Commuting degree for infinite groups

Enric Ventura

Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya

Dusseldorf, Algebra Seminar.

October 27th, 2014.

Outline

- Motivation
- Main definition
- Finite index subgroups
- Short exact sequences
- A Gromov-like theorem
- Other related results

Outline

- Motivation
- Main definition
- Finite index subgroups
- Short exact sequences
- 5 A Gromov-like theorem
- Other related results

(Joint work with Y. Antolín and A. Martino.)

Theorem (Gustafson, 1973

Let G be a finite group. If the probability that two elements from G commute is bigger than 5/8, then G is abelian.

$$dc(G) = \frac{|\{(u, v) \mid uv = vu\}|}{|G|^2} = \frac{1}{|G|^2} \sum_{u \in G} |C_G(u)| =$$

$$= \frac{1}{|G|^2} \Big(|Z(G)||G| + \sum_{u \in G \setminus Z(G)} |C_G(u)| \Big) \le$$

$$\le \frac{1}{|G|^2} \Big(|Z(G)||G| + (|G| - |Z(G)|) \frac{|G|}{2} \Big) =$$

(Joint work with Y. Antolín and A. Martino.)

Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G commute is bigger than 5/8, then G is abelian.

$$dc(G) = \frac{|\{(u, v) \mid uv = vu\}|}{|G|^2} = \frac{1}{|G|^2} \sum_{u \in G} |C_G(u)| =$$

$$= \frac{1}{|G|^2} (|Z(G)||G| + \sum_{u \in G \setminus Z(G)} |C_G(u)|) \le$$

$$\le \frac{1}{|G|^2} (|Z(G)||G| + (|G| - |Z(G)|) \frac{|G|}{2}) =$$

(Joint work with Y. Antolín and A. Martino.)

Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G commute is bigger than 5/8, then G is abelian.

$$dc(G) = \frac{|\{(u, v) \mid uv = vu\}|}{|G|^2} = \frac{1}{|G|^2} \sum_{u \in G} |C_G(u)| =$$

$$= \frac{1}{|G|^2} \left(|Z(G)||G| + \sum_{u \in G \setminus Z(G)} |C_G(u)| \right) \le$$

$$\le \frac{1}{|G|^2} \left(|Z(G)||G| + (|G| - |Z(G)|) \frac{|G|}{2} \right) =$$

(Joint work with Y. Antolín and A. Martino.)

Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G commute is bigger than 5/8, then G is abelian.

$$dc(G) = \frac{|\{(u, v) \mid uv = vu\}|}{|G|^2} = \frac{1}{|G|^2} \sum_{u \in G} |C_G(u)| =$$

$$= \frac{1}{|G|^2} \Big(|Z(G)||G| + \sum_{u \in G \setminus Z(G)} |C_G(u)| \Big) \le$$

$$\le \frac{1}{|G|^2} \Big(|Z(G)||G| + (|G| - |Z(G)|) \frac{|G|}{2} \Big) =$$

(Joint work with Y. Antolín and A. Martino.)

Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G commute is bigger than 5/8, then G is abelian.

$$\begin{split} dc(G) &= \frac{|\{(u,v) \mid uv = vu\}|}{|G|^2} = \frac{1}{|G|^2} \sum_{u \in G} |C_G(u)| = \\ &= \frac{1}{|G|^2} \Big(|Z(G)||G| + \sum_{u \in G \setminus Z(G)} |C_G(u)| \Big) \leqslant \\ &\leqslant \frac{1}{|G|^2} \left(|Z(G)||G| + (|G| - |Z(G)|) \frac{|G|}{2} \right) = \end{split}$$

$$= \frac{1}{|G|^2} \left(|Z(G)||G| + (|G| - |Z(G)|) \frac{|G|}{2} \right) =$$

$$= \frac{|G| + |Z(G)|}{2|G|} \le \frac{1}{2} + \frac{|G|}{4 \cdot 2|G|} = \frac{1}{2} + \frac{1}{8} = \frac{5}{8},$$

because G/Z(G) cannot be cyclic and so, $|Z(G)| \leq |G|/4$.

Observation

The quaternion group has dc(Q) = 5/8

"There is no live between 5/8 and 1"

(Goal)

Is there a version of dc for infinite groups ?

$$= \frac{1}{|G|^2} \left(|Z(G)||G| + (|G| - |Z(G)|) \frac{|G|}{2} \right) =$$

$$= \frac{|G| + |Z(G)|}{2|G|} \le \frac{1}{2} + \frac{|G|}{4 \cdot 2|G|} = \frac{1}{2} + \frac{1}{8} = \frac{5}{8},$$

because G/Z(G) cannot be cyclic and so, $|Z(G)| \leq |G|/4$.

Observatior

The quaternion group has dc(Q) = 5/8

"There is no live between 5/8 and 1"

(Goal)

Is there a version of dc for infinite groups

$$= \frac{1}{|G|^2} \left(|Z(G)||G| + (|G| - |Z(G)|) \frac{|G|}{2} \right) =$$

$$= \frac{|G| + |Z(G)|}{2|G|} \le \frac{1}{2} + \frac{|G|}{4 \cdot 2|G|} = \frac{1}{2} + \frac{1}{8} = \frac{5}{8},$$

because G/Z(G) cannot be cyclic and so, $|Z(G)| \leq |G|/4$.

Observation

The quaternion group has dc(Q) = 5/8.

"There is no live between 5/8 and 1"

(Goal)

Is there a version of dc for infinite groups ?

$$= \frac{1}{|G|^2} \left(|Z(G)||G| + (|G| - |Z(G)|) \frac{|G|}{2} \right) =$$

$$= \frac{|G| + |Z(G)|}{2|G|} \le \frac{1}{2} + \frac{|G|}{4 \cdot 2|G|} = \frac{1}{2} + \frac{1}{8} = \frac{5}{8},$$

because G/Z(G) cannot be cyclic and so, $|Z(G)| \leq |G|/4$.

Observation

The quaternion group has dc(Q) = 5/8.

"There is no live between 5/8 and 1"

(Goal)

Is there a version of dc for infinite groups

$$= \frac{1}{|G|^2} \left(|Z(G)||G| + (|G| - |Z(G)|) \frac{|G|}{2} \right) =$$

$$= \frac{|G| + |Z(G)|}{2|G|} \leqslant \frac{1}{2} + \frac{|G|}{4 \cdot 2|G|} = \frac{1}{2} + \frac{1}{8} = \frac{5}{8},$$

because G/Z(G) cannot be cyclic and so, $|Z(G)| \leq |G|/4$.

Observation

The quaternion group has dc(Q) = 5/8.

"There is no live between 5/8 and 1"

(Goal)

Is there a version of dc for infinite groups?

Outline

- Motivation
- 2 Main definition
- Finite index subgroups
- Short exact sequences
- 5 A Gromov-like theorem
- Other related results

Definition

Let $G = \langle X \rangle$ be a f.g. group. The degree of commutativity of G w.r.t. X is

$$\textit{dc}_{\textit{X}}(\textit{G}) = \limsup_{n \to \infty} \frac{|\{(\textit{u}, \textit{v}) \in \mathbb{B}_{\textit{X}}(\textit{n}) \times \mathbb{B}_{\textit{X}}(\textit{n}) \mid \textit{uv} = \textit{vu}\}|}{|\mathbb{B}_{\textit{X}}(\textit{n})|^2} \in [0, 1],$$

where
$$\mathbb{B}_X(n) = \{g \in G \mid |g|_X \leqslant n\}.$$

Question

Is this a real lim? Does it depend on X?

- No example where lim doesn't exist:
- No proof it is always a real limit.

Definition

Let $G = \langle X \rangle$ be a f.g. group. The degree of commutativity of G w.r.t. X is

$$\textit{dc}_{\textit{X}}(\textit{G}) = \limsup_{n \to \infty} \frac{|\{(\textit{u}, \textit{v}) \in \mathbb{B}_{\textit{X}}(\textit{n}) \times \mathbb{B}_{\textit{X}}(\textit{n}) \mid \textit{uv} = \textit{vu}\}|}{|\mathbb{B}_{\textit{X}}(\textit{n})|^2} \in [0, 1],$$

where
$$\mathbb{B}_X(n) = \{g \in G \mid |g|_X \leqslant n\}.$$

Question

Is this a real lim? Does it depend on X?

- No example where lim doesn't exist:
- No proof it is always a real limit.

Definition

Let $G = \langle X \rangle$ be a f.g. group. The degree of commutativity of G w.r.t. X is

$$\textit{dc}_{\textit{X}}(\textit{G}) = \limsup_{n \to \infty} \frac{|\{(\textit{u}, \textit{v}) \in \mathbb{B}_{\textit{X}}(\textit{n}) \times \mathbb{B}_{\textit{X}}(\textit{n}) \mid \textit{uv} = \textit{vu}\}|}{|\mathbb{B}_{\textit{X}}(\textit{n})|^2} \in [0, 1],$$

where
$$\mathbb{B}_X(n) = \{g \in G \mid |g|_X \leqslant n\}.$$

Question

Is this a real lim? Does it depend on X?

