The lattice of subgroups of a free group

Enric Ventura

Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya

GAGTA-5 mini-course, 2011

July 5th, 2011.

Outline

- Motation
- 2 Automata
- Schreier graphs
- 4 First algebraic applications
- Finite index subgroups
- 6 Intersections of subgroups
- Fringe and algebraic extensions
- 8 The pro- \mathcal{V} topology
- Fixed points

Outline

- Notation
- Automata
- Schreier graphs
- First algebraic applications
- Finite index subgroups
- Intersections of subgroups
- Fringe and algebraic extensions
- 1 The pro-V topology
- Fixed points

This is work done by different authors during several years, and in different contexts.

We'll mostly follow a version by Bartholdi-Silva.

Then, we'll see several applications.

- $A = \{a_1, \ldots, a_r\}$ is a finite alphabet.
- A* is the free monoid on A.
- A language is a subset $L \subseteq A^*$.
- An involutive alphabet $\tilde{A} = \{a_1, ..., a_r, a_1^{-1}, ..., a_r^{-1}\}.$
- Reduced words; reduction ~; R(A)
- Formal word definitions $(a^{-1})^{-1}=a,$ $(a_{i_1}^{\epsilon_1}\cdots a_{i_k}^{\epsilon_k})^{-1}=a_{i_k}^{-\epsilon_k}\cdots a_{i_1}^{-\epsilon_1}$

- $A = \{a_1, \ldots, a_r\}$ is a finite alphabet.
- A* is the free monoid on A.
- A language is a subset $L \subseteq A^*$.
- An involutive alphabet $\tilde{A} = \{a_1, ..., a_r, a_1^{-1}, ..., a_r^{-1}\}.$
- Reduced words; reduction ~; R(A)
- Formal word definitions $(a^{-1})^{-1}=a,$ $(a^{\epsilon_1}_{i_1}\cdots a^{\epsilon_k}_{i_k})^{-1}=a^{-\epsilon_k}_{i_k}\cdots a^{-\epsilon_1}_{i_1}$

- $A = \{a_1, \ldots, a_r\}$ is a finite alphabet.
- A* is the free monoid on A.
- A language is a subset $L \subseteq A^*$.
- An involutive alphabet $\tilde{A} = \{a_1, ..., a_r, a_1^{-1}, ..., a_r^{-1}\}.$
- Reduced words; reduction ~; R(A)
- Formal word definitions $(a^{-1})^{-1}=a,$ $(a^{\epsilon_1}_{i_1}\cdots a^{\epsilon_k}_{i_k})^{-1}=a^{-\epsilon_k}_{i_k}\cdots a^{-\epsilon_1}_{i_1}$

- $A = \{a_1, \ldots, a_r\}$ is a finite alphabet.
- A* is the free monoid on A.
- A language is a subset $L \subseteq A^*$.
- An involutive alphabet $\tilde{A} = \{a_1, ..., a_r, a_1^{-1}, ..., a_r^{-1}\}.$
- Reduced words; reduction ~; R(A)
- Formal word definitions $(a^{-1})^{-1}=a,$ $(a^{\epsilon_1}_{i_1}\cdots a^{\epsilon_k}_{i_k})^{-1}=a^{-\epsilon_k}_{i_k}\cdots a^{-\epsilon_1}_{i_1}$

- $A = \{a_1, \ldots, a_r\}$ is a finite alphabet.
- A* is the free monoid on A.
- A language is a subset $L \subseteq A^*$.
- An involutive alphabet $\tilde{A} = \{a_1, ..., a_r, a_1^{-1}, ..., a_r^{-1}\}.$
- Reduced words; reduction ~; R(A).
- Formal word definitions $(a^{-1})^{-1}=a, \\ (a^{\epsilon_1}_{i_1}\cdots a^{\epsilon_k}_{i_k})^{-1}=a^{-\epsilon_k}_{i_k}\cdots a^{-\epsilon_1}_{i_1}.$

- $A = \{a_1, \ldots, a_r\}$ is a finite alphabet.
- A* is the free monoid on A.
- A language is a subset $L \subseteq A^*$.
- An involutive alphabet $\tilde{A} = \{a_1, \ldots, a_r, a_1^{-1}, \ldots, a_r^{-1}\}.$
- Reduced words; reduction ~; R(A).
- Formal word definitions $(a^{-1})^{-1} = a,$ $(a^{\epsilon_1}_{i_1} \cdots a^{\epsilon_k}_{i_k})^{-1} = a^{-\epsilon_k}_{i_k} \cdots a^{-\epsilon_1}_{i_1}.$

Definition

The free group on A, $F(A) = \tilde{A}^* / \sim$.

Lemma

For every $w \in \tilde{A}^*$, there is a unique $\overline{u} \in R(A)$, s.t. $u =_{F(A)} \overline{u}$.

Lemma

F(A) is a quotient of \tilde{A}^* . The projection is denoted π .

$$\pi \colon \tilde{A}^* \to F(A)$$

$$u \mapsto [u] = [\overline{u}].$$

Definition

For a subgroup $H \leqslant F(A)$, define $\overline{H} = \{\overline{u} \mid u \in H\} \subseteq \tilde{A}^*$

Definition

The free group on A, $F(A) = \tilde{A}^* / \sim$.

Lemma

For every $w \in \tilde{A}^*$, there is a unique $\overline{u} \in R(A)$, s.t. $u =_{F(A)} \overline{u}$.

Lemma

F(A) is a quotient of \tilde{A}^* . The projection is denoted π .

$$\pi \colon \tilde{A}^* \to F(A)$$

$$u \mapsto [u] = [\overline{u}].$$

Definition

For a subgroup $H \leq F(A)$, define $\overline{H} = {\overline{u} \mid u \in H} \subseteq \tilde{A}^*$

Definition

The free group on A, $F(A) = \tilde{A}^* / \sim$.

Lemma

For every $w \in \tilde{A}^*$, there is a unique $\overline{u} \in R(A)$, s.t. $u =_{F(A)} \overline{u}$.

Lemma

F(A) is a quotient of \tilde{A}^* . The projection is denoted π :

$$\pi \colon \tilde{\mathbf{A}}^* \quad \to \quad \mathbf{F}(\mathbf{A})$$

$$u \quad \mapsto \quad [u] = [\overline{u}].$$

Definition

For a subgroup $H\leqslant F(A)$, define $\overline{H}=\{\overline{u}\mid u\in H\}\subseteq \widetilde{A}^*$

Definition

The free group on A, $F(A) = \tilde{A}^* / \sim$.

Lemma

For every $w \in \tilde{A}^*$, there is a unique $\overline{u} \in R(A)$, s.t. $u =_{F(A)} \overline{u}$.

Lemma

F(A) is a quotient of \tilde{A}^* . The projection is denoted π :

$$\pi \colon \tilde{A}^* \quad \to \quad F(A)$$

$$u \quad \mapsto \quad [u] = [\overline{u}].$$

Definition

For a subgroup $H \leqslant F(A)$, define $\overline{H} = {\overline{u} \mid u \in H} \subseteq \tilde{A}^*$.

Outline

- Notation
- 2 Automata
- Schreier graphs
- First algebraic applications
- Finite index subgroups
- 6 Intersections of subgroups
- Fringe and algebraic extensions
- 1 The pro-V topology
- Fixed points

Definition

Let A be an alphabet. An A-automaton A is an oriented graph with labels from A at the edges, and with a basepoint, $A = (V, E, q_0)$, where

- V is a finite set (of vertices),
- $E \subseteq V \times A \times V$ is the set of edges,
- $q_0 \in V$ is the basepoint,

such that the underlying undirected graph is connected.

Note that A admits loops, but no parallel edges with the same label.

Definition

Definition

Let A be an alphabet. An A-automaton A is an oriented graph with labels from A at the edges, and with a basepoint, $A = (V, E, q_0)$, where

- V is a finite set (of vertices),
- $E \subseteq V \times A \times V$ is the set of edges,
- $q_0 \in V$ is the basepoint,

such that the underlying undirected graph is connected.

Note that A admits loops, but no parallel edges with the same label.

Definition

Definition

Let A be an alphabet. An A-automaton A is an oriented graph with labels from A at the edges, and with a basepoint, $A = (V, E, q_0)$, where

- V is a finite set (of vertices),
- $E \subseteq V \times A \times V$ is the set of edges,
- $q_0 \in V$ is the basepoint,

such that the underlying undirected graph is connected.

Note that A admits loops, but no parallel edges with the same label.

Definition

Definition

Let A be an alphabet. An A-automaton A is an oriented graph with labels from A at the edges, and with a basepoint, $A = (V, E, q_0)$, where

- V is a finite set (of vertices),
- $E \subseteq V \times A \times V$ is the set of edges,
- $q_0 \in V$ is the basepoint,

such that the underlying undirected graph is connected.

Note that A admits loops, but no parallel edges with the same label.

Definition

Definition

Let A be an alphabet. An A-automaton A is an oriented graph with labels from A at the edges, and with a basepoint, $A = (V, E, q_0)$, where

- V is a finite set (of vertices),
- $E \subseteq V \times A \times V$ is the set of edges,
- $q_0 \in V$ is the basepoint,

such that the underlying undirected graph is connected.

Note that A admits loops, but no parallel edges with the same label.

Definition

Form now on, all automata we consider will be involutive.

Definition

Let A be an A-automata.

- A path γ in A,
- the label of a path γ , label(γ) $\in \tilde{A}^*$,
- reduced path,
- notation: $p \stackrel{u}{\rightarrow} q$ means a path from p to q with label $u \in \tilde{A}^*$.

_emma

Let $p \stackrel{u}{\rightarrow} q$ be a path in A. If u is reduced then $p \stackrel{u}{\rightarrow} q$ is reduced. The convers is not true.

Form now on, all automata we consider will be involutive.

Definition

Let A be an A-automata.

- A path γ in A,
- the label of a path γ , label(γ) $\in A^*$,
- reduced path
- notation: $p \stackrel{u}{\rightarrow} q$ means a path from p to q with label $u \in \tilde{A}^*$.

Lemma

Let $p \stackrel{u}{\rightarrow} q$ be a path in A. If u is reduced then $p \stackrel{u}{\rightarrow} q$ is reduced. The convers is not true

Form now on, all automata we consider will be involutive.

Definition

Let A be an A-automata.

- A path γ in A,
- the label of a path γ , label(γ) $\in \tilde{A}^*$,
- reduced path
- notation: $p \stackrel{u}{\rightarrow} q$ means a path from p to q with label $u \in \tilde{A}^*$.

_emm*a*

Let $p \stackrel{u}{\rightarrow} q$ be a path in A. If u is reduced then $p \stackrel{u}{\rightarrow} q$ is reduced. The convers is not true

Form now on, all automata we consider will be involutive.

Definition

Let A be an A-automata.

- A path γ in A,
- the label of a path γ , label(γ) $\in \tilde{A}^*$,
- reduced path,
- notation: $p\stackrel{u}{
 ightarrow} q$ means a path from p to q with label $u\in ilde{A}^*$.

emma

Let $p \stackrel{u}{\rightarrow} q$ be a path in A. If u is reduced then $p \stackrel{u}{\rightarrow} q$ is reduced. The convers is not true

Form now on, all automata we consider will be involutive.

Definition

Let A be an A-automata.

- A path γ in A,
- the label of a path γ , label(γ) $\in \tilde{A}^*$,
- reduced path,
- notation: $p \stackrel{u}{\rightarrow} q$ means a path from p to q with label $u \in \tilde{A}^*$.

.emma

Let $p \stackrel{u}{\rightarrow} q$ be a path in A. If u is reduced then $p \stackrel{u}{\rightarrow} q$ is reduced. The convers is not true.

Form now on, all automata we consider will be involutive.

Definition

Let A be an A-automata.

- A path γ in A,
- the label of a path γ , label(γ) $\in \tilde{A}^*$,
- reduced path,
- notation: $p \stackrel{u}{\rightarrow} q$ means a path from p to q with label $u \in \tilde{A}^*$.

Lemma

Let $p \stackrel{u}{\rightarrow} q$ be a path in A. If u is reduced then $p \stackrel{u}{\rightarrow} q$ is reduced. The convers is not true.

Trimness

Definition

The language of an A-automata A, is

$$L(\mathcal{A}) = \{ u \in \tilde{A}^* \mid \exists q_0 \stackrel{u}{\rightarrow} q_0 \} \subseteq \tilde{A}^*.$$

Definition

An A-automata A is trim if it has no vertices of degree 1 except maybe the basepoint.

Lemma

If A is trim then $\forall q \neq q_0$ there exists a reduced path $q_0 \rightarrow q \rightarrow q_0$.

Trimness

Definition

The language of an A-automata A, is

$$L(\mathcal{A}) = \{ u \in \tilde{A}^* \mid \exists q_0 \stackrel{u}{\rightarrow} q_0 \} \subseteq \tilde{A}^*.$$

Definition

An A-automata \mathcal{A} is trim if it has no vertices of degree 1 except maybe the basepoint.

Lemma

If A is trim then $\forall q \neq q_0$ there exists a reduced path $q_0 \rightarrow q \rightarrow q_0$.

Trimness

Definition

The language of an A-automata A, is

$$L(\mathcal{A}) = \{ u \in \tilde{A}^* \mid \exists q_0 \stackrel{u}{\rightarrow} q_0 \} \subseteq \tilde{A}^*.$$

Definition

An A-automata \mathcal{A} is trim if it has no vertices of degree 1 except maybe the basepoint.

Lemma

If A is trim then $\forall q \neq q_0$ there exists a reduced path $q_0 \rightarrow q \rightarrow q_0$.

Definition

An A-automata $\mathcal A$ is deterministic if $(p,a,q)\in E$ and $(p,a,q')\in E$ imply q=q'.

Lemma

- i) if $p \stackrel{u}{\rightarrow} q$ is reduced then u is reduced,
- ii) if $\exists p \xrightarrow{u} q$, $\exists p \xrightarrow{u} q'$ then q = q',
- iii) if $\exists p \xrightarrow{u} q$, $\exists p' \xrightarrow{u} q$ then p = p'.
- *iv*) if $\exists p \stackrel{uvv^{-1}w}{\rightarrow} q$, then $\exists p \stackrel{uw}{\rightarrow} q$.

Definition

An A-automata \mathcal{A} is deterministic if $(p, a, q) \in E$ and $(p, a, q') \in E$ imply q = q'.

Lemma

- i) if $p \stackrel{u}{\rightarrow} q$ is reduced then u is reduced,
- ii) if $\exists p \xrightarrow{u} q$, $\exists p \xrightarrow{u} q'$ then q = q',
- iii) if $\exists p \xrightarrow{u} q$, $\exists p' \xrightarrow{u} q$ then p = p'.
- iv) if $\exists p \stackrel{uvv^{-1}w}{\rightarrow} q$, then $\exists p \stackrel{uw}{\rightarrow} q$.

