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1. Motivation 2. Free groups 3. Lower bounds 4. Upper bounds 5. The special case of rank 2

Motivation

(Joint work with P. Silva and M. Ladra.)

Find a group G where · is “easy" but ( )−1 is “difficult".

Natural candidate: Aut (Fn), where Fr = 〈a1, . . . ,ar | 〉.

F3 = 〈a,b, c | 〉.

φ : F3 → F3 ψ : F3 → F3
a 7→ ab a 7→ bc−1

b 7→ ab2c b 7→ a−1bc
c 7→ bc2 c 7→ c−1.

φψ : F3 → F3
a 7→ bc−1a−1bc
b 7→ bc−1a−1bca−1b
c 7→ a−1bc−1.
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Motivation

F5 = 〈a,b, c,d ,e | 〉.

ψn : F5 → F5 ψ−1
n : F4 → F4

a 7→ a a 7→ a
b 7→ anb b 7→ a−nb
c 7→ bnc c 7→ (b−1an)nc
d 7→ cnd d 7→ (c−1(a−nb)n)nd
e 7→ dne e 7→ (d−1((b−1an)nc)n)ne.

• We have formalized the situation.
• We have seen that inverting in Aut (Fr ) is not that bad.
• We now want to look for worse groups G.
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Main definition

Definition

Let A = {a1, . . . ,ar} be a finite alphabet, and G = 〈A | R 〉 be a finite
presentation for a group G. We have the word metric:

for g ∈ G, |g| = min{n | g = aε1
i1 · · · a

εn
in }.

Definition

For θ ∈ Aut (G), note θ is determined by a1θ, . . . , arθ and define

||θ||1 = |a1θ|+ · · ·+ |arθ|,

||θ||∞ = max{|a1θ|, . . . , |arθ|}.

Observation

For every θ ∈ Aut (Fr ), ||θ||∞ 6 ||θ||1 6 r ||θ||∞
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Main definition

Definition

Let G = 〈A | R 〉 be a finite presentation for G. We define the function:

αA(n) = max{||θ−1||1 | θ ∈ Aut (G), ||θ||1 6 n}.

Clearly, αA(n) 6 αA(n + 1).

The bigger is αA, the more “difficult" will be to invert automorphisms
of G (with respect to the given set of generators A).

Question
Determine the asymptotic growth of the function αA.
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Free group case

For the rest of the talk, G = Fr = 〈a1, . . . ,ar | 〉.

Definition

Every w ∈ Fr has its length, |w |, and its cyclic length, ·|w |·:
|a1a−1

1 a2| = |a2| = ·|a2|· = 1,
|a1a2a−2

1 | = 4,
·|a1a2a−2

1 |· = ·|a2a−1
1 |· = 2.

Observation

i) |wn| 6 |n||w | and ·|wn|· = |n|·|w |·;
ii) |vw | 6 |v |+ |w |, but ·|vw |· 6 ·|v |·+ ·|w |· is not true in general.
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Free group case

Definition

For θ ∈ Aut (Fr ), define

||θ||1 = |a1θ|+ · · ·+ |arθ|,

|·|θ|·|1 = ·|a1θ|·+ · · ·+ ·|arθ|·,

|||θ|||1 = min{||θγv ||1 | v ∈ Fr}.

Observation

|·|θ|·|1 6 |||θ|||1 6 ||θ||1, but not equal in general.

Example

Consider θ : F4 → F4, a 7→ a, b 7→ a−1ba, c 7→ a−1ca, d 7→ d. We
have |·|θ|·|1 = 4, |||θ|||1 = 6 and ||θ||1 = 8.
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Free group case

Definition

αr (n) = max{||θ−1||1 | θ ∈ Aut Fr , ||θ||1 6 n},

βr (n) = max{|||θ−1|||1 | θ ∈ Aut Fr , |||θ|||1 6 n},

γr (n) = max{|·|θ−1|·|1 | θ ∈ Aut Fr , |·|θ|·|1 6 n}.

Question
Are these functions equal up to multiplicative constants ?

αr and γr are not;
βr is not clear.
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Main results

Theorem
For rank r = 2 we have

(i) for n > 4, α2(n) 6 (n−1)2

2 ,

(ii) for n > n0, α2(n) > n2

16 ,
(iii) for n > 1, β2(n) = n,
(iv) for n > 1, γ2(n) = n.

