1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency

The degree of commutativity/nilpotency of an infinite group

Enric Ventura

Departament de Matemàtiques Universitat Politècnica de Catalunya

GAGTA-11

Bilbao

July 7th, 2017

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

- 2 Main definition and results
- Finite index subgroups
- A Gromov-like theorem
- 5 The hyperbolic case
- 6 Generalizations
- Degree of *r*-nilpotency

 Motivation 	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

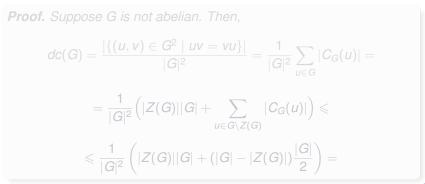
Outline

- 2 Main definition and results
- Finite index subgroups
- 4 Gromov-like theorem
- 5 The hyperbolic case
- 6 Generalizations
- Degree of r-nilpotency

Y. Antolín, A. Martino, E.V., "Degree of commutativity of infinite groups", Proc. Amer. Math. Soc. **145**(2) (2017), 479-485.

Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G commute is bigger than 5/8, then G is abelian.



Y. Antolín, A. Martino, E.V., "Degree of commutativity of infinite groups", Proc. Amer. Math. Soc. **145**(2) (2017), 479-485.

Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G commute is bigger than 5/8, then G is abelian.

Proof. Suppose G is not abelian. Then,

$$dc(G) = \frac{|\{(u, v) \in G^2 \mid uv = vu\}|}{|G|^2} = \frac{1}{|G|^2} \sum_{u \in G} |C_G(u)| = \frac{1}{|G|^2} \left(|Z(G)||G| + \sum_{u \in G \setminus Z(G)} |C_G(u)| \right) \leq \frac{1}{|G|^2} \left(|Z(G)||G| + (|G| - |Z(G)|)\frac{|G|}{2} \right) = \frac{1}{|G|^2} \left(|Z(G)||G| + (|G| - |Z(G)|)\frac{|G|}{2} \right)$$

Y. Antolín, A. Martino, E.V., "Degree of commutativity of infinite groups", Proc. Amer. Math. Soc. **145**(2) (2017), 479-485.

Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G commute is bigger than 5/8, then G is abelian.

Proof. Suppose G is not abelian. Then,

$$dc(G) = \frac{|\{(u, v) \in G^2 \mid uv = vu\}|}{|G|^2} = \frac{1}{|G|^2} \sum_{u \in G} |C_G(u)| =$$
$$= \frac{1}{|G|^2} \left(|Z(G)||G| + \sum_{u \in G \setminus Z(G)} |C_G(u)| \right) \leq$$
$$\leq \frac{1}{|G|^2} \left(|Z(G)||G| + (|G| - |Z(G)|) \frac{|G|}{2} \right) =$$

Y. Antolín, A. Martino, E.V., "Degree of commutativity of infinite groups", Proc. Amer. Math. Soc. **145**(2) (2017), 479-485.

Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G commute is bigger than 5/8, then G is abelian.

Proof. Suppose G is not abelian. Then,

$$dc(G) = \frac{|\{(u,v) \in G^2 \mid uv = vu\}|}{|G|^2} = \frac{1}{|G|^2} \sum_{u \in G} |C_G(u)| =$$
$$= \frac{1}{|G|^2} \left(|Z(G)||G| + \sum_{u \in G \setminus Z(G)} |C_G(u)| \right) \leq$$
$$\leq \frac{1}{|G|^2} \left(|Z(G)||G| + (|G| - |Z(G)|) \frac{|G|}{2} \right) =$$

Y. Antolín, A. Martino, E.V., "Degree of commutativity of infinite groups", Proc. Amer. Math. Soc. **145**(2) (2017), 479-485.

Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G commute is bigger than 5/8, then G is abelian.

Proof. Suppose G is not abelian. Then,

$$dc(G) = \frac{|\{(u,v) \in G^2 \mid uv = vu\}|}{|G|^2} = \frac{1}{|G|^2} \sum_{u \in G} |C_G(u)| =$$
$$= \frac{1}{|G|^2} \left(|Z(G)||G| + \sum_{u \in G \setminus Z(G)} |C_G(u)| \right) \leq$$
$$\leq \frac{1}{|G|^2} \left(|Z(G)||G| + (|G| - |Z(G)|) \frac{|G|}{2} \right) =$$

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
00						
						/

$$= \frac{1}{|G|^2} \left(|Z(G)||G| + (|G| - |Z(G)|) \frac{|G|}{2} \right) =$$

= $\frac{|G| + |Z(G)|}{2|G|} \leq \frac{1}{2} + \frac{|G|}{4 \cdot 2|G|} = \frac{1}{2} + \frac{1}{8} = \frac{5}{8},$
excause $G/Z(G)$ cannot be cyclic and so, $|Z(G)| \leq |G|/4.$

Observation

The quaternion group has dc(Q) = 5/8.

"There is no live between 5/8 and 1"

ヘロア 人間 アメヨア・ヨア

ъ

(Goal)

 Motivation 	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
0•						

$$= \frac{1}{|G|^2} \left(|Z(G)||G| + (|G| - |Z(G)|) \frac{|G|}{2} \right) =$$

= $\frac{|G| + |Z(G)|}{2|G|} \leq \frac{1}{2} + \frac{|G|}{4 \cdot 2|G|} = \frac{1}{2} + \frac{1}{8} = \frac{5}{8},$
because $G/Z(G)$ cannot be cyclic and so, $|Z(G)| \leq |G|/4.$

Observation

The quaternion group has dc(Q) = 5/8.

"There is no live between 5/8 and 1"

ヘロン 人間 とくほどうほう

э

(Goal)

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of <i>r</i> -nilpotency
00						

$$\begin{split} &= \frac{1}{|G|^2} \left(|Z(G)||G| + (|G| - |Z(G)|) \frac{|G|}{2} \right) = \\ &= \frac{|G| + |Z(G)|}{2|G|} \leqslant \frac{1}{2} + \frac{|G|}{4 \cdot 2|G|} = \frac{1}{2} + \frac{1}{8} = \frac{5}{8}, \\ &\text{because } G/Z(G) \text{ cannot be cyclic and so, } |Z(G)| \leqslant |G|/4. \quad \Box \end{split}$$

Observation

The quaternion group has dc(Q) = 5/8.

"There is no live between 5/8 and 1"

ヘロト 人間 とくほとくほとう

ъ

(Goal)

 Motivation 	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
0•						

$$= \frac{1}{|G|^2} \left(|Z(G)||G| + (|G| - |Z(G)|)\frac{|G|}{2} \right) =$$

= $\frac{|G| + |Z(G)|}{2|G|} \leq \frac{1}{2} + \frac{|G|}{4 \cdot 2|G|} = \frac{1}{2} + \frac{1}{8} = \frac{5}{8},$
because $G/Z(G)$ cannot be cyclic and so, $|Z(G)| \leq |G|/4.$

Observation

The quaternion group has dc(Q) = 5/8.

"There is no live between 5/8 and 1"

イロト イロト イヨト

ъ

(Goal)

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of <i>r</i> -nilpotency
00						

b

$$= \frac{1}{|G|^2} \left(|Z(G)||G| + (|G| - |Z(G)|) \frac{|G|}{2} \right) =$$

= $\frac{|G| + |Z(G)|}{2|G|} \leq \frac{1}{2} + \frac{|G|}{4 \cdot 2|G|} = \frac{1}{2} + \frac{1}{8} = \frac{5}{8},$
ecause $G/Z(G)$ cannot be cyclic and so, $|Z(G)| \leq |G|/4.$

Observation

The quaternion group has dc(Q) = 5/8.

"There is no live between 5/8 and 1"

(Goal)

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Motivation

- 2 Main definition and results
- Finite index subgroups
- A Gromov-like theorem
- 5 The hyperbolic case
- 6 Generalizations
- Degree of r-nilpotency

Degree of commutativity

Definition

Let $G = \langle X \rangle$ be a f.g. group. The degree of commutativity of G w.r.t. X is

$$dc_X(G) = \limsup_{n \to \infty} \frac{|\{(u, v) \in \mathbb{B}_X(n) \times \mathbb{B}_X(n) \mid uv = vu\}|}{|\mathbb{B}_X(n)|^2} \in [0, 1],$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where $\mathbb{B}_X(n) = \{g \in G \mid |g|_X \leqslant n\}.$

- (i) Is this a real lim?
- (ii) Does it depend on X?
- (iii) What is the relation with the algebraic structure of G?

Degree of commutativity

Definition

Let $G = \langle X \rangle$ be a f.g. group. The degree of commutativity of G w.r.t. X is

$$dc_X(G) = \limsup_{n \to \infty} \frac{|\{(u, v) \in \mathbb{B}_X(n) \times \mathbb{B}_X(n) \mid uv = vu\}|}{|\mathbb{B}_X(n)|^2} \in [0, 1],$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

where $\mathbb{B}_X(n) = \{g \in G \mid |g|_X \leqslant n\}.$

- (i) Is this a real lim?
- (ii) Does it depend on X ?
- (iii) What is the relation with the algebraic structure of G?

Degree of commutativity

Definition

Let $G = \langle X \rangle$ be a f.g. group. The degree of commutativity of G w.r.t. X is

$$dc_X(G) = \limsup_{n \to \infty} \frac{|\{(u, v) \in \mathbb{B}_X(n) \times \mathbb{B}_X(n) \mid uv = vu\}|}{|\mathbb{B}_X(n)|^2} \in [0, 1],$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

where $\mathbb{B}_X(n) = \{g \in G \mid |g|_X \leqslant n\}.$

- (i) Is this a real lim?
- (ii) Does it depend on X?
- (iii) What is the relation with the algebraic structure of G?

Degree of commutativity

Definition

Let $G = \langle X \rangle$ be a f.g. group. The degree of commutativity of G w.r.t. X is

$$dc_X(G) = \limsup_{n \to \infty} \frac{|\{(u, v) \in \mathbb{B}_X(n) \times \mathbb{B}_X(n) \mid uv = vu\}|}{|\mathbb{B}_X(n)|^2} \in [0, 1],$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

where $\mathbb{B}_X(n) = \{g \in G \mid |g|_X \leqslant n\}.$

- (i) Is this a real lim?
- (ii) Does it depend on X?
- (iii) What is the relation with the algebraic structure of G?

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	Degree of r-nilpotency
	000000					

Theorem (Antolín–Martino–V.)

Let $G = \langle X \rangle$ be of subexponential* growth and residually finite (this includes all groups of polynomial growth). Then, (i) $dc_X(G) > 5/8 \Leftrightarrow G$ is abelian; (ii) $dc_X(G) > 0 \Leftrightarrow G$ is virtually abelian; (iii) $dc_X(G) > 0 \Leftrightarrow G$ is virtually abelian;

Conjecture

The same is true for an arbitrary f.g. G.

