Commuting degree for infinite groups

Enric Ventura

Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya

Dusseldorf, Algebra Seminar.

October 27th, 2014.

Outline

(9) Motivation
(2) Main definition
(3) Finite index subgroups

4 Short exact sequences
(5) A Gromov-like theorem

6 Other related results

Outline

Main definition3 Finite index subgroups

4 Short exact sequences

5 A Gromov-like theorem

6 Other related results

Motivation

(Joint work with Y. Antolín and A. Martino.)
Theorem (Gustaison, 1973)
Let G be a finite group. If the probability that two elements from G commute is bigger than $5 / 8$, then G is abelian.

Proof. Suppose G is not abelian. Then,

$$
\begin{aligned}
d c(G) & =\frac{\mid\{(u, v)|u v-v u|}{|G|^{2}}=\frac{1}{|G|^{2}} \sum_{u \in G}\left|C_{G}(u)\right|= \\
& =\frac{1}{|G|^{2}}\left(|Z(G)||G|+\sum_{u \in G \backslash Z(G)}\left|C_{G}(u)\right|\right) \leqslant \\
& \leqslant \frac{1}{|G|^{2}}\left(|Z(G)||G|+(|G|-|Z(G)|) \frac{|G|}{2}\right)=
\end{aligned}
$$

Motivation

(Joint work with Y. Antolín and A. Martino.)

Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G commute is bigger than $5 / 8$, then G is abelian.

Proof. Suppose G is not abelian. Then,

$$
\begin{aligned}
& =\frac{1}{|G|^{2}}\left(|Z(G)||G|+\sum_{u \in G \backslash Z(G)}\left|C_{G}(u)\right|\right) \leqslant \\
& \leqslant \frac{1}{|G|^{2}}\left(|Z(G)||G|+(|G|-|Z(G)|) \frac{|G|}{2}\right)=
\end{aligned}
$$

Motivation

(Joint work with Y. Antolín and A. Martino.)

Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G commute is bigger than $5 / 8$, then G is abelian.

Proof. Suppose G is not abelian. Then,

$$
d c(G)=\frac{|\{(u, v) \mid u v=v u\}|}{|G|^{2}}=\frac{1}{|G|^{2}} \sum_{u \in G}\left|C_{G}(u)\right|=
$$

Motivation

(Joint work with Y. Antolín and A. Martino.)

Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G commute is bigger than $5 / 8$, then G is abelian.

Proof. Suppose G is not abelian. Then,

$$
\begin{aligned}
d c(G) & =\frac{|\{(u, v) \mid u v=v u\}|}{|G|^{2}}=\frac{1}{|G|^{2}} \sum_{u \in G}\left|C_{G}(u)\right|= \\
& =\frac{1}{|G|^{2}}\left(|Z(G)||G|+\sum_{u \in G \backslash Z(G)}\left|C_{G}(u)\right|\right) \leqslant \\
& =\frac{1}{|G|^{2}}\left(|Z(G)| G \left\lvert\,+(|G|-|Z(G)|) \frac{|G|}{2}\right.\right)=
\end{aligned}
$$

Motivation

(Joint work with Y. Antolín and A. Martino.)

Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G commute is bigger than $5 / 8$, then G is abelian.

Proof. Suppose G is not abelian. Then,

$$
\begin{aligned}
d c(G) & =\frac{|\{(u, v) \mid u v=v u\}|}{|G|^{2}}=\frac{1}{|G|^{2}} \sum_{u \in G}\left|C_{G}(u)\right|= \\
& =\frac{1}{|G|^{2}}\left(|Z(G)||G|+\sum_{u \in G \backslash Z(G)}\left|C_{G}(u)\right|\right) \leqslant \\
& \leqslant \frac{1}{|G|^{2}}\left(|Z(G)||G|+(|G|-|Z(G)|) \frac{|G|}{2}\right)=
\end{aligned}
$$

Motivation

$$
\begin{aligned}
& =\frac{1}{|G|^{2}}\left(|Z(G)||G|+(|G|-|Z(G)|) \frac{|G|}{2}\right)= \\
& =\frac{|G|+|Z(G)|}{2|G|} \leqslant \frac{1}{2}+\frac{|G|}{4 \cdot 2|G|}=\frac{1}{2}+\frac{1}{8}=\frac{5}{8}
\end{aligned}
$$

because $G / Z(G)$ cannot be cyclic and so, $|Z(G)| \leqslant|G| / 4$.

Observation

The quaternion group has $d c(Q)=5 / 8$.

"There is no live between 5/8 and 1"

(Goal)

Is there a version of do for infinite groups?

Motivation

$$
\begin{aligned}
& =\frac{1}{|G|^{2}}\left(|Z(G)||G|+(|G|-|Z(G)|) \frac{|G|}{2}\right)= \\
& =\frac{|G|+|Z(G)|}{2|G|} \leqslant \frac{1}{2}+\frac{|G|}{4 \cdot 2|G|}=\frac{1}{2}+\frac{1}{8}=\frac{5}{8}
\end{aligned}
$$

because $G / Z(G)$ cannot be cyclic and so, $|Z(G)| \leqslant|G| / 4$. \square

Observation

The quaternion group has $d c(Q)=5 / 8$.
"There is no live between 5/8 and 1"

(Goal)

Motivation

$$
\begin{aligned}
& =\frac{1}{|G|^{2}}\left(|Z(G)||G|+(|G|-|Z(G)|) \frac{|G|}{2}\right)= \\
& =\frac{|G|+|Z(G)|}{2|G|} \leqslant \frac{1}{2}+\frac{|G|}{4 \cdot 2|G|}=\frac{1}{2}+\frac{1}{8}=\frac{5}{8}
\end{aligned}
$$

because $G / Z(G)$ cannot be cyclic and so, $|Z(G)| \leqslant|G| / 4$. \square

Observation

The quaternion group has $d c(Q)=5 / 8$.

(Goal)

Motivation

$$
\begin{aligned}
& =\frac{1}{|G|^{2}}\left(|Z(G)||G|+(|G|-|Z(G)|) \frac{|G|}{2}\right)= \\
& =\frac{|G|+|Z(G)|}{2|G|} \leqslant \frac{1}{2}+\frac{|G|}{4 \cdot 2|G|}=\frac{1}{2}+\frac{1}{8}=\frac{5}{8}
\end{aligned}
$$

because $G / Z(G)$ cannot be cyclic and so, $|Z(G)| \leqslant|G| / 4$.

Observation

The quaternion group has $d c(Q)=5 / 8$.
"There is no live between $5 / 8$ and 1 "

(Goal)

Is there a version of do for infinite groups?

Motivation

$$
\begin{aligned}
& =\frac{1}{|G|^{2}}\left(|Z(G)||G|+(|G|-|Z(G)|) \frac{|G|}{2}\right)= \\
& =\frac{|G|+|Z(G)|}{2|G|} \leqslant \frac{1}{2}+\frac{|G|}{4 \cdot 2|G|}=\frac{1}{2}+\frac{1}{8}=\frac{5}{8}
\end{aligned}
$$

because $G / Z(G)$ cannot be cyclic and so, $|Z(G)| \leqslant|G| / 4$.

Observation

The quaternion group has $d c(Q)=5 / 8$.
"There is no live between 5/8 and 1"

(Goal)

Is there a version of dc for infinite groups ?

Outline

(9) Motivation

3 Finite index subgroups

4 Short exact sequences
(5) A Gromov-like theorem

6 Other related results

Degree of commutativity

Definition

Let $G=\langle X\rangle$ be a f.g. group. The degree of commutativity of G w.r.t. X is

$$
d c_{X}(G)=\limsup _{n \rightarrow \infty} \frac{\left|\left\{(u, v) \in \mathbb{B}_{X}(n) \times \mathbb{B}_{X}(n) \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(n)\right|^{2}} \in[0,1],
$$

where $\mathbb{B}_{X}(n)=\left\{\left.g \in G| | g\right|_{x} \leqslant n\right\}$.

Question

Is this a real lim ? Does it depend on X ?

About limsup we have no idea:

- No example where lim doesn t exist;
- No proof it is always a real limit.

Degree of commutativity

Definition

Let $G=\langle X\rangle$ be a f.g. group. The degree of commutativity of G w.r.t. X is

$$
d c_{X}(G)=\limsup _{n \rightarrow \infty} \frac{\left|\left\{(u, v) \in \mathbb{B}_{X}(n) \times \mathbb{B}_{X}(n) \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(n)\right|^{2}} \in[0,1],
$$

where $\mathbb{B}_{X}(n)=\left\{\left.g \in G| | g\right|_{X} \leqslant n\right\}$.

Question

Is this a real lim ?

About limsup we have no idea:

- No example where lim doesn't exist;
- No proof it is always a real limit.

