# Using graphs to understand the lattice of subgroups of a free group

### **Enric Ventura**

Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya

Algebra Seminar, Aalto University

Sept. 4th, 2013.

# Outline

- Free groups
- 2 Automata
- 3 Stallings' graphs
- Solving problems in free groups

## **Outline**

- Free groups
- Automata
- 3 Stallings' graphs
- Solving problems in free groups

#### Definition

- Let  $A = \{a_1, \ldots, a_r\}$  be a finite alphabet, and consider (formally)  $\tilde{A} = \{a_1, \ldots, a_r, a_1^{-1}, \ldots, a_r^{-1}\}.$
- A word on A is a finite sequence of symbols  $w = a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n}$ , where  $a_{i_i} \in A$  and  $\epsilon_i = \pm 1$ . The length of w is  $\ell(w) = n$ .
- The empty word is the only one with zero letters, denoted 1;  $\ell(1) = 0$ .
- The collection of all words on A is denoted A\*.
- Operation of concatenation in  $\tilde{A}^*$ :  $u \cdot v = uv$ ;  $\ell(uv) = \ell(u) + \ell(v)$ .

- Two consecutive letters in  $w \in \tilde{A}^*$  of the form  $a_i a_i^{-1}$  or  $a_i^{-1} a_i$  are called a cancellation. A word w is called reduced if it has no cancellations. Denote  $R(A) \subset \tilde{A}^*$  the set of reduced words.
- ullet The reduction is the equivalence relation  $\sim$  generated by

$$ua_i^{\epsilon}a_i^{-\epsilon}v \sim uv$$
.

#### Definition

- Let  $A = \{a_1, \ldots, a_r\}$  be a finite alphabet, and consider (formally)  $\tilde{A} = \{a_1, \ldots, a_r, a_1^{-1}, \ldots, a_r^{-1}\}.$
- A word on A is a finite sequence of symbols  $w = a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n}$ , where  $a_{i_i} \in A$  and  $\epsilon_j = \pm 1$ . The length of w is  $\ell(w) = n$ .
- The empty word is the only one with zero letters, denoted 1;  $\ell(1) = 0$ .
- The collection of all words on A is denoted  $\tilde{A}^*$ .
- Operation of concatenation in  $\tilde{A}^*$ :  $u \cdot v = uv$ ;  $\ell(uv) = \ell(u) + \ell(v)$

- Two consecutive letters in  $w \in \tilde{A}^*$  of the form  $a_i a_i^{-1}$  or  $a_i^{-1} a_i$  are called a cancellation. A word w is called reduced if it has no cancellations. Denote  $R(A) \subseteq \tilde{A}^*$  the set of reduced words.
- $\bullet$  The reduction is the equivalence relation  $\sim$  generated by

$$ua_i^{\epsilon}a_i^{-\epsilon}v \sim uv$$
.

2. Automata

- Let  $A = \{a_1, \ldots, a_r\}$  be a finite alphabet, and consider (formally)  $\tilde{A} = \{a_1, \ldots, a_r, a_1^{-1}, \ldots, a_r^{-1}\}.$
- A word on A is a finite sequence of symbols  $w = a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n}$ , where  $a_{i_i} \in A$  and  $\epsilon_j = \pm 1$ . The length of w is  $\ell(w) = n$ .
- The empty word is the only one with zero letters, denoted 1;  $\ell(1) = 0.$
- Operation of concatenation in  $\tilde{A}^*$ :  $u \cdot v = uv$ ;  $\ell(uv) = \ell(u) + \ell(v)$ .

- Two consecutive letters in  $w \in \tilde{A}^*$  of the form  $a_i a_i^{-1}$  or  $a_i^{-1} a_i$  are
- The reduction is the equivalence relation ∼ generated by

$$ua_i^{\epsilon}a_i^{-\epsilon}v \sim uv$$
.

#### Definition

- Let  $A = \{a_1, \ldots, a_r\}$  be a finite alphabet, and consider (formally)  $\tilde{A} = \{a_1, \ldots, a_r, a_1^{-1}, \ldots, a_r^{-1}\}.$
- A word on A is a finite sequence of symbols  $w = a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n}$ , where  $a_{i_i} \in A$  and  $\epsilon_j = \pm 1$ . The length of w is  $\ell(w) = n$ .
- The empty word is the only one with zero letters, denoted 1;  $\ell(1) = 0$ .
- The collection of all words on A is denoted A\*.
  - Operation of concatenation in  $\tilde{A}^*$ :  $u \cdot v = uv$ ;  $\ell(uv) = \ell(u) + \ell(v)$

- Two consecutive letters in  $w \in \tilde{A}^*$  of the form  $a_i a_i^{-1}$  or  $a_i^{-1} a_i$  are called a cancellation. A word w is called reduced if it has no cancellations. Denote  $R(A) \subseteq \tilde{A}^*$  the set of reduced words.
- ullet The reduction is the equivalence relation  $\sim$  generated by

$$ua_i^{\epsilon}a_i^{-\epsilon}v \sim uv$$
.

#### Definition

- Let  $A = \{a_1, \ldots, a_r\}$  be a finite alphabet, and consider (formally)  $\tilde{A} = \{a_1, \ldots, a_r, a_1^{-1}, \ldots, a_r^{-1}\}.$
- A word on A is a finite sequence of symbols  $w = a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n}$ , where  $a_{i_i} \in A$  and  $\epsilon_j = \pm 1$ . The length of w is  $\ell(w) = n$ .
- The empty word is the only one with zero letters, denoted 1;  $\ell(1) = 0$ .
- The collection of all words on A is denoted A\*.
- Operation of concatenation in  $\tilde{A}^*$ :  $u \cdot v = uv$ ;  $\ell(uv) = \ell(u) + \ell(v)$ .

- Two consecutive letters in  $w \in \tilde{A}^*$  of the form  $a_i a_i^{-1}$  or  $a_i^{-1} a_i$  are called a cancellation. A word w is called reduced if it has no cancellations. Denote  $R(A) \subseteq \tilde{A}^*$  the set of reduced words.
- ullet The reduction is the equivalence relation  $\sim$  generated by

$$ua_i^{\epsilon}a_i^{-\epsilon}v \sim uv$$
.

#### Definition

- Let  $A = \{a_1, \ldots, a_r\}$  be a finite alphabet, and consider (formally)  $\tilde{A} = \{a_1, \ldots, a_r, a_1^{-1}, \ldots, a_r^{-1}\}.$
- A word on A is a finite sequence of symbols  $w = a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n}$ , where  $a_{i_i} \in A$  and  $\epsilon_j = \pm 1$ . The length of w is  $\ell(w) = n$ .
- The empty word is the only one with zero letters, denoted 1;  $\ell(1) = 0$ .
- The collection of all words on A is denoted A\*.
- Operation of concatenation in  $\tilde{A}^*$ :  $u \cdot v = uv$ ;  $\ell(uv) = \ell(u) + \ell(v)$ .

- Two consecutive letters in  $w \in \tilde{A}^*$  of the form  $a_i a_i^{-1}$  or  $a_i^{-1} a_i$  are called a cancellation. A word w is called reduced if it has no cancellations. Denote  $R(A) \subseteq \tilde{A}^*$  the set of reduced words.
- ullet The reduction is the equivalence relation  $\sim$  generated by

#### Definition

• Let  $A = \{a_1, \ldots, a_r\}$  be a finite alphabet, and consider (formally)  $\tilde{A} = \{a_1, \ldots, a_r, a_1^{-1}, \ldots, a_r^{-1}\}.$ 

Stallings' graphs

- A word on A is a finite sequence of symbols  $w = a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n}$ , where  $a_{i_i} \in A$  and  $\epsilon_j = \pm 1$ . The length of w is  $\ell(w) = n$ .
- The empty word is the only one with zero letters, denoted 1;  $\ell(1) = 0.$
- The collection of all words on A is denoted A\*.
- Operation of concatenation in  $\tilde{A}^*$ :  $u \cdot v = uv$ ;  $\ell(uv) = \ell(u) + \ell(v)$ .

#### Definition

• Two consecutive letters in  $w \in \tilde{A}^*$  of the form  $a_i a_i^{-1}$  or  $a_i^{-1} a_i$  are called a cancellation. A word w is called reduced if it has no cancellations. Denote  $R(A) \subseteq A^*$  the set of reduced words.

 $ua_i^{\epsilon}a_i^{-\epsilon}v \sim uv$ .

• The reduction is the equivalence relation  $\sim$  generated by

#### Definition

• The free group on A is  $F(A) = \tilde{A}^*/\sim$  with the operation of concatenation (i.e. concatenation + reduction).

- Of course,  $(a_i^{-1})^{-1} = a_i$ .