Very recently

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	Degree of r-nilpotency
	000000					

Theorem (Antolín–Martino–V.)

Let $G = \langle X \rangle$ be of subexponential* growth and residually finite (this includes all groups of polynomial growth). Then, (i) $dc_X(G) > 5/8 \Leftrightarrow G$ is abelian; (ii) $dc_X(G) > 0 \Leftrightarrow G$ is virtually abelian;

(iii) $dc_X(G)$ is a real limit and does not depend on X.

Conjecture

The same is true for an arbitrary f.g. G.

Very recently

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
	000000					

Theorem (Antolín–Martino–V.)

Let $G = \langle X \rangle$ be of subexponential* growth and residually finite (this includes all groups of polynomial growth). Then, (i) $dc_X(G) > 5/8 \Leftrightarrow G$ is abelian; (ii) $dc_X(G) > 0 \Leftrightarrow G$ is virtually abelian; (iii) $dc_X(G)$ is a real limit and does not depend on *X*.

Conjecture

The same is true for an arbitrary f.g. G.

Very recently

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	Degree of r-nilpotency
	000000					

Theorem (Antolín–Martino–V.)

Let $G = \langle X \rangle$ be of subexponential* growth and residually finite (this includes all groups of polynomial growth). Then, (i) $dc_X(G) > 5/8 \Leftrightarrow G$ is abelian; (ii) $dc_X(G) > 0 \Leftrightarrow G$ is virtually abelian;

(iii) $dc_X(G)$ is a real limit and does not depend on X.

Conjecture

The same is true for an arbitrary f.g. G.

Very recently

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
	000000					

Theorem (Antolín–Martino–V.)

Let $G = \langle X \rangle$ be of subexponential* growth and residually finite (this includes all groups of polynomial growth). Then, (i) $dc_X(G) > 5/8 \Leftrightarrow G$ is abelian; (ii) $dc_X(G) > 0 \Leftrightarrow G$ is virtually abelian;

(iii) $dc_X(G)$ is a real limit and does not depend on X.

Conjecture

The same is true for an arbitrary f.g. G.

Very recently

1. Motivation 2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
0000000	0000	00000		00	000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Independence on X

Definition

A f.g. group $G = \langle X \rangle$ is of

- subexponential* growth if $\lim_{n\to\infty} \frac{|\mathbb{B}_X(n+1)|}{|\mathbb{B}_X(n)|} = 1$;
- polynomial growth if $|\mathbb{B}_X(n)| \leq Dn^d$.

1. Motivation 2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
0000000	0000	00000		00	000

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Independence on X

Definition

A f.g. group $G = \langle X \rangle$ is of

- subexponential* growth if $\lim_{n\to\infty} \frac{|\mathbb{B}_X(n+1)|}{|\mathbb{B}_X(n)|} = 1$;
- polynomial growth if $|\mathbb{B}_X(n)| \leq Dn^d$.

1. Motivation 2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
0000000	0000	00000		00	

Definition

A f.g. group $G = \langle X \rangle$ is of

- subexponential* growth if $\lim_{n\to\infty} \frac{|\mathbb{B}_X(n+1)|}{|\mathbb{B}_X(n)|} = 1$;
- polynomial growth (of degree d) if $0 < Cn^d \leq |\mathbb{B}_X(n)| \leq Dn^d$.

Definition

Let $G = \langle X \rangle$. A map $f : G \to \mathbb{N}$ is an estimation of the X-metric if $\exists K > 0$ such that $\forall w \in G$

$$\frac{1}{K}f(w)\leqslant |w|_X\leqslant Kf(w).$$

Example

It is well known that, for $G = \langle X \rangle = \langle Y \rangle$, $| \cdot |_X$ is an estimation of the *Y*-metric, and $| \cdot |_Y$ is an estimation of the *X*-metric.

くロ とう ふ 日 とう き しょう く 日 とう く 日 と

1. Motivation 2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
0000000	0000	00000		00	

Definition

A f.g. group $G = \langle X \rangle$ is of

- subexponential* growth if $\lim_{n\to\infty} \frac{|\mathbb{B}_X(n+1)|}{|\mathbb{B}_X(n)|} = 1$;
- polynomial growth (of degree d) if $0 < Cn^d \leq |\mathbb{B}_X(n)| \leq Dn^d$.

Definition

Let $G = \langle X \rangle$. A map $f : G \to \mathbb{N}$ is an estimation of the X-metric if $\exists K > 0$ such that $\forall w \in G$

$$\frac{1}{K}f(w)\leqslant |w|_X\leqslant Kf(w).$$

Example

It is well known that, for $G = \langle X \rangle = \langle Y \rangle$, $| \cdot |_X$ is an estimation of the *Y*-metric, and $| \cdot |_Y$ is an estimation of the *X*-metric.

くロ とう ふ 日 とう き しょう く 日 とう く 日 と

1. Motivation 2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
0000000	0000	00000		00	

Definition

A f.g. group $G = \langle X \rangle$ is of

- subexponential* growth if $\lim_{n\to\infty} \frac{|\mathbb{B}_X(n+1)|}{|\mathbb{B}_X(n)|} = 1$;
- polynomial growth (of degree d) if $0 < Cn^d \leq |\mathbb{B}_X(n)| \leq Dn^d$.

Definition

Let $G = \langle X \rangle$. A map $f : G \to \mathbb{N}$ is an estimation of the X-metric if $\exists K > 0$ such that $\forall w \in G$

$$\frac{1}{K}f(w)\leqslant |w|_X\leqslant Kf(w).$$

Example

It is well known that, for $G = \langle X \rangle = \langle Y \rangle$, $| \cdot |_X$ is an estimation of the *Y*-metric, and $| \cdot |_Y$ is an estimation of the *X*-metric.

1. Motivation 2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
00 000000					

Definition

Define the *f*-ball and the *f*-dc:

 $\mathbb{B}_f(n) = \{ w \in G \mid f(w) \leqslant n \},$

 $dc_f(G) = \limsup_{n \to \infty} \frac{|\{(u, v) \in \mathbb{B}_f(n) \times \mathbb{B}_f(n) \mid uv = vu\}|}{|\mathbb{B}_f(n)|^2}$

Proposition

Let $G = \langle X \rangle$ be of polynomial growth, and $f : G \to \mathbb{N}$ be an estimation of the X-metric. Then,

 $dc_X(G) > 0 \iff dc_f(G) > 0.$

Proof. Clearly, $\mathbb{B}_f(n) \subseteq \mathbb{B}_X(Kn) \subseteq \mathbb{B}_f(K^2n)$ so, $|\{(u, v) \in (\mathbb{B}_f(n))^2 \mid uv = vu\}| \leq |\{(u, v) \in (\mathbb{B}_X(Kn))^2 \mid uv = vu\}|.$

1. Motivation 2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
00 000000					

Definition

Define the *f*-ball and the *f*-dc:

 $\mathbb{B}_f(n) = \{ w \in G \mid f(w) \leqslant n \},$

 $dc_f(G) = \limsup_{n \to \infty} \frac{|\{(u, v) \in \mathbb{B}_f(n) \times \mathbb{B}_f(n) \mid uv = vu\}|}{|\mathbb{B}_f(n)|^2}$

Proposition

Let $G = \langle X \rangle$ be of polynomial growth, and $f : G \to \mathbb{N}$ be an estimation of the X-metric. Then,

 $dc_X(G) > 0 \iff dc_f(G) > 0.$

Proof. Clearly, $\mathbb{B}_f(n) \subseteq \mathbb{B}_X(Kn) \subseteq \mathbb{B}_f(K^2n)$ so, $|\{(u, v) \in (\mathbb{B}_f(n))^2 \mid uv = vu\}| \leq |\{(u, v) \in (\mathbb{B}_X(Kn))^2 \mid uv = vu\}|.$

 $) \land (\land)$

1. Motivation 2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
00 000000					

Definition

Define the *f*-ball and the *f*-dc:

 $\mathbb{B}_f(n) = \{ w \in G \mid f(w) \leqslant n \},$

 $dc_f(G) = \limsup_{n \to \infty} \frac{|\{(u, v) \in \mathbb{B}_f(n) \times \mathbb{B}_f(n) \mid uv = vu\}|}{|\mathbb{B}_f(n)|^2}.$

Proposition

Let $G = \langle X \rangle$ be of polynomial growth, and $f : G \to \mathbb{N}$ be an estimation of the X-metric. Then,

 $dc_X(G) > 0 \iff dc_f(G) > 0.$

Proof. Clearly, $\mathbb{B}_f(n) \subseteq \mathbb{B}_X(Kn) \subseteq \mathbb{B}_f(K^2n)$ so,

 $|\{(u, v) \in (\mathbb{B}_f(n))^2 \mid uv = vu\}| \leq |\{(u, v) \in (\mathbb{B}_X(Kn))^2 \mid uv = vu\}|.$

1. Motivation 2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
00 000000					

Definition

Define the *f*-ball and the *f*-dc:

 $\mathbb{B}_f(n) = \{ w \in G \mid f(w) \leqslant n \},$

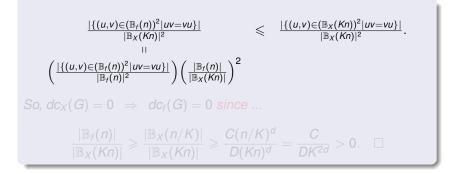
 $dc_f(G) = \limsup_{n \to \infty} \frac{|\{(u, v) \in \mathbb{B}_f(n) \times \mathbb{B}_f(n) \mid uv = vu\}|}{|\mathbb{B}_f(n)|^2}.$

Proposition

Let $G = \langle X \rangle$ be of polynomial growth, and $f : G \to \mathbb{N}$ be an estimation of the X-metric. Then,

 $dc_X(G) > 0 \iff dc_f(G) > 0.$

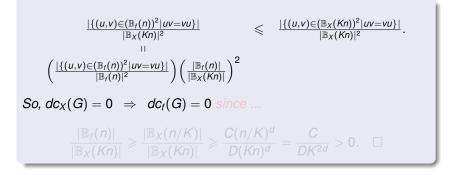
Proof. Clearly, $\mathbb{B}_f(n) \subseteq \mathbb{B}_X(Kn) \subseteq \mathbb{B}_f(K^2n)$ so, $|\{(u, v) \in (\mathbb{B}_f(n))^2 \mid uv = vu\}| \leq |\{(u, v) \in (\mathbb{B}_X(Kn))^2 \mid uv = vu\}|.$