Degree of commutativity

Definition

Let $G=\langle X\rangle$ be a f.g. group. The degree of commutativity of G w.r.t. X is

$$
d c_{X}(G)=\limsup _{n \rightarrow \infty} \frac{\left|\left\{(u, v) \in \mathbb{B}_{X}(n) \times \mathbb{B}_{X}(n) \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(n)\right|^{2}} \in[0,1],
$$

where $\mathbb{B}_{X}(n)=\left\{\left.g \in G| | g\right|_{X} \leqslant n\right\}$.

Question

Is this a real lim ? Does it depend on X ?

About limsup we have no idea:

- No example where lim doesn't exist;
- No proof it is always a real limit.

Degree of commutativity

Definition

Let $G=\langle X\rangle$ be a f.g. group. The degree of commutativity of G w.r.t. X is

$$
d c_{X}(G)=\limsup _{n \rightarrow \infty} \frac{\left|\left\{(u, v) \in \mathbb{B}_{X}(n) \times \mathbb{B}_{X}(n) \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(n)\right|^{2}} \in[0,1],
$$

where $\mathbb{B}_{X}(n)=\left\{\left.g \in G| | g\right|_{X} \leqslant n\right\}$.

Question

Is this a real lim ? Does it depend on X ?

About limsup we have no idea:

- No example where lim doesn't exist;
- No proof it is always a real limit.

Degree of commutativity

Definition

Let $G=\langle X\rangle$ be a f.g. group. The degree of commutativity of G w.r.t. X is

$$
d c_{X}(G)=\limsup _{n \rightarrow \infty} \frac{\left|\left\{(u, v) \in \mathbb{B}_{X}(n) \times \mathbb{B}_{X}(n) \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(n)\right|^{2}} \in[0,1],
$$

where $\mathbb{B}_{X}(n)=\left\{\left.g \in G| | g\right|_{X} \leqslant n\right\}$.

Question

Is this a real lim ? Does it depend on X ?

About limsup we have no idea:

- No example where lim doesn't exist;
- No proof it is always a real limit.

Independence on X

Definition

A f.g. group $G=\langle X\rangle$ is of

- subexponential growth if $\lim _{n \rightarrow \infty} \frac{|\mathbb{B} x(n+1)|}{\left|\mathbb{B}_{x}(n)\right|}=1$;

Definition

Let $G=\langle X\rangle$. A map $f: G \rightarrow \mathbb{N}$ is an estimation of the X-metric if \exists
$K>0$ such that $\forall w \in G$

Example

\square Y-metric, and $|\cdot|_{\gamma}$ is an estimation of the X-metric.

Independence on X

Definition

A f.g. group $G=\langle X\rangle$ is of

- subexponential growth if $\lim _{n \rightarrow \infty} \frac{|\mathbb{B} x(n+1)|}{\left|\mathbb{B}_{x}(n)\right|}=1$;
- polynomial growth (of degree d) if $0<C n^{d} \leqslant\left|\mathbb{B}_{X}(n)\right| \leqslant D n^{d}$.

Definition

Let $G=\langle X\rangle$. A map $f: G \rightarrow \mathbb{N}$ is an estimation of the X-metric if \exists
$K>0$ such that $\forall w \in G$

Example

It is well known that, for $G=\langle X\rangle=\langle Y\rangle,|\cdot| x$ is an estimation of the
Y-metric, and $|\cdot|_{\gamma}$ is an estimation of the X-metric.

Independence on X

Definition

A f.g. group $G=\langle X\rangle$ is of

- subexponential growth if $\lim _{n \rightarrow \infty} \frac{\left|\mathbb{B}_{x}(n+1)\right|}{\left|\mathbb{B}_{x}(n)\right|}=1$;
- polynomial growth (of degree d) if $0<C n^{d} \leqslant\left|\mathbb{B}_{X}(n)\right| \leqslant D n^{d}$.

Definition

Let $G=\langle X\rangle$. A map $f: G \rightarrow \mathbb{N}$ is an estimation of the X-metric if \exists $K>0$ such that $\forall w \in G$

$$
\frac{1}{K} f(w) \leqslant|w|_{X} \leqslant K f(w)
$$

Example
It is well known that, for $G=\langle X\rangle=\langle Y\rangle,|\cdot| x$ is an estimation of the
Y-metric, and $|\cdot|_{Y}$ is an estimation of the X-metric.

Independence on X

Definition

A f.g. group $G=\langle X\rangle$ is of

- subexponential growth if $\lim _{n \rightarrow \infty} \frac{\left|\mathbb{B}_{x}(n+1)\right|}{\left|\mathbb{B}_{x}(n)\right|}=1$;
- polynomial growth (of degree d) if $0<C n^{d} \leqslant\left|\mathbb{B}_{X}(n)\right| \leqslant D n^{d}$.

Definition

Let $G=\langle X\rangle$. A map $f: G \rightarrow \mathbb{N}$ is an estimation of the X-metric if \exists $K>0$ such that $\forall w \in G$

$$
\frac{1}{K} f(w) \leqslant|w|_{X} \leqslant K f(w)
$$

Example

It is well known that, for $G=\langle X\rangle=\langle Y\rangle,|\cdot| X$ is an estimation of the Y-metric, and $|\cdot|_{Y}$ is an estimation of the X-metric.

Independence on X

Definition

Define the f-ball and the f-dc:

$$
\begin{gathered}
\mathbb{B}_{f}(n)=\{w \in G \mid f(w) \leqslant n\} \\
d c_{f}(G)=\limsup _{n \rightarrow \infty} \frac{\left|\left\{(u, v) \in \mathbb{B}_{f}(n) \times \mathbb{B}_{f}(n) \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{f}(n)\right|^{2}} .
\end{gathered}
$$

Proposition

Let $G=\langle X\rangle$ be of polynomial growth, and $f: G \rightarrow \mathbb{N}$ be an estimation of the X-metric. Then,
$d c_{X}(G)>0 \quad \Longleftrightarrow \quad d c_{f}(G)>0$.

Proof. Clearly, $\mathbb{B}_{f}(n) \subseteq \mathbb{B}_{x}(K n) \subseteq \mathbb{B}_{f}\left(K^{2} n\right)$ so,

$$
\left|\left\{(u, v) \in\left(\mathbb{B}_{f}(n)\right)^{2} \mid u v=v u\right\}\right| \leqslant\left|\left\{(u, v) \in\left(\mathbb{B}_{x}(K n)\right)^{2} \mid u v=v u\right\}\right| .
$$

Independence on X

Definition

Define the f-ball and the f-dc:

$$
\begin{gathered}
\mathbb{B}_{f}(n)=\{w \in G \mid f(w) \leqslant n\} \\
d c_{f}(G)=\limsup _{n \rightarrow \infty} \frac{\left|\left\{(u, v) \in \mathbb{B}_{f}(n) \times \mathbb{B}_{f}(n) \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{f}(n)\right|^{2}} .
\end{gathered}
$$

Proposition

Let $G=\langle X\rangle$ be of polynomial growth, and $f: G \rightarrow \mathbb{N}$ be an estimation of the X-metric. Then,

$$
d c_{X}(G)>0 \Longleftrightarrow d c_{f}(G)>0
$$

Proof. Clearly, $\mathbb{B}_{f}(n) \subseteq \mathbb{B}_{X}(K n) \subseteq \mathbb{B}_{f}\left(K^{2} n\right)$ so,

$$
\left|\left\{(u, v) \in\left(\mathbb{B}_{f}(n)\right)^{2} \mid u v=v u\right\}\right| \leqslant\left|\left\{(u, v) \in\left(\mathbb{B}_{x}(K n)\right)^{2} \mid u v=v u\right\}\right| .
$$

Independence on X

Definition

Define the f-ball and the f-dc:

$$
\begin{gathered}
\mathbb{B}_{f}(n)=\{w \in G \mid f(w) \leqslant n\} \\
d c_{f}(G)=\limsup _{n \rightarrow \infty} \frac{\left|\left\{(u, v) \in \mathbb{B}_{f}(n) \times \mathbb{B}_{f}(n) \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{f}(n)\right|^{2}} .
\end{gathered}
$$

Proposition

Let $G=\langle X\rangle$ be of polynomial growth, and $f: G \rightarrow \mathbb{N}$ be an estimation of the X-metric. Then,

$$
d c_{X}(G)>0 \Longleftrightarrow d c_{f}(G)>0
$$

Proof. Clearly, $\mathbb{B}_{f}(n) \subseteq \mathbb{B}_{X}(K n) \subseteq \mathbb{B}_{f}\left(K^{2} n\right)$ so,

Independence on X

Definition

Define the f-ball and the f-dc:

$$
\begin{gathered}
\mathbb{B}_{f}(n)=\{w \in G \mid f(w) \leqslant n\} \\
d c_{f}(G)=\limsup _{n \rightarrow \infty} \frac{\left|\left\{(u, v) \in \mathbb{B}_{f}(n) \times \mathbb{B}_{f}(n) \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{f}(n)\right|^{2}} .
\end{gathered}
$$

