Orbit decidability, applications and variations

Enric Ventura

Departament de Matemàtica Aplicada III
Universitat Politècnica de Catalunya
GAGTA-7

May 29th, 2013.

Outline

(1) Orbit decidability
(2) Free group and others
(3) Orbit undecidable subgroups
4. Connection with the Conjugacy Problem
(5) Applications

Outline

(2) Free group and others

3 Orbit undecidable subgroups
4. Connection with the Conjugacy Problem
(5) Applications

Orbit decidability

Definition

Let X be a set. A collection of maps $A \subseteq \operatorname{Map}(X, X)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $x, y \in X$, it decides whether $x \alpha=y$ for some $\alpha \in A$ (and, if so, finds such an α).

Definition

Observation
O.D. is membership in a given orbit of A (in X)
(Zoom into the problem)

- Geometrv: take $X=$ scace, $\quad A=$ action
- Algebra: take $X=$ algebraic structure, $A \subseteq E n d(X)$,
- Our case: $X=G$ group, $\quad A \subseteq \operatorname{End}(G)$.

Orbit decidability

Definition

Let X be a set. A collection of maps $A \subseteq \operatorname{Map}(X, X)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $x, y \in X$, it decides whether $x \alpha=y$ for some $\alpha \in A$ (and, if so, finds such an α).

Definition
 For X and $A \subseteq \operatorname{Map}(X, X)$, the orbit of $x \in X$ is $\mathcal{O}(x)=\{x \alpha \mid \alpha \in A\}$.

Observation

$O . D$. is membership in a given orbit of A (in X)

(Zoom into the problem)

- Geometrv: take $X=$ space, $\quad A=$ action
- Algebra: take $X=$ algebraic structure, $A \subseteq E n d(X)$;
\square

Orbit decidability

Definition

Let X be a set. A collection of maps $A \subseteq \operatorname{Map}(X, X)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $x, y \in X$, it decides whether $x \alpha=y$ for some $\alpha \in A$ (and, if so, finds such an α).

Definition

For X and $A \subseteq \operatorname{Map}(X, X)$, the orbit of $x \in X$ is $\mathcal{O}(x)=\{x \alpha \mid \alpha \in A\}$.

Observation

O.D. is membership in a given orbit of A (in X).

(Zoom into the problem)

- Geometry: take $X=$ space, $\quad A=$ action;
- Algebra: take $X=$ algebraic structure, $A \subseteq$ End (X),

$$
\text { - Our case: } X=G \text { group, } \quad A \subseteq \operatorname{End}(G) \text {. }
$$

Orbit decidability

Definition

Let X be a set. A collection of maps $A \subseteq \operatorname{Map}(X, X)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $x, y \in X$, it decides whether $x \alpha=y$ for some $\alpha \in A$ (and, if so, finds such an α).

Definition

For X and $A \subseteq \operatorname{Map}(X, X)$, the orbit of $x \in X$ is $\mathcal{O}(x)=\{x \alpha \mid \alpha \in A\}$.

Observation

O.D. is membership in a given orbit of A (in X).
(Zoom into the problem)

- Geometry: take $X=$ space, $\quad A=$ action;

Orbit decidability

Definition

Let X be a set. A collection of maps $A \subseteq \operatorname{Map}(X, X)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $x, y \in X$, it decides whether $x \alpha=y$ for some $\alpha \in A$ (and, if so, finds such an α).

Definition

For X and $A \subseteq \operatorname{Map}(X, X)$, the orbit of $x \in X$ is $\mathcal{O}(x)=\{x \alpha \mid \alpha \in A\}$.

Observation

O.D. is membership in a given orbit of A (in X).
(Zoom into the problem)

- Geometry: take $X=$ space, $\quad A=$ action;
- Algebra: take $X=$ algebraic structure, $\quad A \subseteq \operatorname{End}(X)$;

Orbit decidability

Definition

Let X be a set. A collection of maps $A \subseteq \operatorname{Map}(X, X)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $x, y \in X$, it decides whether $x \alpha=y$ for some $\alpha \in A$ (and, if so, finds such an α).

Definition

For X and $A \subseteq \operatorname{Map}(X, X)$, the orbit of $x \in X$ is $\mathcal{O}(x)=\{x \alpha \mid \alpha \in A\}$.

Observation

O.D. is membership in a given orbit of A (in X).
(Zoom into the problem)

- Geometry: take $X=$ space, $\quad A=$ action;
- Algebra: take $X=$ algebraic structure, $A \subseteq \operatorname{End}(X)$;
- Our case: $X=G$ group, $\quad A \subseteq \operatorname{End}(G)$.

First examples: $G=\mathbb{Z}^{d}$

Observation (folklore)

The full group $\operatorname{Aut}\left(\mathbb{Z}^{d}\right)=G L_{d}(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^{d}$, there exists $A \in G L_{d}(\mathbb{Z})$ such that $v=A u$ if and only if $\operatorname{gcd}\left(u_{1}, \ldots, u_{d}\right)=\operatorname{gcd}\left(v_{1}, \ldots, v_{d}\right)$.

Proposition (Bogopolski-Martino-V., 2008)
 Finite index suhgrouns of $G I$ (Ti.) are $O \cap$

Proposition (Bogopolski-Martino-V., 2008)

Everv finitelv aenerated subaroup of $G L_{2}(\mathbb{Z})$ is O.D.

First examples: $G=\mathbb{Z}^{d}$

Observation (folklore)

The full group $\operatorname{Aut}\left(\mathbb{Z}^{d}\right)=\mathrm{GL}_{d}(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^{d}$, there exists $A \in \mathrm{GL}_{d}(\mathbb{Z})$ such that $v=A u$ if and only if $\operatorname{gcd}\left(u_{1}, \ldots, u_{d}\right)=\operatorname{gcd}\left(v_{1}, \ldots, v_{d}\right)$.

Proposition (Bogopolski-Martino-V., 2008)
 Finite index subcrouns of $G I_{d}(\mathbb{T})$ are $O D$

Proposition (Bogopolski-Martino-V., 2008)

Every finitely qenerated subaroup of $G L_{2}(\mathbb{Z})$ is O.D.

First examples: $G=\mathbb{Z}^{d}$

Observation (folklore)

The full group $\operatorname{Aut}\left(\mathbb{Z}^{d}\right)=G L_{d}(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^{d}$, there exists $A \in \mathrm{GL}_{d}(\mathbb{Z})$ such that $v=A u$ if and only if $\operatorname{gcd}\left(u_{1}, \ldots, u_{d}\right)=\operatorname{gcd}\left(v_{1}, \ldots, v_{d}\right)$.

Proposition (Bogopolski-Martino-V., 2008)

Finite index subgroups of $G L_{d}(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 2008)
Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

First examples: $G=\mathbb{Z}^{d}$

Observation (folklore)

The full group $\operatorname{Aut}\left(\mathbb{Z}^{d}\right)=G L_{d}(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^{d}$, there exists $A \in \mathrm{GL}_{d}(\mathbb{Z})$ such that $v=A u$ if and only if $\operatorname{gcd}\left(u_{1}, \ldots, u_{d}\right)=\operatorname{gcd}\left(v_{1}, \ldots, v_{d}\right)$.

Proposition (Bogopolski-Martino-V., 2008)
Finite index subgroups of $G L_{d}(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 2008)
Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

First examples: $G=\mathbb{Z}^{d}$

Proposition (linear algebra)
For $A \in G L_{d}(\mathbb{Z})$, the subgroup $\langle A\rangle \leqslant G L_{d}(\mathbb{Z})$ is O.D.

Proof. (sketch)

- Given $A \in \mathrm{GI}_{d}(\mathbb{Z}), u, v \in \mathbb{Z}^{d}$, want to decide wether $u A^{n}=v$ for some $n \in \mathbb{Z}$.

First examples: $G=\mathbb{Z}^{d}$

Proposition (linear algebra)
For $A \in G L_{d}(\mathbb{Z})$, the subgroup $\langle A\rangle \leqslant G L_{d}(\mathbb{Z})$ is O.D.

Proof. (sketch)

- Given $A \in G L_{d}(\mathbb{Z}), u, v \in \mathbb{Z}^{d}$, want to decide wether $u A^{n}=v$ for some $n \in \mathbb{Z}$.