Corollary

If $G = \langle X \rangle = \langle Y \rangle$ is of polynomial growth, then

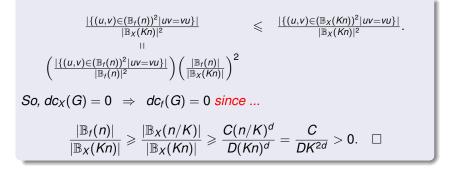
 $dc_X(G) = 0 \iff dc_Y(G) = 0.$



Corollary

If $G = \langle X \rangle = \langle Y \rangle$ is of polynomial growth, then

 $dc_X(G) = 0 \iff dc_Y(G) = 0.$



Corollary

If $G = \langle X \rangle = \langle Y \rangle$ is of polynomial growth, then

 $dc_X(G) = 0 \iff dc_Y(G) = 0.$

$$\frac{\frac{|\{(u,v)\in (\mathbb{B}_{f}(n))^{2}|uv=vu\}|}{|\mathbb{B}_{X}(Kn)|^{2}}}{(1-||\mathbb{B}_{f}(n)||^{2}} \leqslant \frac{\frac{|\{(u,v)\in (\mathbb{B}_{X}(Kn))^{2}|uv=vu\}|}{|\mathbb{B}_{X}(Kn)|^{2}}}{(1-||\mathbb{B}_{X}(Kn)||^{2})} \cdot \frac{(1-||\mathbb{B}_{f}(n)||^{2})}{(1-||\mathbb{B}_{f}(n)||^{2})} \circ \frac{dc_{f}(G) = 0 \text{ since } \dots}{dc_{f}(G) = 0 \text{ since } \dots}}$$

$$\frac{|\mathbb{B}_{f}(n)|}{|\mathbb{B}_{X}(Kn)|} \geqslant \frac{|\mathbb{B}_{X}(n/K)|}{|\mathbb{B}_{X}(Kn)|} \geqslant \frac{C(n/K)^{d}}{D(Kn)^{d}} = \frac{C}{DK^{2d}} > 0. \quad \Box$$

Corollary

If $G = \langle X \rangle = \langle Y \rangle$ is of polynomial growth, then

 $dc_X(G) = 0 \iff dc_Y(G) = 0.$

Independence on X

Definition

Let $\langle Y \rangle = H \leq G = \langle X \rangle$. The subgroup H is undistorted if $\exists K > 0$ s.t. $\forall h \in H$, $|h|_Y/K \leq |h|_X \leq K|h|_Y$. In this case, $|\cdot|_X$ restricted to H is an estimation of the Y-metric for H.

Corollary

Let $G = \langle X \rangle$ be of polynomial growth, and $\langle Y \rangle = H \leqslant G$ be a non-distorted subgroup. Then,

 $dc_X(H) = 0 \iff dc_Y(H) = 0.$

◆□ → ◆□ → ◆ = → ◆ = → のへで

Independence on X

Definition

Let $\langle Y \rangle = H \leq G = \langle X \rangle$. The subgroup H is undistorted if $\exists K > 0$ s.t. $\forall h \in H$, $|h|_Y/K \leq |h|_X \leq K|h|_Y$. In this case, $|\cdot|_X$ restricted to H is an estimation of the Y-metric for H.

Corollary

Let $G = \langle X \rangle$ be of polynomial growth, and $\langle Y \rangle = H \leqslant G$ be a non-distorted subgroup. Then,

 $dc_X(H) = 0 \iff dc_Y(H) = 0.$

・ロト・西ト・ヨト・ヨー うへぐ

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

- Main definition and results
- Finite index subgroups
- A Gromov-like theorem
- 5 The hyperbolic case
- 6 Generalizations
- Degree of r-nilpotency

Lemma (Burillo–V., 2002)

If $H \leq_{f.i.} G = \langle X \rangle$ and G has subexponential* growth then, for every $g \in G$, there exists $\lim_{n \to \infty} \frac{|\mathbb{B}_X(n) \cap \mathcal{G}H|}{|\mathbb{B}_X(n)|} = \lim_{n \to \infty} \frac{|\mathbb{B}_X(n) \cap \mathcal{H}g|}{|\mathbb{B}_X(n)|} = \frac{1}{[G:H]}$.

Remark

This is false in the free group: $H = \{even words\} \leq_2 F_r$.

Proposition³

Let $\langle Y \rangle = H \leq_{f.i.} G = \langle X \rangle$ be of polynomial growth. Then,

$$dc_X(G) \ge \frac{1}{[G:H]^2} dc_X(H).$$

In particular, $dc_Y(H) > 0 \Rightarrow dc_X(H) > 0 \Rightarrow dc_X(G) > 0$.

・ロト・西ト・ヨト・ヨー うへぐ

Lemma (Burillo–V., 2002)

If $H \leq_{f.i.} G = \langle X \rangle$ and G has subexponential* growth then, for every $g \in G$, there exists $\lim_{n \to \infty} \frac{|\mathbb{B}_X(n) \cap gH|}{|\mathbb{B}_X(n)|} = \lim_{n \to \infty} \frac{|\mathbb{B}_X(n) \cap Hg|}{|\mathbb{B}_X(n)|} = \frac{1}{[G:H]}$.

Remark

This is false in the free group: $H = \{even words\} \leq_2 F_r$.

Proposition

Let $\langle Y \rangle = H \leqslant_{f.i.} G = \langle X \rangle$ be of polynomial growth. Then,

$$dc_X(G) \ge \frac{1}{[G:H]^2} dc_X(H).$$

In particular, $dc_Y(H) > 0 \Rightarrow dc_X(H) > 0 \Rightarrow dc_X(G) > 0$.

・ロト・日本・日本・日本・日本・日本

Lemma (Burillo–V., 2002)

If $H \leq_{f.i.} G = \langle X \rangle$ and G has subexponential* growth then, for every $g \in G$, there exists $\lim_{n \to \infty} \frac{|\mathbb{B}_X(n) \cap gH|}{|\mathbb{B}_X(n)|} = \lim_{n \to \infty} \frac{|\mathbb{B}_X(n) \cap Hg|}{|\mathbb{B}_X(n)|} = \frac{1}{[G:H]}$.

Remark

This is false in the free group: $H = \{even words\} \leq_2 F_r$.

Proposition*

Let $\langle Y \rangle = H \leqslant_{f.i.} G = \langle X \rangle$ be of polynomial growth. Then,

$$dc_X(G) \ge \frac{1}{[G:H]^2} dc_X(H).$$

In particular, $dc_Y(H) > 0 \Rightarrow dc_X(H) > 0 \Rightarrow dc_X(G) > 0$.

Proof. Clearly, $|\{(u, v) \in (\mathbb{B}_{X}(n))^{2} \mid uv = vu\}| \ge |\{(u, v) \in (H \cap \mathbb{B}_{X}(n))^{2} \mid uv = vu\}|.$

Proof. Clearly, $|\{(u, v) \in (\mathbb{B}_{X}(n))^{2} \mid uv = vu\}| \ge |\{(u, v) \in (H \cap \mathbb{B}_{X}(n))^{2} \mid uv = vu\}|.$ Therefore, given $\varepsilon > 0$, we have for $n \gg 0$ $\frac{|\{(u,v)\in (\mathbb{B}_X(n))^2 \mid uv = vu\}|}{|\mathbb{B}_X(n)|^2} \ge$ $\frac{|\{(u,v)\in (H\cap\mathbb{B}_X(n))^2\mid uv=vu\}|}{|H\cap\mathbb{B}_X(n)|^2}\cdot\frac{|H\cap\mathbb{B}_X(n)|^2}{|\mathbb{B}_X(n)|^2}\geq$ $\frac{|\{(u,v)\in (H\cap\mathbb{B}_X(n))^2\mid uv=vu\}|}{|H\cap\mathbb{B}_X(n)|^2}\left(\frac{1}{[G:H]}-\varepsilon\right)^2.$

Proof. Clearly, $|\{(u, v) \in (\mathbb{B}_{X}(n))^{2} \mid uv = vu\}| \ge |\{(u, v) \in (H \cap \mathbb{B}_{X}(n))^{2} \mid uv = vu\}|.$ Therefore, given $\varepsilon > 0$, we have for $n \gg 0$ $\frac{|\{(u,v)\in (\mathbb{B}_X(n))^2 \mid uv = vu\}|}{|\mathbb{B}_X(n)|^2} \ge$ $\frac{|\{(u,v)\in (H\cap\mathbb{B}_X(n))^2\mid uv=vu\}|}{|H\cap\mathbb{B}_X(n)|^2}\cdot\frac{|H\cap\mathbb{B}_X(n)|^2}{|\mathbb{B}_X(n)|^2}\geq$ $\frac{|\{(u,v)\in (H\cap\mathbb{B}_X(n))^2\mid uv=vu\}|}{|H\cap\mathbb{B}_X(n)|^2}\left(\frac{1}{[G:H]}-\varepsilon\right)^2.$ Taking limsups, $dc_X(G) \ge dc_X(H) \left(\frac{1}{[G:H]} - \varepsilon\right)^2$. And this is true

Proof. Clearly, $|\{(u, v) \in (\mathbb{B}_{X}(n))^{2} \mid uv = vu\}| \ge |\{(u, v) \in (H \cap \mathbb{B}_{X}(n))^{2} \mid uv = vu\}|.$ Therefore, given $\varepsilon > 0$, we have for $n \gg 0$ $\frac{|\{(u,v)\in (\mathbb{B}_X(n))^2 \mid uv = vu\}|}{|\mathbb{B}_X(n)|^2} \ge$ $\frac{|\{(u,v)\in (H\cap\mathbb{B}_X(n))^2\mid uv=vu\}|}{|H\cap\mathbb{B}_X(n)|^2}\cdot\frac{|H\cap\mathbb{B}_X(n)|^2}{|\mathbb{B}_X(n)|^2}\geq$ $\frac{|\{(u,v)\in (H\cap\mathbb{B}_X(n))^2\mid uv=vu\}|}{|H\cap\mathbb{B}_X(n)|^2}\left(\frac{1}{[G:H]}-\varepsilon\right)^2.$ Taking limsups, $dc_X(G) \ge dc_X(H) \left(\frac{1}{[G:H]} - \varepsilon\right)^2$. And this is true $\forall \varepsilon > 0 \text{ so, } dc_X(G) \geq \frac{1}{[G:H]^2} dc_X(H). \quad \Box$

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
		0000				

Proposition* (Gallagher, 1970)

Let G be a finite group and $H \leq G$. Then, $dc(G) \leq dc(H) \cdot dc(G/H)$.

Proposition[®]

Let $G = \langle X \rangle$ be subexponentially^{*} growing. Then, for any finite quotient G/N, we have $dc_X(G) \leq dc(G/N)$.

Proof. Let $N \trianglelefteq G$ with [G : N] = d. By B-V, $\forall g \in G \lim_{n \to \infty} |gN \cap \mathbb{B}_X(n)| / |\mathbb{B}_X(n)| = 1/d$, indep. X and g. But $|G/N| < \infty$, so this lim is uniform on g, i.e., $\forall \varepsilon > 0, \exists n_0, \forall n \ge n_0 \text{ and } \forall g \in G$,

$$\left(rac{1}{d}-arepsilon
ight)|\mathbb{B}_X(n)|\leqslant |gN\cap\mathbb{B}_X(n)|\leqslant \left(rac{1}{d}+arepsilon
ight)|\mathbb{B}_X(n)|.$$

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
		0000				

Proposition* (Gallagher, 1970)

Let G be a finite group and $H \leq G$. Then, $dc(G) \leq dc(H) \cdot dc(G/H)$.