Proposition

Let $G=\langle X\rangle$ be of polynomial growth, and $f: G \rightarrow \mathbb{N}$ be an estimation of the X-metric. Then,

$$
d c_{X}(G)>0 \Longleftrightarrow d c_{f}(G)>0
$$

Proof. Clearly, $\mathbb{B}_{f}(n) \subseteq \mathbb{B}_{X}(K n) \subseteq \mathbb{B}_{f}\left(K^{2} n\right)$ so,

$$
\left|\left\{(u, v) \in\left(\mathbb{B}_{f}(n)\right)^{2} \mid u v=v u\right\}\right| \leqslant\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(K n)\right)^{2} \mid u v=v u\right\}\right| .
$$

Independence on X

$$
\begin{array}{cc}
\frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{f}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(K n)\right|^{2}} & \leqslant \frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(K n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(K n)\right|^{2}} . \\
1 \mid & \left.\frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{f}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{f}(n)\right|^{2}}\right)\left(\frac{\left|\mathbb{B}_{f}(n)\right|}{\left|\mathbb{B}_{X}(K n)\right|}\right)^{2}
\end{array}
$$

$$
\text { So, } d c_{X}(G)=0 \Rightarrow d c_{f}(G)=0 \text {, because }
$$

$\frac{\left|\mathbb{B}_{f}(n)\right|}{\left|\mathbb{B}_{X}(K n)\right|}$

Corollary

If $G=\langle X\rangle=\langle Y\rangle$ is of polynomial growth, then

Independence on X

$$
\begin{gathered}
\frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{f}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(K n)\right|^{2}} \leqslant \frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(K n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(K n)\right|^{2}} . \\
\left.\| \frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{f}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{f}(n)\right|^{2}}\right)\left(\frac{\left|\mathbb{B}_{f}(n)\right|}{\left|\mathbb{B}_{X}(K n)\right|}\right)^{2}
\end{gathered}
$$

So, $d c_{x}(G)=0 \quad \Rightarrow \quad d c_{f}(G)=0$, because

$$
\frac{\left|\mathbb{B}_{f}(n)\right|}{\left|\mathbb{B}_{X}(K n)\right|} \geqslant \frac{\left|\mathbb{B}_{X}(n / K)\right|}{\left|\mathbb{B}_{X}(K n)\right|} \geqslant \frac{C(n / K)^{d}}{D(K n)^{d}}=\frac{C}{D K^{2 d}}>0 .
$$

Corollary

If $G=\langle X\rangle=\langle Y\rangle$ is of polynomial growth, then

Independence on X

$$
\begin{gathered}
\frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{f}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(K n)\right|^{2}} \leqslant \frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(K n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(K n)\right|^{2}} . \\
\left.\| \frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{f}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{f}(n)\right|^{2}}\right)\left(\frac{\left|\mathbb{B}_{f}(n)\right|}{\left|\mathbb{B}_{X}(K n)\right|}\right)^{2}
\end{gathered}
$$

So, $d c_{x}(G)=0 \quad \Rightarrow \quad d c_{f}(G)=0$, because

$$
\frac{\left|\mathbb{B}_{f}(n)\right|}{\left|\mathbb{B}_{X}(K n)\right|} \geqslant \frac{\left|\mathbb{B}_{X}(n / K)\right|}{\left|\mathbb{B}_{X}(K n)\right|} \geqslant \frac{C(n / K)^{d}}{D(K n)^{d}}=\frac{C}{D K^{2 d}}>0 .
$$

Corollary
If $G=\langle X\rangle=\langle Y\rangle$ is of polynomial growth, then

$$
d c_{X}(G)=0 \quad \Longleftrightarrow \quad d c_{Y}(G)=0
$$

Outline

(9) Motivation

(2) Main definition
(3) Finite index subgroups

4 Short exact sequences
(5) A Gromov-like theorem

6 Other related results

Finite index subgroups

Lemma (Burillo-Ventura, 2002)
If $H \leqslant_{\text {f.i. }} G=\langle X\rangle$ and G has subexponential growth then there exists $\lim _{n \rightarrow \infty} \frac{\left|\mathbb{B}_{X}(n) \cap H\right|}{\left|\mathbb{B}_{X}(n)\right|}=\frac{1}{[G: H]}$.

Proposition

Proposition (Gallagher, 1970)

Let G be a finite group and $H \triangleleft G$. Then, $d c(G) \leqslant d c(H) \cdot d c(G / H)$

Corollary

Let $\langle Y\rangle=H \quad G=\langle X\rangle$ be of polynomial growth. Then, $d c x(G)>0$
if and only if $\mathrm{dC}_{Y}(H)>0$

Finite index subgroups

Lemma (Burillo-Ventura, 2002)
If $H \leqslant_{\text {f.i. }} G=\langle X\rangle$ and G has subexponential growth then there exists $\lim _{n \rightarrow \infty} \frac{\left|\mathbb{B}_{X}(n) \cap H\right|}{\left|\mathbb{B}_{X}(n)\right|}=\frac{1}{[G: H]}$.

Proposition

Let $\langle Y\rangle=H \leqslant$ f.i. $G=\langle X\rangle$ be of polynomial growth. Then, $d c_{X}(G) \geqslant \frac{1}{[G: H]^{2}} d c_{Y}(H)$.

Proposition (Gallagher, 1970)

Let G be a finite group and $H \unlhd G$. Then, $d c(G) \leqslant d c(H) \cdot d c(G / H)$

Corollary

Let $\langle Y\rangle=H \leqslant f i . G=\langle X\rangle$ be of polynomial growth. Then, $d c_{x}(G)>0$
if and only if $d_{Y}(H)>0$

Finite index subgroups

Lemma (Burillo-Ventura, 2002)
If $H \leqslant_{\text {f.i. }} G=\langle X\rangle$ and G has subexponential growth then there exists $\lim _{n \rightarrow \infty} \frac{\left|\mathbb{B}_{X}(n) \cap H\right|}{\left|\mathbb{B}_{X}(n)\right|}=\frac{1}{[G: H]}$.

Proposition

Let $\langle Y\rangle=H \leqslant$ f.i. $G=\langle X\rangle$ be of polynomial growth. Then, $d c_{X}(G) \geqslant \frac{1}{[G: H]^{2}} d c_{Y}(H)$.

Proposition (Gallagher, 1970)

Let G be a finite group and $H \unlhd G$. Then, $d c(G) \leqslant d c(H) \cdot d c(G / H)$.

Finite index subgroups

Lemma (Burillo-Ventura, 2002)
If $H \leqslant$ f.i. $G=\langle X\rangle$ and G has subexponential growth then there exists $\lim _{n \rightarrow \infty} \frac{\left|\mathbb{B}_{X}(n) \cap H\right|}{\left|\mathbb{B}_{X}(n)\right|}=\frac{1}{[G: H]}$.

Proposition

Let $\langle Y\rangle=H \leqslant$ f.i. $G=\langle X\rangle$ be of polynomial growth. Then,
$d c_{X}(G) \geqslant \frac{1}{[G: H]^{2}} d c_{Y}(H)$.

Proposition (Gallagher, 1970)

Let G be a finite group and $H \unlhd G$. Then, $d c(G) \leqslant d c(H) \cdot d c(G / H)$.

Corollary

Let $\langle Y\rangle=H \leqslant$ f.i. $G=\langle X\rangle$ be of polynomial growth. Then, $d c_{X}(G)>0$
if and only if $d c_{Y}(H)>0$.

Outline

(2) Main definition

3 Finite index subgroups

4 Short exact sequences

5 A Gromov-like theorem

6 Other related results

Short exact sequences

Proposition

Let $G=\langle X\rangle, H \unlhd G$, and let $\pi: G \rightarrow Q=G / H=\langle\bar{X}\rangle$. Put

$$
0 \leqslant \lambda=\left(\liminf \frac{\left|\mathbb{B}_{X}(n)\right|}{\left|\mathbb{B}_{\bar{x}}(n)\right| \cdot\left|\mathbb{B}_{X}(2 n) \cap H\right|}\right)^{2} \leqslant 1 .
$$

Then, $\lambda \cdot d c_{x}(G) \leqslant d c_{\bar{x}}(Q) \cdot d c_{x}(H)$.

Proof. Write $d c_{X}(G)=\lim \sup d c_{X}(G, n)$, where

We have,

Short exact sequences

Proposition

Let $G=\langle X\rangle, H \unlhd G$, and let $\pi: G \rightarrow Q=G / H=\langle\bar{X}\rangle$. Put

$$
0 \leqslant \lambda=\left(\liminf \frac{\left|\mathbb{B}_{X}(n)\right|}{\left|\mathbb{B}_{\bar{x}}(n)\right| \cdot\left|\mathbb{B}_{X}(2 n) \cap H\right|}\right)^{2} \leqslant 1 .
$$

Then, $\lambda \cdot d c_{X}(G) \leqslant d c_{\bar{x}}(Q) \cdot d c_{\chi}(H)$.