- No example where lim doesn't exist:
- No proof it is always a real limit.

Definition

Let $G = \langle X \rangle$ be a f.g. group. The degree of commutativity of G w.r.t. X is

$$\textit{dc}_{\textit{X}}(\textit{G}) = \limsup_{n \to \infty} \frac{|\{(\textit{u}, \textit{v}) \in \mathbb{B}_{\textit{X}}(\textit{n}) \times \mathbb{B}_{\textit{X}}(\textit{n}) \mid \textit{uv} = \textit{vu}\}|}{|\mathbb{B}_{\textit{X}}(\textit{n})|^2} \in [0, 1],$$

where
$$\mathbb{B}_X(n) = \{g \in G \mid |g|_X \leqslant n\}.$$

Question

Is this a real lim? Does it depend on X?

- No example where lim doesn't exist;
- No proof it is always a real limit.

Definition

Let $G = \langle X \rangle$ be a f.g. group. The degree of commutativity of G w.r.t. X is

$$\textit{dc}_{\textit{X}}(\textit{G}) = \limsup_{n \to \infty} \frac{|\{(\textit{u}, \textit{v}) \in \mathbb{B}_{\textit{X}}(\textit{n}) \times \mathbb{B}_{\textit{X}}(\textit{n}) \mid \textit{uv} = \textit{vu}\}|}{|\mathbb{B}_{\textit{X}}(\textit{n})|^2} \in [0, 1],$$

where
$$\mathbb{B}_X(n) = \{g \in G \mid |g|_X \leqslant n\}.$$

Question

Is this a real lim? Does it depend on X?

- No example where lim doesn't exist;
- No proof it is always a real limit.

Definition

A f.g. group $G = \langle X \rangle$ is of

- subexponential growth if $\lim_{n\to\infty} \frac{|\mathbb{B}_X(n+1)|}{|\mathbb{B}_X(n)|} = 1$;
- polynomial growth (of degree d) if $0 < Cn^d \le |\mathbb{B}_X(n)| \le Dn^d$.

Definitior

Let $G = \langle X \rangle$. A map $f \colon G \to \mathbb{N}$ is an estimation of the X-metric if $\exists K > 0$ such that $\forall w \in G$

$$\frac{1}{K}f(w)\leqslant |w|_X\leqslant Kf(w).$$

Example

Definition

A f.g. group $G = \langle X \rangle$ is of

- subexponential growth if $\lim_{n\to\infty} \frac{|\mathbb{B}_X(n+1)|}{|\mathbb{B}_X(n)|} = 1$;
- polynomial growth (of degree d) if $0 < Cn^d \le |\mathbb{B}_X(n)| \le Dn^d$.

Definitior

Let $G = \langle X \rangle$. A map $f \colon G \to \mathbb{N}$ is an estimation of the X-metric if \exists K > 0 such that $\forall w \in G$

$$\frac{1}{K}f(w)\leqslant |w|_X\leqslant Kf(w).$$

Example

Definition

A f.g. group $G = \langle X \rangle$ is of

- subexponential growth if $\lim_{n\to\infty} \frac{|\mathbb{B}_X(n+1)|}{|\mathbb{B}_X(n)|} = 1$;
- polynomial growth (of degree d) if $0 < Cn^d \le |\mathbb{B}_X(n)| \le Dn^d$.

Definition

Let $G = \langle X \rangle$. A map $f \colon G \to \mathbb{N}$ is an estimation of the X-metric if \exists K > 0 such that $\forall w \in G$

$$\frac{1}{\kappa} f(w) \leqslant |w|_X \leqslant K f(w).$$

Example

Definition

A f.g. group $G = \langle X \rangle$ is of

- subexponential growth if $\lim_{n\to\infty} \frac{|\mathbb{B}_X(n+1)|}{|\mathbb{B}_X(n)|} = 1$;
- polynomial growth (of degree d) if $0 < Cn^d \le |\mathbb{B}_X(n)| \le Dn^d$.

Definition

Let $G = \langle X \rangle$. A map $f \colon G \to \mathbb{N}$ is an estimation of the X-metric if \exists K > 0 such that $\forall w \in G$

$$\frac{1}{K}f(w)\leqslant |w|_X\leqslant Kf(w).$$

Example

2. Main definition

Definition

Define the f-ball and the f-dc:

$$\mathbb{B}_{f}(n) = \{ w \in G \mid f(w) \leqslant n \},\$$

$$dc_f(G) = \limsup_{n \to \infty} \frac{|\{(u, v) \in \mathbb{B}_f(n) \times \mathbb{B}_f(n) \mid uv = vu\}|}{|\mathbb{B}_f(n)|^2}.$$

$$dc_X(G) > 0 \iff dc_f(G) > 0$$

$$|\{(u,v)\in (\mathbb{B}_{f}(n))^{2}\mid uv=vu\}|\leqslant |\{(u,v)\in (\mathbb{B}_{X}(Kn))^{2}\mid uv=vu\}|.$$

2. Main definition

Definition

Define the f-ball and the f-dc:

$$\mathbb{B}_f(n) = \{ w \in G \mid f(w) \leqslant n \},\$$

$$dc_f(G) = \limsup_{n \to \infty} \frac{|\{(u, v) \in \mathbb{B}_f(n) \times \mathbb{B}_f(n) \mid uv = vu\}|}{|\mathbb{B}_f(n)|^2}$$

Proposition

Let $G = \langle X \rangle$ be of polynomial growth, and $f \colon G \to \mathbb{N}$ be an estimation of the X-metric. Then,

$$dc_X(G) > 0 \iff dc_f(G) > 0.$$

Proof. Clearly, $\mathbb{B}_f(n) \subseteq \mathbb{B}_X(Kn) \subseteq \mathbb{B}_f(K^2n)$ so,

$$|\{(u,v)\in (\mathbb{B}_f(n))^2\mid uv=vu\}|\leqslant |\{(u,v)\in (\mathbb{B}_X(Kn))^2\mid uv=vu\}|.$$

2. Main definition

Definition

1. Motivation

Define the f-ball and the f-dc:

$$\mathbb{B}_{f}(n) = \{ w \in G \mid f(w) \leqslant n \},\$$

$$dc_f(G) = \limsup_{n \to \infty} \frac{|\{(u, v) \in \mathbb{B}_f(n) \times \mathbb{B}_f(n) \mid uv = vu\}|}{|\mathbb{B}_f(n)|^2}$$

Proposition

Let $G = \langle X \rangle$ be of polynomial growth, and $f : G \to \mathbb{N}$ be an estimation of the X-metric. Then.

$$dc_X(G) > 0 \iff dc_f(G) > 0.$$

Proof. Clearly, $\mathbb{B}_t(n) \subset \mathbb{B}_X(Kn) \subset \mathbb{B}_t(K^2n)$ so,

$$|\{(u,v)\in (\mathbb{B}_t(n))^2\mid uv=vu\}| \leq |\{(u,v)\in (\mathbb{B}_X(Kn))^2\mid uv=vu\}|$$

2. Main definition

Definition

Define the f-ball and the f-dc:

$$\mathbb{B}_{f}(n) = \{ w \in G \mid f(w) \leqslant n \},\$$

$$dc_f(G) = \limsup_{n \to \infty} \frac{|\{(u, v) \in \mathbb{B}_f(n) \times \mathbb{B}_f(n) \mid uv = vu\}|}{|\mathbb{B}_f(n)|^2}$$

Proposition

Let $G = \langle X \rangle$ be of polynomial growth, and $f \colon G \to \mathbb{N}$ be an estimation of the X-metric. Then,

$$dc_X(G) > 0 \iff dc_f(G) > 0.$$

Proof. Clearly, $\mathbb{B}_f(n) \subseteq \mathbb{B}_X(Kn) \subseteq \mathbb{B}_f(K^2n)$ so,

$$|\{(u,v)\in (\mathbb{B}_f(n))^2\mid uv=vu\}|\leqslant |\{(u,v)\in (\mathbb{B}_X(Kn))^2\mid uv=vu\}|.$$

$$\frac{|\{(u,v)\in(\mathbb{B}_{f}(n))^{2}|uv=vu\}|}{|\mathbb{B}_{X}(Kn)|^{2}}\leqslant \frac{|\{(u,v)\in(\mathbb{B}_{X}(Kn))^{2}|uv=vu\}|}{|\mathbb{B}_{X}(Kn)|^{2}}.$$

$$\left(\frac{|\{(u,v)\in(\mathbb{B}_{f}(n))^{2}|uv=vu\}|}{|\mathbb{B}_{f}(n)|^{2}}\right)\left(\frac{|\mathbb{B}_{f}(n)|}{|\mathbb{B}_{X}(Kn)|}\right)^{2}$$

$$So, dc_{X}(G) = 0 \Rightarrow dc_{f}(G) = 0, because$$

$$\frac{|\mathbb{B}_{f}(n)|}{|\mathbb{B}_{X}(Kn)|} \geqslant \frac{|\mathbb{B}_{X}(n/K)|}{|\mathbb{B}_{X}(Kn)|} \geqslant \frac{C(n/K)^{d}}{D(Kn)^{d}} = \frac{C}{DK^{2d}} > 0. \quad \Box$$

