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This is work done by different authors during several years, and in
different contexts.

We’ll mostly follow a version by Bartholdi-Silva.

Then, we’ll see several applications.
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Free monoid

Definition

• A = {a1, . . . , ar} is a finite alphabet.
• A∗ is the free monoid on A.
• A language is a subset L ⊆ A∗.
• An involutive alphabet Ã = {a1, . . . , ar , a−1

1 , . . . , a−1
r }.

• Reduced words; reduction ∼; R(A).
• Formal word definitions (a−1)−1 = a,

(aε1
i1 · · ·a

εk
ik )−1 = a−εk

ik · · ·a−ε1
i1 .
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Free group

Definition

The free group on A, F (A) = Ã∗/ ∼.

Lemma

For every w ∈ Ã∗, there is a unique u ∈ R(A), s.t. u =F (A) u.

Lemma

F (A) is a quotient of Ã∗. The projection is denoted π:

π : Ã∗ → F (A)
u 7→ [u] = [ u ].

Definition

For a subgroup H 6 F (A), define H = {u | u ∈ H} ⊆ Ã∗.
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Automata

Definition
Let A be an alphabet. An A-automaton A is an oriented graph with
labels from A at the edges, and with a basepoint, A = (V , E , q0),
where
• V is a finite set (of vertices),
• E ⊆ V × A× V is the set of edges,
• q0 ∈ V is the basepoint,

such that the underlying undirected graph is connected.

Note that A admits loops, but no parallel edges with the same label.

Definition

An A-automata A = (V , E , q0) is involutive if A is an involutive
alphabet and (p, a, q) ∈ E ⇔ (q, a−1, p) ∈ E.
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Paths

Form now on, all automata we consider will be involutive.

Definition
Let A be an A-automata.
• A path γ in A,
• the label of a path γ, label(γ) ∈ Ã∗,
• reduced path,

• notation: p u→ q means a path from p to q with label u ∈ Ã∗.

Lemma

Let p u→ q be a path in A. If u is reduced then p u→ q is reduced.
The convers is not true.
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Trimness

Definition
The language of an A-automata A, is

L(A) = {u ∈ Ã∗ | ∃q0
u→ q0} ⊆ Ã∗.

Definition
An A-automata A is trim if it has no vertices of degree 1 except
maybe the basepoint.

Lemma
If A is trim then ∀q 6= q0 there exists a reduced path q0 → q → q0.
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u→ q0} ⊆ Ã∗.
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Determinism

Definition

An A-automata A is deterministic if (p, a, q) ∈ E and (p, a, q′) ∈ E
imply q = q′.

Lemma
Let A be a deterministic A-automaton. We have,

i) if p u→ q is reduced then u is reduced,

ii) if ∃ p u→ q, ∃ p u→ q′ then q = q′,

iii) if ∃ p u→ q, ∃ p′ u→ q then p = p′.

iv) if ∃ p uvv−1w→ q, then ∃ p uw→ q.
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Morphisms

Definition

Let A = (V , E , q0) and A′ = (V ′, E ′, q′0) be two A-automata. A
morphism A → A′ is a map ϕ : V → V ′ such that q0ϕ = q′0 and

(p, a, q) ∈ E ⇒ (pϕ, a, qϕ) ∈ E ′.

Proposition

Let A = (V , E , q0) and A′ = (V ′, E ′, q′0) be two A-automata, A′
deterministic. Then,

L(A) ⊆ L(A′) ⇔ ∃ morphism ϕ : A → A′.

In this case, ϕ is unique.

This proof will be repeated with variations later.
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Morphisms

Corollary

If A is deterministic then the only morphism A → A is the identity.

Corollary

If A and A′ are deterministic and L(A) = L(A′) then A ' A′.

Corollary

If A and A′ are deterministic and trim, and L(A)π = L(A′)π, then
A ' A′.
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Flower automaton

GOAL: to construct an algorithmic bijection between the lattice of
finitely generated subgroups of F (A), and the set of A-automata
deterministic and trim.

