Some group-based cryptosystems

Enric Ventura

Departament de Matemàtica Aplicada III

Universitat Politècnica de Catalunya

Zaragoza, January 23, 2009

Outline

- The origins of public key cryptography
- A protocol based on the word problem
- Protocols based on the conjugacy problem
- Protocols based on the factorization problem
- 6 Anshel-Anshel-Goldfeld protocol
- 6 Some authentication protocols

Outline

- The origins of public key cryptography
- A protocol based on the word problem
- Protocols based on the conjugacy problem
- Protocols based on the factorization problem
- 5 Anshel-Anshel-Goldfeld protocol
- 6 Some authentication protocols

The goal

Bob wants to send a secret message, m, to Alice over an open chanel (and Eve is trying to illegitimately discover m and break the system).

From Wikipedia: "Diffie-Hellman key agreement was invented in 1976 ... and was the first practical method for establishing a shared secret over an unprotected communications chanel".

A third author, Merkle, was also involved in the construction (U.S. Patent 4.200.770, now expired, describes the algorithms and credits Diffie, Hellman and Merkle as inventors).

The goal

Bob wants to send a secret message, m, to Alice over an open chanel (and Eve is trying to illegitimately discover m and break the system).

From Wikipedia: "Diffie-Hellman key agreement was invented in 1976 ... and was the first practical method for establishing a shared secret over an unprotected communications chanel".

A third author, Merkle, was also involved in the construction (U.S. Patent 4.200.770, now expired, describes the algorithms and credits Diffie, Hellman and Merkle as inventors).

The goal

Bob wants to send a secret message, m, to Alice over an open chanel (and Eve is trying to illegitimately discover m and break the system).

From Wikipedia: "Diffie-Hellman key agreement was invented in 1976 ... and was the first practical method for establishing a shared secret over an unprotected communications chanel".

A third author, Merkle, was also involved in the construction (U.S. Patent 4.200.770, now expired, describes the algorithms and credits Diffie, Hellman and Merkle as inventors).

- For simplicity, we assume that $m \in \{0, 1\}^n$.
- Let S be a set and $H: S \to \{0,1\}^n$ a function (called the key space and a Hash function, respectively).
- Suppose Bob and Alice share a secret key, $K \in S$.
- **Encription**: Bob encrypts his message *m* as

$$E(m) = m + H(K).$$

$$E(m) + H(K) = m + (H(K) + H(K)) = m$$

- Eavesdropper: Eve needs to find H(K), i.e. K
- Expansion factor is 1.

- For simplicity, we assume that $m \in \{0, 1\}^n$.
- Let S be a set and $H: S \to \{0,1\}^n$ a function (called the key space and a Hash function, respectively).
- Suppose Bob and Alice share a secret key, $K \in S$.
- Encription: Bob encrypts his message m as

$$E(m) = \mathbf{m} + H(K).$$

$$E(m) + H(K) = m + (H(K) + H(K)) = m$$

- **Eavesdropper:** Eve needs to find H(K), i.e. K
- Expansion factor is 1.

- For simplicity, we assume that $m \in \{0, 1\}^n$.
- Let S be a set and $H: S \to \{0,1\}^n$ a function (called the key space and a Hash function, respectively).
- Suppose Bob and Alice share a secret key, K ∈ S.
- Encription: Bob encrypts his message *m* as

$$E(m) = \mathbf{m} + H(K).$$

$$E(m) + H(K) = m + (H(K) + H(K)) = m$$

- **Eavesdropper:** Eve needs to find H(K), i.e. K
- Expansion factor is 1.

- For simplicity, we assume that $m \in \{0, 1\}^n$.
- Let S be a set and $H: S \to \{0,1\}^n$ a function (called the key space and a Hash function, respectively).
- Suppose Bob and Alice share a secret key, $K \in S$.
- Encription: Bob encrypts his message *m* as

$$E(m) = m + H(K).$$

$$E(m) + H(K) = m + (H(K) + H(K)) = m$$

- **Eavesdropper:** Eve needs to find H(K), i.e. K
- Expansion factor is 1.

- For simplicity, we assume that $m \in \{0, 1\}^n$.
- Let S be a set and $H: S \to \{0,1\}^n$ a function (called the key space and a Hash function, respectively).
- Suppose Bob and Alice share a secret key, $K \in S$.
- Encription: Bob encrypts his message *m* as

$$E(m) = m + H(K).$$

$$E(m) + H(K) = m + (H(K) + H(K)) = m.$$

- **Eavesdropper:** Eve needs to find H(K), i.e. K
- Expansion factor is 1.

- For simplicity, we assume that $m \in \{0, 1\}^n$.
- Let S be a set and $H: S \to \{0,1\}^n$ a function (called the key space and a Hash function, respectively).
- Suppose Bob and Alice share a secret key, K ∈ S.
- Encription: Bob encrypts his message *m* as

$$E(m) = m + H(K).$$

$$E(m) + H(K) = m + (H(K) + H(K)) = m.$$

- Eavesdropper: Eve needs to find H(K), i.e. K.
- Expansion factor is 1.

- For simplicity, we assume that $m \in \{0, 1\}^n$.
- Let S be a set and $H: S \to \{0,1\}^n$ a function (called the key space and a Hash function, respectively).
- Suppose Bob and Alice share a secret key, K ∈ S.
- Encription: Bob encrypts his message *m* as

$$E(m) = m + H(K).$$

$$E(m) + H(K) = m + (H(K) + H(K)) = m.$$

- **Eavesdropper:** Eve needs to find H(K), i.e. K.
- Expansion factor is 1.

- Public: p (prime) and $g \notin p\mathbb{Z}$.
- Alice: picks a random $a \in \mathbb{N}$, and sends $g^a \mod p$.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^b \mod p$.
- Common secret: Alice: $(g^b)^a = g^{ba} \mod p$ Bob: $(g^a)^b = g^{ab} \mod p$
- Eve: knows p, g and g^a , $g^b \mod p$, and needs $g^{ab} \mod p$.
- The protocol is considered to be secure against eavesdroppers, if *p* and *g* are chosen properly.

- Public: p (prime) and $g \notin p\mathbb{Z}$.
- Alice: picks a random $a \in \mathbb{N}$, and sends $g^a \mod p$.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^b \mod p$.
- Common secret: Alice: $(g^b)^a = g^{ba} \mod p$ Bob: $(g^a)^b = g^{ab} \mod p$
- Eve: knows p, g and g^a , $g^b \mod p$, and needs $g^{ab} \mod p$.
- The protocol is considered to be secure against eavesdroppers, if p and q are chosen properly.

- Public: p (prime) and $g \notin p\mathbb{Z}$.
- Alice: picks a random $a \in \mathbb{N}$, and sends $g^a \mod p$.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^b \mod p$.
- Common secret: Alice: $(g^b)^a = g^{ba} \mod p$ Bob: $(g^a)^b = g^{ab} \mod p$
- Eve: knows p, g and g^a , $g^b \mod p$, and needs $g^{ab} \mod p$.
- The protocol is considered to be secure against eavesdroppers, if p and g are chosen properly.

- Public: p (prime) and $g \notin p\mathbb{Z}$.
- Alice: picks a random $a \in \mathbb{N}$, and sends $g^a \mod p$.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^b \mod p$.
- Common secret: Alice: $(g^b)^a = g^{ba} \mod p$ Bob: $(g^a)^b = g^{ab} \mod p$.
- Eve: knows p, g and g^a , $g^b \mod p$, and needs $g^{ab} \mod p$.
- The protocol is considered to be secure against eavesdroppers, if p and g are chosen properly.

- Public: p (prime) and $g \notin p\mathbb{Z}$.
- Alice: picks a random $a \in \mathbb{N}$, and sends $g^a \mod p$.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^b \mod p$.
- Common secret: Alice: $(g^b)^a = g^{ba} \mod p$ Bob: $(g^a)^b = g^{ab} \mod p$.
- Eve: knows p, g and g^a , $g^b \mod p$, and needs $g^{ab} \mod p$.
- The protocol is considered to be secure against eavesdroppers, if p and g are chosen properly.

- Public: p (prime) and $g \notin p\mathbb{Z}$.
- Alice: picks a random $a \in \mathbb{N}$, and sends $g^a \mod p$.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^b \mod p$.
- Common secret: Alice: $(g^b)^a = g^{ba} \mod p$ Bob: $(g^a)^b = g^{ab} \mod p$.
- Eve: knows p, g and g^a , $g^b \mod p$, and needs $g^{ab} \mod p$.
- The protocol is considered to be secure against eavesdroppers, if p and g are chosen properly.

Eve needs to solve the

• Diffie-Hellman Problem: "knowing p, g and g^a , $g^b \mod p$, compute $g^{ab} \mod p$ ",

or the

Discrete Logarithm Problem: "knowing p, g and g^a mod p, compute a",

both currently considered to be "difficult" problems (but not known to be equivalent...).

Eve needs to solve the

• Diffie-Hellman Problem: "knowing p, g and g^a , $g^b \mod p$, compute $g^{ab} \mod p$ ",

or the

Discrete Logarithm Problem: "knowing p, g and g^a mod p, compute a",

both currently considered to be "difficult" problems (but not known to be equivalent...).

Eve needs to solve the

• Diffie-Hellman Problem: "knowing p, g and g^a , $g^b \mod p$, compute $g^{ab} \mod p$ ",

or the

 Discrete Logarithm Problem: "knowing p, g and g^a mod p, compute a",

both currently considered to be "difficult" problems (but not known to be equivalent...).

Brute force search for solving the Discrete Logarithm Problem requires computing $g, g^2, g^3, \ldots, g^{|g|} = 1$ (eventually, till |g|, the order of g modulo p): this is O(|g|) multiplications.