Corollary

If
$$G = \langle X \rangle = \langle Y \rangle$$
 is of polynomial growth, then

$$dc_X(G) = 0 \iff dc_Y(G) = 0$$

$$\frac{|\{(u,v)\in (\mathbb{B}_f(n))^2|uv=vu\}|}{|\mathbb{B}_X(Kn)|^2}\leqslant \frac{|\{(u,v)\in (\mathbb{B}_X(Kn))^2|uv=vu\}|}{|\mathbb{B}_X(Kn)|^2}.$$

$$\left(\frac{|\{(u,v)\in (\mathbb{B}_f(n))^2|uv=vu\}|}{|\mathbb{B}_f(n)|^2}\right)\left(\frac{|\mathbb{B}_f(n)|}{|\mathbb{B}_X(Kn)|}\right)^2$$

$$So, \ dc_X(G)=0 \Rightarrow \ dc_f(G)=0, \ because$$

$$\frac{|\mathbb{B}_f(n)|}{|\mathbb{B}_X(Kn)|}\geqslant \frac{|\mathbb{B}_X(n/K)|}{|\mathbb{B}_X(Kn)|}\geqslant \frac{C(n/K)^d}{D(Kn)^d}=\frac{C}{DK^{2d}}>0. \quad \Box$$

Corollary

If $G = \langle X \rangle = \langle Y \rangle$ is of polynomial growth, then

$$dc_X(G) = 0 \iff dc_Y(G) = 0$$

$$\frac{\frac{|\{(u,v)\in(\mathbb{B}_{f}(n))^{2}|uv=vu\}|}{|\mathbb{B}_{X}(Kn)|^{2}}}{\left(\frac{|\{(u,v)\in(\mathbb{B}_{X}(Kn))^{2}|uv=vu\}|}{|\mathbb{B}_{X}(Kn)|^{2}}\right)} \leqslant \frac{\frac{|\{(u,v)\in(\mathbb{B}_{X}(Kn))^{2}|uv=vu\}|}{|\mathbb{B}_{X}(Kn)|^{2}}.$$

$$\left(\frac{|\{(u,v)\in(\mathbb{B}_{f}(n))^{2}|uv=vu\}|}{|\mathbb{B}_{f}(n)|^{2}}\right)\left(\frac{|\mathbb{B}_{f}(n)|}{|\mathbb{B}_{X}(Kn)|}\right)^{2}$$

$$So, \ dc_{X}(G) = 0 \quad \Rightarrow \quad dc_{f}(G) = 0, \ because$$

$$\frac{|\mathbb{B}_{f}(n)|}{|\mathbb{B}_{X}(Kn)|} \geqslant \frac{|\mathbb{B}_{X}(n/K)|}{|\mathbb{B}_{X}(Kn)|} \geqslant \frac{C(n/K)^{d}}{D(Kn)^{d}} = \frac{C}{DK^{2d}} > 0. \quad \Box$$

Corollary

If
$$G = \langle X \rangle = \langle Y \rangle$$
 is of polynomial growth, then

$$dc_X(G) = 0 \iff dc_Y(G) = 0.$$

Outline

- Motivation
- Main definition
- Finite index subgroups
- Short exact sequences
- 5 A Gromov-like theorem
- 6 Other related results

Lemma (Burillo-Ventura, 2002)

If $H \leqslant_{f.i.} G = \langle X \rangle$ and G has subexponential growth then there exists $\lim_{n \to \infty} \frac{|\mathbb{B}_X(n) \cap H|}{|\mathbb{B}_X(n)|} = \frac{1}{|G:H|}$.

Proposition

Let $\langle Y \rangle = H \leqslant_{f.i.} G = \langle X \rangle$ be of polynomial growth. Then, $dc_X(G) \geqslant \frac{1}{[G:H]^2} dc_Y(H)$.

Proposition (Gallagher, 1970)

Let G be a finite group and $H \subseteq G$. Then, $dc(G) \leq dc(H) \cdot dc(G/H)$.

Corollary

Lemma (Burillo-Ventura, 2002)

If $H \leqslant_{f.i.} G = \langle X \rangle$ and G has subexponential growth then there exists $\lim_{n \to \infty} \frac{|\mathbb{B}_X(n) \cap H|}{|\mathbb{B}_X(n)|} = \frac{1}{[G:H]}$.

Proposition

Let
$$\langle Y \rangle = H \leq_{f.i.} G = \langle X \rangle$$
 be of polynomial growth. Then, $dc_X(G) \geqslant \frac{1}{[G:H]^2} dc_Y(H)$.

Proposition (Gallagher, 1970)

Let G be a finite group and $H \subseteq G$. Then, $dc(G) \leq dc(H) \cdot dc(G/H)$.

Corollary

Lemma (Burillo-Ventura, 2002)

If $H \leqslant_{f.i.} G = \langle X \rangle$ and G has subexponential growth then there exists $\lim_{n \to \infty} \frac{|\mathbb{B}_X(n) \cap H|}{|\mathbb{B}_X(n)|} = \frac{1}{[G:H]}$.

Proposition

Let $\langle Y \rangle = H \leq_{f.i.} G = \langle X \rangle$ be of polynomial growth. Then, $dc_X(G) \geqslant \frac{1}{[G:H]^2} dc_Y(H)$.

Proposition (Gallagher, 1970)

Let G be a finite group and $H \subseteq G$. Then, $dc(G) \leq dc(H) \cdot dc(G/H)$.

Corollary

Lemma (Burillo-Ventura, 2002)

If $H \leqslant_{f.i.} G = \langle X \rangle$ and G has subexponential growth then there exists $\lim_{n \to \infty} \frac{|\mathbb{B}_X(n) \cap H|}{|\mathbb{B}_X(n)|} = \frac{1}{[G:H]}$.

Proposition

Let $\langle Y \rangle = H \leq_{f.i.} G = \langle X \rangle$ be of polynomial growth. Then, $dc_X(G) \geqslant \frac{1}{[G:H]^2} dc_Y(H)$.

Proposition (Gallagher, 1970)

Let G be a finite group and $H \subseteq G$. Then, $dc(G) \leq dc(H) \cdot dc(G/H)$.

Corollary

Outline

- Motivation
- Main definition
- Finite index subgroups
- Short exact sequences
- 6 A Gromov-like theorem
- Other related results

Proposition

Let
$$G = \langle X \rangle$$
, $H \subseteq G$, and let $\pi : G \rightarrow Q = G/H = \langle \overline{X} \rangle$. Put

$$0 \leqslant \lambda = \left(\liminf \frac{|\mathbb{B}_X(n)|}{|\mathbb{B}_{\overline{X}}(n)| \cdot |\mathbb{B}_X(2n) \cap H|} \right)^2 \leqslant 1.$$

Then, $\lambda \cdot dc_X(G) \leqslant dc_{\overline{X}}(Q) \cdot dc_X(H)$.

Proof. Write $dc_X(G) = \limsup dc_X(G, n)$, where

$$dc_X(G, n) = \frac{|\{(u, v) \in (\mathbb{B}_X(n))^2 \mid uv = vu\}|}{|\mathbb{B}_X(n)|^2}.$$

We have.

Proposition

Let
$$G = \langle X \rangle$$
, $H \subseteq G$, and let $\pi : G \rightarrow Q = G/H = \langle \overline{X} \rangle$. Put

$$0 \leqslant \lambda = \left(\liminf \frac{|\mathbb{B}_X(n)|}{|\mathbb{B}_{\overline{X}}(n)| \cdot |\mathbb{B}_X(2n) \cap H|} \right)^2 \leqslant 1.$$

Then, $\lambda \cdot dc_X(G) \leqslant dc_{\overline{X}}(Q) \cdot dc_X(H)$.