Definition

An A-automata \mathcal{A} is deterministic if $(p, a, q) \in E$ and $(p, a, q') \in E$ imply q = q'.

Lemma

- i) if $p \stackrel{u}{\rightarrow} q$ is reduced then u is reduced,
- ii) if $\exists p \xrightarrow{u} q$, $\exists p \xrightarrow{u} q'$ then q = q',
- iii) if $\exists p \xrightarrow{u} q$, $\exists p' \xrightarrow{u} q$ then p = p'.
- iv) if $\exists p \stackrel{uvv^{-1}w}{\rightarrow} q$, then $\exists p \stackrel{uw}{\rightarrow} q$.

Definition

An A-automata \mathcal{A} is deterministic if $(p, a, q) \in E$ and $(p, a, q') \in E$ imply q = q'.

Lemma

- i) if $p \stackrel{u}{\rightarrow} q$ is reduced then u is reduced,
- ii) if $\exists p \xrightarrow{u} q$, $\exists p \xrightarrow{u} q'$ then q = q',
- iii) if $\exists p \xrightarrow{u} q$, $\exists p' \xrightarrow{u} q$ then p = p'.
- $iv) \ \ \textit{if} \ \exists \ p \overset{uvv^{-1}w}{
 ightarrow} \ q, \ \textit{then} \ \exists \ p \overset{uw}{
 ightarrow} \ q.$

Definition

An A-automata \mathcal{A} is deterministic if $(p, a, q) \in E$ and $(p, a, q') \in E$ imply q = q'.

Lemma

- i) if $p \stackrel{u}{\rightarrow} q$ is reduced then u is reduced,
- ii) if $\exists p \xrightarrow{u} q$, $\exists p \xrightarrow{u} q'$ then q = q',
- iii) if $\exists p \xrightarrow{u} q$, $\exists p' \xrightarrow{u} q$ then p = p'.
- iv) if $\exists p \stackrel{uvv^{-1}w}{\rightarrow} q$, then $\exists p \stackrel{uw}{\rightarrow} q$.

Morphisms

Definition

Let $\mathcal{A}=(V,E,q_0)$ and $\mathcal{A}'=(V',E',q_0')$ be two A-automata. A morphism $\mathcal{A}\to\mathcal{A}'$ is a map $\varphi\colon V\to V'$ such that $q_0\varphi=q_0'$ and

$$(p, a, q) \in E \Rightarrow (p\varphi, a, q\varphi) \in E'.$$

Propositior

Let $A = (V, E, q_0)$ and $A' = (V', E', q'_0)$ be two A-automata, A' deterministic. Then,

$$L(A) \subseteq L(A') \Leftrightarrow \exists morphism \varphi \colon A \to A'$$

In this case, φ is unique.

This proof will be repeated with variations later

Morphisms

Definition

Let $\mathcal{A}=(V,E,q_0)$ and $\mathcal{A}'=(V',E',q_0')$ be two A-automata. A morphism $\mathcal{A}\to\mathcal{A}'$ is a map $\varphi\colon V\to V'$ such that $q_0\varphi=q_0'$ and

$$(p, a, q) \in E \Rightarrow (p\varphi, a, q\varphi) \in E'.$$

Proposition

Let $\mathcal{A}=(V,E,q_0)$ and $\mathcal{A}'=(V',E',q_0')$ be two A-automata, \mathcal{A}' deterministic. Then,

$$L(A) \subseteq L(A') \Leftrightarrow \exists morphism \varphi : A \to A'.$$

In this case, φ is unique.

This proof will be repeated with variations later

Definition

Let $\mathcal{A}=(V,E,q_0)$ and $\mathcal{A}'=(V',E',q_0')$ be two A-automata. A morphism $\mathcal{A}\to\mathcal{A}'$ is a map $\varphi\colon V\to V'$ such that $q_0\varphi=q_0'$ and

$$(p, a, q) \in E \Rightarrow (p\varphi, a, q\varphi) \in E'.$$

Proposition

Let $\mathcal{A}=(V,E,q_0)$ and $\mathcal{A}'=(V',E',q_0')$ be two A-automata, \mathcal{A}' deterministic. Then,

$$L(A) \subseteq L(A') \Leftrightarrow \exists morphism \varphi : A \rightarrow A'.$$

In this case, φ is unique.

This proof will be repeated with variations later.

Corollary

If $\mathcal A$ is deterministic then the only morphism $\mathcal A \to \mathcal A$ is the identity.

Corollary

If A and A' are deterministic and L(A) = L(A') then $A \simeq A'$.

Corollary

If $\mathcal A$ and $\mathcal A'$ are deterministic and trim, and $L(\mathcal A)\pi=L(\mathcal A')\pi$, then $\mathcal A\simeq\mathcal A'$.

Corollary

If $\mathcal A$ is deterministic then the only morphism $\mathcal A \to \mathcal A$ is the identity.

Corollary

If \mathcal{A} and \mathcal{A}' are deterministic and $L(\mathcal{A}) = L(\mathcal{A}')$ then $\mathcal{A} \simeq \mathcal{A}'$.

Corollary

If $\mathcal A$ and $\mathcal A'$ are deterministic and trim, and $L(\mathcal A)\pi=L(\mathcal A')\pi$, then $\mathcal A\simeq\mathcal A'.$

Corollary

If A is deterministic then the only morphism $A \to A$ is the identity.

Corollary

If A and A' are deterministic and L(A) = L(A') then $A \simeq A'$.

Corollary

If $\mathcal A$ and $\mathcal A'$ are deterministic and trim, and $L(\mathcal A)\pi=L(\mathcal A')\pi$, then $\mathcal A\simeq\mathcal A'$.

Outline

- Notation
- 2 Automata
- Schreier graphs
- First algebraic applications
- Finite index subgroups
- 6 Intersections of subgroups
- Fringe and algebraic extensions
- 1 The pro-V topology
- Fixed points

GOAL: to construct an algorithmic bijection between the lattice of finitely generated subgroups of F(A), and the set of A-automata deterministic and trim.

Definition

Given a finite set of reduced words $W \subseteq R(A) \subseteq F(A)$, we define the flower automaton $\mathcal{F}(W)$ in the natural way.

Observation

- i) involutive (by construction)
- ii) trim,
- iii) deterministic except maybe at the basepoint,
- iv) $L(\mathcal{F}(W))\pi = \langle W \rangle \leqslant F(A)$.

GOAL: to construct an algorithmic bijection between the lattice of finitely generated subgroups of F(A), and the set of A-automata deterministic and trim.

Definition

Given a finite set of reduced words $W \subseteq R(A) \subseteq F(A)$, we define the flower automaton $\mathcal{F}(W)$ in the natural way.

Observation

- i) involutive (by construction)
- ii) trim,
- iii) deterministic except maybe at the basepoint,
- iv) $L(\mathcal{F}(W))\pi = \langle W \rangle \leqslant F(A)$

GOAL: to construct an algorithmic bijection between the lattice of finitely generated subgroups of F(A), and the set of A-automata deterministic and trim.

Definition

Given a finite set of reduced words $W \subseteq R(A) \subseteq F(A)$, we define the flower automaton $\mathcal{F}(W)$ in the natural way.

Observation

- i) involutive (by construction),
- ii) trim
- iii) deterministic except maybe at the basepoint,
- iv) $L(\mathcal{F}(W))\pi = \langle W \rangle \leqslant F(A)$.

GOAL: to construct an algorithmic bijection between the lattice of finitely generated subgroups of F(A), and the set of A-automata deterministic and trim.

Definition

Given a finite set of reduced words $W \subseteq R(A) \subseteq F(A)$, we define the flower automaton $\mathcal{F}(W)$ in the natural way.

Observation

- i) involutive (by construction),
- ii) trim,
- iii) deterministic except maybe at the basepoint,
- iv) $L(\mathcal{F}(W))\pi = \langle W \rangle \leqslant F(A)$

GOAL: to construct an algorithmic bijection between the lattice of finitely generated subgroups of F(A), and the set of A-automata deterministic and trim.

Definition

Given a finite set of reduced words $W \subseteq R(A) \subseteq F(A)$, we define the flower automaton $\mathcal{F}(W)$ in the natural way.

Observation

- i) involutive (by construction),
- ii) trim,
- iii) deterministic except maybe at the basepoint,
- iv) $L(\mathcal{F}(W))\pi = \langle W \rangle \leqslant F(A)$

GOAL: to construct an algorithmic bijection between the lattice of finitely generated subgroups of F(A), and the set of A-automata deterministic and trim.

Definition

Given a finite set of reduced words $W \subseteq R(A) \subseteq F(A)$, we define the flower automaton $\mathcal{F}(W)$ in the natural way.

Observation

- i) involutive (by construction),
- ii) trim,
- iii) deterministic except maybe at the basepoint,
- iv) $L(\mathcal{F}(W))\pi = \langle W \rangle \leqslant F(A)$.

We want to make $\mathcal{F}(W)$ deterministic.

Definitior

Let A be an A-automaton, and suppose e = (p, a, q) and e' = (p, a, q') are two different edges (so, $q \neq q'$).

Consider
$$\mathcal{L} = \{ \{f, f'\} \neq \{e, e'\} \mid f = (p', b, q), f' = (p', b, q') \text{ for some } p' \in V, b \in \tilde{A} \}.$$

Consider the automata \mathcal{A}' to be \mathcal{A} identifying q=q' (and so, e=e', and f=f' for every $\{f,f'\}\in\mathcal{L}$, if any). We define $\mathcal{A}\leadsto\mathcal{A}'$ to be a Stallings folding.

We want to make $\mathcal{F}(W)$ deterministic.

Definition

Let \mathcal{A} be an A-automaton, and suppose e=(p,a,q) and e'=(p,a,q') are two different edges (so, $q\neq q'$).

Consider
$$\mathcal{L} = \{ \{f, f'\} \neq \{e, e'\} \mid f = (p', b, q), f' = (p', b, q') \text{ for some } p' \in V, b \in A \}.$$

Consider the automata \mathcal{A}' to be \mathcal{A} identifying q = q' (and so, e = e' and f = f' for every $\{f, f'\} \in \mathcal{L}$, if any). We define $\mathcal{A} \rightsquigarrow \mathcal{A}'$ to be a Stallings folding.

We want to make $\mathcal{F}(W)$ deterministic.

Definition

Let \mathcal{A} be an A-automaton, and suppose e=(p,a,q) and e'=(p,a,q') are two different edges (so, $q\neq q'$).

Consider
$$\mathcal{L} = \{ \{f, f'\} \neq \{e, e'\} \mid f = (p', b, q), f' = (p', b, q') \text{ for some } p' \in V, b \in A \}.$$

Consider the automata \mathcal{A}' to be \mathcal{A} identifying q = q' (and so, e = e' and f = f' for every $\{f, f'\} \in \mathcal{L}$, if any). We define $\mathcal{A} \rightsquigarrow \mathcal{A}'$ to be a Stallings folding.

We want to make $\mathcal{F}(W)$ deterministic.

Definition

Let \mathcal{A} be an A-automaton, and suppose e=(p,a,q) and e'=(p,a,q') are two different edges (so, $q\neq q'$).

Consider
$$\mathcal{L} = \{ \{f, f'\} \neq \{e, e'\} \mid f = (p', b, q), f' = (p', b, q') \text{ for some } p' \in V, b \in A \}.$$

Consider the automata \mathcal{A}' to be \mathcal{A} identifying q=q' (and so, e=e', and f=f' for every $\{f,f'\}\in\mathcal{L}$, if any). We define $\mathcal{A}\leadsto\mathcal{A}'$ to be a Stallings folding.

We want to make $\mathcal{F}(W)$ deterministic.

Definition

Let A be an A-automaton, and suppose e = (p, a, q) and e' = (p, a, q') are two different edges (so, $q \neq q'$).

Consider
$$\mathcal{L} = \{ \{f, f'\} \neq \{e, e'\} \mid f = (p', b, q), f' = (p', b, q') \text{ for some } p' \in V, b \in A \}.$$

Consider the automata \mathcal{A}' to be \mathcal{A} identifying q=q' (and so, e=e', and f=f' for every $\{f,f'\}\in\mathcal{L}$, if any). We define $\mathcal{A}\leadsto\mathcal{A}'$ to be a Stallings folding.

Observation

Let $A = (V, E, q_0) \rightsquigarrow A' = (V', E', q_0)$ be a folding with lost $\ell \geqslant 0$. Then, |V'| = |V| - 1 and $|E'| = |E| - 1 - \ell$.

Observation

Applying enough foldings to any given A-automata A,

$$\mathcal{A} \rightsquigarrow \mathcal{A}' \rightsquigarrow \cdots \rightsquigarrow \mathcal{A}^k$$

we obtain a deterministic A^k (in principle, depending on the chosen sequence of foldings).

Observation

Let $\mathcal{A} = (V, E, q_0) \rightsquigarrow \mathcal{A}' = (V', E', q_0)$ be a folding with lost $\ell \geqslant 0$. Then, |V'| = |V| - 1 and $|E'| = |E| - 1 - \ell$.

Observation

Applying enough foldings to any given A-automata A,

$$\mathcal{A} \rightsquigarrow \mathcal{A}' \rightsquigarrow \cdots \rightsquigarrow \mathcal{A}^k$$

we obtain a deterministic A^k (in principle, depending on the chosen sequence of foldings).

Lemma

Let $A \rightsquigarrow A'$ to be a Stallings folding. Then

- i) If, in \mathcal{A} , $|\{a \in \tilde{A} | q \stackrel{a}{\to} \}| \geqslant 2 \ \forall q \neq q_0$, then the same is true in \mathcal{A}' .
- ii) \exists a morphism $\varphi \colon \mathcal{A} \to \mathcal{A}'$ (and so, $L(\mathcal{A}) \subseteq L(\mathcal{A}')$).
- iii) $L(A)\pi = L(A')\pi$.

Corollary

- i) A is deterministic and trim
- ii) $L(A)\pi = H = \langle W \rangle \leqslant F(A)$.
- iii) $\overline{H} \subseteq L(A) \subseteq H\pi^{-1}$

Lemma

Let $\mathcal{A} \leadsto \mathcal{A}'$ to be a Stallings folding. Then

- i) If, in \mathcal{A} , $|\{a \in \tilde{A} | q \stackrel{a}{\to} \}| \geqslant 2 \ \forall q \neq q_0$, then the same is true in \mathcal{A}' .
- ii) \exists a morphism $\varphi \colon \mathcal{A} \to \mathcal{A}'$ (and so, $L(\mathcal{A}) \subseteq L(\mathcal{A}')$).
- iii) $L(A)\pi = L(A')\pi$.

Corollary

- i) A is deterministic and trim,
- ii) $L(A)\pi = H = \langle W \rangle \leqslant F(A)$.
- iii) $\overline{H} \subseteq L(A) \subseteq H\pi^{-1}$

Lemma

Let $A \rightsquigarrow A'$ to be a Stallings folding. Then

- i) If, in \mathcal{A} , $|\{a \in \tilde{A} | q \stackrel{a}{\to} \}| \geqslant 2 \ \forall q \neq q_0$, then the same is true in \mathcal{A}' .
- ii) \exists a morphism $\varphi \colon \mathcal{A} \to \mathcal{A}'$ (and so, $L(\mathcal{A}) \subseteq L(\mathcal{A}')$).
- iii) $L(A)\pi = L(A')\pi$.

