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Observation
The quaternion group has dc(Q) = 5/8.

“There is no live between 5/8 and 1"

Is there a version of dc for infinite groups ?
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Let G = (X) be a f.g. group. The degree of commutativity of G w.r.t.
X is

dox(G) = limsup (Y € Bx(n) x Bx(n) | uv = vu}|

where Bx(n) = {g € G| |g|x < n}.

(i) Is this areal lim ?
(ii) Does it depend on X ?
(iiiy What is the relation with the algebraic structure of G ?
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Let G = (X) be of subexponential* growth and residually finite (this
includes all groups of polynomial growth). Then,

(i) dex(@G) >5/8 < G is abelian;
(i) dex(G) > 0 < G is virtually abelian;
(iii) dex(G) is a real limit and does not depend on X.

The same is true for an arbitrary f.g. G.

_

Matthew Tointon: “Commuting probability in amenable groups”,
preprint, gets very similar results for any amenable group.
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Definition
A fg. group G = (X) is of

@ subexponential* growth iflim,_, U%%(xﬁ;l)‘ —1;

@ polynomial growth (of degree d) if 0 < Cn® < [Bx(n)| < Dn°.

Definition
Let G = (X). Amap f: G — N is an estimation of the X-metric if 3
K > 0 such thatVw € G

1 f(w) < |w|x < Kf(w).

|>§

Example

It is well known that, for G = (X) = (Y), | - |x is an estimation of the
Y -metric, and | - |y is an estimation of the X-metric.
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Corollary

If G = (X) = (Y) is of polynomial growth, then

dex(G) =0 <= dcy(G)=0.
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Independence on X

Definition

Let(Y) = H < G = (X). The subgroup H is undistorted if3 K > 0 s.t.
VheH, |hly/K < |hix < Klhly.

In this case, | - |x restricted to H is an estimation of the Y -metric for H.

Corollary

Let G = (X) be of polynomial growth, and (Y) = H < G be a
non-distorted subgroup. Then,

| A

dCx(H) =0 = dCy(H) =0.

A\
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Lemma (Burillo-V., 2002)

If H <t G = (X) and G has subexponential* growth then, for every

g € G, there exists lim,_, W = liMp_s00 W = [G17H]

This is false in the free group: H = {even words} <, F;.

Proposition*

Let (Y) = H <;; G = (X) be of polynomial growth. Then,

In particular, dcy(H) > 0 = dcx(H) > 0 = dcx(G) > 0.
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2
Taking limsups, dex(G) > dex(H) <[G1H] — e) . And this is true

Ve > 0 so, dex(G) dex(H). O

> G- HP
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Proposition*

Let G = (X) be subexponentially* growing. Then, for any finite
quotient G/N, we have dcx(G) < dc(G/N).

Proof. Let N < G with [G: N] = d.

By B-V, Vg € Glim,_,» |gN NBx(n)|/|Bx(n)| = 1/d, indep. X and g.
But |G/N| < oo, so this lim is uniform on g, i.e.,

Ve >0, dng, VYn > ng and Vg € G,

(; - 5) IBx(n)| < [gN N Bx(n)| < (; +5) [Bx(n)l-

Suppose dcx(G) > dc(G/N) and let us find a contradiction.
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for infinitely many n’s.

In the above inequality, take £ > 0 small enough so that
2ed + €2d? < 6, and 3n > 0 such that

[{(u, v) € (Bx(n))? | uv = vu}|
dc(G/N) + 6 < \If;(x(n)lz

1 _ /1 2 »
< e (@) € (@/NR |77 =@ (G +2) Bl

U@V @M ITV=VT)] | o

< 7 + 2ed + £2aP

< dc(G/N) + 4, a contradiction. O
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Let G = (X) be of subexponential* growth and residually finite. Then,
i) dex(G) >5/8 < G is abelian;
i) dex(G) >0 < G is virtually abelian;

Proof: (i). Suppose dcx(G) > 5/8. Then, dc(G/N) > 5/8 for every
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(i, <). Suppose G = (X) is virtually abelian, (Y) = H <;; G with H
abelian. Then G is polynomially growing and dcy(H) =1 > 0 so,
dex(G) > 0.

(i, =). Suppose G is not virtually abelian and let us prove that
dex(G) = 0.
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Thenvr, K, <G, (G/K,)/(K-1/K;/)= G/K,_1 and, by Gallagher,

dc(G/K;) < de(Ki—1/K;) - de(G/Kr—1) < 5/8 - de(G/Ki—1).
By induction, de(G/K;) < (5/8)" and so,

dex(G) < de(G/K;) < (5/8)',

for every r. Therefore, dex(G) = 0. O
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... It just remains to prove that if G = (X) = (Y) is virtually abelian
then, dcx(G) = dcy(G) and is a real limit.
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where P; = {(git*, hit") | (u,v) € L;}, and L; is a proper direct
summand of A2 ~ 72

Proof: Consider the action of G by right conjugation on A,

v: G — Aut(A) = GL«(Z)
g = A = A
. o o gtig =t
Now split into a finite union
{amecigh=hg}= || {(g.ne(c.C) gh=nhg}.
C,C'cG/A
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o If My = My, = Id then we get pairs of full cosets modulo A.

o Otherwise, (My — Id, Id — My) # (0) and we get a block of the form
P = {(gt*, ht") | (u,v) € L}, where L <q A? ~ 7?¢ is proper

{(@.1) € G| gh—ha} ~| JigAnA L |P.

i=1 i=1

Hence, dcx(G) = ﬁ + s-0 as a real limit, and independent from X J
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The hyperbolic case

Theorem (Antolin—Martino—V.)