Theorem

For r > 3 there exist K = K (r) and M = M(r) such that, for n > 1,
(i) αr (n) > Knr ,
(ii) βr (n) 6 KnM ,
(iii) γr (n) > Knr−1.
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A lower bound for γr

Theorem

For r > 2, and n > n0, we have γr (n) > 1
2r r−1 nr−1.

Proof: For r > 2 and n > 1, consider

ψr ,n : Fr → Fr ψ−1
r ,n : Fr → Fr

a1 7→ a1 a1 7→ a1
a2 7→ an

1a2 a2 7→ a−n
1 a2

a3 7→ an
2a3

...
... ai 7→ (a−n

i−1)ψ−1
r ,n · ai

ar 7→ an
r−1ar (26i6r)

A straightforward calculation shows that
|·|ψr ,n|·|1 = ||ψr ,n||1 = (r − 1)n + r , and
|·|ψ−1

r ,n |·|1 = ||ψ−1
r ,n ||1 = nr−1 + 2nr−2 + · · ·+ (r − 1)n + r > nr−1.
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A lower bound for γr

Hence, for n > r ,

γr (rn) > γr ((r − 1)n + r) > nr−1.

Now, for n big enough, take the closest multiple of r below,

n > rm > n − r ,

and

γr (n) > γr (rm) > mr−1 >

(
n − r

r

)r−1

=
(n

r
− 1
)r−1

>
1

2r r−1 nr−1. �

Finally, conjugating by an appropriate element, we shall win an extra
unit in the exponent.
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1 Motivation

2 Free groups

3 Lower bounds: a good enough example

4 Upper bounds: outer space

5 The special case of rank 2
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Outer space

To prove the upper bound

(ii) βr (n) 6 KnM ,

we’ll need to use the recently discovered metric in the outer space Xr .

Definition
• By graf Γ we mean a finite, connected graph of rank r , with no

vertices of degree 1 or 2.
• A metric on Γ is a map ` : EΓ→ [0,1] such that

∑
e∈EΓ `(e) = 1,

and {e ∈ EΓ | `(e) = 0} is a forest.
• For a graph Γ, ΣΓ = {metrics on Γ} = a simplex with missing

faces.
• If Γ′ = Γ/forest, then we identify points in ΣΓ′ with the

corresponding points in ΣΓ by assigning length 0 to the collapsed
edges.

• A marking on Γ is a homotopy equivalence f : Rr → Γ.
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Outer space

Definition
The outer space Xr is

Xr = { (Γ, f , `) }/ ∼

(where ∼ is an equivalence relation).

Definition

There is a natural action of Aut (Fr ) on Xr , given by

φ · (Γ, f , `) = (Γ, φf , `),

(thinking φ : Rr → Rr ). In fact, this is an action of Out (Fr ).
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Metric on Xr

Definition

Let x , x ′ ∈ Xr , x = (Γ, f , `), x ′ = (Γ′, f ′, `′). A difference of markings is
a map α : Γ→ Γ′, which is linear over edges and fα ' f ′.
For such an α, define σ(α) to be its maximum slope over edges.

Definition
Xr admits the following “metric":

d(x , x ′) = min{log(σ(α)) | α diff. markings }.

This minimum is achieved by Arzela-Ascoli’s theorem.

This is Bestvina-AlgomKfir version of Martino-Francaviglia’s original
metric.
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Metric on Xr

Proposition

(i) d(x , y) > 0, and = 0 ⇔ x = y.
(ii) d(x , z) 6 d(x , y) + d(y , z).
(iii) Out(Fr ) acts by isometries, i.e. d(φ · x , φ · y) = d(x , y).
(iv) But... d(x , y) 6= d(y , x) in general.

Definition
For ε > 0, the ε-thick part of Xr is

Xr (ε) = {(Γ, f , `) ∈ Xr | `(p) > ε ∀ closed path p 6= 1}
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Bestvina-AlgomKfir theorem

Theorem (Bestvina-AlgomKfir)

For any ε > 0 there is constant M = M(r , ε) such that for all
x , y ∈ Xr (ε),

d(x , y) 6 M · d(y , x).

Corollary

For r > 2, there exists M = M(r) such that

βr (n) 6 r nM .
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Proof

Remind βr (n) = max{|||θ−1|||1 | θ ∈ Aut Fr , |||θ|||1 6 n}.