First examples: $G=\mathbb{Z}^{d}$

Proposition (linear algebra)
For $A \in G L_{d}(\mathbb{Z})$, the subgroup $\langle A\rangle \leqslant G L_{d}(\mathbb{Z})$ is O.D.

Proof. (sketch)

- Given $A \in \mathrm{GL}_{d}(\mathbb{Z}), u, v \in \mathbb{Z}^{d}$, want to decide wether $u A^{n}=v$ for some $n \in \mathbb{Z}$.

The free abelian group $G=\mathbb{Z}^{d}$

Proposition (linear algebra)
For $A \in G L_{d}(\mathbb{Z})$, the subgroup $\langle A\rangle \leqslant G L_{d}(\mathbb{Z})$ is O.D.

Proof. (sketch)

- Given $A \in \mathrm{GL}_{d}(\mathbb{Z}), u, v \in \mathbb{Z}^{d}$, want to decide wether $u A^{n}=v$ for some $n \in \mathbb{N}$.
- Keep computing $u, u A, u A^{2}, u A^{3}, \ldots$ and compare with v.
- Denote λ the eigenvalue of A with maximum modulus. The projection of $u A^{n}$ to E_{λ} grows faster than all other projections.
- So we can compute n_{0} such that either $u, u A, u A^{2}, u A^{3}$ hits v, or either $u A^{n} \neq v$ for all n.

The free abelian group $G=\mathbb{Z}^{d}$

Proposition (linear algebra)
For $A \in G L_{d}(\mathbb{Z})$, the subgroup $\langle A\rangle \leqslant G L_{d}(\mathbb{Z})$ is O.D.

Proof. (sketch)

- Given $A \in \mathrm{GL}_{d}(\mathbb{Z}), u, v \in \mathbb{Z}^{d}$, want to decide wether $u A^{n}=v$ for some $n \in \mathbb{N}$.
- Keep computing $u, u A, u A^{2}, u A^{3}, \ldots$ and compare with v.
- Denote λ the eigenvalue of A with maximum modulus. The projection of $u A^{n}$ to E_{λ} grows faster than all other projections.
- So we can compute n_{0} such that either $u, u A, u A^{2}, u A^{3}$ hits v, or either $u A^{n} \neq v$ for all n.

The free abelian group $G=\mathbb{Z}^{d}$

Proposition (linear algebra)

For $A \in G L_{d}(\mathbb{Z})$, the subgroup $\langle A\rangle \leqslant G L_{d}(\mathbb{Z})$ is O.D.

Proof. (sketch)

- Given $A \in \mathrm{GL}_{d}(\mathbb{Z}), u, v \in \mathbb{Z}^{d}$, want to decide wether $u A^{n}=v$ for some $n \in \mathbb{N}$.
- Keep computing $u, u A, u A^{2}, u A^{3}, \ldots$ and compare with v.
- Denote λ the eigenvalue of A with maximum modulus. The projection of $u A^{n}$ to E_{λ} grows faster than all other projections.
hits v, or either $u A^{n} \neq v$ for all n.

The free abelian group $G=\mathbb{Z}^{d}$

Proposition (linear algebra)

For $A \in G L_{d}(\mathbb{Z})$, the subgroup $\langle A\rangle \leqslant G L_{d}(\mathbb{Z})$ is O.D.

Proof. (sketch)

- Given $A \in \mathrm{GL}_{d}(\mathbb{Z}), u, v \in \mathbb{Z}^{d}$, want to decide wether $u A^{n}=v$ for some $n \in \mathbb{N}$.
- Keep computing $u, u A, u A^{2}, u A^{3}, \ldots$ and compare with v.
- Denote λ the eigenvalue of A with maximum modulus. The projection of $u A^{n}$ to E_{λ} grows faster than all other projections.
- So we can compute n_{0} such that either $u, u A, u A^{2}, u A^{3}, \ldots, u A^{n_{0}}$ hits v, or either $u A^{n} \neq v$ for all n.

Outline

(1) Orbit decidability

(2) Free group and others

3 Orbit undecidable subgroups
4. Connection with the Conjugacy Problem
(5) Applications

Brinkmann's result

Theorem (Brinkmann, 2006)

Cyclic groups of $\operatorname{Aut}\left(F_{r}\right)$ are orbit decidable. That is, given $\varphi \in \operatorname{Aut}\left(F_{r}\right)$ and $u, v \in F_{r}$, one can decide whether $v=u \varphi^{n}$ for some $n \in \mathbb{Z}$.

Proof.

- Same idea as before: there is a computable no such that either $u, u \varphi, u \varphi^{2}, u \varphi^{3}, \ldots, u \varphi^{n_{0}}$ hits v, or either $u \varphi^{n} \neq v$ for all n.
- The computation of n_{0} is quite complicated, making strong use of train-tracks.

Theorem (Brinkmann, 2006)

Cvclic aroups of $\operatorname{Aut}\left(F_{r}\right)$ are ork it decidable up to conjugacy. That is, given $\varphi \in \operatorname{Aut}\left(F_{r}\right)$ and $u, v \in F_{r}$, one can decide whether $v \sim u \varphi^{n}$ for some $n \in \mathbb{Z}$ (i.e., $\langle\varphi\rangle \cdot \operatorname{lnn}\left(F_{r}\right)$ is O.D.).

Brinkmann's result

Theorem (Brinkmann, 2006)

Cyclic groups of $\operatorname{Aut}\left(F_{r}\right)$ are orbit decidable. That is, given $\varphi \in \operatorname{Aut}\left(F_{r}\right)$ and $u, v \in F_{r}$, one can decide whether $v=u \varphi^{n}$ for some $n \in \mathbb{Z}$.

Proof.

- Same idea as before: there is a computable n_{0} such that either $u, u \varphi, u \varphi^{2}, u \varphi^{3}, \ldots, u \varphi^{n_{0}}$ hits v, or either $u \varphi^{n} \neq v$ for all n.
 train-tracks.

Theorem (Brinkmann, 2006)

Cyclic groups of $\operatorname{Aut}\left(F_{r}\right)$ are orbit decidable up to conjugacy. That is, given $\varphi \in \operatorname{Aut}\left(F_{r}\right)$ and $u, v \in F_{r}$, one can decide whether $v \sim u \varphi^{n}$ for some $n \in \mathbb{Z}$ (i.e., $\langle\varphi\rangle \cdot \operatorname{lnn}\left(F_{r}\right)$ is O.D.)

Brinkmann's result

Theorem (Brinkmann, 2006)

Cyclic groups of $\operatorname{Aut}\left(F_{r}\right)$ are orbit decidable. That is, given $\varphi \in \operatorname{Aut}\left(F_{r}\right)$ and $u, v \in F_{r}$, one can decide whether $v=u \varphi^{n}$ for some $n \in \mathbb{Z}$.

Proof.

- Same idea as before: there is a computable n_{0} such that either $u, u \varphi, u \varphi^{2}, u \varphi^{3}, \ldots, u \varphi^{n_{0}}$ hits v, or either $u \varphi^{n} \neq v$ for all n.
- The computation of n_{0} is quite complicated, making strong use of train-tracks.

Brinkmann's result

Theorem (Brinkmann, 2006)

Cyclic groups of $\operatorname{Aut}\left(F_{r}\right)$ are orbit decidable. That is, given $\varphi \in \operatorname{Aut}\left(F_{r}\right)$ and $u, v \in F_{r}$, one can decide whether $v=u \varphi^{n}$ for some $n \in \mathbb{Z}$.

Proof.

- Same idea as before: there is a computable n_{0} such that either $u, u \varphi, u \varphi^{2}, u \varphi^{3}, \ldots, u \varphi^{n_{0}}$ hits v, or either $u \varphi^{n} \neq v$ for all n.
- The computation of n_{0} is quite complicated, making strong use of train-tracks.

Theorem (Brinkmann, 2006)

Cyclic groups of $\operatorname{Aut}\left(F_{r}\right)$ are orbit decidable up to conjugacy. That is, given $\varphi \in \operatorname{Aut}\left(F_{r}\right)$ and $u, v \in F_{r}$, one can decide whether $v \sim u \varphi^{n}$ for some $n \in \mathbb{Z}$ (i.e., $\langle\varphi\rangle \cdot \operatorname{Inn}\left(F_{r}\right)$ is O.D.).