In practical implementations, |g| is typically about 10³⁰⁰, so brute force attack is computationally infeasible.

$$g^{21} = g^{16} \cdot g^4 \cdot g = (((g^2)^2)^2)^2 \cdot (g^2)^2 \cdot g.$$

Brute force search for solving the Discrete Logarithm Problem requires computing $g, g^2, g^3, \ldots, g^{|g|} = 1$ (eventually, till |g|, the order of g modulo p): this is O(|g|) multiplications.

In practical implementations, |g| is typically about 10^{300} , so brute force attack is computationally infeasible.

$$g^{21} = g^{16} \cdot g^4 \cdot g = (((g^2)^2)^2)^2 \cdot (g^2)^2 \cdot g.$$

Brute force search for solving the Discrete Logarithm Problem requires computing $g, g^2, g^3, \ldots, g^{|g|} = 1$ (eventually, till |g|, the order of g modulo p): this is O(|g|) multiplications.

In practical implementations, |g| is typically about 10^{300} , so brute force attack is computationally infeasible.

$$g^{21} = g^{16} \cdot g^4 \cdot g = (((g^2)^2)^2)^2 \cdot (g^2)^2 \cdot g$$

Brute force search for solving the Discrete Logarithm Problem requires computing $g, g^2, g^3, \ldots, g^{|g|} = 1$ (eventually, till |g|, the order of g modulo p): this is O(|g|) multiplications.

In practical implementations, |g| is typically about 10^{300} , so brute force attack is computationally infeasible.

$$g^{21} = g^{16} \cdot g^4 \cdot g = (((g^2)^2)^2)^2 \cdot (g^2)^2 \cdot g.$$

Outline

- The origins of public key cryptography
- A protocol based on the word problem
- Protocols based on the conjugacy problem
- 4 Protocols based on the factorization problem
- 5 Anshel-Anshel-Goldfeld protocol
- 6 Some authentication protocols

Let $\langle x_1, \dots, x_n \mid r_1, \dots, r_m \rangle$ be a finite presentation of a group G.

• Word Problem: "given a word $w(x_1, ..., x_n)$ decide whether $w =_{\mathfrak{G}} 1$ or not (i.e. whether $w \in \mathscr{R} \gg$)".

There are finitely presented groups with unsolvable Word Problem.

Let $\langle x_1, \dots, x_n \mid r_1, \dots, r_m \rangle$ be a finite presentation of a group G.

• Word Problem: "given a word $w(x_1, ..., x_n)$ decide whether $w =_{_{\mathcal{G}}} 1$ or not (i.e. whether $w \in \ll R \gg$)".

There are finitely presented groups with unsolvable Word Problem.

Let $\langle x_1, \dots, x_n \mid r_1, \dots, r_m \rangle$ be a finite presentation of a group G.

• Word Problem: "given a word $w(x_1, ..., x_n)$ decide whether $w =_{_{\mathcal{G}}} 1$ or not (i.e. whether $w \in \ll R \gg$)".

There are finitely presented groups with unsolvable Word Problem.

Let $\langle x_1, \dots, x_n \mid r_1, \dots, r_m \rangle$ be a finite presentation of a group G.

• Word Problem: "given a word $w(x_1, ..., x_n)$ decide whether $w =_{_{\mathcal{G}}} 1$ or not (i.e. whether $w \in \ll R \gg$)".

There are finitely presented groups with unsolvable Word Problem.

- Public: A platform $G = \langle X \mid R \rangle$ and two words $\Sigma = \{w_0, w_1\}$.
- Private: A set of words S such that
 - the Word Problem is "difficult" in $G = \langle X | R \rangle$,
 - the Word Problem is "easy" in $G' = \langle X, R \cup S \rangle = G/S$,
 - Σ has no collision in G' (and so, in G).
- Bob: encodes each bit b in his message by an arbitrary (and changing) word w such that $w =_{G} w_{b}$.
- Alice: decodes w by solving the Word Problem in G': decide whether $w =_{G'} w_0$ or $w =_{G'} w_1$.
- Eve: sees w and needs to decide whether $w =_{G} w_0$ or $w =_{G} w_1$. This is the Word Problem in G.

- Public: A platform $G = \langle X \mid R \rangle$ and two words $\Sigma = \{w_0, w_1\}$.
- Private: A set of words S such that
 - the Word Problem is "difficult" in $G = \langle X | R \rangle$,
 - the Word Problem is "easy" in $G' = \langle X, R \cup S \rangle = G/S$,
 - Σ has no collision in G' (and so, in G).
- Bob: encodes each bit b in his message by an arbitrary (and changing) word w such that $w =_{G} w_{b}$.
- Alice: decodes w by solving the Word Problem in G': decide whether $w =_{G'} w_0$ or $w =_{G'} w_1$.
- Eve: sees w and needs to decide whether $w =_{G} w_0$ or $w =_{G} w_1$. This is the Word Problem in G.

- Public: A platform $G = \langle X \mid R \rangle$ and two words $\Sigma = \{w_0, w_1\}$.
- Private: A set of words S such that
 - the Word Problem is "difficult" in $G = \langle X | R \rangle$,
 - the Word Problem is "easy" in $G' = \langle X, R \cup S \rangle = G/S$,
 - Σ has no collision in G' (and so, in G).
- Bob: encodes each bit b in his message by an arbitrary (and changing) word w such that $w =_{G} w_{b}$.
- Alice: decodes w by solving the Word Problem in G': decide whether $w =_{G'} w_0$ or $w =_{G'} w_1$.
- Eve: sees w and needs to decide whether $w =_{G} w_0$ or $w =_{G} w_1$. This is the Word Problem in G.

- Public: A platform $G = \langle X \mid R \rangle$ and two words $\Sigma = \{w_0, w_1\}$.
- Private: A set of words S such that
 - the Word Problem is "difficult" in $G = \langle X | R \rangle$,
 - the Word Problem is "easy" in $G' = \langle X, R \cup S \rangle = G/S$,
 - Σ has no collision in G' (and so, in G).
- Bob: encodes each bit b in his message by an arbitrary (and changing) word w such that $w =_{G} w_{b}$.
- Alice: decodes w by solving the Word Problem in G': decide whether $w =_{G'} w_0$ or $w =_{G'} w_1$.
- Eve: sees w and needs to decide whether $w =_{G} w_0$ or $w =_{G} w_1$. This is the Word Problem in G.

- Public: A platform $G = \langle X \mid R \rangle$ and two words $\Sigma = \{w_0, w_1\}$.
- Private: A set of words S such that
 - the Word Problem is "difficult" in $G = \langle X | R \rangle$,
 - the Word Problem is "easy" in $G' = \langle X, R \cup S \rangle = G/S$,
 - Σ has no collision in G' (and so, in G).
- Bob: encodes each bit b in his message by an arbitrary (and changing) word w such that w = wb.
- Alice: decodes w by solving the Word Problem in G': decide whether $w =_{G'} w_0$ or $w =_{G'} w_1$.
- Eve: sees w and needs to decide whether $w =_{G} w_0$ or $w =_{G} w_1$. This is the Word Problem in G.

- Public: A platform $G = \langle X \mid R \rangle$ and two words $\Sigma = \{w_0, w_1\}$.
- Private: A set of words S such that
 - the Word Problem is "difficult" in $G = \langle X | R \rangle$,
 - the Word Problem is "easy" in $G' = \langle X, R \cup S \rangle = G/S$,
 - Σ has no collision in G' (and so, in G).
- Bob: encodes each bit b in his message by an arbitrary (and changing) word w such that w = wb.
- Alice: decodes w by solving the Word Problem in G': decide whether $w =_{G'} w_0$ or $w =_{G'} w_1$.
- Eve: sees w and needs to decide whether $w =_{G} w_0$ or $w =_{G} w_1$. This is the Word Problem in G.

- Public: A platform $G = \langle X \mid R \rangle$ and two words $\Sigma = \{w_0, w_1\}$.
- Private: A set of words S such that
 - the Word Problem is "difficult" in $G = \langle X | R \rangle$,
 - the Word Problem is "easy" in $G' = \langle X, R \cup S \rangle = G/S$,
 - Σ has no collision in G' (and so, in G).
- Bob: encodes each bit b in his message by an arbitrary (and changing) word w such that w = wb.
- Alice: decodes w by solving the Word Problem in G': decide whether $w =_{G'} w_0$ or $w =_{G'} w_1$.
- Eve: sees w and needs to decide whether $w =_{G} w_0$ or $w =_{G} w_1$. This is the Word Problem in G.

- Public: A platform $G = \langle X \mid R \rangle$ and two words $\Sigma = \{w_0, w_1\}$.
- Private: A set of words S such that
 - the Word Problem is "difficult" in $G = \langle X | R \rangle$,
 - the Word Problem is "easy" in $G' = \langle X, R \cup S \rangle = G/S$,
 - Σ has no collision in G' (and so, in G).
- Bob: encodes each bit b in his message by an arbitrary (and changing) word w such that $w =_{G} w_{b}$.
- Alice: decodes w by solving the Word Problem in G': decide whether $w =_{G'} w_0$ or $w =_{G'} w_1$.
- Eve: sees w and needs to decide whether $w =_{g} w_0$ or $w =_{g} w_1$. This is the Word CHOICE Problem in G.
- Or...: find an alternative private key, T, with easy Word Problem in G/T, and no collision for Σ.

- Public: A platform $G = \langle X \mid R \rangle$ and two words $\Sigma = \{w_0, w_1\}$.
- Private: A set of words S such that
 - the Word Problem is "difficult" in $G = \langle X | R \rangle$,
 - the Word Problem is "easy" in $G' = \langle X, R \cup S \rangle = G/S$,
 - Σ has no collision in G' (and so, in G).
- Bob: encodes each bit b in his message by an arbitrary (and changing) word w such that w = wb.
- Alice: decodes w by solving the Word Problem in G': decide whether $w =_{G'} w_0$ or $w =_{G'} w_1$.
- Eve: sees w and needs to decide whether $w =_{g} w_0$ or $w =_{g} w_1$. This is the Word CHOICE Problem in G.
- Or...: find an alternative private key, T, with easy Word Problem in G/T, and no collision for Σ .