Proof. Given φ ∈ Aut (Fr ), consider x = (Rr , id , `0) ∈ Xr , and
φ · x = (Rr , φ, `0) ∈ Xr , where `0 is the uniform metric.

d(x , φ · x) = min{log(σ(α)) | α diff. markings}
= log

(
min{σ(φγwγp) | w ∈ Fr , p = “half petal"}

)
∼ log

(
min{σ(φγw ) | w ∈ Fr}

)
= log

(
min{||φγw ||∞ | w ∈ Fr}

)
= log(|||φ|||∞)
∼ log(|||φ|||1).

Now, using Bestvina-AlgomKfir theorem,

log(|||φ−1|||1) ∼ d(x , φ−1·x) = d(φ·x , x) 6 Md(x , φ·x) ∼ M log(|||φ|||1).

Hence, for every φ ∈ Aut (Fr ), |||φ−1|||1 6 r |||φ|||M1 . �
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(
min{||φγw ||∞ | w ∈ Fr}

)
= log(|||φ|||∞)
∼ log(|||φ|||1).

Now, using Bestvina-AlgomKfir theorem,

log(|||φ−1|||1) ∼ d(x , φ−1·x) = d(φ·x , x) 6 Md(x , φ·x) ∼ M log(|||φ|||1).

Hence, for every φ ∈ Aut (Fr ), |||φ−1|||1 6 r |||φ|||M1 . �
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The rank 2 case

These functions for Aut (F2) are much easier to understand due to the
following technical lemmas.

Lemma

Let ϕ ∈ Aut (F2) be positive. Then ϕ−1 is cyclically reduced and
||ϕ−1||1 = ||ϕ||1.

Lemma

For every θ ∈ Aut (F2), there exist two letter permuting autos
ψ1, ψ2 ∈ Aut (F2), a positive one ϕ ∈ Aut +(F2), and an element
g ∈ F2, such that θ = ψ1ϕψ2λg and ||ϕ||1 + 2|g| 6 ||θ||1.
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The rank 2 case: γ2

Theorem

For every θ ∈ Aut (F2), |·|θ−1|·|1 = |·|θ|·|1. Hence, γ2(n) = n.

Proof. Let θ ∈ Aut (F2), decomposed as above, θ = ψ1ϕψ2λg . Then,

|·|θ|·|1 = |·|ψ1ϕψ2λg |·|1 = |·|ψ1ϕψ2|·|1 = |·|ϕ|·|1 = ||ϕ||1.

On the other hand,

|·|θ−1|·|1 = |·|λg−1ψ−1
2 ϕ−1ψ−1

1 |·|1 = |·|ψ−1
2 ϕ−1ψ−1

1 |·|1 =

= |·|ϕ−1|·|1 = ||ϕ−1||1 = ||ϕ||1. �
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The rank 2 case: β2

Theorem

For every θ ∈ Aut (F2), |||θ−1|||1 = |||θ|||1. Hence, β2(n) = n.
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The rank 2 case: α2

Theorem

For n > 4 we have α2(n) 6 (n−1)2

2 .

Proof. Let θ ∈ Aut (F2), decomposed as above, θ = ψ1ϕψ2λg . Then,
θ−1 = λg−1ψ−1

2 ϕ−1ψ−1
1 and

||θ−1||1 6 4|g| · ||ψ−1
2 ϕ−1ψ−1

1 ||∞ = 4|g| · ||ϕ−1||∞ 6

6 4|g|(||ϕ−1||1 − 1) = 4|g|(||ϕ||1 − 1).

Now from ||ϕ||1 + 2|g| 6 ||θ||1 = n, we deduce |g| 6 n−||ϕ||1
2 and so,

‖θ−1‖1 6 2(n − ‖ϕ‖1)(‖ϕ‖1 − 1).

Finally, the parabola f (x) = 2(n − x)(x − 1) takes its maximum at
x = n+1

2 and so,

||θ−1||1 6 2(n−||ϕ||1)(||ϕ||1−1) 6 2
(

n−n + 1
2

)(n + 1
2
−1
)

=
(n − 1)2

2
. �
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The rank 2 case: α2

Theorem

For n > n0 we have α2(n) > n2

16 .

So, the global known picture is

(i) n2

16 6 α2(n) 6 (n−1)2

2 ,
(ii) β2(n) = n,
(iii) γ2(n) = n,

(iv) Knr 6 αr (n),
(v) βr (n) 6 KnM ,
(iii) Knr−1 6 γr (n).

for some constants K = K (r), M = M(r), and for n > n0.
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