On the difficulty of inverting automorphisms of free groups

Enric Ventura

Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya

GAGTA-5, Manresa, 2011
July 12th, 2011.

Outline

(1) Motivation
(2) Free groups
(3) Lower bounds: a good enough example

4 Upper bounds: outer space
(5) The special case of rank 2

Outline

(2) Free groups
(3) Lower bounds: a good enough example

4 Upper bounds: outer space
(5) The special case of rank 2

(Joint work with P. Silva and M. Ladra.)

Find a group G where • is "easy" but ($)^{-1}$ is "difficult"
Natural candidate: Aut $\left(F_{n}\right)$, where $F_{r}=\left\langle a_{1}\right.$
$F_{3}=\langle a, b, c \mid\rangle$.

$$
\begin{aligned}
\phi \psi: F_{3} & \rightarrow F_{3} \\
a & \mapsto b c^{-1} a^{-1} b c \\
b & \mapsto b c^{-1} a^{-1} b c a^{-1} b \\
c & \mapsto a^{-1} b c^{-1} .
\end{aligned}
$$

Motivation

(Joint work with P. Silva and M. Ladra.)

Find a group G where \cdot is "easy" but ($)^{-1}$ is "difficult".

Natural candidate: $\operatorname{Aut}\left(F_{n}\right)$, where $F_{r}=\left\langle a_{1}\right.$

$F_{3}=\langle a, b, c \mid\rangle$

$$
\begin{aligned}
\phi \psi: F_{3} & \rightarrow F_{3} \\
a & \mapsto b c^{-1} a^{-1} b c \\
b & \mapsto b c^{-1} a^{-1} b c a^{-1} b \\
c & \mapsto a^{-1} b c^{-1} .
\end{aligned}
$$

Motivation

(Joint work with P. Silva and M. Ladra.)
Find a group G where . is "easy" but ($)^{-1}$ is "difficult".
Natural candidate: Aut $\left(F_{n}\right)$, where $F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.

Motivation

(Joint work with P. Silva and M. Ladra.)

Find a group G where • is "easy" but ($)^{-1}$ is "difficult".
Natural candidate: Aut $\left(F_{n}\right)$, where $F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.

$$
F_{3}=\langle a, b, c \mid\rangle .
$$

$$
\begin{aligned}
& \phi: F_{3} \rightarrow F_{3} \quad \psi: F_{3} \rightarrow F_{3} \\
& a \mapsto a b \quad a \mapsto b c^{-1} \\
& b \mapsto a b^{2} c \quad b \mapsto a^{-1} b c \\
& c \mapsto b c^{2} \quad c \mapsto c^{-1} \text {. }
\end{aligned}
$$

Motivation

(Joint work with P. Silva and M. Ladra.)

Find a group G where \cdot is "easy" but ($)^{-1}$ is "difficult".
Natural candidate: Rut $\left(F_{n}\right)$, where $F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.

$$
F_{3}=\langle a, b, c \mid\rangle .
$$

$$
\left.\begin{array}{rlrll}
\phi: F_{3} & \rightarrow F_{3} & \psi: F_{3} & \rightarrow F_{3} \\
a & \mapsto & a b & a & \mapsto
\end{array} b c^{-1}\right)
$$

Motivation

$$
\begin{array}{rlrl}
F_{5}=\langle a, b, c, d & , & & \\
\psi_{n}: F_{5} & \rightarrow F_{5} & \psi_{n}^{-1}: F_{4} & \rightarrow F_{4} \\
a & \mapsto a & a & \mapsto a \\
b & \mapsto & a^{n} b & b
\end{array} \mapsto a^{-n} b .
$$

- We have formalized the situation.

- We have seen that inverting in $\operatorname{Aut}\left(F_{r}\right)$ is not that bad.
- We now want to look for worse groups G.

Motivation

$$
\begin{array}{rlrl}
F_{5}=\langle a, b, c, d & , & & \\
\psi_{n}: F_{5} & \rightarrow F_{5} & \psi_{n}^{-1}: F_{4} & \rightarrow F_{4} \\
a & \mapsto a & a & \mapsto a \\
b & \mapsto & a^{n} b & b
\end{array} \mapsto a^{-n} b .
$$

- We have formalized the situation.
- We have seen that inverting in $\operatorname{Aut}\left(F_{r}\right)$ is not that bad.
- We now want to look for worse groups G.

Motivation

$$
\begin{array}{rlrl}
F_{5}=\langle a, b, c, d & , & & \\
& \\
\psi_{n}: F_{5} & \rightarrow F_{5} & \psi_{n}^{-1}: F_{4} & \rightarrow F_{4} \\
a & \mapsto a & a & \mapsto a \\
b & \mapsto & a^{n} b & b
\end{array} \mapsto a^{-n} b .
$$

- We have formalized the situation.
- We have seen that inverting in $\operatorname{Aut}\left(F_{r}\right)$ is not that bad.
- We now want to look for worse groups G.

Motivation

$$
\begin{array}{rlrl}
F_{5}=\langle a, b, c, d & , & & \\
\psi_{n}: F_{5} & \rightarrow F_{5} & \psi_{n}^{-1}: F_{4} & \rightarrow F_{4} \\
a & \mapsto a & a & \mapsto a \\
b & \mapsto & a^{n} b & b
\end{array} \mapsto a^{-n} b .
$$

- We have formalized the situation.
- We have seen that inverting in $\operatorname{Aut}\left(F_{r}\right)$ is not that bad.
- We now want to look for worse groups G.

Main definition

Definition

Let $A=\left\{a_{1}, \ldots, a_{r}\right\}$ be a finite alphabet, and $G=\langle A \mid R\rangle$ be a finite presentation for a group G. We have the word metric:

$$
\text { for } g \in G, \quad|g|=\min \left\{n \mid g=a_{i_{1}}^{\epsilon_{1}} \cdots a_{i_{n}}^{\epsilon_{n}}\right\} .
$$

Definition

For $\theta \in \operatorname{Aut}(G)$, note θ is determined by $a_{1} \theta, \ldots, a_{r} \theta$ and define

$$
\|\theta\|_{\infty}=\max \left\{\left|a_{1} \theta\right|, \ldots,\left|a_{r} \theta\right|\right\} .
$$

Observation

For every $\theta \in A$

Main definition

Definition

Let $A=\left\{a_{1}, \ldots, a_{r}\right\}$ be a finite alphabet, and $G=\langle A \mid R\rangle$ be a finite presentation for a group G. We have the word metric:

$$
\text { for } g \in G, \quad|g|=\min \left\{n \mid g=a_{i_{1}}^{\epsilon_{1}} \cdots a_{i_{n}}^{\epsilon_{n}}\right\} .
$$

Definition

For $\theta \in \operatorname{Aut}(G)$, note θ is determined by $a_{1} \theta, \ldots, a_{r} \theta$ and define

$$
\|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|,
$$

Observation
For every $\theta \in \operatorname{Aut}\left(F_{r}\right),\|\theta\|$

Main definition

Definition

Let $A=\left\{a_{1}, \ldots, a_{r}\right\}$ be a finite alphabet, and $G=\langle A \mid R\rangle$ be a finite presentation for a group G. We have the word metric:

$$
\text { for } g \in G, \quad|g|=\min \left\{n \mid g=a_{i_{1}}^{\epsilon_{1}} \cdots a_{i_{n}}^{\epsilon_{n}}\right\} .
$$

Definition

For $\theta \in \operatorname{Aut}(G)$, note θ is determined by $a_{1} \theta, \ldots, a_{r} \theta$ and define

$$
\begin{gathered}
\|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|, \\
\|\theta\|_{\infty}=\max \left\{\left|a_{1} \theta\right|, \ldots,\left|a_{r} \theta\right|\right\} .
\end{gathered}
$$

Observation
For every $\theta \in \operatorname{Aut}\left(F_{r}\right),\|\theta\|$

Main definition

Definition

Let $A=\left\{a_{1}, \ldots, a_{r}\right\}$ be a finite alphabet, and $G=\langle A \mid R\rangle$ be a finite presentation for a group G. We have the word metric:

$$
\text { for } g \in G, \quad|g|=\min \left\{n \mid g=a_{i_{1}}^{\epsilon_{1}} \cdots a_{i_{n}}^{\epsilon_{n}}\right\} .
$$

Definition

For $\theta \in \operatorname{Aut}(G)$, note θ is determined by $a_{1} \theta, \ldots, a_{r} \theta$ and define

$$
\begin{gathered}
\|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|, \\
\|\theta\|_{\infty}=\max \left\{\left|a_{1} \theta\right|, \ldots,\left|a_{r} \theta\right|\right\} .
\end{gathered}
$$

Observation

For every $\theta \in \operatorname{Aut}\left(F_{r}\right),\|\theta\|_{\infty} \leqslant\|\theta\|_{1} \leqslant r\|\theta\|_{\infty}$

Main definition

Definition

Let $G=\langle A \mid R\rangle$ be a finite presentation for G. We define the function:

$$
\alpha_{A}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in \operatorname{Aut}(G),\|\theta\|_{1} \leqslant n\right\} .
$$

Clearly, $\alpha_{A}(n) \leqslant \alpha_{A}(n+1)$.