Proposition*

Let $G = \langle X \rangle$ be subexponentially^{*} growing. Then, for any finite quotient G/N, we have $dc_X(G) \leq dc(G/N)$.

Proof. Let $N \trianglelefteq G$ with [G : N] = d. By B-V, $\forall g \in G \lim_{n \to \infty} |gN \cap \mathbb{B}_X(n)| / |\mathbb{B}_X(n)| = 1/d$, indep. X and g. But $|G/N| < \infty$, so this lim is uniform on g, i.e., $\forall \varepsilon > 0, \exists n_0, \forall n \ge n_0 \text{ and } \forall g \in G$,

$$\left(rac{1}{d}-arepsilon
ight)|\mathbb{B}_X(n)|\leqslant |gN\cap\mathbb{B}_X(n)|\leqslant \left(rac{1}{d}+arepsilon
ight)|\mathbb{B}_X(n)|.$$

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
		0000				

Proposition* (Gallagher, 1970)

Let G be a finite group and $H \leq G$. Then, $dc(G) \leq dc(H) \cdot dc(G/H)$.

Proposition*

Let $G = \langle X \rangle$ be subexponentially^{*} growing. Then, for any finite quotient G/N, we have $dc_X(G) \leq dc(G/N)$.

Proof. Let $N \subseteq G$ with [G : N] = d.

By B–V, $\forall g \in G \lim_{n \to \infty} |gN \cap \mathbb{B}_X(n)| / |\mathbb{B}_X(n)| = 1/d$, indep. X and g. But $|G/N| < \infty$, so this lim is uniform on g, i.e., $\forall \varepsilon > 0, \exists n_0, \forall n \ge n_0 \text{ and } \forall g \in G$,

$$\left(rac{1}{d}-arepsilon
ight)|\mathbb{B}_X(n)|\leqslant |gN\cap\mathbb{B}_X(n)|\leqslant \left(rac{1}{d}+arepsilon
ight)|\mathbb{B}_X(n)|.$$

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
		0000				

Proposition* (Gallagher, 1970)

Let G be a finite group and $H \leq G$. Then, $dc(G) \leq dc(H) \cdot dc(G/H)$.

Proposition*

Let $G = \langle X \rangle$ be subexponentially^{*} growing. Then, for any finite quotient G/N, we have $dc_X(G) \leq dc(G/N)$.

Proof. Let $N \trianglelefteq G$ with [G : N] = d. By B-V, $\forall g \in G \lim_{n \to \infty} |gN \cap \mathbb{B}_X(n)| / |\mathbb{B}_X(n)| = 1/d$, indep. X and g. But $|G/N| < \infty$, so this lim is uniform on g, i.e., $\forall \varepsilon > 0, \exists n_0, \forall n \ge n_0 \text{ and } \forall g \in G$,

$$\left(rac{1}{d}-arepsilon
ight)|\mathbb{B}_X(n)|\leqslant |gN\cap\mathbb{B}_X(n)|\leqslant \left(rac{1}{d}+arepsilon
ight)|\mathbb{B}_X(n)|.$$

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
		0000				

Proposition* (Gallagher, 1970)

Let G be a finite group and $H \leq G$. Then, $dc(G) \leq dc(H) \cdot dc(G/H)$.

Proposition*

Let $G = \langle X \rangle$ be subexponentially^{*} growing. Then, for any finite quotient G/N, we have $dc_X(G) \leq dc(G/N)$.

Proof. Let $N \trianglelefteq G$ with [G : N] = d. By B-V, $\forall g \in G \lim_{n \to \infty} |gN \cap \mathbb{B}_X(n)| / |\mathbb{B}_X(n)| = 1/d$, indep. X and g. But $|G/N| < \infty$, so this lim is uniform on g, i.e., $\forall \varepsilon > 0, \exists n_0, \forall n \ge n_0 \text{ and } \forall g \in G$,

$$\left(rac{1}{d}-arepsilon
ight)|\mathbb{B}_X(n)|\leqslant |gN\cap\mathbb{B}_X(n)|\leqslant \left(rac{1}{d}+arepsilon
ight)|\mathbb{B}_X(n)|.$$

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
		0000				

Proposition* (Gallagher, 1970)

Let G be a finite group and $H \leq G$. Then, $dc(G) \leq dc(H) \cdot dc(G/H)$.

Proposition*

Let $G = \langle X \rangle$ be subexponentially^{*} growing. Then, for any finite quotient G/N, we have $dc_X(G) \leq dc(G/N)$.

Proof. Let $N \trianglelefteq G$ with [G : N] = d. By B-V, $\forall g \in G \lim_{n \to \infty} |gN \cap \mathbb{B}_X(n)| / |\mathbb{B}_X(n)| = 1/d$, indep. X and g. But $|G/N| < \infty$, so this lim is uniform on g, i.e., $\forall \varepsilon > 0, \exists n_0, \forall n \ge n_0 \text{ and } \forall g \in G$,

$$\left(rac{1}{d}-arepsilon
ight)|\mathbb{B}_X({\it n})|\leqslant |{\it gN}\cap\mathbb{B}_X({\it n})|\leqslant \left(rac{1}{d}+arepsilon
ight)|\mathbb{B}_X({\it n})|.$$

 $\exists \delta > 0 \ s.t. \ |\{(u, v) \in (\mathbb{B}_X(n))^2 \mid uv = vu\}| / |\mathbb{B}_X(n)|^2 > dc(G/N) + \delta$ for infinitely many n's.

200

 $\exists \delta > 0 \ s.t. \ |\{(u, v) \in (\mathbb{B}_X(n))^2 \mid uv = vu\}| / |\mathbb{B}_X(n)|^2 > dc(G/N) + \delta$ for infinitely many n's. In the above inequality, take $\varepsilon > 0$ small enough so that $2\varepsilon d + \varepsilon^2 d^2 < \delta$, and $\exists n \gg 0$ such that

 $\exists \delta > 0 \ s.t. \ |\{(u, v) \in (\mathbb{B}_X(n))^2 \mid uv = vu\}| / |\mathbb{B}_X(n)|^2 > dc(G/N) + \delta$ for infinitely many n's. In the above inequality, take $\varepsilon > 0$ small enough so that $2\varepsilon d + \varepsilon^2 d^2 < \delta$, and $\exists n \gg 0$ such that $dc(G/N) + \delta < \frac{|\{(u,v) \in (\mathbb{B}_X(n))^2 \mid uv = vu\}|}{|\mathbb{B}_X(n)|^2}$

 $\exists \delta > 0 \ s.t. \ |\{(u, v) \in (\mathbb{B}_X(n))^2 \mid uv = vu\}| / |\mathbb{B}_X(n)|^2 > dc(G/N) + \delta$ for infinitely many n's. In the above inequality, take $\varepsilon > 0$ small enough so that $2\varepsilon d + \varepsilon^2 d^2 < \delta$, and $\exists n \gg 0$ such that $dc(G/N) + \delta < \frac{|\{(u,v) \in (\mathbb{B}_X(n))^2 \mid uv = vu\}|}{|\mathbb{B}_X(n)|^2}$ $\leq \frac{1}{|\mathbb{B}_X(n)|^2} \left| \left\{ (\overline{u}, \overline{v}) \in (G/N)^2 \mid \overline{u} \, \overline{v} = \overline{v} \, \overline{u} \right\} \right| \, \left(\frac{1}{d} + \varepsilon \right)^2 |\mathbb{B}_X(n)|^2$

 $\exists \delta > 0 \text{ s.t. } |\{(u, v) \in (\mathbb{B}_X(n))^2 \mid uv = vu\}| / |\mathbb{B}_X(n)|^2 > dc(G/N) + \delta$ for infinitely many n's. In the above inequality, take $\varepsilon > 0$ small enough so that $2\varepsilon d + \varepsilon^2 d^2 < \delta$, and $\exists n \gg 0$ such that $dc(G/N) + \delta < \frac{|\{(u,v) \in (\mathbb{B}_X(n))^2 \mid uv = vu\}|}{|\mathbb{B}_X(n)|^2}$ $\leq \frac{1}{|\mathbb{B}_{X}(n)|^{2}} \left| \left\{ (\overline{u}, \overline{v}) \in (G/N)^{2} \mid \overline{u} \, \overline{v} = \overline{v} \, \overline{u} \right\} \right| \, \left(\frac{1}{d} + \varepsilon \right)^{2} |\mathbb{B}_{X}(n)|^{2}$ $=\frac{|\{(\overline{u},\overline{v})\in (G/N)^2\mid \overline{u}\,\overline{v}=\overline{v}\,\overline{u}\}|}{d^2}(1+\varepsilon d)^2$

 $\mathcal{O} \land \mathcal{O}$

1. Motivation 2. Main definition 3. Finite index subgroups 4. A Gromov-like theorem 5. The hyperbolic case 6. Generalizations 7. Degree of r-nilpotency 0.0 0.000 0.000 0.000 0.000 0.000 0.000

Finite index subgroups

 $\exists \delta > 0 \ s.t. \ |\{(u, v) \in (\mathbb{B}_X(n))^2 \mid uv = vu\}| / |\mathbb{B}_X(n)|^2 > dc(G/N) + \delta$ for infinitely many n's. In the above inequality, take $\varepsilon > 0$ small enough so that $2\varepsilon d + \varepsilon^2 d^2 < \delta$, and $\exists n \gg 0$ such that $dc(G/N) + \delta < \frac{|\{(u,v) \in (\mathbb{B}_X(n))^2 \mid uv = vu\}|}{|\mathbb{B}_X(n)|^2}$ $\leq \frac{1}{|\mathbb{B}_{X}(n)|^{2}} \left| \left\{ (\overline{u}, \overline{v}) \in (G/N)^{2} \mid \overline{u} \, \overline{v} = \overline{v} \, \overline{u} \right\} \right| \, \left(\frac{1}{d} + \varepsilon \right)^{2} |\mathbb{B}_{X}(n)|^{2}$ $=\frac{|\{(\overline{u},\overline{v})\in (G/N)^2\mid \overline{u}\,\overline{v}=\overline{v}\,\overline{u}\}|}{d^2}(1+\varepsilon d)^2$ $\leqslant \frac{|\{(\overline{u},\overline{v})\in (G/N)^2\mid \overline{u}\,\overline{v}=\overline{v}\,\overline{u}\}|}{d^2}+2\varepsilon d+\varepsilon^2 d^2$

 $< dc(G/N) + \delta$, a contradiction.