Corollary

Let $W \subset R(A)$, $|W| < \infty$, and consider a sequence of foldings $\mathcal{F}(W) \leadsto \cdots \leadsto \mathcal{A}$ to a deterministic \mathcal{A} . Then,

- i) A is deterministic and trim,
- ii) $L(A)\pi = H = \langle W \rangle \leqslant F(A)$.
- iii) $\overline{H} \subseteq L(A) \subseteq H\pi^{-1}$

Lemma

Let $A \rightsquigarrow A'$ to be a Stallings folding. Then

- i) If, in \mathcal{A} , $|\{a \in \tilde{A} | q \stackrel{a}{\to} \}| \geqslant 2 \ \forall q \neq q_0$, then the same is true in \mathcal{A}' .
- ii) \exists a morphism $\varphi \colon \mathcal{A} \to \mathcal{A}'$ (and so, $L(\mathcal{A}) \subseteq L(\mathcal{A}')$).
- iii) $L(A)\pi = L(A')\pi$.

Corollary

- i) A is deterministic and trim,
- ii) $L(A)\pi = H = \langle W \rangle \leqslant F(A)$.
- iii) $\overline{H} \subset L(A) \subset H\pi^{-1}$

Lemma

Let $A \rightsquigarrow A'$ to be a Stallings folding. Then

- i) If, in \mathcal{A} , $|\{a \in \tilde{A} | q \stackrel{a}{\to} \}| \geqslant 2 \ \forall q \neq q_0$, then the same is true in \mathcal{A}' .
- ii) \exists a morphism $\varphi \colon \mathcal{A} \to \mathcal{A}'$ (and so, $L(\mathcal{A}) \subseteq L(\mathcal{A}')$).
- iii) $L(A)\pi = L(A')\pi$.

Corollary

- i) A is deterministic and trim,
- ii) $L(A)\pi = H = \langle W \rangle \leqslant F(A)$.
- iii) $\overline{H} \subset L(A) \subset H\pi^{-1}$

Lemma

Let $A \rightsquigarrow A'$ to be a Stallings folding. Then

- i) If, in \mathcal{A} , $|\{a \in \tilde{A} | q \stackrel{a}{\to} \}| \geqslant 2 \ \forall q \neq q_0$, then the same is true in \mathcal{A}' .
- ii) \exists a morphism $\varphi \colon \mathcal{A} \to \mathcal{A}'$ (and so, $L(\mathcal{A}) \subseteq L(\mathcal{A}')$).
- iii) $L(A)\pi = L(A')\pi$.

Corollary

- i) A is deterministic and trim,
- ii) $L(A)\pi = H = \langle W \rangle \leqslant F(A)$.
- iii) $\overline{H} \subseteq L(A) \subseteq H\pi^{-1}$.

Lemma

Let $\mathcal{A} \rightsquigarrow \mathcal{A}'$ to be a Stallings folding. Then the natural map

$$\pi \mathcal{A}(q_0,q_0) \rightarrow \pi \mathcal{A}'(q_0,q_0)$$

 $\gamma \mapsto \gamma' = \gamma \varphi \text{ (+ canc. f.e.'s)},$

satisfies

- i) $label(\gamma)\pi = label(\gamma')\pi$,
- ii) in the non-critical case, it is injective.

Corollary

If all foldings in $\mathcal{F}(W) \leadsto \cdots \leadsto \mathcal{A}$ are non-critical, then the above map, $\pi \mathcal{F}(W)(q_0, q_0) \to \pi \mathcal{A}(q_0, q_0)$, $\gamma \mapsto \gamma'$, is injective.

Lemma

Let $A \rightsquigarrow A'$ to be a Stallings folding. Then the natural map

$$\pi \mathcal{A}(q_0, q_0) \rightarrow \pi \mathcal{A}'(q_0, q_0)$$

 $\gamma \mapsto \gamma' = \gamma \varphi \text{ (+ canc. f.e.'s)},$

satisfies

- i) $label(\gamma)\pi = label(\gamma')\pi$,
- ii) in the non-critical case, it is injective.

Corollary

If all foldings in $\mathcal{F}(W) \rightsquigarrow \cdots \rightsquigarrow \mathcal{A}$ are non-critical, then the above map, $\pi \mathcal{F}(W)(q_0, q_0) \rightarrow \pi \mathcal{A}(q_0, q_0), \gamma \mapsto \gamma'$, is injective.

Lemma

Let $A \rightsquigarrow A'$ to be a Stallings folding. Then the natural map

$$\pi \mathcal{A}(q_0, q_0) \rightarrow \pi \mathcal{A}'(q_0, q_0)$$

 $\gamma \mapsto \gamma' = \gamma \varphi \text{ (+ canc. f.e.'s)},$

satisfies

- i) $label(\gamma)\pi = label(\gamma')\pi$,
- ii) in the non-critical case, it is injective.

Corollary

If all foldings in $\mathcal{F}(W) \leadsto \cdots \leadsto \mathcal{A}$ are non-critical, then the above map, $\pi \mathcal{F}(W)(q_0, q_0) \to \pi \mathcal{A}(q_0, q_0)$, $\gamma \mapsto \gamma'$, is injective.

Theorem

- (1) can assume $W = \{h_1, ..., h_n\} \subseteq R(A);$
- (2) draw the flower automaton $\mathcal{F}(W)$;
- (3) apply an arbitrary sequence of foldings until a deterministic automaton $\mathcal{F}(W) \rightsquigarrow \cdots \rightsquigarrow \mathcal{A}$;
- (4) start reading \overline{g} as (the label of) a path in A, from q_0 ;
- (5) if not possible then $g \notin H$;
- (6) if possible (so, in a unique way) but as an open path then $g \notin H$;
- (7) if possible as a closed path at q_0 , then $g \in H$.

Theorem

- (1) can assume $W = \{h_1, \ldots, h_n\} \subseteq R(A)$;
- (2) draw the flower automaton $\mathcal{F}(W)$;
- (3) apply an arbitrary sequence of foldings until a deterministic automaton F(W) → · · · → A;
- (4) start reading \overline{g} as (the label of) a path in A, from q_0 ;
- (5) if not possible then $g \notin H$;
- (6) if possible (so, in a unique way) but as an open path then $g \notin H$;
- (7) if possible as a closed path at q_0 , then $g \in H$

Theorem

- (1) can assume $W = \{h_1, \ldots, h_n\} \subseteq R(A)$;
- (2) draw the flower automaton $\mathcal{F}(W)$;
- (3) apply an arbitrary sequence of foldings until a deterministic automaton F(W) → · · · → A;
- (4) start reading \overline{g} as (the label of) a path in A, from q_0 ;
- (5) if not possible then $g \notin H$;
- (6) if possible (so, in a unique way) but as an open path then $g \notin H$;
- (7) if possible as a closed path at q_0 , then $g \in H$

Theorem

- (1) can assume $W = \{h_1, \ldots, h_n\} \subseteq R(A)$;
- (2) draw the flower automaton $\mathcal{F}(W)$;
- (3) apply an arbitrary sequence of foldings until a deterministic automaton F(W) → · · · → A;
- (4) start reading \overline{g} as (the label of) a path in A, from q_0 ;
- (5) if not possible then $g \notin H$;
- (6) if possible (so, in a unique way) but as an open path then $g \notin H$;
- (7) if possible as a closed path at q_0 , then $g \in H$

Theorem

- (1) can assume $W = \{h_1, \ldots, h_n\} \subseteq R(A)$;
- (2) draw the flower automaton $\mathcal{F}(W)$;
- (3) apply an arbitrary sequence of foldings until a deterministic automaton F(W) → · · · → A;
- (4) start reading \overline{g} as (the label of) a path in A, from q_0 ;
- (5) if not possible then $g \notin H$,
- (6) if possible (so, in a unique way) but as an open path then $g \notin H$;
- (7) if possible as a closed path at q_0 , then $g \in H$

Theorem

- (1) can assume $W = \{h_1, \ldots, h_n\} \subseteq R(A)$;
- (2) draw the flower automaton $\mathcal{F}(W)$;
- (3) apply an arbitrary sequence of foldings until a deterministic automaton F(W) → · · · → A;
- (4) start reading \overline{g} as (the label of) a path in A, from q_0 ;
- (5) if not possible then $g \notin H$;
- (6) if possible (so, in a unique way) but as an open path then $g \notin H$;
- (7) if possible as a closed path at q_0 , then $g \in H$

Theorem

- (1) can assume $W = \{h_1, \ldots, h_n\} \subseteq R(A)$;
- (2) draw the flower automaton $\mathcal{F}(W)$;
- (3) apply an arbitrary sequence of foldings until a deterministic automaton F(W) → · · · → A;
- (4) start reading \overline{g} as (the label of) a path in A, from q_0 ;
- (5) if not possible then $g \notin H$;
- (6) if possible (so, in a unique way) but as an open path then $g \notin H$;
- (7) if possible as a closed path at q_0 , then $g \in H$.

Theorem

- (1) can assume $W = \{h_1, \ldots, h_n\} \subseteq R(A)$;
- (2) draw the flower automaton $\mathcal{F}(W)$;
- (3) apply an arbitrary sequence of foldings until a deterministic automaton F(W) → · · · → A;
- (4) start reading \overline{g} as (the label of) a path in A, from q_0 ;
- (5) if not possible then $g \notin H$;
- (6) if possible (so, in a unique way) but as an open path then $g \notin H$;
- (7) if possible as a closed path at q_0 , then $g \in H$.

Independence of the process

In a sequence of Stallings foldings, $\mathcal{F}(W) \leadsto \cdots \leadsto \mathcal{A}$, the result will not depend on the process, and even on W, but only on the subgroup $H = \langle W \rangle \leqslant F(A)$.

Theorem

A depends only on $H = \langle W \rangle$, and is called the Schreier graph, $\Gamma(H)$.

Proposition

Let $H \leq_{f,g} F(A)$, choose a finite set of generators W, $\langle W \rangle = H$, and let $\mathcal{F}(W) \leadsto \cdots \leadsto A$ be an arbitrary sequence of Stallings foldings, with A deterministic. Then,

$$L(A) = \bigcap_{B} L(B),$$

where \mathcal{B} runs over all possible automata deterministic, trim, and such that $\overline{H} \subset L(\mathcal{B}) \subset \widetilde{A}^*$.

Independence of the process

In a sequence of Stallings foldings, $\mathcal{F}(W) \rightsquigarrow \cdots \rightsquigarrow \mathcal{A}$, the result will not depend on the process, and even on W, but only on the subgroup $H = \langle W \rangle \leqslant F(A)$.

Theorem

 \mathcal{A} depends only on $H = \langle W \rangle$, and is called the Schreier graph, $\Gamma(H)$.

Proposition

Let $H \leq_{f,g} F(A)$, choose a finite set of generators W, $\langle W \rangle = H$, and let $\mathcal{F}(W) \leadsto \cdots \leadsto A$ be an arbitrary sequence of Stallings foldings, with A deterministic. Then,

$$L(A) = \bigcap_{B} L(B)$$

where $\mathcal B$ runs over all possible automata deterministic, trim, and such that $\overline H\subseteq L(\mathcal B)\subseteq \tilde A^*$.

Independence of the process

In a sequence of Stallings foldings, $\mathcal{F}(W) \leadsto \cdots \leadsto \mathcal{A}$, the result will not depend on the process, and even on W, but only on the subgroup $H = \langle W \rangle \leqslant F(A)$.

Theorem

A depends only on $H = \langle W \rangle$, and is called the Schreier graph, $\Gamma(H)$.

Proposition

Let $H \leq_{f,g} F(A)$, choose a finite set of generators W, $\langle W \rangle = H$, and let $\mathcal{F}(W) \leadsto \cdots \leadsto \mathcal{A}$ be an arbitrary sequence of Stallings foldings, with \mathcal{A} deterministic. Then,

$$L(\mathcal{A}) = \bigcap_{\mathcal{B}} L(\mathcal{B}),$$

where \mathcal{B} runs over all possible automata deterministic, trim, and such that $\overline{H} \subset L(\mathcal{B}) \subset \tilde{A}^*$.

The bijection

Theorem

This is a bijection:

$$\begin{array}{cccc} \{H \leqslant_{\mathit{f.g.}} F(A)\} & \to & \{\textit{A-automata deterministic and trim}\} \\ & H & \mapsto & \Gamma(H) \\ & \textit{L}(\mathcal{A})\pi & \leftarrow & \mathcal{A}. \end{array}$$

Observation

Both directions are algorithmic, and fast.

The bijection

Theorem

This is a bijection:

$$\begin{array}{cccc} \{H \leqslant_{\mathit{f.g.}} F(A)\} & \to & \{\textit{A-automata deterministic and trim}\} \\ & H & \mapsto & \Gamma(H) \\ & \textit{L}(\mathcal{A})\pi & \leftarrow & \mathcal{A}. \end{array}$$

Observation

Both directions are algorithmic, and fast.

Outline

- Notation
- 2 Automata
- Schreier graphs
- First algebraic applications
- Finite index subgroups
- Intersections of subgroups
- Fringe and algebraic extensions
- 1 The pro-V topology
- Fixed points

Let A be an A-automata deterministic and trim, and let $H = L(A)\pi \leqslant_{f.g.} F(A)$.

Take a maximal tree T in A and for every $e \in EA \setminus ET$ take

$$h_e = label(T[q_0, \iota e]eT[\tau e, q_0])\pi \in H.$$

Proposition

 $\{h_e \mid e \in EA \setminus ET\}$ is a free basis for H.

Theorem (Nielsen)

Every finitely generated subgroup of a free group is free

Theorem (Schreier

Every subgroup of a free group is free.

Let A be an A-automata deterministic and trim, and let $H = L(A)\pi \leqslant_{f.g.} F(A)$.

Take a maximal tree T in $\mathcal A$ and for every $e \in E\mathcal A \setminus ET$ take

$$h_e = label(T[q_0, \iota e]eT[\tau e, q_0])\pi \in H.$$

Proposition

 $\{h_e \mid e \in EA \setminus ET\}$ is a free basis for H.

Theorem (Nielsen

Every finitely generated subgroup of a free group is free

Theorem (Schreier

Every subgroup of a free group is free

Let A be an A-automata deterministic and trim, and let $H = L(A)\pi \leqslant_{f.g.} F(A)$.

Take a maximal tree T in A and for every $e \in EA \setminus ET$ take

$$h_e = label(T[q_0, \iota e]eT[\tau e, q_0])\pi \in H.$$

Proposition

 $\{h_e \mid e \in EA \setminus ET\}$ is a free basis for H.

