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Motivation

(Joint work with Y. Antolín and A. Martino.)

Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G
commute is bigger than 5/8, then G is abelian.

Proof. Suppose G is not abelian. Then,

dc(G) =
|{(u, v) | uv = vu}|

|G|2
=

1
|G|2

∑
u∈G

|CG(u)| =

=
1
|G|2

(
|Z (G)||G|+

∑
u∈G\Z (G)

|CG(u)|
)
6

6
1
|G|2

(
|Z (G)||G|+ (|G| − |Z (G)|) |G|

2

)
=
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Motivation

=
1
|G|2

(
|Z (G)||G|+ (|G| − |Z (G)|) |G|

2

)
=

=
|G|+ |Z (G)|

2|G|
6

1
2
+

|G|
4 · 2|G|

=
1
2
+

1
8
=

5
8
,

because G/Z (G) cannot be cyclic and so, |Z (G)| 6 |G|/4. �

Observation

The quaternion group has dc(Q) = 5/8.

“There is no live between 5/8 and 1"

(Goal)

Is there a version of dc for infinite groups ?
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Degree of commutativity

Definition

Let G = 〈X 〉 be a f.g. group. The degree of commutativity of G w.r.t.
X is

dcX (G) = lim sup
n→∞

|{(u, v) ∈ BX (n)× BX (n) | uv = vu}|
|BX (n)|2

∈ [0,1],

where BX (n) = {g ∈ G | |g|X 6 n}.

Question
Is this a real lim ? Does it depend on X ?

About limsup we have no idea:
No example where lim doesn’t exist;
No proof it is always a real limit.
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Independence on X

Definition

A f.g. group G = 〈X 〉 is of

subexponential growth if limn→∞
|BX (n+1)|
|BX (n)| = 1;

polynomial growth (of degree d) if 0 < Cnd 6 |BX (n)| 6 Dnd .

Definition

Let G = 〈X 〉. A map f : G→ N is an estimation of the X-metric if ∃
K > 0 such that ∀w ∈ G

1
K

f (w) 6 |w |X 6 K f (w).

Example

It is well known that, for G = 〈X 〉 = 〈Y 〉, | · |X is an estimation of the
Y -metric, and | · |Y is an estimation of the X-metric.
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Independence on X

Definition
Define the f -ball and the f -dc:

Bf (n) = {w ∈ G | f (w) 6 n},

dcf (G) = lim sup
n→∞

|{(u, v) ∈ Bf (n)× Bf (n) | uv = vu}|
|Bf (n)|2

.

Proposition

Let G = 〈X 〉 be of polynomial growth, and f : G→ N be an estimation
of the X-metric. Then,

dcX (G) > 0 ⇐⇒ dcf (G) > 0.

Proof. Clearly, Bf (n) ⊆ BX (Kn) ⊆ Bf (K 2n) so,

|{(u, v) ∈ (Bf (n))2 | uv = vu}| 6 |{(u, v) ∈ (BX (Kn))2 | uv = vu}|.
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Independence on X

|{(u,v)∈(Bf (n))2|uv=vu}|
|BX (Kn)|2 6 |{(u,v)∈(BX (Kn))2|uv=vu}|

|BX (Kn)|2 .

q(
|{(u,v)∈(Bf (n))2|uv=vu}|

|Bf (n)|2

)(
|Bf (n)|
|BX (Kn)|

)2

So, dcX (G) = 0 ⇒ dcf (G) = 0, because

|Bf (n)|
|BX (Kn)|

>
|BX (n/K )|
|BX (Kn)|

>
C(n/K )d

D(Kn)d =
C

DK 2d > 0. �

Corollary

If G = 〈X 〉 = 〈Y 〉 is of polynomial growth, then

dcX (G) = 0 ⇐⇒ dcY (G) = 0.
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Finite index subgroups

Lemma (Burillo–Ventura, 2002)

If H 6f.i. G = 〈X 〉 and G has subexponential growth then there exists
limn→∞

|BX (n)∩H|
|BX (n)| = 1

[G:H] .

Proposition

Let 〈Y 〉 = H 6f.i. G = 〈X 〉 be of polynomial growth. Then,
dcX (G) > 1

[G:H]2
dcY (H).

Proposition (Gallagher, 1970)

Let G be a finite group and H EG. Then, dc(G) 6 dc(H) · dc(G/H).

Corollary

Let 〈Y 〉 = H 6f.i. G = 〈X 〉 be of polynomial growth. Then, dcX (G) > 0
if and only if dcY (H) > 0.
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Short exact sequences

Proposition

Let G = 〈X 〉, H EG, and let π : G� Q = G/H = 〈X 〉. Put

0 6 λ =
(

lim inf
|BX (n)|

|BX (n)| · |BX (2n) ∩ H|

)2
6 1.

Then, λ · dcX (G) 6 dcX (Q) · dcX (H).

Proof. Write dcX (G) = lim sup dcX (G,n), where

dcX (G,n) =
|{(u, v) ∈ (BX (n))2 | uv = vu}|

|BX (n)|2
.