The bigger is α_{A}, the more "difficult" will be to invert automorphisms of G (with respect to the given set of generators A).

Question

Determine the asymptotic growth of the function α_{A}.

Main definition

Definition

Let $G=\langle A \mid R\rangle$ be a finite presentation for G. We define the function:

$$
\alpha_{A}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in \operatorname{Aut}(G),\|\theta\|_{1} \leqslant n\right\} .
$$

Clearly, $\alpha_{A}(n) \leqslant \alpha_{A}(n+1)$.

The bigger is α_{A}, the more "difficult" will be to invert automorphisms of G (with respect to the given set of generators A).

Question

Determine the asymptotic growth of the function a

Main definition

Definition

Let $G=\langle A \mid R\rangle$ be a finite presentation for G. We define the function:

$$
\alpha_{A}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in \operatorname{Aut}(G),\|\theta\|_{1} \leqslant n\right\} .
$$

Clearly, $\alpha_{A}(n) \leqslant \alpha_{A}(n+1)$.

The bigger is α_{A}, the more "difficult" will be to invert automorphisms of G (with respect to the given set of generators A).

Question

Determine the asymptotic growth of the function α_{A}.

Outline

(1) Motivation

(2) Free groups
(3) Lower bounds: a good enough example
4. Upper bounds: outer space
(5) The special case of rank 2

Free group case

For the rest of the talk, $G=F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.

Definition

Every $w \in F_{r}$ has its length, $|w|$, and its cyclic length, $|w|$
$\left|a_{1} a_{1}^{-1} a_{2}\right|=\left|a_{2}\right|=\left|a_{2}\right|=1$,
$\left|a_{1} a_{2} a_{1}^{-2}\right|=4$,
$\left|a_{1} a_{2} a_{1}^{-2}\right| \cdot\left|a_{2} a_{1}^{-1}\right|=2$.

Observation

i) $\left|w^{n}\right| \leqslant|n||w|$ and $\cdot\left|w^{n}\right| \cdot=|n| \cdot|w| \cdot$
ii) $|v w| \leqslant|v|+|w|$, but $\cdot|v w| \cdot \leqslant|v| \cdot+|w| \cdot$ is not true in general.

Free group case

For the rest of the talk, $G=F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.

Definition

Every $w \in F_{r}$ has its length, $|w|$, and its cyclic length, $|w|$:
$\left|a_{1} a_{1}^{-1} a_{2}\right|=\left|a_{2}\right|=\left|a_{2}\right|=1$,
$\left|a_{1} a_{2} a_{1}^{-2}\right|=4$,
$\left|a_{1} a_{2} a_{1}^{-2}\right|=\left|a_{2} a_{1}^{-1}\right|=2$.

Observation

i) $\left|w^{n}\right|$
ii) $|v w| \leqslant|v|+|w|$, but $\cdot|v w| \cdot \leqslant|v| \cdot+|w| \cdot$ is not true in general.

Free group case

For the rest of the talk, $G=F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.

Definition

Every $w \in F_{r}$ has its length, $|w|$, and its cyclic length, $|w|$:
$\left|a_{1} a_{1}^{-1} a_{2}\right|=\left|a_{2}\right|=\left|a_{2}\right|=1$,
$\left|a_{1} a_{2} a_{1}^{-2}\right|=4$,
$\left|a_{1} a_{2} a_{1}^{-2}\right|=\left|a_{2} a_{1}^{-1}\right|=2$.

Observation

i) $\left|w^{n}\right| \leqslant|n||w|$ and $\cdot\left|w^{n}\right| \cdot=|n| \cdot|w|$;
ii) $|v w| \leqslant|v|+|w|$, but $\cdot|v w| \leqslant \cdot|v \cdot+\cdot| w \mid \cdot$ is not true in general.

Free group case

For the rest of the talk, $G=F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.

Definition

Every $w \in F_{r}$ has its length, $|w|$, and its cyclic length, $|w|$:
$\left|a_{1} a_{1}^{-1} a_{2}\right|=\left|a_{2}\right|=\left|a_{2}\right|=1$,
$\left|a_{1} a_{2} a_{1}^{-2}\right|=4$,
$\left|a_{1} a_{2} a_{1}^{-2}\right|=\left|a_{2} a_{1}^{-1}\right|=2$.

Observation

i) $\left|w^{n}\right| \leqslant|n||w|$ and $\cdot\left|w^{n}\right| \cdot=|n| \cdot|w|$;
ii) $|v w| \leqslant|v|+|w|$, but $\cdot|v w| \cdot \leqslant|v| \cdot+|w|$ is not true in general.

Free group case

Definition

For $\theta \in \operatorname{Aut}\left(F_{r}\right)$, define

$$
\begin{aligned}
& \|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right| \\
& \|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|
\end{aligned}
$$

Observation

but not equal in general.

Example

Consider $\theta: F_{4} \rightarrow F_{4}, a \mapsto a, b \mapsto a^{-1} b a, c \mapsto a^{-1} c a, d \mapsto d$. We have $\left|\cdot \theta\left\|_{1}=4,\right\| \theta\right| \|_{1}=6$ and $\|\theta\|_{1}=8$.

Free group case

Definition

For $\theta \in \operatorname{Aut}\left(F_{r}\right)$, define

$$
\begin{aligned}
& \|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|, \\
& \left.|\cdot \theta|\right|_{1}=\left|a_{1} \theta\right| \cdot+\cdots+\left|a_{r} \theta\right|,
\end{aligned}
$$

Observation

but not equal in general.

Example

Consider $\theta: F_{4} \rightarrow F_{4}, a \mapsto a, b \mapsto a^{-1} b a, c \mapsto a^{-1} c a, d \mapsto d$. We have $\left|\cdot \theta\left\|_{1}=4,\right\|\right| \theta \mid \|_{1}=6$ and $\|\theta\|_{1}=8$.

Free group case

Definition

For $\theta \in \operatorname{Aut}\left(F_{r}\right)$, define

$$
\begin{aligned}
& \|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|, \\
& \|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|, \\
& \left\|\|\theta\|_{1}=\min \left\{\left\|\theta \gamma_{v}\right\|_{1} \mid v \in F_{r}\right\} .\right.
\end{aligned}
$$

Observation

but not equal in general.

Example

Consider $\theta: F_{4} \rightarrow F_{4}, a \mapsto a, b \mapsto a^{-1} b a, c \mapsto a^{-1} c a, d \mapsto d$. We have $\|\theta\|_{1}=4,\|\mid \theta\|_{1}=6$ and $\|\theta\|_{1}=8$.

Free group case

Definition

For $\theta \in \operatorname{Aut}\left(F_{r}\right)$, define

$$
\begin{aligned}
& \|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|, \\
& \|\theta\|_{1}=\left|a_{1} \theta\right| \cdot+\cdots+\left|a_{r} \theta\right|, \\
& \|\theta \mid\|_{1}=\min \left\{\left\|\theta \gamma_{v}\right\|_{1} \mid v \in F_{r}\right\} .
\end{aligned}
$$

Observation

$\|\cdot \theta\|_{1} \leqslant\|\mid \theta\|\left\|_{1} \leqslant\right\| \theta \|_{1}$, but not equal in general.

Example

Consider $\theta: F_{4} \rightarrow F_{4}, a \mapsto a, b \mapsto a^{-1} b a, c \mapsto a^{-1} c a, d \mapsto d$. We have $\|\theta\|_{1}=4,\| \| \theta \|_{1}=6$ and $\|\theta\|_{1}=8$.

Free group case

Definition

For $\theta \in \operatorname{Aut}\left(F_{r}\right)$, define

$$
\begin{aligned}
& \|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|, \\
& \|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|, \\
& \left\|\|\theta\|_{1}=\min \left\{\left\|\theta \gamma_{v}\right\|_{1} \mid v \in F_{r}\right\} .\right.
\end{aligned}
$$

Observation

$\left|\cdot \theta\left\|_{1} \leqslant\right\|\right| \theta\left\|_{1} \leqslant\right\| \theta \|_{1}$, but not equal in general.

Example

Consider $\theta: F_{4} \rightarrow F_{4}, a \mapsto a, b \mapsto a^{-1} b a, c \mapsto a^{-1} c a, d \mapsto d$. We have $\|\theta\|_{1}=4,\| \| \theta \|_{1}=6$ and $\|\theta\|_{1}=8$.