Whitehead problem and variations

Theorem (Whitehead'30)

The full group $\operatorname{Aut}\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=u \alpha$ for some $\alpha \in \operatorname{Aut}\left(F_{r}\right)$.

This is a classical and very influential result.

Proposition (Bogopolski-Martino-V., 2008)

Finite index subaroups of $\operatorname{Aut}\left(F_{r}\right)$ are O.D.

Proposition (Bogopolski-Martino-V., 2008)

Every finitely qenerated subaroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Whitehead problem and variations

Theorem (Whitehead'30)

The full group $\operatorname{Aut}\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=u \alpha$ for some $\alpha \in \operatorname{Aut}\left(F_{r}\right)$.

This is a classical and very influential result.

Proposition (Bogopolski-Martino-V., 2008)

Finite index subaroups of $\operatorname{Aut}\left(F_{r}\right)$ are O.D.

Proposition (Bogopolski-Martino-V., 2008)

Every finitely qenerated subaroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Whitehead problem and variations

Theorem (Whitehead'30)

The full group $\operatorname{Aut}\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=u \alpha$ for some $\alpha \in \operatorname{Aut}\left(F_{r}\right)$.

This is a classical and very influential result.

Proposition (Bogopolski-Martino-V., 2008)
Finite index subgroups of $\operatorname{Aut}\left(F_{r}\right)$ are O.D.

Proposition (Bogopolski-Martino-V., 2008)
Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Whitehead problem and variations

Theorem (Whitehead'30)

The full group $\operatorname{Aut}\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=u \alpha$ for some $\alpha \in \operatorname{Aut}\left(F_{r}\right)$.

This is a classical and very influential result.

Proposition (Bogopolski-Martino-V., 2008)

Finite index subgroups of $\operatorname{Aut}\left(F_{r}\right)$ are O.D.

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Whitehead problem and variations

Theorem (Makanin, 1982)
The full End $\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=u \alpha$ for some $\alpha \in \operatorname{End}\left(F_{r}\right)$ (also for tuples).

Proof. It reduces to solving (a system of) equation over F_{r}

Theorem (Ciobanu-Houcine, 2010)

$\operatorname{Mon}\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=u \alpha$ for some injective endomorphism $\alpha \in \operatorname{Mon}\left(F_{r}\right)$ (also for tuples)

Theorem

For every f.g. $H \leqslant F_{r}$, Stab(H) is O.D (and similarly for monos and endos)

Whitehead problem and variations

Theorem (Makanin, 1982)

The full End $\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=u \alpha$ for some $\alpha \in \operatorname{End}\left(F_{r}\right)$ (also for tuples).

Proof. It reduces to solving (a system of) equation over F_{r}.

Theorem (Ciobanu-Houcine, 2010)

$\operatorname{Mon}\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=u \alpha$ for some injective endomorphism $\alpha \in \operatorname{Mon}\left(F_{r}\right)$ (also for tuples)

Theorem

For every fg. H F Fr, Stab(H) is O.D (and similarly for monos and endos)

Whitehead problem and variations

Theorem (Makanin, 1982)

The full End $\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=u \alpha$ for some $\alpha \in \operatorname{End}\left(F_{r}\right)$ (also for tuples).

Proof. It reduces to solving (a system of) equation over F_{r}.

Theorem (Ciobanu-Houcine, 2010)

$\operatorname{Mon}\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=u \alpha$ for some injective endomorphism $\alpha \in \operatorname{Mon}\left(F_{r}\right)$ (also for tuples).

Theorem
For every f.g. $H \leqslant F_{r}$, $\operatorname{Stab}(H)$ is $O . D$ (and similarly for monos and endos)

Whitehead problem and variations

Theorem (Makanin, 1982)

The full End $\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=u \alpha$ for some $\alpha \in \operatorname{End}\left(F_{r}\right)$ (also for tuples).

Proof. It reduces to solving (a system of) equation over F_{r}.

Theorem (Ciobanu-Houcine, 2010)

$\operatorname{Mon}\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=u \alpha$ for some injective endomorphism $\alpha \in \operatorname{Mon}\left(F_{r}\right)$ (also for tuples).

Theorem

For every f.g. $H \leqslant F_{r}, \operatorname{Stab}(H)$ is $O . D$ (and similarly for monos and endos).

Whitehead problem and variations

Definition

A virtual endomorphism of G is a homomorphism $\varphi: H \rightarrow K$ between finite index subgroups $H, K \leqslant_{\mathrm{fi}} G$.

Theorem (Rubió-V., w.p.)

The collection of virtual endos (resp. virtual monos, virtual autos) of F_{r} is O.D. (also for tuples).

Whitehead problem and variations

Definition

A virtual endomorphism of G is a homomorphism $\varphi: H \rightarrow K$ between finite index subgroups $H, K \leqslant_{\mathrm{fi}} G$.

Theorem (Rubió-V., w.p.)

The collection of virtual endos (resp. virtual monos, virtual autos) of F_{r} is O.D. (also for tuples).

Other groups

Theorem (Collins, Zieschang, 1984)
Let G_{1}, \ldots, G_{n} be freely indecomposable groups with $\operatorname{Aut}\left(G_{i}\right)$ being O.D. Then, its free product $G=G_{1} * G_{2} * \cdots * G_{n}$ has $\operatorname{Aut}(G)$ O.D.

Theorem (Levit-Vogtman, 2000)

For a surface group $G, \operatorname{Aut}(G)$ is O.D. (also for tuples)

Theorem (Dahmani, Girardel, 2010)

For a hyperbolic group $G, \operatorname{Aut}(G)$ is O.D. (also for tuples)

Theorem (Kharlampovich-V., 2012)
For G torsion-free relatively hyperbolic with abelian parabolic
subgroups, Aut(G) is O.D. (also for tuples).

Other groups

Theorem (Collins, Zieschang, 1984)

Let G_{1}, \ldots, G_{n} be freely indecomposable groups with $\operatorname{Aut}\left(G_{i}\right)$ being O.D. Then, its free product $G=G_{1} * G_{2} * \cdots * G_{n}$ has $\operatorname{Aut}(G)$ O.D.

Theorem (Levitt-Vogtman, 2000)

For a surface group $G, \operatorname{Aut}(G)$ is O.D. (also for tuples).

Theorem (Dahmani, Girardel, 2010)
 For a hyperbolic groun $G, \operatorname{Aut}(G)$ is O.D. (also for tuples)

Theorem (Kharlampovich-V., 2012)
For G torsion-free relatively hynerholic with abelian parabolic
subgroups, Aut(G) is O.D. (also for tuples)

Other groups

Theorem (Collins, Zieschang, 1984)
Let G_{1}, \ldots, G_{n} be freely indecomposable groups with $\operatorname{Aut}\left(G_{i}\right)$ being O.D. Then, its free product $G=G_{1} * G_{2} * \cdots * G_{n}$ has $\operatorname{Aut}(G)$ O.D.

Theorem (Levitt-Vogtman, 2000)

For a surface group $G, \operatorname{Aut}(G)$ is O.D. (also for tuples).

Theorem (Dahmani, Girardel, 2010)

For a hyperbolic group $G, \operatorname{Aut}(G)$ is O.D. (also for tuples).

Theorem (Kharlampovich-V., 2012)
For G torsion-free relatively hvperbolic with abelian parabolic subgroups, Aut(G) is O.D. (also for tuples)

Other groups

Theorem (Collins, Zieschang, 1984)
Let G_{1}, \ldots, G_{n} be freely indecomposable groups with $\operatorname{Aut}\left(G_{i}\right)$ being O.D. Then, its free product $G=G_{1} * G_{2} * \cdots * G_{n}$ has $\operatorname{Aut}(G)$ O.D.

Theorem (Levitt-Vogtman, 2000)

For a surface group $G, \operatorname{Aut}(G)$ is O.D. (also for tuples).

Theorem (Dahmani, Girardel, 2010)

For a hyperbolic group $G, \operatorname{Aut}(G)$ is O.D. (also for tuples).

Theorem (Kharlampovich-V., 2012)

For G torsion-free relatively hyperbolic with abelian parabolic subgroups, $\operatorname{Aut}(G)$ is O.D. (also for tuples).