1. Motivation 2. Main definition 3. Finite index subgroups 4. A Gromov-like theorem 5. The hyperbolic case 6. Generalizations 7. Degree of r-nilpotency 0.0 0.000 0.000 0.000 0.000 0.000 0.000

Finite index subgroups

 $\exists \delta > 0 \ s.t. \ |\{(u, v) \in (\mathbb{B}_X(n))^2 \mid uv = vu\}| / |\mathbb{B}_X(n)|^2 > dc(G/N) + \delta$ for infinitely many n's. In the above inequality, take $\varepsilon > 0$ small enough so that $2\varepsilon d + \varepsilon^2 d^2 < \delta$, and $\exists n \gg 0$ such that $dc(G/N) + \delta < \frac{|\{(u,v) \in (\mathbb{B}_X(n))^2 \mid uv = vu\}|}{|\mathbb{B}_X(n)|^2}$ $\leq \frac{1}{|\mathbb{B}_{X}(n)|^{2}} \left| \left\{ (\overline{u}, \overline{v}) \in (G/N)^{2} \mid \overline{u} \, \overline{v} = \overline{v} \, \overline{u} \right\} \right| \, \left(\frac{1}{d} + \varepsilon \right)^{2} |\mathbb{B}_{X}(n)|^{2}$ $=\frac{|\{(\overline{u},\overline{v})\in (G/N)^2\mid \overline{u}\,\overline{v}=\overline{v}\,\overline{u}\}|}{d^2}(1+\varepsilon d)^2$ $\leqslant \frac{|\{(\overline{u},\overline{v})\in (G/N)^2 \mid \overline{u}\,\overline{v}=\overline{v}\,\overline{u}\}|}{d^2}+2\varepsilon d+\varepsilon^2 d^2$ $< dc(G/N) + \delta$, a contradiction.

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

- 2 Main definition and results
- Finite index subgroups
- 4 Gromov-like theorem
- 5 The hyperbolic case
- 6 Generalizations
- Degree of r-nilpotency

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
			•0000			

Theorem (Antolín–Martino–V.)

Let $G = \langle X \rangle$ be of subexponential* growth and residually finite. Then, (i) $dc_X(G) > 5/8 \Leftrightarrow G$ is abelian; (ii) $dc_X(G) > 0 \Leftrightarrow G$ is virtually abelian;

Proof: (i). Suppose $dc_X(G) > 5/8$. Then, dc(G/N) > 5/8 for every $N \leq_{f.i.} G$. Hence, by Gustafson's thm, every finite quotient of G is abelian. Residual finiteness implies G abelian.

(ii, \Leftarrow). Suppose $G = \langle X \rangle$ is virtually abelian, $\langle Y \rangle = H \leq_{f.i.} G$ with H abelian. Then G is polynomially growing and $dc_Y(H) = 1 > 0$ so, $dc_X(G) > 0$.

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
			•0000			

Theorem (Antolín–Martino–V.)

Let $G = \langle X \rangle$ be of subexponential* growth and residually finite. Then, (i) $dc_X(G) > 5/8 \Leftrightarrow G$ is abelian; (ii) $dc_X(G) > 0 \Leftrightarrow G$ is virtually abelian;

Proof: (i). Suppose $dc_X(G) > 5/8$. Then, dc(G/N) > 5/8 for every $N \leq_{f.i.} G$. Hence, by Gustafson's thm, every finite quotient of G is abelian. Residual finiteness implies G abelian.

(ii, \Leftarrow). Suppose $G = \langle X \rangle$ is virtually abelian, $\langle Y \rangle = H \leq_{f.i.} G$ with H abelian. Then G is polynomially growing and $dc_Y(H) = 1 > 0$ so, $dc_X(G) > 0$.

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
			00000			

Theorem (Antolín–Martino–V.)

Let $G = \langle X \rangle$ be of subexponential* growth and residually finite. Then, (i) $dc_X(G) > 5/8 \Leftrightarrow G$ is abelian; (ii) $dc_X(G) > 0 \Leftrightarrow G$ is virtually abelian;

Proof: (i). Suppose $dc_X(G) > 5/8$. Then, dc(G/N) > 5/8 for every $N \leq_{i.i.} G$. Hence, by Gustafson's thm, every finite quotient of G is abelian. Residual finiteness implies G abelian.

(ii, \Leftarrow). Suppose $G = \langle X \rangle$ is virtually abelian, $\langle Y \rangle = H \leq_{f.i.} G$ with H abelian. Then G is polynomially growing and $dc_Y(H) = 1 > 0$ so, $dc_X(G) > 0$.

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
			00000			

Theorem (Antolín–Martino–V.)

Let $G = \langle X \rangle$ be of subexponential* growth and residually finite. Then, (i) $dc_X(G) > 5/8 \Leftrightarrow G$ is abelian;

(ii) $dc_X(G) > 0 \Leftrightarrow G$ is virtually abelian;

Proof: (i). Suppose $dc_X(G) > 5/8$. Then, dc(G/N) > 5/8 for every $N \leq_{f.i.} G$. Hence, by Gustafson's thm, every finite quotient of G is abelian. Residual finiteness implies G abelian.

(ii, \Leftarrow). Suppose $G = \langle X \rangle$ is virtually abelian, $\langle Y \rangle = H \leq_{f.i.} G$ with H abelian. Then G is polynomially growing and $dc_Y(H) = 1 > 0$ so, $dc_X(G) > 0$.

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
			•0000			

Theorem (Antolín–Martino–V.)

Let $G = \langle X \rangle$ be of subexponential* growth and residually finite. Then,

(i) $dc_X(G) > 5/8 \Leftrightarrow G$ is abelian;

(ii) $dc_X(G) > 0 \Leftrightarrow G$ is virtually abelian;

Proof: (i). Suppose $dc_X(G) > 5/8$. Then, dc(G/N) > 5/8 for every $N \leq_{f.i.} G$. Hence, by Gustafson's thm, every finite quotient of G is abelian. Residual finiteness implies G abelian.

(ii, \Leftarrow). Suppose $G = \langle X \rangle$ is virtually abelian, $\langle Y \rangle = H \leq_{f.i.} G$ with H abelian. Then G is polynomially growing and $dc_Y(H) = 1 > 0$ so, $dc_X(G) > 0$.

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
			•0000			
_						

Theorem (Antolín–Martino–V.)

Let $G = \langle X \rangle$ be of subexponential^{*} growth and residually finite. Then,

(i) $dc_X(G) > 5/8 \Leftrightarrow G$ is abelian;

(ii) $dc_X(G) > 0 \Leftrightarrow G$ is virtually abelian;

Proof: (i). Suppose $dc_X(G) > 5/8$. Then, dc(G/N) > 5/8 for every $N \leq_{f.i.} G$. Hence, by Gustafson's thm, every finite quotient of G is abelian. Residual finiteness implies G abelian.

(ii, \Leftarrow). Suppose $G = \langle X \rangle$ is virtually abelian, $\langle Y \rangle = H \leq_{f.i.} G$ with H abelian. Then G is polynomially growing and $dc_Y(H) = 1 > 0$ so, $dc_X(G) > 0$.

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
			•0000			
_						

Theorem (Antolín–Martino–V.)

Let $G = \langle X \rangle$ be of subexponential^{*} growth and residually finite. Then,

(i) $dc_X(G) > 5/8 \Leftrightarrow G$ is abelian;

(ii) $dc_X(G) > 0 \Leftrightarrow G$ is virtually abelian;

Proof: (i). Suppose $dc_X(G) > 5/8$. Then, dc(G/N) > 5/8 for every $N \leq_{f.i.} G$. Hence, by Gustafson's thm, every finite quotient of G is abelian. Residual finiteness implies G abelian.

(ii, \Leftarrow). Suppose $G = \langle X \rangle$ is virtually abelian, $\langle Y \rangle = H \leq_{f.i.} G$ with H abelian. Then G is polynomially growing and $dc_Y(H) = 1 > 0$ so, $dc_X(G) > 0$.

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
			•0000			
_						

Theorem (Antolín–Martino–V.)

Let $G = \langle X \rangle$ be of subexponential^{*} growth and residually finite. Then,

(i) $dc_X(G) > 5/8 \Leftrightarrow G$ is abelian;

(ii) $dc_X(G) > 0 \Leftrightarrow G$ is virtually abelian;

Proof: (i). Suppose $dc_X(G) > 5/8$. Then, dc(G/N) > 5/8 for every $N \leq_{f.i.} G$. Hence, by Gustafson's thm, every finite quotient of G is abelian. Residual finiteness implies G abelian.

(ii, \Leftarrow). Suppose $G = \langle X \rangle$ is virtually abelian, $\langle Y \rangle = H \leq_{f.i.} G$ with H abelian. Then G is polynomially growing and $dc_Y(H) = 1 > 0$ so, $dc_X(G) > 0$.

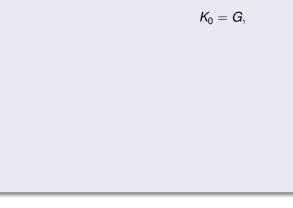
Claim: If H is f.g., r.f., not virtually abelian then $\exists K \leq_{ch.} H$ such that H/K is (finite) not abelian.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

1. Motivation 2. Main definition 3. Finite index subgroups 4. A Gromov-like theorem 5. The hyperbolic case 6. Generalizations 7. Degree of r-nilpotency 00 000000 0000 0000 0000 0000 0000 0000

Proof of the main result

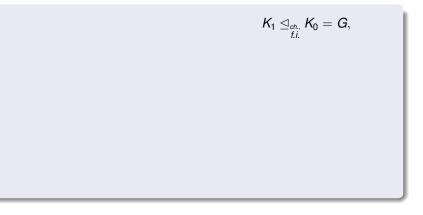
Claim: If H is f.g., r.f., not virtually abelian then $\exists K \leq_{ch.} H$ such that H/K is (finite) not abelian.



1. Motivation 2. Main definition 3. Finite index subgroups 4. A Gromov-like theorem 5. The hyperbolic case 6. Generalizations 7. Degree of r-nilpotency 00 0000 0000 0000 0 0000 0000 0000

Proof of the main result

Claim: If H is f.g., r.f., not virtually abelian then $\exists K \leq_{ch.} H$ such that H/K is (finite) not abelian.