Outline

- The origins of public key cryptography
- A protocol based on the word problem
- Protocols based on the conjugacy problem
- Protocols based on the factorization problem
- 5 Anshel-Anshel-Goldfeld protocol
- 6 Some authentication protocols

Let $\langle x_1, \dots, x_n \mid r_1, \dots, r_m \rangle$ be a finite presentation of a group G.

• Conjugacy Problem: "given $u, v \in G$ (as words on the x_i 's), decide whether $v =_G x^{-1}ux$ for some $x \in G$ ".

Solvable Conjugacy Problem \implies solvable Word Problem.

Solvable Conjugacy Problem $\not =$ solvable Word Problem.

• Conjugacy Search Problem: "given $u, v \in G$ and the information that u and v are conjugate to each other in G, find an $x \in G$ such that $v =_G x^{-1}ux$ ".

Let $\langle x_1, \ldots, x_n \mid r_1, \ldots, r_m \rangle$ be a finite presentation of a group G.

• Conjugacy Problem: "given $u, v \in G$ (as words on the x_i 's), decide whether $v =_G x^{-1}ux$ for some $x \in G$ ".

Solvable Conjugacy Problem \implies solvable Word Problem.

Solvable Conjugacy Problem $\not =$ solvable Word Problem.

• Conjugacy Search Problem: "given $u, v \in G$ and the information that u and v are conjugate to each other in G, find an $x \in G$ such that $v =_G x^{-1}ux$ ".

Let $\langle x_1, \ldots, x_n \mid r_1, \ldots, r_m \rangle$ be a finite presentation of a group G.

• Conjugacy Problem: "given $u, v \in G$ (as words on the x_i 's), decide whether $v =_G x^{-1}ux$ for some $x \in G$ ".

Solvable Conjugacy Problem \implies solvable Word Problem.

Solvable Conjugacy Problem $\not =$ solvable Word Problem.

• Conjugacy Search Problem: "given $u, v \in G$ and the information that u and v are conjugate to each other in G, find an $x \in G$ such that $v =_G x^{-1}ux$ ".

Let $\langle x_1, \ldots, x_n \mid r_1, \ldots, r_m \rangle$ be a finite presentation of a group G.

• Conjugacy Problem: "given $u, v \in G$ (as words on the x_i 's), decide whether $v =_G x^{-1}ux$ for some $x \in G$ ".

Solvable Conjugacy Problem \implies solvable Word Problem.

Solvable Conjugacy Problem $\not =$ solvable Word Problem.

• Conjugacy Search Problem: "given $u, v \in G$ and the information that u and v are conjugate to each other in G, find an $x \in G$ such that $v =_G x^{-1}ux$ ".

Let $\langle x_1, \ldots, x_n \mid r_1, \ldots, r_m \rangle$ be a finite presentation of a group G.

• Conjugacy Problem: "given $u, v \in G$ (as words on the x_i 's), decide whether $v =_G x^{-1}ux$ for some $x \in G$ ".

Solvable Conjugacy Problem \implies solvable Word Problem.

Solvable Conjugacy Problem $\not =$ solvable Word Problem.

• Conjugacy Search Problem: "given $u, v \in G$ and the information that u and v are conjugate to each other in G, find an $x \in G$ such that $v =_G x^{-1}ux$ ".

Let $\langle x_1, \ldots, x_n \mid r_1, \ldots, r_m \rangle$ be a finite presentation of a group G.

• Conjugacy Problem: "given $u, v \in G$ (as words on the x_i 's), decide whether $v =_G x^{-1}ux$ for some $x \in G$ ".

Solvable Conjugacy Problem \implies solvable Word Problem.

Solvable Conjugacy Problem $\not =$ solvable Word Problem.

• Conjugacy Search Problem: "given $u, v \in G$ and the information that u and v are conjugate to each other in G, find an $x \in G$ such that $v =_G x^{-1}ux$ ".

• Multiple Conjugacy Problem: given $u_1, \ldots u_k, v_1, \ldots v_k \in G$, decide whether $\exists x \in G$ such that $v_i =_G x^{-1}u_i x, \forall i$.

Solv. Multiple Conjugacy Problem \implies solv. Conjugacy Problem.

• Restricted Conjugacy Problem: "given u, v and a subgroup $H \leqslant G$, decide whether $v =_G x^{-1}ux$ for some $x \in H$ ".

• Multiple Conjugacy Problem: given $u_1, \ldots u_k, v_1, \ldots v_k \in G$, decide whether $\exists x \in G$ such that $v_i =_G x^{-1}u_i x, \forall i$.

Solv. Multiple Conjugacy Problem \implies solv. Conjugacy Problem.

Solv. Multiple Conjugacy Problem $\not =$ solv. Conjugacy Problem.

• Restricted Conjugacy Problem: "given u, v and a subgroup $H \leqslant G$, decide whether $v =_G x^{-1}ux$ for some $x \in H$ ".

• Multiple Conjugacy Problem: given $u_1, \ldots u_k, v_1, \ldots v_k \in G$, decide whether $\exists x \in G$ such that $v_i =_G x^{-1}u_i x, \forall i$.

Solv. Multiple Conjugacy Problem \implies solv. Conjugacy Problem.

Solv. Multiple Conjugacy Problem $\not =$ solv. Conjugacy Problem.

• Restricted Conjugacy Problem: "given u, v and a subgroup $H \leqslant G$, decide whether $v =_G x^{-1}ux$ for some $x \in H$ ".

• Multiple Conjugacy Problem: given $u_1, \ldots u_k, v_1, \ldots v_k \in G$, decide whether $\exists x \in G$ such that $v_i =_G x^{-1}u_i x, \forall i$.

Solv. Multiple Conjugacy Problem \implies solv. Conjugacy Problem.

Solv. Multiple Conjugacy Problem $\not =$ solv. Conjugacy Problem.

• Restricted Conjugacy Problem: "given u, v and a subgroup $H \leqslant G$, decide whether $v =_G x^{-1}ux$ for some $x \in H$ ".

• Multiple Conjugacy Problem: given $u_1, \dots u_k, v_1, \dots v_k \in G$, decide whether $\exists x \in G$ such that $v_i =_G x^{-1}u_i x, \forall i$.

Solv. Multiple Conjugacy Problem \implies solv. Conjugacy Problem.

Solv. Multiple Conjugacy Problem $\not =$ solv. Conjugacy Problem.

• Restricted Conjugacy Problem: "given u, v and a subgroup $H \leqslant G$, decide whether $v =_G x^{-1}ux$ for some $x \in H$ ".

- Public: $G = \langle X | R \rangle$, $w \in G$, and $A, B \subseteq G$ such that [a, b] = 1 $\forall a \in A, \forall b \in B$.
- Alice: picks a random $a \in A$, and sends $a^{-1}wa = w^a$.
- Bob: picks a random $b \in B$, and sends $b^{-1}wb = w^b$.
- Common secret: Alice: $a^{-1}(b^{-1}wb)a = w^{ba}$, Bob: $b^{-1}(a^{-1}wa)b = w^{ab}$.
- Eve: knows w, w^a, w^b, and needs w^{ab}.
 This can be done by solving the Conjugacy Search Problem Restricted to A (or B),

- Public: $G = \langle X | R \rangle$, $w \in G$, and $A, B \subseteq G$ such that [a, b] = 1 $\forall a \in A, \forall b \in B$.
- Alice: picks a random $a \in A$, and sends $a^{-1}wa = w^a$.
- Bob: picks a random $b \in B$, and sends $b^{-1}wb = w^b$.
- Common secret: Alice: $a^{-1}(b^{-1}wb)a = w^{ba}$, Bob: $b^{-1}(a^{-1}wa)b = w^{ab}$.
- Eve: knows w, w^a, w^b, and needs w^{ab}.
 This can be done by solving the Conjugacy Search Problem Restricted to A (or B),

- Public: $G = \langle X | R \rangle$, $w \in G$, and $A, B \subseteq G$ such that [a, b] = 1 $\forall a \in A, \forall b \in B$.
- Alice: picks a random $a \in A$, and sends $a^{-1}wa = w^a$.
- Bob: picks a random $b \in B$, and sends $b^{-1}wb = w^b$.
- Common secret: Alice: $a^{-1}(b^{-1}wb)a = w^{ba}$ Bob: $b^{-1}(a^{-1}wa)b = w^{ab}$
- Eve: knows w, w^a, w^b, and needs w^{ab}.
 This can be done by solving the Conjugacy Search Problem Restricted to A (or B),

- Public: $G = \langle X | R \rangle$, $w \in G$, and $A, B \subseteq G$ such that [a, b] = 1 $\forall a \in A, \forall b \in B$.
- Alice: picks a random $a \in A$, and sends $a^{-1}wa = w^a$.
- Bob: picks a random $b \in B$, and sends $b^{-1}wb = w^b$.
- Common secret: Alice: $a^{-1}(b^{-1}wb)a = w^{ba}$, Bob: $b^{-1}(a^{-1}wa)b = w^{ab}$.
- Eve: knows w, w^a, w^b, and needs w^{ab}.
 This can be done by solving the Conjugacy Search Problem Restricted to A (or B),