Definition

Given a finite set of reduced words W ⊆ R(A) ⊆ F (A), we define the
flower automaton F(W ) in the natural way.

Observation

The flower automaton F(W ) is
i) involutive (by construction),
ii) trim,
iii) deterministic except maybe at the basepoint,
iv) L(F(W ))π = 〈W 〉 6 F (A).
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iv) L(F(W ))π = 〈W 〉 6 F (A).
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Stallings folding

We want to make F(W ) deterministic.

Definition

Let A be an A-automaton, and suppose e = (p, a, q) and
e′ = (p, a, q′) are two different edges (so, q 6= q′).

Consider L = {{f , f ′} 6= {e, e′} | f = (p′, b, q), f ′ =
(p′, b, q′) for some p′ ∈ V , b ∈ Ã}.

Consider the automata A′ to be A identifying q = q′ (and so, e = e′,
and f = f ′ for every {f , f ′} ∈ L, if any). We define A A′ to be a
Stallings folding.

The number ` = |L| > 0 is called the lost of the folding. A folding is
called critical when it has positive lost.
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Consider the automata A′ to be A identifying q = q′ (and so, e = e′,
and f = f ′ for every {f , f ′} ∈ L, if any). We define A A′ to be a
Stallings folding.

The number ` = |L| > 0 is called the lost of the folding. A folding is
called critical when it has positive lost.



1. Notation 2. Automata 2. Schreier graphs 4. Algebraic appl. 5. Finite index 6. Intersections 7. Alg. ext. 6. Pro-V top. 7. Fixed points

Stallings folding

We want to make F(W ) deterministic.

Definition

Let A be an A-automaton, and suppose e = (p, a, q) and
e′ = (p, a, q′) are two different edges (so, q 6= q′).

Consider L = {{f , f ′} 6= {e, e′} | f = (p′, b, q), f ′ =
(p′, b, q′) for some p′ ∈ V , b ∈ Ã}.
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Stallings folding

Observation

Let A = (V , E , q0) A′ = (V ′, E ′, q0) be a folding with lost ` > 0.
Then, |V ′| = |V | − 1 and |E ′| = |E | − 1− `.

Observation
Applying enough foldings to any given A-automata A,

A A′  · · · Ak ,

we obtain a deterministic Ak (in principle, depending on the chosen
sequence of foldings).
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Stallings folding

Lemma

Let A A′ to be a Stallings folding. Then

i) If, in A, |{a ∈ Ã|q a→ }| > 2 ∀q 6= q0, then the same is true in A′.
ii) ∃ a morphism ϕ : A → A′ (and so, L(A) ⊆ L(A′)).
iii) L(A)π = L(A′)π.

Corollary

Let W ⊂ R(A), |W | <∞, and consider a sequence of foldings
F(W ) · · · A to a deterministic A. Then,

i) A is deterministic and trim,
ii) L(A)π = H = 〈W 〉 6 F (A).
iii) H ⊆ L(A) ⊆ Hπ−1.
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i) If, in A, |{a ∈ Ã|q a→ }| > 2 ∀q 6= q0, then the same is true in A′.
ii) ∃ a morphism ϕ : A → A′ (and so, L(A) ⊆ L(A′)).
iii) L(A)π = L(A′)π.

Corollary

Let W ⊂ R(A), |W | <∞, and consider a sequence of foldings
F(W ) · · · A to a deterministic A. Then,

i) A is deterministic and trim,
ii) L(A)π = H = 〈W 〉 6 F (A).
iii) H ⊆ L(A) ⊆ Hπ−1.



1. Notation 2. Automata 2. Schreier graphs 4. Algebraic appl. 5. Finite index 6. Intersections 7. Alg. ext. 6. Pro-V top. 7. Fixed points

Stallings folding

Lemma

Let A A′ to be a Stallings folding. Then
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Stallings folding

Lemma

Let A A′ to be a Stallings folding. Then the natural map

πA(q0, q0) → πA′(q0, q0)
γ 7→ γ′ = γϕ (+ canc. f.e.’s),

satisfies
i) label(γ)π = label(γ′)π,
ii) in the non-critical case, it is injective.