For every non-elementary hyperbolic group G and every X,
decx(@G) = 0.




6. Generalizations

Outline

e Generalizations



6. Generalizations
[1e}

Generalizations

e We can replace xy = yx by any system of equations .




6. Generalizations
[1e}

Generalizations

e We can replace xy = yx by any system of equations .

e We can replace the uniform measures on balls to any sequence of
measures ., with increasing compact support (coming from random
walks, amenability, etc).




6. Generalizations
[1e}

Generalizations

e We can replace xy = yx by any system of equations .

e We can replace the uniform measures on balls to any sequence of
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Definition

Let G, £ and i, be as above. We define the degree of satisfiability of
Ein Gw.rt u, as

| \

dS(G,(‘:, {Mn}n) =
limsup w5 ({(g1,--..9k) € G| (91, 9k) sol. £}) € [0,1].

n—oo




6. Generalizations
oce

Generalizations

Meta-conjecture

Let G, €, and {un}n be as above, with £ having a gap for finite
groups, and ., being “reasonable”. Then,

ds(G, &, {un}tn) > 0 <= & is a virtual law in G.




6. Generalizations
oce

Generalizations

Meta-conjecture

Let G, €, and {un}n be as above, with £ having a gap for finite
groups, and ., being “reasonable”. Then,

ds(G, &, {un}tn) > 0 <= & is a virtual law in G.

| \

Definition

Eisalawin G ifevery (gi,...,gk) € GX is a solution of € in G.

& is avirtual law in G if 3H <¢; G such that& is a law in H.

A\
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Notation: u = (uo, . .., Ur), [u] = [Uo, - - -, ur] = [[ [[o, t1], t2] - - -], tr]- |

Definition

For a finite group G, the degree of r-nilpotency is

_ Hue G ([ lvo, ur], t] -], ur] = 13|

dn,(G) |G|r+1

Proposition (indep. by R. Rezaei—Russo for compact groups)

Forr > 1, any finite group G, if dn,(G) > 1 — 2,% then dn,(G) = 1.




7. Degree of r-nilpotenc
oeo

The meta-conjecture for r-nilpotence

Let G = (X) be f.g. The degree of r-nilpotency of G w.r.t. X is

[{u € Bx(n) """ | [ [[uo, tn], tz] -- -], ur] = 1}

an, x(G) = limsu
r,X( ) n~>oop |IB%X(n)|’+1

where Bx(n) = {g € G| |g|x < n}.




7. Degree of r-nilpotenc
oeo

The meta-conjecture for r-nilpotence

Let G = (X) be f.g. The degree of r-nilpotency of G w.r.t. X is

. B r+1 ’ 7 L] =1
(@) = imsup (142X e herd S

where Bx(n) = {g € G| |g|x < n}.

A

Theorem (Antolin—Martino—V.)

Let G = (X) be of subexponential* growth and residually-p for
infinitely many primes. Then,

.




7. Degree of r-nilpotenc
oeo

The meta-conjecture for r-nilpotence

Let G = (X) be f.g. The degree of r-nilpotency of G w.r.t. X is

. B r+1 ’ 7 L] =1
(@) = imsup (142X e herd S

where Bx(n) = {g € G| |g|x < n}.

A

Theorem (Antolin—Martino—V.)

Let G = (X) be of subexponential* growth and residually-p for
infinitely many primes. Then,

(i) dn.x(G) >1— 525 < Gis r-nilpotent;

.




7. Degree of r-nilpotenc
oeo

The meta-conjecture for r-nilpotence

Let G = (X) be f.g. The degree of r-nilpotency of G w.r.t. X is

. B r+1 ’ 7 L] =1
(@) = imsup (142X e herd S

where Bx(n) = {g € G| |g|x < n}.

A

Theorem (Antolin—Martino—V.)

Let G = (X) be of subexponential* growth and residually-p for
infinitely many primes. Then,

(i) dn.x(G) >1— 525 < Gis r-nilpotent;

(i) dnr x(G) >0 < G is virtually r-nilpotent.

A\




7. Degree of r-nilpotenc
oeo

The meta-conjecture for r-nilpotence
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(@) = imsup (142X e herd S

where Bx(n) = {g € G| |g|x < n}.

A

Theorem (Antolin—Martino—V.)

Let G = (X) be of subexponential* growth and residually-p for
infinitely many primes. Then,

(i) dn.x(G) >1— 525 < Gis r-nilpotent;
(i) dnr x(G) >0 < G is virtually r-nilpotent.

The problem here is that we still don’t know whether
dan.(G) < dn,(H) - dn.(G/H) 7

A
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