Proof. Write $d c_{X}(G)=\lim \sup d c_{X}(G, n)$, where

$$
d c_{X}(G, n)=\frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(n)\right|^{2}} .
$$

We have,

Short exact sequences

Short exact sequences

$$
\begin{gathered}
\left|\mathbb{B}_{X}(n)\right|^{2} d c_{X}(G, n)=\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right|= \\
=\sum_{u \in \mathbb{B}_{X}(n)}\left|C_{G}(u) \cap \mathbb{B}_{X}(n)\right|=\sum_{q \in \mathbb{B}_{\bar{X}}(n)} \sum_{\substack{u \in \mathbb{B}_{X}(n) \\
\pi(u)=q}}\left|C_{G}(u) \cap \mathbb{B}_{X}(n)\right| \leqslant
\end{gathered}
$$

Short exact sequences

$$
\begin{aligned}
& \quad\left|\mathbb{B}_{X}(n)\right|^{2} d c_{X}(G, n)=\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right|= \\
& =\sum_{u \in \mathbb{B}_{X}(n)}\left|C_{G}(u) \cap \mathbb{B}_{X}(n)\right|=\sum_{q \in \mathbb{B}_{\bar{X}}(n)} \sum_{\substack{u \in \mathbb{B}_{X}(n) \\
\pi(u)=q}}\left|C_{G}(u) \cap \mathbb{B}_{X}(n)\right| \leqslant \\
& \leqslant \sum_{q \in \mathbb{B}_{\bar{X}}(n)} \sum_{\substack{u \in \mathbb{B}_{X}(n) \\
\pi(u)=q}}\left|C_{Q}(q) \cap \mathbb{B}_{\bar{X}}(n)\right| \cdot\left|C_{H}(u) \cap \mathbb{B}_{X}(2 n)\right|= \\
& \left.=\sum_{q \in \mathbb{B}_{X}(n)}\left|C_{Q}(q) \cap \mathbb{B}_{X}(n)\right| \sum_{\substack{u \in \mathbb{B}_{X}(n) \\
\pi(u)=q}}\left|C_{H}(u) \cap \mathbb{B}_{X}(2 n)\right|=(1)\right)
\end{aligned}
$$

Short exact sequences

$$
\begin{aligned}
& \left|\mathbb{B}_{X}(n)\right|^{2} d c_{X}(G, n)=\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right|= \\
= & \sum_{u \in \mathbb{B}_{X}(n)}\left|C_{G}(u) \cap \mathbb{B}_{X}(n)\right|=\sum_{q \in \mathbb{B}_{\bar{X}}(n)} \sum_{\substack{u \in \mathbb{B}^{\prime}(n) \\
\pi(u)=q}}\left|C_{G}(u) \cap \mathbb{B}_{X}(n)\right| \leqslant \\
\leqslant & \sum_{q \in \mathbb{B}_{\bar{X}}(n)} \sum_{\substack{u \in \mathbb{B}_{X}(n) \\
\pi(u)=q}}\left|C_{Q}(q) \cap \mathbb{B}_{\bar{X}}(n)\right| \cdot\left|C_{H}(u) \cap \mathbb{B}_{X}(2 n)\right|= \\
= & \sum_{q \in \mathbb{B}_{X}(n)}\left(\left|C_{Q}(q) \cap \mathbb{B}_{\bar{X}}(n)\right| \sum_{\substack{u \in \mathbb{B}_{X}(n) \\
\pi(u)=q}}\left|C_{H}(u) \cap \mathbb{B}_{X}(2 n)\right|\right)=(1)
\end{aligned}
$$

Short exact sequences

But, fixing $u_{0} \in \mathbb{B}_{X}(n)$ with $\pi\left(u_{0}\right)=q$,

$$
\sum_{\mathbb{X}_{x}(n), \pi(u)=q}\left|C_{H}(u) \cap \mathbb{B}_{X}(2 n)\right|=
$$

Short exact sequences

But, fixing $u_{0} \in \mathbb{B}_{X}(n)$ with $\pi\left(u_{0}\right)=q$,

$$
\begin{gathered}
\sum_{u \in \mathbb{B}_{X}(n), \pi(u)=q}\left|C_{H}(u) \cap \mathbb{B}_{X}(2 n)\right|= \\
=\left|\left\{(h, v) \in H \times\left(\mathbb{B}_{X}(2 n) \cap H\right)\left|v \in C_{H}\left(u_{0} h\right),\left|u_{0} h\right|_{X} \leq n\right\} \mid=\right.\right.
\end{gathered}
$$

$C_{H}(v) \cap \mathbb{B}_{X}(2 n) \mid$.

Short exact sequences

But, fixing $u_{0} \in \mathbb{B}_{X}(n)$ with $\pi\left(u_{0}\right)=q$,

$$
\begin{gathered}
\sum_{u \in \mathbb{B}_{X}(n), \pi(u)=q}\left|C_{H}(u) \cap \mathbb{B}_{X}(2 n)\right|= \\
=\left|\left\{(h, v) \in H \times\left(\mathbb{B}_{X}(2 n) \cap H\right)\left|v \in C_{H}\left(u_{0} h\right),\left|u_{0} h\right|_{X} \leq n\right\} \mid=\right.\right. \\
=\left|\left\{(h, v) \in H \times\left(\mathbb{B}_{X}(2 n) \cap H\right) \mid u_{0} h \in C_{G}(v) \cap \mathbb{B}_{X}(n)\right\}\right|=
\end{gathered}
$$

Short exact sequences

But, fixing $u_{0} \in \mathbb{B}_{X}(n)$ with $\pi\left(u_{0}\right)=q$,

$$
\begin{gathered}
\sum_{u \in \mathbb{B}_{X}(n), \pi(u)=q}\left|C_{H}(u) \cap \mathbb{B}_{X}(2 n)\right|= \\
=\left|\left\{(h, v) \in H \times\left(\mathbb{B}_{X}(2 n) \cap H\right)\left|v \in C_{H}\left(u_{0} h\right),\left|u_{0} h\right| x \leq n\right\} \mid=\right.\right. \\
=\left|\left\{(h, v) \in H \times\left(\mathbb{B}_{X}(2 n) \cap H\right) \mid u_{0} h \in C_{G}(v) \cap \mathbb{B}_{X}(n)\right\}\right|= \\
=\sum_{v \in \mathbb{B}_{X}(2 n) \cap H}\left|\left\{h \in H \mid u_{0} h \in C_{G}(v) \cap \mathbb{B}_{X}(n)\right\}\right| \leqslant
\end{gathered}
$$

Short exact sequences

But, fixing $u_{0} \in \mathbb{B}_{X}(n)$ with $\pi\left(u_{0}\right)=q$,

$$
\begin{gathered}
\sum_{u \in \mathbb{B}_{X}(n), \pi(u)=q}\left|C_{H}(u) \cap \mathbb{B}_{X}(2 n)\right|= \\
=\left|\left\{(h, v) \in H \times\left(\mathbb{B}_{X}(2 n) \cap H\right)\left|v \in C_{H}\left(u_{0} h\right),\left|u_{0} h\right| x \leq n\right\} \mid=\right.\right. \\
=\left|\left\{(h, v) \in H \times\left(\mathbb{B}_{X}(2 n) \cap H\right) \mid u_{0} h \in C_{G}(v) \cap \mathbb{B}_{X}(n)\right\}\right|= \\
=\sum_{v \in \mathbb{B}_{X}(2 n) \cap H}\left|\left\{h \in H \mid u_{0} h \in C_{G}(v) \cap \mathbb{B}_{X}(n)\right\}\right| \leqslant \\
\leqslant \sum_{v \in \mathbb{B}_{X}(2 n) \cap H}\left|C_{H}(v) \cap \mathbb{B}_{X}(2 n)\right| .
\end{gathered}
$$

Short exact sequences

But, fixing $u_{0} \in \mathbb{B}_{X}(n)$ with $\pi\left(u_{0}\right)=q$,

$$
\begin{gathered}
\sum_{u \in \mathbb{B}_{X}(n), \pi(u)=q}\left|C_{H}(u) \cap \mathbb{B}_{X}(2 n)\right|= \\
=\left|\left\{(h, v) \in H \times\left(\mathbb{B}_{X}(2 n) \cap H\right)\left|v \in C_{H}\left(u_{0} h\right),\left|u_{0} h\right| x \leq n\right\} \mid=\right.\right. \\
=\left|\left\{(h, v) \in H \times\left(\mathbb{B}_{X}(2 n) \cap H\right) \mid u_{0} h \in C_{G}(v) \cap \mathbb{B}_{X}(n)\right\}\right|= \\
=\sum_{v \in \mathbb{B}_{X}(2 n) \cap H}\left|\left\{h \in H \mid u_{0} h \in C_{G}(v) \cap \mathbb{B}_{X}(n)\right\}\right| \leqslant \\
\leqslant \sum_{v \in \mathbb{B}_{X}(2 n) \cap H}\left|C_{H}(v) \cap \mathbb{B}_{X}(2 n)\right| .
\end{gathered}
$$