Corollary

If all foldings in F(W ) · · · A are non-critical, then the above
map, πF(W )(q0, q0)→ πA(q0, q0), γ 7→ γ′, is injective.
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Membership problem

Theorem

The membership problem is solvable in F (A): given
g, h1, . . . , hn ∈ F (A), one can decide whether g ∈ H = 〈h1, . . . , hn〉.

(1) can assume W = {h1, . . . , hn} ⊆ R(A);
(2) draw the flower automaton F(W );
(3) apply an arbitrary sequence of foldings until a deterministic

automaton F(W ) · · · A;
(4) start reading g as (the label of) a path in A, from q0;
(5) if not possible then g 6∈ H;
(6) if possible (so, in a unique way) but as an open path then g 6∈ H;
(7) if possible as a closed path at q0, then g ∈ H. �
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Independence of the process

In a sequence of Stallings foldings, F(W ) · · · A, the result will
not depend on the process, and even on W, but only on the subgroup
H = 〈W 〉 6 F (A).

Theorem

A depends only on H = 〈W 〉, and is called the Schreier graph, Γ(H).

Proposition

Let H 6f .g F (A), choose a finite set of generators W, 〈W 〉 = H, and
let F(W ) · · · A be an arbitrary sequence of Stallings foldings,
with A deterministic. Then,

L(A) =
⋂
B

L(B),

where B runs over all possible automata deterministic, trim, and such
that H ⊆ L(B) ⊆ Ã∗.
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The bijection

Theorem
This is a bijection:

{H 6f .g. F (A)} → {A-automata deterministic and trim}
H 7→ Γ(H)

L(A)π ← A.

Observation
Both directions are algorithmic, and fast.
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Nielsen-Schreier Theorem

Let A be an A-automata deterministic and trim, and let
H = L(A)π 6f .g. F (A).

Take a maximal tree T in A and for every e ∈ EA \ ET take

he = label(T [q0, ιe]eT [τe, q0])π ∈ H.

Proposition

{he | e ∈ EA \ ET} is a free basis for H.

Theorem (Nielsen)

Every finitely generated subgroup of a free group is free.

Theorem (Schreier)

Every subgroup of a free group is free.
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Computability of rank and basis

Proposition

There is an algorithm which, given h1 . . . , hn ∈ F (A), computes the
rank and a basis of H = 〈h1 . . . , hn〉 6 F (A). More specifically,

rg(H) = 1− |VΓ(H)|+ |EΓ(H)| = |W | − `,

where ` is the total lost in the chain F(W ) · · · Γ(H).

Theorem
Free groups are hopfian.

Corollary

F (A) ' F (B) if and only if |A| = |B|.
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The full Schreier graph

Definition
An A-automata A is complete if every vertex has an edge going in
and an edge going out with each label.

Definition

For H 6f .g. F (A), define Γ̃(H) to be Γ(H) with infinite trees attached in
order to make it complete.

Observation

i) Γ(H) is complete⇔ Γ̃(H) = Γ(H).

ii) ∀ u ∈ Ã∗, ∀ q ∈ V , ∃q u→ in Γ̃(H).
iii) L(Γ̃(H)) = Hπ−1.
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Finite index subgroups

Proposition

Let H 6f .g. F (A) and let T be a maximal tree in Γ̃(H). Then,

ϕ : V Γ̃(H) → H\F (A)
v 7→ H · lv

is bijective, where lv = label(T [q0, v ])π.

Corollary

Let H 6f .g. F (A). Then, H 6f .i. F (A) ⇔ Γ(H) is complete. In this
case, [F (A) : H] = |VΓ(H)|.