Theorem (Nielsen

Every finitely generated subgroup of a free group is free

Theorem (Schreier

Every subgroup of a free group is free

Let A be an A-automata deterministic and trim, and let $H = L(A)\pi \leqslant_{f.g.} F(A)$.

Take a maximal tree T in $\mathcal A$ and for every $e \in E\mathcal A \setminus ET$ take

$$h_e = label(T[q_0, \iota e]eT[\tau e, q_0])\pi \in H.$$

Proposition

 $\{h_e \mid e \in E\mathcal{A} \setminus ET\}$ is a free basis for H.

Theorem (Nielsen)

Every finitely generated subgroup of a free group is free.

Theorem (Schreier

Every subgroup of a free group is free

Let A be an A-automata deterministic and trim, and let $H = L(A)\pi \leqslant_{f.g.} F(A)$.

Take a maximal tree T in A and for every $e \in EA \setminus ET$ take

$$h_e = label(T[q_0, \iota e]eT[\tau e, q_0])\pi \in H.$$

Proposition

 $\{h_e \mid e \in EA \setminus ET\}$ is a free basis for H.

Theorem (Nielsen)

Every finitely generated subgroup of a free group is free.

Theorem (Schreier)

Every subgroup of a free group is free.

Computability of rank and basis

Proposition

There is an algorithm which, given $h_1 \dots, h_n \in F(A)$, computes the rank and a basis of $H = \langle h_1 \dots, h_n \rangle \leqslant F(A)$. More specifically,

$$rg(H) = 1 - |V\Gamma(H)| + |E\Gamma(H)| = |W| - \ell,$$

where ℓ is the total lost in the chain $\mathcal{F}(W) \rightsquigarrow \cdots \rightsquigarrow \Gamma(H)$.

Theorem

Free groups are hopfian.

Corollary

 $F(A) \simeq F(B)$ if and only if |A| = |B|

Computability of rank and basis

Proposition

There is an algorithm which, given $h_1 \dots, h_n \in F(A)$, computes the rank and a basis of $H = \langle h_1 \dots, h_n \rangle \leqslant F(A)$. More specifically,

$$rg(H) = 1 - |V\Gamma(H)| + |E\Gamma(H)| = |W| - \ell,$$

where ℓ is the total lost in the chain $\mathcal{F}(W) \rightsquigarrow \cdots \rightsquigarrow \Gamma(H)$.

Theorem

Free groups are hopfian.

Corollary

 $F(A) \simeq F(B)$ if and only if |A| = |B|

Computability of rank and basis

Proposition

There is an algorithm which, given $h_1 \dots, h_n \in F(A)$, computes the rank and a basis of $H = \langle h_1 \dots, h_n \rangle \leqslant F(A)$. More specifically,

$$rg(H) = 1 - |V\Gamma(H)| + |E\Gamma(H)| = |W| - \ell,$$

where ℓ is the total lost in the chain $\mathcal{F}(W) \rightsquigarrow \cdots \rightsquigarrow \Gamma(H)$.

Theorem

Free groups are hopfian.

Corollary

$$F(A) \simeq F(B)$$
 if and only if $|A| = |B|$.

Outline

- Notation
- 2 Automata
- Schreier graphs
- First algebraic applications
- 5 Finite index subgroups
- Intersections of subgroups
- Fringe and algebraic extensions
- 1 The pro-V topology
- Fixed points

Definition

An A-automata A is complete if every vertex has an edge going in and an edge going out with each label.

Definition

For $H \leq_{f.g.} F(A)$, define $\Gamma(H)$ to be $\Gamma(H)$ with infinite trees attached in order to make it complete.

- i) $\Gamma(H)$ is complete $\Leftrightarrow \tilde{\Gamma}(H) = \Gamma(H)$.
- ii) $\forall u \in \tilde{A}^*, \forall q \in V, \exists q \xrightarrow{u} \text{ in } \tilde{\Gamma}(H).$
- iii) $L(\tilde{\Gamma}(H)) = H\pi^{-1}$.

Definition

An A-automata A is complete if every vertex has an edge going in and an edge going out with each label.

Definition

For $H \leq_{f.g.} F(A)$, define $\tilde{\Gamma}(H)$ to be $\Gamma(H)$ with infinite trees attached in order to make it complete.

- i) $\Gamma(H)$ is complete $\Leftrightarrow \tilde{\Gamma}(H) = \Gamma(H)$
- ii) $\forall u \in \tilde{A}^*, \ \forall \ q \in V, \ \exists \ q \stackrel{u}{\rightarrow} \quad in \ \tilde{\Gamma}(H).$
- iii) $L(\tilde{\Gamma}(H)) = H\pi^{-1}$.

Definition

An A-automata A is complete if every vertex has an edge going in and an edge going out with each label.

Definition

For $H \leq_{f.g.} F(A)$, define $\tilde{\Gamma}(H)$ to be $\Gamma(H)$ with infinite trees attached in order to make it complete.

- i) $\Gamma(H)$ is complete $\Leftrightarrow \tilde{\Gamma}(H) = \Gamma(H)$.
- ii) $\forall u \in \tilde{A}^*, \forall q \in V, \exists q \stackrel{u}{\rightarrow} in \tilde{\Gamma}(H)$.
- iii) $L(\tilde{\Gamma}(H)) = H\pi^{-1}$.

Definition

An A-automata A is complete if every vertex has an edge going in and an edge going out with each label.

Definition

For $H \leq_{f.g.} F(A)$, define $\tilde{\Gamma}(H)$ to be $\Gamma(H)$ with infinite trees attached in order to make it complete.

- i) $\Gamma(H)$ is complete $\Leftrightarrow \tilde{\Gamma}(H) = \Gamma(H)$.
- ii) $\forall u \in \tilde{A}^*, \ \forall \ q \in V, \ \exists \ q \xrightarrow{u} \quad \text{in } \tilde{\Gamma}(H).$
- iii) $L(\tilde{\Gamma}(H)) = H\pi^{-1}$.

Definition

An A-automata A is complete if every vertex has an edge going in and an edge going out with each label.

Definition

For $H \leq_{f.g.} F(A)$, define $\tilde{\Gamma}(H)$ to be $\Gamma(H)$ with infinite trees attached in order to make it complete.

- i) $\Gamma(H)$ is complete $\Leftrightarrow \tilde{\Gamma}(H) = \Gamma(H)$.
- ii) $\forall u \in \tilde{A}^*, \forall q \in V, \exists q \xrightarrow{u} in \tilde{\Gamma}(H).$
- iii) $L(\tilde{\Gamma}(H)) = H\pi^{-1}$.

Proposition

Let $H \leq_{f.g.} F(A)$ and let T be a maximal tree in $\tilde{\Gamma}(H)$. Then,

$$\varphi \colon V\widetilde{\Gamma}(H) \quad \to \quad H \backslash F(A)$$

$$V \quad \mapsto \quad H \cdot I_{V}$$

is bijective, where $I_v = label(T[q_0, v])\pi$.

Corollary

Let $H \leq_{f.g.} F(A)$. Then, $H \leq_{f.i.} F(A) \Leftrightarrow \Gamma(H)$ is complete. In this case, $[F(A):H] = |V\Gamma(H)|$.

Corollary (Schreier index formula)

Every $H \leq_{f.i.} F(A)$ is finitely generated and r(H) - 1 = [F(A) : H](|A| - 1).

Proposition

Let $H \leq_{f.g.} F(A)$ and let T be a maximal tree in $\tilde{\Gamma}(H)$. Then,

$$\varphi \colon V\widetilde{\Gamma}(H) \to H \backslash F(A)$$

$$V \mapsto H \cdot I_V$$

is bijective, where $I_v = label(T[q_0, v])\pi$.

Corollary

Let $H \leq_{f.g.} F(A)$. Then, $H \leq_{f.i.} F(A) \Leftrightarrow \Gamma(H)$ is complete. In this case, $[F(A):H] = |V\Gamma(H)|$.

Corollary (Schreier index formula)

Every $H \leq_{f.i.} F(A)$ is finitely generated and r(H) - 1 = [F(A) : H](|A| - 1).

Proposition

Let $H \leq_{f.g.} F(A)$ and let T be a maximal tree in $\tilde{\Gamma}(H)$. Then,

$$\varphi \colon V\widetilde{\Gamma}(H) \longrightarrow H \backslash F(A)$$

$$V \mapsto H \cdot I_{V}$$

is bijective, where $I_v = label(T[q_0, v])\pi$.

Corollary

Let $H \leq_{f.g.} F(A)$. Then, $H \leq_{f.i.} F(A) \Leftrightarrow \Gamma(H)$ is complete. In this case, $[F(A):H] = |V\Gamma(H)|$.

Corollary (Schreier index formula)

Every $H \leq_{f.i.} F(A)$ is finitely generated and r(H) - 1 = [F(A) : H](|A| - 1).

Corollary

There is an algorithm which, given $h_1, ..., h_n \in F(A)$, decides whether $H = \langle h_1, ..., h_n \rangle$ is of finite index in F(A) and, in this case, computes the index and a set of coset representatives.

Corollary

There is an algorithm which, given $h_1, \ldots, h_n, k_1, \ldots, k_m \in F(A)$, decides whether $\langle h_1, \ldots, h_n \rangle = H \leq_{f.i.} K = \langle k_1, \ldots, k_m \rangle$ and, in this case, computes the index and a set of coset representatives.

Corollary

There is an algorithm which, given $h_1, \ldots, h_n \in F(A)$, decides whether $H = \langle h_1, \ldots, h_n \rangle$ is of finite index in F(A) and, in this case, computes the index and a set of coset representatives.

Corollary

There is an algorithm which, given $h_1, \ldots, h_n, k_1, \ldots, k_m \in F(A)$, decides whether $\langle h_1, \ldots, h_n \rangle = H \leq_{f.i.} K = \langle k_1, \ldots, k_m \rangle$ and, in this case, computes the index and a set of coset representatives.

Normality

Corollary

If $1 \neq H \leqslant_{f.g.} F(A)$ is normal then $H \leqslant_{f.i.} F(A)$.

Corollary

There is an algorithm which, given $h_1, ..., h_n \in F(A)$, decides whether $H = \langle h_1, ..., h_n \rangle$ is normal in F(A).

Corollary

There is an algorithm which, given $h_1, \ldots, h_n, k_1, \ldots, k_m \in F(A)$, decides whether $H = \langle h_1, \ldots, h_n \rangle$ is normal in $K = \langle k_1, \ldots, k_m \rangle$.

Normality

Corollary

If $1 \neq H \leqslant_{f.g.} F(A)$ is normal then $H \leqslant_{f.i.} F(A)$.

Corollary

There is an algorithm which, given $h_1, \ldots, h_n \in F(A)$, decides whether $H = \langle h_1, \ldots, h_n \rangle$ is normal in F(A).

Corollary

There is an algorithm which, given $h_1, \ldots, h_n, k_1, \ldots, k_m \in F(A)$, decides whether $H = \langle h_1, \ldots, h_n \rangle$ is normal in $K = \langle k_1, \ldots, k_m \rangle$.

Normality

Corollary

If $1 \neq H \leqslant_{f.g.} F(A)$ is normal then $H \leqslant_{f.i.} F(A)$.

Corollary

There is an algorithm which, given $h_1, \ldots, h_n \in F(A)$, decides whether $H = \langle h_1, \ldots, h_n \rangle$ is normal in F(A).

Corollary

There is an algorithm which, given $h_1, \ldots, h_n, k_1, \ldots, k_m \in F(A)$, decides whether $H = \langle h_1, \ldots, h_n \rangle$ is normal in $K = \langle k_1, \ldots, k_m \rangle$.

M. Hall's theorem

Definition

Let $H \le K \le F(A)$. We say that H is a free factor of K, denoted $H \le_{f.f.} K$, if it is possible to extend a basis of H to a basis of K.

Lemma

For $H \leq_{f.g.} K \leq_{f.g.} F(A)$, if $\Gamma(H)$ is a subautomaton of $\Gamma(K)$ then $H \leq_{f.f.} K$. The convers is not true.

Theorem (M. Hall)

For every $H \leq_{f,g} F(A)$ there exists $K \leq_{f,i} F(A)$ such that $H \leq_{f,f} K \leq_{f,i} F(A)$.

M. Hall's theorem

Definition

Let $H \le K \le F(A)$. We say that H is a free factor of K, denoted $H \le_{f.f.} K$, if it is possible to extend a basis of H to a basis of K.

Lemma

For $H \leq_{f.g.} K \leq_{f.g.} F(A)$, if $\Gamma(H)$ is a subautomaton of $\Gamma(K)$ then $H \leq_{f.f.} K$. The convers is not true.

Theorem (M. Hall)

For every $H \leq_{f,g}$, F(A) there exists $K \leq_{f,i}$, F(A) such that $H \leq_{f,f}$, $K \leq_{f,i}$, F(A).

M. Hall's theorem

Definition

Let $H \le K \le F(A)$. We say that H is a free factor of K, denoted $H \le_{f.f.} K$, if it is possible to extend a basis of H to a basis of K.

Lemma

For $H \leq_{f.g.} K \leq_{f.g.} F(A)$, if $\Gamma(H)$ is a subautomaton of $\Gamma(K)$ then $H \leq_{f.f.} K$. The convers is not true.

Theorem (M. Hall)

For every $H \leq_{f,g.} F(A)$ there exists $K \leq_{f.i.} F(A)$ such that $H \leq_{f.f.} K \leq_{f.i.} F(A)$.

Residual finiteness

Definition

A group G is said to be residually finite if $\forall 1 \neq g \in G$ there exists a finite quotient G/H where $1 \neq \overline{g} \in G/H$.

Theorem

Free groups are residually finite.

Theorem

Free groups are residually p, for every prime p

Residual finiteness

Definition

A group G is said to be residually finite if $\forall 1 \neq g \in G$ there exists a finite quotient G/H where $1 \neq \overline{g} \in G/H$.

Theorem

Free groups are residually finite.

Theorem

Free groups are residually p, for every prime p

Residual finiteness

Definition

A group G is said to be residually finite if $\forall 1 \neq g \in G$ there exists a finite quotient G/H where $1 \neq \overline{g} \in G/H$.

Theorem

Free groups are residually finite.

Theorem

Free groups are residually p, for every prime p.

Outline

- Notation
- 2 Automata
- Schreier graphs
- First algebraic applications
- Finite index subgroups
- Intersections of subgroups
- Fringe and algebraic extensions
- Fixed points

Howson property

Definition

A group G satisfies the Howson property if the intersection of two finitely generated subgroups is again finitely generated.

Theorem

Free groups satisfy the Howson property

Theorem

There is an algorithm which, given $h_1, \ldots, h_n, k_1, \ldots, k_m \in F(A)$, computes a basis of $H \cap K$, where $H = \langle h_1, \ldots, h_n \rangle$ and $K = \langle k_1, \ldots, k_m \rangle$.

Howson property

Definition

A group G satisfies the Howson property if the intersection of two finitely generated subgroups is again finitely generated.