- Public: $G = \langle X | R \rangle$, $w \in G$, and $A, B \subseteq G$ such that [a, b] = 1 $\forall a \in A, \forall b \in B$.
- Alice: picks a random $a \in A$, and sends $a^{-1}wa = w^a$.
- Bob: picks a random $b \in B$, and sends $b^{-1}wb = w^b$.
- Common secret: Alice: $a^{-1}(b^{-1}wb)a = w^{ba}$, Bob: $b^{-1}(a^{-1}wa)b = w^{ab}$.
- Eve: knows w, w^a, w^b, and needs w^{ab}.
 This can be done by solving the Conjugacy Search Problem Restricted to A (or B),

- Public: $G = \langle X | R \rangle$, $w \in G$, and $A, B \subseteq G$ such that [a, b] = 1 $\forall a \in A, \forall b \in B$.
- Alice: picks a random $a \in A$, and sends $a^{-1}wa = w^a$.
- Bob: picks a random $b \in B$, and sends $b^{-1}wb = w^b$.
- Common secret: Alice: $a^{-1}(b^{-1}wb)a = w^{ba}$, Bob: $b^{-1}(a^{-1}wa)b = w^{ab}$.
- Eve: knows w, w^a, w^b, and needs w^{ab}.
 This can be done by solving the Conjugacy Search Problem Restricted to A (or B),

- Public: $G = \langle X | R \rangle$, $w \in G$, and $A, B \subseteq G$ such that [a, b] = 1 $\forall a \in A, \forall b \in B$.
- Alice: picks a random $a \in A$, and sends $a^{-1}wa = w^a$.
- Bob: picks a random $b \in B$, and sends $b^{-1}wb = w^b$.
- Common secret: Alice: $a^{-1}(b^{-1}wb)a = w^{ba}$, Bob: $b^{-1}(a^{-1}wa)b = w^{ab}$.
- Eve: knows w, w^a, w^b, and needs w^{ab}.
 This can be done by solving the Conjugacy Search Problem Restricted to A (or B),

• Decomposition Problem: "knowing $w, w' \in G$, find $a_1, a_2 \in A$ such that $w' = a_1 w a_2$ ".

Eve knows w, w^a , w^b and suppose she can compute $a_1, a_2 \in A$ such that $w^a = a_1 w a_2$.

Then, $a_1 w^b a_2 = a_1 (b^{-1} w b) a_2 = b^{-1} (a_1 w a_2) b = b^{-1} w^a b = w^{ab}$, and she finds the secret.

• Decomposition Problem: "knowing $w, w' \in G$, find $a_1, a_2 \in A$ such that $w' = a_1 w a_2$ ".

Eve knows w, w^a , w^b and suppose she can compute a_1 , $a_2 \in A$ such that $w^a = a_1 w a_2$.

Then, $a_1 w^b a_2 = a_1 (b^{-1} w b) a_2 = b^{-1} (a_1 w a_2) b = b^{-1} w^a b = w^{ab}$ and she finds the secret.

• Decomposition Problem: "knowing $w, w' \in G$, find $a_1, a_2 \in A$ such that $w' = a_1 w a_2$ ".

Eve knows w, w^a , w^b and suppose she can compute a_1 , $a_2 \in A$ such that $w^a = a_1 w a_2$.

Then, $a_1 w^b a_2 = a_1 (b^{-1} w b) a_2 = b^{-1} (a_1 w a_2) b = b^{-1} w^a b = w^{ab}$, and she finds the secret.

- Public: $G = \langle X | R \rangle$ and $w \in G$.
- Alice: picks a random $a_1 \in G$, a f.g. subgroup $A \leq C_G(a_1)$ and sends generators $A = \langle \alpha_1, \dots, \alpha_n \rangle$.
- Bob: picks a random $b_2 \in B$, a f.g. subgroup $B \leqslant C_G(b_2)$ and sends generators $B = \langle \beta_1, \dots, \beta_m \rangle$.
- Alice: picks a random $a_2 \in B$, and sends $a_1 w a_2$.
- Bob: picks a random $b_1 \in A$, and sends $b_1 wb_2$.
- Common secret: Alice: $a_1(b_1wb_2)a_2$, Bob: $b_1(a_1wa_2)b_2$.
- Eve: knows w, a₁wa₂, b₁wb₂, and needs a₁b₁wa₂b₂.
 This can be done by trying to recover a₁ and a₂ from w and a₁wa₂, and knowing that a₂ ∈ B, but without any information where to look for a₁.

- Public: $G = \langle X | R \rangle$ and $w \in G$.
- Alice: picks a random $a_1 \in G$, a f.g. subgroup $A \leq C_G(a_1)$ and sends generators $A = \langle \alpha_1, \dots, \alpha_n \rangle$.
- Bob: picks a random $b_2 \in B$, a f.g. subgroup $B \leq C_G(b_2)$ and sends generators $B = \langle \beta_1, \dots, \beta_m \rangle$.
- Alice: picks a random $a_2 \in B$, and sends $a_1 w a_2$.
- Bob: picks a random $b_1 \in A$, and sends $b_1 wb_2$.
- Common secret: Alice: $a_1(b_1wb_2)a_2$, Bob: $b_1(a_1wa_2)b_2$.
- Eve: knows w, a_1wa_2 , b_1wb_2 , and needs $a_1b_1wa_2b_2$. This can be done by trying to recover a_1 and a_2 from w and a_1wa_2 , and knowing that $a_2 \in B$, but without any information where to look for a_1 .

- Public: $G = \langle X | R \rangle$ and $w \in G$.
- Alice: picks a random $a_1 \in G$, a f.g. subgroup $A \leq C_G(a_1)$ and sends generators $A = \langle \alpha_1, \dots, \alpha_n \rangle$.
- Bob: picks a random $b_2 \in B$, a f.g. subgroup $B \leq C_G(b_2)$ and sends generators $B = \langle \beta_1, \dots, \beta_m \rangle$.
- Alice: picks a random a₂ ∈ B, and sends a₁ wa₂.
- Bob: picks a random $b_1 \in A$, and sends $b_1 wb_2$.
- Common secret: Alice: $a_1(b_1wb_2)a_2$, Bob: $b_1(a_1wa_2)b_2$.
- Eve: knows w, a_1wa_2 , b_1wb_2 , and needs $a_1b_1wa_2b_2$. This can be done by trying to recover a_1 and a_2 from w and a_1wa_2 , and knowing that $a_2 \in B$, but without any information where to look for a_1

- Public: $G = \langle X | R \rangle$ and $w \in G$.
- Alice: picks a random $a_1 \in G$, a f.g. subgroup $A \leq C_G(a_1)$ and sends generators $A = \langle \alpha_1, \dots, \alpha_n \rangle$.
- Bob: picks a random $b_2 \in B$, a f.g. subgroup $B \leq C_G(b_2)$ and sends generators $B = \langle \beta_1, \dots, \beta_m \rangle$.
- Alice: picks a random $a_2 \in B$, and sends $a_1 w a_2$.
- Bob: picks a random $b_1 \in A$, and sends $b_1 w b_2$.
- Common secret: Alice: $a_1(b_1wb_2)a_2$, Bob: $b_1(a_1wa_2)b_2$.
- Eve: knows w, a_1wa_2 , b_1wb_2 , and needs $a_1b_1wa_2b_2$. This can be done by trying to recover a_1 and a_2 from w and a_1wa_2 , and knowing that $a_2 \in B$, but without any information where to look for a_1

- Public: $G = \langle X | R \rangle$ and $w \in G$.
- Alice: picks a random $a_1 \in G$, a f.g. subgroup $A \leq C_G(a_1)$ and sends generators $A = \langle \alpha_1, \dots, \alpha_n \rangle$.
- Bob: picks a random $b_2 \in B$, a f.g. subgroup $B \leq C_G(b_2)$ and sends generators $B = \langle \beta_1, \dots, \beta_m \rangle$.
- Alice: picks a random $a_2 \in B$, and sends $a_1 w a_2$.
- Bob: picks a random $b_1 \in A$, and sends $b_1 wb_2$.
- Common secret: Alice: $a_1(b_1wb_2)a_2$, Bob: $b_1(a_1wa_2)b_2$.
- Eve: knows w, a₁wa₂, b₁wb₂, and needs a₁b₁wa₂b₂.
 This can be done by trying to recover a₁ and a₂ from w and a₁wa₂, and knowing that a₂ ∈ B, but without any information where to look for a₁.

- Public: $G = \langle X | R \rangle$ and $w \in G$.
- Alice: picks a random $a_1 \in G$, a f.g. subgroup $A \leq C_G(a_1)$ and sends generators $A = \langle \alpha_1, \dots, \alpha_n \rangle$.
- Bob: picks a random $b_2 \in B$, a f.g. subgroup $B \leqslant C_G(b_2)$ and sends generators $B = \langle \beta_1, \dots, \beta_m \rangle$.
- Alice: picks a random $a_2 \in B$, and sends $a_1 w a_2$.
- Bob: picks a random $b_1 \in A$, and sends $b_1 wb_2$.
- Common secret: Alice: $a_1(b_1wb_2)a_2$, Bob: $b_1(a_1wa_2)b_2$.
- Eve: knows w, a_1wa_2 , b_1wb_2 , and needs $a_1b_1wa_2b_2$. This can be done by trying to recover a_1 and a_2 from w and a_1wa_2 , and knowing that $a_2 \in B$, but without any information where to look for a_1

- Public: $G = \langle X | R \rangle$ and $w \in G$.
- Alice: picks a random $a_1 \in G$, a f.g. subgroup $A \leq C_G(a_1)$ and sends generators $A = \langle \alpha_1, \dots, \alpha_n \rangle$.
- Bob: picks a random $b_2 \in B$, a f.g. subgroup $B \leqslant C_G(b_2)$ and sends generators $B = \langle \beta_1, \dots, \beta_m \rangle$.
- Alice: picks a random $a_2 \in B$, and sends $a_1 w a_2$.
- Bob: picks a random $b_1 \in A$, and sends $b_1 wb_2$.
- Common secret: Alice: $a_1(b_1wb_2)a_2$, Bob: $b_1(a_1wa_2)b_2$.
- Eve: knows w, a_1wa_2 , b_1wb_2 , and needs $a_1b_1wa_2b_2$. This can be done by trying to recover a_1 and a_2 from w and a_1wa_2 , and knowing that $a_2 \in B$, but without any information where to look for a_1