Corollary (Schreier index formula)

Every H 6f .i. F (A) is finitely generated and
r(H)− 1 = [F (A) : H](|A| − 1).
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Finite index subgroups

Corollary

There is an algorithm which, given h1, . . . , hn ∈ F (A), decides
whether H = 〈h1, . . . , hn〉 is of finite index in F (A) and, in this case,
computes the index and a set of coset representatives.

Corollary

There is an algorithm which, given h1, . . . , hn, k1, . . . , km ∈ F (A),
decides whether 〈h1, . . . , hn〉 = H 6f .i. K = 〈k1, . . . , km〉 and, in this
case, computes the index and a set of coset representatives.
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Normality

Corollary

If 1 6= H 6f .g. F (A) is normal then H 6f .i. F (A).

Corollary

There is an algorithm which, given h1, . . . , hn ∈ F (A), decides
whether H = 〈h1, . . . , hn〉 is normal in F (A).

Corollary

There is an algorithm which, given h1, . . . , hn, k1, . . . , km ∈ F (A),
decides whether H = 〈h1, . . . , hn〉 is normal in K = 〈k1, . . . , km〉.
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M. Hall’s theorem

Definition

Let H 6 K 6 F (A). We say that H is a free factor of K , denoted
H 6f .f . K , if it is possible to extend a basis of H to a basis of K .

Lemma

For H 6f .g. K 6f .g. F (A), if Γ(H) is a subautomaton of Γ(K ) then
H 6f .f . K . The convers is not true.

Theorem (M. Hall)

For every H 6f .g. F (A) there exists K 6f .i. F (A) such that
H 6f .f . K 6f .i. F (A).
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Residual finiteness

Definition
A group G is said to be residually finite if ∀1 6= g ∈ G there exists a
finite quotient G/H where 1 6= g ∈ G/H.

Theorem
Free groups are residually finite.

Theorem
Free groups are residually p, for every prime p.
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Howson property

Definition
A group G satisfies the Howson property if the intersection of two
finitely generated subgroups is again finitely generated.

Theorem
Free groups satisfy the Howson property.

Theorem

There is an algorithm which, given h1, . . . , hn, k1, . . . , km ∈ F (A),
computes a basis of H ∩ K , where H = 〈h1, . . . , hn〉 and
K = 〈k1, . . . , km〉.
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Hanna Neumann “Conjecture"

Definition

Define the reduced rank of H 6 F (A) as r̃(H) = max{0, r(H)− 1}.

Theorem

For H, K 6f .g. F (A), r̃(H ∩ K ) 6 2r̃(H)r̃(K ).

Hanna Neumann “Conjecture"

For H, K 6f .g. F (A), r̃(H ∩ K ) 6 r̃(H)r̃(K ).

Theorem (Mineyev, (simpl. Dicks))

For H, K 6f .g. F (A), r̃(H ∩ K ) 6 r̃(H)r̃(K ).
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Malnormality

Definition
A subgroup of a group H 6 G is malnormal if Hg ∩H = 1 for all g 6∈ H.

Proposition

There is an algorithm which, given h1, . . . , hn ∈ F (A), decides
whether H = 〈h1, . . . , hn〉 is malnormal in F (A).

Observation

For H, K 6f .g. F (A), the collection of intersections Hu ∩ K v , moving
u, v ∈ F (A), takes only finitely many values, up to conjugacy.
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Motivation

In basic linear algebra:

U 6 V 6 K n ⇒ V = U ⊕ L.

In Zn, the analog is almost true:

U 6 V 6 Zn ⇒ ∃ U 6fi U ′ 6 V s.t. V = U ′ ⊕ L.

In F (A), the analog is ...

far from true because H 6 K 6⇒ r(H) 6 r(K ) ...
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Algebraic and transcendental elements

Mimicking field theory...

Definition

Let H 6 F (A) and w ∈ F (A). We say that w is
algebraic over H if ∃ 1 6= eH(x) ∈ H ∗ 〈x〉 such that eH(w) = 1;
transcendental over H otherwise.