Free group case

Definition

$$
\begin{gathered}
\alpha_{r}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in \text { Aut } F_{r},\|\theta\|_{1} \leqslant n\right\}, \\
\beta_{r}(n)=\max \left\{\left\|\left|\theta^{-1} \|_{1}\right| \theta \in \text { Aut } F_{r},\right\|\|\theta\|_{1} \leqslant n\right\}, \\
\gamma_{r}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in \text { Aut } F_{r},\|\theta\|_{1} \leqslant n\right\} .
\end{gathered}
$$

Question

Are these functions equal up to multiplicative constants ?

Free group case

Definition

$$
\begin{gathered}
\alpha_{r}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in \text { Aut } F_{r},\|\theta\|_{1} \leqslant n\right\}, \\
\beta_{r}(n)=\max \left\{\left\|\left|\theta^{-1} \|_{1}\right| \theta \in \text { Aut } F_{r},\right\| \theta \|_{1} \leqslant n\right\} \\
\gamma_{r}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in \text { Aut } F_{r},\|\theta\|_{1} \leqslant n\right\}
\end{gathered}
$$

Question

Are these functions equal up to multiplicative constants ?

Free group case

Definition

$$
\begin{gathered}
\alpha_{r}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in \text { Aut } F_{r},\|\theta\|_{1} \leqslant n\right\}, \\
\beta_{r}(n)=\max \left\{\left\|\left|\theta^{-1} \|_{1}\right| \theta \in \text { Aut } F_{r},\right\|\|\theta\|_{1} \leqslant n\right\}, \\
\gamma_{r}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in \text { Aut } F_{r},\|\theta\|_{1} \leqslant n\right\} .
\end{gathered}
$$

Question

Are these functions equal up to multiplicative constants ?
α_{r} and γ_{r} are not;
β_{r} is not clear.

Main results

Theorem

For rank $r=2$ we have
(i) for $n \geqslant 4, \quad \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) for $n \geqslant n_{0}, \quad \alpha_{2}(n) \geqslant \frac{n^{2}}{16}$,
(iii) for $n \geqslant 1, \beta_{2}(n)=n$,
(iv) for $n \geqslant 1 . \gamma_{2}(n)=n$.

Theorem

For $r \geqslant 3$ there exist $K=K(r)$ and $M=M(r)$ such that, for $n \geqslant 1$,
(i) $\alpha_{r}(n) \geqslant K n^{r}$,
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
(iii) $\gamma_{r}(n) \geqslant K n^{r-1}$.

Main results

Theorem

For rank $r=2$ we have
(i) for $n \geqslant 4, \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) for $n \geqslant n_{0}, \alpha_{2}(n) \geqslant \frac{n^{2}}{16}$,
(iii) for $n \geqslant 1, \quad \beta_{2}(n)=n$,
(iv) for $n \geqslant 1, \gamma_{2}(n)=n$.

Theorem

For $r \geqslant 3$ there exist $K=K(r)$ and $M=M(r)$ such that, for $n \geqslant 1$,
(i) $\alpha_{r}(n) \geqslant K n^{r}$,
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
(iii) $\gamma_{r}(n) \geqslant K n^{r-1}$.

Main results

Theorem

For rank $r=2$ we have
(i) for $n \geqslant 4, \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) for $n \geqslant n_{0}, \alpha_{2}(n) \geqslant \frac{n^{2}}{16}$,
(iii) for $n \geqslant 1, \beta_{2}(n)=n$,
(iv) for $n \geqslant 1, \gamma_{2}(n)=n$.

Theorem

For $r \geqslant 3$ there exist $K=K(r)$ and $M=M(r)$ such that, for $n \geqslant 1$,
(i) $\alpha_{r}(n) \geqslant K n^{r}$,
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
(iii) $\gamma_{r}(n) \geqslant K n^{r-1}$

Main results

Theorem

For rank $r=2$ we have
(i) for $n \geqslant 4, \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) for $n \geqslant n_{0}, \alpha_{2}(n) \geqslant \frac{n^{2}}{16}$,
(iii) for $n \geqslant 1, \beta_{2}(n)=n$,
(iv) for $n \geqslant 1, \gamma_{2}(n)=n$.

Theorem

For $r \geqslant 3$ there exist $K=K(r)$ and $M=M(r)$ such that, for $n \geqslant 1$,
(i) $\alpha_{r}(n) \geqslant K n^{r}$,
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
(iii) $\gamma_{r}(n) \geqslant K n^{r-1}$.

Main results

Theorem

For rank $r=2$ we have
(i) for $n \geqslant 4, \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) for $n \geqslant n_{0}, \alpha_{2}(n) \geqslant \frac{n^{2}}{16}$,
(iii) for $n \geqslant 1, \beta_{2}(n)=n$,
(iv) $f o r n \geqslant 1, \gamma_{2}(n)=n$.

Theorem

For $r \geqslant 3$ there exist $K=K(r)$ and $M=M(r)$ such that, for $n \geqslant 1$, (i) $\alpha_{r}(n) \geqslant K n^{r}$,

Main results

Theorem

For rank $r=2$ we have
(i) for $n \geqslant 4, \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) for $n \geqslant n_{0}, \alpha_{2}(n) \geqslant \frac{n^{2}}{16}$,
(iii) for $n \geqslant 1, \beta_{2}(n)=n$,
(iv) for $n \geqslant 1, \gamma_{2}(n)=n$.

Theorem

For $r \geqslant 3$ there exist $K=K(r)$ and $M=M(r)$ such that, for $n \geqslant 1$,
(i) $\alpha_{r}(n) \geqslant K n^{r}$,
(ii) $\beta_{r}(n) \leqslant K n^{M}$,

Main results

Theorem

For rank $r=2$ we have
(i) for $n \geqslant 4, \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) for $n \geqslant n_{0}, \alpha_{2}(n) \geqslant \frac{n^{2}}{16}$,
(iii) for $n \geqslant 1, \beta_{2}(n)=n$,
(iv) for $n \geqslant 1, \gamma_{2}(n)=n$.

Theorem

For $r \geqslant 3$ there exist $K=K(r)$ and $M=M(r)$ such that, for $n \geqslant 1$,
(i) $\alpha_{r}(n) \geqslant K n^{r}$,
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
(iii) $\gamma_{r}(n) \geqslant K n^{r-1}$.

Outline

(1) Motivation

(2) Free groups
(3) Lower bounds: a good enough example
4. Upper bounds: outer space
(5) The special case of rank 2

A lower bound for γ_{r}

Theorem

For $r \geqslant 2$, and $n \geqslant n_{0}$, we have $\gamma_{r}(n) \geqslant \frac{1}{2 r^{r-1}} n^{r-1}$.
Proof: For $r \geqslant 2$ and $n \geqslant 1$, consider

$\psi_{r, n}: F_{r}$	$\rightarrow F_{r}$	$\psi_{r, n}^{-1}: F_{r}$	\rightarrow	F_{r}
a_{1}	$\mapsto a_{1}$	a_{1}	\mapsto	a_{1}
a_{2}	$\mapsto a_{1}^{n} a_{2}$	a_{2}	\mapsto	$a_{1}^{-n} a_{2}$
a_{3}	$\mapsto a_{2}^{n} a_{3}$		\vdots	

$$
a_{r} \mapsto a_{r-1}^{n} a_{r}
$$

A straightforward calculation shows that
$\left\|\psi_{r, n}\right\|_{1}=\left\|\psi_{r, n}\right\|_{1}=(r-1) n+r$, and
$\left\|\psi_{r, n}^{-1}\right\|_{1}=\left\|\psi_{r, n}^{-1}\right\|_{1}=n^{r-1}+2 n^{r-2}+\cdots+(r-1) n+r \geqslant n^{r-1}$.

A lower bound for γ_{r}

Theorem

For $r \geqslant 2$, and $n \geqslant n_{0}$, we have $\gamma_{r}(n) \geqslant \frac{1}{2 r^{r-1}} n^{r-1}$.
Proof: For $r \geqslant 2$ and $n \geqslant 1$, consider

$$
\begin{array}{rlrll}
\psi_{r, n}: & F_{r} & \rightarrow & F_{r} & \psi_{r, n}^{-1}: F_{r} \\
a_{1} & \mapsto & \rightarrow & F_{r} \\
a_{2} & \mapsto a_{1}^{n} a_{2} & a_{1} & \mapsto & a_{1} \\
a_{3} & \mapsto & a_{2}^{n} a_{3} & & a_{2} \\
& \vdots & & a_{1}^{-n} a_{2} \\
a_{r} & \mapsto & a_{r-1}^{n} a_{r} & & a_{i} \\
& & \mapsto & \\
& & & (2 \leqslant i \leqslant r) &
\end{array}
$$

A straightforward calculation shows that
$\left\|\psi_{r, n}\right\|_{1}=\left\|\psi_{r, n}\right\|_{1}=(r-1) n+r$, and

A lower bound for γ_{r}

Theorem

For $r \geqslant 2$, and $n \geqslant n_{0}$, we have $\gamma_{r}(n) \geqslant \frac{1}{2 r^{r-1}} n^{r-1}$.
Proof: For $r \geqslant 2$ and $n \geqslant 1$, consider

$$
\left.\begin{array}{rlrll}
\psi_{r, n}: & F_{r} & \rightarrow F_{r} & \psi_{r, n}^{-1}: F_{r} & \rightarrow \\
a_{1} & \mapsto & a_{1} & F_{r} \\
a_{2} & \mapsto a_{1}^{n} a_{2} & & \mapsto & a_{1} \\
a_{3} & \mapsto & a_{2}^{n} a_{3} & & \mapsto
\end{array} a_{1}^{-n} a_{2}\right)
$$

A straightforward calculation shows that
$\left\|\psi_{r, n}\right\|_{1}=\left\|\psi_{r, n}\right\|_{1}=(r-1) n+r$, and
$\left\|\psi_{r, n}^{-1}\right\|_{1}=\left\|\psi_{r, n}^{-1}\right\|_{1}=n^{r-1}+2 n^{r-2}+\cdots+(r-1) n+r \geqslant n^{r-1}$.