- Public: $G = \langle X | R \rangle$ and $w \in G$.
- Alice: picks a random $a_1 \in G$, a f.g. subgroup $A \leq C_G(a_1)$ and sends generators $A = \langle \alpha_1, \dots, \alpha_n \rangle$.
- Bob: picks a random $b_2 \in B$, a f.g. subgroup $B \leqslant C_G(b_2)$ and sends generators $B = \langle \beta_1, \dots, \beta_m \rangle$.
- Alice: picks a random $a_2 \in B$, and sends $a_1 w a_2$.
- Bob: picks a random $b_1 \in A$, and sends $b_1 wb_2$.
- Common secret: Alice: $a_1(b_1wb_2)a_2$, Bob: $b_1(a_1wa_2)b_2$.
- Eve: knows w, a_1wa_2 , b_1wb_2 , and needs $a_1b_1wa_2b_2$. This can be done by trying to recover a_1 and a_2 from w and a_1wa_2 , and knowing that $a_2 \in B$, but without any information where to look for a_1 .

- Public: $G = \langle X | R \rangle$ and $w \in G$.
- Alice: picks a random $a_1 \in G$, a f.g. subgroup $A \leq C_G(a_1)$ and sends generators $A = \langle \alpha_1, \dots, \alpha_n \rangle$.
- Bob: picks a random $b_2 \in B$, a f.g. subgroup $B \leqslant C_G(b_2)$ and sends generators $B = \langle \beta_1, \dots, \beta_m \rangle$.
- Alice: picks a random $a_2 \in B$, and sends $a_1 w a_2$.
- Bob: picks a random $b_1 \in A$, and sends $b_1 wb_2$.
- Common secret: Alice: $a_1(b_1wb_2)a_2$, Bob: $b_1(a_1wa_2)b_2$.
- Eve: knows w, a_1wa_2 , b_1wb_2 , and needs $a_1b_1wa_2b_2$. This can be done by trying to recover a_1 and a_2 from w and a_1wa_2 , and knowing that $a_2 \in B$, but without any information where to look for a_1 .

Outline

- The origins of public key cryptography
- A protocol based on the word problem
- Protocols based on the conjugacy problem
- Protocols based on the factorization problem
- 6 Anshel-Anshel-Goldfeld protocol
- 6 Some authentication protocols

- Factorization Problem: "given $u \in G$ and $A, B \leqslant G$, decide whether $u =_G ab$ for some $a \in A$ and $b \in B$ ".
- Factorization Search Problem: "given $u \in G$, $A, B \leqslant G$, and the information that u = ab for some $a \in A$ and $b \in B$, find such a and b."
- Triple Factorization Search Problem: "given $u \in G$, A, B, $C \leqslant G$, and the information that u = abc for some $a \in A$, $b \in B$ and $c \in C$, find such a, b and c."

- Factorization Problem: "given $u \in G$ and $A, B \leqslant G$, decide whether $u =_G ab$ for some $a \in A$ and $b \in B$ ".
- Factorization Search Problem: "given u ∈ G, A, B ≤ G, and the information that u = ab for some a ∈ A and b ∈ B, find such a and b."
- Triple Factorization Search Problem: "given $u \in G$, A, B, $C \leqslant G$, and the information that u = abc for some $a \in A$, $b \in B$ and $c \in C$, find such a, b and c."

- Factorization Problem: "given $u \in G$ and $A, B \leqslant G$, decide whether $u =_G ab$ for some $a \in A$ and $b \in B$ ".
- Factorization Search Problem: "given u ∈ G, A, B ≤ G, and the information that u = ab for some a ∈ A and b ∈ B, find such a and b."
- Triple Factorization Search Problem: "given $u \in G$, A, B, $C \leqslant G$, and the information that u = abc for some $a \in A$, $b \in B$ and $c \in C$, find such a, b and c."

- Factorization Problem: "given $u \in G$ and $A, B \leqslant G$, decide whether $u =_G ab$ for some $a \in A$ and $b \in B$ ".
- Factorization Search Problem: "given u ∈ G, A, B ≤ G, and the information that u = ab for some a ∈ A and b ∈ B, find such a and b."
- Triple Factorization Search Problem: "given $u \in G$, A, B, $C \leqslant G$, and the information that u = abc for some $a \in A$, $b \in B$ and $c \in C$, find such a, b and c."

- Public: $G = \langle X \mid R \rangle$ and $A, B \leqslant G$ such that $[a, b] = 1 \ \forall a \in A$, $\forall b \in B$.
- Alice: picks a random $a_1 \in A$, $b_1 \in B$ and sends a_1b_1 .
- Bob: picks a random $a_2 \in A$, $b_2 \in B$ and sends a_2b_2 .
- Common secret: Alice: $b_1(a_2b_2)a_1 = a_2b_1b_2a_1 = a_2a_1b_1b_2$. Bob: $a_2(a_1b_1)b_2$.
- Eve: knows a₁ a₂ and b₁ b₂, and needs a₂a₁b₁b₂.
 This can be done by solving the Factorization Search Problem in A (or B).

Note that Eve can compute

$$(a_1b_1)(a_2b_2) = a_1a_2b_1b_2$$
 and $(a_2b_2)(a_1b_1) = a_2a_1b_2b_1$,

- Public: $G = \langle X \mid R \rangle$ and $A, B \leqslant G$ such that $[a, b] = 1 \ \forall a \in A$, $\forall b \in B$.
- Alice: picks a random $a_1 \in A$, $b_1 \in B$ and sends a_1b_1 .
- Bob: picks a random $a_2 \in A$, $b_2 \in B$ and sends a_2b_2 .
- Common secret: Alice: $b_1(a_2b_2)a_1 = a_2b_1b_2a_1 = a_2a_1b_1b_2$. Bob: $a_2(a_1b_1)b_2$.
- Eve: knows a₁ a₂ and b₁ b₂, and needs a₂ a₁ b₁ b₂.
 This can be done by solving the Factorization Search Problem in A (or B).

Note that Eve can compute

$$(a_1b_1)(a_2b_2) = a_1a_2b_1b_2$$
 and $(a_2b_2)(a_1b_1) = a_2a_1b_2b_1$,

- Public: $G = \langle X \mid R \rangle$ and $A, B \leqslant G$ such that $[a, b] = 1 \ \forall a \in A$, $\forall b \in B$.
- Alice: picks a random $a_1 \in A$, $b_1 \in B$ and sends a_1b_1 .
- Bob: picks a random $a_2 \in A$, $b_2 \in B$ and sends a_2b_2 .
- Common secret: Alice: $b_1(a_2b_2)a_1 = a_2b_1b_2a_1 = a_2a_1b_1b_2$. Bob: $a_2(a_1b_1)b_2$.
- Eve: knows a₁ a₂ and b₁ b₂, and needs a₂ a₁ b₁ b₂.
 This can be done by solving the Factorization Search Problem in A (or B).

Note that Eve can compute

$$(a_1b_1)(a_2b_2) = a_1a_2b_1b_2$$
 and $(a_2b_2)(a_1b_1) = a_2a_1b_2b_1$,

- Public: $G = \langle X \mid R \rangle$ and $A, B \leqslant G$ such that $[a, b] = 1 \ \forall a \in A$, $\forall b \in B$.
- Alice: picks a random $a_1 \in A$, $b_1 \in B$ and sends a_1b_1 .
- Bob: picks a random $a_2 \in A$, $b_2 \in B$ and sends a_2b_2 .
- Common secret: Alice: $b_1(a_2b_2)a_1 = a_2b_1b_2a_1 = a_2a_1b_1b_2$. Bob: $a_2(a_1b_1)b_2$.
- Eve: knows a₁a₂ and b₁b₂, and needs a₂a₁b₁b₂.
 This can be done by solving the Factorization Search Problem in A (or B).

Note that Eve can compute

$$(a_1b_1)(a_2b_2) = a_1a_2b_1b_2$$
 and $(a_2b_2)(a_1b_1) = a_2a_1b_2b_1$

- Public: $G = \langle X \mid R \rangle$ and $A, B \leqslant G$ such that $[a, b] = 1 \ \forall a \in A$, $\forall b \in B$.
- Alice: picks a random $a_1 \in A$, $b_1 \in B$ and sends a_1b_1 .
- Bob: picks a random $a_2 \in A$, $b_2 \in B$ and sends a_2b_2 .
- Common secret: Alice: $b_1(a_2b_2)a_1 = a_2b_1b_2a_1 = a_2a_1b_1b_2$. Bob: $a_2(a_1b_1)b_2$.
- Eve: knows a₁ a₂ and b₁ b₂, and needs a₂ a₁ b₁ b₂.
 This can be done by solving the Factorization Search Problem in A (or B).

Note that Eve can compute

$$(a_1b_1)(a_2b_2) = a_1a_2b_1b_2$$
 and $(a_2b_2)(a_1b_1) = a_2a_1b_2b_1$

- Public: $G = \langle X \mid R \rangle$ and $A, B \leqslant G$ such that $[a, b] = 1 \ \forall a \in A$, $\forall b \in B$.
- Alice: picks a random $a_1 \in A$, $b_1 \in B$ and sends a_1b_1 .
- Bob: picks a random $a_2 \in A$, $b_2 \in B$ and sends a_2b_2 .
- Common secret: Alice: $b_1(a_2b_2)a_1 = a_2b_1b_2a_1 = a_2a_1b_1b_2$. Bob: $a_2(a_1b_1)b_2$.
- Eve: knows a₁ a₂ and b₁ b₂, and needs a₂a₁b₁b₂.
 This can be done by solving the Factorization Search Problem in A (or B).

