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— n — ( 71((b71an)nc)n)n ]

e We have formalized the situation.
e We have seen that inverting in Aut (F;) is not that bad.
e We now want to look for worse groups G.
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Main definition

LetA={a,...,as} be afinite alphabet, and G = (A| R) be a finite
presentation for a group G. We have the word metric:

forge G, |g|=min{n|g=2a]---a’}

In

Definition
For 6 € Aut(G), note 6 is determined by a9, . . ., a-6 and define

| A

110111 = |a16| + - - - + |asf],

110]|0o = max{|af),...,|af|}.

\

Observation
For every 6 € Aut(F;), |10]lo < 10|11 < r]16]|0o
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Main definition

Let G= (A | R) be a finite presentation for G. We define the function:
aa(n) = max{||0~"[l1 | § € Aut(G), [|6]l1 < n}.

Clearly, aa(n) < aa(n+1).

The bigger is a.a, the more “difficult” will be to invert automorphisms
of G (with respect to the given set of generators A).

Determine the asymptotic growth of the function aa.
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Free group case

For the rest of the talk, G= F, = (a1,....ar | ).

Definition

Every w € F, has its length, |w|, and its cyclic length, {w| :
|aa; ' ap| = |ap| = Jaat =1,

|ajaza; ?| =4,

|araza;? = |aa; '} = 2.

Observation

i) [w”| < |nllw| and {w"} = n|{w},
i) lvw| < |v| + |w|, but {vw| < {v| + |w} is not true in general.
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Free group case

For 6 € Aut(F,), define
1011 = |@16] + - - -+ |a0],
HOl1 = Ja10} + - - - + a0},

1011+ = min{||6y[l1 | v € Fr}.

Observation
HOH1 < [[101]11 < [|€]]1, but not equal in general.

Consider: F4 — F4,a+~ a,b— a'ba,c— a'ca, d — d. We
have ||0}/1 = 4, |||9]|]1 = 6 and ||6]|1 = 8.
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vr(n) = max{}{0=|1 | 6 € AutF,, }{6}1 < n}.

v

Are these functions equal up to multiplicative constants ?

ar and ~, are not; J

Br is not clear.
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For rank r = 2 we have
(i) forn >4, ax(n) < @
(i) forn>ny, az(n) > %,
(iii) forn>1 Ba2(n) =
)

(iv) forn=1, ~72(n) =
Forr 3 there exist K = K(r) and M = M(r) such that, forn > 1,
ar(n) = Kn',

1

Br(n) < KnM,
(iii) ~vr(n) = Kn"—

N
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A lower bound for ~,

Forr > 2, and n > ny, we have ~.(n) > 2r2_1n’—1.

Proof: For r > 2 and n > 1, consider

—1

Yot Fr = Fp "/}r,n:Fr — Fr

a = a a4 — a

a — ala a — a'a

a — ajas

—n —1
. aj = (a/_1 )¢r,n - 8j
a — a_ia (2<igr)

A straightforward calculation shows that
Hbrnllt = [1rnllt = (r = 1)n+r, and
- =" +2n 2+ 4 (r—=Nn+r>n"




3. Lower bounds
(o] 1}

A lower bound for ~,

Hence, forn > r,

vr(rn) =y ((r—1)n4r) > n""1.



3. Lower bounds
(o] 1}

A lower bound for ~,

Hence, forn > r,
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A lower bound for ~,

Hence, forn > r,
vr(rn) =y ((r—1)n4r) > n""1.
Now, for n big enough, take the closest multiple of r below,
n>rm>n-—r,
and

_ e\ r—1
() =y (rm)y > m= > (n r) = (Q - 1) > LIRS

r r 2rr—1

Finally, conjugating by an appropriate element, we shall win an extra
unit in the exponent.
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A lower bound for «,

1y 1
Forr > 2, and n > ny, we have a,(n) > (’ZrQ,L n.