Observation

w is transcendental over H ⇐⇒ 〈H, w〉 ' H ∗ 〈w〉
⇐⇒ H is contained in a proper f.f. of

〈H, w〉.

Problem
w1, w2 algebraic over H 6⇒ w1w2 algebraic over H.

H = 〈a, bab, cac〉 6 〈a, b, c〉, and w1 = b, w2 = c.
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Algebraic and free extensions

A relative notion works better...

Definition

Let H 6 K 6 F (A) and w ∈ K . We say that w is
K -algebraic over H if ∀ free factorization K = K1 ∗ K2 with
H 6 K1, we have w ∈ K1;
K -transcendental over H otherwise.

Observation

w is algebraic over H if and only if it is 〈H, w〉-algebraic over H.

Observation
If w1 and w2 are K -algebraic over H, then so is w1w2.
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Algebraic and free extensions

Definition

Let H 6 K 6 F (A).
We say that H 6 K is an algebraic extension, denoted H 6alg K ,
⇐⇒ every w ∈ K is K -algebraic over H,
⇐⇒ H is not contained in any proper free factor of K ,
⇐⇒ H 6 K1 6 K1 ∗ K2 = K implies K2 = 1.

We say that H 6 K is a free extension, denoted H 6ff K ,
⇐⇒ every w ∈ K is K -transcendental over H,
⇐⇒ H 6 H ∗ L = K for some L.
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Algebraic and free extensions

〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ F (A) ∀r ∈ Z.
if r(H) > 2 and r(K ) 6 2 then H 6alg K .
H 6alg K 6alg L implies H 6alg L.
H 6ff K 6ff L implies H 6ff L.
H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily
H 6alg K .
H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily
K 6ff L.

How many algebraic extensions does a given H have in F (A) ?

Can we compute them all ?



1. Notation 2. Automata 2. Schreier graphs 4. Algebraic appl. 5. Finite index 6. Intersections 7. Alg. ext. 6. Pro-V top. 7. Fixed points

Algebraic and free extensions

〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ F (A) ∀r ∈ Z.
if r(H) > 2 and r(K ) 6 2 then H 6alg K .
H 6alg K 6alg L implies H 6alg L.
H 6ff K 6ff L implies H 6ff L.
H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily
H 6alg K .
H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily
K 6ff L.

How many algebraic extensions does a given H have in F (A) ?

Can we compute them all ?



1. Notation 2. Automata 2. Schreier graphs 4. Algebraic appl. 5. Finite index 6. Intersections 7. Alg. ext. 6. Pro-V top. 7. Fixed points

Algebraic and free extensions

〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ F (A) ∀r ∈ Z.
if r(H) > 2 and r(K ) 6 2 then H 6alg K .
H 6alg K 6alg L implies H 6alg L.
H 6ff K 6ff L implies H 6ff L.
H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily
H 6alg K .
H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily
K 6ff L.

How many algebraic extensions does a given H have in F (A) ?

Can we compute them all ?



1. Notation 2. Automata 2. Schreier graphs 4. Algebraic appl. 5. Finite index 6. Intersections 7. Alg. ext. 6. Pro-V top. 7. Fixed points

Algebraic and free extensions

〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ F (A) ∀r ∈ Z.
if r(H) > 2 and r(K ) 6 2 then H 6alg K .
H 6alg K 6alg L implies H 6alg L.
H 6ff K 6ff L implies H 6ff L.
H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily
H 6alg K .
H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily
K 6ff L.

How many algebraic extensions does a given H have in F (A) ?

Can we compute them all ?



1. Notation 2. Automata 2. Schreier graphs 4. Algebraic appl. 5. Finite index 6. Intersections 7. Alg. ext. 6. Pro-V top. 7. Fixed points

Algebraic and free extensions

〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ F (A) ∀r ∈ Z.
if r(H) > 2 and r(K ) 6 2 then H 6alg K .
H 6alg K 6alg L implies H 6alg L.
H 6ff K 6ff L implies H 6ff L.
H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily
H 6alg K .
H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily
K 6ff L.