Proof. Write $dc_X(G) = \limsup dc_X(G, n)$, where

$$dc_X(G, n) = \frac{|\{(u, v) \in (\mathbb{B}_X(n))^2 \mid uv = vu\}|}{|\mathbb{B}_X(n)|^2}.$$

We have.

$$|\mathbb{B}_{X}(n)|^{2}dc_{X}(G,n) = |\{(u,v) \in (\mathbb{B}_{X}(n))^{2} \mid uv = vu\}| =$$

$$= \sum_{u \in \mathbb{B}_{X}(n)} |C_{G}(u) \cap \mathbb{B}_{X}(n)| = \sum_{q \in \mathbb{B}_{\overline{X}}(n)} \sum_{\substack{u \in \mathbb{B}_{X}(n) \\ \pi(u) = q}} |C_{G}(u) \cap \mathbb{B}_{X}(n)| \leq$$

$$\leq \sum_{q \in \mathbb{B}_{\overline{X}}(n)} \sum_{\substack{u \in \mathbb{B}_{X}(n) \\ \pi(u) = q}} |C_{Q}(q) \cap \mathbb{B}_{\overline{X}}(n)| \cdot |C_{H}(u) \cap \mathbb{B}_{X}(2n)| =$$

$$= \sum_{q \in \mathbb{B}_{X}(n)} \left(|C_{Q}(q) \cap \mathbb{B}_{\overline{X}}(n)| \sum_{u \in \mathbb{B}_{X}(n)} |C_{H}(u) \cap \mathbb{B}_{X}(2n)| \right) = (1)$$

$$|\mathbb{B}_{X}(n)|^{2}dc_{X}(G,n) = |\{(u,v) \in (\mathbb{B}_{X}(n))^{2} \mid uv = vu\}| =$$

$$= \sum_{u \in \mathbb{B}_{X}(n)} |C_{G}(u) \cap \mathbb{B}_{X}(n)| = \sum_{q \in \mathbb{B}_{X}(n)} \sum_{\substack{u \in \mathbb{B}_{X}(n) \\ \pi(u) = q}} |C_{G}(u) \cap \mathbb{B}_{X}(n)| \leq$$

$$\leq \sum_{q \in \mathbb{B}_{X}(n)} \sum_{\substack{u \in \mathbb{B}_{X}(n) \\ \pi(u) = q}} |C_{Q}(q) \cap \mathbb{B}_{X}(n)| \cdot |C_{H}(u) \cap \mathbb{B}_{X}(2n)| =$$

$$= \sum_{q \in \mathbb{B}_{X}(n)} \left(|C_{Q}(q) \cap \mathbb{B}_{X}(n)| \sum_{\substack{u \in \mathbb{B}_{X}(n) \\ \pi(u) = q}} |C_{H}(u) \cap \mathbb{B}_{X}(2n)| \right) = (1)$$

$$|\mathbb{B}_{X}(n)|^{2}dc_{X}(G,n) = |\{(u,v) \in (\mathbb{B}_{X}(n))^{2} \mid uv = vu\}| =$$

$$= \sum_{u \in \mathbb{B}_{X}(n)} |C_{G}(u) \cap \mathbb{B}_{X}(n)| = \sum_{q \in \mathbb{B}_{X}(n)} \sum_{\substack{u \in \mathbb{B}_{X}(n) \\ \pi(u) = q}} |C_{G}(u) \cap \mathbb{B}_{X}(n)| \leq$$

$$\leq \sum_{q \in \mathbb{B}_{X}(n)} \sum_{\substack{u \in \mathbb{B}_{X}(n) \\ \pi(u) = q}} |C_{Q}(q) \cap \mathbb{B}_{X}(n)| \cdot |C_{H}(u) \cap \mathbb{B}_{X}(2n)| =$$

$$= \sum_{q \in \mathbb{B}_{X}(n)} \left(|C_{Q}(q) \cap \mathbb{B}_{X}(n)| \sum_{\substack{u \in \mathbb{B}_{X}(n) \\ \pi(u) = q}} |C_{H}(u) \cap \mathbb{B}_{X}(2n)| \right) = (1)$$

$$|\mathbb{B}_{X}(n)|^{2}dc_{X}(G,n) = |\{(u,v) \in (\mathbb{B}_{X}(n))^{2} \mid uv = vu\}| =$$

$$= \sum_{u \in \mathbb{B}_{X}(n)} |C_{G}(u) \cap \mathbb{B}_{X}(n)| = \sum_{q \in \mathbb{B}_{\overline{X}}(n)} \sum_{\substack{u \in \mathbb{B}_{X}(n) \\ \pi(u) = q}} |C_{G}(u) \cap \mathbb{B}_{X}(n)| \leq$$

$$\leq \sum_{q \in \mathbb{B}_{\overline{X}}(n)} \sum_{\substack{u \in \mathbb{B}_{X}(n) \\ \pi(u) = q}} |C_{Q}(q) \cap \mathbb{B}_{\overline{X}}(n)| \cdot |C_{H}(u) \cap \mathbb{B}_{X}(2n)| =$$

$$= \sum_{q \in \mathbb{B}_{\overline{X}}(n)} \left(|C_{Q}(q) \cap \mathbb{B}_{\overline{X}}(n)| \sum_{\substack{u \in \mathbb{B}_{X}(n) \\ \pi(u) = q}} |C_{H}(u) \cap \mathbb{B}_{X}(2n)| \right) = (1)$$

But, fixing
$$u_0 \in \mathbb{B}_X(n)$$
 with $\pi(u_0) = q$,
$$\sum_{u \in \mathbb{B}_X(n), \ \pi(u) = q} |C_H(u) \cap \mathbb{B}_X(2n)| =$$

$$= |\{(h, v) \in H \times (\mathbb{B}_X(2n) \cap H) \mid v \in C_H(u_0h), |u_0h|_X \le n\}| =$$

$$= |\{(h, v) \in H \times (\mathbb{B}_X(2n) \cap H) \mid u_0h \in C_G(v) \cap \mathbb{B}_X(n)\}| =$$

$$= \sum_{v \in \mathbb{B}_X(2n) \cap H} |\{h \in H \mid u_0h \in C_G(v) \cap \mathbb{B}_X(n)\}| \le$$

$$\leq \sum_{v \in \mathbb{B}_X(2n) \cap H} |C_H(v) \cap \mathbb{B}_X(2n)|.$$

But, fixing
$$u_0 \in \mathbb{B}_X(n)$$
 with $\pi(u_0) = q$,
$$\sum_{u \in \mathbb{B}_X(n), \ \pi(u) = q} |C_H(u) \cap \mathbb{B}_X(2n)| =$$

$$= |\{(h, v) \in H \times (\mathbb{B}_X(2n) \cap H) \mid v \in C_H(u_0h), |u_0h|_X \le n\}| =$$

$$= |\{(h, v) \in H \times (\mathbb{B}_X(2n) \cap H) \mid u_0h \in C_G(v) \cap \mathbb{B}_X(n)\}| =$$

$$= \sum_{v \in \mathbb{B}_X(2n) \cap H} |\{h \in H \mid u_0h \in C_G(v) \cap \mathbb{B}_X(n)\}| \le$$

$$\le \sum_{v \in \mathbb{B}_X(2n) \cap H} |C_H(v) \cap \mathbb{B}_X(2n)|.$$

But, fixing
$$u_0 \in \mathbb{B}_X(n)$$
 with $\pi(u_0) = q$,
$$\sum_{u \in \mathbb{B}_X(n), \ \pi(u) = q} |C_H(u) \cap \mathbb{B}_X(2n)| =$$

$$= |\{(h, v) \in H \times (\mathbb{B}_X(2n) \cap H) \mid v \in C_H(u_0h), |u_0h|_X \le n\}| =$$

$$= |\{(h, v) \in H \times (\mathbb{B}_X(2n) \cap H) \mid u_0h \in C_G(v) \cap \mathbb{B}_X(n)\}| =$$

$$= \sum_{v \in \mathbb{B}_X(2n) \cap H} |\{h \in H \mid u_0h \in C_G(v) \cap \mathbb{B}_X(n)\}| \le$$

$$\leq \sum_{v \in \mathbb{B}_X(2n) \cap H} |C_H(v) \cap \mathbb{B}_X(2n)|.$$

But, fixing
$$u_0 \in \mathbb{B}_X(n)$$
 with $\pi(u_0) = q$,
$$\sum_{u \in \mathbb{B}_X(n), \ \pi(u) = q} |C_H(u) \cap \mathbb{B}_X(2n)| =$$

$$= |\{(h, v) \in H \times (\mathbb{B}_X(2n) \cap H) \mid v \in C_H(u_0h), |u_0h|_X \le n\}| =$$

$$= |\{(h, v) \in H \times (\mathbb{B}_X(2n) \cap H) \mid u_0h \in C_G(v) \cap \mathbb{B}_X(n)\}| =$$

$$= \sum_{v \in \mathbb{B}_X(2n) \cap H} |\{h \in H \mid u_0h \in C_G(v) \cap \mathbb{B}_X(n)\}| \le$$

$$\leq \sum_{v \in \mathbb{B}_X(2n) \cap H} |C_H(v) \cap \mathbb{B}_X(2n)|.$$

$$\begin{aligned} & \text{But, fixing } u_0 \in \mathbb{B}_X(n) \text{ with } \pi(u_0) = q, \\ & \sum_{u \in \mathbb{B}_X(n), \ \pi(u) = q} |C_H(u) \cap \mathbb{B}_X(2n)| = \\ & = |\{(h, v) \in H \times (\mathbb{B}_X(2n) \cap H) \mid v \in C_H(u_0h), |u_0h|_X \leq n\}| = \\ & = |\{(h, v) \in H \times (\mathbb{B}_X(2n) \cap H) \mid u_0h \in C_G(v) \cap \mathbb{B}_X(n)\}| = \\ & = \sum_{v \in \mathbb{B}_X(2n) \cap H} |\{h \in H \mid u_0h \in C_G(v) \cap \mathbb{B}_X(n)\}| \leq \\ & \leq \sum_{v \in \mathbb{B}_X(2n) \cap H} |C_H(v) \cap \mathbb{B}_X(2n)|. \end{aligned}$$

Hence.