A lower bound for γ_{r}

Hence, for $n \geqslant r$,

$$
\gamma_{r}(r n) \geqslant \gamma_{r}((r-1) n+r) \geqslant n^{r-1} .
$$

Now, for n big enough, take the closest multiple of r below,

Finally, conjugating by an appropriate element, we shall win an extra unit in the exponent.

A lower bound for γ_{r}

Hence, for $n \geqslant r$,

$$
\gamma_{r}(r n) \geqslant \gamma_{r}((r-1) n+r) \geqslant n^{r-1} .
$$

Now, for n big enough, take the closest multiple of r below,

$$
n \geqslant r m>n-r,
$$

and
$\gamma_{r}(n) \geqslant \gamma_{r}(r m) \geqslant m^{r-1}>\left(\frac{n-r}{r}\right)^{r-1}=\left(\frac{n}{r}-1\right)^{r-1} \geqslant \frac{1}{2 r^{r-1}} n^{r-1} . \square$
Finally, conjugating by an appropriate element, we shall win an extra
unit in the exponent.

A lower bound for γ_{r}

Hence, for $n \geqslant r$,

$$
\gamma_{r}(r n) \geqslant \gamma_{r}((r-1) n+r) \geqslant n^{r-1} .
$$

Now, for n big enough, take the closest multiple of r below,

$$
n \geqslant r m>n-r,
$$

and
$\gamma_{r}(n) \geqslant \gamma_{r}(r m) \geqslant m^{r-1}>\left(\frac{n-r}{r}\right)^{r-1}=\left(\frac{n}{r}-1\right)^{r-1} \geqslant \frac{1}{2 r^{r-1}} n^{r-1} . \square$
Finally, conjugating by an appropriate element, we shall win an extra unit in the exponent.

A lower bound for α_{r}

Theorem

For $r \geqslant 2$, and $n \geqslant n_{0}$, we have $\alpha_{r}(n) \geqslant \frac{(r-1)^{r-1}}{2 r^{2 r-1}} n^{r}$.
Proof: For $r \geqslant 2$ and $n \geqslant 1$, consider $\psi_{r, n} \gamma_{a_{r}^{-m}} a_{1}^{-1}$, where $m=\left\lceil\frac{n}{2 r-2}\right\rceil$ Writing $N=\left\|\psi_{r, n} \gamma_{a_{r}^{-m}} a_{1}^{-1}\right\|_{1}$, straightforward calculations show that, for $n \geqslant n_{0}$,

Hence, $\alpha_{r}(n)$

A lower bound for α_{r}

Theorem

For $r \geqslant 2$, and $n \geqslant n_{0}$, we have $\alpha_{r}(n) \geqslant \frac{(r-1)^{r-1}}{2 r^{2 r-1}} n^{r}$.
Proof: For $r \geqslant 2$ and $n \geqslant 1$, consider $\psi_{r, n} \gamma_{a_{r}^{-m} a_{1}^{-1}}$, where $m=\left\lceil\frac{n}{2 r-2}\right\rceil$. Writing $N=\left\|\psi_{r, n} \gamma_{a_{r}^{-m} a_{1}^{-1}}\right\|_{1}$, straightforward calculations show that, for $n \geqslant n_{0}$,

$$
\left\|\gamma_{a_{1} a_{r}^{m}} \psi_{r, n}^{-1}\right\|_{1}=\left\|\psi_{r, n}^{-1} \gamma_{\left(a_{1} a_{r}^{m}\right) \psi_{r, n}^{-,}}\right\|_{1} \geqslant \frac{(r-1)^{r-1}}{2 r^{2 r-1}} N^{r}
$$

A lower bound for α_{r}

Theorem

For $r \geqslant 2$, and $n \geqslant n_{0}$, we have $\alpha_{r}(n) \geqslant \frac{(r-1)^{r-1}}{2 r^{2 r-1}} n^{r}$.
Proof: For $r \geqslant 2$ and $n \geqslant 1$, consider $\psi_{r, n} \gamma_{a_{r}^{-m} a_{1}^{-1}}$, where $m=\left\lceil\frac{n}{2 r-2}\right\rceil$. Writing $N=\left\|\psi_{r, n} \gamma_{a_{r}^{-m} a_{1}^{-1}}\right\|_{1}$, straightforward calculations show that, for $n \geqslant n_{0}$,

$$
\left\|\gamma_{a_{1} a_{r}^{m}} \psi_{r, n}^{-1}\right\|_{1}=\left\|\psi_{r, n}^{-1} \gamma_{\left(a_{1} a_{r}^{m}\right) \psi_{r, n}^{-1}}\right\|_{1} \geqslant \frac{(r-1)^{r-1}}{2 r^{2 r-1}} N^{r}
$$

Hence, $\alpha_{r}(n) \geqslant \frac{(r-1)^{r-1}}{2 r^{2 r-1}} n^{r}$.

Outline

(1)
 Motivation

(2) Free groups

3 Lower bounds: a good enough example

4 Upper bounds: outer space
(5) The special case of rank 2

Outer space

To prove the upper bound
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
we'll need to use the recently discovered metric in the outer space \mathcal{X}_{r}.

Definition

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell: E \Gamma \rightarrow[0,1]$ such that $\sum_{e \in E \Gamma} \ell(e)=1$, and $\{e \in E \Gamma \mid \ell(e)=0\}$ is a forest.
- For a graph $\Gamma, \Sigma_{\Gamma}=\{$ metrics on $\Gamma\}=$ a simplex with missing faces.
- If $\Gamma^{\prime}=\Gamma /$ forest, then we identify points in $\Sigma_{\Gamma^{\prime}}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed ed'ges.
- A marking on Γ is a homotopy equivalence $f: R_{r} \rightarrow \Gamma$.

Outer space

To prove the upper bound
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
we'll need to use the recently discovered metric in the outer space \mathcal{X}_{r}.

Definition

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.

Outer space

To prove the upper bound
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
we'll need to use the recently discovered metric in the outer space \mathcal{X}_{r}.

Definition

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell: E \Gamma \rightarrow[0,1]$ such that $\sum_{e \in E \Gamma} \ell(e)=1$, and $\{e \in E \Gamma \mid \ell(e)=0\}$ is a forest.
- For a graph $\Gamma, \Sigma_{\Gamma}=\{$ metrics on $\Gamma\}=$ a simplex with missing faces.
- If $\Gamma^{\prime}=\Gamma /$ forest, then we identify points in $\Sigma_{\Gamma^{\prime}}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_{r} \rightarrow \Gamma$.

Outer space

To prove the upper bound
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
we'll need to use the recently discovered metric in the outer space \mathcal{X}_{r}.

Definition

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell: E \Gamma \rightarrow[0,1]$ such that $\sum_{e \in E \Gamma} \ell(e)=1$, and $\{e \in E \Gamma \mid \ell(e)=0\}$ is a forest.
- For a graph $\Gamma, \Sigma_{\Gamma}=\{$ metrics on $\Gamma\}=$ a simplex with missing faces.
- If $\Gamma^{\prime}=\Gamma /$ forest, then we identify points in $\Sigma_{\Gamma^{\prime}}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_{r} \rightarrow \Gamma$.

Outer space

To prove the upper bound
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
we'll need to use the recently discovered metric in the outer space \mathcal{X}_{r}.

Definition

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell: E \Gamma \rightarrow[0,1]$ such that $\sum_{e \in E \Gamma} \ell(e)=1$, and $\{e \in E \Gamma \mid \ell(e)=0\}$ is a forest.
- For a graph $\Gamma, \Sigma_{\Gamma}=\{$ metrics on $\Gamma\}=$ a simplex with missing faces.
- If $\Gamma^{\prime}=\Gamma$ /forest, then we identify points in $\Sigma_{\Gamma^{\prime}}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Г is a homotopy equivalence f

Outer space

To prove the upper bound
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
we'll need to use the recently discovered metric in the outer space \mathcal{X}_{r}.