Theorem

Free groups satisfy the Howson property.

Theorem

There is an algorithm which, given $h_1, \ldots, h_n, k_1, \ldots, k_m \in F(A)$, computes a basis of $H \cap K$, where $H = \langle h_1, \ldots, h_n \rangle$ and $K = \langle k_1, \ldots, k_m \rangle$.

Howson property

Definition

A group G satisfies the Howson property if the intersection of two finitely generated subgroups is again finitely generated.

Theorem

Free groups satisfy the Howson property.

Theorem

There is an algorithm which, given $h_1, \ldots, h_n, k_1, \ldots, k_m \in F(A)$, computes a basis of $H \cap K$, where $H = \langle h_1, \ldots, h_n \rangle$ and $K = \langle k_1, \ldots, k_m \rangle$.

Definition

Define the reduced rank of $H \leq F(A)$ as $\tilde{r}(H) = \max\{0, r(H) - 1\}$.

Theorem

For $H, K \leq_{f.g.} F(A)$, $\tilde{r}(H \cap K) \leq 2\tilde{r}(H)\tilde{r}(K)$.

Hanna Neumann "Conjecture"

For $H, K \leq_{f.g.} F(A)$, $\tilde{r}(H \cap K) \leq \tilde{r}(H)\tilde{r}(K)$.

Theorem (Mineyev, (simpl. Dicks))

For $H, K \leq_{f,g} F(A)$, $\tilde{r}(H \cap K) \leq \tilde{r}(H)\tilde{r}(K)$.

Definition

Define the reduced rank of $H \leq F(A)$ as $\tilde{r}(H) = \max\{0, r(H) - 1\}$.

Theorem

For $H, K \leqslant_{f.g.} F(A)$, $\tilde{r}(H \cap K) \leqslant 2\tilde{r}(H)\tilde{r}(K)$.

Hanna Neumann "Conjecture"

For $H, K \leqslant_{f.g.} F(A)$, $\tilde{r}(H \cap K) \leqslant \tilde{r}(H)\tilde{r}(K)$.

Theorem (Mineyev, (simpl. Dicks))

For $H, K \leq_{f,g} F(A)$, $\tilde{r}(H \cap K) \leq \tilde{r}(H)\tilde{r}(K)$.

Definition

Define the reduced rank of $H \leq F(A)$ as $\tilde{r}(H) = \max\{0, r(H) - 1\}$.

Theorem

For $H, K \leqslant_{f.g.} F(A)$, $\tilde{r}(H \cap K) \leqslant 2\tilde{r}(H)\tilde{r}(K)$.

Hanna Neumann "Conjecture"

For $H, K \leq_{f.g.} F(A)$, $\tilde{r}(H \cap K) \leq \tilde{r}(H)\tilde{r}(K)$.

Theorem (Mineyev, (simpl. Dicks))

For $H, K \leq_{f,g} F(A)$, $\tilde{r}(H \cap K) \leq \tilde{r}(H)\tilde{r}(K)$.

Definition

Define the reduced rank of $H \leq F(A)$ as $\tilde{r}(H) = \max\{0, r(H) - 1\}$.

Theorem

For $H, K \leqslant_{f.g.} F(A)$, $\tilde{r}(H \cap K) \leqslant 2\tilde{r}(H)\tilde{r}(K)$.

Hanna Neumann "Conjecture"

For $H, K \leq_{f.g.} F(A)$, $\tilde{r}(H \cap K) \leq \tilde{r}(H)\tilde{r}(K)$.

Theorem (Mineyev, (simpl. Dicks))

For $H, K \leq_{f.a.} F(A)$, $\tilde{r}(H \cap K) \leq \tilde{r}(H)\tilde{r}(K)$.

Malnormality

Definition

A subgroup of a group $H \leqslant G$ is malnormal if $H^g \cap H = 1$ for all $g \notin H$.

Proposition

There is an algorithm which, given $h_1, \ldots, h_n \in F(A)$, decides whether $H = \langle h_1, \ldots, h_n \rangle$ is malnormal in F(A).

Observation

For $H, K \leq_{f.g.} F(A)$, the collection of intersections $H^u \cap K^v$, moving $u, v \in F(A)$, takes only finitely many values, up to conjugacy.

Malnormality

Definition

A subgroup of a group $H \leqslant G$ is malnormal if $H^g \cap H = 1$ for all $g \notin H$.

Proposition

There is an algorithm which, given $h_1, \ldots, h_n \in F(A)$, decides whether $H = \langle h_1, \ldots, h_n \rangle$ is malnormal in F(A).

Observation

For $H, K \leq_{f.g.} F(A)$, the collection of intersections $H^u \cap K^v$, moving $u, v \in F(A)$, takes only finitely many values, up to conjugacy.

Malnormality

Definition

A subgroup of a group $H \leqslant G$ is malnormal if $H^g \cap H = 1$ for all $g \notin H$.

Proposition

There is an algorithm which, given $h_1, \ldots, h_n \in F(A)$, decides whether $H = \langle h_1, \ldots, h_n \rangle$ is malnormal in F(A).

Observation

For $H, K \leq_{f.g.} F(A)$, the collection of intersections $H^u \cap K^v$, moving $u, v \in F(A)$, takes only finitely many values, up to conjugacy.

Outline

- Notation
- 2 Automata
- Schreier graphs
- First algebraic applications
- Finite index subgroups
- 6 Intersections of subgroups
- Fringe and algebraic extensions
- lacksquare The pro- $\mathcal V$ topology
- Fixed points

• In basic linear algebra:

$$U \leqslant V \leqslant K^n \quad \Rightarrow \quad V = U \oplus L.$$

• In \mathbb{Z}^n , the analog is almost true:

$$U \leqslant V \leqslant \mathbb{Z}^n \quad \Rightarrow \quad \exists \ U \leqslant_{fi} U' \leqslant V \text{ s.t. } V = U' \oplus L.$$

• In F(A), the analog is ...

far from true because $H \leqslant K \Rightarrow r(H) \leqslant r(K) \dots$

In basic linear algebra:

$$U \leqslant V \leqslant K^n \quad \Rightarrow \quad V = U \oplus L.$$

• In \mathbb{Z}^n , the analog is almost true:

$$U \leqslant V \leqslant \mathbb{Z}^n \quad \Rightarrow \quad \exists \ U \leqslant_{fi} U' \leqslant V \text{ s.t. } V = U' \oplus L.$$

• In F(A), the analog is ...

far from true because $H \leq K \Rightarrow r(H) \leq r(K) \dots$

• In basic linear algebra:

$$U \leqslant V \leqslant K^n \quad \Rightarrow \quad V = U \oplus L.$$

• In \mathbb{Z}^n , the analog is almost true:

$$U \leqslant V \leqslant \mathbb{Z}^n \quad \Rightarrow \quad \exists \ U \leqslant_{fi} U' \leqslant V \text{ s.t. } V = U' \oplus L.$$

• In F(A), the analog is ...

far from true because
$$H \leq K \Rightarrow r(H) \leq r(K) \dots$$

• In basic linear algebra:

$$U \leqslant V \leqslant K^n \quad \Rightarrow \quad V = U \oplus L.$$

• In \mathbb{Z}^n , the analog is almost true:

$$U \leqslant V \leqslant \mathbb{Z}^n \quad \Rightarrow \quad \exists \ U \leqslant_{fi} U' \leqslant V \text{ s.t. } V = U' \oplus L.$$

• In F(A), the analog is ...

almost true again, ... in the sense of Takahasi.

Mimicking field theory...

Definition

Let $H \leq F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists \ 1 \neq e_H(x) \in H * \langle x \rangle$ such that $e_H(w) = 1$;
- transcendental over H otherwise.

Observation

w is transcendental over
$$H \Longleftrightarrow \langle H, w \rangle \simeq H * \langle w \rangle \iff H$$
 is contained in a proper f.f. of $\langle H, w \rangle$.

Problem

 w_1, w_2 algebraic over $H \not\Rightarrow w_1 w_2$ algebraic over H.

$$H = \langle a, \overline{b}ab, \overline{c}ac \rangle \leqslant \langle a, b, c \rangle$$
, and $w_1 = b$, $w_2 = \overline{c}$.

Mimicking field theory...

Definition

Let $H \leq F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists \ 1 \neq e_H(x) \in H * \langle x \rangle$ such that $e_H(w) = 1$;
- transcendental over H otherwise.

Observation

```
w is transcendental over H \Longleftrightarrow \langle H, w \rangle \simeq H * \langle w \rangle
\iff H is contained in a proper f.f. of \langle H, w \rangle.
```

Problem

 w_1, w_2 algebraic over $H \not\Rightarrow w_1 w_2$ algebraic over H.

 $H = \langle a, \overline{b}ab, \overline{c}ac \rangle \leqslant \langle a, b, c \rangle$, and $w_1 = b$, $w_2 = \overline{c}$.

Mimicking field theory...

Definition

Let $H \leq F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists \ 1 \neq e_H(x) \in H * \langle x \rangle$ such that $e_H(w) = 1$;
- transcendental over H otherwise.

Observation

w is transcendental over $H \iff \langle H, w \rangle \simeq H * \langle w \rangle$ $\iff H \text{ is contained in a proper f.f. of } \langle H, w \rangle.$

Problem

 w_1, w_2 algebraic over $H \not\Rightarrow w_1 w_2$ algebraic over H.

 $H = \langle a, \overline{b}ab, \overline{c}ac \rangle \leqslant \langle a, b, c \rangle$, and $w_1 = b$, $w_2 = \overline{c}$.

Mimicking field theory...

Definition

Let $H \leq F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists \ 1 \neq e_H(x) \in H * \langle x \rangle$ such that $e_H(w) = 1$;
- transcendental over H otherwise.

Observation

w is transcendental over
$$H \iff \langle H, w \rangle \simeq H * \langle w \rangle$$

 $\iff H \text{ is contained in a proper f.f. of } \langle H, w \rangle.$

Problem

 w_1, w_2 algebraic over $H \not\Rightarrow w_1 w_2$ algebraic over H.

 $H = \langle a, \overline{b}ab, \overline{c}ac \rangle \leqslant \langle a, b, c \rangle$, and $w_1 = b$, $w_2 = \overline{c}$.

Mimicking field theory...

Definition

Let $H \leq F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists \ 1 \neq e_H(x) \in H * \langle x \rangle$ such that $e_H(w) = 1$;
- transcendental over H otherwise.

Observation

w is transcendental over
$$H \iff \langle H, w \rangle \simeq H * \langle w \rangle$$

 $\iff H$ is contained in a proper f.f. of $\langle H, w \rangle$.

Problem

 w_1, w_2 algebraic over $H \not\Rightarrow w_1 w_2$ algebraic over H.

 $H = \langle a, \overline{b}ab, \overline{c}ac \rangle \leq \langle a, b, c \rangle$, and $w_1 = b$, $w_2 = \overline{c}$

Mimicking field theory...

Definition

Let $H \leq F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists \ 1 \neq e_H(x) \in H * \langle x \rangle$ such that $e_H(w) = 1$;
- transcendental over H otherwise.

Observation

w is transcendental over
$$H \iff \langle H, w \rangle \simeq H * \langle w \rangle$$

 $\iff H$ is contained in a proper f.f. of $\langle H, w \rangle$.

Problem

 w_1, w_2 algebraic over $H \Rightarrow w_1 w_2$ algebraic over H.

$$H = \langle a, \overline{b}ab, \overline{c}ac \rangle \leqslant \langle a, b, c \rangle$$
, and $w_1 = b$, $w_2 = \overline{c}$.

A relative notion works better...

Definition

Let $H \leq K \leq F(A)$ and $w \in K$. We say that w is

- *K-algebraic over H if* \forall *free factorization* $K = K_1 * K_2$ *with* $H \leq K_1$, we have $w \in K_1$;
- K-transcendental over H otherwise.

Observation

w is algebraic over H if and only if it is $\langle H, w \rangle$ -algebraic over H.

Observation

If w_1 and w_2 are K-algebraic over H, then so is $w_1 w_2$

A relative notion works better...

Definition

Let $H \leq K \leq F(A)$ and $w \in K$. We say that w is

- *K*-algebraic over *H* if \forall free factorization $K = K_1 * K_2$ with $H \leqslant K_1$, we have $w \in K_1$;
- K-transcendental over H otherwise.

Observatior

w is algebraic over H if and only if it is $\langle H, w \rangle$ -algebraic over H.

Observation

If w_1 and w_2 are K-algebraic over H, then so is $w_1 w_2$

A relative notion works better...

Definition

Let $H \leq K \leq F(A)$ and $w \in K$. We say that w is

- *K*-algebraic over *H* if \forall free factorization $K = K_1 * K_2$ with $H \leqslant K_1$, we have $w \in K_1$;
- K-transcendental over H otherwise.

Observation

w is algebraic over H if and only if it is $\langle H, w \rangle$ -algebraic over H.

Observation

If w_1 and w_2 are K-algebraic over H, then so is w_1w_2

A relative notion works better...

Definition

Let $H \leq K \leq F(A)$ and $w \in K$. We say that w is

- *K*-algebraic over *H* if \forall free factorization $K = K_1 * K_2$ with $H \leqslant K_1$, we have $w \in K_1$;
- K-transcendental over H otherwise.

Observation

w is algebraic over H if and only if it is $\langle H, w \rangle$ -algebraic over H.

Observation

If w_1 and w_2 are K-algebraic over H, then so is w_1w_2

A relative notion works better...

Definition

Let $H \leq K \leq F(A)$ and $w \in K$. We say that w is

- *K-algebraic over H if* \forall *free factorization K* = $K_1 * K_2$ *with* $H \leq K_1$, we have $w \in K_1$;
- K-transcendental over H otherwise.

Observation

w is algebraic over H if and only if it is $\langle H, w \rangle$ -algebraic over H.

Observation

If w_1 and w_2 are K-algebraic over H, then so is w_1w_2 .

Definition

Let $H \leqslant K \leqslant F(A)$.

We say that $H \leqslant K$ is an algebraic extension, denoted $H \leqslant_{alg} K$,

 \iff every $w \in K$ is K-algebraic over H,

 \iff H is not contained in any proper free factor of K,

 $\iff H \leqslant K_1 \leqslant K_1 * K_2 = K \text{ implies } K_2 = 1.$

We say that $H \leq K$ is a free extension, denoted $H \leq_{\text{ff}} K$,

 \iff every $w \in K$ is K-transcendental over H

Definition

Let $H \leqslant K \leqslant F(A)$.

We say that $H \leq K$ is an algebraic extension, denoted $H \leq_{alg} K$,

 \iff every $w \in K$ is K-algebraic over H,

 \iff H is not contained in any proper free factor of K,

 $\iff H \leqslant K_1 \leqslant K_1 * K_2 = K \text{ implies } K_2 = 1.$

We say that $H \le K$ is a free extension, denoted $H \le_{\text{ff}} K$, \iff every $w \in K$ is K-transcendental over H.