#### Definition

• The free group on A is  $F(A) = \tilde{A}^* / \sim$  with the operation of concatenation (i.e. concatenation + reduction).

- The neutral element is 1, and the inverse of  $w = a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n}$  is  $w^{-1} = (a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n})^{-1} = a_{i_n}^{-\epsilon_n} \cdots a_{i_n}^{-\epsilon_1}.$
- Of course,  $(a_i^{-1})^{-1} = a_i$ .

#### Definition

• The free group on A is  $F(A) = \tilde{A}^* / \sim$  with the operation of concatenation (i.e. concatenation + reduction).

- The neutral element is 1, and the inverse of  $w = a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n}$  is  $w^{-1} = (a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n})^{-1} = a_{i_n}^{-\epsilon_n} \cdots a_{i_n}^{-\epsilon_1}.$
- Of course,  $(a_i^{-1})^{-1} = a_i$ .

#### Definition

• The free group on A is  $F(A) = \tilde{A}^* / \sim$  with the operation of concatenation (i.e. concatenation + reduction).

Stallings' graphs

- The neutral element is 1, and the inverse of  $w = a_{i_1}^{\epsilon_1} \cdots a_{i_r}^{\epsilon_n}$  is  $w^{-1} = (a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n})^{-1} = a_{i_n}^{-\epsilon_n} \cdots a_{i_n}^{-\epsilon_1}.$
- Of course,  $(a_i^{-1})^{-1} = a_i$ .

#### Lemma

For every  $w \in \tilde{A}^*$ , there is a unique  $\overline{w} \in R(A)$ , s.t.  $w = \overline{w}$  in F(A).

#### Definition

• The free group on A is  $F(A) = \tilde{A}^* / \sim$  with the operation of concatenation (i.e. concatenation + reduction).

Stallings' graphs

- The neutral element is 1, and the inverse of  $w = a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n}$  is  $w^{-1} = (a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n})^{-1} = a_{i_n}^{-\epsilon_n} \cdots a_{i_n}^{-\epsilon_1}.$
- Of course,  $(a_i^{-1})^{-1} = a_i$ .

#### Lemma

For every  $w \in A^*$ , there is a unique  $\overline{w} \in R(A)$ , s.t.  $w = \overline{w}$  in F(A).

This allows us "forget" the  $\sim$ , and work in F(A) by just manipulating words (and reducing every time it is possible).

#### Definition

• The free group on A is  $F(A) = \tilde{A}^* / \sim$  with the operation of concatenation (i.e. concatenation + reduction).

Stallings' graphs

- The neutral element is 1, and the inverse of  $w = a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n}$  is  $w^{-1} = (a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n})^{-1} = a_{i_n}^{-\epsilon_n} \cdots a_{i_n}^{-\epsilon_1}.$
- Of course,  $(a_i^{-1})^{-1} = a_i$ .

#### Lemma

For every  $w \in A^*$ , there is a unique  $\overline{w} \in R(A)$ , s.t.  $w = \overline{w}$  in F(A).

This allows us "forget" the  $\sim$ , and work in F(A) by just manipulating words (and reducing every time it is possible).

#### Definition

The length of an element  $w \in F(A)$  is  $|w| = \ell(\overline{w})$ .

# The rank of a free group

Clearly, r is the only relevant information about  $A = \{a_1, \dots, a_r\}$ . That is,

$$\#A = \#B \quad \Rightarrow \quad F(A) \simeq F(B).$$

$$\#A = \#B \Leftrightarrow F(A) \simeq F(B).$$

# The rank of a free group

Clearly, r is the only relevant information about  $A = \{a_1, \dots, a_r\}$ . That is,

Stallings' graphs

$$\#A = \#B \implies F(A) \simeq F(B).$$

### **Proposition**

Let A and B be two finite sets. Then.

$$\#A = \#B \Leftrightarrow F(A) \simeq F(B).$$

# The rank of a free group

Clearly, r is the only relevant information about  $A = \{a_1, \dots, a_r\}$ . That is,

$$\#A = \#B \Rightarrow F(A) \simeq F(B).$$

### **Proposition**

Let A and B be two finite sets. Then.

$$\#A = \#B \Leftrightarrow F(A) \simeq F(B).$$

#### Definition

The rank of F(A) is the cardinal of A, r(F(A)) = #A = r. F(A) is usually denoted just  $F_r$ .

Clearly, r is the only relevant information about  $A = \{a_1, \dots, a_r\}$ . That is,

$$\#A = \#B \Rightarrow F(A) \simeq F(B).$$

### **Proposition**

1. Free groups

000000000

Let A and B be two finite sets. Then.

$$\#A = \#B \Leftrightarrow F(A) \simeq F(B).$$

#### Definition

The rank of F(A) is the cardinal of A, r(F(A)) = #A = r. F(A) is usually denoted just Fr.

### Example

What is  $F_1$ ? ... And  $F_2$ ?

Clearly, r is the only relevant information about  $A = \{a_1, \dots, a_r\}$ . That is,

$$\#A = \#B \implies F(A) \simeq F(B).$$

### **Proposition**

1. Free groups

000000000

Let A and B be two finite sets. Then.

$$\#A = \#B \Leftrightarrow F(A) \simeq F(B).$$

#### Definition

The rank of F(A) is the cardinal of A, r(F(A)) = #A = r. F(A) is usually denoted just  $F_r$ .

### Example

What is  $F_1$ ? ... And  $F_2$ ?

#### **Proposition**

For every group G and elements  $g_1, \ldots, g_r \in G$  there exists a unique morphism  $\varphi \colon F(A) \to G$  mapping  $a_i$  to  $g_i$ .

#### Corollary

Every group G is a quotient of a free group.

- ALL GROUP THEORY is somehow reflected inside free groups,
- plus: ... great! let's concentrate on free groups ...
- minus: ... free groups must be VERY complicated ...

#### **Proposition**

For every group G and elements  $g_1, \ldots, g_r \in G$  there exists a unique morphism  $\varphi \colon F(A) \to G$  mapping  $a_i$  to  $g_i$ .

### Corollary

Every group G is a quotient of a free group.

- ALL GROUP THEORY is somehow reflected inside free groups,
- plus: ... great! let's concentrate on free groups ...
- minus: ... free groups must be VERY complicated ...

#### **Proposition**

For every group G and elements  $g_1, \ldots, g_r \in G$  there exists a unique morphism  $\varphi \colon F(A) \to G$  mapping  $a_i$  to  $g_i$ .

### Corollary

Every group G is a quotient of a free group.

- ALL GROUP THEORY is somehow reflected inside free groups,
- plus: ... great! let's concentrate on free groups ...
- minus: ... free groups must be VERY complicated ...

#### **Proposition**

For every group G and elements  $g_1, \ldots, g_r \in G$  there exists a unique morphism  $\varphi \colon F(A) \to G$  mapping  $a_i$  to  $g_i$ .

### Corollary

Every group G is a quotient of a free group.

- ALL GROUP THEORY is somehow reflected inside free groups,
- plus: ... great! let's concentrate on free groups ...
- minus: ... free groups must be VERY complicated ...

#### **Proposition**

For every group G and elements  $g_1, \ldots, g_r \in G$  there exists a unique morphism  $\varphi \colon F(A) \to G$  mapping  $a_i$  to  $g_i$ .

### Corollary

Every group G is a quotient of a free group.

- ALL GROUP THEORY is somehow reflected inside free groups,
- plus: ... great! let's concentrate on free groups ...
- minus: ... free groups must be VERY complicated ...

#### Definition

Let G be a group. The membership problem in G consists on finding an algorithm to do the following:

input: 
$$g_0, g_1, \ldots, g_n \in G$$
;

output: YES if 
$$g_0 \in \langle g_1, \ldots, g_n \rangle \leqslant G$$
,

#### Definition

Let G be a group. The membership problem in G consists on finding an algorithm to do the following:

input: 
$$g_0, g_1, \ldots, g_n \in G$$
;

output: YES if 
$$g_0 \in \langle g_1, \dots, g_n \rangle \leqslant G$$
,  
NO if  $g_0 \notin \langle g_1, \dots, g_n \rangle \leqslant G$ .

#### Definition

Let G be a group. The membership problem in G consists on finding an algorithm to do the following:

input: 
$$g_0, g_1, \ldots, g_n \in G$$
;

output: YES if 
$$g_0 \in \langle g_1, \ldots, g_n \rangle \leqslant G$$
,

*NO if* 
$$g_0 \notin \langle g_1, \ldots, g_n \rangle \leqslant G$$
.

- What about F<sub>r</sub>?