Other groups

Theorem (Day, 2013)

For G a PC group $\operatorname{Aut}(G)$ is O.D. (also for tuples modulo conjugation).

Theorem (Delgado-V., 2013)
For $G=\mathbb{Z}^{m} \times F_{n}, \operatorname{Aut}(G), \operatorname{Mon}(G)$ and $\operatorname{End}(G)$ are all O.D.

Other groups

Theorem (Day, 2013)

For G a PC group $\operatorname{Aut}(G)$ is O.D. (also for tuples modulo conjugation).

Theorem (Delgado-V., 2013)

For $G=\mathbb{Z}^{m} \times F_{n}, \operatorname{Aut}(G)$, $\operatorname{Mon}(G)$ and $\operatorname{End}(G)$ are all O.D.

Outline

(1) Orbit decidability
(2) Free group and others
(3) Orbit undecidable subgroups
4. Connection with the Conjugacy Problem
(5) Applications

Finding orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 2008)
Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $v \in F$ be such that $B \cap \operatorname{Stab}^{*}(v)=1$. Then,

$$
O D(A) \text { solvable } \Rightarrow M P(A, B) \text { solvable. }
$$

Proof. Given $\varphi \in B \leq \operatorname{Aut}(F)$, let $w=v \varphi$ and

$$
\{\phi \in B \mid v \phi \sim w\}=B \cap\left(\operatorname{Stab}^{*}(v) \cdot \varphi\right)=\left(B \cap \operatorname{Stab}^{*}(v)\right) \cdot \varphi=\{\varphi\} .
$$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A. Hence,

$$
O D(A) \quad \Rightarrow \quad M P(A, B) \cdot \square
$$

Finding orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 2008)
Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $v \in F$ be such that $B \cap \operatorname{Stab}^{*}(v)=1$. Then,

$$
O D(A) \text { solvable } \Rightarrow M P(A, B) \text { solvable. }
$$

Proof. Given $\varphi \in B \leq \operatorname{Aut}(F)$, let $w=v \varphi$ and

$$
\{\phi \in B \mid v \phi=w\}=B \cap(\operatorname{Stab}(v) \cdot \varphi)=(B \cap \operatorname{Stab}(v)) \cdot \varphi=\{\varphi\} .
$$

Finding orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 2008)

Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $v \in F$ be such that $B \cap \operatorname{Stab}^{*}(v)=1$. Then,

$$
O D(A) \text { solvable } \Rightarrow M P(A, B) \text { solvable. }
$$

Proof. Given $\varphi \in B \leq \operatorname{Aut}(F)$, let $w=v \varphi$ and

$$
\begin{gathered}
\{\phi \in B \mid v \phi=w\}=B \cap(\operatorname{Stab}(v) \cdot \varphi)=(B \cap \operatorname{Stab}(v)) \cdot \varphi=\{\varphi\} . \\
\{\phi \in B \mid v \phi \sim w\}=B \cap\left(\operatorname{Stab}^{*}(v) \cdot \varphi\right)=\left(B \cap \operatorname{Stab}^{*}(v)\right) \cdot \varphi=\{\varphi\} .
\end{gathered}
$$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A. Hence,

Finding orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 2008)

Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $v \in F$ be such that $B \cap \operatorname{Stab}^{*}(v)=1$. Then,

$$
O D(A) \text { solvable } \Rightarrow M P(A, B) \text { solvable. }
$$

Proof. Given $\varphi \in B \leq \operatorname{Aut}(F)$, let $w=v \varphi$ and

$$
\begin{gathered}
\{\phi \in B \mid v \phi=w\}=B \cap(\operatorname{Stab}(v) \cdot \varphi)=(B \cap \operatorname{Stab}(v)) \cdot \varphi=\{\varphi\} . \\
\{\phi \in B \mid v \phi \sim w\}=B \cap\left(\operatorname{Stab}^{*}(v) \cdot \varphi\right)=\left(B \cap \operatorname{Stab}^{*}(v)\right) \cdot \varphi=\{\varphi\} .
\end{gathered}
$$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A. Hence,

$$
O D(A) \quad \Rightarrow \quad M P(A, B) . \square
$$

Finding orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 2008)
Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $v \in F$ be such that $B \cap \operatorname{Stab}^{*}(v)=1$. Then,

$$
M P(A, B) \text { unsolvable } \Rightarrow O D(A) \text { unsolvable. }
$$

Let F be a group, and let $F_{2} \times F_{2} \simeq B \leqslant \operatorname{Aut}(F)$ and $v \in F$ be such
that $B \cap \operatorname{Stab}^{*}(v)=1$. Then, there exists f.g. $A \leqslant \operatorname{Aut}(F)$ which is
orbit undecidable.

Finding orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 2008)

Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $v \in F$ be such that $B \cap \operatorname{Stab}^{*}(v)=1$. Then,
$M P(A, B)$ unsolvable $\Rightarrow O D(A)$ unsolvable.

Corollary (Bogopolski-Martino-V., 2008)

Let F be a group, and let $F_{2} \times F_{2} \simeq B \leqslant \operatorname{Aut}(F)$ and $v \in F$ be such that $B \cap \operatorname{Stab}^{*}(v)=1$. Then, there exists f.g. $A \leqslant \operatorname{Aut}(F)$ which is orbit undecidable.

Finding orbit undecidable subgroups

Corollary (Bogopolski-Martino-V., 2008)

Aut $\left(F_{r}\right)$ contains f.g. orbit undecidable subgroups, for $r \geqslant 3$.

Corollary (Bogopolski-Martino-V., 2008)

$\mathrm{GL}_{d}(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \geqslant 4$.

Question

Does there exist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Corollary (Burillo-Matucci-V., 12)
For Thompson's group F, Aut (F) contains f.g. orbit undecidable subgroups.

Finding orbit undecidable subgroups

Corollary (Bogopolski-Martino-V., 2008)

Aut $\left(F_{r}\right)$ contains f.g. orbit undecidable subgroups, for $r \geqslant 3$.

Corollary (Bogopolski-Martino-V., 2008)

$\mathrm{GL}_{d}(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \geqslant 4$.

```
Question
\(\square\)
Corollary (Burillo-Matucci-V., 12)
For Thompson's aroup F. Aut (F) contains f.g. orbit undecidable subgroups.
```


Finding orbit undecidable subgroups

Corollary (Bogopolski-Martino-V., 2008)

Aut $\left(F_{r}\right)$ contains f.g. orbit undecidable subgroups, for $r \geqslant 3$.

Corollary (Bogopolski-Martino-V., 2008)

$\mathrm{GL}_{d}(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \geqslant 4$.

Question

Does there exist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Corollary (Burillo-Matucci-V., 12)
For Thompson's group F, Aut(F) contains f.g. orbit undecidable
subgroups.

Finding orbit undecidable subgroups

Corollary (Bogopolski-Martino-V., 2008)

Aut $\left(F_{r}\right)$ contains f.g. orbit undecidable subgroups, for $r \geqslant 3$.

Corollary (Bogopolski-Martino-V., 2008)
$\mathrm{GL}_{d}(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \geqslant 4$.

Question

Does there exist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Corollary (Burillo-Matucci-V., 12)
For Thompson's group F, Aut (F) contains f.g. orbit undecidable subgroups.

Outline

(1) Orbit decidability
(2) Free group and others

3 Orbit undecidable subgroups
4. Connection with the Conjugacy Problem
(5) Applications

Connection to semidirect products

Observation (B-M-V)
Let F be f.g., and $\Gamma \leqslant{ }_{\mathrm{fg}} \operatorname{Aut}(F)$. If $F \rtimes \Gamma$ has solvable $C P$, then $\Gamma \cdot \operatorname{lnn}(F) \leqslant \operatorname{Aut}(F)$ is orbit decidable.

Proof. $G=F \rtimes \Gamma$ contains elements $(x, \gamma) \in F \times \Gamma$ operated like $\left(x_{1}, \gamma_{1}\right) \cdot\left(x_{2}, \gamma_{2}\right)=\left(x_{1} \gamma_{1}\left(x_{2}\right), \gamma_{1} \gamma_{2}\right)$

For $x_{1}, x_{2} \in F \leqslant G$, we have $x_{1} \sim_{G} x_{2} \Leftrightarrow \exists(x, \gamma) \in F \rtimes \Gamma$ s.t.