Hence,

Short exact sequences

$$
(1) \leqslant \sum_{q \in \mathbb{B}_{X}(n)}\left(\left|C_{Q}(q) \cap \mathbb{B}_{\bar{X}}(n)\right| \sum_{v \in \mathbb{B}_{X}(2 n) \cap H}\left|C_{H}(v) \cap \mathbb{B}_{X}(2 n)\right|\right)=
$$

$$
\left|\mathbb{B}_{\bar{X}}(n)\right|^{2} \cdot d c_{X}(Q, n) \cdot\left|\mathbb{B}_{X}(2 n) \cap H\right|^{2} \cdot d c_{X}(H, 2 n) .
$$

It follows that

Finally, taking limits, we get

Short exact sequences

$$
\begin{aligned}
& (1) \leqslant \sum_{q \in \mathbb{B}_{X}(n)}\left(\left|C_{Q}(q) \cap \mathbb{B}_{\bar{X}}(n)\right| \sum_{v \in \mathbb{B}_{X}(2 n) \cap H}\left|C_{H}(v) \cap \mathbb{B}_{X}(2 n)\right|\right)= \\
& =\left(\sum_{q \in \mathbb{B}_{\bar{X}}(n)}\left|C_{Q}(q) \cap \mathbb{B}_{\bar{X}}(n)\right|\right)\left(\sum_{v \in \mathbb{B}_{X}(2 n) \cap H}\left|C_{H}(v) \cap \mathbb{B}_{X}(2 n)\right|\right)=
\end{aligned}
$$

$$
\left|\mathbb{B}_{X}(n)\right|^{2} \cdot d c_{X}(Q, n) \cdot\left|\mathbb{B}_{X}(2 n) \cap H\right|^{2} \cdot d c_{X}(H, 2 n) .
$$

It follows that

Finally, taking limits, we get

Short exact sequences

$$
\begin{gathered}
(1) \leqslant \sum_{q \in \mathbb{B}_{X}(n)}\left(\left|C_{Q}(q) \cap \mathbb{B}_{\bar{X}}(n)\right| \sum_{v \in \mathbb{B}_{X}(2 n) \cap H}\left|C_{H}(v) \cap \mathbb{B}_{X}(2 n)\right|\right)= \\
=\left(\sum_{q \in \mathbb{B}_{X}(n)}\left|C_{Q}(q) \cap \mathbb{B}_{\bar{X}}(n)\right|\right)\left(\sum_{v \in \mathbb{B}_{X}(2 n) \cap H}\left|C_{H}(v) \cap \mathbb{B}_{X}(2 n)\right|\right)= \\
\left|\mathbb{B}_{\bar{X}}(n)\right|^{2} \cdot d c_{X}(Q, n) \cdot\left|\mathbb{B}_{X}(2 n) \cap H\right|^{2} \cdot d c_{X}(H, 2 n) .
\end{gathered}
$$

It follows that

Short exact sequences

$$
\begin{gathered}
(1) \leqslant \sum_{q \in \mathbb{B}_{\bar{X}}(n)}\left(\left|C_{Q}(q) \cap \mathbb{B}_{\bar{X}}(n)\right| \sum_{v \in \mathbb{B}_{X}(2 n) \cap H}\left|C_{H}(v) \cap \mathbb{B}_{X}(2 n)\right|\right)= \\
=\left(\sum_{q \in \mathbb{B}_{X}(n)}\left|C_{Q}(q) \cap \mathbb{B}_{\bar{X}}(n)\right|\right)\left(\sum_{v \in \mathbb{B}_{X}(2 n) \cap H}\left|C_{H}(v) \cap \mathbb{B}_{X}(2 n)\right|\right)= \\
\left|\mathbb{B}_{\bar{X}}(n)\right|^{2} \cdot d c_{\bar{X}}(Q, n) \cdot\left|\mathbb{B}_{X}(2 n) \cap H\right|^{2} \cdot d c_{X}(H, 2 n) .
\end{gathered}
$$

It follows that

$$
\left(\frac{\left|\mathbb{B}_{X}(n)\right|}{\left|\mathbb{B}_{\bar{X}}(n)\right| \cdot\left|\mathbb{B}_{X}(2 n) \cap H\right|}\right)^{2} \cdot d c_{X}(G, n) \leqslant d c_{X}(Q, n) \cdot d c_{X}(H, 2 n) .
$$

Short exact sequences

$$
\begin{gathered}
(1) \leqslant \sum_{q \in \mathbb{B}_{\bar{X}}(n)}\left(\left|C_{Q}(q) \cap \mathbb{B}_{\bar{X}}(n)\right| \sum_{v \in \mathbb{B}_{X}(2 n) \cap H}\left|C_{H}(v) \cap \mathbb{B}_{X}(2 n)\right|\right)= \\
=\left(\sum_{q \in \mathbb{B}_{\bar{X}}(n)}\left|C_{Q}(q) \cap \mathbb{B}_{\bar{X}}(n)\right|\right)\left(\sum_{v \in \mathbb{B}_{X}(2 n) \cap H}\left|C_{H}(v) \cap \mathbb{B}_{X}(2 n)\right|\right)= \\
\left|\mathbb{B}_{\bar{X}}(n)\right|^{2} \cdot d c_{\bar{X}}(Q, n) \cdot\left|\mathbb{B}_{X}(2 n) \cap H\right|^{2} \cdot d c_{X}(H, 2 n) .
\end{gathered}
$$

It follows that

$$
\left(\frac{\left|\mathbb{B}_{X}(n)\right|}{\left|\mathbb{B}_{\bar{X}}(n)\right| \cdot\left|\mathbb{B}_{X}(2 n) \cap H\right|}\right)^{2} \cdot d c_{X}(G, n) \leqslant d c_{\bar{X}}(Q, n) \cdot d c_{X}(H, 2 n) .
$$

Finally, taking limits, we get

Short exact sequences

$$
\begin{gathered}
(1) \leqslant \sum_{q \in \mathbb{B}_{\bar{X}}(n)}\left(\left|C_{Q}(q) \cap \mathbb{B}_{\bar{X}}(n)\right| \sum_{v \in \mathbb{B}_{X}(2 n) \cap H}\left|C_{H}(v) \cap \mathbb{B}_{X}(2 n)\right|\right)= \\
=\left(\sum_{q \in \mathbb{B}_{\bar{X}}(n)}\left|C_{Q}(q) \cap \mathbb{B}_{\bar{X}}(n)\right|\right)\left(\sum_{v \in \mathbb{B}_{X}(2 n) \cap H}\left|C_{H}(v) \cap \mathbb{B}_{X}(2 n)\right|\right)= \\
\left|\mathbb{B}_{\bar{X}}(n)\right|^{2} \cdot d c_{\bar{X}}(Q, n) \cdot\left|\mathbb{B}_{X}(2 n) \cap H\right|^{2} \cdot d c_{X}(H, 2 n) .
\end{gathered}
$$

It follows that

$$
\left(\frac{\left|\mathbb{B}_{X}(n)\right|}{\left|\mathbb{B}_{\bar{X}}(n)\right| \cdot\left|\mathbb{B}_{X}(2 n) \cap H\right|}\right)^{2} \cdot d c_{X}(G, n) \leqslant d c_{\bar{X}}(Q, n) \cdot d c_{X}(H, 2 n)
$$

Finally, taking limits, we get

$$
\lambda \cdot d c_{X}(G) \leqslant d c_{\bar{X}}(Q) \cdot d c_{X}(H)
$$

Short exact sequences

Proposition

Let $G=\langle X\rangle$ be polynomially growing with degree d. Then, $\forall H \unlhd_{\text {fi. }} G$, we have

$$
\left(\frac{C}{D \cdot 4^{d}}\right)^{2} \cdot d c_{X}(G) \leq d c_{\bar{X}}(G / H) \cdot d c_{X}(H)
$$

Proof. Clearly, $\left|\mathbb{B}_{X}(2 n)\right| \geqslant\left|\mathbb{B}_{\bar{X}}(n)\right| \cdot\left|\mathbb{B}_{X}(n) \cap H\right|$. Now fix H and, $\forall \epsilon>0, \exists n_{0}$ s.t. $\forall n \geqslant n_{0}$,

Short exact sequences

Proposition

Let $G=\langle X\rangle$ be polynomially growing with degree d. Then, $\forall H \unlhd_{\text {f.i. }} G$, we have

$$
\left(\frac{C}{D \cdot 4^{d}}\right)^{2} \cdot d c_{X}(G) \leq d c_{\bar{X}}(G / H) \cdot d c_{X}(H)
$$

Proof. Clearly, $\left|\mathbb{B}_{X}(2 n)\right| \geqslant\left|\mathbb{B}_{\bar{X}}(n)\right| \cdot\left|\mathbb{B}_{X}(n) \cap H\right|$.
Now fix H and, $\forall \epsilon>0, \exists n_{0}$ s.t. $\forall n \geqslant n_{0}$,