#### Definition

Let G be a group. The membership problem in G consists on finding an algorithm to do the following:

input: 
$$g_0, g_1, \ldots, g_n \in G$$
;

output: YES if 
$$g_0 \in \langle g_1, \ldots, g_n \rangle \leqslant G$$
,

*NO if* 
$$g_0 \notin \langle g_1, \ldots, g_n \rangle \leqslant G$$
.

Stallings' graphs

#### Theorem

There are groups G with UNSOLVABLE membership problem.

- $\mathbb{Z}^n$  and  $\mathbb{Q}^n$  have solvable membership problem.
- What about F<sub>r</sub> ?

#### Definition

Let G be a group. The membership problem in G consists on finding an algorithm to do the following:

*input*: 
$$g_0, g_1, ..., g_n \in G$$
;

output: YES if 
$$g_0 \in \langle g_1, \ldots, g_n \rangle \leqslant G$$
,

*NO if* 
$$g_0 \not\in \langle g_1, \ldots, g_n \rangle \leqslant G$$
.

#### Theorem

There are groups G with UNSOLVABLE membership problem.

- Finite groups have solvable membership problem.

#### Definition

Let G be a group. The membership problem in G consists on finding an algorithm to do the following:

*input*: 
$$g_0, g_1, ..., g_n \in G$$
;

output: YES if 
$$g_0 \in \langle g_1, \ldots, g_n \rangle \leqslant G$$
,

*NO if* 
$$g_0 \not\in \langle g_1, \ldots, g_n \rangle \leqslant G$$
.

#### Theorem

There are groups G with UNSOLVABLE membership problem.

- Finite groups have solvable membership problem.
- $\mathbb{Z}^n$  and  $\mathbb{Q}^n$  have solvable membership problem.

### Definition

Free groups

0000000000

Let G be a group. The membership problem in G consists on finding an algorithm to do the following:

*input*: 
$$g_0, g_1, ..., g_n \in G$$
;

output: YES if 
$$g_0 \in \langle g_1, \ldots, g_n \rangle \leqslant G$$
,

*NO* if 
$$g_0 \notin \langle g_1, \ldots, g_n \rangle \leqslant G$$
.

#### Theorem

There are groups G with UNSOLVABLE membership problem.

- Finite groups have solvable membership problem.
- $\mathbb{Z}^n$  and  $\mathbb{Q}^n$  have solvable membership problem.
- What about F<sub>r</sub>?

#### Definition

Let G be a group. The membership problem in G consists on finding an algorithm to do the following:

input: 
$$g_0, g_1, ..., g_n \in G$$
;

output: YES if 
$$g_0 \in \langle g_1, \ldots, g_n \rangle \leqslant G$$
,

*NO if* 
$$g_0 \notin \langle g_1, \ldots, g_n \rangle \leqslant G$$
.

#### Theorem

There are groups G with UNSOLVABLE membership problem.

- Finite groups have solvable membership problem.
- $\mathbb{Z}^n$  and  $\mathbb{Q}^n$  have solvable membership problem.
- What about F<sub>r</sub>?

# A first example

### Example

Consider the subgroup of  $F_2 = F(\{a, b\})$  given by

$$H = \langle baba^{-1}, aba^{-1}, aba^{-1}, aba^{2} \rangle.$$

$$\parallel \qquad \parallel \qquad \parallel$$

$$w_{1} \qquad w_{2} \qquad w_{3}$$

$$|s|bab^2a^{-1} \in H$$
? YES,  $bab^2a^{-1} = w_1w_2$ .

Is 
$$b \in H$$
? YES,  $b = w_1 w_2^{-1}$ .

Is 
$$a \in H$$
? ... ummm ... I see  $a^3 = w_2^{-1}w_3$ .

# A first example

### Example

Consider the subgroup of  $F_2 = F(\{a, b\})$  given by

$$H = \langle baba^{-1}, aba^{-1}, aba^{-1}, aba^{2} \rangle.$$

$$\parallel \qquad \parallel \qquad \parallel$$

$$w_{1} \qquad w_{2} \qquad w_{3}$$

Is 
$$bab^2a^{-1} \in H$$
? YES,  $bab^2a^{-1} = w_1w_2$ .

Is 
$$b \in H$$
? YES,  $b = w_1 w_2^{-1}$ .

Is 
$$a \in H$$
? ... ummm ... I see  $a^3 = w_2^{-1}w_3$ .

## Example

Consider the subgroup of  $F_2 = F(\{a, b\})$  given by

$$H = \langle \begin{array}{ccc} baba^{-1}, & aba^{-1}, & aba^2 \\ \parallel & \parallel & \parallel \\ w_1 & w_2 & w_3 \end{array} \rangle.$$

Is 
$$bab^2a^{-1} \in H$$
? YES,  $bab^2a^{-1} = w_1w_2$ .

Is 
$$b \in H$$
? YES,  $b = w_1 w_2^{-1}$ .

Is 
$$a \in H$$
? ... ummm ... I see  $a^3 = w_2^{-1}w_3$ .

## Example

Consider the subgroup of  $F_2 = F(\{a, b\})$  given by

$$H = \langle baba^{-1}, aba^{-1}, aba^{-1}, aba^{2} \rangle.$$

$$\parallel \qquad \parallel \qquad \parallel$$

$$w_{1} \qquad w_{2} \qquad w_{3}$$

Is 
$$bab^2a^{-1} \in H$$
? YES,  $bab^2a^{-1} = w_1w_2$ .

Is 
$$b \in H$$
? YES,  $b = w_1 w_2^{-1}$ .

Is 
$$a \in H$$
? ... ummm ... I see  $a^3 = w_2^{-1}w_3$ .

## Example

Consider the subgroup of  $F_2 = F(\{a, b\})$  given by

$$H = \langle baba^{-1}, aba^{-1}, aba^{-1}, aba^{2} \rangle.$$

$$\parallel \qquad \parallel \qquad \parallel$$

$$w_{1} \qquad w_{2} \qquad w_{3}$$

Is 
$$bab^2a^{-1} \in H$$
? YES,  $bab^2a^{-1} = w_1w_2$ .

Is 
$$b \in H$$
? YES,  $b = w_1 w_2^{-1}$ .

Is 
$$a \in H$$
? ... ummm ... I see  $a^3 = w_2^{-1}w_3$ .

## Example

Consider the subgroup of  $F_2 = F(\{a, b\})$  given by

$$H = \langle baba^{-1}, aba^{-1}, aba^{-1}, aba^{2} \rangle.$$

$$\parallel \qquad \parallel \qquad \parallel$$

$$w_{1} \qquad w_{2} \qquad w_{3}$$

Is 
$$bab^2a^{-1} \in H$$
? YES,  $bab^2a^{-1} = w_1w_2$ .

Is 
$$b \in H$$
? YES,  $b = w_1 w_2^{-1}$ .

Is 
$$a \in H$$
? ... ummm ... I see  $a^3 = w_2^{-1}w_3$ .

## Example

Consider the subgroup of  $F_2 = F(\{a, b\})$  given by

$$H = \langle \begin{array}{ccc} baba^{-1}, & aba^{-1}, & aba^2 \\ \parallel & \parallel & \parallel \\ w_1 & w_2 & w_3 \end{array} \rangle.$$

Is 
$$bab^2a^{-1} \in H$$
? YES,  $bab^2a^{-1} = w_1w_2$ .

Is 
$$b \in H$$
? YES,  $b = w_1 w_2^{-1}$ .

Is 
$$a \in H$$
? ... ummm ... I see  $a^3 = w_2^{-1}w_3$ .

1. Free groups

# A first example

In fact,  $a \notin H$  because the total number of a's must be multiple of 3 !!!

$$aba^2 \in H$$
 but  $a^2ba \notin H$  ... why?

In fact,  $a \notin H$  because the total number of a's must be multiple of 3 !!!

$$aba^2 \in H$$
 but  $a^2ba \notin H$  ... why?

Is  $bab^2 a^3 b^{-1} a^{-1} b^4 aba^{-4} \in H$ ? ... exercise

In fact,  $a \notin H$  because the total number of a's must be multiple of 3 !!!

$$aba^2 \in H$$
 but  $a^2ba \notin H$  ... why?

1. Free groups

0000000000

In fact,  $a \notin H$  because the total number of a's must be multiple of 3 !!!

$$aba^2 \in H$$
 but  $a^2ba \notin H$  ... why?

Is  $bab^2a^3b^{-1}a^{-1}b^4aba^{-4} \in H$ ? ... exercise

In fact,  $a \notin H$  because the total number of a's must be multiple of 3 !!!

Stallings' graphs

$$aba^2 \in H$$
 but  $a^2ba \notin H$  ... why?