But, fixing
$$u_0 \in \mathbb{B}_X(n)$$
 with $\pi(u_0) = q$,
$$\sum_{u \in \mathbb{B}_X(n), \ \pi(u) = q} |C_H(u) \cap \mathbb{B}_X(2n)| =$$

$$= |\{(h, v) \in H \times (\mathbb{B}_X(2n) \cap H) \mid v \in C_H(u_0h), |u_0h|_X \le n\}| =$$

$$= |\{(h, v) \in H \times (\mathbb{B}_X(2n) \cap H) \mid u_0h \in C_G(v) \cap \mathbb{B}_X(n)\}| =$$

$$= \sum_{v \in \mathbb{B}_X(2n) \cap H} |\{h \in H \mid u_0h \in C_G(v) \cap \mathbb{B}_X(n)\}| \le$$

$$\le \sum_{v \in \mathbb{B}_X(2n) \cap H} |C_H(v) \cap \mathbb{B}_X(2n)|.$$

2. Main definition

$$(1)\leqslant \sum_{q\in \mathbb{B}_{\overline{X}}(n)}\left(|C_Q(q)\cap \mathbb{B}_{\overline{X}}(n)|\sum_{v\in \mathbb{B}_X(2n)\cap H}|C_H(v)\cap \mathbb{B}_X(2n)|\right)=$$

$$=\left(\sum_{q\in \mathbb{B}_{\overline{X}}(n)}|C_{Q}(q)\cap \mathbb{B}_{\overline{X}}(n)|
ight)\left(\sum_{v\in \mathbb{B}_{X}(2n)\cap H}|C_{H}(v)\cap \mathbb{B}_{X}(2n)|
ight)=$$

$$|\mathbb{B}_{\overline{X}}(n)|^2 \cdot dc_{\overline{X}}(Q,n) \cdot |\mathbb{B}_X(2n) \cap H|^2 \cdot dc_X(H,2n).$$

$$\left(\frac{|\mathbb{B}_X(n)|}{|\mathbb{B}_{\overline{Y}}(n)|\cdot|\mathbb{B}_X(2n)\cap H|}\right)^2\cdot dc_X(G,n)\leqslant dc_{\overline{X}}(Q,n)\cdot dc_X(H,2n)$$

$$\lambda \cdot dc_X(G) \leqslant dc_{\overline{Y}}(Q) \cdot dc_X(H)$$
. \square

$$(1)\leqslant \sum_{q\in \mathbb{B}_{\overline{X}}(n)}\left(|C_Q(q)\cap \mathbb{B}_{\overline{X}}(n)|\sum_{v\in \mathbb{B}_X(2n)\cap H}|C_H(v)\cap \mathbb{B}_X(2n)|\right)=$$

$$C = \left(\sum_{q \in \mathbb{B}_{\overline{X}}(n)} |C_Q(q) \cap \mathbb{B}_{\overline{X}}(n)| \right) \left(\sum_{v \in \mathbb{B}_X(2n) \cap H} |C_H(v) \cap \mathbb{B}_X(2n)| \right) = 0$$

$$|\mathbb{B}_{\overline{X}}(n)|^2 \cdot dc_{\overline{X}}(Q,n) \cdot |\mathbb{B}_X(2n) \cap H|^2 \cdot dc_X(H,2n).$$

It follows that

$$\left(\frac{|\mathbb{B}_X(n)|}{|\mathbb{B}_{\overline{X}}(n)|\cdot|\mathbb{B}_X(2n)\cap H|}\right)^2\cdot dc_X(G,n)\leqslant dc_{\overline{X}}(Q,n)\cdot dc_X(H,2n)$$

Finally, taking limits, we get

$$\lambda \cdot dc_X(G) \leqslant dc_{\overline{V}}(Q) \cdot dc_X(H)$$
.

2. Main definition

$$(1)\leqslant \sum_{q\in \mathbb{B}_{\overline{X}}(n)}\left(|C_Q(q)\cap \mathbb{B}_{\overline{X}}(n)|\sum_{v\in \mathbb{B}_X(2n)\cap H}|C_H(v)\cap \mathbb{B}_X(2n)|\right)=$$

$$=\left(\sum_{q\in \mathbb{B}_{\overline{X}}(n)}|C_Q(q)\cap \mathbb{B}_{\overline{X}}(n)|
ight)\left(\sum_{v\in \mathbb{B}_X(2n)\cap H}|C_H(v)\cap \mathbb{B}_X(2n)|
ight)=0$$

$$|\mathbb{B}_{\overline{X}}(n)|^2 \cdot dc_{\overline{X}}(Q,n) \cdot |\mathbb{B}_X(2n) \cap H|^2 \cdot dc_X(H,2n).$$

$$\left(\frac{|\mathbb{B}_X(n)|}{|\mathbb{B}_{\overline{X}}(n)|\cdot|\mathbb{B}_X(2n)\cap H|}\right)^2\cdot dc_X(G,n)\leqslant dc_{\overline{X}}(Q,n)\cdot dc_X(H,2n)$$

$$\lambda \cdot dc_X(G) \leqslant dc_{\overline{X}}(Q) \cdot dc_X(H)$$
.

2. Main definition

$$(1)\leqslant \sum_{q\in \mathbb{B}_{\overline{X}}(n)}\left(|C_Q(q)\cap \mathbb{B}_{\overline{X}}(n)|\sum_{v\in \mathbb{B}_X(2n)\cap H}|C_H(v)\cap \mathbb{B}_X(2n)|\right)=$$

$$=\left(\sum_{q\in \mathbb{B}_{\overline{X}}(n)}|C_Q(q)\cap \mathbb{B}_{\overline{X}}(n)|
ight)\left(\sum_{v\in \mathbb{B}_X(2n)\cap H}|C_H(v)\cap \mathbb{B}_X(2n)|
ight)=$$

$$|\mathbb{B}_{\overline{X}}(n)|^2 \cdot dc_{\overline{X}}(Q,n) \cdot |\mathbb{B}_X(2n) \cap H|^2 \cdot dc_X(H,2n).$$

It follows that

$$\left(\frac{|\mathbb{B}_X(n)|}{|\mathbb{B}_{\overline{X}}(n)|\cdot|\mathbb{B}_X(2n)\cap H|}\right)^2\cdot dc_X(G,n)\leqslant dc_{\overline{X}}(Q,n)\cdot dc_X(H,2n).$$

$$\lambda \cdot dc_X(G) \leqslant dc_{\overline{X}}(Q) \cdot dc_X(H)$$
.

2. Main definition

$$(1)\leqslant \sum_{q\in \mathbb{B}_{\overline{X}}(n)}\left(|C_Q(q)\cap \mathbb{B}_{\overline{X}}(n)|\sum_{v\in \mathbb{B}_X(2n)\cap H}|C_H(v)\cap \mathbb{B}_X(2n)|\right)=$$

$$=\left(\sum_{q\in \mathbb{B}_{\overline{X}}(n)}|C_Q(q)\cap \mathbb{B}_{\overline{X}}(n)|
ight)\left(\sum_{v\in \mathbb{B}_X(2n)\cap H}|C_H(v)\cap \mathbb{B}_X(2n)|
ight)=$$

$$|\mathbb{B}_{\overline{X}}(n)|^2 \cdot dc_{\overline{X}}(Q,n) \cdot |\mathbb{B}_X(2n) \cap H|^2 \cdot dc_X(H,2n).$$

It follows that

$$\left(\frac{|\mathbb{B}_X(n)|}{|\mathbb{B}_{\overline{X}}(n)|\cdot|\mathbb{B}_X(2n)\cap H|}\right)^2\cdot dc_X(G,n)\leqslant dc_{\overline{X}}(Q,n)\cdot dc_X(H,2n).$$

Finally, taking limits, we get

$$\lambda \cdot dc_X(G) \leqslant dc_{\overline{Y}}(Q) \cdot dc_X(H)$$
.

$$(1)\leqslant \sum_{q\in \mathbb{B}_{\overline{X}}(n)}\left(|C_Q(q)\cap \mathbb{B}_{\overline{X}}(n)|\sum_{v\in \mathbb{B}_X(2n)\cap H}|C_H(v)\cap \mathbb{B}_X(2n)|\right)=$$

$$=\left(\sum_{q\in \mathbb{B}_{\overline{X}}(n)}|C_Q(q)\cap \mathbb{B}_{\overline{X}}(n)|
ight)\left(\sum_{v\in \mathbb{B}_X(2n)\cap H}|C_H(v)\cap \mathbb{B}_X(2n)|
ight)=$$

$$|\mathbb{B}_{\overline{X}}(n)|^2 \cdot dc_{\overline{X}}(Q,n) \cdot |\mathbb{B}_X(2n) \cap H|^2 \cdot dc_X(H,2n).$$

It follows that

$$\left(\frac{|\mathbb{B}_X(n)|}{|\mathbb{B}_{\overline{X}}(n)|\cdot|\mathbb{B}_X(2n)\cap H|}\right)^2\cdot dc_X(G,n)\leqslant dc_{\overline{X}}(Q,n)\cdot dc_X(H,2n).$$