Proof: For r > 2 and n > 1, consider ¢,n7,-n, L where m = [ 555 ].
Writing N = |17,y ,—m -1 ||1, straightforward calculatlons show that,
r 1

for n > ng,
—1
—1 —1 (r—1)
||'Ya1a£"7vbr,n||1 = ‘|wr,n7(a1a;")¢;n‘ Il = Torar—1 "

Hence, a,(n) > %n 0
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To prove the upper bound

(ii) Br(n) < Kn", J

we’ll need to use the recently discovered metric in the outer space ;.

e By graf I we mean a finite, connected graph of rank r, with no
vertices of degree 1 or 2.

e AmetriconT isamap(: ET — [0,1] such that ) ((e) =1,
and{e € ET | {(e) = 0} is a forest.

e Foragraph', X = {metrics onT} = a simplex with missing
faces.

e [f[" =T /forest, then we identify points in X with the
corresponding points in ¥ by assigning length 0 to the collapsed
edges.

e A marking onT is a homotopy equivalence f: R, —T.
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Outer space

Definition
The outer space X is

Xr={(,£,0)} ~

(where ~ is an equivalence relation).

Definition
There is a natural action of Aut(F,) on X, given by

d)' (ra fvé) = (r7¢fa€)a
(thinking ¢: R- — Ry). In fact, this is an action of Out(F;).
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Metric on X,

Definition

Letx,x' € X, x = (I, f,0), x' = (", f,¢'). A difference of markings is
amap «: I — ', which is linear over edges and fa. ~ f'.

For such an «, define o(«) to be its maximum slope over edges.

Definition

| \

X, admits the following “metric":

d(x, x") = min{log(c()) |  diff. markings }.

This minimum is achieved by Arzela-Ascoli’s theorem.

A\

This is Bestvina-AlgomKfir version of Martino-Francaviglia’s original
metric.



4. Upper bounds
000@00

Metric on X,

(i) d(x,y) >20,and=0 < x =y.




4. Upper bounds
000@00

Metric on X,

(i) d(x,y) >20,and=0 < x =y.
(i) d(x,z) <d(x,y)+d(y,z).




4. Upper bounds
000@00

Metric on X,

(i) d(x,y) >20,and=0 < x =y.
(i) d(x,z) < d(x,y) +d(y, 2).
(iii) Out(F,) acts by isometries, i.e. d(¢ - x,¢-y) = d(X,y).




4. Upper bounds
000@00

Metric on X,

Proposition
(i) d(x,y)=>0,and=0 < x =y.
(i) d(x,2) < d(x,y)+d(y,2).
(iii) Out(F,) acts by isometries, i.e. d(¢ - x,¢-y) = d(X,y).
(iv) But... d(x,y) # d(y, x) in general.




4. Upper bounds
000@00

Metric on X,

(i) d(x,y)=>0,and=0 < x =y.
(i) d(x,2) < d(x,y)+d(y,2).

(iii) Out(F,) acts by isometries, i.e. d(¢ - x,¢-y) = d(X,y).
(iv) But... d(x,y) # d(y, x) in general.

Definition
For e > 0, the e-thick part of X, is

| \

Xr(e) ={(I,f,£) € X | {(p) > € V closed pathp # 1}
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Theorem (Bestvina-AlgomKfir)

For any ¢ > 0 there is constant M = M(r, ¢) such that for all
X,y € Xi(e),
d(x,y) < M- d(y,x).
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Bestvina-AlgomKfir theorem

Theorem (Bestvina-AlgomKfir)
For any ¢ > 0 there is constant M = M(r, ¢) such that for all
X,y € Xi(e),

d(x,y) < M- d(y,x).

Forr > 2, there exists M = M(r) such that

Br(n) < roM.
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o -x = (R, ¢,4) € Xr, where {; is the uniform metric.
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Remind 3.(n) = max{|||0="|||1 | 0 € AutF,, |||0]||1 < n}.

Proof. Given ¢ € Aut(F;), consider x = (R, id, ¢y) € X, and
o -x = (R, ¢,4) € Xr, where {; is the uniform metric.

(1()(7(¢ ')()

2

min{log(c(«)) | « diff. markings}

log (min{c(¢ywp) | W € Fr, p= “half petal"})
log (min{o(¢vw) | w € F})

log ( min{||¢ywl|o | W € Fr})

log([[|¢1/l-)

log([l[#ll]1)-
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Proof

Remind ,(n) = max{[[|o="|lls | 6 € AutF:, ||[6][}s < n}. J

Proof. Given ¢ € Aut(F;), consider x = (R, id, ¢y) € X, and
o -x = (R, ¢,4) € Xr, where {; is the uniform metric.
d(x, ¢-x) min{log(c(«)) | « diff. markings}
log (min{c(¢ywp) | W € Fr, p= “half petal"})
log min{0(¢’)’w) | we Fr})
log (min{|[¢wllee | W € F/})
log(l[|¢1l]oc)
log([[I¢l[[+)-

Now, using Bestvina-AlgomKfir theorem,

P | o

log(|[1¢~"Ill1) ~ d(x,¢~"-x) = d(¢-x, x) < Md(x, ¢-x) ~ Mlog(]||¢]||+)-
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4. Upper bounds
00000e

Remind 3.(n) = max{|||0="|||1 | 0 € AutF,, |||0]||1 < n}.