Short exact sequences

Proposition

Let $G=\langle X\rangle$ be polynomially growing with degree d. Then, $\forall H \unlhd_{\text {f.i. }} G$, we have

$$
\left(\frac{C}{D \cdot 4^{d}}\right)^{2} \cdot d c_{X}(G) \leq d c_{\bar{X}}(G / H) \cdot d c_{X}(H)
$$

Proof. Clearly, $\left|\mathbb{B}_{X}(2 n)\right| \geqslant\left|\mathbb{B}_{\bar{X}}(n)\right| \cdot\left|\mathbb{B}_{X}(n) \cap H\right|$. Now fix H and, $\forall \epsilon>0, \exists n_{0}$ s.t. $\forall n \geqslant n_{0}$,

$$
\frac{\left|\mathbb{B}_{X}(n)\right|}{\left|\mathbb{B}_{\bar{X}}(n)\right| \cdot\left|\mathbb{B}_{X}(2 n) \cap H\right|} \geqslant \frac{\left|\mathbb{B}_{X}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)\right| \cdot\left|\mathbb{B}_{X}\left(\left\lfloor\frac{n}{2}\right\rfloor\right) \cap H\right|}{\left|\mathbb{B}_{\bar{X}}(n)\right| \cdot\left|\mathbb{B}_{X}(2 n) \cap H\right|}=
$$

Short exact sequences

Proposition

Let $G=\langle X\rangle$ be polynomially growing with degree d. Then, $\forall H \unlhd_{\text {f.i. }} G$, we have

$$
\left(\frac{C}{D \cdot 4^{d}}\right)^{2} \cdot d c_{X}(G) \leq d c_{\bar{X}}(G / H) \cdot d c_{X}(H)
$$

Proof. Clearly, $\left|\mathbb{B}_{X}(2 n)\right| \geqslant\left|\mathbb{B}_{\bar{X}}(n)\right| \cdot\left|\mathbb{B}_{X}(n) \cap H\right|$. Now fix H and, $\forall \epsilon>0, \exists n_{0}$ s.t. $\forall n \geqslant n_{0}$,

$$
\begin{gathered}
\frac{\left|\mathbb{B}_{X}(n)\right|}{\left|\mathbb{B}_{\bar{x}}(n)\right| \cdot\left|\mathbb{B}_{X}(2 n) \cap H\right|} \geqslant \frac{\left|\mathbb{B}_{\bar{x}}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)\right| \cdot\left|\mathbb{B}_{X}\left(\left\lfloor\frac{n}{2}\right\rfloor\right) \cap H\right|}{\left|\mathbb{B}_{\bar{x}}(n)\right| \cdot\left|\mathbb{B}_{X}(2 n) \cap H\right|}= \\
=\frac{\left|\mathbb{B}_{X}\left(\left\lfloor\frac{n}{2}\right\rfloor\right) \cap H\right|}{\left|\mathbb{B}_{X}(2 n) \cap H\right|}=\frac{\left|\mathbb{B}_{X}\left(\left\lfloor\frac{n}{2}\right\rfloor\right) \cap H\right|}{\left|\mathbb{B}_{X}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)\right|} \cdot \frac{\left|\mathbb{B}_{x}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)\right|}{\left|\mathbb{B}_{X}(2 n)\right|} \cdot \frac{\left|\mathbb{B}_{x}(2 n)\right|}{\left|\mathbb{B}_{x}(2 n) \cap H\right|}
\end{gathered}
$$

Short exact sequences

Proposition

Let $G=\langle X\rangle$ be polynomially growing with degree d. Then, $\forall H \unlhd_{\text {f.i. }} G$, we have

$$
\left(\frac{C}{D \cdot 4^{d}}\right)^{2} \cdot d c_{X}(G) \leq d c_{\bar{X}}(G / H) \cdot d c_{X}(H)
$$

Proof. Clearly, $\left|\mathbb{B}_{X}(2 n)\right| \geqslant\left|\mathbb{B}_{\bar{X}}(n)\right| \cdot\left|\mathbb{B}_{X}(n) \cap H\right|$. Now fix H and, $\forall \epsilon>0, \exists n_{0}$ s.t. $\forall n \geqslant n_{0}$,

$$
\begin{gathered}
\frac{\left|\mathbb{B}_{X}(n)\right|}{\left|\mathbb{B}_{\bar{X}}(n)\right| \cdot\left|\mathbb{B}_{X}(2 n) \cap H\right|} \geqslant \frac{\left|\mathbb{B}_{\bar{X}}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)\right| \cdot\left|\mathbb{B}_{X}\left(\left\lfloor\frac{n}{2}\right\rfloor\right) \cap H\right|}{\left|\mathbb{B}_{\bar{X}}(n)\right| \cdot\left|\mathbb{B}_{X}(2 n) \cap H\right|}= \\
=\frac{\left|\mathbb{B}_{X}\left(\left\lfloor\frac{n}{2}\right\rfloor\right) \cap H\right|}{\left|\mathbb{B}_{X}(2 n) \cap H\right|}=\frac{\left|\mathbb{B}_{X}\left(\left\lfloor\frac{n}{2}\right\rfloor\right) \cap H\right|}{\left|\mathbb{B}_{X}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)\right|} \cdot \frac{\left|\mathbb{B}_{X}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)\right|}{\left|\mathbb{B}_{X}(2 n)\right|} \cdot \frac{\left|\mathbb{B}_{X}(2 n)\right|}{\left|\mathbb{B}_{X}(2 n) \cap H\right|} \geqslant
\end{gathered}
$$

Short exact sequences

$$
\geqslant\left(\frac{1}{[G: H]}-\epsilon\right) \cdot \frac{C \cdot\left(\left\lfloor\frac{n}{2}\right\rfloor\right)^{d}}{D \cdot(2 n)^{d}} \cdot([G: H]-\epsilon) \geqslant
$$

And this is true for every $\epsilon>0$ hence, $\lambda \geqslant\left(\frac{C}{D \cdot 4^{d}}\right)^{2}$, Which happens to be independent from $\mathrm{H} . \square$

Short exact sequences

$$
\begin{aligned}
& \geqslant\left(\frac{1}{[G: H]}-\epsilon\right) \cdot \frac{C \cdot\left(\left\lfloor\frac{n}{2}\right\rfloor\right)^{d}}{D \cdot(2 n)^{d}} \cdot([G: H]-\epsilon) \geqslant \\
& \geqslant\left(\frac{1}{[G: H]}-\epsilon\right) \cdot\left(\frac{C}{D \cdot 4^{d}}-\epsilon\right) \cdot([G: H]-\epsilon)
\end{aligned}
$$

So, $\lambda=(\lim \inf \cdots)^{2} \geqslant\left(\frac{1}{[G: H]}-\epsilon\right)^{2} \cdot\left(\frac{C}{D \cdot 4^{s}}-\epsilon\right)^{2} \cdot([G: H]-\epsilon)^{2}$.
And this is true for every $\epsilon>0$ hence, $\lambda \geqslant\left(\frac{C}{D \cdot 4^{d}}\right)^{2}$, Which happens to be independent from H. \square

Short exact sequences

$$
\begin{aligned}
& \geqslant\left(\frac{1}{[G: H]}-\epsilon\right) \cdot \frac{C \cdot\left(\left\lfloor\frac{n}{2}\right\rfloor\right)^{d}}{D \cdot(2 n)^{d}} \cdot([G: H]-\epsilon) \geqslant \\
& \geqslant\left(\frac{1}{[G: H]}-\epsilon\right) \cdot\left(\frac{C}{D \cdot 4^{d}}-\epsilon\right) \cdot([G: H]-\epsilon)
\end{aligned}
$$

So, $\lambda=(\liminf \cdots)^{2} \geqslant\left(\frac{1}{[G: H]}-\epsilon\right)^{2} \cdot\left(\frac{C}{D \cdot 4^{s}}-\epsilon\right)^{2} \cdot([G: H]-\epsilon)^{2}$.