Hence, $x_{1} \sim_{G} x_{2} \Leftrightarrow \exists \gamma \in \Gamma$ and $x \in F$ s.t. $x_{1}=x \gamma\left(x_{2}\right) x^{-1}$

Connection to semidirect products

Observation (B-M-V)

Let F be f.g., and $\Gamma \leqslant_{\text {fg }} \operatorname{Aut}(F)$. If $F \rtimes \Gamma$ has solvable $C P$, then $\Gamma \cdot \operatorname{lnn}(F) \leqslant \operatorname{Aut}(F)$ is orbit decidable.

Proof. $G=F \rtimes \Gamma$ contains elements $(x, \gamma) \in F \times \Gamma$ operated like

$$
\begin{gathered}
\left(x_{1}, \gamma_{1}\right) \cdot\left(x_{2}, \gamma_{2}\right)=\left(x_{1} \gamma_{1}\left(x_{2}\right), \gamma_{1} \gamma_{2}\right) \\
(x, \gamma)^{-1}=\left(\gamma^{-1}\left(x^{-1}\right), \gamma^{-1}\right) .
\end{gathered}
$$

For $x_{1}, x_{2} \in F \leqslant G$, we
$\left(x_{2}, l d\right)$

Connection to semidirect products

Observation (B-M-V)

Let F be f.g., and $\Gamma \leqslant_{\text {fg }} \operatorname{Aut}(F)$. If $F \rtimes \Gamma$ has solvable $C P$, then $\Gamma \cdot \operatorname{lnn}(F) \leqslant \operatorname{Aut}(F)$ is orbit decidable.

Proof. $G=F \rtimes \Gamma$ contains elements $(x, \gamma) \in F \times \Gamma$ operated like

$$
\begin{gathered}
\left(x_{1}, \gamma_{1}\right) \cdot\left(x_{2}, \gamma_{2}\right)=\left(x_{1} \gamma_{1}\left(x_{2}\right), \gamma_{1} \gamma_{2}\right) \\
(x, \gamma)^{-1}=\left(\gamma^{-1}\left(x^{-1}\right), \gamma^{-1}\right) .
\end{gathered}
$$

For $x_{1}, x_{2} \in F \leqslant G$, we have $x_{1} \sim_{G} x_{2} \Leftrightarrow \exists(x, \gamma) \in F \rtimes \Gamma$ s.t.

$$
\begin{aligned}
\left(x_{2}, I d\right)= & (x, \gamma)^{-1} \cdot\left(x_{1}, I d\right) \cdot(x, \gamma) \\
& \left(\gamma^{-1}\left(x^{-1}\right), \gamma^{-1}\right) \cdot\left(x_{1} x, \gamma\right) \\
& \left(\gamma^{-1}\left(x^{-1} x_{1} x\right), I d\right) .
\end{aligned}
$$

Connection to semidirect products

Observation (B-M-V)

Let F be f.g., and $\Gamma \leqslant_{\text {fg }} \operatorname{Aut}(F)$. If $F \rtimes \Gamma$ has solvable $C P$, then $\Gamma \cdot \operatorname{lnn}(F) \leqslant \operatorname{Aut}(F)$ is orbit decidable.

Proof. $G=F \rtimes \Gamma$ contains elements $(x, \gamma) \in F \times \Gamma$ operated like

$$
\begin{gathered}
\left(x_{1}, \gamma_{1}\right) \cdot\left(x_{2}, \gamma_{2}\right)=\left(x_{1} \gamma_{1}\left(x_{2}\right), \gamma_{1} \gamma_{2}\right) \\
(x, \gamma)^{-1}=\left(\gamma^{-1}\left(x^{-1}\right), \gamma^{-1}\right) .
\end{gathered}
$$

For $x_{1}, x_{2} \in F \leqslant G$, we have $x_{1} \sim_{G} x_{2} \Leftrightarrow \exists(x, \gamma) \in F \rtimes \Gamma$ s.t.

$$
\begin{aligned}
\left(x_{2}, I d\right)= & (x, \gamma)^{-1} \cdot\left(x_{1}, I d\right) \cdot(x, \gamma) \\
& \left(\gamma^{-1}\left(x^{-1}\right), \gamma^{-1}\right) \cdot\left(x_{1} x, \gamma\right) \\
& \left(\gamma^{-1}\left(x^{-1} x_{1} x\right), I d\right) .
\end{aligned}
$$

Hence, $x_{1} \sim_{G} x_{2} \Leftrightarrow \exists \gamma \in \Gamma$ and $x \in F$ s.t. $x_{1}=x \gamma\left(x_{2}\right) x^{-1}$. \square

Connection to semidirect products

In fact, for the free and free abelian cases (among others), the converse is also true after "erasing the relations from Γ ":

Let F be a group, $\alpha_{1}, \ldots, \alpha_{m} \in \operatorname{Aut}(F)$, and consider $\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \leqslant$ $\leqslant \operatorname{Aut}(F)$ and the semidirect product $G=F \rtimes_{\alpha_{1}, \ldots, \alpha_{m}} F_{m}$.

Theorem (B-M-V, 2008)

only if $\Gamma=\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \cdot \operatorname{Inn}(F) \leqslant \operatorname{Aut}(F)$ is orbit decidable.
This comes from a more general result:

- replace F to any group with solvable TCP
- replace F_{m} to any group with "easy" centralizers,
- replace semidirect products to arbitrary short exact sequences.

Connection to semidirect products

In fact, for the free and free abelian cases (among others), the converse is also true after "erasing the relations from Γ ":

Let F be a group, $\alpha_{1}, \ldots, \alpha_{m} \in \operatorname{Aut}(F)$, and consider $\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \leqslant$ $\leqslant \operatorname{Aut}(F)$ and the semidirect product $G=F \rtimes_{\alpha_{1}, \ldots, \alpha_{m}} F_{m}$.

Theorem (B-M-V, 2008)

Let F be \mathbb{Z}^{d} or F_{r}. Then $G=F \rtimes_{\alpha_{1}, \ldots, \alpha_{m}} F_{m}$ has solvable CP if and only if $\Gamma=\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \cdot \operatorname{Inn}(F) \leqslant \operatorname{Aut}(F)$ is orbit decidable.

This comes from a more general result:

- replace F to any group with solvable TCP
- replace F_{m} to any group with "easy" centralizers,
- replace semidirect products to arbitrary short exact sequences.

Connection to semidirect products

In fact, for the free and free abelian cases (among others), the converse is also true after "erasing the relations from Γ ":

Let F be a group, $\alpha_{1}, \ldots, \alpha_{m} \in \operatorname{Aut}(F)$, and consider $\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \leqslant$ $\leqslant \operatorname{Aut}(F)$ and the semidirect product $G=F \rtimes_{\alpha_{1}, \ldots, \alpha_{m}} F_{m}$.

Theorem (B-M-V, 2008)

Let F be \mathbb{Z}^{d} or F_{r}. Then $G=F \rtimes_{\alpha_{1}, \ldots, \alpha_{m}} F_{m}$ has solvable CP if and only if $\Gamma=\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \cdot \operatorname{Inn}(F) \leqslant \operatorname{Aut}(F)$ is orbit decidable.

This comes from a more general result:

- replace F to any group with solvable TCP,
- replace F_{m} to any group with "easy" centralizers,
- replace semidirect products to arbitrary short exact sequences.

Connection to semidirect products

In fact, for the free and free abelian cases (among others), the converse is also true after "erasing the relations from Γ ":

Let F be a group, $\alpha_{1}, \ldots, \alpha_{m} \in \operatorname{Aut}(F)$, and consider $\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \leqslant$ $\leqslant \operatorname{Aut}(F)$ and the semidirect product $G=F \rtimes_{\alpha_{1}, \ldots, \alpha_{m}} F_{m}$.

Theorem (B-M-V, 2008)

Let F be \mathbb{Z}^{d} or F_{r}. Then $G=F \rtimes_{\alpha_{1}, \ldots, \alpha_{m}} F_{m}$ has solvable CP if and only if $\Gamma=\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \cdot \operatorname{Inn}(F) \leqslant \operatorname{Aut}(F)$ is orbit decidable.