Note that Eve can compute

$$(a_1b_1)(a_2b_2) = a_1a_2b_1b_2$$
 and $(a_2b_2)(a_1b_1) = a_2a_1b_2b_1$

- Public: $G = \langle X \mid R \rangle$ and $A, B \leqslant G$ such that $[a, b] = 1 \ \forall a \in A$, $\forall b \in B$.
- Alice: picks a random $a_1 \in A$, $b_1 \in B$ and sends a_1b_1 .
- Bob: picks a random $a_2 \in A$, $b_2 \in B$ and sends a_2b_2 .
- Common secret: Alice: $b_1(a_2b_2)a_1 = a_2b_1b_2a_1 = a_2a_1b_1b_2$. Bob: $a_2(a_1b_1)b_2$.
- Eve: knows a₁ a₂ and b₁ b₂, and needs a₂a₁b₁b₂.
 This can be done by solving the Factorization Search Problem in A (or B).

Note that Eve can compute

$$(a_1b_1)(a_2b_2) = a_1a_2b_1b_2$$
 and $(a_2b_2)(a_1b_1) = a_2a_1b_2b_1$

- Public: $G = \langle X | R \rangle$ and $A, B \leqslant G$ such that $[a, b] = 1 \ \forall a \in A$, $\forall b \in B$.
- Alice: picks a random $a_1 \in A$, $b_1 \in B$ and sends a_1b_1 .
- Bob: picks a random $a_2 \in A$, $b_2 \in B$ and sends a_2b_2 .
- Common secret: Alice: $b_1(a_2b_2)a_1 = a_2b_1b_2a_1 = a_2a_1b_1b_2$. Bob: $a_2(a_1b_1)b_2$.
- Eve: knows a₁ a₂ and b₁ b₂, and needs a₂a₁b₁b₂.
 This can be done by solving the Factorization Search Problem in A (or B).

Note that Eve can compute

$$(a_1b_1)(a_2b_2) = a_1a_2b_1b_2$$
 and $(a_2b_2)(a_1b_1) = a_2a_1b_2b_1$,

- Public: $G = \langle X | R \rangle$, 10 subgroups $A_1, A_2, A_3, X_1, X_2, B_1, B_2, B_3, Y_1, Y_2 \leqslant G$ such that $[A_2, Y_1] = [A_3, Y_2] = [B_1, X_1] = [B_2, X_2] = 1$.
- Alice: picks a random $a_1 \in A_1$, $a_2 \in A_2$, $a_3 \in A_3$, $x_1 \in X_1$, $x_2 \in X_2$, and sends a_1x_1 , $x_1^{-1}a_2x_2$ and $x_2^{-1}a_3$.
- Bob: picks a random $b_1 \in B_1$, $b_2 \in B_2$, $b_3 \in B_3$, $y_1 \in Y_1$, $y_2 \in Y_2$, and sends b_1y_1 , $y_1^{-1}b_2y_2$ and $y_2^{-1}b_3$.
- Common secret: Alice: $a_1(b_1y_1)a_2(y_1^{-1}b_2y_2)a_3(y_2^{-1}b_3)$ Bob: $(a_1x_1)b_1(x_1^{-1}a_2x_2)b_2(x_2^{-1}a_3)b_3$
- Eve: knows a_1x_1 , $x_1^{-1}a_2x_2$, $x_2^{-1}a_3$, b_1y_1 , $y_1^{-1}b_2y_2$ and $y_2^{-1}b_3$, and needs $a_1b_1a_2b_2a_3b_3$.

- Public: $G = \langle X | R \rangle$, 10 subgroups $A_1, A_2, A_3, X_1, X_2, B_1, B_2, B_3, Y_1, Y_2 \leqslant G$ such that $[A_2, Y_1] = [A_3, Y_2] = [B_1, X_1] = [B_2, X_2] = 1$.
- Alice: picks a random $a_1 \in A_1$, $a_2 \in A_2$, $a_3 \in A_3$, $x_1 \in X_1$, $x_2 \in X_2$, and sends a_1x_1 , $x_1^{-1}a_2x_2$ and $x_2^{-1}a_3$.
- Bob: picks a random $b_1 \in B_1$, $b_2 \in B_2$, $b_3 \in B_3$, $y_1 \in Y_1$, $y_2 \in Y_2$, and sends b_1y_1 , $y_1^{-1}b_2y_2$ and $y_2^{-1}b_3$.
- Common secret: Alice: $a_1(b_1y_1)a_2(y_1^{-1}b_2y_2)a_3(y_2^{-1}b_3)$ Bob: $(a_1x_1)b_1(x_1^{-1}a_2x_2)b_2(x_2^{-1}a_3)b_3$
- Eve: knows a_1x_1 , $x_1^{-1}a_2x_2$, $x_2^{-1}a_3$, b_1y_1 , $y_1^{-1}b_2y_2$ and $y_2^{-1}b_3$, and needs $a_1b_1a_2b_2a_3b_3$.

- Public: $G = \langle X | R \rangle$, 10 subgroups $A_1, A_2, A_3, X_1, X_2, B_1, B_2, B_3, Y_1, Y_2 \leqslant G$ such that $[A_2, Y_1] = [A_3, Y_2] = [B_1, X_1] = [B_2, X_2] = 1$.
- Alice: picks a random $a_1 \in A_1$, $a_2 \in A_2$, $a_3 \in A_3$, $x_1 \in X_1$, $x_2 \in X_2$, and sends a_1x_1 , $x_1^{-1}a_2x_2$ and $x_2^{-1}a_3$.
- Bob: picks a random $b_1 \in B_1$, $b_2 \in B_2$, $b_3 \in B_3$, $y_1 \in Y_1$, $y_2 \in Y_2$, and sends b_1y_1 , $y_1^{-1}b_2y_2$ and $y_2^{-1}b_3$.
- Common secret: Alice: $a_1(b_1y_1)a_2(y_1^{-1}b_2y_2)a_3(y_2^{-1}b_3)$ Bob: $(a_1x_1)b_1(x_1^{-1}a_2x_2)b_2(x_2^{-1}a_3)b_3$.
- Eve: knows a_1x_1 , $x_1^{-1}a_2x_2$, $x_2^{-1}a_3$, b_1y_1 , $y_1^{-1}b_2y_2$ and $y_2^{-1}b_3$, and needs $a_1b_1a_2b_2a_3b_3$.

- Public: $G = \langle X | R \rangle$, 10 subgroups $A_1, A_2, A_3, X_1, X_2, B_1, B_2, B_3, Y_1, Y_2 \leqslant G$ such that $[A_2, Y_1] = [A_3, Y_2] = [B_1, X_1] = [B_2, X_2] = 1$.
- Alice: picks a random $a_1 \in A_1$, $a_2 \in A_2$, $a_3 \in A_3$, $x_1 \in X_1$, $x_2 \in X_2$, and sends a_1x_1 , $x_1^{-1}a_2x_2$ and $x_2^{-1}a_3$.
- Bob: picks a random $b_1 \in B_1$, $b_2 \in B_2$, $b_3 \in B_3$, $y_1 \in Y_1$, $y_2 \in Y_2$, and sends b_1y_1 , $y_1^{-1}b_2y_2$ and $y_2^{-1}b_3$.
- Common secret: Alice: $a_1(b_1y_1)a_2(y_1^{-1}b_2y_2)a_3(y_2^{-1}b_3)$ Bob: $(a_1x_1)b_1(x_1^{-1}a_2x_2)b_2(x_2^{-1}a_3)b_3$.
- Eve: knows a_1x_1 , $x_1^{-1}a_2x_2$, $x_2^{-1}a_3$, b_1y_1 , $y_1^{-1}b_2y_2$ and $y_2^{-1}b_3$, and needs $a_1b_1a_2b_2a_3b_3$.

- Public: $G = \langle X \mid R \rangle$, 10 subgroups $A_1, A_2, A_3, X_1, X_2, B_1, B_2, B_3, Y_1, Y_2 \leqslant G$ such that $[A_2, Y_1] = [A_3, Y_2] = [B_1, X_1] = [B_2, X_2] = 1$.
- Alice: picks a random $a_1 \in A_1$, $a_2 \in A_2$, $a_3 \in A_3$, $x_1 \in X_1$, $x_2 \in X_2$, and sends a_1x_1 , $x_1^{-1}a_2x_2$ and $x_2^{-1}a_3$.
- Bob: picks a random $b_1 \in B_1$, $b_2 \in B_2$, $b_3 \in B_3$, $y_1 \in Y_1$, $y_2 \in Y_2$, and sends b_1y_1 , $y_1^{-1}b_2y_2$ and $y_2^{-1}b_3$.
- Common secret: Alice: $a_1(b_1y_1)a_2(y_1^{-1}b_2y_2)a_3(y_2^{-1}b_3)$ Bob: $(a_1x_1)b_1(x_1^{-1}a_2x_2)b_2(x_2^{-1}a_3)b_3$.
- Eve: knows a_1x_1 , $x_1^{-1}a_2x_2$, $x_2^{-1}a_3$, b_1y_1 , $y_1^{-1}b_2y_2$ and $y_2^{-1}b_3$, and needs $a_1b_1a_2b_2a_3b_3$.