Definition

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell: E \Gamma \rightarrow[0,1]$ such that $\sum_{e \in E \Gamma} \ell(e)=1$, and $\{e \in E \Gamma \mid \ell(e)=0\}$ is a forest.
- For a graph $\Gamma, \Sigma_{\Gamma}=\{$ metrics on $\Gamma\}=$ a simplex with missing faces.
- If $\Gamma^{\prime}=\Gamma /$ forest, then we identify points in $\Sigma_{\Gamma^{\prime}}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_{r} \rightarrow \Gamma$.

Outer space

Definition

The outer space \mathcal{X}_{r} is

$$
\mathcal{X}_{r}=\{(\Gamma, f, \ell)\} / \sim
$$

(where \sim is an equivalence relation).

Definition

There is a natural action of $\operatorname{Aut}\left(F_{r}\right)$ on \mathcal{X}_{r}, given by
(thinking $\phi: R_{r} \rightarrow R_{r}$). In fact, this is an action of Out $\left(F_{r}\right)$.

Outer space

Definition

The outer space \mathcal{X}_{r} is

$$
\mathcal{X}_{r}=\{(\Gamma, f, \ell)\} / \sim
$$

(where \sim is an equivalence relation).

Definition

There is a natural action of $\operatorname{Aut}\left(F_{r}\right)$ on \mathcal{X}_{r}, given by

$$
\phi \cdot(\Gamma, f, \ell)=(\Gamma, \phi f, \ell),
$$

(thinking $\phi: R_{r} \rightarrow R_{r}$). In fact, this is an action of $\operatorname{Out}\left(F_{r}\right)$.

Metric on \mathcal{X}_{r}

Definition

Let $x, x^{\prime} \in \mathcal{X}_{r}, x=(\Gamma, f, \ell), x^{\prime}=\left(\Gamma^{\prime}, f^{\prime}, \ell^{\prime}\right)$. A difference of markings is a map $\alpha: \Gamma \rightarrow \Gamma^{\prime}$, which is linear over edges and $f \alpha \simeq f^{\prime}$.
For such an α, define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

\mathcal{X}_{r} admits the following "metric":
$d\left(x, x^{\prime}\right)=\min \{\log (\sigma(\alpha)) \mid \alpha$ diff. markings $\}$
This minimum is achieved by Arzela-Ascoli's theorem.
This is Bestvina-AlgomKfir version of Martino-Francaviglia's original metric.

Metric on \mathcal{X}_{r}

Definition

Let $x, x^{\prime} \in \mathcal{X}_{r}, x=(\Gamma, f, \ell), x^{\prime}=\left(\Gamma^{\prime}, f^{\prime}, \ell^{\prime}\right)$. A difference of markings is a map $\alpha: \Gamma \rightarrow \Gamma^{\prime}$, which is linear over edges and $f \alpha \simeq f^{\prime}$. For such an α, define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

\mathcal{X}_{r} admits the following "metric":
$d\left(x, x^{\prime}\right)=\min \{\log (\sigma(\alpha)) \mid \alpha$ diff. markings $\}$
This minimum is achieved by Arzela-Ascoli's theorem.
This is Bestvina-AlgomKfir version of Martino-Francaviglia's original metric.

Metric on \mathcal{X}_{r}

Definition

Let $x, x^{\prime} \in \mathcal{X}_{r}, x=(\Gamma, f, \ell), x^{\prime}=\left(\Gamma^{\prime}, f^{\prime}, \ell^{\prime}\right)$. A difference of markings is a map $\alpha: \Gamma \rightarrow \Gamma^{\prime}$, which is linear over edges and $f \alpha \simeq f^{\prime}$. For such an α, define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

\mathcal{X}_{r} admits the following "metric":

$$
d\left(x, x^{\prime}\right)=\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} .
$$

This minimum is achieved by Arzela-Ascoli's theorem.
This is Bestvina-AlgomKfir version of Martino-Francaviglia's original metric.

Metric on \mathcal{X}_{r}

Definition

Let $x, x^{\prime} \in \mathcal{X}_{r}, x=(\Gamma, f, \ell), x^{\prime}=\left(\Gamma^{\prime}, f^{\prime}, \ell^{\prime}\right)$. A difference of markings is a map $\alpha: \Gamma \rightarrow \Gamma^{\prime}$, which is linear over edges and $f \alpha \simeq f^{\prime}$. For such an α, define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

\mathcal{X}_{r} admits the following "metric":

$$
d\left(x, x^{\prime}\right)=\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} .
$$

This minimum is achieved by Arzela-Ascoli's theorem.
This is Bestvina-AlgomKfir version of Martino-Francaviglia's original metric.

Metric on \mathcal{X}_{r}

Proposition

(i) $d(x, y) \geqslant 0$, and $=0 \Leftrightarrow x=y$.

$$
\text { (ii) } d(x, z) \leqslant d(x, y)+d(y, z) \text {. }
$$

(iii) $\operatorname{Out}\left(F_{r}\right)$ acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y)=d(x, y)$.
(iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

For $\epsilon>0$, the ϵ-thick part of \mathcal{X}_{r} is

$$
\mathcal{X}_{r}(\epsilon)=\left\{(\Gamma, f, \ell) \in \mathcal{X}_{r} \mid \ell(p) \geqslant \epsilon \forall \text { closed path } p \neq 1\right\}
$$

Metric on \mathcal{X}_{r}

Proposition

(i) $d(x, y) \geqslant 0$, and $=0 \Leftrightarrow x=y$.
(ii) $d(x, z) \leqslant d(x, y)+d(y, z)$.
(iii) Out $\left(F_{r}\right)$ acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y)=d(x, y)$.
(iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

For $\epsilon>0$, the ϵ-thick part of \mathcal{X}_{r} is

Metric on \mathcal{X}_{r}

Proposition

(i) $d(x, y) \geqslant 0$, and $=0 \Leftrightarrow x=y$.
(ii) $d(x, z) \leqslant d(x, y)+d(y, z)$.
(iii) $\operatorname{Out}\left(F_{r}\right)$ acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y)=d(x, y)$.
(iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

For $\epsilon>0$, the ϵ-thick part of \mathcal{X}_{r} is

Metric on \mathcal{X}_{r}

Proposition

(i) $d(x, y) \geqslant 0$, and $=0 \Leftrightarrow x=y$.
(ii) $d(x, z) \leqslant d(x, y)+d(y, z)$.
(iii) $\operatorname{Out}\left(F_{r}\right)$ acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y)=d(x, y)$.
(iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

For $\epsilon>0$, the ϵ-thick part of \mathcal{X}_{r} is

Metric on \mathcal{X}_{r}

Proposition

(i) $d(x, y) \geqslant 0$, and $=0 \Leftrightarrow x=y$.
(ii) $d(x, z) \leqslant d(x, y)+d(y, z)$.
(iii) $\operatorname{Out}\left(F_{r}\right)$ acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y)=d(x, y)$.
(iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

For $\epsilon>0$, the ϵ-thick part of \mathcal{X}_{r} is

$$
\mathcal{X}_{r}(\epsilon)=\left\{(\Gamma, f, \ell) \in \mathcal{X}_{r} \mid \ell(p) \geqslant \epsilon \forall \text { closed path } p \neq 1\right\}
$$

Bestvina-AlgomKfir theorem

Theorem (Bestvina-AlgomKfir)

For any $\epsilon>0$ there is constant $M=M(r, \epsilon)$ such that for all $x, y \in \mathcal{X}_{r}(\epsilon)$,

$$
d(x, y) \leqslant M \cdot d(y, x) .
$$

Corollary

For $r \geqslant 2$, there exists $M=M(r)$ such that

Bestvina-AlgomKfir theorem

Theorem (Bestvina-AlgomKfir)

For any $\epsilon>0$ there is constant $M=M(r, \epsilon)$ such that for all $x, y \in \mathcal{X}_{r}(\epsilon)$,

$$
d(x, y) \leqslant M \cdot d(y, x)
$$

Corollary
For $r \geqslant 2$, there exists $M=M(r)$ such that

$$
\beta_{r}(n) \leqslant r n^{M} .
$$

Proof

Remind $\beta_{r}(n)=\max \left\{\left|\left\|\theta^{-1}\left|\|_{1}\right| \theta \in\right.\right.\right.$ Aut $\left.\left.\left.F_{r},\right\|\right|\|\theta\|_{1} \leqslant n\right\}$.
Proof. Given $\phi \in \operatorname{Aut}\left(F_{r}\right)$, consider $x=\left(R_{r}, i d, \ell_{0}\right) \in \mathcal{X}_{r}$, and $\phi \cdot x=\left(R_{r}, \phi, \ell_{0}\right) \in \mathcal{X}_{r}$, where ℓ_{0} is the uniform metric.
$d(x, \phi \cdot x)=\min \{\log (\sigma(\alpha)) \mid \alpha$ diff. markings $\}$

