} 6 End (Fn)

Definition
Given H 6 Fn, we define the auto-closure and endo-closure of H as

a-Cl (H) = Fix (AutH(Fn)) > H

and
e-Cl (H) = Fix (EndH(Fn)) > H
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Main result

Theorem

For every H 6fg Fn, a-Cl (H) and e-Cl (H) are finitely generated and
one can algorithmically compute bases for them.

Corollary

Auto-fixedness and endo-fixedness are decidable.

Observe that e-Cl (H) 6 a-Cl (H) but, in general, they are not equal.
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The automorphism case

Theorem (McCool, 70’s)

Let H 6fg Fn. Then AutH(Fn) is finitely generated (in fact, finitely
presented) and a finite set of generators (and relations) is
algorithmically computable from H.

Theorem

For every H 6fg Fn, a-Cl (H) is finitely generated and algorithmically
computable.

Proof. a-Cl (H) = Fix (AutH(Fn))
= Fix (〈φ1, . . . , φm〉)
= Fix (φ1) ∩ · · · ∩ Fix (φm). �
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The endomorphism case

A similar approach does not work because:

H 6fg Fn does not imply that EndH(Fn) is finitely generated as
submonoid of End (Fn).
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The endomorphism case

Example

Consider F3 = 〈a,b, c〉, the element d = ba[c2,b]a−1, and the
subgroup H = 〈a,d〉 6 F3. Clearly, the morphisms

ψ : F3 → F3 φ : F3 → F3 φnψ : F3 → F3
a 7→ a a 7→ a a 7→ a
b 7→ d b 7→ b b 7→ d
c 7→ 1 c 7→ cb c 7→ dn

satisfy H 6 Fix (φnψ) for every n ∈ Z.
With some computations, Ciobanu-Dicks-06 show that

EndH(F3) = {Id , φnψ | n ∈ Z}.

But, φmψ · φnψ = φmψ. Hence, EndH(F3) is not finitely generated.

Furthermore, a-Cl (H) = Fix (Id) = F3 and e-Cl (H) = Fix (ψ) = H.
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The endomorphism case

Theorem

For every H 6fg Fn, e-Cl (H) is finitely generated and algorithmically
computable.

Proof. Given H (in generators),
Compute AE(H) = {H1,H2, . . . ,Hq}.
Select those which are retracts, AE ret(H) = {H1, . . . ,Hr}
(1 6 r 6 q).
Write the generators of H as words on the generators of each
one of these Hi ’s, i = 1, . . . , r .
Compute bases for a-Cl H1(H), . . . ,a-Cl Hr (H).
Compute a basis for a-Cl H1(H) ∩ · · · ∩ a-Cl Hr (H).

Claim

a-Cl H1(H) ∩ · · · ∩ a-Cl Hr (H) = e-Cl (H).
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The endomorphism case

Claim

a-Cl H1(H) ∩ · · · ∩ a-Cl Hr (H) = e-Cl (H).

Proof. Let us see that

r⋂
i=1

⋂
α ∈ Aut (Hi )
H 6 Fix (α)

Fix (α) =
⋂

β ∈ End (Fn)
H 6 Fix (β)

Fix (β).

Take β ∈ End (Fn) with H 6 Fix (β).
∃i = 1, . . . , r such that H 6alg Hi 6ff Fβ∞ 6 F .
Now, β restricts to an automorphism α : Hi → Hi .
And, clearly, H 6 Fix (α) 6 Fix (β).
Hence, we have "6”.
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