Finally, taking limits, we get

$$\lambda \cdot dc_X(G) \leqslant dc_{\overline{X}}(Q) \cdot dc_X(H)$$
. \square

Proposition

Let $G = \langle X \rangle$ be polynomially growing with degree d. Then, $\forall H \leq_{f.i.} G$, we have

$$\left(\frac{C}{D\cdot 4^d}\right)^2\cdot dc_X(G)\leq dc_{\overline{X}}(G/H)\cdot dc_X(H).$$

$$\frac{|\mathbb{B}_X(n)|}{|\mathbb{B}_{\overline{X}}(n)|\cdot|\mathbb{B}_X(2n)\cap H|}\geqslant \frac{|\mathbb{B}_{\overline{X}}(\lfloor\frac{n}{2}\rfloor)|\cdot|\mathbb{B}_X(\lfloor\frac{n}{2}\rfloor)\cap H|}{|\mathbb{B}_{\overline{X}}(n)|\cdot|\mathbb{B}_X(2n)\cap H|}=$$

$$=\frac{|\mathbb{B}_X(\lfloor\frac{n}{2}\rfloor)\cap H|}{|\mathbb{B}_X(2n)\cap H|}=\frac{|\mathbb{B}_X(\lfloor\frac{n}{2}\rfloor)\cap H|}{|\mathbb{B}_X(\lfloor\frac{n}{2}\rfloor)|}\cdot\frac{|\mathbb{B}_X(\lfloor\frac{n}{2}\rfloor)|}{|\mathbb{B}_X(2n)|}\cdot\frac{|\mathbb{B}_X(2n)|}{|\mathbb{B}_X(2n)\cap H|}\geqslant$$

Proposition

Let $G = \langle X \rangle$ be polynomially growing with degree d. Then, $\forall H \unlhd_{f.i.} G$, we have

$$\left(\frac{C}{D\cdot 4^d}\right)^2\cdot \textit{dc}_X(G) \leq \textit{dc}_{\overline{X}}(G/H)\cdot \textit{dc}_X(H).$$

Proof. Clearly, $|\mathbb{B}_X(2n)| \ge |\mathbb{B}_{\overline{X}}(n)| \cdot |\mathbb{B}_X(n) \cap H|$.

Now fix H and, $\forall \epsilon > 0$, $\exists n_0 \text{ s.t. } \forall n \geqslant n_0$,

$$\frac{|\mathbb{B}_X(n)|}{|\mathbb{B}_{\overline{X}}(n)|\cdot|\mathbb{B}_X(2n)\cap H|}\geqslant \frac{|\mathbb{B}_{\overline{X}}(\lfloor \frac{n}{2}\rfloor)|\cdot|\mathbb{B}_X(\lfloor \frac{n}{2}\rfloor)\cap H|}{|\mathbb{B}_{\overline{X}}(n)|\cdot|\mathbb{B}_X(2n)\cap H|}=$$

$$=\frac{|\mathbb{B}_X(\lfloor \frac{n}{2} \rfloor) \cap H|}{|\mathbb{B}_X(2n) \cap H|} = \frac{|\mathbb{B}_X(\lfloor \frac{n}{2} \rfloor) \cap H|}{|\mathbb{B}_X(\lfloor \frac{n}{2} \rfloor)|} \cdot \frac{|\mathbb{B}_X(\lfloor \frac{n}{2} \rfloor)|}{|\mathbb{B}_X(2n)|} \cdot \frac{|\mathbb{B}_X(2n)|}{|\mathbb{B}_X(2n) \cap H|} \geqslant$$

Proposition

Let $G = \langle X \rangle$ be polynomially growing with degree d. Then, $\forall H \unlhd_{f.i.} G$, we have

$$\left(\frac{C}{D\cdot 4^d}\right)^2\cdot dc_X(G)\leq dc_{\overline{X}}(G/H)\cdot dc_X(H).$$

$$\frac{|\mathbb{B}_X(n)|}{|\mathbb{B}_{\overline{X}}(n)|\cdot|\mathbb{B}_X(2n)\cap H|}\geqslant \frac{|\mathbb{B}_{\overline{X}}(\lfloor\frac{n}{2}\rfloor)|\cdot|\mathbb{B}_X(\lfloor\frac{n}{2}\rfloor)\cap H|}{|\mathbb{B}_{\overline{X}}(n)|\cdot|\mathbb{B}_X(2n)\cap H|}=$$

$$=\frac{|\mathbb{B}_X(\lfloor\frac{n}{2}\rfloor)\cap H|}{|\mathbb{B}_X(2n)\cap H|}=\frac{|\mathbb{B}_X(\lfloor\frac{n}{2}\rfloor)\cap H|}{|\mathbb{B}_X(\lfloor\frac{n}{2}\rfloor)|}\cdot\frac{|\mathbb{B}_X(\lfloor\frac{n}{2}\rfloor)|}{|\mathbb{B}_X(2n)|}\cdot\frac{|\mathbb{B}_X(2n)|}{|\mathbb{B}_X(2n)\cap H|}\geqslant$$

Proposition

Let $G = \langle X \rangle$ be polynomially growing with degree d. Then, $\forall H \unlhd_{f.i.} G$, we have

$$\left(\frac{C}{D\cdot 4^d}\right)^2\cdot dc_X(G)\leq dc_{\overline{X}}(G/H)\cdot dc_X(H).$$

$$\frac{|\mathbb{B}_X(n)|}{|\mathbb{B}_{\overline{X}}(n)|\cdot|\mathbb{B}_X(2n)\cap H|}\geqslant \frac{|\mathbb{B}_{\overline{X}}(\lfloor\frac{n}{2}\rfloor)|\cdot|\mathbb{B}_X(\lfloor\frac{n}{2}\rfloor)\cap H|}{|\mathbb{B}_{\overline{X}}(n)|\cdot|\mathbb{B}_X(2n)\cap H|}=$$

$$=\frac{|\mathbb{B}_X(\lfloor \frac{n}{2}\rfloor)\cap H|}{|\mathbb{B}_X(2n)\cap H|}=\frac{|\mathbb{B}_X(\lfloor \frac{n}{2}\rfloor)\cap H|}{|\mathbb{B}_X(\lfloor \frac{n}{2}\rfloor)|}\cdot\frac{|\mathbb{B}_X(\lfloor \frac{n}{2}\rfloor)|}{|\mathbb{B}_X(2n)|}\cdot\frac{|\mathbb{B}_X(2n)|}{|\mathbb{B}_X(2n)\cap H|}\geqslant$$

Proposition

Let $G = \langle X \rangle$ be polynomially growing with degree d. Then, $\forall H \leq_{f.i.} G$, we have

$$\left(\frac{C}{D\cdot 4^d}\right)^2\cdot dc_X(G)\leq dc_{\overline{X}}(G/H)\cdot dc_X(H).$$

$$\frac{|\mathbb{B}_X(n)|}{|\mathbb{B}_{\overline{X}}(n)|\cdot|\mathbb{B}_X(2n)\cap H|}\geqslant \frac{|\mathbb{B}_{\overline{X}}(\lfloor\frac{n}{2}\rfloor)|\cdot|\mathbb{B}_X(\lfloor\frac{n}{2}\rfloor)\cap H|}{|\mathbb{B}_{\overline{X}}(n)|\cdot|\mathbb{B}_X(2n)\cap H|}=$$

$$=\frac{|\mathbb{B}_X(\lfloor\frac{n}{2}\rfloor)\cap H|}{|\mathbb{B}_X(2n)\cap H|}=\frac{|\mathbb{B}_X(\lfloor\frac{n}{2}\rfloor)\cap H|}{|\mathbb{B}_X(\lfloor\frac{n}{2}\rfloor)|}\cdot\frac{|\mathbb{B}_X(\lfloor\frac{n}{2}\rfloor)|}{|\mathbb{B}_X(2n)|}\cdot\frac{|\mathbb{B}_X(2n)|}{|\mathbb{B}_X(2n)\cap H|}\geqslant$$

$$\geqslant \left(\frac{1}{[G:H]} - \epsilon\right) \cdot \frac{C \cdot \left(\left\lfloor \frac{n}{2} \right\rfloor\right)^d}{D \cdot (2n)^d} \cdot \left([G:H] - \epsilon\right) \geqslant$$

$$\geqslant \left(\frac{1}{[G:H]} - \epsilon\right) \cdot \left(\frac{C}{D \cdot 4^d} - \epsilon\right) \cdot \left([G:H] - \epsilon\right)$$

$$= \inf(\cdots)^2 \geqslant \left(\frac{1}{[G:H]} - \epsilon\right)^2 \cdot \left(\frac{C}{D \cdot 4^s} - \epsilon\right)^2 \cdot \left([G:H] - \epsilon\right)^2$$

$$\geqslant \left(\frac{1}{[G:H]} - \epsilon\right) \cdot \frac{C \cdot \left(\left[\frac{n}{2}\right]\right)^{d}}{D \cdot (2n)^{d}} \cdot \left([G:H] - \epsilon\right) \geqslant$$

$$\geqslant \left(\frac{1}{[G:H]} - \epsilon\right) \cdot \left(\frac{C}{D \cdot 4^{d}} - \epsilon\right) \cdot \left([G:H] - \epsilon\right)$$

