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Motivation

Y. Antolín, A. Martino, E.V., “Degree of commutativity of infinite
groups”, Proc. Amer. Math. Soc. 145(2) (2017), 479-485.

Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G
commute is bigger than 5/8, then G is abelian.

Proof. Suppose G is not abelian. Then,

dc(G) =
|{(u, v) ∈ G2 | uv = vu}|

|G|2
=

1
|G|2

∑
u∈G

|CG(u)| =

=
1
|G|2

(
|Z (G)||G|+

∑
u∈G\Z (G)

|CG(u)|
)
6

6
1
|G|2

(
|Z (G)||G|+ (|G| − |Z (G)|) |G|

2

)
=
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Motivation

=
1
|G|2

(
|Z (G)||G|+ (|G| − |Z (G)|) |G|

2

)
=

=
|G|+ |Z (G)|

2|G|
6

1
2
+

|G|
4 · 2|G|

=
1
2
+

1
8
=

5
8
,

because G/Z (G) cannot be cyclic and so, |Z (G)| 6 |G|/4. �

Observation

The quaternion group has dc(Q) = 5/8.

“There is no live between 5/8 and 1"

(Goal)

Is there a version of dc for infinite groups ?
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Degree of commutativity

Definition

Let G = 〈X 〉 be a f.g. group. The degree of commutativity of G w.r.t.
X is

dcX (G) = lim sup
n→∞

|{(u, v) ∈ BX (n)× BX (n) | uv = vu}|
|BX (n)|2

∈ [0,1],

where BX (n) = {g ∈ G | |g|X 6 n}.

Question
(i) Is this a real lim ?
(ii) Does it depend on X ?
(iii) What is the relation with the algebraic structure of G ?
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Main result

Theorem (Antolín–Martino–V.)

Let G = 〈X 〉 be of subexponential∗ growth and residually finite (this
includes all groups of polynomial growth). Then,

(i) dcX (G) > 5/8 ⇔ G is abelian;
(ii) dcX (G) > 0 ⇔ G is virtually abelian;
(iii) dcX (G) is a real limit and does not depend on X.

Conjecture

The same is true for an arbitrary f.g. G.

Very recently

Matthew Tointon: “Commuting probability in amenable groups”,
preprint, gets very similar results for any amenable group.
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Independence on X

Definition

A f.g. group G = 〈X 〉 is of

subexponential∗ growth if limn→∞
|BX (n+1)|
|BX (n)| = 1;

polynomial growth if |BX (n)| 6 Dnd .
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Independence on X

Definition

A f.g. group G = 〈X 〉 is of

subexponential∗ growth if limn→∞
|BX (n+1)|
|BX (n)| = 1;

polynomial growth (of degree d) if 0 < Cnd 6 |BX (n)| 6 Dnd .

Definition

Let G = 〈X 〉. A map f : G→ N is an estimation of the X-metric if ∃
K > 0 such that ∀w ∈ G

1
K

f (w) 6 |w |X 6 K f (w).

Example

It is well known that, for G = 〈X 〉 = 〈Y 〉, | · |X is an estimation of the
Y -metric, and | · |Y is an estimation of the X-metric.
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Independence on X

Definition
Define the f -ball and the f -dc:

Bf (n) = {w ∈ G | f (w) 6 n},

dcf (G) = lim sup
n→∞

|{(u, v) ∈ Bf (n)× Bf (n) | uv = vu}|
|Bf (n)|2

.

Proposition

Let G = 〈X 〉 be of polynomial growth, and f : G→ N be an estimation
of the X-metric. Then,

dcX (G) > 0 ⇐⇒ dcf (G) > 0.