Is  $bab^2a^3b^{-1}a^{-1}b^4aba^{-4} \in H$ ? ... exercise

### Definition

Let G be a group. The intersection problem in G consists on finding an algorithm to do the following:

input: 
$$u_1, \ldots, u_n, v_1, \ldots, v_m \in G$$
;

output: 
$$w_1, \ldots, w_p \in G$$
 such that

$$\langle u_1,\ldots,u_n\rangle\cap\langle v_1,\ldots,v_m\rangle=\langle w_1,\ldots,w_p\rangle$$

- What about F<sub>r</sub> ?

### Definition

Let G be a group. The intersection problem in G consists on finding an algorithm to do the following:

input: 
$$u_1, \ldots, u_n, v_1, \ldots, v_m \in G$$
;

output: 
$$w_1, \ldots, w_p \in G$$
 such that

$$\langle u_1,\ldots,u_n\rangle\cap\langle v_1,\ldots,v_m\rangle=\langle w_1,\ldots,w_p\rangle$$

Stallings' graphs

## **Proposition**

- Finite groups have solvable intersection problem.
- $\mathbb{Z}^n$  and  $\mathbb{Q}^n$  have solvable intersection problem.
- What about F<sub>r</sub>?

## Definition

Let G be a group. The intersection problem in G consists on finding an algorithm to do the following:

input: 
$$u_1, \ldots, u_n, v_1, \ldots, v_m \in G$$
;

output: 
$$w_1, \ldots, w_p \in G$$
 such that

$$\langle u_1,\ldots,u_n\rangle\cap\langle v_1,\ldots,v_m\rangle=\langle w_1,\ldots,w_p\rangle$$

Stallings' graphs

## **Proposition**

- Finite groups have solvable intersection problem.
- $\mathbb{Z}^n$  and  $\mathbb{O}^n$  have solvable intersection problem.
- What about F<sub>r</sub> ?

### Definition

Let G be a group. The intersection problem in G consists on finding an algorithm to do the following:

input: 
$$u_1, ..., u_n, v_1, ..., v_m \in G$$
;

output: 
$$w_1, \ldots, w_p \in G$$
 such that

$$\langle u_1,\ldots,u_n\rangle\cap\langle v_1,\ldots,v_m\rangle=\langle w_1,\ldots,w_p\rangle$$

Stallings' graphs

### **Proposition**

- Finite groups have solvable intersection problem.
- $\mathbb{Z}^n$  and  $\mathbb{O}^n$  have solvable intersection problem.
- What about F<sub>r</sub> ?

## Example

Consider  $F_2$  and the subgroups  $H = \langle a, b^2, bab \rangle$  and  $K = \langle b^2, ba^2 \rangle$ . Can you find generators for  $H \cap K$ ?

- Clearly,  $b^2 \in H \cap K \dots$
- Less obvious but still easy,  $a^{-2}b^2a^2 \in H \cap K$  because

$$a^{-2}b^2a^2=(a)^{-2}(b^2)(a)^2\in H,$$

$$a^{-2}b^2a^2=(ba^2)^{-1}(b^2)(ba^2)\in K.$$

- Something else?  $H \cap K = \langle b^2, a^{-2}b^2a^2, \dots (?) \dots \rangle$
- How to be sure you found everything?

## Example

Consider  $F_2$  and the subgroups  $H = \langle a, b^2, bab \rangle$  and  $K = \langle b^2, ba^2 \rangle$ . Can you find generators for  $H \cap K$ ?

- Clearly,  $b^2 \in H \cap K \dots$
- Less obvious but still easy,  $a^{-2}b^2a^2 \in H \cap K$  because

$$a^{-2}b^2a^2=(a)^{-2}(b^2)(a)^2\in H,$$

$$a^{-2}b^2a^2=(ba^2)^{-1}(b^2)(ba^2)\in K.$$

- Something else?  $H \cap K = \langle b^2, a^{-2}b^2a^2, \dots (?) \dots \rangle$
- How to be sure you found everything?

## Example

Consider  $F_2$  and the subgroups  $H = \langle a, b^2, bab \rangle$  and  $K = \langle b^2, ba^2 \rangle$ . Can you find generators for  $H \cap K$ ?

- Clearly,  $b^2 \in H \cap K \dots$
- Less obvious but still easy,  $a^{-2}b^2a^2 \in H \cap K$  because

$$a^{-2}b^2a^2=(a)^{-2}(b^2)(a)^2\in H,$$

$$a^{-2}b^2a^2 = (ba^2)^{-1}(b^2)(ba^2) \in K.$$

- Something else?  $H \cap K = \langle b^2, a^{-2}b^2a^2, \dots (?) \dots \rangle$
- How to be sure you found everything?

## Example

Consider  $F_2$  and the subgroups  $H = \langle a, b^2, bab \rangle$  and  $K = \langle b^2, ba^2 \rangle$ . Can you find generators for  $H \cap K$ ?

- Clearly,  $b^2 \in H \cap K \dots$
- Less obvious but still easy,  $a^{-2}b^2a^2 \in H \cap K$  because

$$a^{-2}b^2a^2=(a)^{-2}(b^2)(a)^2\in H,$$

$$a^{-2}b^2a^2=(ba^2)^{-1}(b^2)(ba^2)\in K.$$

- Something else?  $H \cap K = \langle b^2, a^{-2}b^2a^2, \dots (?) \dots \rangle$
- How to be sure you found everything?

## Example

Consider  $F_2$  and the subgroups  $H = \langle a, b^2, bab \rangle$  and  $K = \langle b^2, ba^2 \rangle$ . Can you find generators for  $H \cap K$ ?

- Clearly,  $b^2 \in H \cap K \dots$
- Less obvious but still easy,  $a^{-2}b^2a^2 \in H \cap K$  because

$$a^{-2}b^2a^2=(a)^{-2}(b^2)(a)^2\in H,$$

$$a^{-2}b^2a^2=(ba^2)^{-1}(b^2)(ba^2)\in K.$$

- Something else?  $H \cap K = \langle b^2, a^{-2}b^2a^2, \dots (?) \dots \rangle$
- How to be sure you found everything?

# **Outline**

- Automata
- Solving problems in free groups

### Definition

Let A be an alphabet. An A-automaton A is an oriented graph with labels from A at the edges, and with a basepoint,  $A = (V, E, q_0)$ , where

- V is a finite set (of vertices).
- $E \subset V \times A \times V$  is the set of edges,
- $q_0 \in V$  is the basepoint.

### Definition

Let A be an alphabet. An A-automaton A is an oriented graph with labels from A at the edges, and with a basepoint,  $A = (V, E, q_0)$ , where

- V is a finite set (of vertices),
- $E \subset V \times A \times V$  is the set of edges.
- $q_0 \in V$  is the basepoint.

### Definition

Let A be an alphabet. An A-automaton A is an oriented graph with labels from A at the edges, and with a basepoint,  $A = (V, E, q_0)$ , where

- V is a finite set (of vertices),
- $E \subseteq V \times A \times V$  is the set of edges,
- $q_0 \in V$  is the basepoint.

### Definition

Let A be an alphabet. An A-automaton A is an oriented graph with labels from A at the edges, and with a basepoint,  $A = (V, E, q_0)$ , where

- V is a finite set (of vertices),
- $E \subset V \times A \times V$  is the set of edges,
- $q_0 \in V$  is the basepoint.

### Definition

Let A be an alphabet. An A-automaton A is an oriented graph with labels from A at the edges, and with a basepoint,  $A = (V, E, q_0)$ , where

Stallings' graphs

- V is a finite set (of vertices),
- $E \subset V \times A \times V$  is the set of edges,
- $q_0 \in V$  is the basepoint.

Note that A admits loops, and parallel edges with different labels.

### Definition

Let A be an alphabet. An A-automaton A is an oriented graph with labels from A at the edges, and with a basepoint,  $A = (V, E, q_0)$ , where

Stallings' graphs

- V is a finite set (of vertices),
- $E \subset V \times A \times V$  is the set of edges,
- $q_0 \in V$  is the basepoint.

Note that A admits loops, and parallel edges with different labels.

### Definition

An A-automaton A is connected if its underlying graph is connected (as undirected graph).

### Definition

Let A be an alphabet. An A-automaton A is an oriented graph with labels from A at the edges, and with a basepoint,  $A = (V, E, q_0)$ , where

Stallings' graphs

- V is a finite set (of vertices),
- $E \subset V \times A \times V$  is the set of edges.
- $q_0 \in V$  is the basepoint.

Note that A admits loops, and parallel edges with different labels.

### Definition

An A-automaton A is connected if its underlying graph is connected (as undirected graph).

## Definition

An A-automaton A is trim if it has no vertices of degree 1 except maybe the basepoint.