1. Motivation 2. Main definition 3. Finite index subgroups 4. A Gromov-like theorem 5. The hyperbolic case 6. Generalizations 7. Degree of r-nilpotency 00 0000 0000 0000 0 0000 0000 0000

Proof of the main result

Claim: If H is f.g., r.f., not virtually abelian then $\exists K \leq_{ch.} H$ such that H/K is (finite) not abelian.

$$K_2 \leq_{ch., f.i.} K_1 \leq_{ch., f.i.} K_0 = G,$$

1. Motivation 2. Main definition 3. Finite index subgroups 4. A Gromov-like theorem 5. The hyperbolic case 6. Generalizations 7. Degree of r-nilpotency 00 0000 0000 0000 0 0000 0000

Proof of the main result

Claim: If H is f.g., r.f., not virtually abelian then $\exists K \leq_{ch.} H$ such that H/K is (finite) not abelian.

$$\cdots \trianglelefteq_{ch,i} K_r \trianglelefteq_{ch,i} K_{r-1} \oiint_{f_i} \cdots \oiint_{f_i} K_2 \trianglelefteq_{ch,i} K_1 \oiint_{f_i} K_0 = G_1$$

1. Motivation 2. Main definition 3. Finite index subgroups 4. A Gromov-like theorem 5. The hyperbolic case 6. Generalizations 7. Degree of r-nilpotency 00 000000 0000 0000 0000 0000 0000

Proof of the main result

Claim: If H is f.g., r.f., not virtually abelian then $\exists K \leq_{ch.} H$ such that H/K is (finite) not abelian.

$$\cdots \trianglelefteq_{\stackrel{ch,}{f.i.}} K_r \trianglelefteq_{\stackrel{ch,}{f.i.}} K_{r-1} \oiint_{\stackrel{ch,}{f.i.}} \cdots \oiint_{\stackrel{ch,}{f.i.}} K_2 \oiint_{\stackrel{ch,}{f.i.}} K_1 \oiint_{\stackrel{ch,}{f.i.}} K_0 = G,$$

such that K_{r-1}/K_r is not abelian so, $dc(K_{r-1}/K_r) \leq 5/8 \quad \forall r$.

▲□▶▲□▶▲□▶▲□▶ □ のへで

1. Motivation 2. Main definition 3. Finite index subgroups 0.000 4. A Gromov-like theorem 5. The hyperbolic case 0.000 6. Generalizations 0.00 7. Degree of r-nilpotency 0.00 0.00 7. Degree of r-nilpotency 0.00 7. Degree of r-nilpotency

Proof of the main result

Claim: If H is f.g., r.f., not virtually abelian then $\exists K \leq_{ch.} H$ such that H/K is (finite) not abelian.

$$\cdots \trianglelefteq_{\stackrel{ch.}{f.i.}} K_r \trianglelefteq_{\stackrel{ch.}{f.i.}} K_{r-1} \oiint_{\stackrel{f.i.}{f.i.}} \cdots \oiint_{\stackrel{f.i.}{f.i.}} K_2 \oiint_{\stackrel{ch.}{f.i.}} K_1 \oiint_{\stackrel{d}{f.i.}} K_0 = G,$$

such that K_{r-1}/K_r is not abelian so, $dc(K_{r-1}/K_r) \leq 5/8 \quad \forall r$. Then $\forall r$, $K_r \leq G$, $(G/K_r)/(K_{r-1}/K_r) = G/K_{r-1}$ and, by Gallagher,

 $dc(G/K_r) \leqslant dc(K_{r-1}/K_r) \cdot dc(G/K_{r-1}) \leqslant 5/8 \cdot dc(G/K_{r-1}).$

Proof of the main result

Claim: If H is f.g., r.f., not virtually abelian then $\exists K \leq_{ch.} H$ such that H/K is (finite) not abelian.

$$\begin{split} & \cdots \trianglelefteq_{ch, K_r} \leq_{ch, K_{r-1}} K_{r-1} \leq_{ch, K_2} \cdots \leq_{ch, K_2} K_2 \leq_{ch, K_1} K_1 \leq_{ch, K_0} G, \\ & \text{such that } K_{r-1}/K_r \text{ is not abelian so, } dc(K_{r-1}/K_r) \leqslant 5/8 \quad \forall r. \\ & \text{Then } \forall r \quad K_r \triangleleft G \quad (G/K_r)/(K_{r-1}/K_r) = G/K_r + and \text{ by Gallagher} \end{split}$$

 $dc(G/K_r) \leqslant dc(K_{r-1}/K_r) \cdot dc(G/K_{r-1}) \leqslant 5/8 \cdot dc(G/K_{r-1}).$

By induction, $dc(G/K_r) \leq (5/8)^r$ and so,

$$dc_X(G) \leqslant dc(G/K_r) \leqslant (5/8)^r$$
,

for every r. Therefore, $dc_X(G) = 0$. \Box

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of <i>r</i> -nilpotency
			00000			

Independence from X

Theorem (Antolín–Martino–V.)

Let $G = \langle X \rangle$ be of subexponential^{*} growth and residually finite. Then,

(i) $dc_X(G) > 5/8 \Leftrightarrow G$ is abelian;

(ii) $dc_X(G) > 0 \Leftrightarrow G$ is virtually abelian;

Corollary

Let $G = \langle X \rangle$ be of subexponential^{*} growth and residually finite. Then, $dc_X(G)$ is a real limit and does not depend on X.

... it just remains to prove that if $G = \langle X \rangle = \langle Y \rangle$ is virtually abelian then, $dc_X(G) = dc_Y(G)$ and is a real limit.

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of <i>r</i> -nilpotency
			00000			

Independence from X

Theorem (Antolín–Martino–V.)

Let $G = \langle X \rangle$ be of subexponential^{*} growth and residually finite. Then,

(i) $dc_X(G) > 5/8 \Leftrightarrow G$ is abelian;

(ii) $dc_X(G) > 0 \Leftrightarrow G$ is virtually abelian;

Corollary

Let $G = \langle X \rangle$ be of subexponential^{*} growth and residually finite. Then, $dc_X(G)$ is a real limit and does not depend on X.

... it just remains to prove that if $G = \langle X \rangle = \langle Y \rangle$ is virtually abelian then, $dc_X(G) = dc_Y(G)$ and is a real limit.

1. Motivation 2. Main definition 3. Finite index subgroups 4. A Gromov-like theorem 5. The hyperbolic case 6. Generalizations 7. Degree of r-nilpotency 00 000000 0000 00000 000000 0000000 000000000

Independence from X

Proposition (Antolín-Martino-V.)

Let G be f.g., and $A \leq_{f.i.} G$, with $\mathbb{Z}^k \simeq A$ (via $\boldsymbol{u} \mapsto t^{\boldsymbol{u}}$). Then,

$$\left\{(g,h)\in G^2\mid gh=hg
ight\}=\bigsqcup_{i=1}^r(g_iA,h_iA)\sqcup\bigsqcup_{i=1}^sP_i,$$

where $P_i = \{(g_i t^{u}, h_i t^{v}) \mid (u, v) \in L_i\}$, and L_i is a proper direct summand of $A^2 \simeq \mathbb{Z}^{2k}$.

Proof: Consider the action of G by right conjugation on A,

$$egin{array}{rcl} \gamma\colon G& o&\mathsf{Aut}(\mathcal{A})=GL_k(\mathbb{Z})\ g&\mapsto&\gamma_g\colon \mathcal{A}& o&\mathcal{A}\ t^\mathbf{u}&\mapsto&g^{-1}t^\mathbf{u}g=t^{\mathbf{u}M_g} \end{array}$$

Now split into a finite union

$$\Big\{(g,h)\in G^2\mid gh=hg\Big\}=\bigsqcup_{C,C'\in G/A}\Big\{(g,h)\in (C,C')\mid gh=hg\Big\}.$$

Independence from X

Proposition (Antolín–Martino–V.)

Let G be f.g., and $A \leq_{f.i.} G$, with $\mathbb{Z}^k \simeq A$ (via $\mathbf{u} \mapsto t^{\mathbf{u}}$). Then,

$$\left\{(g,h)\in G^2\mid gh=hg
ight\}=\bigsqcup_{i=1}^r(g_iA,h_iA)\sqcup\bigsqcup_{i=1}^sP_i,$$

where $P_i = \{(g_i t^{\mathbf{u}}, h_i t^{\mathbf{v}}) \mid (\mathbf{u}, \mathbf{v}) \in L_i\}$, and L_i is a proper direct summand of $A^2 \simeq \mathbb{Z}^{2k}$.

Proof: Consider the action of G by right conjugation on A,

$$\begin{array}{rcl} \gamma \colon G & \to & \mathsf{Aut}(A) = GL_k(\mathbb{Z}) \\ g & \mapsto & \gamma_g \colon A & \to & A \\ t^{\mathbf{u}} & \mapsto & g^{-1}t^{\mathbf{u}}g = t^{\mathbf{u}M_g}. \end{array}$$
Now split into a finite union
$$\left\{ (g,h) \in G^2 \mid gh = hg \right\} = \bigsqcup_{C,C' \in G/A} \left\{ (g,h) \in (C,C') \mid gh = hg \right\}.$$

Independence from X

Now spl

Proposition (Antolín-Martino-V.)

Let G be f.g., and $A \leq_{f.i.} G$, with $\mathbb{Z}^k \simeq A$ (via $\boldsymbol{u} \mapsto t^{\boldsymbol{u}}$). Then,

$$\left\{(g,h)\in G^2\mid gh=hg
ight\}=\bigsqcup_{i=1}^r(g_iA,h_iA)\sqcup\bigsqcup_{i=1}^sP_i,$$

where $P_i = \{(g_i t^{\mathbf{u}}, h_i t^{\mathbf{v}}) \mid (\mathbf{u}, \mathbf{v}) \in L_i\}$, and L_i is a proper direct summand of $A^2 \simeq \mathbb{Z}^{2k}$.

Proof: Consider the action of G by right conjugation on A,

$$\begin{array}{rccc} \gamma \colon G & \to & \operatorname{Aut}(A) = GL_k(\mathbb{Z}) \\ g & \mapsto & \gamma_g \colon A & \to & A \\ t^{\mathsf{u}} & \mapsto & g^{-1}t^{\mathsf{u}}g = t^{\mathsf{u}M_g}. \end{array}$$

$$\left\{(g,h)\in G^2\mid gh=hg\right\}=\bigsqcup_{C,C'\in G/A}\left\{(g,h)\in (C,C')\mid gh=hg
ight\}.$$

1. Motivation ○ 2. Main definition ○ 000000 3. Finite index subgroups ○ 00000 0.000 0.000 5. The hyperbolic case ○ 0000 0.0000 0.0000 0.000 0.00000 0.0000 0.000 0.000 0.0000 0.0000 0.000 0.000 0.0000

Independence from X

For $g \in C$ and $h \in C'$ with [g, h] = 1, we have that $[gt^{\mathbf{u}}, ht^{\mathbf{v}}] = t^{-\mathbf{u}}g^{-1}t^{-\mathbf{v}}h^{-1}gt^{\mathbf{u}}ht^{\mathbf{v}} = t^{-\mathbf{u}}(g^{-1}t^{-\mathbf{v}}g)(h^{-1}t^{\mathbf{u}}h)t^{\mathbf{v}} =$ $= t^{-\mathbf{u}}t^{-\mathbf{v}M_g}t^{\mathbf{u}M_h}t^{\mathbf{v}} = t^{\mathbf{u}(M_h - ld) + \mathbf{v}(ld - M_g)}.$

So, $gt^{\mathbf{u}}$ and $ht^{\mathbf{v}}$ commute $\Leftrightarrow (\mathbf{u}, \mathbf{v}) \cdot (M_h - Id, Id - M_g)^t = 0$.