Now, using Bestvina-AlgomKfir theorem,
$\log \left(\left|\left\|\phi^{-1} \mid\right\|_{1}\right) \sim d\left(x, \phi^{-1} \cdot x\right)=d(\phi \cdot x, x) \leq M d(x, \phi \cdot x) \sim M \log \left(\| \| \phi \|_{1}\right)\right.$
Hence, for every $\phi \in \operatorname{Aut}\left(F_{r}\right),\| \| \phi^{-1}\| \|_{1} \leqslant r\| \| \phi \|_{1}^{M} . \square$

Proof

Remind $\beta_{r}(n)=\max \left\{\left|\left\|\theta^{-1}\left|\|_{1}\right| \theta \in\right.\right.\right.$ Aut $\left.\left.F_{r},\right\|\|\theta\| \|_{1} \leqslant n\right\}$.
Proof. Given $\phi \in \operatorname{Aut}\left(F_{r}\right)$, consider $x=\left(R_{r}, i d, \ell_{0}\right) \in \mathcal{X}_{r}$, and $\phi \cdot x=\left(R_{r}, \phi, \ell_{0}\right) \in \mathcal{X}_{r}$, where ℓ_{0} is the uniform metric.

$$
\begin{aligned}
d(x, \phi \cdot x) & =\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} \\
& =\log \left(\min \left\{\sigma\left(\phi \gamma_{w} \gamma_{p}\right) \mid w \in F_{r}, p=\text { "half petal" }\right\}\right) \\
& \sim \log \left(\min \left\{\sigma\left(\phi \gamma_{w}\right) \mid w \in F_{r}\right\}\right) \\
& =\log \left(\min \left\{\left\|\phi \gamma_{w}\right\|_{\infty} \mid w \in F_{r}\right\}\right) \\
& =\log \left(\|\phi\|_{\infty}\right) \\
& \sim \log \left(\|\mid\| \phi \|_{1}\right) .
\end{aligned}
$$

Now, using Bestvina-AlgomKfir theorem,

Proof

Remind $\beta_{r}(n)=\max \left\{\left|\left\|\theta^{-1}\left|\|_{1}\right| \theta \in\right.\right.\right.$ Aut $\left.\left.F_{r},\right\|\|\theta\| \|_{1} \leqslant n\right\}$.
Proof. Given $\phi \in \operatorname{Aut}\left(F_{r}\right)$, consider $x=\left(R_{r}, i d, \ell_{0}\right) \in \mathcal{X}_{r}$, and $\phi \cdot x=\left(R_{r}, \phi, \ell_{0}\right) \in \mathcal{X}_{r}$, where ℓ_{0} is the uniform metric.

$$
\begin{aligned}
d(x, \phi \cdot x) & =\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} \\
& =\log \left(\min \left\{\sigma\left(\phi \gamma_{w} \gamma_{p}\right) \mid w \in F_{r}, p=\text { "half petal" }\right\}\right) \\
& \sim \log \left(\min \left\{\sigma\left(\phi \gamma_{w}\right) \mid w \in F_{r}\right\}\right) \\
& =\log \left(\min \left\{\left\|\phi \gamma_{w}\right\|_{\infty} \mid w \in F_{r}\right\}\right) \\
& =\log \left(\|\phi\|_{\infty}\right) \\
& \sim \log \left(\|\mid\| \phi \|_{1}\right) .
\end{aligned}
$$

Now, using Bestvina-AlgomKfir theorem,

Proof

Remind $\beta_{r}(n)=\max \left\{\left|\left\|\theta^{-1}\left|\|_{1}\right| \theta \in\right.\right.\right.$ Aut $\left.\left.F_{r},\right\|\|\theta\| \|_{1} \leqslant n\right\}$.
Proof. Given $\phi \in \operatorname{Aut}\left(F_{r}\right)$, consider $x=\left(R_{r}, i d, \ell_{0}\right) \in \mathcal{X}_{r}$, and $\phi \cdot x=\left(R_{r}, \phi, \ell_{0}\right) \in \mathcal{X}_{r}$, where ℓ_{0} is the uniform metric.

$$
\begin{aligned}
d(x, \phi \cdot x) & =\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} \\
& =\log \left(\min \left\{\sigma\left(\phi \gamma_{w} \gamma_{p}\right) \mid w \in F_{r}, p=\text { "half petal" }\right\}\right) \\
& \sim \log \left(\min \left\{\sigma\left(\phi \gamma_{w}\right) \mid w \in F_{r}\right\}\right) \\
& =\log \left(\min \left\{\left\|\phi \gamma_{w}\right\|_{\infty} \mid w \in F_{r}\right\}\right) \\
& =\log \left(\|\phi\|_{\infty}\right) \\
& \sim \log \left(\left\|\|\phi\|_{1}\right) .\right.
\end{aligned}
$$

Now, using Bestvina-AlgomKfir theorem,

Proof

Remind $\beta_{r}(n)=\max \left\{\left|\left\|\theta^{-1}\left|\|_{1}\right| \theta \in\right.\right.\right.$ Aut $\left.\left.F_{r},\right\|\|\theta\| \|_{1} \leqslant n\right\}$.
Proof. Given $\phi \in \operatorname{Aut}\left(F_{r}\right)$, consider $x=\left(R_{r}, i d, \ell_{0}\right) \in \mathcal{X}_{r}$, and $\phi \cdot x=\left(R_{r}, \phi, \ell_{0}\right) \in \mathcal{X}_{r}$, where ℓ_{0} is the uniform metric.

$$
\begin{aligned}
d(x, \phi \cdot x) & =\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} \\
& =\log \left(\min \left\{\sigma\left(\phi \gamma_{w} \gamma_{p}\right) \mid w \in F_{r}, p=\text { "half petal" }\right\}\right) \\
& \sim \log \left(\min \left\{\sigma\left(\phi \gamma_{w}\right) \mid w \in F_{r}\right\}\right) \\
& =\log \left(\min \left\{\left\|\phi \gamma_{w}\right\|_{\infty} \mid w \in F_{r}\right\}\right) \\
& =\log \left(\|\phi\|_{\infty}\right) \\
& \sim \log \left(\left\|\|\phi\|_{1}\right) .\right.
\end{aligned}
$$

Now, using Bestvina-AlgomKfir theorem,

Proof

Remind $\beta_{r}(n)=\max \left\{\left|\left\|\theta^{-1}\left|\|_{1}\right| \theta \in\right.\right.\right.$ Aut $\left.\left.F_{r},\right\|\|\theta\| \|_{1} \leqslant n\right\}$.
Proof. Given $\phi \in \operatorname{Aut}\left(F_{r}\right)$, consider $x=\left(R_{r}, i d, \ell_{0}\right) \in \mathcal{X}_{r}$, and $\phi \cdot x=\left(R_{r}, \phi, \ell_{0}\right) \in \mathcal{X}_{r}$, where ℓ_{0} is the uniform metric.

$$
\begin{aligned}
d(x, \phi \cdot x) & =\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} \\
& =\log \left(\min \left\{\sigma\left(\phi \gamma_{w} \gamma_{p}\right) \mid w \in F_{r}, p=\text { "half petal" }\right\}\right) \\
& \sim \log \left(\min \left\{\sigma\left(\phi \gamma_{w}\right) \mid w \in F_{r}\right\}\right) \\
& =\log \left(\min \left\{\left\|\phi \gamma_{w}\right\|_{\infty} \mid w \in F_{r}\right\}\right) \\
& =\log \left(\|\phi\|_{\infty}\right) \\
& \sim \log \left(\|\mid\| \phi \|_{1}\right) .
\end{aligned}
$$

Now, using Bestvina-AlgomKfir theorem,

Proof

Remind $\beta_{r}(n)=\max \left\{\left|\left\|\theta^{-1}\left|\|_{1}\right| \theta \in\right.\right.\right.$ Aut $\left.\left.F_{r},\right\|\|\theta\| \|_{1} \leqslant n\right\}$.
Proof. Given $\phi \in \operatorname{Aut}\left(F_{r}\right)$, consider $x=\left(R_{r}, i d, \ell_{0}\right) \in \mathcal{X}_{r}$, and $\phi \cdot x=\left(R_{r}, \phi, \ell_{0}\right) \in \mathcal{X}_{r}$, where ℓ_{0} is the uniform metric.