## Definition

### Let A be an A-automaton.

A path of length n in A:

$$\gamma = p_0 \stackrel{a_{i_1}^{\epsilon_1}}{\rightarrow} p_1 \stackrel{a_{i_2}^{\epsilon_2}}{\rightarrow} p_2 \cdots p_{n-1} \stackrel{a_{i_n}^{\epsilon_n}}{\rightarrow} p_n$$

- the label of  $\gamma$  is label( $\gamma$ ) =  $a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n} \in \tilde{A}^*$ ,
- notation:  $\gamma = p \stackrel{\sf w}{ o} q$  means a path from p to q with label  ${\sf w}$  .
- The notion of reduced path.

### Lemma

Let  $p \stackrel{w}{\rightarrow} q$  be a path in A. If w is reduced then  $p \stackrel{w}{\rightarrow} q$  is reduced. The convers is not true

## Definition

## Let A be an A-automaton.

A path of length n in A:

$$\gamma = p_0 \stackrel{a_{i_1}^{\epsilon_1}}{\rightarrow} p_1 \stackrel{a_{i_2}^{\epsilon_2}}{\rightarrow} p_2 \cdots p_{n-1} \stackrel{a_{i_n}^{\epsilon_n}}{\rightarrow} p_n$$

- the label of  $\gamma$  is label $(\gamma) = a_{i_*}^{\epsilon_1} \cdots a_{i_-}^{\epsilon_n} \in \tilde{A}^*$ ,

## Definition

Let A be an A-automaton.

A path of length n in A:

$$\gamma = p_0 \overset{a_{i_1}^{\epsilon_1}}{\to} p_1 \overset{a_{i_2}^{\epsilon_2}}{\to} p_2 \cdots p_{n-1} \overset{a_{i_n}^{\epsilon_n}}{\to} p_n$$

- the label of  $\gamma$  is label( $\gamma$ ) =  $a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n} \in \tilde{A}^*$ ,
- notation:  $\gamma = p \stackrel{w}{\rightarrow} q$  means a path from p to q with label w.

## Definition

### Let A be an A-automaton.

A path of length n in A:

$$\gamma = p_0 \stackrel{a_{i_1}^{\epsilon_1}}{\rightarrow} p_1 \stackrel{a_{i_2}^{\epsilon_2}}{\rightarrow} p_2 \cdots p_{n-1} \stackrel{a_{i_n}^{\epsilon_n}}{\rightarrow} p_n$$

- the label of  $\gamma$  is label( $\gamma$ ) =  $a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n} \in \tilde{A}^*$ ,
- notation:  $\gamma = p \stackrel{\text{w}}{\to} q$  means a path from p to q with label w.
- The notion of reduced path.

## Definition

Let A be an A-automaton.

A path of length n in A:

$$\gamma = p_0 \overset{a_{i_1}^{\epsilon_1}}{\to} p_1 \overset{a_{i_2}^{\epsilon_2}}{\to} p_2 \cdots p_{n-1} \overset{a_{i_n}^{\epsilon_n}}{\to} p_n$$

Stallings' graphs

- the label of  $\gamma$  is label( $\gamma$ ) =  $a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n} \in \tilde{A}^*$ ,
- notation:  $\gamma = p \stackrel{w}{\rightarrow} q$  means a path from p to q with label w.
- The notion of reduced path.

### Lemma

Let  $p \stackrel{w}{\to} q$  be a path in A. If w is reduced then  $p \stackrel{w}{\to} q$  is reduced. The convers is not true.

### Definition

An A-automaton A is deterministic if

•  $e = (p, a, q) \in E$ ,  $e' = (p, a, q') \in E$  imply q = q' (so, e = e'),

Stallings' graphs

•  $e = (p, a, q) \in E$ ,  $e' = (p', a, q) \in E$  imply p = p' (so, e = e').

- ii)  $\exists p \stackrel{w}{\rightarrow} q$ ,  $\exists p \stackrel{w}{\rightarrow} q'$  then q = q' (so, they are the same path),
- iii)  $\exists p \stackrel{w}{\rightarrow} q$ ,  $\exists p' \stackrel{w}{\rightarrow} q$  then p = p' (so, they are the same path),
- iv) A reduced w can ONLY be spelled by a unique possible path (if
- v) if  $\exists p \stackrel{w}{\rightarrow} q$  then  $\exists p \stackrel{\overline{w}}{\rightarrow} a'$ .

### Definition

An A-automaton A is deterministic if

•  $e = (p, a, q) \in E$ ,  $e' = (p, a, q') \in E$  imply q = q' (so, e = e'),

Stallings' graphs

•  $e = (p, a, q) \in E$ ,  $e' = (p', a, q) \in E$  imply p = p' (so, e = e').

### Lemma

Let A be a deterministic A-automaton. Then we have.

- i)  $p \stackrel{w}{\rightarrow} q$  is reduced  $\Leftrightarrow w$  is reduced,

### Definition

An A-automaton A is deterministic if

•  $e = (p, a, q) \in E$ ,  $e' = (p, a, q') \in E$  imply q = q' (so, e = e'),

Stallings' graphs

•  $e = (p, a, q) \in E$ ,  $e' = (p', a, q) \in E$  imply p = p' (so, e = e').

### Lemma

Let A be a deterministic A-automaton. Then we have.

- i)  $p \stackrel{w}{\rightarrow} q$  is reduced  $\Leftrightarrow w$  is reduced,
- ii)  $\exists p \stackrel{w}{\rightarrow} q$ ,  $\exists p \stackrel{w}{\rightarrow} q'$  then q = q' (so, they are the same path),

### Definition

An A-automaton A is deterministic if

•  $e = (p, a, q) \in E$ ,  $e' = (p, a, q') \in E$  imply q = q' (so, e = e'),

Stallings' graphs

•  $e = (p, a, q) \in E$ ,  $e' = (p', a, q) \in E$  imply p = p' (so, e = e').

### Lemma

Let A be a deterministic A-automaton. Then we have.

- i)  $p \stackrel{w}{\rightarrow} q$  is reduced  $\Leftrightarrow w$  is reduced,
- ii)  $\exists p \xrightarrow{w} q$ ,  $\exists p \xrightarrow{w} q'$  then q = q' (so, they are the same path),
- iii)  $\exists p \xrightarrow{w} q$ ,  $\exists p' \xrightarrow{w} q$  then p = p' (so, they are the same path),

## **Determinism**

#### Definition

An A-automaton A is deterministic if

•  $e = (p, a, q) \in E$ ,  $e' = (p, a, q') \in E$  imply q = q' (so, e = e'),

Stallings' graphs

•  $e = (p, a, q) \in E$ ,  $e' = (p', a, q) \in E$  imply p = p' (so, e = e').

#### Lemma

Let A be a deterministic A-automaton. Then we have.

- i)  $p \stackrel{w}{\rightarrow} q$  is reduced  $\Leftrightarrow w$  is reduced,
- ii)  $\exists p \stackrel{w}{\rightarrow} q$ ,  $\exists p \stackrel{w}{\rightarrow} q'$  then q = q' (so, they are the same path),
- iii)  $\exists p \xrightarrow{w} q$ ,  $\exists p' \xrightarrow{w} q$  then p = p' (so, they are the same path),
- iv) A reduced w can ONLY be spelled by a unique possible path (if any) from A with a given origin or end,

## **Determinism**

#### Definition

An A-automaton A is deterministic if

•  $e = (p, a, q) \in E$ ,  $e' = (p, a, q') \in E$  imply q = q' (so, e = e'),

Stallings' graphs

•  $e = (p, a, q) \in E$ ,  $e' = (p', a, q) \in E$  imply p = p' (so, e = e').

#### Lemma

Let A be a deterministic A-automaton. Then we have.

- i)  $p \stackrel{w}{\rightarrow} q$  is reduced  $\Leftrightarrow w$  is reduced,
- ii)  $\exists p \xrightarrow{w} q$ ,  $\exists p \xrightarrow{w} q'$  then q = q' (so, they are the same path),
- iii)  $\exists p \xrightarrow{w} q$ ,  $\exists p' \xrightarrow{w} q$  then p = p' (so, they are the same path),
- iv) A reduced w can ONLY be spelled by a unique possible path (if any) from A with a given origin or end,
- v) if  $\exists p \stackrel{w}{\rightarrow} q$  then  $\exists p \stackrel{\overline{w}}{\rightarrow} q'$ .

#### Definition

The language of an A-automaton A, is

$$L(A) = \{ w \in \tilde{A}^* \mid \exists q_0 \stackrel{w}{\rightarrow} q_0 \} \subseteq F(A).$$

Also called the fundamental group of A at  $q_0$ .

#### Observation

L(A) is a subgroup of F(A).