• If $M_g = M_h = Id$ then we get pairs of full cosets modulo A.

• Otherwise, $(M_h - Id, Id - M_g) \neq (0)$ and we get a block of the form $P = \{(gt^{\mathbf{u}}, ht^{\mathbf{v}}) \mid (\mathbf{u}, \mathbf{v}) \in L\}$, where $L \leq_{\oplus} A^2 \simeq \mathbb{Z}^{2k}$ is proper, $\{(g, h) \in G^2 \mid gh = hg\} = \bigsqcup_{i=1}^r (g_i A, h_i A) \sqcup \bigsqcup_{i=1}^s P_i.$

Hence, $dc_X(G) = \frac{r}{[G:A]^2} + s \cdot 0$ as a <u>real limit</u>, and independent from *X*.

Independence from *X*

For
$$g \in C$$
 and $h \in C'$ with $[g, h] = 1$, we have that
 $[gt^{\mathbf{u}}, ht^{\mathbf{v}}] = t^{-\mathbf{u}}g^{-1}t^{-\mathbf{v}}h^{-1}gt^{\mathbf{u}}ht^{\mathbf{v}} = t^{-\mathbf{u}}(g^{-1}t^{-\mathbf{v}}g)(h^{-1}t^{\mathbf{u}}h)t^{\mathbf{v}} =$
 $= t^{-\mathbf{u}}t^{-\mathbf{v}M_g}t^{\mathbf{u}M_h}t^{\mathbf{v}} = t^{\mathbf{u}(M_h-Id)+\mathbf{v}(Id-M_g)}.$
So, $gt^{\mathbf{u}}$ and $ht^{\mathbf{v}}$ commute $\Leftrightarrow (\mathbf{u}, \mathbf{v}) \cdot (M_h - Id, Id - M_g)^t = 0.$
• If $M_g = M_h = Id$ then we get pairs of full cosets modulo A.
• Otherwise, $(M_h - Id, Id - M_g) \neq (0)$ and we get a block of the form
 $P = \{(gt^{\mathbf{u}}, ht^{\mathbf{v}}) \mid (\mathbf{u}, \mathbf{v}) \in L\},$ where $L \leq_{\oplus} A^2 \simeq \mathbb{Z}^{2k}$ is proper,
 $\{(g, h) \in G^2 \mid gh = hg\} = \bigsqcup_{i=1}^r (g_i A, h_i A) \sqcup \bigsqcup_{i=1}^s P_i.$

Hence, $dc_X(G) = \frac{r}{[G:A]^2} + s \cdot 0$ as a <u>real limit</u>, and <u>independent</u> from *X*.

1. Motivation 2. Main definition 3. Finite index subgroups 4. A Gromov-like theorem 5. The hyperbolic case 6. Generalizations 7. Degree of r-nilpotency 00 00000 0000 0000 0000 0000 0000 0000

Independence from X

For $g \in C$ and $h \in C'$ with [g, h] = 1, we have that

$$[gt^{\mathbf{u}}, ht^{\mathbf{v}}] = t^{-\mathbf{u}}g^{-1}t^{-\mathbf{v}}h^{-1}gt^{\mathbf{u}}ht^{\mathbf{v}} = t^{-\mathbf{u}}(g^{-1}t^{-\mathbf{v}}g)(h^{-1}t^{\mathbf{u}}h)t^{\mathbf{v}} =$$

$$=t^{-\mathbf{u}}t^{-\mathbf{v}M_g}t^{\mathbf{u}M_h}t^{\mathbf{v}}=t^{\mathbf{u}(M_h-Id)+\mathbf{v}(Id-M_g)}$$

So, gt^{u} and ht^{v} commute $\Leftrightarrow (\mathbf{u}, \mathbf{v}) \cdot (M_{h} - Id, Id - M_{g})^{t} = 0$.

• If $M_g = M_h = Id$ then we get pairs of full cosets modulo A.

• Otherwise, $(M_h - Id, Id - M_g) \neq (0)$ and we get a block of the form $P = \{(gt^{\mathbf{u}}, ht^{\mathbf{v}}) \mid (\mathbf{u}, \mathbf{v}) \in L\}$, where $L \leq_{\oplus} A^2 \simeq \mathbb{Z}^{2k}$ is proper, $\{(g, h) \in G^2 \mid gh = hg\} = \bigsqcup_{i=1}^r (g_i A, h_i A) \sqcup \bigsqcup_{i=1}^s P_i.$

Hence, $dc_X(G) = \frac{r}{[G:A]^2} + s \cdot 0$ as a <u>real limit</u>, and independent from *X*.

1. Motivation 2. Main definition 3. Finite index subgroups 4. A Gromov-like theorem of the provide theorem of the provide theorem of the provide theorem of the provide theorem of the provided theorem of theorem of theo

Independence from X

For $g \in C$ and $h \in C'$ with [g, h] = 1, we have that

$$[gt^{\mathbf{u}}, ht^{\mathbf{v}}] = t^{-\mathbf{u}}g^{-1}t^{-\mathbf{v}}h^{-1}gt^{\mathbf{u}}ht^{\mathbf{v}} = t^{-\mathbf{u}}(g^{-1}t^{-\mathbf{v}}g)(h^{-1}t^{\mathbf{u}}h)t^{\mathbf{v}} =$$

$$=t^{-\mathbf{u}}t^{-\mathbf{v}M_g}t^{\mathbf{u}M_h}t^{\mathbf{v}}=t^{\mathbf{u}(M_h-Id)+\mathbf{v}(Id-M_g)}$$

So, gt^{u} and ht^{v} commute $\Leftrightarrow (\mathbf{u}, \mathbf{v}) \cdot (M_{h} - Id, Id - M_{g})^{t} = 0$.

- If $M_g = M_h = Id$ then we get pairs of full cosets modulo A.
- Otherwise, $(M_h Id, Id M_g) \neq (0)$ and we get a block of the form $P = \{(gt^{\mathbf{u}}, ht^{\mathbf{v}}) \mid (\mathbf{u}, \mathbf{v}) \in L\}$, where $L \leq_{\oplus} A^2 \simeq \mathbb{Z}^{2k}$ is proper, $\{(g, h) \in G^2 \mid gh = hg\} = \bigsqcup_{i=1}^r (g_i A, h_i A) \sqcup \bigsqcup_{i=1}^s P_i.$

Hence, $dc_X(G) = \frac{r}{[G:A]^2} + s \cdot 0$ as a <u>real limit</u>, and <u>independent</u> from *X*.

Independence from X

For $g \in C$ and $h \in C'$ with [g, h] = 1, we have that

$$[gt^{\mathbf{u}}, ht^{\mathbf{v}}] = t^{-\mathbf{u}}g^{-1}t^{-\mathbf{v}}h^{-1}gt^{\mathbf{u}}ht^{\mathbf{v}} = t^{-\mathbf{u}}(g^{-1}t^{-\mathbf{v}}g)(h^{-1}t^{\mathbf{u}}h)t^{\mathbf{v}} =$$

$$=t^{-\mathbf{u}}t^{-\mathbf{v}M_g}t^{\mathbf{u}M_h}t^{\mathbf{v}}=t^{\mathbf{u}(M_h-Id)+\mathbf{v}(Id-M_g)}$$

So, $gt^{\mathbf{u}}$ and $ht^{\mathbf{v}}$ commute $\Leftrightarrow (\mathbf{u}, \mathbf{v}) \cdot (M_h - Id, Id - M_g)^t = 0$.

- If $M_g = M_h = Id$ then we get pairs of full cosets modulo A.
- Otherwise, $(M_h Id, Id M_g) \neq (0)$ and we get a block of the form $P = \{(gt^{\mathbf{u}}, ht^{\mathbf{v}}) \mid (\mathbf{u}, \mathbf{v}) \in L\}$, where $L \leq_{\oplus} A^2 \simeq \mathbb{Z}^{2k}$ is proper, $\{(g, h) \in G^2 \mid gh = hg\} = \bigsqcup_{i=1}^r (g_i A, h_i A) \sqcup \bigsqcup_{i=1}^s P_i.$

Hence, $dc_X(G) = \frac{r}{[G:A]^2} + s \cdot 0$ as a <u>real limit</u>, and <u>independent</u> from *X*.

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Motivation

- 2 Main definition and results
- 3 Finite index subgroups
- 4 Gromov-like theorem
- 5 The hyperbolic case
- 6 Generalizations
- Degree of r-nilpotency

The hyperbolic case

Theorem (Antolín–Martino–V.)

For every non-elementary hyperbolic group G and every X, $dc_X(G) = 0$.

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	Degree of r-nilpotency

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Motivation

- 2 Main definition and results
- Finite index subgroups
- A Gromov-like theorem
- 5 The hyperbolic case
- 6 Generalizations
- Degree of r-nilpotency

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
					••	

• We can replace xy = yx by any system of equations \mathcal{E} .

• We can replace the uniform measures on balls to any sequence of measures μ_n with increasing compact support (coming from random walks, amenability, etc).

Definition

Let G, \mathcal{E} and μ_n be as above. We define the degree of satisfiability of \mathcal{E} in G w.r.t. μ_n as

$ds(G, \mathcal{E}, \{\mu_n\}_n) =$

 $\limsup_{n\to\infty}\mu_n^{\times k}\big(\{(g_1,\ldots,g_k)\in G^k\mid (g_1,\ldots,g_k) \text{ sol. } \mathcal{E}\}\big)\in[0,1].$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case O	7. Degree of <i>r</i> -nilpotency
\sim				

• We can replace xy = yx by any system of equations \mathcal{E} .

• We can replace the uniform measures on balls to any sequence of measures μ_n with increasing compact support (coming from random walks, amenability, etc).

Definition

Let G, \mathcal{E} and μ_n be as above. We define the degree of satisfiability of \mathcal{E} in G w.r.t. μ_n as

$ds(G, \mathcal{E}, \{\mu_n\}_n) =$

 $\limsup_{n\to\infty}\mu_n^{\times k}\big(\{(g_1,\ldots,g_k)\in G^k\mid (g_1,\ldots,g_k) \text{ sol. } \mathcal{E}\}\big)\in[0,1].$

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case O	7. Degree of <i>r</i> -nilpotency
\sim				

• We can replace xy = yx by any system of equations \mathcal{E} .

• We can replace the uniform measures on balls to any sequence of measures μ_n with increasing compact support (coming from random walks, amenability, etc).