We have,
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∑
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π(u)=q

|CG(u) ∩ BX (n)| 6

6
∑
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π(u)=q
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Short exact sequences

But, fixing u0 ∈ BX (n) with π(u0) = q,∑
u∈BX (n), π(u)=q

|CH(u) ∩ BX (2n)| =

= |{(h, v) ∈ H × (BX (2n) ∩ H) | v ∈ CH(u0h), |u0h|X ≤ n}| =

= |{(h, v) ∈ H × (BX (2n) ∩ H) | u0h ∈ CG(v) ∩ BX (n)}| =

=
∑

v∈BX (2n)∩H

|{h ∈ H | u0h ∈ CG(v) ∩ BX (n)}| 6

6
∑

v∈BX (2n)∩H

|CH(v) ∩ BX (2n)|.

Hence,
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Short exact sequences

(1) 6
∑

q∈BX (n)

|CQ(q) ∩ BX (n)|
∑

v∈BX (2n)∩H

|CH(v) ∩ BX (2n)|

 =

=

 ∑
q∈BX (n)

|CQ(q) ∩ BX (n)|

 ∑
v∈BX (2n)∩H

|CH(v) ∩ BX (2n)|

 =

|BX (n)|
2 · dcX (Q,n) · |BX (2n) ∩ H|2 · dcX (H,2n).

It follows that( |BX (n)|
|BX (n)| · |BX (2n) ∩ H|

)2
· dcX (G,n) 6 dcX (Q,n) · dcX (H,2n).

Finally, taking limits, we get

λ · dcX (G) 6 dcX (Q) · dcX (H). �
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Short exact sequences

Proposition

Let G = 〈X 〉 be polynomially growing with degree d. Then, ∀ H Ef.i. G,
we have ( C

D · 4d

)2
· dcX (G) ≤ dcX (G/H) · dcX (H).

Proof. Clearly, |BX (2n)| > |BX (n)| · |BX (n) ∩ H|.
Now fix H and, ∀ ε > 0, ∃ n0 s.t. ∀ n > n0,

|BX (n)|
|BX (n)| · |BX (2n) ∩ H|

>
|BX (b

n
2c)| · |BX (b n

2c) ∩ H|
|BX (n)| · |BX (2n) ∩ H|

=

=
|BX (b n

2c) ∩ H|
|BX (2n) ∩ H|

=
|BX (b n

2c) ∩ H|
|BX (b n

2c)|
·
|BX (b n

2c)|
|BX (2n)|

· |BX (2n)|
|BX (2n) ∩ H|

>
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Short exact sequences

>
( 1
[G : H]

− ε
)
·

C · (b n
2c)

d

D · (2n)d · ([G : H]− ε) >

>
( 1
[G : H]

− ε
)
·
( C

D · 4d − ε
)
· ([G : H]− ε)

So, λ = (lim inf · · · )2 >
(

1
[G:H] − ε

)2
·
(

C
D·4s − ε

)2
· ([G : H]− ε)2.

And this is true for every ε > 0 hence, λ >
(

C
D·4d

)2
,

Which happens to be independent from H. �
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t.f. nilpotent groups

Proposition

Let G = 〈X 〉 be t.f. nilpotent. Then, either G is abelian, or dcX (G) = 0.

Proof. Assume G is not abelian and dcX (G) > 0 and let us find a
contradiction.

We have a uniform λ > 0 s.t., for every H Ef.i. G,

λ · dcX (G) 6 dcX (G/H) · dcX (H).

Choose n s.t. λ · dcX (G) · ( 8
5 )

n > 1.
Take {p1, . . . ,pn} be n pairwise different primes.
By Grumbergs’ classical result, G is residually-pi .
Hence, G has a non-abelian, finite pi -quotient πi : G� Qi ; in
particular, dc(Qi) 6 5

8 .
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t.f. nilpotent groups

Now, the morphism ×n
i=1πi : G� Q1 × · · · ×Qn is onto (because

gcd(pj , p1 · · · pj−1pj+1 · · · pn) = 1).
Take H = ker×n

i=1πi Ef.i. G; we have,

λ · dcX (G) 6 dcX (H) · dcX (Q1 × · · · ×Qn) 6 dcX (H) · (5
8
)n.

Hence,

1 < λ · dcX (G) · (8
5
)n 6 dcX (H) 6 1,

a contradiction. �
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A Gromov-like theorem

Theorem
Let G be a polynomially growing group. Then,

G is virtually abelian ⇐⇒ dcX (G) > 0 for some (and hence all) X .

Proof. (⇒) Ok.
(⇐)

By Gromov result, ∃ a nilpotent H 6f.i. G.
So, ∃ a t.f. nilpotent K 6f.i. H 6f.i. G.
By hypotesis, dcX (G) > 0.
Hence, dcY (K ) > 0 for every 〈Y 〉 = K .
Then, K is abelian.
So, G is virtually abelian. �
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A conjecture

Conjecture

Every f.g. group G with super-polinomial growth has dcX (G) = 0 for
every X.

Conjecture

For any f.g. group G = 〈X 〉,

dcX (G) > 0 ⇐⇒ G is virtually abelian.
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Other related results

Theorem

Let G be non-elementary hyperbolic. Then dcX (G) = 0 for every X.

Theorem

Let G = G(X ) be a pc group. Then,

dcX (G(X )) =

{
0 if X is not complete
1 if X is complete

Theorem

Let G = 〈X 〉 be a f.g. residually finite group with sub-exponential
growth. If dcX (G) > 5/8 for some X the G is abelian.
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