This comes from a more general result:

- replace F to any group with solvable TCP,
- replace F_{m} to any group with "easy" centralizers,
- replace semidirect products to arbitrary short exact sequences.

Connection to semidirect products

In fact, for the free and free abelian cases (among others), the converse is also true after "erasing the relations from Γ ":

Let F be a group, $\alpha_{1}, \ldots, \alpha_{m} \in \operatorname{Aut}(F)$, and consider $\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \leqslant$ $\leqslant \operatorname{Aut}(F)$ and the semidirect product $G=F \rtimes_{\alpha_{1}, \ldots, \alpha_{m}} F_{m}$.

Theorem (B-M-V, 2008)

Let F be \mathbb{Z}^{d} or F_{r}. Then $G=F \rtimes_{\alpha_{1}, \ldots, \alpha_{m}} F_{m}$ has solvable CP if and only if $\Gamma=\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \cdot \operatorname{Inn}(F) \leqslant \operatorname{Aut}(F)$ is orbit decidable.

This comes from a more general result:

- replace F to any group with solvable TCP,
- replace F_{m} to any group with "easy" centralizers,
- replace semidirect products to arbitrary short exact sequences.

The short exact sequence theorem

$$
\begin{aligned}
& \text { Theorem (Bogopolski-Martino-V., 2008) } \\
& \qquad \text { Let } \\
& \qquad 1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
\end{aligned}
$$

be an algorithmic short exact sequence of groups such that

```
TCP(F) is solvable,
CP(H) is solvable,
there is an alnorithm which, given an input 1 }\not=h\inH\mathrm{ , computes
a finite set of elements }\mp@subsup{z}{h,1}{},\ldots,\mp@subsup{z}{h,\mp@subsup{t}{h}{}}{}\inH\mathrm{ such that
```

$C_{H}(h)=\langle h\rangle z_{h, 1} \sqcup \cdots \sqcup\langle h\rangle z_{h, t_{h}}$
Then,

The short exact sequence theorem

$$
\begin{aligned}
& \text { Theorem (Bogopolski-Martino-V., 2008) } \\
& \text { Let } \\
& \qquad 1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
\end{aligned}
$$

be an algorithmic short exact sequence of groups such that
(i) $\operatorname{TCP}(F)$ is solvable,
(iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h, 1}, \ldots, z_{h, t_{h}} \in H$ such that
$C_{H}(h)=\langle h\rangle z_{h, 1} \sqcup \cdots \sqcup\langle h\rangle z_{h, t_{h}}$

Then,

The short exact sequence theorem

Theorem (Bogopolski-Martino-V., 2008)
Let

$$
1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
$$

be an algorithmic short exact sequence of groups such that
(i) $\operatorname{TCP}(F)$ is solvable,
(ii) $C P(H)$ is solvable,

(iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h, 1}, \ldots, z_{h, t_{h}} \in H$ such that

$$
C_{H}(n)=\langle n\rangle z_{n, 1} \downarrow \cdots \cdot\left\langle\langle \rangle z_{n, t_{n}}\right.
$$

Then,

The short exact sequence theorem

Theorem (Bogopolski-Martino-V., 2008)

Let

$$
1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
$$

be an algorithmic short exact sequence of groups such that
(i) $\operatorname{TCP}(F)$ is solvable,
(ii) $C P(H)$ is solvable,
(iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h, 1}, \ldots, z_{h, t_{h}} \in H$ such that

$$
C_{H}(h)=\langle h\rangle z_{h, 1} \sqcup \cdots \sqcup\langle h\rangle z_{h, t_{h}} .
$$

Then,

The short exact sequence theorem

Theorem (Bogopolski-Martino-V., 2008)

Let

$$
1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
$$

be an algorithmic short exact sequence of groups such that
(i) $\operatorname{TCP}(F)$ is solvable,
(ii) $C P(H)$ is solvable,
(iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h, 1}, \ldots, z_{h, t_{h}} \in H$ such that

$$
C_{H}(h)=\langle h\rangle z_{h, 1} \sqcup \cdots \sqcup\langle h\rangle z_{h, t_{h}} .
$$

Then,
$C P(G)$ is solvable $\Longleftrightarrow A_{G}=\left\{\left.\begin{array}{rll|l}\gamma_{g}: F & \rightarrow & F \\ x & \mapsto & g^{-1} x g\end{array} \right\rvert\, g \in G\right\}$
$\leqslant \operatorname{Aut}(F)$ is orbit decidable.

Twisted conjugacy

Definition

For $\varphi \in \operatorname{End}(G)$, two elements $u, v \in G$ are said to be φ-twisted conjugated, denoted $u \sim_{\varphi} v$, if $v=(g \varphi)^{-1}$ ug for some $g \in G$.

Definition

The twisted conjugacy problem for G, denoted $\operatorname{TCP}(G)$:
"Given $\varphi \in \operatorname{Aut}(G)$ and $u, v \in G$ decide whether $u \sim_{\varphi} v$ ".

Observation

TCP $\left(\mathbb{T}^{d}\right)$ is solvable.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)
TCP $\left(F_{r}\right)$ for automorphisms is solvable.

Twisted conjugacy

Definition

For $\varphi \in \operatorname{End}(G)$, two elements $u, v \in G$ are said to be φ-twisted conjugated, denoted $u \sim_{\varphi} v$, if $v=(g \varphi)^{-1}$ ug for some $g \in G$.

Definition

The twisted conjugacy problem for G, denoted $\operatorname{TCP}(G)$: "Given $\varphi \in \operatorname{Aut}(G)$ and $u, v \in G$ decide whether $u \sim_{\varphi} v$ ".

Observation

TCP $\left(\mathbb{Z}^{d}\right)$ is solvable.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)
$\operatorname{TCP}\left(F_{r}\right)$ for automorphisms is solvable.

Twisted conjugacy

Definition

For $\varphi \in \operatorname{End}(G)$, two elements $u, v \in G$ are said to be φ-twisted conjugated, denoted $u \sim_{\varphi} v$, if $v=(g \varphi)^{-1}$ ug for some $g \in G$.

Definition

The twisted conjugacy problem for G, denoted $\operatorname{TCP}(G)$: "Given $\varphi \in \operatorname{Aut}(G)$ and $u, v \in G$ decide whether $u \sim_{\varphi} v$ ".

Observation

$T C P\left(\mathbb{Z}^{d}\right)$ is solvable.
Theorem (Bogopolski-Martino-Maslakova-V., 2005)
$\operatorname{TCP}\left(F_{r}\right)$ for automorphisms is solvable.

Twisted conjugacy

Definition

For $\varphi \in \operatorname{End}(G)$, two elements $u, v \in G$ are said to be φ-twisted conjugated, denoted $u \sim_{\varphi} v$, if $v=(g \varphi)^{-1} u g$ for some $g \in G$.

Definition

The twisted conjugacy problem for G, denoted $\operatorname{TCP}(G)$: "Given $\varphi \in \operatorname{Aut}(G)$ and $u, v \in G$ decide whether $u \sim_{\varphi} v$ ".

Observation

$T C P\left(\mathbb{Z}^{d}\right)$ is solvable.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

$\operatorname{TCP}\left(F_{r}\right)$ for automorphisms is solvable.

Twisted conjugacy

Theorem (Romankov-V., 2009)
Let G be a polycyclic metabelian group. Then, $\operatorname{TCP}(G)$ for endomorphisms is solvable.

Theorem (González-Meneses-V., 2010)

\square solvable.

Theorem (Burillo-Matucci-V., 12)

Let F be Thompson's group. Then, TCP(F) for automorphisms is solvable.

Twisted conjugacy

Theorem (Romankov-V., 2009)

Let G be a polycyclic metabelian group. Then, $\operatorname{TCP}(G)$ for endomorphisms is solvable.

Theorem (González-Meneses-V., 2010)

Let B_{n} be the Braid group. Then, $\operatorname{TCP}\left(B_{n}\right)$ for automorphisms is solvable.

Theorem (Burillo-Matucci-V., 12)

Let F be Thompson's group. Then, TCP (F) for automorphisms is
solvable.