Definition

Let $H \leq K \leq F(A)$.

We say that $H \leq K$ is an algebraic extension, denoted $H \leq_{alg} K$,

 \iff every $w \in K$ is K-algebraic over H,

 \iff H is not contained in any proper free factor of K,

 $\iff H \leqslant K_1 \leqslant K_1 * K_2 = K \text{ implies } K_2 = 1.$

We say that $H \le K$ is a free extension, denoted $H \le_{\text{ff}} K$, \iff every $w \in K$ is K-transcendental over H.

Definition

Let $H \leqslant K \leqslant F(A)$.

We say that $H \leq K$ is an algebraic extension, denoted $H \leq_{alg} K$,

 \iff every $w \in K$ is K-algebraic over H,

 \iff H is not contained in any proper free factor of K,

 $\iff H \leqslant K_1 \leqslant K_1 * K_2 = K \text{ implies } K_2 = 1.$

We say that $H \leq K$ is a free extension, denoted $H \leq_{ff} K$,

 \iff every $w \in K$ is K-transcendental over H,

Definition

Let $H \leqslant K \leqslant F(A)$.

We say that $H \leq K$ is an algebraic extension, denoted $H \leq_{alg} K$,

 \iff every $w \in K$ is K-algebraic over H,

 \iff H is not contained in any proper free factor of K,

 $\iff H \leqslant K_1 \leqslant K_1 * K_2 = K \text{ implies } K_2 = 1.$

We say that $H \leq K$ is a free extension, denoted $H \leq_{ff} K$,

 \iff every $w \in K$ is K-transcendental over H,

- $\langle a \rangle \leqslant_{\mathsf{ff}} \langle a, \textcolor{red}{b} \rangle \leqslant_{\mathsf{ff}} \langle a, \textcolor{red}{b}, c \rangle$, and $\langle x^r \rangle \leqslant_{\mathsf{alg}} \langle x \rangle$, $\forall x \in F(A) \ \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leqslant_{\mathit{ff}} K \leqslant_{\mathit{ff}} L \text{ implies } H \leqslant_{\mathit{ff}} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

How many algebraic extensions does a given H have in F(A)?

- $\langle a \rangle \leqslant_{ff} \langle a, b \rangle \leqslant_{ff} \langle a, b, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F(A) \ \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leqslant_{\mathit{ff}} K \leqslant_{\mathit{ff}} L \text{ implies } H \leqslant_{\mathit{ff}} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

How many algebraic extensions does a given H have in F(A)?

- $\langle a \rangle \leqslant_{\mathsf{ff}} \langle a, \textcolor{red}{b} \rangle \leqslant_{\mathsf{ff}} \langle a, \textcolor{red}{b}, c \rangle$, and $\langle x^r \rangle \leqslant_{\mathsf{alg}} \langle x \rangle$, $\forall x \in F(A) \ \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leqslant_{\mathit{ff}} K \leqslant_{\mathit{ff}} L \text{ implies } H \leqslant_{\mathit{ff}} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

How many algebraic extensions does a given H have in F(A)?

- $\langle a \rangle \leqslant_{ff} \langle a, b \rangle \leqslant_{ff} \langle a, b, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F(A) \ \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leqslant_{\mathit{ff}} K \leqslant_{\mathit{ff}} L \text{ implies } H \leqslant_{\mathit{ff}} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

How many algebraic extensions does a given H have in F(A)?

- $\langle a \rangle \leqslant_{\mathsf{ff}} \langle a, \textcolor{red}{b} \rangle \leqslant_{\mathsf{ff}} \langle a, \textcolor{red}{b}, c \rangle$, and $\langle x^r \rangle \leqslant_{\mathsf{alg}} \langle x \rangle$, $\forall x \in F(A) \ \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leqslant_{\mathit{ff}} K \leqslant_{\mathit{ff}} L \text{ implies } H \leqslant_{\mathit{ff}} L.$
- $H \leq_{alg} L$ and $H \leq K \leq L$ imply $K \leq_{alg} L$ but not necessarily $H \leq_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

How many algebraic extensions does a given H have in F(A)?

- $\langle a \rangle \leqslant_{\mathsf{ff}} \langle a, \textcolor{red}{b} \rangle \leqslant_{\mathsf{ff}} \langle a, \textcolor{red}{b}, c \rangle$, and $\langle x^r \rangle \leqslant_{\mathsf{alg}} \langle x \rangle$, $\forall x \in F(A) \ \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leqslant_{\mathit{ff}} K \leqslant_{\mathit{ff}} L \text{ implies } H \leqslant_{\mathit{ff}} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

How many algebraic extensions does a given H have in F(A)?

- $\langle a \rangle \leqslant_{\mathsf{ff}} \langle a, \textcolor{red}{b} \rangle \leqslant_{\mathsf{ff}} \langle a, \textcolor{red}{b}, c \rangle$, and $\langle x^r \rangle \leqslant_{\mathsf{alg}} \langle x \rangle$, $\forall x \in F(A) \ \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leqslant_{ff} K \leqslant_{ff} L \text{ implies } H \leqslant_{ff} L.$
- $H \leq_{alg} L$ and $H \leq K \leq L$ imply $K \leq_{alg} L$ but not necessarily $H \leq_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

How many algebraic extensions does a given H have in F(A)?

Algebraic and free extensions

- $\langle a \rangle \leqslant_{\mathsf{ff}} \langle a, \textcolor{red}{b} \rangle \leqslant_{\mathsf{ff}} \langle a, \textcolor{red}{b}, c \rangle$, and $\langle x^r \rangle \leqslant_{\mathsf{alg}} \langle x \rangle$, $\forall x \in F(A) \ \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leqslant_{ff} K \leqslant_{ff} L \text{ implies } H \leqslant_{ff} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

How many algebraic extensions does a given H have in F(A)?

Can we compute them all?

Theorem (Takahasi, 1951)

For every $H \leq_{fg} F(A)$, the set of algebraic extensions, denoted $\mathcal{AE}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- Modern proof, using Schreier automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).
- Additionally, AE(H) is computable.

Theorem (Takahasi, 1951)

For every $H \leq_{fg} F(A)$, the set of algebraic extensions, denoted $\mathcal{AE}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- Modern proof, using Schreier automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).
- Additionally, AE(H) is computable.

Theorem (Takahasi, 1951)

For every $H \leq_{fg} F(A)$, the set of algebraic extensions, denoted $\mathcal{AE}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- Modern proof, using Schreier automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).
- Additionally, AE(H) is computable.

Theorem (Takahasi, 1951)

For every $H \leq_{tg} F(A)$, the set of algebraic extensions, denoted $\mathcal{AE}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- Modern proof, using Schreier automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).
- Additionally, AE(H) is computable.

Definition

Let $\mathcal A$ be a deterministic and trim A-automata, and let \sim an eq. rel. on $V\mathcal A$. We denote by $\mathcal A/\sim$ the new (deterministic and trim) A-automata resulting from identifying the vertices according to \sim , plus foldings.

Definition

The fringe of A is the (finite) collection of A-automata of the form A/\sim .

Definition

Let
$$H \leq_{fg} F(A)$$
. The fringe of H is $\mathcal{O}(H) = \{L(\Gamma(H)/\sim)\pi \mid \sim \text{ eq. rel. on } VA\}$

Definition

Let $\mathcal A$ be a deterministic and trim A-automata, and let \sim an eq. rel. on $V\mathcal A$. We denote by $\mathcal A/\sim$ the new (deterministic and trim) A-automata resulting from identifying the vertices according to \sim , plus foldings.

Definition

The fringe of $\mathcal A$ is the (finite) collection of A-automata of the form $\mathcal A/\sim$.

Definition

Let
$$H \leq_{fg} F(A)$$
. The fringe of H is $\mathcal{O}(H) = \{L(\Gamma(H)/\sim)\pi \mid \sim \text{ eq. rel. on } VA\}$

Definition

Let $\mathcal A$ be a deterministic and trim A-automata, and let \sim an eq. rel. on $V\mathcal A$. We denote by $\mathcal A/\sim$ the new (deterministic and trim) A-automata resulting from identifying the vertices according to \sim , plus foldings.

Definition

The fringe of \mathcal{A} is the (finite) collection of A-automata of the form \mathcal{A}/\sim .

Definition

Let
$$H \leq_{fg} F(A)$$
. The fringe of H is $\mathcal{O}(H) = \{L(\Gamma(H)/\sim)\pi \mid \sim \text{ eq. rel. on } VA\}.$

Observation

For $H \leq_{fg} F(A)$, we have $\mathcal{O}(H) = \{H_0, H_1, \dots, H_k\}$, all of them f.g., and with $H_0 = H$ and $H_k = \langle A' \rangle$ (A' \subseteq A the set of used letters).

Observation

For $H \leq_{fg} F(A)$, $\mathcal{O}(H)$ is finite and computable.

Proposition

For $H \leq_{fg} F(A)$, $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$.

Corollary

For $H \leq_{fa} F(A)$, $A\mathcal{E}(H)$ is finite

Observation

For $H \leq_{fg} F(A)$, we have $\mathcal{O}(H) = \{H_0, H_1, \dots, H_k\}$, all of them f.g., and with $H_0 = H$ and $H_k = \langle A' \rangle$ (A' \subseteq A the set of used letters).

Observation

For $H \leq_{fg} F(A)$, $\mathcal{O}(H)$ is finite and computable.

Proposition

For $H \leq_{fg} F(A)$, $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$.

Corollary

For $H \leq_{fa} F(A)$, $A\mathcal{E}(H)$ is finite

Observation

For $H \leq_{fg} F(A)$, we have $\mathcal{O}(H) = \{H_0, H_1, \dots, H_k\}$, all of them f.g., and with $H_0 = H$ and $H_k = \langle A' \rangle$ (A' \subseteq A the set of used letters).

Observation

For $H \leq_{fg} F(A)$, $\mathcal{O}(H)$ is finite and computable.

Proposition

For $H \leq_{fg} F(A)$, $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$.

Corollary

For $H \leq_{fa} F(A)$, $A\mathcal{E}(H)$ is finite

Observation

For $H \leq_{fg} F(A)$, we have $\mathcal{O}(H) = \{H_0, H_1, \dots, H_k\}$, all of them f.g., and with $H_0 = H$ and $H_k = \langle A' \rangle$ (A' \subseteq A the set of used letters).

Observation

For $H \leq_{fg} F(A)$, $\mathcal{O}(H)$ is finite and computable.

Proposition

For $H \leq_{fg} F(A)$, $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$.

Corollary

For $H \leq_{fa} F(A)$, $\mathcal{AE}(H)$ is finite.

Corollary

For $H \leq_{fq} F(A)$, $\mathcal{AE}(H)$ is computable.

- 1) Compute $\Gamma(H)$
- 2) Compute $\Gamma(H)/\sim$ for all eq. rel. \sim of $V\Gamma(H)$,
- 3) Compute $\mathcal{O}(H)$,
- 4) Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leq_{ff} K_2$ and deleting K_2 .
- 5) The resulting set is AE(H). \square

Corollary

For $H \leq_{fg} F(A)$, $\mathcal{AE}(H)$ is computable.

- 1) Compute $\Gamma(H)$,
- 2) Compute $\Gamma(H)/\sim$ for all eq. rel. \sim of $V\Gamma(H)$,
- 3) Compute $\mathcal{O}(H)$,
- 4) Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leq_{ff} K_2$ and deleting K_2 .
- 5) The resulting set is $A\mathcal{E}(H)$.

Corollary

For $H \leq_{fa} F(A)$, $\mathcal{AE}(H)$ is computable.

- 1) Compute $\Gamma(H)$,
- 2) Compute $\Gamma(H)/\sim$ for all eq. rel. \sim of $V\Gamma(H)$,
- Compute O(H),
- 4) Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leq_{ff} K_2$ and deleting K_2 .
- 5) The resulting set is AE(H). \square

Corollary

For $H \leq_{fa} F(A)$, $\mathcal{AE}(H)$ is computable.

- 1) Compute $\Gamma(H)$,
- 2) Compute $\Gamma(H)/\sim$ for all eq. rel. \sim of $V\Gamma(H)$,
- 3) Compute $\mathcal{O}(H)$,
- 4) Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leq_{ff} K_2$ and deleting K_2 .
- 5) The resulting set is $A\mathcal{E}(H)$. \square

Corollary

For $H \leq_{fa} F(A)$, $\mathcal{AE}(H)$ is computable.

- 1) Compute $\Gamma(H)$,
- 2) Compute $\Gamma(H)/\sim$ for all eq. rel. \sim of $V\Gamma(H)$,
- 3) Compute $\mathcal{O}(H)$,
- 4) Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leq_{ff} K_2$ and deleting K_2 .
- 5) The resulting set is AE(H). \square

Corollary

For $H \leq_{fg} F(A)$, $\mathcal{AE}(H)$ is computable.

- 1) Compute $\Gamma(H)$,
- 2) Compute $\Gamma(H)/\sim$ for all eq. rel. \sim of $V\Gamma(H)$,
- 3) Compute $\mathcal{O}(H)$,
- 4) Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leq_{ff} K_2$ and deleting K_2 .
- 5) The resulting set is AE(H). \square

Corollary

For $H \leq_{fq} F(A)$, $\mathcal{AE}(H)$ is computable.

- Compute Γ(H),
- 2) Compute $\Gamma(H)/\sim$ for all eq. rel. \sim of $V\Gamma(H)$,
- 3) Compute $\mathcal{O}(H)$,
- 4) Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leq_{ff} K_2$ and deleting K_2 .
- 5) The resulting set is AE(H). \square

Proposition

Given $H, K \leq F(A)$, it is algorithmically decidable whether $H \leq_{ff} K$ or not.

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (faster but still exponential)
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time),
- Puder 2011 (graphical argument).

Proposition

Given $H, K \leq F(A)$, it is algorithmically decidable whether $H \leq_{ff} K$ or not.

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (faster but still exponential)
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time),
- Puder 2011 (graphical argument).

Proposition

Given $H, K \leq F(A)$, it is algorithmically decidable whether $H \leq_{ff} K$ or not.

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time),
- Puder 2011 (graphical argument).

Proposition

Given $H, K \leq F(A)$, it is algorithmically decidable whether $H \leq_{ff} K$ or not.

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time),
- Puder 2011 (graphical argument).

Proposition

Given $H, K \leq F(A)$, it is algorithmically decidable whether $H \leq_{ff} K$ or not.

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time),
- Puder 2011 (graphical argument).

The algebraic closure

Observation

If $H \leqslant_{alg} K_1$ and $H \leqslant_{alg} K_2$ then $H \leqslant_{alg} \langle K_1 \cup K_2 \rangle$.

Corollary

For every $H \leq_{fg} K \leq_{fg} F(A)$, $\mathcal{AE}_{\kappa}(H)$ has a unique maximal element, called the K-algebraic closure of H, and denoted $Cl_K(H)$.