So,
$$\lambda = (\liminf \cdots)^2 \geqslant \left(\frac{1}{[G:H]} - \epsilon\right)^2 \cdot \left(\frac{C}{D\cdot 4^s} - \epsilon\right)^2 \cdot ([G:H] - \epsilon)^2$$

And this is true for every $\epsilon > 0$ hence, $\lambda \geqslant \left(\frac{C}{D \cdot 4^d}\right)^2$, Which happens to be independent from H. \square

$$\geqslant \left(\frac{1}{[G:H]} - \epsilon\right) \cdot \frac{C \cdot \left(\left\lfloor \frac{n}{2} \right\rfloor\right)^d}{D \cdot (2n)^d} \cdot ([G:H] - \epsilon) \geqslant$$

$$\geqslant \left(\frac{1}{[G:H]} - \epsilon\right) \cdot \left(\frac{C}{D \cdot 4^d} - \epsilon\right) \cdot ([G:H] - \epsilon)$$

$$So, \lambda = (\liminf \cdots)^2 \geqslant \left(\frac{1}{[G:H]} - \epsilon\right)^2 \cdot \left(\frac{C}{D \cdot 4^s} - \epsilon\right)^2 \cdot ([G:H] - \epsilon)^2.$$

And this is true for every $\epsilon > 0$ hence, $\lambda \geqslant \left(\frac{C}{D \cdot 4^d}\right)^2$ Which happens to be independent from H. \square

$$\geqslant \left(\frac{1}{[G:H]} - \epsilon\right) \cdot \frac{C \cdot \left(\left\lfloor \frac{n}{2} \right\rfloor\right)^d}{D \cdot (2n)^d} \cdot ([G:H] - \epsilon) \geqslant$$

$$\geqslant \left(\frac{1}{[G:H]} - \epsilon\right) \cdot \left(\frac{C}{D \cdot 4^d} - \epsilon\right) \cdot ([G:H] - \epsilon)$$

$$So, \lambda = (\liminf \cdots)^2 \geqslant \left(\frac{1}{[G:H]} - \epsilon\right)^2 \cdot \left(\frac{C}{D \cdot 4^s} - \epsilon\right)^2 \cdot ([G:H] - \epsilon)^2.$$

And this is true for every $\epsilon > 0$ hence, $\lambda \geqslant \left(\frac{C}{D \cdot 4^d}\right)^2$,

$$\geqslant \left(\frac{1}{[G:H]} - \epsilon\right) \cdot \frac{C \cdot \left(\left[\frac{n}{2}\right]\right)^d}{D \cdot (2n)^d} \cdot ([G:H] - \epsilon) \geqslant$$

$$\geqslant \left(\frac{1}{[G:H]} - \epsilon\right) \cdot \left(\frac{C}{D \cdot 4^d} - \epsilon\right) \cdot ([G:H] - \epsilon)$$

$$So, \lambda = (\liminf \cdots)^2 \geqslant \left(\frac{1}{[G:H]} - \epsilon\right)^2 \cdot \left(\frac{C}{D \cdot 4^s} - \epsilon\right)^2 \cdot ([G:H] - \epsilon)^2.$$

And this is true for every $\epsilon > 0$ hence, $\lambda \geqslant \left(\frac{C}{D \cdot 4^d}\right)^2$, Which happens to be independent from H. \Box

Outline

- Motivation
- Main definition
- Finite index subgroups
- Short exact sequences
- A Gromov-like theorem
- Other related results

Proposition

Let $G = \langle X \rangle$ be t.f. nilpotent. Then, either G is abelian, or $dc_X(G) = 0$.

Proof. Assume G is not abelian and $dc_X(G) > 0$ and let us find a contradiction.

$$\lambda \cdot dc_X(G) \leqslant dc_{\overline{X}}(G/H) \cdot dc_X(H).$$

- Choose n s.t. $\lambda \cdot dc_X(G) \cdot (\frac{8}{5})^n > 1$.
- Take $\{p_1, \ldots, p_n\}$ be n pairwise different primes.
- By Grumbergs' classical result, G is residually-p_i.
- Hence, G has a non-abelian, finite p_i -quotient $\pi_i : G \rightarrow Q_i$; in particular, $dc(Q_i) \leq \frac{5}{9}$.

Proposition

Let $G = \langle X \rangle$ be t.f. nilpotent. Then, either G is abelian, or $dc_X(G) = 0$.

Proof. Assume G is not abelian and $dc_X(G) > 0$ and let us find a contradiction.

$$\lambda \cdot dc_X(G) \leqslant dc_{\overline{X}}(G/H) \cdot dc_X(H).$$

- Choose n s.t. $\lambda \cdot dc_X(G) \cdot (\frac{8}{5})^n > 1$.
- Take $\{p_1, \ldots, p_n\}$ be n pairwise different primes.
- By Grumbergs' classical result, G is residually-pi.
- Hence, G has a non-abelian, finite p_i -quotient $\pi_i : G \rightarrow Q_i$; in particular, $dc(Q_i) \leqslant \frac{5}{8}$.

Proposition

Let $G = \langle X \rangle$ be t.f. nilpotent. Then, either G is abelian, or $dc_X(G) = 0$.

Proof. Assume G is not abelian and $dc_X(G) > 0$ and let us find a contradiction.

$$\lambda \cdot dc_X(G) \leqslant dc_{\overline{X}}(G/H) \cdot dc_X(H).$$

- Choose n s.t. $\lambda \cdot dc_X(G) \cdot (\frac{8}{5})^n > 1$.
- Take $\{p_1, \ldots, p_n\}$ be n pairwise different primes.
- By Grumbergs' classical result, G is residually-pi.
- Hence, G has a non-abelian, finite p_i -quotient $\pi_i : G \rightarrow Q_i$; in particular, $dc(Q_i) \leqslant \frac{5}{8}$.

Proposition

Let $G = \langle X \rangle$ be t.f. nilpotent. Then, either G is abelian, or $dc_X(G) = 0$.

Proof. Assume G is not abelian and $dc_X(G) > 0$ and let us find a contradiction.

$$\lambda \cdot dc_X(G) \leqslant dc_{\overline{X}}(G/H) \cdot dc_X(H).$$

- Choose n s.t. $\lambda \cdot dc_X(G) \cdot (\frac{8}{5})^n > 1$.
- Take $\{p_1, \ldots, p_n\}$ be n pairwise different primes.
- By Grumbergs' classical result, G is residually-p_i.
- Hence, G has a non-abelian, finite p_i -quotient $\pi_i : G \rightarrow Q_i$; in particular, $dc(Q_i) \leqslant \frac{5}{8}$.

Proposition

Let $G = \langle X \rangle$ be t.f. nilpotent. Then, either G is abelian, or $dc_X(G) = 0$.

Proof. Assume G is not abelian and $dc_X(G) > 0$ and let us find a contradiction.

$$\lambda \cdot dc_X(G) \leqslant dc_{\overline{X}}(G/H) \cdot dc_X(H).$$

- Choose n s.t. $\lambda \cdot dc_X(G) \cdot (\frac{8}{5})^n > 1$.
- Take $\{p_1, \ldots, p_n\}$ be n pairwise different primes.
- By Grumbergs' classical result, G is residually-pi
- Hence, G has a non-abelian, finite p_i -quotient $\pi_i : G \rightarrow Q_i$; in particular, $dc(Q_i) \leqslant \frac{5}{8}$.

Proposition

Let $G = \langle X \rangle$ be t.f. nilpotent. Then, either G is abelian, or $dc_X(G) = 0$.

Proof. Assume G is not abelian and $dc_X(G) > 0$ and let us find a contradiction.

$$\lambda \cdot dc_X(G) \leqslant dc_{\overline{X}}(G/H) \cdot dc_X(H).$$

- Choose n s.t. $\lambda \cdot dc_X(G) \cdot (\frac{8}{5})^n > 1$.
- Take $\{p_1, \ldots, p_n\}$ be n pairwise different primes.
- By Grumbergs' classical result, G is residually-p_i.
- Hence, G has a non-abelian, finite p_i -quotient π_i : $G \rightarrow Q_i$; in particular, $dc(Q_i) \leqslant \frac{5}{8}$.

Proposition

Let $G = \langle X \rangle$ be t.f. nilpotent. Then, either G is abelian, or $dc_X(G) = 0$.