How many algebraic extensions does a given H have in F (A) ?

Can we compute them all ?



1. Notation 2. Automata 2. Schreier graphs 4. Algebraic appl. 5. Finite index 6. Intersections 7. Alg. ext. 6. Pro-V top. 7. Fixed points

Algebraic and free extensions

〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ F (A) ∀r ∈ Z.
if r(H) > 2 and r(K ) 6 2 then H 6alg K .
H 6alg K 6alg L implies H 6alg L.
H 6ff K 6ff L implies H 6ff L.
H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily
H 6alg K .
H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily
K 6ff L.

How many algebraic extensions does a given H have in F (A) ?

Can we compute them all ?



1. Notation 2. Automata 2. Schreier graphs 4. Algebraic appl. 5. Finite index 6. Intersections 7. Alg. ext. 6. Pro-V top. 7. Fixed points

Algebraic and free extensions

〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ F (A) ∀r ∈ Z.
if r(H) > 2 and r(K ) 6 2 then H 6alg K .
H 6alg K 6alg L implies H 6alg L.
H 6ff K 6ff L implies H 6ff L.
H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily
H 6alg K .
H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily
K 6ff L.

How many algebraic extensions does a given H have in F (A) ?

Can we compute them all ?



1. Notation 2. Automata 2. Schreier graphs 4. Algebraic appl. 5. Finite index 6. Intersections 7. Alg. ext. 6. Pro-V top. 7. Fixed points

Algebraic and free extensions

〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ F (A) ∀r ∈ Z.
if r(H) > 2 and r(K ) 6 2 then H 6alg K .
H 6alg K 6alg L implies H 6alg L.
H 6ff K 6ff L implies H 6ff L.
H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily
H 6alg K .
H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily
K 6ff L.

How many algebraic extensions does a given H have in F (A) ?

Can we compute them all ?



1. Notation 2. Automata 2. Schreier graphs 4. Algebraic appl. 5. Finite index 6. Intersections 7. Alg. ext. 6. Pro-V top. 7. Fixed points

Takahasi’s Theorem

Theorem (Takahasi, 1951)

For every H 6fg F (A), the set of algebraic extensions, denoted
AE(H), is finite.

Original proof by Takahasi was combinatorial and technical,

Modern proof, using Schreier automata, is much simpler, and
due independently to Ventura (1997), Margolis-Sapir-Weil (2001)
and Kapovich-Miasnikov (2002).

Additionally, AE(H) is computable.
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Fringe of a subgroup

Definition
Let A be a deterministic and trim A-automata, and let ∼ an eq. rel. on
VA. We denote by A/ ∼ the new (deterministic and trim) A-automata
resulting from identifying the vertices according to ∼, plus foldings.

Definition
The fringe of A is the (finite) collection of A-automata of the form
A/ ∼.

Definition

Let H 6fg F (A). The fringe of H is
O(H) = {L(Γ(H)/ ∼)π |∼ eq. rel. on VA}.
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Fringe of a subgroup

Observation

For H 6fg F (A), we have O(H) = {H0, H1, . . . , Hk}, all of them f.g.,
and with H0 = H and Hk = 〈A′〉 (A′ ⊆ A the set of used letters).

Observation

For H 6fg F (A), O(H) is finite and computable.

Proposition

For H 6fg F (A), AE(H) ⊆ O(H).

Corollary

For H 6fg F (A), AE(H) is finite.
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For H 6fg F (A), AE(H) ⊆ O(H).

Corollary

For H 6fg F (A), AE(H) is finite.



1. Notation 2. Automata 2. Schreier graphs 4. Algebraic appl. 5. Finite index 6. Intersections 7. Alg. ext. 6. Pro-V top. 7. Fixed points

Computing AE(H)

Corollary

For H 6fg F (A), AE(H) is computable.