Proof. Clearly, Bf (n) ⊆ BX (Kn) ⊆ Bf (K 2n) so,

|{(u, v) ∈ (Bf (n))2 | uv = vu}| 6 |{(u, v) ∈ (BX (Kn))2 | uv = vu}|.
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Independence on X

|{(u,v)∈(Bf (n))2|uv=vu}|
|BX (Kn)|2 6 |{(u,v)∈(BX (Kn))2|uv=vu}|

|BX (Kn)|2 .

q(
|{(u,v)∈(Bf (n))2|uv=vu}|

|Bf (n)|2

)(
|Bf (n)|
|BX (Kn)|

)2

So, dcX (G) = 0 ⇒ dcf (G) = 0 since ...

|Bf (n)|
|BX (Kn)|

>
|BX (n/K )|
|BX (Kn)|

>
C(n/K )d

D(Kn)d =
C

DK 2d > 0. �

Corollary

If G = 〈X 〉 = 〈Y 〉 is of polynomial growth, then

dcX (G) = 0 ⇐⇒ dcY (G) = 0.
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|BX (Kn)|2 .

q(
|{(u,v)∈(Bf (n))2|uv=vu}|

|Bf (n)|2

)(
|Bf (n)|
|BX (Kn)|

)2

So, dcX (G) = 0 ⇒ dcf (G) = 0 since ...

|Bf (n)|
|BX (Kn)|

>
|BX (n/K )|
|BX (Kn)|

>
C(n/K )d

D(Kn)d =
C

DK 2d > 0. �

Corollary

If G = 〈X 〉 = 〈Y 〉 is of polynomial growth, then

dcX (G) = 0 ⇐⇒ dcY (G) = 0.
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Independence on X

Definition

Let 〈Y 〉 = H 6 G = 〈X 〉. The subgroup H is undistorted if ∃ K > 0 s.t.
∀h ∈ H, |h|Y/K 6 |h|X 6 K |h|Y .
In this case, | · |X restricted to H is an estimation of the Y -metric for H.

Corollary

Let G = 〈X 〉 be of polynomial growth, and 〈Y 〉 = H 6 G be a
non-distorted subgroup. Then,

dcX (H) = 0 ⇐⇒ dcY (H) = 0.
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Finite index subgroups

Lemma (Burillo–V., 2002)

If H 6f.i. G = 〈X 〉 and G has subexponential∗ growth then, for every
g ∈ G, there exists limn→∞

|BX (n)∩gH|
|BX (n)| = limn→∞

|BX (n)∩Hg|
|BX (n)| = 1

[G:H] .

Remark

This is false in the free group: H = {even words} 62 Fr .

Proposition*

Let 〈Y 〉 = H 6f.i. G = 〈X 〉 be of polynomial growth. Then,

dcX (G) >
1

[G : H]2
dcX (H).

In particular, dcY (H) > 0⇒ dcX (H) > 0⇒ dcX (G) > 0.
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Finite index subgroups

Proof. Clearly,
|{(u, v) ∈ (BX (n))2 | uv = vu}| > |{(u, v) ∈ (H ∩ BX (n))2 | uv = vu}|.
Therefore, given ε > 0, we have for n� 0

|{(u, v) ∈ (BX (n))2 | uv = vu}|
|BX (n)|2

>

|{(u, v) ∈ (H ∩ BX (n))2 | uv = vu}|
|H ∩ BX (n)|2

· |H ∩ BX (n)|2

|BX (n)|2
>

|{(u, v) ∈ (H ∩ BX (n))2 | uv = vu}|
|H ∩ BX (n)|2

(
1

[G : H]
− ε
)2

.

Taking limsups, dcX (G) > dcX (H)

(
1

[G : H]
− ε
)2

. And this is true

∀ε > 0 so, dcX (G) >
1

[G : H]2
dcX (H). �
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Finite index subgroups

Proposition* (Gallagher, 1970)

Let G be a finite group and H EG. Then, dc(G) 6 dc(H) · dc(G/H).

Proposition*

Let G = 〈X 〉 be subexponentially∗ growing. Then, for any finite
quotient G/N, we have dcX (G) 6 dc(G/N).

Proof. Let N EG with [G : N] = d.
By B–V, ∀g ∈ G limn→∞ |gN ∩ BX (n)|/|BX (n)| = 1/d, indep. X and g.
But |G/N| <∞, so this lim is uniform on g, i.e.,
∀ε > 0, ∃n0, ∀n > n0 and ∀g ∈ G,(

1
d
− ε
)
|BX (n)| 6 |gN ∩ BX (n)| 6

(
1
d
+ ε

)
|BX (n)|.