Definition

Let G, \mathcal{E} and μ_n be as above. We define the degree of satisfiability of \mathcal{E} in G w.r.t. μ_n as

 $ds(G, \mathcal{E}, \{\mu_n\}_n) =$

 $\limsup_{n\to\infty}\mu_n^{\times k}\big(\{(g_1,\ldots,g_k)\in G^k\mid (g_1,\ldots,g_k) \text{ sol. } \mathcal{E}\}\big)\in[0,1].$

(日)

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of r-nilpotency
					0•	

Meta-conjecture

Let G, \mathcal{E} , and $\{\mu_n\}_n$ be as above, with \mathcal{E} having a gap for finite groups, and μ_n being "reasonable". Then,

 $ds(G, \mathcal{E}, {\mu_n}_n) > 0 \iff \mathcal{E}$ is a virtual law in G.

(日) (日) (日) (日) (日) (日) (日)

Definition

 ${\mathcal E}$ is a law in G if every $(g_1,\ldots,g_k)\in G^k$ is a solution of ${\mathcal E}$ in G.

 \mathcal{E} is a virtual law in G if $\exists H \leq_{f.i.} G$ such that \mathcal{E} is a law in H.

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	7. Degree of <i>r</i> -nilpotency
					0•	

Meta-conjecture

Let G, \mathcal{E} , and $\{\mu_n\}_n$ be as above, with \mathcal{E} having a gap for finite groups, and μ_n being "reasonable". Then,

 $ds(G, \mathcal{E}, {\mu_n}_n) > 0 \iff \mathcal{E}$ is a virtual law in G.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definition

 \mathcal{E} is a law in G if every $(g_1, \ldots, g_k) \in G^k$ is a solution of \mathcal{E} in G.

 \mathcal{E} is a virtual law in G if $\exists H \leq_{f.i.} G$ such that \mathcal{E} is a law in H.

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	Degree of r-nilpotency

Outline

Motivation

- 2 Main definition and results
- Finite index subgroups
- 4 Gromov-like theorem
- 5 The hyperbolic case
- 6 Generalizations

1. Mativation 2. Main definition 3. Finite index subgroups 0. A Gromov-like theorem 5. The hyperbolic case 6. Generalizations 7. Degree of r-nilpotency 0.0000 0.000 0.0000 0.000 0.000 0.0000 0.000 0.000 0.000 0.0000 0.0000

Let us consider the r-equation: $[[x_0, x_1], x_2] \cdots], x_r]$.

Notation: $\mathbf{u} = (u_0, \dots, u_r), [\mathbf{u}] = [u_0, \dots, u_r] = [[[u_0, u_1], u_2] \cdots], u_r].$

Definition

For a finite group G, the degree of r-nilpotency is

$$dn_r(G) = \frac{|\{\mathbf{u} \in G^{r+1} \mid [[[[u_0, u_1], u_2] \cdots], u_r] = 1\}|}{|G|^{r+1}}$$

Proposition (indep. by R. Rezaei–Russo for compact groups) For $r \ge 1$, any finite group G, if $dn_r(G) > 1 - \frac{3}{2(r+2)}$ then $dn_r(G) = 1$

・ロト・日本・日本・日本・日本・日本

1. Motivation 2. Main definition 3. Finite index subgroups 4. A Gromov-like theorem 5. The hyperbolic case 6. Generalizations 7. Degree of r-nilpotency

Let us consider the *r*-equation: $[[[x_0, x_1], x_2] \cdots], x_r].$

Notation: $\mathbf{u} = (u_0, \dots, u_r), [\mathbf{u}] = [u_0, \dots, u_r] = [[[u_0, u_1], u_2] \cdots], u_r].$

Definition

For a finite group G, the degree of r-nilpotency is

$$dn_r(G) = \frac{|\{\mathbf{u} \in G^{r+1} \mid [[[[u_0, u_1], u_2] \cdots], u_r] = 1\}|}{|G|^{r+1}}$$

Proposition (indep. by R. Rezaei–Russo for compact groups) For $r \ge 1$, any finite group G, if $dn_r(G) > 1 - \frac{3}{2r+2}$ then $dn_r(G) = 1$

▲□▶▲□▶▲□▶▲□▶ = のへ⊙

1. Motivation 2. Main definition 3. Finite index subgroups 4. A Gromov-like theorem 5. The hyperbolic case 6. Generalizations 7. Degree of r-nilpotency

Let us consider the r-equation: $[[[x_0, x_1], x_2] \cdots], x_r].$

Notation:
$$\mathbf{u} = (u_0, \dots, u_r), [\mathbf{u}] = [u_0, \dots, u_r] = [[[u_0, u_1], u_2] \cdots], u_r].$$

Definition

For a finite group G, the degree of r-nilpotency is

$$dn_r(G) = \frac{|\{\mathbf{u} \in G^{r+1} \mid [[[[u_0, u_1], u_2] \cdots], u_r] = 1\}|}{|G|^{r+1}}$$

Proposition (indep. by R. Rezaei–Russo for compact groups) For $r \ge 1$, any finite group G, if $dn_r(G) > 1 - \frac{3}{2^{r+2}}$ then $dn_r(G) = 1$.

・

1. Motivation 2. Main definition 3. Finite index subgroups 4. A Gromov-like theorem 5. The hyperbolic case 6. Generalizations 7. Degree of r-nilpotency

Let us consider the r-equation: $[[[x_0, x_1], x_2] \cdots], x_r].$

Notation:
$$\mathbf{u} = (u_0, \dots, u_r), [\mathbf{u}] = [u_0, \dots, u_r] = [[[u_0, u_1], u_2] \cdots], u_r].$$

Definition

For a finite group G, the degree of r-nilpotency is

$$dn_r(G) = \frac{|\{\mathbf{u} \in G^{r+1} \mid [[[[u_0, u_1], u_2] \cdots], u_r] = 1\}|}{|G|^{r+1}}$$

Proposition (indep. by R. Rezaei–Russo for compact groups)

For $r \ge 1$, any finite group G, if $dn_r(G) > 1 - \frac{3}{2^{r+2}}$ then $dn_r(G) = 1$.

・ロト・日本・日本・日本・日本・日本

Definition

Let $G = \langle X \rangle$ be f.g. The degree of *r*-nilpotency of *G* w.r.t. X is

$$dn_{r,X}(G) = \limsup_{n \to \infty} \frac{|\{\mathbf{u} \in \mathbb{B}_X(n)^{r+1} \mid [[[[u_0, u_1], u_2] \cdots], u_r] = 1\}|}{|\mathbb{B}_X(n)|^{r+1}}$$

where
$$\mathbb{B}_X(n) = \{g \in G \mid |g|_X \leqslant n\}$$
.

Theorem (Antolín–Martino–V.)

Let $G = \langle X \rangle$ be of subexponential* growth and residually-p for infinitely many primes. Then,

- (i) $dn_{r,X}(G) > 1 \frac{3}{2^{r+2}} \Leftrightarrow G \text{ is } r\text{-nilpotent};$
- (ii) $dn_{r,X}(G) > 0 \Leftrightarrow G$ is virtually r-nilpotent.

Definition

Let $G = \langle X \rangle$ be f.g. The degree of r-nilpotency of G w.r.t. X is

$$dn_{r,X}(G) = \limsup_{n \to \infty} \frac{|\{\mathbf{u} \in \mathbb{B}_X(n)^{r+1} \mid [[[[u_0, u_1], u_2] \cdots], u_r] = 1\}|}{|\mathbb{B}_X(n)|^{r+1}}$$

where
$$\mathbb{B}_X(n) = \{g \in G \mid |g|_X \leqslant n\}$$
.

Theorem (Antolín–Martino–V.)

Let $G = \langle X \rangle$ be of subexponential^{*} growth and residually-p for infinitely many primes. Then,

(i) $dn_{r,X}(G) > 1 - \frac{3}{2^{r+2}} \Leftrightarrow G \text{ is } r\text{-nilpotent};$ (ii) $dn_{r,X}(G) > 0 \Leftrightarrow G \text{ is virtually } r\text{-nilpotent}.$

Definition

Let $G = \langle X \rangle$ be f.g. The degree of *r*-nilpotency of *G* w.r.t. X is

$$dn_{r,X}(G) = \limsup_{n \to \infty} \frac{|\{\mathbf{u} \in \mathbb{B}_X(n)^{r+1} \mid [[[[u_0, u_1], u_2] \cdots], u_r] = 1\}|}{|\mathbb{B}_X(n)|^{r+1}}$$

where
$$\mathbb{B}_X(n) = \{g \in G \mid |g|_X \leqslant n\}$$

Theorem (Antolín–Martino–V.)

Let $G = \langle X \rangle$ be of subexponential* growth and residually-p for infinitely many primes. Then, (i) $dn_{r,X}(G) > 1 - \frac{3}{2^{r+2}} \Leftrightarrow G$ is r-nilpotent; (ii) $dn_{r,X}(G) > 0 \Leftrightarrow G$ is virtually r-nilpotent.

Definition

Let $G = \langle X \rangle$ be f.g. The degree of r-nilpotency of G w.r.t. X is

$$dn_{r,X}(G) = \limsup_{n \to \infty} \frac{|\{\mathbf{u} \in \mathbb{B}_X(n)^{r+1} \mid [[[[u_0, u_1], u_2] \cdots], u_r] = 1\}|}{|\mathbb{B}_X(n)|^{r+1}},$$

where
$$\mathbb{B}_X(n) = \{g \in G \mid |g|_X \leqslant n\}$$

Theorem (Antolín–Martino–V.)

Let $G = \langle X \rangle$ be of subexponential* growth and residually-p for infinitely many primes. Then, (i) $dn_{r,X}(G) > 1 - \frac{3}{2^{r+2}} \Leftrightarrow G$ is r-nilpotent; (ii) $dn_{r,X}(G) > 0 \Leftrightarrow G$ is virtually r-nilpotent.

Definition

Let $G = \langle X \rangle$ be f.g. The degree of r-nilpotency of G w.r.t. X is

$$dn_{r,X}(G) = \limsup_{n \to \infty} \frac{|\{\mathbf{u} \in \mathbb{B}_X(n)^{r+1} \mid [[[[u_0, u_1], u_2] \cdots], u_r] = 1\}|}{|\mathbb{B}_X(n)|^{r+1}}$$

where
$$\mathbb{B}_X(n) = \{g \in G \mid |g|_X \leqslant n\}$$
.

Theorem (Antolín–Martino–V.)

Let $G = \langle X \rangle$ be of subexponential* growth and residually-p for infinitely many primes. Then, (i) $dn_{r,X}(G) > 1 - \frac{3}{2^{r+2}} \Leftrightarrow G$ is r-nilpotent; (ii) $dn_{r,X}(G) > 0 \Leftrightarrow G$ is virtually r-nilpotent.

1. Motivation	2. Main definition	3. Finite index subgroups	4. A Gromov-like theorem	5. The hyperbolic case	6. Generalizations	Degree of r-nilpotency
						000

THANKS

ESKERRIK ASKO

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