Proof. Given ¢ € Aut(F;), consider x = (R, id, ¢y) € X, and
o -x = (R, ¢,4) € Xr, where {; is the uniform metric.

d(x,¢-x) =

2

min{log(c(«)) | « diff. markings}

log (min{c(¢ywp) | W € Fr, p= “half petal"})
log (min{o(¢vw) | w € F})

log ( min{||¢ywl|o | W € Fr})

log([[|¢1/l-)

log([l[#ll]1)-

Now, using Bestvina-AlgomKfir theorem,
log(|l¢~"[[11) ~ d(x,¢"-x) = d(¢-x, x) < Md(x, ¢-x) ~ Mlog(|[|8]||1)-
Hence, for every ¢ € Aut(F;), |[lo~ |||+ < r|l|¢]||M. O
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The rank 2 case

These functions for Aut (F,) are much easier to understand due to the
following technical lemmas.

Let ¢ € Aut(F,) be positive. Then o~ is cyclically reduced and
e~ 111 = llells

For every 6 € Aut(F,), there exist two letter permuting autos
V1, Yo € Aut(F2), a positive one ¢ € Aut™(F2), and an element
g € Fa, such that 6 = dpyedg and [|¢lls + 2/g] < 116]]1-
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The rank 2 case: v»

For every 0 € Aut(F,), |0~ "1 = |0}|1. Hence, v2(n) = n.

Proof. Let 6 € Aut(F2), decomposed as above, 6 = ¢ pin)g. Then,

HOH1 = Hirpdadglls = Hrpvells = Hetl = [lells.

On the other hand,
O™ H1 = HAg-19a "™ by THa = Wy "oy Tl =

=He i =lle Il =llelk. O
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The rank 2 case: (-

For every 0 € Aut(F2), |10~ "||l1 = |||0]||1- Hence, B2(n) = n.

Proof. Let 6 € Aut(F2), decomposed as above, 6 = ¢ pin)g. Then,

10111 = [ll1evarglllt = [llvreellls = [llelll = [lells-

On the other hand,
116711 = 1IAg-193 o™ o Ml = v T~ wy 'l =

= llle™"lllh = lle~"lr =llells. O
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Proof. Let 0 € Aut(Fz), decomposed as above, 0 = ¢ piaAg.
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The rank 2 case: as

For n > 4 we have ax(n) < "5

Proof. Let 0 € Aut(F2), decomposed as above, 6 = ¥ pia)g. Then,
0=1 = Ng-1b, "¢~y " and

161111 < 41gl - 119 "o~ "5 Ml = 4191 - [l lloe <

<4gl(lle~ Ml = 1) = 4lglllell = 1)

Now from [|o||1 +2|g| < ||8]]1 = n, we deduce |g| < “='2ll and so,
1611+ < 2(n = [lella)(llells = 1)-
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The rank 2 case: as

(n-1)?

Forn > 4 we have az(n) < .

Proof. Let 0 € Aut(F2), decomposed as above, 6 = ¥ pia)g. Then,
0=1 = Ng-1b, "¢~y " and

107111 < 4lgl- 1193 e "¢5 oo = 419l - o™ oo <
< A4gl(lle It = 1) = 4lgl(llells = 1).
Now from [|o||1 +2|g| < ||8]]1 = n, we deduce |g| < “='2ll and so,

10~ < 2(n = liel)(lell = 1)-

Finally, the parabola f(x) = 2(n — x)(x — 1) takes its maximum at
x = 1 and so,

_ n+1y\/n+1 n—1)?
167"l < 201l ) (llell~1) < 2(n- 251 (T ) = 2 g
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For n > ny we have az(n) > f5.
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The rank 2 case: as

2
For n > ny we have az(n) > f5.

So, the global known picture is

(i) & <as(n) < 5L
(ii) Bao(n) = n,
(iii) ~2(n) = n,

(iv) Kn" < ar(n),
(v) Br(n) < KnM,
(i) Kn"=1 < ~,(n).
for some constants K = K(r), M = M(r), and for n > ny. )
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