Suppose dcX (G) > dc(G/N) and let us find a contradiction.
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Finite index subgroups

∃δ > 0 s.t. |{(u, v) ∈ (BX (n))2 | uv = vu}|/|BX (n)|2 > dc(G/N) + δ
for infinitely many n’s.
In the above inequality, take ε > 0 small enough so that
2εd + ε2d2 < δ, and ∃n� 0 such that

dc(G/N) + δ <
|{(u, v) ∈ (BX (n))2 | uv = vu}|

|BX (n)|2

6
1

|BX (n)|2
|{(u, v) ∈ (G/N)2 | u v = v u}|

(
1
d
+ ε

)2

|BX (n)|2

=
|{(u, v) ∈ (G/N)2 | u v = v u}|

d2 (1 + εd)2

6
|{(u, v) ∈ (G/N)2 | u v = v u}|

d2 + 2εd + ε2d2

< dc(G/N) + δ, a contradiction. �
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Proof of the main result

Theorem (Antolín–Martino–V.)

Let G = 〈X 〉 be of subexponential∗ growth and residually finite. Then,
(i) dcX (G) > 5/8 ⇔ G is abelian;
(ii) dcX (G) > 0 ⇔ G is virtually abelian;

Proof: (i). Suppose dcX (G) > 5/8. Then, dc(G/N) > 5/8 for every
N Ef.i. G. Hence, by Gustafson’s thm, every finite quotient of G is
abelian. Residual finiteness implies G abelian.

(ii,⇐). Suppose G = 〈X 〉 is virtually abelian, 〈Y 〉 = H 6f.i. G with H
abelian. Then G is polynomially growing and dcY (H) = 1 > 0 so,
dcX (G) > 0.

(ii,⇒). Suppose G is not virtually abelian and let us prove that
dcX (G) = 0.
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Proof: (i). Suppose dcX (G) > 5/8. Then, dc(G/N) > 5/8 for every
N Ef.i. G. Hence, by Gustafson’s thm, every finite quotient of G is
abelian. Residual finiteness implies G abelian.

(ii,⇐). Suppose G = 〈X 〉 is virtually abelian, 〈Y 〉 = H 6f.i. G with H
abelian. Then G is polynomially growing and dcY (H) = 1 > 0 so,
dcX (G) > 0.

(ii,⇒). Suppose G is not virtually abelian and let us prove that
dcX (G) = 0.
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Proof of the main result

Claim: If H is f.g., r.f., not virtually abelian then ∃K Ech.,
f.i.

H such that

H/K is (finite) not abelian.

· · ·Ech.,
f.i.

Kr Ech.,
f.i.

Kr−1 Ech.,
f.i.
· · ·Ech.,

f.i.
K2 Ech.,

f.i.
K1 Ech.,

f.i.
K0 = G,

such that Kr−1/Kr is not abelian so, dc(Kr−1/Kr ) 6 5/8 ∀r .
Then ∀r , Kr EG, (G/Kr )/(Kr−1/Kr ) = G/Kr−1 and, by Gallagher,

dc(G/Kr ) 6 dc(Kr−1/Kr ) · dc(G/Kr−1) 6 5/8 · dc(G/Kr−1).

By induction, dc(G/Kr ) 6 (5/8)r and so,

dcX (G) 6 dc(G/Kr ) 6 (5/8)r ,

for every r . Therefore, dcX (G) = 0. �
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Independence from X

Theorem (Antolín–Martino–V.)

Let G = 〈X 〉 be of subexponential∗ growth and residually finite. Then,
(i) dcX (G) > 5/8 ⇔ G is abelian;
(ii) dcX (G) > 0 ⇔ G is virtually abelian;

Corollary

Let G = 〈X 〉 be of subexponential∗ growth and residually finite. Then,
dcX (G) is a real limit and does not depend on X.

... it just remains to prove that if G = 〈X 〉 = 〈Y 〉 is virtually abelian
then, dcX (G) = dcY (G) and is a real limit.
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Independence from X

Proposition (Antolín–Martino–V.)