#### Example

$$L(a \circ b) = \langle a, b \rangle$$
 and  $L(a \circ b) = \langle a, b^2 \rangle$ , both

## The language of an automaton

#### Definition

The language of an A-automaton A, is

$$L(A) = \{ w \in \tilde{A}^* \mid \exists q_0 \stackrel{w}{\rightarrow} q_0 \} \subseteq F(A).$$

Also called the fundamental group of A at  $q_0$ .

$$L(a \bigcirc \bullet \bigcirc b) = \langle a, b \rangle$$
 and  $L(a \bigcirc \bullet \bigcirc \bullet) = \langle a, b^2 \rangle$ , both

Stallings' graphs

# The language of an automaton

#### Definition

The language of an A-automaton A, is

$$L(A) = \{ w \in \tilde{A}^* \mid \exists q_0 \stackrel{w}{\rightarrow} q_0 \} \subseteq F(A).$$

Also called the fundamental group of A at  $q_0$ .

#### Observation

L(A) is a subgroup of F(A).

$$L(a \circ b) = \langle a, b \rangle$$
 and  $L(a \circ b) = \langle a, b^2 \rangle$ , both

## The language of an automaton

#### Definition

The language of an A-automaton A, is

$$L(A) = \{ w \in \tilde{A}^* \mid \exists q_0 \stackrel{w}{\rightarrow} q_0 \} \subseteq F(A).$$

Also called the fundamental group of A at  $q_0$ .

#### Observation

L(A) is a subgroup of F(A).

#### Example

$$L(a \bigcirc \bullet \bigcirc b) = \langle a, b \rangle$$
 and  $L(a \bigcirc \bullet \bigcirc b) = \langle a, b^2 \rangle$ , both inside the free group  $F(\{a, b\})$ .

## Back to the membership problem



But  $ba^2cb^{-1} \in L(A)$ , because  $ba^2cb^{-1} = bab^{-1}bacb^{-1} \in L(A)$ .

## Back to the membership problem



But  $ba^2cb^{-1} \in L(A)$ , because  $ba^2cb^{-1} = bab^{-1}bacb^{-1} \in L(A)$ .

## Back to the membership problem



But  $ba^2cb^{-1} \in L(A)$ , because  $ba^2cb^{-1} = bab^{-1}bacb^{-1} \in L(A)$ .







### Observation

Membership in  $F_r$  is solvable for language subgroups of (given) deterministic automata.

Stallings' graphs

## **Outline**

- Stallings' graphs
- Solving problems in free groups

#### Definition

A Stallings automaton over A is a finite A-automaton  $(V, E, q_0)$ , such that:

- 1- it is connected.
- 2- it is trim, (no vertex of degree 1 except possibly  $q_0$ ),
- 3- it is deterministic (no two edges with the same label go out of (or in to) the same vertex).



#### Definition

A Stallings automaton over A is a finite A-automaton  $(V, E, q_0)$ , such that:

- 1- it is connected.
- 2- it is trim, (no vertex of degree 1 except possibly  $q_0$ ),
- 3- it is deterministic (no two edges with the same label go out of (or in to) the same vertex).



#### Definition

A Stallings automaton over A is a finite A-automaton  $(V, E, q_0)$ , such that:

- 1- it is connected.
- 2- it is trim, (no vertex of degree 1 except possibly  $q_0$ ),
- 3- it is deterministic (no two edges with the same label go out of (or in to) the same vertex).



### In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565.

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F(A) and Stallings automata:

```
\{f.g. \text{ subgroups of } F(A)\} \longleftrightarrow \{\text{Stallings automata over } A\}
```

which is crucial for the modern understanding of the lattice of subgroups of F(A).

### In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565.

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F(A) and Stallings automata:

```
\{f.g. \text{ subgroups of } F(A)\} \longleftrightarrow \{\text{Stallings automata over } A\},
```

which is crucial for the modern understanding of the lattice of subgroups of F(A).

#### In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565.

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F(A) and Stallings automata:

```
\{f.g. \text{ subgroups of } F(A)\} \longleftrightarrow \{\text{Stallings automata over } A\},
```

which is crucial for the modern understanding of the lattice of subgroups of F(A).

## Reading the subgroup from the automata

#### Definition

To any given Stallings automaton  $A = (V, E, q_0)$ , we associate its language:

$$L(A) = \{ \text{ labels of closed paths at } q_0 \} \leqslant F(A).$$



$$L(A) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$L(A) \not\ni bc^{-1}bcaa$$

## Reading the subgroup from the automata

#### Definition

To any given Stallings automaton  $A = (V, E, q_0)$ , we associate its language:

$$L(A) = \{ \text{ labels of closed paths at } q_0 \} \leqslant F(A).$$



$$L(A) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

000000000000000000000

$$L(A) \not\ni bc^{-1}bcaa$$

Stallings' graphs

Membership problem in L(A) is solvable.

### **Proposition**

For every Stallings automaton  $A = (V, E, q_0)$ , the group L(A) is free of rank rk(L(A)) = 1 - |V| + |E|.

- Take a maximal tree T in A.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T
- For every  $e \in EX ET$ ,
- Not difficult to see that  $\{x_e \mid e \in E ET\}$  is a basis for L(A).
- And, |E ET| = |E| |ET|

### **Proposition**

For every Stallings automaton  $A = (V, E, q_0)$ , the group L(A) is free of rank rk(L(A)) = 1 - |V| + |E|.

Stallings' graphs

- Take a maximal tree T in A.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T
- For every  $e \in EX ET$ ,
- Not difficult to see that  $\{x_e \mid e \in E ET\}$  is a basis for L(A).
- And, |E ET| = |E| |ET|

### **Proposition**

For every Stallings automaton  $A = (V, E, q_0)$ , the group L(A) is free of rank rk(L(A)) = 1 - |V| + |E|.

Stallings' graphs

- Take a maximal tree T in A.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every  $e \in EX ET$ ,
- Not difficult to see that  $\{x_e \mid e \in E ET\}$  is a basis for L(A).
- And, |E ET| = |E| |ET|

### **Proposition**

For every Stallings automaton  $A = (V, E, q_0)$ , the group L(A) is free of rank rk(L(A)) = 1 - |V| + |E|.

- Take a maximal tree T in A.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every  $e \in EX ET$ ,  $x_e = label(T[q_0, \iota e] \cdot e \cdot T[\tau e, q_0]) \in L(A).$
- Not difficult to see that  $\{x_e \mid e \in E ET\}$  is a basis for L(A).
- And, |E ET| = |E| |ET|

### **Proposition**

For every Stallings automaton  $A = (V, E, q_0)$ , the group L(A) is free of rank rk(L(A)) = 1 - |V| + |E|.

- Take a maximal tree T in A.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every  $e \in EX ET$ ,  $x_e = label(T[q_0, \iota e] \cdot e \cdot T[\tau e, q_0]) \in L(A).$
- Not difficult to see that  $\{x_e \mid e \in E ET\}$  is a basis for L(A).
- And, |E ET| = |E| |ET|

### **Proposition**

For every Stallings automaton  $A = (V, E, q_0)$ , the group L(A) is free of rank rk(L(A)) = 1 - |V| + |E|.

Stallings' graphs

- Take a maximal tree T in A.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every  $e \in EX ET$ ,  $x_e = label(T[q_0, \iota e] \cdot e \cdot T[\tau e, q_0]) \in L(A).$
- Not difficult to see that  $\{x_e \mid e \in E ET\}$  is a basis for L(A).
- And, |E ET| = |E| |ET| $= |E| - (|VT| - 1) = 1 - |V| + |E|. \square$



$$H = \langle \rangle$$



$$H = \langle \mathbf{a}, \rangle$$



$$H = \langle a, bab, \rangle$$



$$H = \langle \mathbf{a}, \mathbf{bab}, \mathbf{b}^{-1} \mathbf{cb}^{-1} \rangle$$



$$H = \langle a, bab, b^{-1}cb^{-1} \rangle \leqslant F(\{a, b, c\})$$

$$rk(H) = 1 - 3 + 5 = 3$$



$$H = \langle a, bab, b^{-1}cb^{-1} \rangle \leqslant F(\{a, b, c\})$$

$$rk(H) = 1 - 3 + 5 = 3.$$



$$H = \langle \mathbf{a}, \mathbf{c}, \mathbf{bab}, \mathbf{b}^{-1} \mathbf{cb}^{-1} \rangle \leqslant F(\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}).$$



$$H = \langle a, c, bab, b^{-1}cb^{-1} \rangle \leqslant F(\{a, b, c\}).$$

$$rk(H) = 1 - 3 + 6 = 4$$
 and it is a subgroup of  $F_3$ !!!



$$F_{\aleph_0} \simeq H = \langle \dots, b^{-2}ab^2, b^{-1}ab, a, bab^{-1}, b^2ab^{-2}, \dots \rangle \leqslant F_2.$$

# Constructing the automaton from the subgroup

```
Given H = \langle w_1, \dots, w_n \rangle \in F(A), construct the flower automaton, denoted \mathcal{F}(H).
```

```
Clearly, L(\mathcal{F}(H)) = H.
```

... But  $\mathcal{F}(H)$  is not in general deterministic...