Short exact sequences

$$
\begin{aligned}
& \geqslant\left(\frac{1}{[G: H]}-\epsilon\right) \cdot \frac{C \cdot\left(\left\lfloor\frac{n}{2}\right\rfloor\right)^{d}}{D \cdot(2 n)^{d}} \cdot([G: H]-\epsilon) \geqslant \\
& \geqslant\left(\frac{1}{[G: H]}-\epsilon\right) \cdot\left(\frac{C}{D \cdot 4^{d}}-\epsilon\right) \cdot([G: H]-\epsilon)
\end{aligned}
$$

So, $\lambda=(\liminf \cdots)^{2} \geqslant\left(\frac{1}{[G: H]}-\epsilon\right)^{2} \cdot\left(\frac{C}{D \cdot 4^{s}}-\epsilon\right)^{2} \cdot([G: H]-\epsilon)^{2}$.
And this is true for every $\epsilon>0$ hence, $\lambda \geqslant\left(\frac{C}{D \cdot 4^{d}}\right)^{2}$, Which happens to be independent from H. \square

Short exact sequences

$$
\begin{aligned}
& \geqslant\left(\frac{1}{[G: H]}-\epsilon\right) \cdot \frac{C \cdot\left(\left\lfloor\frac{n}{2}\right\rfloor\right)^{d}}{D \cdot(2 n)^{d}} \cdot([G: H]-\epsilon) \geqslant \\
& \geqslant\left(\frac{1}{[G: H]}-\epsilon\right) \cdot\left(\frac{C}{D \cdot 4^{d}}-\epsilon\right) \cdot([G: H]-\epsilon)
\end{aligned}
$$

So, $\lambda=(\liminf \cdots)^{2} \geqslant\left(\frac{1}{[G: H]}-\epsilon\right)^{2} \cdot\left(\frac{C}{D \cdot 4^{s}}-\epsilon\right)^{2} \cdot([G: H]-\epsilon)^{2}$.
And this is true for every $\epsilon>0$ hence, $\lambda \geqslant\left(\frac{C}{D \cdot 4^{d}}\right)^{2}$,
Which happens to be independent from $\mathrm{H} . \square$

Outline

(9) Motivation

(2) Main definition
(3) Finite index subgroups

4 Short exact sequences
(5) A Gromov-like theorem

6 Other related results

t.f. nilpotent groups

Proposition

Let $G=\langle X\rangle$ be t.f. nilpotent. Then, either G is abelian, or $d c_{X}(G)=0$.

Proof. Assume G is not abelian and $d_{X}(G)>0$ and let us find a

 contradiction.- We have a uniform $\lambda>0$ s.t., for every $H \unlhd_{\text {f.i. }} G$,

$$
\lambda \cdot d c_{X}(G) \leqslant d c_{\bar{X}}(G / H) \cdot d c_{X}(H)
$$

- Choose n s.t. $\lambda \cdot d c_{X}(G) \cdot\left(\frac{8}{5}\right)^{n}>1$.
- Take $\left\{p_{1}, \ldots, p_{n}\right\}$ be n pairwise different primes.
- By Grumbergs' classical result, G is residually- p_{i}.
- Hence, G has a non-abelian, finite p_{i}-quotient $\pi_{i}: G \rightarrow Q_{i}$; in particular, $d c\left(Q_{i}\right) \leqslant \frac{5}{8}$.

t.f. nilpotent groups

Proposition

Let $G=\langle X\rangle$ be t.f. nilpotent. Then, either G is abelian, or $d c_{X}(G)=0$.

Proof. Assume G is not abelian and $d c_{X}(G)>0$ and let us find a contradiction.
> - We have a uniform $\lambda>0$ s.t., for every $H \unlhd_{\text {f.i. }} G$, $d c_{X}(G) \leqslant d c_{\bar{X}}(G / H) \cdot d c_{X}(H)$
> - Choose n s.t. $\lambda \cdot d c_{X}(G) \cdot\left(\frac{8}{5}\right)^{n}>1$.
> - Take $\left\{p_{1}, \ldots, p_{n}\right\}$ be n pairwise different primes.
> - By Grumbergs' classical result, G is residually-pi
> - Hence, G has a non-abelian, finite p_{i}-quotient $\pi_{i}: G \rightarrow Q_{i}$; in particular, $d c\left(Q_{i}\right)$

t.f. nilpotent groups

Proposition

Let $G=\langle X\rangle$ be t.f. nilpotent. Then, either G is abelian, or $d c_{X}(G)=0$.

Proof. Assume G is not abelian and $d c_{X}(G)>0$ and let us find a contradiction.

- We have a uniform $\lambda>0$ s.t., for every $H \unlhd_{\text {f.i. }} G$,

$$
\lambda \cdot d c_{X}(G) \leqslant d c_{\bar{X}}(G / H) \cdot d c_{X}(H) .
$$

- Choose n s.t. $\lambda \cdot d c_{X}(G) \cdot\left(\frac{8}{5}\right)^{n}>1$.
- Take $\left\{p_{1}, \ldots, p_{n}\right\}$ be n pairwise different primes.
- By Grumbergs' classical result, G is residually-pi
- Hence, G has a non-abelian, finite p_{i}-quotient $\pi_{i}: G \rightarrow Q_{i}$; in particular, $d c\left(Q_{i}\right)$

t.f. nilpotent groups

Proposition

Let $G=\langle X\rangle$ be t.f. nilpotent. Then, either G is abelian, or $d c_{X}(G)=0$.

Proof. Assume G is not abelian and $d c_{X}(G)>0$ and let us find a contradiction.

- We have a uniform $\lambda>0$ s.t., for every $H \unlhd_{\text {f.i. }} G$,

$$
\lambda \cdot d c_{X}(G) \leqslant d c_{\bar{X}}(G / H) \cdot d c_{X}(H) .
$$

- Choose n s.t. $\lambda \cdot d c_{X}(G) \cdot\left(\frac{8}{5}\right)^{n}>1$.
- Take $\left\{p_{1}, \ldots, p_{n}\right\}$ be n pairwise different primes.
- By Grumbergs' classical result, G is residually- p_{i}
- Hence, G has a non-abelian, finite p_{i}-auotient $\pi_{i}: G \rightarrow Q_{i} ;$ in particular, dc $\left(Q_{i}\right)$

t.f. nilpotent groups

Proposition

Let $G=\langle X\rangle$ be t.f. nilpotent. Then, either G is abelian, or $d c_{X}(G)=0$.

Proof. Assume G is not abelian and $d c_{X}(G)>0$ and let us find a contradiction.

- We have a uniform $\lambda>0$ s.t., for every $H \unlhd_{\text {f.i. }} G$,

$$
\lambda \cdot d c_{X}(G) \leqslant d c_{\bar{X}}(G / H) \cdot d c_{X}(H)
$$

- Choose n s.t. $\lambda \cdot d c_{X}(G) \cdot\left(\frac{8}{5}\right)^{n}>1$.
- Take $\left\{p_{1}, \ldots, p_{n}\right\}$ be n pairwise different primes.
- By Grumbergs' classical result, G is residually-p
- Hence, G has a non-abelian, finite p_{i}-quotient $\pi_{i}: G \rightarrow Q_{i}$; in particular, dc $\left(Q_{i}\right)$

t.f. nilpotent groups

Proposition

Let $G=\langle X\rangle$ be t.f. nilpotent. Then, either G is abelian, or $d c_{X}(G)=0$.

Proof. Assume G is not abelian and $d c_{X}(G)>0$ and let us find a contradiction.

- We have a uniform $\lambda>0$ s.t., for every $H \unlhd_{\text {f.i. }} G$,

$$
\lambda \cdot d c_{X}(G) \leqslant d c_{\bar{X}}(G / H) \cdot d c_{X}(H) .
$$

- Choose n s.t. $\lambda \cdot d c_{X}(G) \cdot\left(\frac{8}{5}\right)^{n}>1$.
- Take $\left\{p_{1}, \ldots, p_{n}\right\}$ be n pairwise different primes.
- By Grumbergs' classical result, G is residually- p_{i}.
- Hence, G has a non-abelian, finite p_{i}-quotient τ

t.f. nilpotent groups

Proposition

Let $G=\langle X\rangle$ be t.f. nilpotent. Then, either G is abelian, or $d c_{X}(G)=0$.

Proof. Assume G is not abelian and $d c_{X}(G)>0$ and let us find a contradiction.

- We have a uniform $\lambda>0$ s.t., for every $H \unlhd_{\text {f.i. }} G$,

$$
\lambda \cdot d c_{X}(G) \leqslant d c_{\bar{X}}(G / H) \cdot d c_{X}(H)
$$

- Choose n s.t. $\lambda \cdot d c_{X}(G) \cdot\left(\frac{8}{5}\right)^{n}>1$.
- Take $\left\{p_{1}, \ldots, p_{n}\right\}$ be n pairwise different primes.
- By Grumbergs' classical result, G is residually- p_{i}.
- Hence, G has a non-abelian, finite p_{i}-quotient $\pi_{i}: G \rightarrow Q_{i}$; in particular, $d c\left(Q_{i}\right) \leqslant \frac{5}{8}$.

t.f. nilpotent groups

- Now, the morphism $\times{ }_{i=1}^{n} \pi_{i}: G \rightarrow Q_{1} \times \cdots \times Q_{n}$ is onto (because $\left.\operatorname{gcd}\left(p_{j}, p_{1} \cdots p_{j-1} p_{j+1} \cdots p_{n}\right)=1\right)$.
- Take $H=\operatorname{ker} x_{i=1}^{n} \pi_{i} \unlhd_{\text {fi. }}$ G; we have,
- Hence,

t.f. nilpotent groups

- Now, the morphism $\times{ }_{i=1}^{n} \pi_{i}: G \rightarrow Q_{1} \times \cdots \times Q_{n}$ is onto (because $\left.\operatorname{gcd}\left(p_{j}, p_{1} \cdots p_{j-1} p_{j+1} \cdots p_{n}\right)=1\right)$.
- Take $H=\operatorname{ker} \times_{i=1}^{n} \pi_{i} \unlhd_{\text {fi. }}$ G; we have,

$$
\lambda \cdot d c_{X}(G) \leqslant d c_{x}(H) \cdot d c_{\bar{x}}\left(Q_{1} \times \cdots \times Q_{n}\right) \leqslant d c_{X}(H) \cdot\left(\frac{5}{8}\right)^{n} .
$$