1) Compute Γ(H),
2) Compute Γ(H)/ ∼ for all eq. rel. ∼ of VΓ(H),
3) Compute O(H),
4) Clean O(H) by detecting all pairs K1, K2 ∈ O(H) such that

K1 6ff K2 and deleting K2.
5) The resulting set is AE(H). �

For the cleaning step we need:
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Deciding free-factorness

Proposition

Given H, K 6 F (A), it is algorithmically decidable whether H 6ff K or
not.

Proved by:
Whitehead 1930’s (classical and exponential),
Silva-Weil 2006 (faster but still exponential),
Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in
polynomial time),
Puder 2011 (graphical argument).
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The algebraic closure

Observation

If H 6alg K1 and H 6alg K2 then H 6alg 〈K1 ∪ K2〉.

Corollary

For every H 6fg K 6fg F (A), AEK (H) has a unique maximal element,
called the K -algebraic closure of H, and denoted ClK (H).

Theorem

Every extension H 6 K of f.g. subgroups of F (A) splits, in a unique
way, in an algebraic part and a free part, H 6alg ClK (H) 6ff K .
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Pseudo-varieties

Definition
A pseudo-variety of groups V is a class of finite groups closed under
taking subgroups, quotients and finite direct products.

i) G = all finite groups,
ii) Gp = all finite p-groups,
iii) Gnil = all finite nilpotent groups,
iv) Gsol = all finite soluble groups,
v) Gab = all finite abelian groups,
vi) for a finite group V , [V ] = all quotients of subgroups of V k , k > 1.
vii) · · ·

Definition

V is extension-closed if V CW with V , W/V ∈ V imply W ∈ V.
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The pro-V topology

Definition
Let G be a group, and V be a pseudo-variety of finite groups. The
pro-V topology on G can be defined in several equivalent ways:

i) it is the smallest topology making all the morphisms from G into
all V ∈ V (with the discrete topology) continuous,

ii) a basis of open sets is given by ϕ−1(x), for all morphism
ϕ : G→ V ∈ V,

iii) the normal (finite index) subgroups K EG such that G/K ∈ V
form a basis of neighborhoods of 1,

iv) it is the topology given by the pseudo-ultra-metric
d(x , y) = 2−r(x,y), where r(x , y) = min{|V | | V ∈ V and
separates x and y }.

Observation
This topology is Hausdorf⇐⇒ d is an ultra-metric⇐⇒ G is
residually-V.
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The V-closure

Proposition

Let G be a group equipped with the pro-V topology, and let H ≤ G.
Then, TFAE:
(a) H is open
(b) H is clopen (i.e. open and closed)
(c) H 6fi G and G/HG ∈ V.

Furthermore,

clV(H) =
⋂

H6K , open

K =
⋂

ϕ : G→V∈V

ϕ−1(ϕ(H)).
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The extension-closed case

Proposition (Ribes, Zaleskiı̆)

Let V be an extension-closed pseudo-variety, and consider F (A) the
free group on A with the pro-V topology. For a given H 6fg F (A),

H is closed ⇐⇒ H is a free factor of a clopen subgroup.

Corollary

For an extension-closed V and a H 6fg F (A), we have H 6alg clV(H).

Furthermore, it can also be proven that

Proposition (Ribes, Zaleskiı̆)

In this situation, r(clV(H)) 6 r(H).
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p-closure, nil-closure

Theorem (Margolis-Sapir-Weil)

The p-closure of H 6fg F (A), clp(H), is effectively computable, for
every prime p.

Theorem

For H 6fg F (A), clnil(H) = ∩pclp(H). Thus, clnil(H) is effectively
computable.

Problem
Find an algorithm to compute the solvable closure of a given
H 6fg F (A).
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Fixed subgroups are complicated

φ : F3 → F3
a 7→ a
b 7→ ba
c 7→ ca2

Fix φ = 〈a, bab−1, cac−1〉

ϕ : F4 → F4
a 7→ dac
b 7→ c−1a−1d−1ac
c 7→ c−1a−1b−1ac
d 7→ c−1a−1bc

Fix ϕ = 〈w〉, where...

w = c−1a−1bd−1c−1a−1d−1ad−1c−1b−1acdadacdcdbcda−1a−1d−1

a−1d−1c−1a−1d−1c−1b−1d−1c−1d−1c−1daabcdaccdb−1a−1.
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What is known about fixed subgroups ?