$$
\begin{aligned}
d(x, \phi \cdot x) & =\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} \\
& =\log \left(\min \left\{\sigma\left(\phi \gamma_{w} \gamma_{p}\right) \mid w \in F_{r}, p=\text { "half petal" }\right\}\right) \\
& \sim \log \left(\min \left\{\sigma\left(\phi \gamma_{w}\right) \mid w \in F_{r}\right\}\right) \\
& =\log \left(\min \left\{\left\|\phi \gamma_{w}\right\|_{\infty} \mid w \in F_{r}\right\}\right) \\
& =\log \left(\|\phi\|_{\infty}\right) \\
& \sim \log \left(\|\mid\| \phi \|_{1}\right) .
\end{aligned}
$$

Now, using Bestvina-AlgomKfir theorem,

Proof

Remind $\beta_{r}(n)=\max \left\{\left|\left\|\theta^{-1}\left|\|_{1}\right| \theta \in\right.\right.\right.$ Aut $\left.\left.\left.F_{r},\right\|\right|\|\theta\|_{1} \leqslant n\right\}$.
Proof. Given $\phi \in \operatorname{Aut}\left(F_{r}\right)$, consider $x=\left(R_{r}, i d, \ell_{0}\right) \in \mathcal{X}_{r}$, and $\phi \cdot x=\left(R_{r}, \phi, \ell_{0}\right) \in \mathcal{X}_{r}$, where ℓ_{0} is the uniform metric.

$$
\begin{aligned}
d(x, \phi \cdot x) & =\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} \\
& =\log \left(\min \left\{\sigma\left(\phi \gamma_{w} \gamma_{p}\right) \mid w \in F_{r}, p=\text { "half petal" }\right\}\right) \\
& \sim \log \left(\min \left\{\sigma\left(\phi \gamma_{w}\right) \mid w \in F_{r}\right\}\right) \\
& =\log \left(\min \left\{\left\|\phi \gamma_{w}\right\|_{\infty} \mid w \in F_{r}\right\}\right) \\
& =\log \left(\|\phi\|_{\infty}\right) \\
& \sim \log \left(\left\|\|\phi\|_{1}\right) .\right.
\end{aligned}
$$

Now, using Bestvina-AlgomKfir theorem,
$\log \left(\left\|\phi^{-1} \mid\right\|_{1}\right) \sim d\left(x, \phi^{-1} \cdot x\right)=d(\phi \cdot x, x) \leqslant M d(x, \phi \cdot x) \sim M \log \left(\left|\|\phi \mid\|_{1}\right)\right.$.
Hence, for every $\phi \in \operatorname{Aut}\left(F_{r}\right),\left\|\left|\phi^{-1}\right|\right\|_{1} \leqslant r\|\mid \phi\|_{1}^{M}$. \square

Proof

Remind $\beta_{r}(n)=\max \left\{\| \| \theta^{-1} \|_{1} \mid \theta \in\right.$ Aut $\left.F_{r},\|\theta\| \|_{1} \leqslant n\right\}$.
Proof. Given $\phi \in \operatorname{Aut}\left(F_{r}\right)$, consider $x=\left(R_{r}, i d, \ell_{0}\right) \in \mathcal{X}_{r}$, and $\phi \cdot x=\left(R_{r}, \phi, \ell_{0}\right) \in \mathcal{X}_{r}$, where ℓ_{0} is the uniform metric.

$$
\begin{aligned}
d(x, \phi \cdot x) & =\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} \\
& =\log \left(\min \left\{\sigma\left(\phi \gamma_{w} \gamma_{p}\right) \mid w \in F_{r}, p=\text { "half petal" }\right\}\right) \\
& \sim \log \left(\min \left\{\sigma\left(\phi \gamma_{w}\right) \mid w \in F_{r}\right\}\right) \\
& =\log \left(\min \left\{\left\|\phi \gamma_{w}\right\|_{\infty} \mid w \in F_{r}\right\}\right) \\
& =\log \left(\|\phi\|_{\infty}\right) \\
& \sim \log \left(\|\phi\| \|_{1}\right) .
\end{aligned}
$$

Now, using Bestvina-AlgomKfir theorem,
$\log \left(\left\|\left|\phi^{-1}\right|\right\|_{1}\right) \sim d\left(x, \phi^{-1} \cdot x\right)=d(\phi \cdot x, x) \leqslant M d(x, \phi \cdot x) \sim M \log \left(\left|\|\phi \mid\|_{1}\right)\right.$.
Hence, for every $\phi \in \operatorname{Aut}\left(F_{r}\right),\| \| \phi^{-1}\| \|_{1} \leqslant r\| \| \phi \|_{1}^{M} . \square$

Outline

(1) Motivation

(2) Free groups

3 Lower bounds: a good enough example

4 Upper bounds: outer space
(5) The special case of rank 2

The rank 2 case

These functions for Aut $\left(F_{2}\right)$ are much easier to understand due to the following technical lemmas.

Lemma
Let $\varphi \in \operatorname{Aut}\left(F_{2}\right)$ be positive. Then φ^{-1} is cyclically reduced and

Lemma

For everv $\theta \in \operatorname{Aut}\left(F_{2}\right)$, there exist two letter permuting autos $\psi_{1}, \psi_{2} \in \operatorname{Aut}\left(F_{2}\right)$, a positive one $\varphi \in \operatorname{Aut}^{+}\left(F_{2}\right)$, and an element $g \in$

The rank 2 case

These functions for $\operatorname{Aut}\left(F_{2}\right)$ are much easier to understand due to the following technical lemmas.

Lemma
Let $\varphi \in \operatorname{Aut}\left(F_{2}\right)$ be positive. Then φ^{-1} is cyclically reduced and $\left\|\varphi^{-1}\right\|_{1}=\|\varphi\|_{1}$.

Lemma

For everv $\theta \in \operatorname{Aut}\left(F_{2}\right)$, there exist two letter permuting autos $\psi_{1}, \psi_{2} \in \operatorname{Aut}\left(F_{2}\right)$, a positive one $\varphi \in \operatorname{Aut}^{+}\left(F_{2}\right)$, and an element $g \in F_{2}$, such that $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$ and \mid

The rank 2 case

These functions for Aut $\left(F_{2}\right)$ are much easier to understand due to the following technical lemmas.

Lemma

Let $\varphi \in \operatorname{Aut}\left(F_{2}\right)$ be positive. Then φ^{-1} is cyclically reduced and $\left\|\varphi^{-1}\right\|_{1}=\|\varphi\|_{1}$.

Lemma

For every $\theta \in \operatorname{Aut}\left(F_{2}\right)$, there exist two letter permuting autos $\psi_{1}, \psi_{2} \in \operatorname{Aut}\left(F_{2}\right)$, a positive one $\varphi \in$ Aut $^{+}\left(F_{2}\right)$, and an element $g \in F_{2}$, such that $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$ and $\|\varphi\|_{1}+2|g| \leqslant\|\theta\|_{1}$.

The rank 2 case: γ_{2}

Theorem
For every $\theta \in \operatorname{Aut}\left(F_{2}\right),\left\|\cdot \theta^{-1}\right\|_{1}=H \theta \|_{1}$. Hence, $\gamma_{2}(n)=n$.

Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then,

On the other hand,

The rank 2 case: γ_{2}

Theorem
For every $\theta \in \operatorname{Aut}\left(F_{2}\right),\left\|\cdot \theta^{-1}\right\|_{1}=\|\theta\|_{1}$. Hence, $\gamma_{2}(n)=n$.

Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. On the other hand,

The rank 2 case: γ_{2}

Theorem

For every $\theta \in \operatorname{Aut}\left(F_{2}\right),\left\|\cdot \theta^{-1}\right\|_{1}=\|\theta\|_{1}$. Hence, $\gamma_{2}(n)=n$.

Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then,

$$
\left\|\theta H_{1}=\right\| \psi_{1} \varphi \psi_{2} \lambda_{g}\left\|_{1}=\right\| \psi_{1} \varphi \psi_{2}\left\|_{1}=\right\| \varphi\left\|_{1}=\right\| \varphi \|_{1} .
$$

On the other hand,

The rank 2 case: γ_{2}

Theorem

For every $\theta \in \operatorname{Aut}\left(F_{2}\right),\left\|\theta^{-1}\right\|_{1}=\|\theta\|_{1}$. Hence, $\gamma_{2}(n)=n$.

Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then,

$$
\left\|\theta H_{1}=\right\| \psi_{1} \varphi \psi_{2} \lambda_{g}\left\|_{1}=\right\| \psi_{1} \varphi \psi_{2}\left\|_{1}=\right\| \varphi\left\|_{1}=\right\| \varphi \|_{1} .
$$

On the other hand,

$$
\begin{aligned}
\left\|\theta^{-1}\right\|_{1} & =\left\|\lambda_{g^{-1}} \psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}\right\|_{1}=\left\|\psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}\right\|_{1}= \\
& =\left\|\varphi^{-1}\right\|_{1}=\left\|\varphi^{-1}\right\|_{1}=\|\varphi\|_{1} .
\end{aligned}
$$

The rank 2 case: β_{2}

Theorem
For every $\theta \in \operatorname{Aut}\left(F_{2}\right),\left\|\left|\left|\theta^{-1}\right|\left\|_{1}=\right\|\right| \theta\right\| \|_{1}$. Hence, $\beta_{2}(n)=n$.

Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then,

On the other hand,

The rank 2 case: β_{2}

Theorem
For every $\theta \in \operatorname{Aut}\left(F_{2}\right),\| \| \theta^{-1}\left\|_{1}=\right\|\|\theta\|_{1}$. Hence, $\beta_{2}(n)=n$.

Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$.

On the other hand,

The rank 2 case: β_{2}

Theorem

For every $\theta \in \operatorname{Aut}\left(F_{2}\right),\left\|\left|\left|\theta^{-1}\left\|_{1}=\right\|\right| \theta\| \|_{1}\right.\right.$. Hence, $\beta_{2}(n)=n$.

Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then,

$$
\left|\|\theta\|\left\|_{1}=\right\|\left\|\psi_{1} \varphi \psi_{2} \lambda_{g}\right\|_{1}=\| \| \psi_{1} \varphi \psi_{2}\left\|_{1}=\mid\right\| \varphi\left\|_{1}=\right\| \varphi \|_{1} .\right.
$$

On the other hand,

The rank 2 case: β_{2}

Theorem

For every $\theta \in \operatorname{Aut}\left(F_{2}\right),\| \| \theta^{-1}\left\|_{1}=\right\|\|\theta\|_{1}$. Hence, $\beta_{2}(n)=n$.

Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then,

$$
\left\|\|\theta\|_{1}=\right\|\left\|\psi_{1} \varphi \psi_{2} \lambda_{g}\right\|_{1}=\left|\left\|\psi_{1} \varphi \psi_{2}\right\|_{1}=\right|\|\varphi\|_{1}=\|\varphi\|_{1} .
$$

On the other hand,

$$
\begin{aligned}
\left\|\theta^{-1}\right\| \|_{1}= & \left\|\mid \lambda_{g^{-1}} \psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}\right\|_{1}=\| \| \psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1} \|_{1}= \\
& =\| \| \varphi^{-1}\left\|_{1}=\right\| \varphi^{-1}\left\|_{1}=\right\| \varphi \|_{1} .
\end{aligned}
$$

The rank 2 case: α_{2}

Theorem

For $n \geqslant 4$ we have $\alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$.
Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then, $\theta^{-1}=\lambda_{g^{-1}} \psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}$ and

$$
\left\|\theta^{-1}\right\|_{1} \leqslant 4|g| \cdot\left\|\psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}\right\|_{\infty}=4|g| \cdot\left\|\varphi^{-1}\right\| \infty
$$

$$
4|g|\left(\left\|\varphi^{-1}\right\|_{1}-1\right)=4|g|\left(\|\varphi\|_{1}-1\right) .
$$

Now from $\|\varphi\|_{1}+2|g| \leqslant\|\theta\|_{1}=n$, we deduce $|g| \leqslant \frac{n-\|\varphi\|_{1}}{2}$ and so,

$$
\left\|\theta^{-1}\right\|_{1} \leqslant 2\left(n-\|\varphi\|_{1}\right)\left(\|\varphi\|_{1}-1\right) .
$$

Finally, the parabola $f(x)=2(n-x)(x-1)$ takes its maximum at $x=\frac{n+1}{2}$ and so,

The rank 2 case: α_{2}

Theorem

For $n \geqslant 4$ we have $\alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$.
Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$.

Now from $\|\varphi\|_{1}+2|g| \leqslant\|\theta\|_{1}=n$, we deduce $|g| \leqslant \frac{n-\|\varphi\|_{1}}{2}$ and so,

$$
\left\|\theta^{-1}\right\|_{1} \leqslant 2\left(n-\|\varphi\|_{1}\right)\left(\|\varphi\|_{1}-1\right)
$$

Finally, the parabola $f(x)=2(n-x)(x-1)$ takes its maximum at $x=\frac{n+1}{2}$ and so,

The rank 2 case: α_{2}

Theorem

For $n \geqslant 4$ we have $\alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$.
Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then, $\theta^{-1}=\lambda_{g^{-1}} \psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}$ and

$$
\begin{gathered}
\left\|\theta^{-1}\right\|_{1} \leqslant 4|g| \cdot\left\|\psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}\right\|_{\infty}=4|g| \cdot\left\|\varphi^{-1}\right\|_{\infty} \leqslant \\
\leqslant 4|g|\left(\left\|\varphi^{-1}\right\|_{1}-1\right)=4|g|\left(\|\varphi\|_{1}-1\right)
\end{gathered}
$$

Now from $\|\varphi\|_{1}+2|g| \leqslant\|\theta\|_{1}=n$, we deduce $|g| \leqslant \frac{n-\mid \varphi \|_{1}}{2}$ and so,

Finally, the parabola $f(x)=2(n-x)(x-1)$ takes its maximum at $x=\frac{n+1}{2}$ and so,

The rank 2 case: α_{2}

Theorem

For $n \geqslant 4$ we have $\alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$.
Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then, $\theta^{-1}=\lambda_{g^{-1}} \psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}$ and

$$
\begin{gathered}
\left\|\theta^{-1}\right\|_{1} \leqslant 4|g| \cdot\left\|\psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}\right\|_{\infty}=4|g| \cdot\left\|\varphi^{-1}\right\|_{\infty} \leqslant \\
\leqslant 4|g|\left(\left\|\varphi^{-1}\right\|_{1}-1\right)=4|g|\left(\|\varphi\|_{1}-1\right) .
\end{gathered}
$$

Now from $\|\varphi\|_{1}+2|g| \leqslant\|\theta\|_{1}=n$, we deduce $|g| \leqslant \frac{n-\|\varphi\|_{1}}{2}$ and so,

$$
\left\|\theta^{-1}\right\|_{1} \leqslant 2\left(n-\|\varphi\|_{1}\right)\left(\|\varphi\|_{1}-1\right)
$$

Finally, the parabola $f(x)=2(n-x)(x-1)$ takes its maximum at $x=\frac{n+1}{2}$ and so,

The rank 2 case: α_{2}

Theorem

For $n \geqslant 4$ we have $\alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$.
Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then, $\theta^{-1}=\lambda_{g^{-1}} \psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}$ and

$$
\begin{gathered}
\left\|\theta^{-1}\right\|_{1} \leqslant 4|g| \cdot\left\|\psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}\right\|_{\infty}=4|g| \cdot\left\|\varphi^{-1}\right\|_{\infty} \leqslant \\
\leqslant 4|g|\left(\left\|\varphi^{-1}\right\|_{1}-1\right)=4|g|\left(\|\varphi\|_{1}-1\right) .
\end{gathered}
$$

Now from $\|\varphi\|_{1}+2|g| \leqslant\|\theta\|_{1}=n$, we deduce $|g| \leqslant \frac{n-\|\varphi\|_{1}}{2}$ and so,

$$
\left\|\theta^{-1}\right\|_{1} \leqslant 2\left(n-\|\varphi\|_{1}\right)\left(\|\varphi\|_{1}-1\right)
$$

Finally, the parabola $f(x)=2(n-x)(x-1)$ takes its maximum at $x=\frac{n+1}{2}$ and so,

$$
\left\|\theta^{-1}\right\|_{1} \leqslant 2\left(n-\|\varphi\|_{1}\right)\left(\|\varphi\|_{1}-1\right) \leqslant 2\left(n-\frac{n+1}{2}\right)\left(\frac{n+1}{2}-1\right)=\frac{(n-1)^{2}}{2}
$$

The rank 2 case: α_{2}

Theorem

For $n \geqslant n_{0}$ we have $\alpha_{2}(n) \geqslant \frac{n^{2}}{16}$.
So, the global known picture is

(v) $\beta_{r}(n) \leqslant K n^{M}$
(iii) $K n^{r-1}<\sim(n)$
for some constants $K=K(r), M=M(r)$, and for $n \geqslant n_{0}$.

The rank 2 case: α_{2}

Theorem

For $n \geqslant n_{0}$ we have $\alpha_{2}(n) \geqslant \frac{n^{2}}{16}$.
So, the global known picture is
(i) $\frac{n^{2}}{16} \leqslant \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) $\beta_{2}(n)=n$,
(iii) $\gamma_{2}(n)=n$,
(iv) $K n^{r} \leqslant \alpha_{r}(n)$,
(v) $\beta_{r}(n) \leqslant K n^{M}$,
(iii) $K n^{r-1} \leqslant \gamma_{r}(n)$.
for some constants $K=K(r), M=M(r)$, and for $n \geqslant n_{0}$.

THANKS