Theorem

Every extension $H \le K$ of f.g. subgroups of F(A) splits, in a unique way, in an algebraic part and a free part, $H \le_{alg} Cl_K(H) \le_{ff} K$.

The algebraic closure

Observation

If $H \leqslant_{alg} K_1$ and $H \leqslant_{alg} K_2$ then $H \leqslant_{alg} \langle K_1 \cup K_2 \rangle$.

Corollary

For every $H \leq_{fg} K \leq_{fg} F(A)$, $\mathcal{AE}_{\kappa}(H)$ has a unique maximal element, called the K-algebraic closure of H, and denoted $Cl_{K}(H)$.

Theorem

Every extension $H \le K$ of f.g. subgroups of F(A) splits, in a unique way, in an algebraic part and a free part, $H \le_{alg} Cl_K(H) \le_{ff} K$.

The algebraic closure

Observation

If $H \leqslant_{alg} K_1$ and $H \leqslant_{alg} K_2$ then $H \leqslant_{alg} \langle K_1 \cup K_2 \rangle$.

Corollary

For every $H \leq_{fg} K \leq_{fg} F(A)$, $\mathcal{AE}_{\kappa}(H)$ has a unique maximal element, called the K-algebraic closure of H, and denoted $Cl_{K}(H)$.

Theorem

Every extension $H \le K$ of f.g. subgroups of F(A) splits, in a unique way, in an algebraic part and a free part, $H \le_{alg} Cl_K(H) \le_{ff} K$.

Outline

- Notation
- Automata
- Schreier graphs
- First algebraic applications
- Finite index subgroups
- 6 Intersections of subgroups
- Fringe and algebraic extensions
- 8 The pro- \mathcal{V} topology
- Fixed points

Definition

A pseudo-variety of groups $\mathcal V$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- i) G = all finite groups
- ii) $G_p = all finite p-groups,$
- iii) $G_{nil} = all$ finite nilpotent groups,
- iv) $G_{sol} = all finite soluble groups,$
 - v) $G_{ab} = all finite abelian groups,$
- vi) for a finite group V, [V] =all quotients of subgroups of V^k , $k \geqslant 1$.
- vii) · · ·

Definition

V is extension-closed if $V \triangleleft W$ with $V, W/V \in V$ imply $W \in V$.

Definition

A pseudo-variety of groups $\mathcal V$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- i) G = all finite groups,
- ii) $G_p = all finite p-groups$
- iii) $G_{nil} = all finite nilpotent groups,$
- iv) $G_{sol} = all finite soluble groups,$
- v) $G_{ab} = all$ finite abelian groups,
- vi) for a finite group V, [V] =all quotients of subgroups of V^k , $k \geqslant 1$
- vii) ··

Definition

 \mathcal{V} is extension-closed if $V \triangleleft W$ with $V, W/V \in \mathcal{V}$ imply $W \in \mathcal{V}$.

Definition

A pseudo-variety of groups $\mathcal V$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- i) G = all finite groups,
- ii) $G_p = all finite p-groups,$
- iii) $G_{nil} = all finite nilpotent groups,$
- iv) $G_{sol} = all$ finite soluble groups,
- v) $G_{ab} = all$ finite abelian groups,
- vi) for a finite group V, [V] =all quotients of subgroups of V^k , $k \ge 1$
- vii) ··

Definition

 \mathcal{V} is extension-closed if $V \triangleleft W$ with $V, W/V \in \mathcal{V}$ imply $W \in \mathcal{V}$.

Definition

A pseudo-variety of groups $\mathcal V$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- i) G = all finite groups,
- ii) $G_p = all finite p-groups,$
- iii) $G_{nil} = all$ finite nilpotent groups,
- iv) $G_{sol} = all$ finite soluble groups,
- v) $G_{ab} = all finite abelian groups,$
- vi) for a finite group V, [V] =all quotients of subgroups of V^k , $k \ge 1$
- vii) · · ·

Definition

V is extension-closed if $V \triangleleft W$ with $V, W/V \in V$ imply $W \in V$

Definition

A pseudo-variety of groups $\mathcal V$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- i) G = all finite groups,
- ii) $G_p = all finite p-groups,$
- iii) $G_{nil} = all$ finite nilpotent groups,
- iv) $G_{sol} = all finite soluble groups,$
- v) $G_{ab} = all finite abelian groups,$
- vi) for a finite group V, [V] =all quotients of subgroups of V^k , $k \geqslant 1$

Definition

 \mathcal{V} is extension-closed if $V \triangleleft W$ with $V, W/V \in \mathcal{V}$ imply $W \in \mathcal{V}$

Definition

A pseudo-variety of groups $\mathcal V$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- i) G = all finite groups,
- ii) $G_p = all finite p-groups,$
- iii) $G_{nil} = all$ finite nilpotent groups,
- iv) $G_{sol} = all$ finite soluble groups,
- v) $G_{ab} = all$ finite abelian groups,
- vi) for a finite group V, [V] =all quotients of subgroups of V^k , $k \geqslant 1$

Definition

 \mathcal{V} is extension-closed if $V \triangleleft W$ with $V, W/V \in \mathcal{V}$ imply $W \in \mathcal{V}$

Definition

A pseudo-variety of groups $\mathcal V$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- i) G = all finite groups,
- ii) $G_p = all finite p-groups,$
- iii) $G_{nil} = all$ finite nilpotent groups,
- iv) $G_{sol} = all finite soluble groups,$
- v) $G_{ab} = all finite abelian groups,$
- vi) for a finite group V, [V] =all quotients of subgroups of V^k , $k \ge 1$.
- vii) · · ·

Definition

V is extension-closed if $V \triangleleft W$ with $V, W/V \in V$ imply $W \in V$

Definition

A pseudo-variety of groups $\mathcal V$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- i) G = all finite groups,
- ii) $G_p = all finite p-groups,$
- iii) $G_{nil} = all$ finite nilpotent groups,
- iv) $G_{sol} = all finite soluble groups,$
- v) $G_{ab} = all$ finite abelian groups,
- vi) for a finite group V, [V] =all quotients of subgroups of V^k , $k \ge 1$.
- vii) · · ·

Definition

 \mathcal{V} is extension-closed if $V \triangleleft W$ with $V, W/V \in \mathcal{V}$ imply $W \in \mathcal{V}$.

Definition

Let G be a group, and V be a pseudo-variety of finite groups. The pro-V topology on G can be defined in several equivalent ways:

- i) it is the smallest topology making all the morphisms from G into all $V \in \mathcal{V}$ (with the discrete topology) continuous,
- ii) a basis of open sets is given by $\varphi^{-1}(x)$, for all morphism $\varphi \colon G \to V \in \mathcal{V}$,
- iii) the normal (finite index) subgroups $K \subseteq G$ such that $G/K \in V$ form a basis of neighborhoods of 1,
- iv) it is the topology given by the pseudo-ultra-metric $d(x,y) = 2^{-r(x,y)}$, where $r(x,y) = \min\{|V| \mid V \in \mathcal{V} \text{ and separates } x \text{ and } y \}$.

Observation

Definition

Let G be a group, and V be a pseudo-variety of finite groups. The pro-V topology on G can be defined in several equivalent ways:

- i) it is the smallest topology making all the morphisms from G into all $V \in \mathcal{V}$ (with the discrete topology) continuous,
- ii) a basis of open sets is given by $\varphi^{-1}(x)$, for all morphism $\varphi \colon G \to V \in \mathcal{V}$,
- iii) the normal (finite index) subgroups $K \subseteq G$ such that $G/K \in V$ form a basis of neighborhoods of 1,
- iv) it is the topology given by the pseudo-ultra-metric $d(x,y) = 2^{-r(x,y)}$, where $r(x,y) = \min\{|V| \mid V \in \mathcal{V} \text{ and separates } x \text{ and } y \}$.

Observation

Definition

Let G be a group, and V be a pseudo-variety of finite groups. The pro-V topology on G can be defined in several equivalent ways:

- i) it is the smallest topology making all the morphisms from G into all $V \in \mathcal{V}$ (with the discrete topology) continuous,
- ii) a basis of open sets is given by $\varphi^{-1}(x)$, for all morphism $\varphi \colon G \to V \in \mathcal{V}$,
- iii) the normal (finite index) subgroups $K \subseteq G$ such that $G/K \in V$ form a basis of neighborhoods of 1,
- iv) it is the topology given by the pseudo-ultra-metric $d(x,y) = 2^{-r(x,y)}$, where $r(x,y) = \min\{|V| \mid V \in \mathcal{V} \text{ and separates } x \text{ and } y \}$.

Observation

Definition

Let G be a group, and V be a pseudo-variety of finite groups. The pro-V topology on G can be defined in several equivalent ways:

- i) it is the smallest topology making all the morphisms from G into all $V \in \mathcal{V}$ (with the discrete topology) continuous,
- ii) a basis of open sets is given by $\varphi^{-1}(x)$, for all morphism $\varphi \colon G \to V \in \mathcal{V}$,
- iii) the normal (finite index) subgroups $K \subseteq G$ such that $G/K \in \mathcal{V}$ form a basis of neighborhoods of 1,
- iv) it is the topology given by the pseudo-ultra-metric $d(x,y) = 2^{-r(x,y)}$, where $r(x,y) = \min\{|V| \mid V \in \mathcal{V} \text{ and separates } x \text{ and } y \}$.

Observation

Definition

Let G be a group, and V be a pseudo-variety of finite groups. The pro-V topology on G can be defined in several equivalent ways:

- i) it is the smallest topology making all the morphisms from G into all $V \in \mathcal{V}$ (with the discrete topology) continuous,
- ii) a basis of open sets is given by $\varphi^{-1}(x)$, for all morphism $\varphi \colon G \to V \in \mathcal{V}$,
- iii) the normal (finite index) subgroups $K \subseteq G$ such that $G/K \in \mathcal{V}$ form a basis of neighborhoods of 1,
- iv) it is the topology given by the pseudo-ultra-metric $d(x,y) = 2^{-r(x,y)}$, where $r(x,y) = \min\{|V| \mid V \in \mathcal{V} \text{ and separates } x \text{ and } y \}$.

Observation

Definition

Let G be a group, and V be a pseudo-variety of finite groups. The pro-V topology on G can be defined in several equivalent ways:

- i) it is the smallest topology making all the morphisms from G into all $V \in \mathcal{V}$ (with the discrete topology) continuous,
- ii) a basis of open sets is given by $\varphi^{-1}(x)$, for all morphism $\varphi \colon G \to V \in \mathcal{V}$,
- iii) the normal (finite index) subgroups $K \subseteq G$ such that $G/K \in \mathcal{V}$ form a basis of neighborhoods of 1,
- iv) it is the topology given by the pseudo-ultra-metric $d(x,y) = 2^{-r(x,y)}$, where $r(x,y) = \min\{|V| \mid V \in \mathcal{V} \text{ and separates } x \text{ and } y \}$.

Observation

Proposition

Let G be a group equipped with the pro- \mathcal{V} topology, and let $H \leq G$. Then, TFAE:

- (a) H is open
- (b) H is clopen (i.e. open and closed)
- (c) $H \leq_{fi} G$ and $G/H_G \in \mathcal{V}$.

$$cl_{\mathcal{V}}(H) = \bigcap_{H \leqslant K, \text{ open}} K = \bigcap_{\varphi \colon G \to V \in \mathcal{V}} \varphi^{-1}(\varphi(H))$$

Proposition

Let G be a group equipped with the pro- $\mathcal V$ topology, and let $H \leq G$. Then, TFAE:

- (a) H is open
- (b) H is clopen (i.e. open and closed)
- (c) $H \leqslant_{fi} G$ and $G/H_G \in \mathcal{V}$.

$$\operatorname{\mathit{cl}}_{\mathcal{V}}(H) = \bigcap_{H \leqslant K, \ \operatorname{open}} K = \bigcap_{\varphi \colon G \to V \in \mathcal{V}} \varphi^{-1}(\varphi(H))$$

Proposition

Let G be a group equipped with the pro- $\mathcal V$ topology, and let $H \leq G$. Then, TFAE:

- (a) H is open
- (b) H is clopen (i.e. open and closed)
- (c) $H \leq_{fi} G$ and $G/H_G \in \mathcal{V}$.

$$cl_{\mathcal{V}}(H) = \bigcap_{H \leqslant K, \ open} K = \bigcap_{\varphi : \ G \to V \in \mathcal{V}} \varphi^{-1}(\varphi(H))$$

Proposition

Let G be a group equipped with the pro- \mathcal{V} topology, and let $H \leq G$. Then, TFAE:

- (a) H is open
- (b) H is clopen (i.e. open and closed)
- (c) $H \leq_{fi} G$ and $G/H_G \in \mathcal{V}$.

$$cl_{\mathcal{V}}(H) = \bigcap_{H \leqslant K, \text{ open}} K = \bigcap_{\varphi \colon G \to V \in \mathcal{V}} \varphi^{-1}(\varphi(H)).$$

The extension-closed case

Proposition (Ribes, Zaleskiĭ)

Let $\mathcal V$ be an extension-closed pseudo-variety, and consider F(A) the free group on A with the pro- $\mathcal V$ topology. For a given $H \leqslant_{fg} F(A)$,

H is closed ←⇒ H is a free factor of a clopen subgroup.

Corollary

For an extension-closed V and a $H \leq_{fg} F(A)$, we have $H \leq_{alg} cl_{\mathcal{V}}(H)$.

Furthermore, it can also be proven that

Proposition (Ribes, Zaleskii)

In this situation, $r(cl_{\mathcal{V}}(H)) \leq r(H)$

The extension-closed case

Proposition (Ribes, Zaleskiĭ)

Let V be an extension-closed pseudo-variety, and consider F(A) the free group on A with the pro-V topology. For a given $H \leq_{fg} F(A)$,

H is closed \iff H is a free factor of a clopen subgroup.

Corollary

For an extension-closed V and a $H \leq_{fg} F(A)$, we have $H \leq_{alg} cl_{V}(H)$.

Furthermore, it can also be proven that

Proposition (Ribes, Zaleskii)

In this situation, $r(cl_{\mathcal{V}}(H)) \leq r(H)$

The extension-closed case

Proposition (Ribes, Zaleskiĭ)

Let V be an extension-closed pseudo-variety, and consider F(A) the free group on A with the pro-V topology. For a given $H \leq_{fq} F(A)$,

H is closed \iff H is a free factor of a clopen subgroup.

Corollary

For an extension-closed V and a $H \leq_{fg} F(A)$, we have $H \leq_{alg} cl_{V}(H)$.

Furthermore, it can also be proven that

Proposition (Ribes, Zaleskii)

In this situation, $r(cl_{\mathcal{V}}(H)) \leq r(H)$.

p-closure, nil-closure

Theorem (Margolis-Sapir-Weil)

The p-closure of $H \leq_{fg} F(A)$, $cl_p(H)$, is effectively computable, for every prime p.