Theorem (Dyer-Scott, 75)

Let φ ∈ Aut (F (A)) be a finite order automorphism of F (A). Then,
Fix (φ) 6ff Fn.

Theorem (Gersten, 83 (published 87))

Let φ ∈ Aut (Fn). Then r(Fix (φ)) <∞.

Theorem (Bestvina-Handel, 88 (published 92))

Let φ ∈ Aut (Fn). Then r(Fix (φ)) 6 n.

Theorem (Imrich-Turner, 89)

Let φ ∈ End (Fn). Then r(Fix (φ)) 6 n.
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Inertia

Definition

A subgroup H 6 Fn is called inert if r(H ∩K ) 6 r(K ) for every K 6 Fn.

Theorem (Dicks-V, 96)

Let G ⊆ Mon (Fn) be an arbitrary set of monomorphisms of Fn. Then,
Fix (G) is inert; in particular, r(Fix (G)) 6 n.

Theorem (Bergman, 99)

Let G ⊆ End (Fn) be an arbitrary set of endomorphisms of Fn. Then,
r(Fix (G)) 6 n.

Conjecture (V.)

Let φ ∈ End (Fn). Then Fix (φ) is inert.
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The four families

Definition
A subgroup H 6 Fn is said to be

1-auto-fixed if H = Fix (φ) for some φ ∈ Aut (Fn),
1-endo-fixed if H = Fix (φ) for some φ ∈ End (Fn),
auto-fixed if H = Fix (S) for some S ⊆ Aut (Fn),
endo-fixed if H = Fix (S) for some S ⊆ End (Fn),

Easy to see that 1-mono-fixed = 1-auto-fixed.
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Relations between them

1− auto − fixed ⊆ 1− endo − fixed

∩| ∩|

auto − fixed ⊆ endo − fixed
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Relations between them

1− auto − fixed
⊆
6= 1− endo − fixed

∩| ∩|

auto − fixed
⊆
6= endo − fixed

Example (Martino-V., 03; Ciobanu-Dicks, 06)

Let F3 = 〈a, b, c〉 and H = 〈b, cacbab−1c−1〉 6 F3. Then,
H = Fix (a 7→ 1, b 7→ b, c 7→ cacbab−1c−1), but H is NOT the fixed
subgroup of any set of automorphism of F3.
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Relations between them

1− auto − fixed
⊆
6= 1− endo − fixed

∩| ‖ ? ∩| ‖ ?

auto − fixed
⊆
6= endo − fixed

Conjecture (V.)

1-auto-fixed = auto-fixed, and 1-endo-fixed = endo-fixed.
That is, the families of 1-auto-fixed and 1-endo-fixed subgroups are
closed under intersections.
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It is true up to free factors

Theorem (Martino-V., 00)

Let S ⊆ End (Fn). Then, ∃φ ∈ 〈S〉 such that Fix (S) 6ff Fix (φ).

However... free factors of 1-endo-fixed (1-auto-fixed) subgroups need
not be even endo-fixed (auto-fixed).
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Compression

Definition

A subgroup H 6 F (A) is compressed when r(H) 6 r(K ) for every
H 6 K 6 F (A).

Observation
H inert⇒ H compressed.

Is every compressed subgroup, inert?

Proposition

There is an algorithm which, given H 6fg F (A), decides whether H is
compressed.
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Fixed subgroups are compressed

Conjecture

There is an algorithm which, given H 6fg F (A), decides whether H is
inert.

Theorem (Martino-V, 04)

Let S ⊆ End (Fn). Then, Fix (S) is compressed.

Conjecture (V.)

Let S ⊆ End (Fn). Then, Fix (S) is inert.
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