Given  $H = \langle w_1, \dots, w_n \rangle \in F(A)$ , construct the flower automaton, denoted  $\mathcal{F}(H)$ .

Clearly,  $L(\mathcal{F}(H)) = H$ .

.. But  $\mathcal{F}(H)$  is not in general deterministic...

Given  $H = \langle w_1, \dots, w_n \rangle \in F(A)$ , construct the flower automaton, denoted  $\mathcal{F}(H)$ .

Clearly,  $L(\mathcal{F}(H)) = H$ .

... But  $\mathcal{F}(H)$  is not in general deterministic...

In any automaton A containing the following situation, for  $a \in A^{\pm 1}$ ,



we can fold and identify vertices u and v to obtain

$$\bullet$$
  $\longrightarrow$   $U = V$ .

This operation,  $A \rightsquigarrow A'$ , is called a Stallings folding.

In any automaton A containing the following situation, for  $a \in A^{\pm 1}$ ,



we can fold and identify vertices u and v to obtain

$$\bullet \xrightarrow{a} U = V$$
.

This operation,  $A \rightsquigarrow A'$ , is called a Stallings folding.

In any automaton A containing the following situation, for  $a \in A^{\pm 1}$ ,



we can fold and identify vertices u and v to obtain

$$\bullet \xrightarrow{a} U = V$$
.

This operation,  $A \rightsquigarrow A'$ , is called a Stallings folding.

#### Lemma (Stallings)

If  $A \rightsquigarrow A'$  is a Stallings folding then L(A) = L(A').

Given a f.g. subgroup  $H = \langle w_1, \dots, w_n \rangle \leqslant F_A$  (we assume  $w_i$  are reduced words), do the following:

- 1- Draw the flower automaton.
- 2- Perform successive foldings until obtaining a Stallings automaton, denoted  $\Gamma(H)$ .

### Lemma (Stallings)

If  $A \rightsquigarrow A'$  is a Stallings folding then L(A) = L(A').

Given a f.g. subgroup  $H = \langle w_1, \dots, w_n \rangle \leqslant F_A$  (we assume  $w_i$  are reduced words), do the following:

- 1- Draw the flower automaton.
- 2- Perform successive foldings until obtaining a Stallings automaton, denoted Γ(H).

### Lemma (Stallings)

If  $A \rightsquigarrow A'$  is a Stallings folding then L(A) = L(A').

Given a f.g. subgroup  $H = \langle w_1, \dots, w_n \rangle \leqslant F_A$  (we assume  $w_i$  are reduced words), do the following:

- 1- Draw the flower automaton.
- 2- Perform successive foldings until obtaining a Stallings automaton, denoted  $\Gamma(H)$ .

# Example: $H = \langle baba^{-1}, aba^{-1}, aba^{2} \rangle$



Flower(H)

# Example: $H = \langle baba^{-1}, aba^{-1}, aba^{2} \rangle$



Flower(H)

# Example: $H = \langle baba^{-1}, aba^{-1}, aba^{2} \rangle$



Folding #1

# Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$



Folding #1.



Folding #2.



# Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$



Folding #2.

# Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$



Folding #3.

By Stallings Lemma,  $L(\Gamma(H)) = H = \langle baba^{-1}, aba^{-1}, aba^{-2} \rangle$ 



Folding #3.

By Stallings Lemma, 
$$L(\Gamma(H)) = H = \langle baba^{-1}, aba^{-1}, aba^{-1} \rangle$$

# Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$



By Stallings Lemma, 
$$L(\Gamma(H)) = H = \langle baba^{-1}, aba^{-1}, aba^{-1}, aba^{2} \rangle$$
  
=  $\langle b, aba^{-1}, a^{3} \rangle$ 

### Local confluence

#### It can be shown that

### **Proposition**

The automaton  $\Gamma(H)$  does not depend on the sequence of foldings.

#### Proposition

The automaton  $\Gamma(H)$  does not depend on the generators of H.

#### Theorem

The following is a well defined bijection:

$$\begin{array}{cccc} \{\textit{f.g. subgroups of F}_A\} & \longleftrightarrow & \{\textit{Stallings automata}\} \\ & H & \to & \Gamma(H) \\ & L(\mathcal{A}) & \leftarrow & \mathcal{A} \end{array}$$

## Local confluence

#### It can be shown that

### **Proposition**

The automaton  $\Gamma(H)$  does not depend on the sequence of foldings.

Stallings' graphs

000000000000000000000

#### Proposition

The automaton  $\Gamma(H)$  does not depend on the generators of H.

#### Theorem

The following is a well defined bijection:

```
 \begin{array}{cccc} \{\textit{f.g. subgroups of } F_A\} & \longleftrightarrow & \{\textit{Stallings automata}\} \\ & H & \to & \Gamma(H) \\ & L(\mathcal{A}) & \leftarrow & \mathcal{A} \end{array}
```

### Local confluence

It can be shown that

#### **Proposition**

The automaton  $\Gamma(H)$  does not depend on the sequence of foldings.

Stallings' graphs

000000000000000000000

#### **Proposition**

The automaton  $\Gamma(H)$  does not depend on the generators of H.

#### **Theorem**

The following is a well defined bijection:

```
 \begin{array}{ccc} \{\textit{f.g. subgroups of F}_{\textit{A}}\} & \longleftrightarrow & \{\textit{Stallings automata}\} \\ & \textit{H} & \to & \Gamma(\textit{H}) \\ & \textit{L}(\mathcal{A}) & \leftarrow & \mathcal{A} \end{array}
```

## Outline

- Free groups
- 2 Automata
- Stallings' graphs
- Solving problems in free groups

### Nielsen-Schreier Theorem

#### Corollary (Nielsen-Schreier)

Every subgroup of  $F_A$  is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.

## Nielsen-Schreier Theorem

#### Corollary (Nielsen-Schreier)

Every subgroup of  $F_A$  is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.

## Nielsen-Schreier Theorem

#### Corollary (Nielsen-Schreier)

Every subgroup of  $F_A$  is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.

#### Theorem

Free groups have solvable membership problem.

- Given  $w_0$  and  $H = \langle w_1, \ldots, w_n \rangle$  in  $F_m$ ,
- Fold to obtain  $\Gamma(H)$ ,
- Check whether  $\overline{w_0}$  is readable as a loop in  $\Gamma(H)$  at the basepoint.

#### Theorem

Free groups have solvable membership problem.

#### **Proof:**

- Given  $w_0$  and  $H = \langle w_1, \ldots, w_n \rangle$  in  $F_m$ ,
- Fold to obtain  $\Gamma(H)$ ,
- Check whether  $\overline{w_0}$  is readable as a loop in  $\Gamma(H)$  at the basepoint.

#### Theorem

Free groups have solvable membership problem.

#### **Proof:**

- Given  $w_0$  and  $H = \langle w_1, \ldots, w_n \rangle$  in  $F_m$ ,
- Construct the flower automaton  $\mathcal{F}(H)$ ,
- Check whether  $\overline{w_0}$  is readable as a loop in  $\Gamma(H)$  at the basepoint.

#### Theorem

Free groups have solvable membership problem.

- Given  $w_0$  and  $H = \langle w_1, \dots, w_n \rangle$  in  $F_m$ ,
- Construct the flower automaton  $\mathcal{F}(H)$ ,
- Fold to obtain Γ(H),
- Check whether  $\overline{w_0}$  is readable as a loop in  $\Gamma(H)$  at the basepoint.

#### Theorem

Free groups have solvable membership problem.

- Given  $w_0$  and  $H = \langle w_1, \dots, w_n \rangle$  in  $F_m$ ,
- Construct the flower automaton  $\mathcal{F}(H)$ ,
- Fold to obtain Γ(H),
- Check whether  $\overline{w_0}$  is readable as a loop in  $\Gamma(H)$  at the basepoint.

#### Theorem

Free groups have solvable intersection problem.

- Given  $H = \langle u_1, \dots, u_n \rangle$  and  $K = \langle v_1, \dots, v_m \rangle$ ,

- Choose a maximal tree and compute a basis for  $H \cap K$ .  $\square$

#### Theorem

Free groups have solvable intersection problem.