Twisted conjugacy

Theorem (Romankov-V., 2009)

Let G be a polycyclic metabelian group. Then, $\operatorname{TCP}(G)$ for endomorphisms is solvable.

Theorem (González-Meneses-V., 2010)

Let B_{n} be the Braid group. Then, $\operatorname{TCP}\left(B_{n}\right)$ for automorphisms is solvable.

Theorem (Burillo-Matucci-V., 12)

Let F be Thompson's group. Then, TCP (F) for automorphisms is solvable.

Outline

(1) Orbit decidability
(2) Free group and others

3 Orbit undecidable subgroups

4 Connection with the Conjugacy Problem
(5) Applications

Positive applications

For free abelian-by-free groups:

Corollary
 \mathbb{Z}^{d}-by- \mathbb{Z} groups have solvable conjugacy problem.

Corollary

If $\Gamma=\left\langle M_{1}, \ldots, M_{m}\right\rangle$ is of finite index in $G L_{d}(\mathbb{Z})$ then $\mathbb{Z}^{d} \rtimes_{M_{1}}, \ldots, M_{m} F_{m}$
has solvable conjugacy problem.

Corollary

Fverv \mathbb{T}^{2}-hv-free group has solvable conjugacy problem.

Positive applications

For free abelian-by-free groups:

Corollary

\mathbb{Z}^{d}-by- \mathbb{Z} groups have solvable conjugacy problem.

Corollary
If $\Gamma=\left\langle M_{1}, \ldots, M_{m}\right\rangle$ is of finite index in $G L_{d}(\mathbb{Z})$ then $\mathbb{Z}^{d} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}$
has solvable conjugacy problem.

Corollary
Everv \mathbb{Z}^{2}-bv-free group has solvable conjugacy problem.

Positive applications

For free abelian-by-free groups:

Corollary

\mathbb{Z}^{d}-by- \mathbb{Z} groups have solvable conjugacy problem.

Corollary
If $\Gamma=\left\langle M_{1}, \ldots, M_{m}\right\rangle$ is of finite index in $G L_{d}(\mathbb{Z})$ then $\mathbb{Z}^{d} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}$ has solvable conjugacy problem.

Corollary

Every \mathbb{Z}^{2}-by-free group has solvable conjugacy problem.

Positive applications

For free abelian-by-free groups:

Corollary

\mathbb{Z}^{d}-by- \mathbb{Z} groups have solvable conjugacy problem.

Corollary

If $\Gamma=\left\langle M_{1}, \ldots, M_{m}\right\rangle$ is of finite index in $G L_{d}(\mathbb{Z})$ then $\mathbb{Z}^{d} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}$ has solvable conjugacy problem.

Corollary

Every \mathbb{Z}^{2}-by-free group has solvable conjugacy problem.

Positive applications

For free-by-free groups:

Corollary (Bogopolski-Martino-Maslakova-V., 2006)

Free-by-cyclic groups have solvable conjugacy problem.

Corollary

If $\Gamma=\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ has finite index in $\operatorname{Aut}\left(F_{r}\right)$ then $F_{r} \rtimes_{\varphi_{1}} . \varphi_{m} F_{m}$ has
solvable conjugacy problem.

Corollary

Every F_{2}-by-free group has solvable conjugacy problem.

For braid-by-free groups:

Corollary

Every braid-by-free group has solvable conjugacy problem.

Positive applications

For free-by-free groups:
Corollary (Bogopolski-Martino-Maslakova-V., 2006)
Free-by-cyclic groups have solvable conjugacy problem.
Corollary
If $\Gamma=\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ has finite index in $\operatorname{Aut}\left(F_{r}\right)$ then F_{r}
solvable coniugacy problem.

Corollary

Every F_{2}-by-free group has solvable conjugacy problem.

For braid-by-free groups:

Corollary
Every braid-by-free group has solvable conjugacy problem.

Positive applications

For free-by-free groups:

Corollary (Bogopolski-Martino-Maslakova-V., 2006)
Free-by-cyclic groups have solvable conjugacy problem.

Corollary

If $\Gamma=\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ has finite index in $\operatorname{Aut}\left(F_{r}\right)$ then $F_{r} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}$ has solvable conjugacy problem.

Corollary
 Every F_{2}-by-free group has solvable conjugacy problem.

For braid-by-free groups:

Corollary
Every braid-by-free group has solvable conjugacy problem.

Positive applications

For free-by-free groups:

Corollary (Bogopolski-Martino-Maslakova-V., 2006)
Free-by-cyclic groups have solvable conjugacy problem.

Corollary

If $\Gamma=\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ has finite index in $\operatorname{Aut}\left(F_{r}\right)$ then $F_{r} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}$ has solvable conjugacy problem.

Corollary

Every F_{2}-by-free group has solvable conjugacy problem.

For braid-by-free groups:
Corollary
Every braid-by-free group has solvable conjugacy problem.

Positive applications

For free-by-free groups:

Corollary (Bogopolski-Martino-Maslakova-V., 2006)
Free-by-cyclic groups have solvable conjugacy problem.
Corollary
If $\Gamma=\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ has finite index in $\operatorname{Aut}\left(F_{r}\right)$ then $F_{r} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}$ has solvable conjugacy problem.

Corollary

Every F_{2}-by-free group has solvable conjugacy problem.

For braid-by-free groups:

Corollary
Every braid-by-free group has solvable conjugacy problem.

Negative applications

Taking the copy B of $F_{2} \times F_{2}$ in $\operatorname{Aut}\left(F_{3}\right)$ via the embedding

$$
\begin{array}{rlrl}
F_{2} \times F_{2} & \hookrightarrow & \operatorname{Aut}\left(F_{3}\right), \\
(u, v) & \mapsto & u \theta_{v}: F_{3} & \rightarrow F_{3} \\
& & \mapsto u^{-1} q v \\
& & \mapsto a \\
& b & \mapsto b
\end{array}
$$

and a Mihailova subgroup in there $A \leqslant B \leqslant \operatorname{Aut}\left(F_{3}\right)$ (taking $v=q a q b q$) one obtains precisely the orbit undecidable subgroups corresponding to Miller's examples.

Theorem (Miller, 70's)
There exist free-by-free groups ($F_{3} \rtimes F_{14}$) with unsolvable conjugacy problem.

Negative applications

Taking the copy B of $F_{2} \times F_{2}$ in $\operatorname{Aut}\left(F_{3}\right)$ via the embedding

$$
\begin{array}{rlrl}
F_{2} \times F_{2} & \hookrightarrow & \operatorname{Aut}\left(F_{3}\right), \\
(u, v) & \mapsto & u \theta_{v}: F_{3} & \rightarrow \\
& & F_{3} \\
& & \mapsto & u^{-1} q v \\
& & \mapsto & \\
& b & \mapsto b
\end{array}
$$

and a Mihailova subgroup in there $A \leqslant B \leqslant \operatorname{Aut}\left(F_{3}\right)$ (taking $v=q a q b q$) one obtains precisely the orbit undecidable subgroups corresponding to Miller's examples.

Theorem (Miller, 70's)
There exist free-by-free groups $\left(F_{3} \rtimes F_{14}\right)$ with unsolvable conjugacy problem.

Negative applications

Taking the copy B of $F_{2} \times F_{2}$ in $\operatorname{Aut}\left(F_{3}\right)$ via the embedding

$$
\begin{array}{rlrl}
F_{2} \times F_{2} & \hookrightarrow & \operatorname{Aut}\left(F_{3}\right), \\
(u, v) & \mapsto & u \theta_{v}: F_{3} & \rightarrow F_{3} \\
& & \mapsto u^{-1} q v \\
& & \mapsto a \\
& b & \mapsto b
\end{array}
$$

and a Mihailova subgroup in there $A \leqslant B \leqslant \operatorname{Aut}\left(F_{3}\right)$ (taking $v=q a q b q$) one obtains precisely the orbit undecidable subgroups corresponding to Miller's examples.

Theorem (Miller, 70's)

There exist free-by-free groups ($F_{3} \rtimes F_{14}$) with unsolvable conjugacy problem.

Negative applications

Theorem (Bogopolski-Martino-Maslakova-V., 2006)
There exist \mathbb{Z}^{4}-by-free groups $\left(\mathbb{Z}^{4}\right.$-by- $\left.F_{14}\right)$ with unsolvable conjugacy problem.