- Hence,

t.f. nilpotent groups

- Now, the morphism $\times{ }_{i=1}^{n} \pi_{i}: G \rightarrow Q_{1} \times \cdots \times Q_{n}$ is onto (because $\left.\operatorname{gcd}\left(p_{j}, p_{1} \cdots p_{j-1} p_{j+1} \cdots p_{n}\right)=1\right)$.
- Take $H=\operatorname{ker} \times_{i=1}^{n} \pi_{i} \unlhd_{\text {fi. }}$ G; we have,

$$
\lambda \cdot d c_{X}(G) \leqslant d c_{x}(H) \cdot d c_{\bar{X}}\left(Q_{1} \times \cdots \times Q_{n}\right) \leqslant d c_{x}(H) \cdot\left(\frac{5}{8}\right)^{n}
$$

- Hence,

$$
1<\lambda \cdot d c_{X}(G) \cdot\left(\frac{8}{5}\right)^{n} \leqslant d c_{X}(H) \leqslant 1,
$$

a contradiction.

A Gromov-like theorem

Theorem

Let G be a polynomially growing group. Then,
G is virtually abelian $\Longleftrightarrow d c_{X}(G)>0$ for some (and hence all) X.

Proof. (\Rightarrow) Ok.

(\Leftarrow)

- By Gromov result, \exists a nilpotent $H \leqslant f . i$. G.
- So, \exists a t.f. nilpotent $K \leqslant_{\text {f.i. }} H \leqslant_{\text {fi.i }} G$.
- By hypotesis, $d c_{X}(G)>0$.
- Hence, $d c_{Y}(K)>0$ for every $\langle Y\rangle=K$.
- Then, K is abelian.
- So, G is virtually abelian.

A Gromov-like theorem

Theorem

Let G be a polynomially growing group. Then,
G is virtually abelian $\Longleftrightarrow d c_{X}(G)>0$ for some (and hence all) X.

Proof. (\Rightarrow) Ok.

- By Gromov result, \exists a nilpotent $H \leqslant_{\text {fi. }}$ G.
- So, \exists a t.f. nilpotent $K \leqslant_{f i} H \leqslant_{f i} G$.
- By hypotesis, dcx $(G)>0$.
- Hence, $d c_{Y}(K)>0$ for every $\langle Y\rangle=K$.
- Then, K is abelian.
- So, G is virtually abelian.

A Gromov-like theorem

Theorem

Let G be a polynomially growing group. Then,
G is virtually abelian $\Longleftrightarrow d c_{X}(G)>0$ for some (and hence all) X.

Proof. (\Rightarrow) Ok.
(\Leftarrow)

- By Gromov result, \exists a nilpotent $H \leqslant$ f.i. G.
- So, \exists a t.f. nilpotent $K \leqslant$ fi. $H \leqslant$ fi. G.
- By hypotesis, $d_{X}(G)>0$
- Hence, $d c_{Y}(K)>0$ for every $\langle Y\rangle=K$.
- Then, K is abelian.
- So, G is virtually abelian.

A Gromov-like theorem

Theorem

Let G be a polynomially growing group. Then,
G is virtually abelian $\Longleftrightarrow d c_{X}(G)>0$ for some (and hence all) X.

Proof. (\Rightarrow) Ok.
(\Leftarrow)

- By Gromov result, \exists a nilpotent $H \leqslant$ f.i. G.
- So, \exists a t.f. nilpotent $K \leqslant_{\text {f.i. }} H \leqslant_{\text {f.i. }} G$.
- By hypotesis, $d_{X}(G)>0$
- Hence, $d c_{Y}(K)>0$ for every $\langle Y\rangle=K$.
- Then, K is abelian.
- So, G is virtually abelian.

A Gromov-like theorem

Theorem

Let G be a polynomially growing group. Then,
G is virtually abelian $\Longleftrightarrow d c_{X}(G)>0$ for some (and hence all) X.

Proof. (\Rightarrow) Ok.
(\Leftarrow)

- By Gromov result, \exists a nilpotent $H \leqslant$ f.i. G.
- So, \exists a t.f. nilpotent $K \leqslant_{\text {f.i. }} H \leqslant_{\text {f.i. }} G$.
- By hypotesis, $d c_{X}(G)>0$.
- Hence, $d_{Y}(K)>0$ for every $\langle Y\rangle=K$.
- Then, K is abelian.
- So, G is virtually abelian.

A Gromov-like theorem

Theorem

Let G be a polynomially growing group. Then,
G is virtually abelian $\Longleftrightarrow d c_{x}(G)>0$ for some (and hence all) X.

Proof. (\Rightarrow) Ok.
(\Leftarrow)

- By Gromov result, \exists a nilpotent $H \leqslant$ f.i. G.
- So, \exists a t.f. nilpotent $K \leqslant_{\text {f.i. }} H \leqslant_{\text {f.i. }} G$.
- By hypotesis, $d c_{X}(G)>0$.
- Hence, $d c_{Y}(K)>0$ for every $\langle Y\rangle=K$.
- Then, K is abelian.
- So, G is virtually abelian.

A Gromov-like theorem

Theorem

Let G be a polynomially growing group. Then,
G is virtually abelian $\Longleftrightarrow d c_{x}(G)>0$ for some (and hence all) X.

Proof. (\Rightarrow) Ok.
(\Leftarrow)

- By Gromov result, \exists a nilpotent $H \leqslant$ f.i. G.
- So, \exists a t.f. nilpotent $K \leqslant_{\text {f.i. }} H \leqslant_{\text {f.i. }} G$.
- By hypotesis, $d c_{X}(G)>0$.
- Hence, $d c_{Y}(K)>0$ for every $\langle Y\rangle=K$.
- Then, K is abelian.
- So, G is virtually abelian.

A Gromov-like theorem

Theorem

Let G be a polynomially growing group. Then,
G is virtually abelian $\Longleftrightarrow d c_{x}(G)>0$ for some (and hence all) X.

Proof. (\Rightarrow) Ok.
(\Leftarrow)

- By Gromov result, \exists a nilpotent $H \leqslant$ f.i. G.
- So, \exists a t.f. nilpotent $K \leqslant_{\text {f.i. }} H \leqslant_{\text {f.i. }} G$.
- By hypotesis, $d c_{X}(G)>0$.
- Hence, $d c_{Y}(K)>0$ for every $\langle Y\rangle=K$.
- Then, K is abelian.
- So, G is virtually abelian.

A conjecture

Conjecture

Every f.g. group G with super-polinomial growth has $d c_{X}(G)=0$ for every X.

Conjecture

A conjecture

Conjecture

Every f.g. group G with super-polinomial growth has $d c_{X}(G)=0$ for every X.

Conjecture

For any f.g. group $G=\langle X\rangle$,

$$
d c_{X}(G)>0 \Longleftrightarrow G \text { is virtually abelian. }
$$

Outline

Main definition3 Finite index subgroups

4 Short exact sequences

5 A Gromov-like theorem

6 Other related results

Other related results

Theorem

Let G be non-elementary hyperbolic. Then $d c_{X}(G)=0$ for every X.

Theorem

Let $G=G(X)$ be a pc group. Then,

Theorem
let $G=|\boldsymbol{X}\rangle$ be a f.g. residually finite group with sub-exponential growth. If $d c_{X}(G)>5 / 8$ for some X the G is abelian.

Other related results

Theorem

Let G be non-elementary hyperbolic. Then $d c_{X}(G)=0$ for every X.

Theorem

Let $G=G(X)$ be a pc group. Then,

$$
d c_{X}(G(X))= \begin{cases}0 & \text { if } X \text { is not complete } \\ 1 & \text { if } X \text { is complete }\end{cases}
$$

Theorem

Let $G=\langle X\rangle$ be a f.g. residually finite group with sub-exponential growth. If $d c_{X}(G)>5 / 8$ for some X the G is abelian.

Other related results

Theorem

Let G be non-elementary hyperbolic. Then $d c_{X}(G)=0$ for every X.

Theorem

Let $G=G(X)$ be a pc group. Then,

$$
d c_{X}(G(X))= \begin{cases}0 & \text { if } X \text { is not complete } \\ 1 & \text { if } X \text { is complete }\end{cases}
$$

Theorem

Let $G=\langle X\rangle$ be a f.g. residually finite group with sub-exponential growth. If $d c_{X}(G)>5 / 8$ for some X the G is abelian.

THANKS