- Public: $G = \langle X \mid R \rangle$, 10 subgroups $A_1, A_2, A_3, X_1, X_2, B_1, B_2, B_3, Y_1, Y_2 \leqslant G$ such that $[A_2, Y_1] = [A_3, Y_2] = [B_1, X_1] = [B_2, X_2] = 1$.
- Alice: picks a random $a_1 \in A_1$, $a_2 \in A_2$, $a_3 \in A_3$, $x_1 \in X_1$, $x_2 \in X_2$, and sends a_1x_1 , $x_1^{-1}a_2x_2$ and $x_2^{-1}a_3$.
- Bob: picks a random $b_1 \in B_1$, $b_2 \in B_2$, $b_3 \in B_3$, $y_1 \in Y_1$, $y_2 \in Y_2$, and sends b_1y_1 , $y_1^{-1}b_2y_2$ and $y_2^{-1}b_3$.
- Common secret: Alice: $a_1(b_1y_1)a_2(y_1^{-1}b_2y_2)a_3(y_2^{-1}b_3)$ Bob: $(a_1x_1)b_1(x_1^{-1}a_2x_2)b_2(x_2^{-1}a_3)b_3$.
- Eve: knows a_1x_1 , $x_1^{-1}a_2x_2$, $x_2^{-1}a_3$, b_1y_1 , $y_1^{-1}b_2y_2$ and $y_2^{-1}b_3$, and needs $a_1b_1a_2b_2a_3b_3$.

- Public: $G = \langle X \mid R \rangle$, 10 subgroups $A_1, A_2, A_3, X_1, X_2, B_1, B_2, B_3, Y_1, Y_2 \leqslant G$ such that $[A_2, Y_1] = [A_3, Y_2] = [B_1, X_1] = [B_2, X_2] = 1$.
- Alice: picks a random $a_1 \in A_1$, $a_2 \in A_2$, $a_3 \in A_3$, $x_1 \in X_1$, $x_2 \in X_2$, and sends a_1x_1 , $x_1^{-1}a_2x_2$ and $x_2^{-1}a_3$.
- Bob: picks a random $b_1 \in B_1$, $b_2 \in B_2$, $b_3 \in B_3$, $y_1 \in Y_1$, $y_2 \in Y_2$, and sends b_1y_1 , $y_1^{-1}b_2y_2$ and $y_2^{-1}b_3$.
- Common secret: Alice: $a_1(b_1y_1)a_2(y_1^{-1}b_2y_2)a_3(y_2^{-1}b_3)$ Bob: $(a_1x_1)b_1(x_1^{-1}a_2x_2)b_2(x_2^{-1}a_3)b_3$.
- Eve: knows a_1x_1 , $x_1^{-1}a_2x_2$, $x_2^{-1}a_3$, b_1y_1 , $y_1^{-1}b_2y_2$ and $y_2^{-1}b_3$, and needs $a_1b_1a_2b_2a_3b_3$.

- Public: A finite group G, $w \in G$, and $a, b \in G$ with $ab \neq ba$ (of order N and M, respectively).
- Alice: picks a random 0 < n < N and 0 < m < M, and sends aⁿ wb^m.
- Bob: picks a random 0 < n' < N and 0 < m' < M, and sends $a^{n'} wb^{m'}$.
- Common secret: Alice: $a^n(a^{n'}wb^{m'})b^m = a^{n+n'}wb^{m+m'}$ Bob: $a^{n'}(a^nwb^m)b^{m'} = a^{n+n'}wb^{m+m'}$
- Eve: knows a, b, aⁿwb^m and a^{n'}wb^{m'}, and needs a^{n+n'}wb^{m+m'}.
 This can be done by solving a variation of the Discrete Logarithm Problem (in G).

Or... finding alternative $x, y \in G$ such that xa = ax, yb = by and $xwy = a^n wb^m$. Then, $x(a^{n'}wb^{m'})y = a^{n'}xwyb^{m'} = a^{n'}(a^nwb^m)b^{m'} = a^{n+n'}wb^{m+m'}$.

- Public: A finite group G, $w \in G$, and $a, b \in G$ with $ab \neq ba$ (of order N and M, respectively).
- Alice: picks a random 0 < n < N and 0 < m < M, and sends $a^n w b^m$.
- Bob: picks a random 0 < n' < N and 0 < m' < M, and sends $a^{n'} wb^{m'}$.
- Common secret: Alice: $a^n(a^{n'}wb^{m'})b^m = a^{n+n'}wb^{m+m'}$ Bob: $a^{n'}(a^nwb^m)b^{m'} = a^{n+n'}wb^{m+m'}$
- Eve: knows a, b, aⁿwb^m and a^{n'}wb^{m'}, and needs a^{n+n'}wb^{m+m'}.
 This can be done by solving a variation of the Discrete Logarithm Problem (in G).
 - Or... finding alternative $x, y \in G$ such that xa = ax, yb = by and $xwy = a^nwb^m$. Then, $x(a^{n'}wb^{m'})y = a^{n'}xwyb^{m'} = a^{n'}(a^nwb^m)b^{m'} = a^{n+n'}wb^{m+m'}$.

- Public: A finite group G, $w \in G$, and $a, b \in G$ with $ab \neq ba$ (of order N and M, respectively).
- Alice: picks a random 0 < n < N and 0 < m < M, and sends $a^n w b^m$.
- Bob: picks a random 0 < n' < N and 0 < m' < M, and sends $a^{n'} w b^{m'}$.
- Common secret: Alice: $a^n(a^{n'}wb^{m'})b^m = a^{n+n'}wb^{m+m'}$ Bob: $a^{n'}(a^nwb^m)b^{m'} = a^{n+n'}wb^{m+m'}$
- Eve: knows a, b, aⁿwb^m and a^{n'}wb^{m'}, and needs a^{n+n'}wb^{m+m'}.
 This can be done by solving a variation of the Discrete Logarithm Problem (in G).
 - Or... finding alternative $x, y \in G$ such that xa = ax, yb = by and $xwy = a^nwb^m$. Then, $x(a^{n'}wb^{m'})y = a^{n'}xwyb^{m'} = a^{n'}(a^nwb^m)b^{m'} = a^{n+n'}wb^{m+m'}$.

- Public: A finite group G, $w \in G$, and $a, b \in G$ with $ab \neq ba$ (of order N and M, respectively).
- Alice: picks a random 0 < n < N and 0 < m < M, and sends $a^n w b^m$.
- Bob: picks a random 0 < n' < N and 0 < m' < M, and sends $a^{n'} wb^{m'}$.
- Common secret: Alice: $a^n(a^{n'}wb^{m'})b^m = a^{n+n'}wb^{m+m'}$ Bob: $a^{n'}(a^nwb^m)b^{m'} = a^{n+n'}wb^{m+m'}$.
- Eve: knows a, b, aⁿwb^m and a^{n'}wb^{m'}, and needs a^{n+n'}wb^{m+m'}.
 This can be done by solving a variation of the Discrete Logarithm Problem (in G).
 - Or... finding alternative $x, y \in G$ such that xa = ax, yb = by and $xwy = a^nwb^m$. Then, $x(a^{n'}wb^{m'})y = a^{n'}xwyb^{m'} = a^{n'}(a^nwb^m)b^{m'} = a^{n+n'}wb^{m+m'}$.

- Public: A finite group G, $w \in G$, and $a, b \in G$ with $ab \neq ba$ (of order N and M, respectively).
- Alice: picks a random 0 < n < N and 0 < m < M, and sends $a^n w b^m$.
- Bob: picks a random 0 < n' < N and 0 < m' < M, and sends $a^{n'} w b^{m'}$.
- Common secret: Alice: $a^n(a^{n'}wb^{m'})b^m = a^{n+n'}wb^{m+m'}$ Bob: $a^{n'}(a^nwb^m)b^{m'} = a^{n+n'}wb^{m+m'}$.
- Eve: knows a, b, aⁿwb^m and a^{n'}wb^{m'}, and needs a^{n+n'}wb^{m+m'}.
 This can be done by solving a variation of the Discrete Logarithm Problem (in G).

Or... finding alternative $x, y \in G$ such that xa = ax, yb = by and $xwy = a^nwb^m$. Then, $x(a^{n'}wb^{m'})y = a^{n'}xwyb^{m'} = a^{n'}(a^nwb^m)b^{m'} = a^{n+n'}wb^{m+m'}$.

- Public: A finite group G, $w \in G$, and $a, b \in G$ with $ab \neq ba$ (of order N and M, respectively).
- Alice: picks a random 0 < n < N and 0 < m < M, and sends $a^n w b^m$.
- Bob: picks a random 0 < n' < N and 0 < m' < M, and sends $a^{n'} wb^{m'}$.
- Common secret: Alice: $a^n(a^{n'}wb^{m'})b^m = a^{n+n'}wb^{m+m'}$ Bob: $a^{n'}(a^nwb^m)b^{m'} = a^{n+n'}wb^{m+m'}$.
- Eve: knows a, b, aⁿwb^m and a^{n'}wb^{m'}, and needs a^{n+n'}wb^{m+m'}.
 This can be done by solving a variation of the Discrete Logarithm Problem (in G).

Or... finding alternative $x, y \in G$ such that xa = ax, yb = by and $xwy = a^nwb^m$. Then, $x(a^{n'}wb^{m'})y = a^{n'}xwyb^{m'} = a^{n'}(a^nwb^m)b^{m'} = a^{n+n'}wb^{m+m'}$.