Question

Does there exist a \mathbb{Z}^{3}-by-free group with unsolvable conjugacy
problem

Theorem (Burillo-Matucci-V., 2012)
There exists a Thompson-by-free grou with unsolvable conjugacy problem.

Negative applications

Theorem (Bogopolski-Martino-Maslakova-V., 2006)

There exist \mathbb{Z}^{4}-by-free groups $\left(\mathbb{Z}^{4}\right.$-by- F_{14}) with unsolvable conjugacy problem.

Question

Does there exist a \mathbb{Z}^{3}-by-free group with unsolvable conjugacy problem?

Theorem (Burillo-Matucci-V., 2012)
There exists a Thompson-by-free grou with unsolvable conjugacy problem.

Negative applications

Theorem (Bogopolski-Martino-Maslakova-V., 2006)

There exist \mathbb{Z}^{4}-by-free groups $\left(\mathbb{Z}^{4}\right.$-by- $\left.F_{14}\right)$ with unsolvable conjugacy problem.

Question

Does there exist a \mathbb{Z}^{3}-by-free group with unsolvable conjugacy problem?

Theorem (Burillo-Matucci-V., 2012)

There exists a Thompson-by-free group with unsolvable conjugacy problem.

Playing with 2 extra dimensions...

These orbit undecidable examples $\Gamma \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \geqslant 6, \mathrm{GL}_{d}(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Proof. Let $d \geqslant 6$

- Since $d-2 \geqslant 4$, there exists $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant G L_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_{m}=\left\langle f_{1}, \ldots, f_{m}\right\rangle$, and choose matrices $s_{1}, \ldots, s_{m} \in \mathrm{GL}_{2}(\mathbb{Z})$ such that $\left\langle s_{1}, \ldots, s_{m}\right\rangle \simeq F_{m}$.
- Consider the homomorphism given by

$$
\begin{aligned}
\phi: F_{m} & \rightarrow \mathrm{GL}_{d}(\mathbb{Z}) \\
f_{i} & \mapsto\left(\begin{array}{cc}
g_{i} & 0 \\
0 & s_{i}
\end{array}\right)
\end{aligned}
$$

Playing with 2 extra dimensions...

These orbit undecidable examples $\Gamma \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \geqslant 6, \mathrm{GL}_{d}(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

- Since $d-2 \geqslant 4$, there exists $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_{m}=\left\langle f_{1}, \ldots, f_{m}\right\rangle$, and choose matrices $s_{1}, \ldots, s_{m} \in \mathrm{GL}_{2}(\mathbb{Z})$ such that $\left\langle s_{1}, \ldots, s_{m}\right\rangle \simeq F_{m}$.
- Consider the homomorphism given by

Playing with 2 extra dimensions...

These orbit undecidable examples $\Gamma \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \geqslant 6, \mathrm{GL}_{d}(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Proof. Let $d \geqslant 6$.

- Since $d-2 \geqslant 4$, there exists $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant G L_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_{m}=\left\langle f_{1}, \ldots, f_{m}\right\rangle$, and choose matrices $s_{1}, \ldots, s_{m} \in G L_{2}(\mathbb{Z})$
such that $\left\langle s_{1}, \ldots, s_{m}\right\rangle \simeq F_{m}$.
- Consider the homomorphism given by

Playing with 2 extra dimensions...

These orbit undecidable examples $\Gamma \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \geqslant 6, \mathrm{GL}_{d}(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Proof. Let $d \geqslant 6$.

- Since $d-2 \geqslant 4$, there exists $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$ being orbit undecidable.

Playing with 2 extra dimensions...

These orbit undecidable examples $\Gamma \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \geqslant 6, \mathrm{GL}_{d}(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Proof. Let $d \geqslant 6$.

- Since $d-2 \geqslant 4$, there exists $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant G L_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_{m}=\left\langle f_{1}, \ldots, f_{m}\right\rangle$, and choose matrices $s_{1}, \ldots, s_{m} \in \mathrm{GL}_{2}(\mathbb{Z})$ such that $\left\langle s_{1}, \ldots, s_{m}\right\rangle \simeq F_{m}$.
- Consider the homomorphism given by

Playing with 2 extra dimensions...

These orbit undecidable examples $\Gamma \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \geqslant 6, \mathrm{GL}_{d}(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Proof. Let $d \geqslant 6$.

- Since $d-2 \geqslant 4$, there exists $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_{m}=\left\langle f_{1}, \ldots, f_{m}\right\rangle$, and choose matrices $s_{1}, \ldots, s_{m} \in \mathrm{GL}_{2}(\mathbb{Z})$ such that $\left\langle s_{1}, \ldots, s_{m}\right\rangle \simeq F_{m}$.
- Consider the homomorphism given by

$$
\begin{aligned}
\phi: F_{m} & \rightarrow \mathrm{GL}_{d}(\mathbb{Z}) \\
f_{i} & \mapsto\left(\begin{array}{cc}
g_{i} & 0 \\
0 & s_{i}
\end{array}\right)
\end{aligned}
$$

Playing with 2 extra dimensions...

- Since $\left\langle s_{1}, \ldots, s_{m}\right\rangle \leqslant G L_{2}(\mathbb{Z})$ is free with basis $\left\{s_{1}, \ldots, s_{m}\right\}$, then ϕ must be one-to-one, and its image F is a free subgroup of $\mathrm{GL}_{d}(\mathbb{Z})$ or rank m.
- Easy to see that $F \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ is orbit undecidable (using the orbit undecidability of $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$). \square

In summary,

For $d \geqslant 6$, there exists a free $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ such that $\mathbb{Z}^{d} \rtimes \Gamma$ has unsolvable CP.

Theorem (Sunic-V., 2012)

There exist automaton group (i.e. self-similar groups generated by finite self-similar sets) with unsolvable conjugacy problem.

Playing with 2 extra dimensions...

- Since $\left\langle s_{1}, \ldots, s_{m}\right\rangle \leqslant G L_{2}(\mathbb{Z})$ is free with basis $\left\{s_{1}, \ldots, s_{m}\right\}$, then ϕ must be one-to-one, and its image F is a free subgroup of $\mathrm{GL}_{d}(\mathbb{Z})$ or rank m.
- Easy to see that $F \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ is orbit undecidable (using the orbit undecidability of $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$). \square

In summary,

For $d \geqslant 6$, there exists a free $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ such that $\mathbb{Z}^{d} \rtimes \Gamma$ has
unsolvable CP.

Theorem (Sunic-V., 2012)
There exist automaton group. (i.e. self-similar groups generated by
finite self-similar sets) with unsolvable conjugacy problem.

Playing with 2 extra dimensions...

- Since $\left\langle s_{1}, \ldots, s_{m}\right\rangle \leqslant G L_{2}(\mathbb{Z})$ is free with basis $\left\{s_{1}, \ldots, s_{m}\right\}$, then ϕ must be one-to-one, and its image F is a free subgroup of $\mathrm{GL}_{d}(\mathbb{Z})$ or rank m.
- Easy to see that $F \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ is orbit undecidable (using the orbit undecidability of $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$). \square

In summary,
For $d \geqslant 6$, there exists a free $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ such that $\mathbb{Z}^{d} \rtimes \Gamma$ has unsolvable CP.

Theorem (Sunic-V., 2012)
There exist automaton groups (i.e. self-similar groups generated by finite self-similar sets) with unsolvable conjugacy problem.

Playing with 2 extra dimensions...

- Since $\left\langle s_{1}, \ldots, s_{m}\right\rangle \leqslant G L_{2}(\mathbb{Z})$ is free with basis $\left\{s_{1}, \ldots, s_{m}\right\}$, then ϕ must be one-to-one, and its image F is a free subgroup of $\mathrm{GL}_{d}(\mathbb{Z})$ or rank m.
- Easy to see that $F \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ is orbit undecidable (using the orbit undecidability of $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$). \square

In summary,
For $d \geqslant 6$, there exists a free $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ such that $\mathbb{Z}^{d} \rtimes \Gamma$ has unsolvable CP.

Theorem (Sunic-V., 2012)

There exist automaton groups (i.e. self-similar groups generated by finite self-similar sets) with unsolvable conjugacy problem.