Let G be f.g., and AEf .i. G, with Zk ' A (via u 7→ tu). Then,

{
(g,h) ∈ G2 | gh = hg

}
=

r⊔
i=1

(giA,hiA) t
s⊔

i=1

Pi ,

where Pi = {(gi tu,hi tv) | (u,v) ∈ Li}, and Li is a proper direct
summand of A2 ' Z2k .

Proof: Consider the action of G by right conjugation on A,

γ : G → Aut(A) = GLk (Z)
g 7→ γg : A → A

tu 7→ g−1tug = tuMg .
Now split into a finite union{

(g,h) ∈ G2 | gh = hg
}
=

⊔
C,C′∈G/A

{
(g,h) ∈ (C,C′) | gh = hg

}
.
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Independence from X

For g ∈ C and h ∈ C′ with [g,h] = 1, we have that

[gtu,htv] = t−ug−1t−vh−1gtuhtv = t−u(g−1t−vg)(h−1tuh)tv =

= t−ut−vMg tuMh tv = tu(Mh−Id)+v(Id−Mg).

So, gtu and htv commute⇔ (u,v) · (Mh − Id , Id −Mg)
t = 0.

• If Mg = Mh = Id then we get pairs of full cosets modulo A.

• Otherwise, (Mh − Id , Id −Mg) 6= (0) and we get a block of the form
P = {(gtu,htv) | (u,v) ∈ L}, where L 6⊕ A2 ' Z2k is proper,{

(g,h) ∈ G2 | gh = hg
}
=

r⊔
i=1

(giA,hiA) t
s⊔

i=1

Pi .

Hence, dcX (G) = r
[G:A]2 + s · 0 as a real limit, and independent from X.
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The hyperbolic case

Theorem (Antolín–Martino–V.)

For every non-elementary hyperbolic group G and every X,
dcX (G) = 0.
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Generalizations

•We can replace xy = yx by any system of equations E .

•We can replace the uniform measures on balls to any sequence of
measures µn with increasing compact support (coming from random
walks, amenability, etc).

Definition
Let G, E and µn be as above. We define the degree of satisfiability of
E in G w.r.t. µn as

ds(G, E , {µn}n) =

lim sup
n→∞

µ×k
n
(
{(g1, . . . ,gk ) ∈ Gk | (g1, . . . ,gk ) sol. E}

)
∈ [0,1].
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Generalizations

Meta-conjecture

Let G, E , and {µn}n be as above, with E having a gap for finite
groups, and µn being “reasonable”. Then,

ds(G, E , {µn}n) > 0⇐⇒ E is a virtual law in G.

Definition

E is a law in G if every (g1, . . . ,gk ) ∈ Gk is a solution of E in G.

E is a virtual law in G if ∃H 6f.i. G such that E is a law in H.
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Degree of r -nilpotency

Let us consider the r-equation: [[ [[x0, x1], x2] · · · ], xr ].

Notation: u = (u0, . . . ,ur ), [u] = [u0, . . . ,ur ] = [[ [[u0,u1],u2] · · · ],ur ].

Definition
For a finite group G, the degree of r -nilpotency is

dnr (G) =
|{u ∈ G r+1 | [[ [[u0,u1],u2] · · · ],ur ] = 1}|

|G|r+1 .

Proposition (indep. by R. Rezaei–Russo for compact groups)

For r > 1, any finite group G, if dnr (G) > 1− 3
2r+2 then dnr (G) = 1.
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The meta-conjecture for r -nilpotence

Definition

Let G = 〈X 〉 be f.g. The degree of r -nilpotency of G w.r.t. X is

dnr ,X (G) = lim sup
n→∞

|{u ∈ BX (n) r+1 | [[ [[u0,u1],u2] · · · ],ur ] = 1}|
|BX (n)|r+1 ,

where BX (n) = {g ∈ G | |g|X 6 n}.

Theorem (Antolín–Martino–V.)

Let G = 〈X 〉 be of subexponential∗ growth and residually-p for
infinitely many primes. Then,

(i) dnr ,X (G) > 1− 3
2r+2 ⇔ G is r -nilpotent;

(ii) dnr ,X (G) > 0 ⇔ G is virtually r -nilpotent.

The problem here is that we still don’t know whether
dnr (G) 6 dnr (H) · dnr (G/H) ?
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