Theorem

For $H \leq_{fg} F(A)$, $cl_{nil}(H) = \cap_p cl_p(H)$. Thus, $cl_{nil}(H)$ is effectively computable.

Problem

Find an algorithm to compute the solvable closure of a given $H \leq_{fa} F(A)$.

p-closure, nil-closure

Theorem (Margolis-Sapir-Weil)

The p-closure of $H \leq_{fg} F(A)$, $cl_p(H)$, is effectively computable, for every prime p.

Theorem

For $H \leq_{fg} F(A)$, $cl_{nil}(H) = \bigcap_p cl_p(H)$. Thus, $cl_{nil}(H)$ is effectively computable.

Problem

Find an algorithm to compute the solvable closure of a given $H \leq_{fa} F(A)$.

p-closure, nil-closure

Theorem (Margolis-Sapir-Weil)

The p-closure of $H \leq_{fg} F(A)$, $cl_p(H)$, is effectively computable, for every prime p.

Theorem

For $H \leq_{fg} F(A)$, $cl_{nil}(H) = \bigcap_p cl_p(H)$. Thus, $cl_{nil}(H)$ is effectively computable.

Problem

Find an algorithm to compute the solvable closure of a given $H \leq_{fa} F(A)$.

Outline

- Notation
- Automata
- Schreier graphs
- First algebraic applications
- Finite index subgroups
- 6 Intersections of subgroups
- Fringe and algebraic extensions
- 1 The pro-V topology
- Fixed points


```
\varphi \colon F_{3} \to F_{3}
a \mapsto a
b \mapsto ba
c \mapsto ca^{2}
\varphi \colon F_{4} \to F_{4}
a \mapsto dac
b \mapsto c^{-1}a^{-1}d^{-1}ac
c \mapsto c^{-1}a^{-1}b^{-1}ac
d \mapsto c^{-1}a^{-1}bc
Fix \varphi = \langle w \rangle, \text{ where ...}
```

```
\phi: F_{3} \rightarrow F_{3}
a \mapsto a
b \mapsto ba
c \mapsto ca^{2}
\varphi: F_{4} \rightarrow F_{4}
a \mapsto dac
b \mapsto c^{-1}a^{-1}d^{-1}ac
c \mapsto c^{-1}a^{-1}b^{-1}ac
d \mapsto c^{-1}a^{-1}bc
Fix \phi = \langle a, bab^{-1}, cac^{-1} \rangle
Fix \phi = \langle w \rangle, \text{ where...}
```

$$\varphi \colon F_3 \longrightarrow F_3$$

$$a \mapsto a$$

$$b \mapsto ba$$

$$c \mapsto ca^2$$

$$\varphi \colon F_4 \longrightarrow F_4$$

$$a \mapsto dac$$

$$b \mapsto c^{-1}a^{-1}d^{-1}ac$$

$$c \mapsto c^{-1}a^{-1}b^{-1}ac$$

$$d \mapsto c^{-1}a^{-1}bc$$
Fix $\phi = \langle a, bab^{-1}, cac^{-1} \rangle$

$$Fix \phi = \langle w \rangle, \text{ where ...}$$

 $w = c^{-1}a^{-1}bd^{-1}c^{-1}a^{-1}d^{-1}ad^{-1}c^{-1}b^{-1}$ acdadacdcdbcda $^{-1}a^{-1}d^{-1}$ $a^{-1}d^{-1}c^{-1}a^{-1}d^{-1}c^{-1}b^{-1}d^{-1}c^{-1}d^{-1}c^{-1}$ daabcdaccdb $^{-1}a^{-1}$.

$$\varphi \colon \mathcal{F}_{3} \to \mathcal{F}_{3}$$

$$a \mapsto a$$

$$b \mapsto ba$$

$$c \mapsto ca^{2}$$

$$\varphi \colon \mathcal{F}_{4} \to \mathcal{F}_{4}$$

$$a \mapsto dac$$

$$b \mapsto c^{-1}a^{-1}d^{-1}ac$$

$$c \mapsto c^{-1}a^{-1}b^{-1}ac$$

$$d \mapsto c^{-1}a^{-1}bc$$

$$Fix \varphi = \langle w \rangle, \text{ where...}$$

 $w = c^{-1}a^{-1}bd^{-1}c^{-1}a^{-1}d^{-1}ad^{-1}c^{-1}b^{-1}$ acdadacdcdbcda $^{-1}a^{-1}d^{-1}$ $a^{-1}d^{-1}c^{-1}a^{-1}d^{-1}c^{-1}b^{-1}d^{-1}c^{-1}d^{-1}c^{-1}$ daabcdaccdb $^{-1}a^{-1}$.

```
Fix \phi = \langle a, bab^{-1}, cac^{-1} \rangle
       \varphi \colon F_4 \to F_4
             a \mapsto dac
             b \mapsto c^{-1}a^{-1}d^{-1}ac
                                                             Fix \varphi = \langle w \rangle, where...
             c \mapsto c^{-1}a^{-1}b^{-1}ac
             d \mapsto c^{-1}a^{-1}bc
w = c^{-1}a^{-1}bd^{-1}c^{-1}a^{-1}d^{-1}ad^{-1}c^{-1}b^{-1}acdadacdcdbcda^{-1}a^{-1}d^{-1}
a^{-1}d^{-1}c^{-1}a^{-1}d^{-1}c^{-1}h^{-1}d^{-1}c^{-1}d^{-1}c^{-1} daabcdaccdb^{-1}a^{-1}.
```

Theorem (Dyer-Scott, 75)

Let $\phi \in Aut(F(A))$ be a finite order automorphism of F(A). Then, $Fix(\phi) \leqslant_{\mathrm{ff}} F_n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) < \infty$.

Theorem (Bestvina-Handel, 88 (published 92))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) \leq n$.

Theorem (Imrich-Turner, 89)

Let $\phi \in End(F_n)$. Then $r(Fix(\phi)) \leq r$

Theorem (Dyer-Scott, 75)

Let $\phi \in Aut(F(A))$ be a finite order automorphism of F(A). Then, $Fix(\phi) \leqslant_{\mathrm{ff}} F_n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) < \infty$.

Theorem (Bestvina-Handel, 88 (published 92))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) \leqslant n$.

Theorem (Imrich-Turner, 89)

Let $\phi \in End(F_n)$. Then $r(Fix(\phi)) \leq n$

Theorem (Dyer-Scott, 75)

Let $\phi \in Aut(F(A))$ be a finite order automorphism of F(A). Then, $Fix(\phi) \leqslant_{\mathrm{ff}} F_n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) < \infty$.

Theorem (Bestvina-Handel, 88 (published 92))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) \leq n$.

Theorem (Imrich-Turner, 89)

Let $\phi \in End(F_n)$. Then $r(Fix(\phi)) \leq n$

Theorem (Dyer-Scott, 75)

Let $\phi \in Aut(F(A))$ be a finite order automorphism of F(A). Then, $Fix(\phi) \leqslant_{ff} F_n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) < \infty$.

Theorem (Bestvina-Handel, 88 (published 92))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) \leqslant n$.

Theorem (Imrich-Turner, 89)

Let $\phi \in End(F_n)$. Then $r(Fix(\phi)) \leq n$.

Definition

A subgroup $H \leqslant F_n$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_n$.

Theorem (Dicks-V, 96)

Let $G \subseteq Mon(F_n)$ be an arbitrary set of monomorphisms of F_n . Then, Fix(G) is inert; in particular, $r(Fix(G)) \leq n$.

Theorem (Bergman, 99

Let $G \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then, $r(Fix(G)) \leq n$.

Conjecture (V.)

Let $\phi \in End(F_n)$. Then $Fix(\phi)$ is inert.

Definition

A subgroup $H \leqslant F_n$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_n$.

Theorem (Dicks-V, 96)

Let $G \subseteq Mon(F_n)$ be an arbitrary set of monomorphisms of F_n . Then, Fix(G) is inert; in particular, $r(Fix(G)) \leq n$.

Theorem (Bergman, 99

Let $G \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then, $r(Fix(G)) \leq n$.

Conjecture (V.)

Let $\phi \in End(F_n)$. Then $Fix(\phi)$ is inert

Definition

A subgroup $H \leqslant F_n$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_n$.

Theorem (Dicks-V, 96)

Let $G \subseteq Mon(F_n)$ be an arbitrary set of monomorphisms of F_n . Then, Fix(G) is inert; in particular, $r(Fix(G)) \leq n$.

Theorem (Bergman, 99)

Let $G \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then, $r(Fix(G)) \leqslant n$.

Conjecture (V.)

Let $\phi \in End(F_n)$. Then $Fix(\phi)$ is inert

Definition

A subgroup $H \leqslant F_n$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_n$.

Theorem (Dicks-V, 96)

Let $G \subseteq Mon(F_n)$ be an arbitrary set of monomorphisms of F_n . Then, Fix(G) is inert; in particular, $r(Fix(G)) \leqslant n$.

Theorem (Bergman, 99)

Let $G \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then, $r(Fix(G)) \leqslant n$.

Conjecture (V.)

Let $\phi \in End(F_n)$. Then $Fix(\phi)$ is inert.

Definition

A subgroup $H \leqslant F_n$ is said to be

- 1-auto-fixed if $H = Fix(\phi)$ for some $\phi \in Aut(F_n)$,
- 1-endo-fixed if $H = Fix(\phi)$ for some $\phi \in End(F_n)$,
- auto-fixed if H = Fix(S) for some $S \subseteq Aut(F_n)$,
- endo-fixed if H = Fix(S) for some $S \subseteq End(F_n)$,

Definition

A subgroup $H \leqslant F_n$ is said to be

- 1-auto-fixed if $H = Fix(\phi)$ for some $\phi \in Aut(F_n)$,
- 1-endo-fixed if $H = Fix(\phi)$ for some $\phi \in End(F_n)$,
- auto-fixed if H = Fix(S) for some $S \subseteq Aut(F_n)$,
- endo-fixed if H = Fix(S) for some $S \subseteq End(F_n)$,

Definition

A subgroup $H \leqslant F_n$ is said to be

- 1-auto-fixed if $H = Fix(\phi)$ for some $\phi \in Aut(F_n)$,
- 1-endo-fixed if $H = Fix(\phi)$ for some $\phi \in End(F_n)$,
- auto-fixed if H = Fix(S) for some $S \subseteq Aut(F_n)$,
- endo-fixed if H = Fix(S) for some $S \subseteq End(F_n)$,

Definition

A subgroup $H \leqslant F_n$ is said to be

- 1-auto-fixed if $H = Fix(\phi)$ for some $\phi \in Aut(F_n)$,
- 1-endo-fixed if $H = Fix(\phi)$ for some $\phi \in End(F_n)$,
- auto-fixed if H = Fix(S) for some $S \subseteq Aut(F_n)$,
- endo-fixed if H = Fix(S) for some $S \subseteq End(F_n)$,

Definition

A subgroup $H \leqslant F_n$ is said to be

- 1-auto-fixed if $H = Fix(\phi)$ for some $\phi \in Aut(F_n)$,
- 1-endo-fixed if $H = Fix(\phi)$ for some $\phi \in End(F_n)$,
- auto-fixed if H = Fix(S) for some $S \subseteq Aut(F_n)$,
- endo-fixed if H = Fix(S) for some $S \subseteq End(F_n)$,

Relations between them

Relations between them

Example (Martino-V., 03; Ciobanu-Dicks, 06)

Let $F_3 = \langle a, b, c \rangle$ and $H = \langle b, cacbab^{-1}c^{-1} \rangle \leqslant F_3$. Then, $H = Fix(a \mapsto 1, b \mapsto b, c \mapsto cacbab^{-1}c^{-1})$, but H is NOT the fixed subgroup of any set of automorphism of F_3 .

Relations between them

$$\begin{array}{c|c}
1 - auto - fixed & \stackrel{\subseteq}{\neq} & 1 - endo - fixed \\
& \cap | \parallel? & & \cap | \parallel? \\
\hline
auto - fixed & \stackrel{\subseteq}{\neq} & endo - fixed
\end{array}$$

Conjecture (V.)

1-auto-fixed = auto-fixed, and 1-endo-fixed = endo-fixed.
That is, the families of 1-auto-fixed and 1-endo-fixed subgroups are closed under intersections.

It is true up to free factors

Theorem (Martino-V., 00)

Let $S \subseteq End(F_n)$. Then, $\exists \phi \in \langle S \rangle$ such that $Fix(S) \leqslant_{ff} Fix(\phi)$.

However... free factors of 1-endo-fixed (1-auto-fixed) subgroups need not be even endo-fixed (auto-fixed).

It is true up to free factors

Theorem (Martino-V., 00)

Let $S \subseteq End(F_n)$. Then, $\exists \phi \in \langle S \rangle$ such that $Fix(S) \leqslant_{\mathrm{ff}} Fix(\phi)$.

However... free factors of 1-endo-fixed (1-auto-fixed) subgroups need not be even endo-fixed (auto-fixed).

Definition

A subgroup $H \leqslant F(A)$ is compressed when $r(H) \leqslant r(K)$ for every $H \leqslant K \leqslant F(A)$.

Observation

H inert $\Rightarrow H$ compressed.

Is every compressed subgroup, inert?

Proposition

Definition

A subgroup $H \leqslant F(A)$ is compressed when $r(H) \leqslant r(K)$ for every $H \leqslant K \leqslant F(A)$.

Observation

 $H inert \Rightarrow H compressed.$

Is every compressed subgroup, inert?

Proposition

Definition

A subgroup $H \leqslant F(A)$ is compressed when $r(H) \leqslant r(K)$ for every $H \leqslant K \leqslant F(A)$.

Observation

 $H inert \Rightarrow H compressed.$

Is every compressed subgroup, inert?

Proposition

Definition

A subgroup $H \leqslant F(A)$ is compressed when $r(H) \leqslant r(K)$ for every $H \leqslant K \leqslant F(A)$.

Observation

 $H inert \Rightarrow H compressed.$

Is every compressed subgroup, inert?

Proposition

Fixed subgroups are compressed

Conjecture

There is an algorithm which, given $H \leq_{fg} F(A)$, decides whether H is inert.

Theorem (Martino-V, 04)

Let $S \subseteq End(F_n)$. Then, Fix(S) is compressed.

Conjecture (V.)

Let $S \subseteq End(F_n)$. Then, Fix(S) is inert.

Fixed subgroups are compressed

Conjecture

There is an algorithm which, given $H \leq_{fg} F(A)$, decides whether H is inert.

Theorem (Martino-V, 04)

Let $S \subseteq End(F_n)$. Then, Fix(S) is compressed.

Conjecture (V.

Let $S \subseteq End(F_n)$. Then, Fix(S) is inert.

Fixed subgroups are compressed

Conjecture

There is an algorithm which, given $H \leq_{fg} F(A)$, decides whether H is inert.

Theorem (Martino-V, 04)

Let $S \subseteq End(F_n)$. Then, Fix(S) is compressed.

Conjecture (V.)

Let $S \subset End(F_n)$. Then, Fix(S) is inert.