Proof. Assume G is not abelian and $dc_X(G) > 0$ and let us find a contradiction.

$$\lambda \cdot dc_X(G) \leqslant dc_{\overline{X}}(G/H) \cdot dc_X(H).$$

- Choose n s.t. $\lambda \cdot dc_X(G) \cdot (\frac{8}{5})^n > 1$.
- Take $\{p_1, \ldots, p_n\}$ be n pairwise different primes.
- By Grumbergs' classical result, G is residually-p_i.
- Hence, G has a non-abelian, finite p_i -quotient π_i : $G \rightarrow Q_i$; in particular, $dc(Q_i) \leqslant \frac{5}{8}$.

t.f. nilpotent groups

- Now, the morphism $\times_{i=1}^n \pi_i$: $G \rightarrow Q_1 \times \cdots \times Q_n$ is onto (because $gcd(p_j, p_1 \cdots p_{j-1} p_{j+1} \cdots p_n) = 1$).
- Take $H = \ker \times_{i=1}^n \pi_i \leq_{f.i.} G$; we have,

$$\lambda \cdot dc_X(G) \leqslant dc_X(H) \cdot dc_{\overline{X}}(Q_1 \times \cdots \times Q_n) \leqslant dc_X(H) \cdot (\frac{5}{8})^n$$

Hence,

$$1 < \lambda \cdot dc_X(G) \cdot (\frac{8}{5})^n \leqslant dc_X(H) \leqslant 1$$

a contradiction.

t.f. nilpotent groups

- Now, the morphism $\times_{i=1}^n \pi_i$: $G \rightarrow Q_1 \times \cdots \times Q_n$ is onto (because $gcd(p_i, p_1 \cdots p_{i-1} p_{i+1} \cdots p_n) = 1)$.
- Take $H = \ker \times_{i=1}^n \pi_i \leq_{f.i.} G$; we have,

$$\lambda \cdot dc_X(G) \leqslant dc_X(H) \cdot dc_{\overline{X}}(Q_1 \times \cdots \times Q_n) \leqslant dc_X(H) \cdot (\frac{5}{8})^n.$$

Hence,

$$1 < \lambda \cdot dc_X(G) \cdot (\frac{8}{5})^n \leqslant dc_X(H) \leqslant 1$$

a contradiction.

t.f. nilpotent groups

- Now, the morphism $\times_{i=1}^n \pi_i \colon G \twoheadrightarrow Q_1 \times \cdots \times Q_n$ is onto (because $gcd(p_i, p_1 \cdots p_{i-1}p_{i+1} \cdots p_n) = 1$).
- Take $H = \ker \times_{i=1}^n \pi_i \leq_{f.i.} G$; we have,

$$\lambda \cdot dc_X(G) \leqslant dc_X(H) \cdot dc_{\overline{X}}(Q_1 \times \cdots \times Q_n) \leqslant dc_X(H) \cdot (\frac{5}{8})^n.$$

Hence,

$$1 < \lambda \cdot dc_X(G) \cdot (\frac{8}{5})^n \leqslant dc_X(H) \leqslant 1,$$

a contradiction.

Theorem

Let G be a polynomially growing group. Then,

G is virtually abelian \iff $dc_X(G) > 0$ for some (and hence all) X.

Proof. (⇒) Oh (⇐)

- By Gromov result, \exists a nilpotent $H \leqslant_{f.i.} G$.
- So, \exists a t.f. nilpotent $K \leqslant_{f.i.} H \leqslant_{f.i.} G$.
- By hypotesis, $dc_X(G) > 0$.
- Hence, $dc_Y(K) > 0$ for every $\langle Y \rangle = K$.
- Then, K is abelian.
- So, G is virtually abelian.

Theorem

Let G be a polynomially growing group. Then,

G is virtually abelian \iff $dc_X(G) > 0$ for some (and hence all) X.

Proof. (\Rightarrow) Ok.

 (\Leftarrow)

- By Gromov result, \exists a nilpotent $H \leq_{f.i.} G$.
- So, \exists a t.f. nilpotent $K \leqslant_{f.i.} H \leqslant_{f.i.} G$.
- By hypotesis, $dc_X(G) > 0$.
- Hence, $dc_Y(K) > 0$ for every $\langle Y \rangle = K$.
- Then, K is abelian.
- So, G is virtually abelian.

Theorem

Let G be a polynomially growing group. Then,

G is virtually abelian \iff $dc_X(G) > 0$ for some (and hence all) X.

- By Gromov result, \exists a nilpotent $H \leqslant_{f.i.} G$.
- So, \exists a t.f. nilpotent $K \leqslant_{f.i.} H \leqslant_{f.i.} G$.
- By hypotesis, $dc_X(G) > 0$.
- Hence, $dc_Y(K) > 0$ for every $\langle Y \rangle = K$.
- Then, K is abelian.
- So, G is virtually abelian.

Theorem

Let G be a polynomially growing group. Then,

G is virtually abelian \iff $dc_X(G) > 0$ for some (and hence all) X.

- By Gromov result, \exists a nilpotent $H \leqslant_{f.i.} G$.
- So, \exists a t.f. nilpotent $K \leqslant_{f.i.} H \leqslant_{f.i.} G$.
- By hypotesis, $dc_X(G) > 0$.
- Hence, $dc_Y(K) > 0$ for every $\langle Y \rangle = K$.
- Then, K is abelian.
- So, G is virtually abelian.

Theorem

Let G be a polynomially growing group. Then,

G is virtually abelian \iff $dc_X(G) > 0$ for some (and hence all) X.

Proof. (\Rightarrow) Ok.

(⇔)

- By Gromov result, \exists a nilpotent $H \leqslant_{f.i.} G$.
- So, \exists a t.f. nilpotent $K \leqslant_{f.i.} H \leqslant_{f.i.} G$.
- By hypotesis, $dc_X(G) > 0$.
- Hence, $dc_Y(K) > 0$ for every $\langle Y \rangle = K$.
- Then, K is abelian.
- So, G is virtually abelian.

Theorem

Let G be a polynomially growing group. Then,

G is virtually abelian \iff $dc_X(G) > 0$ for some (and hence all) X.

Proof. (\Rightarrow) Ok.

(⇔)

- By Gromov result, \exists a nilpotent $H \leqslant_{f.i.} G$.
- So, \exists a t.f. nilpotent $K \leqslant_{f.i.} H \leqslant_{f.i.} G$.
- By hypotesis, $dc_X(G) > 0$.
- Hence, $dc_Y(K) > 0$ for every $\langle Y \rangle = K$.
- Then, K is abelian.
- So, G is virtually abelian.

Theorem

Let G be a polynomially growing group. Then,

G is virtually abelian \iff $dc_X(G) > 0$ for some (and hence all) X.

- By Gromov result, \exists a nilpotent $H \leqslant_{f.i.} G$.
- So, \exists a t.f. nilpotent $K \leqslant_{f.i.} H \leqslant_{f.i.} G$.
- By hypotesis, $dc_X(G) > 0$.
- Hence, $dc_Y(K) > 0$ for every $\langle Y \rangle = K$.
- Then, K is abelian.
- So, G is virtually abelian.

Theorem

Let G be a polynomially growing group. Then,

G is virtually abelian \iff $dc_X(G) > 0$ for some (and hence all) X.

- By Gromov result, \exists a nilpotent $H \leqslant_{f.i.} G$.
- So, \exists a t.f. nilpotent $K \leqslant_{f.i.} H \leqslant_{f.i.} G$.
- By hypotesis, $dc_X(G) > 0$.
- Hence, $dc_Y(K) > 0$ for every $\langle Y \rangle = K$.
- Then, K is abelian.
- So, G is virtually abelian. □

A conjecture

Conjecture

Every f.g. group G with super-polinomial growth has $dc_X(G) = 0$ for every X.

Conjecture

For any f.g. group $G = \langle X \rangle$,

 $dc_X(G) > 0 \iff G \text{ is virtually abelian}$

A conjecture

Conjecture

Every f.g. group G with super-polinomial growth has $dc_X(G) = 0$ for every X.

Conjecture

For any f.g. group $G = \langle X \rangle$,

$$dc_X(G) > 0 \iff G$$
 is virtually abelian.

Outline

- Motivation
- Main definition
- Finite index subgroups
- Short exact sequences
- A Gromov-like theorem
- 6 Other related results

Other related results

Theorem

Let G be non-elementary hyperbolic. Then $dc_X(G) = 0$ for every X.

Theorem

Let G = G(X) be a pc group. Then,

$$dc_X(G(X)) = \begin{cases} 0 & \text{if } X \text{ is not complete} \\ 1 & \text{if } X \text{ is complete} \end{cases}$$

Theorem

Let $G = \langle X \rangle$ be a f.g. residually finite group with sub-exponential growth. If $dc_X(G) > 5/8$ for some X the G is abelian.

Other related results

Theorem

Let G be non-elementary hyperbolic. Then $dc_X(G) = 0$ for every X.

Theorem

Let G = G(X) be a pc group. Then,

$$dc_X(G(X)) = \begin{cases} 0 & \text{if } X \text{ is not complete} \\ 1 & \text{if } X \text{ is complete} \end{cases}$$

Theorem

Let $G = \langle X \rangle$ be a f.g. residually finite group with sub-exponential arowth. If $dc_X(G) > 5/8$ for some X the G is abelian.

Other related results

Theorem

Let G be non-elementary hyperbolic. Then $dc_X(G) = 0$ for every X.

Theorem

Let G = G(X) be a pc group. Then,

$$dc_X(G(X)) = \begin{cases} 0 & \text{if } X \text{ is not complete} \\ 1 & \text{if } X \text{ is complete} \end{cases}$$

Theorem

Let $G = \langle X \rangle$ be a f.g. residually finite group with sub-exponential growth. If $dc_X(G) > 5/8$ for some X the G is abelian.

THANKS