#### Proof:

- Given  $H = \langle u_1, \dots, u_n \rangle$  and  $K = \langle v_1, \dots, v_m \rangle$ ,
- Construct the Stallings graphs  $\Gamma(H)$  and  $\Gamma(K)$ ,
- Construct the pull-back graph  $\Gamma(H) \times_A \Gamma(K)$ ,
- Take the connected component of the basepoint and trim it,

- This is, precisely,  $\Gamma(H \cap K)$ ,
- Choose a maximal tree and compute a basis for  $H \cap K$ .  $\square$

#### Theorem

Free groups have solvable intersection problem.

#### Proof:

- Given  $H = \langle u_1, \dots, u_n \rangle$  and  $K = \langle v_1, \dots, v_m \rangle$ ,
- Construct the Stallings graphs  $\Gamma(H)$  and  $\Gamma(K)$ ,
- Construct the pull-back graph  $\Gamma(H) \times_A \Gamma(K)$ ,
- Take the connected component of the basepoint and trim it,

- This is, precisely,  $\Gamma(H \cap K)$ ,
- Choose a maximal tree and compute a basis for  $H \cap K$ .  $\square$

#### Theorem

Free groups have solvable intersection problem.

- Given  $H = \langle u_1, \dots, u_n \rangle$  and  $K = \langle v_1, \dots, v_m \rangle$ ,
- Construct the Stallings graphs Γ(H) and Γ(K),
- Construct the pull-back graph  $\Gamma(H) \times_A \Gamma(K)$ ,

- Choose a maximal tree and compute a basis for  $H \cap K$ .  $\square$

#### Theorem

Free groups have solvable intersection problem.

- Given  $H = \langle u_1, \dots, u_n \rangle$  and  $K = \langle v_1, \dots, v_m \rangle$ ,
- Construct the Stallings graphs  $\Gamma(H)$  and  $\Gamma(K)$ ,
- Construct the pull-back graph  $\Gamma(H) \times_A \Gamma(K)$ ,
- Take the connected component of the basepoint and trim it,
- Choose a maximal tree and compute a basis for  $H \cap K$ .  $\square$

#### Theorem

Free groups have solvable intersection problem.

- Given  $H = \langle u_1, \dots, u_n \rangle$  and  $K = \langle v_1, \dots, v_m \rangle$ ,
- Construct the Stallings graphs  $\Gamma(H)$  and  $\Gamma(K)$ ,
- Construct the pull-back graph  $\Gamma(H) \times_A \Gamma(K)$ ,
- Take the connected component of the basepoint and trim it,
- This is, precisely,  $\Gamma(H \cap K)$ ,
- Choose a maximal tree and compute a basis for  $H \cap K$ .  $\square$

#### Theorem

Free groups have solvable intersection problem.

- Given  $H = \langle u_1, \dots, u_n \rangle$  and  $K = \langle v_1, \dots, v_m \rangle$ ,
- Construct the Stallings graphs  $\Gamma(H)$  and  $\Gamma(K)$ ,
- Construct the pull-back graph  $\Gamma(H) \times_A \Gamma(K)$ ,
- Take the connected component of the basepoint and trim it,
- This is, precisely,  $\Gamma(H \cap K)$ ,
- Choose a maximal tree and compute a basis for  $H \cap K$ .  $\square$

Let  $H = \langle a, b^2, bab \rangle$  and  $K = \langle b^2, ba^2 \rangle$  be subgroups of  $F_2$ . To compute a basis for  $H \cap K$ :





Let  $H = \langle a, b^2, bab \rangle$  and  $K = \langle b^2, ba^2 \rangle$  be subgroups of  $F_2$ . To compute a basis for  $H \cap K$ :





 $H \cap K = ?$  Clear that  $b^2 \in H \cap K$ , but.... something else?

Let  $H = \langle a, b^2, bab \rangle$  and  $K = \langle b^2, ba^2 \rangle$  be subgroups of  $F_2$ . To compute a basis for  $H \cap K$ :





 $H \cap K = ?$  Clear that  $b^2 \in H \cap K$ , but.... something else?

Let  $H = \langle a, b^2, bab \rangle$  and  $K = \langle b^2, ba^2 \rangle$  be subgroups of  $F_2$ . To compute a basis for  $H \cap K$ :



$$H \cap K = \langle b^2, \dots (?) \dots \rangle$$

Let  $H = \langle a, b^2, bab \rangle$  and  $K = \langle b^2, ba^2 \rangle$  be subgroups of  $F_2$ . To compute a basis for  $H \cap K$ :



$$H \cap K = \langle b^2, \rangle$$

Let  $H = \langle a, b^2, bab \rangle$  and  $K = \langle b^2, ba^2 \rangle$  be subgroups of  $F_2$ . To compute a basis for  $H \cap K$ :



$$H \cap K = \langle b^2, a^{-2}b^2a^2, \rangle$$

Let  $H = \langle a, b^2, bab \rangle$  and  $K = \langle b^2, ba^2 \rangle$  be subgroups of  $F_2$ . To compute a basis for  $H \cap K$ :



$$H \cap K = \langle b^2, a^{-2}b^2a^2, \rangle$$

Let  $H = \langle a, b^2, bab \rangle$  and  $K = \langle b^2, ba^2 \rangle$  be subgroups of  $F_2$ . To compute a basis for  $H \cap K$ :



$$H \cap K = \langle b^2, a^{-2}b^2a^2, ba^2ba^2 \rangle$$
 ... and nothing else.

Let  $H = \langle a, b^2, bab \rangle$  and  $K = \langle b^2, ba^2 \rangle$  be subgroups of  $F_2$ . To compute a basis for  $H \cap K$ :



$$H \cap K = \langle b^2, a^{-2}b^2a^2, ba^2ba^2 \rangle$$
 ... and nothing else.

#### Theorem (Howson)

The intersection of finitely generated subgroups of F(A) is again finitely generated.

But the intersection can have bigger rank: " $3 = 3 \cap 2 \leq 2$ "

### Theorem (H. Neumann)

$$\tilde{r}(H \cap K) \leq 2\tilde{r}(H)\tilde{r}(K)$$
, where  $\tilde{r}(H) = \max\{0, r(H) - 1\}$ .

Theorem (Friedman, Mineyev 2012 (with simpl. by W. Dicks))  $\tilde{r}(H \cap K) \leqslant \tilde{r}(H)\tilde{r}(K)$ .

#### Theorem (Howson)

The intersection of finitely generated subgroups of F(A) is again finitely generated.

Stallings' graphs

But the intersection can have bigger rank: " $3 = 3 \cap 2 \leq 2$ "

Theorem (H. Neumann)

 $\tilde{r}(H \cap K) \leq 2\tilde{r}(H)\tilde{r}(K)$ , where  $\tilde{r}(H) = \max\{0, r(H) - 1\}$ .

Theorem (Friedman, Mineyev 2012 (with simpl. by W. Dicks))  $\tilde{r}(H \cap K) \leqslant \tilde{r}(H)\tilde{r}(K)$ .

#### Theorem (Howson)

The intersection of finitely generated subgroups of F(A) is again finitely generated.

But the intersection can have bigger rank: " $3 = 3 \cap 2 \leq 2$ "

### Theorem (H. Neumann)

$$\tilde{r}(H \cap K) \leq 2\tilde{r}(H)\tilde{r}(K)$$
, where  $\tilde{r}(H) = \max\{0, r(H) - 1\}$ .

#### Theorem (Howson)

The intersection of finitely generated subgroups of F(A) is again finitely generated.

Stallings' graphs

But the intersection can have bigger rank: " $3 = 3 \cap 2 \leq 2$ "

### Theorem (H. Neumann)

$$\tilde{r}(H \cap K) \leq 2\tilde{r}(H)\tilde{r}(K)$$
, where  $\tilde{r}(H) = \max\{0, r(H) - 1\}$ .

Theorem (Friedman, Mineyev 2012 (with simpl. by W. Dicks))

$$\tilde{r}(H \cap K) \leqslant \tilde{r}(H)\tilde{r}(K)$$
.

#### Theorem (Howson)

The intersection of finitely generated subgroups of F(A) is again finitely generated.

Stallings' graphs

But the intersection can have bigger rank: " $3 = 3 \cap 2 \leq 2$ "

### Theorem (H. Neumann)

$$\tilde{r}(H \cap K) \leq 2\tilde{r}(H)\tilde{r}(K)$$
, where  $\tilde{r}(H) = \max\{0, r(H) - 1\}$ .

Theorem (Friedman, Mineyev 2012 (with simpl. by W. Dicks))

$$\tilde{r}(H \cap K) \leqslant \tilde{r}(H)\tilde{r}(K)$$
.

In the example,  $3-1 \le (3-1)(2-1)$ .



## **THANKS**

Stallings' graphs

**KIITOS**