- Public: A finite group G, $w \in G$, and $a, b \in G$ with $ab \neq ba$ (of order N and M, respectively).
- Alice: picks a random 0 < n < N and 0 < m < M, and sends $a^n w b^m$.
- Bob: picks a random 0 < n' < N and 0 < m' < M, and sends $a^{n'} w b^{m'}$.
- Common secret: Alice: $a^n(a^{n'}wb^{m'})b^m = a^{n+n'}wb^{m+m'}$ Bob: $a^{n'}(a^nwb^m)b^{m'} = a^{n+n'}wb^{m+m'}$.
- Eve: knows a, b, aⁿwb^m and a^{n'}wb^{m'}, and needs a^{n+n'}wb^{m+m'}.
 This can be done by solving a variation of the Discrete Logarithm Problem (in G).
 - Or... finding alternative $x, y \in G$ such that xa = ax, yb = by and $xwy = a^nwb^m$. Then, $x(a^{n'}wb^{m'})y = a^{n'}xwyb^{m'} = a^{n'}(a^nwb^m)b^{m'} = a^{n+n'}wb^{m+m'}$.

Outline

- The origins of public key cryptography
- A protocol based on the word problem
- Protocols based on the conjugacy problem
- 4 Protocols based on the factorization problem
- 6 Anshel-Anshel-Goldfeld protocol
- Some authentication protocols

This is a protocol genuinely based on non-commutativity (i.e. without using any commuting subgroups).

- Public: A group $G = \langle X | R \rangle$ and elements $a_1, \ldots, a_m \in G$, $b_1, \ldots, b_n \in G$.
- Alice: picks a word $x = x(a_1, ..., a_m)$, and sends $b_1^x, ..., b_n^x$.
- Bob: picks a word $y = y(b_1, ..., b_n)$, and sends $a_1^y, ..., a_m^y$
- Common secret:

Alice:
$$\mathbf{x}(a_1^y, \dots, a_m^y) = x^y = y^{-1}xy$$
, and $\mathbf{x}^{-1}(y^{-1}xy) = [x, y]$
Bob: $\mathbf{y}(b_1^x, \dots, b_n^x) = y^x = x^{-1}yx$, and $(x^{-1}yx)^{-1}\mathbf{y} = [x, y]$

• Eve: knows $a_1, \ldots, a_m, b_1, \ldots, b_n, a_1^y, \ldots, a_m^y, b_1^x, \ldots, b_n^x$ and needs [x, y].

This can be done by solving the Multiple Restricted Search Conjugacy Problem.

This is a protocol genuinely based on non-commutativity (i.e. without using any commuting subgroups).

- Public: A group $G = \langle X \mid R \rangle$ and elements $a_1, \ldots, a_m \in G$, $b_1, \ldots, b_n \in G$.
- Alice: picks a word $x = x(a_1, ..., a_m)$, and sends $b_1^x, ..., b_n^x$.
- Bob: picks a word $y = y(b_1, ..., b_n)$, and sends $a_1^y, ..., a_m^y$
- Common secret:

Alice:
$$\mathbf{x}(a_1^y, \dots, a_m^y) = x^y = y^{-1}xy$$
, and $\mathbf{x}^{-1}(y^{-1}xy) = [x, y]$
Bob: $\mathbf{y}(b_1^x, \dots, b_n^x) = y^x = x^{-1}yx$, and $(x^{-1}yx)^{-1}\mathbf{y} = [x, y]$

• Eve: knows $a_1, ..., a_m, b_1, ..., b_n, a_1^y, ..., a_m^y, b_1^x, ..., b_n^x$ and needs [x, y].

This can be done by solving the Multiple Restricted Search Conjugacy Problem.

This is a protocol genuinely based on non-commutativity (i.e. without using any commuting subgroups).

- Public: A group $G = \langle X \mid R \rangle$ and elements $a_1, \ldots, a_m \in G$, $b_1, \ldots, b_n \in G$.
- Alice: picks a word $x = x(a_1, ..., a_m)$, and sends $b_1^x, ..., b_n^x$.
- Bob: picks a word $y = y(b_1, \ldots, b_n)$, and sends a_1^y, \ldots, a_m^y .
- Common secret:

Alice:
$$\mathbf{x}(a_1^y, \dots, a_m^y) = x^y = y^{-1}xy$$
, and $\mathbf{x}^{-1}(y^{-1}xy) = [x, y]$
Bob: $\mathbf{y}(b_1^x, \dots, b_n^x) = y^x = x^{-1}yx$, and $(x^{-1}yx)^{-1}\mathbf{y} = [x, y]$.

• Eve: knows $a_1, \ldots, a_m, b_1, \ldots, b_n, a_1^y, \ldots, a_m^y, b_1^x, \ldots, b_n^x$ and needs [x, y].

This can be done by solving the Multiple Restricted Search Conjugacy Problem.

This is a protocol genuinely based on non-commutativity (i.e. without using any commuting subgroups).

- Public: A group $G = \langle X \mid R \rangle$ and elements $a_1, \ldots, a_m \in G$, $b_1, \ldots, b_n \in G$.
- Alice: picks a word $x = x(a_1, ..., a_m)$, and sends $b_1^x, ..., b_n^x$.
- Bob: picks a word $y = y(b_1, ..., b_n)$, and sends $a_1^y, ..., a_m^y$.
- Common secret:

Alice:
$$\mathbf{x}(a_1^y, \dots, a_m^y) = x^y = y^{-1}xy$$
, and $\mathbf{x}^{-1}(y^{-1}xy) = [x, y]$
Bob: $\mathbf{y}(b_1^x, \dots, b_n^x) = y^x = x^{-1}yx$, and $(x^{-1}yx)^{-1}\mathbf{y} = [x, y]$

• Eve: knows $a_1, \ldots, a_m, b_1, \ldots, b_n, a_1^y, \ldots, a_m^y, b_1^x, \ldots, b_n^x$ and needs [x, y].

This can be done by solving the Multiple Restricted Search Conjugacy Problem.

This is a protocol genuinely based on non-commutativity (i.e. without using any commuting subgroups).

- Public: A group $G = \langle X \mid R \rangle$ and elements $a_1, \ldots, a_m \in G$, $b_1, \ldots, b_n \in G$.
- Alice: picks a word $x = x(a_1, ..., a_m)$, and sends $b_1^x, ..., b_n^x$.
- Bob: picks a word $y = y(b_1, ..., b_n)$, and sends $a_1^y, ..., a_m^y$.
- Common secret:

Alice:
$$x(a_1^y, ..., a_m^y) = x^y = y^{-1}xy$$
, and $x^{-1}(y^{-1}xy) = [x, y]$
Bob: $y(b_1^x, ..., b_n^x) = y^x = x^{-1}yx$, and $(x^{-1}yx)^{-1}y = [x, y]$.

• Eve: knows $a_1, ..., a_m, b_1, ..., b_n, a_1^y, ..., a_m^y, b_1^x, ..., b_n^x$ and needs [x, y].

This can be done by solving the Multiple Restricted Search Conjugacy Problem.

This is a protocol genuinely based on non-commutativity (i.e. without using any commuting subgroups).

- Public: A group $G = \langle X | R \rangle$ and elements $a_1, \ldots, a_m \in G$, $b_1, \ldots, b_n \in G$.
- Alice: picks a word $x = x(a_1, ..., a_m)$, and sends $b_1^x, ..., b_n^x$.
- Bob: picks a word $y = y(b_1, ..., b_n)$, and sends $a_1^y, ..., a_m^y$.
- Common secret:

Alice:
$$x(a_1^y, ..., a_m^y) = x^y = y^{-1}xy$$
, and $x^{-1}(y^{-1}xy) = [x, y]$
Bob: $y(b_1^x, ..., b_n^x) = y^x = x^{-1}yx$, and $(x^{-1}yx)^{-1}y = [x, y]$.

• Eve: knows $a_1, \ldots, a_m, b_1, \ldots, b_n, a_1^y, \ldots, a_m^y, b_1^x, \ldots, b_n^x$ and needs [x, y].

This can be done by solving the Multiple Restricted Search Conjugacy Problem.

This is a protocol genuinely based on non-commutativity (i.e. without using any commuting subgroups).

- Public: A group $G = \langle X \mid R \rangle$ and elements $a_1, \ldots, a_m \in G$, $b_1, \ldots, b_n \in G$.
- Alice: picks a word $x = x(a_1, ..., a_m)$, and sends $b_1^x, ..., b_n^x$.
- Bob: picks a word $y = y(b_1, ..., b_n)$, and sends $a_1^y, ..., a_m^y$.
- Common secret:

Alice:
$$\mathbf{x}(a_1^y, \dots, a_m^y) = x^y = y^{-1}xy$$
, and $\mathbf{x}^{-1}(y^{-1}xy) = [x, y]$
Bob: $\mathbf{y}(b_1^x, \dots, b_n^x) = y^x = x^{-1}yx$, and $(x^{-1}yx)^{-1}\mathbf{y} = [x, y]$.

• Eve: knows $a_1, ..., a_m, b_1, ..., b_n, a_1^y, ..., a_m^y, b_1^x, ..., b_n^x$ and needs [x, y].

This can be done by solving the Multiple Restricted Search Conjugacy Problem.

This is a protocol genuinely based on non-commutativity (i.e. without using any commuting subgroups).

- Public: A group $G = \langle X \mid R \rangle$ and elements $a_1, \ldots, a_m \in G$, $b_1, \ldots, b_n \in G$.
- Alice: picks a word $x = x(a_1, ..., a_m)$, and sends $b_1^x, ..., b_n^x$.
- Bob: picks a word $y = y(b_1, ..., b_n)$, and sends $a_1^y, ..., a_m^y$.
- Common secret:

Alice:
$$x(a_1^y, ..., a_m^y) = x^y = y^{-1}xy$$
, and $x^{-1}(y^{-1}xy) = [x, y]$
Bob: $y(b_1^x, ..., b_n^x) = y^x = x^{-1}yx$, and $(x^{-1}yx)^{-1}y = [x, y]$.

• Eve: knows $a_1, \ldots, a_m, b_1, \ldots, b_n, a_1^y, \ldots, a_m^y, b_1^x, \ldots, b_n^x$ and needs [x, y].

This can be done by solving the Multiple Restricted Search Conjugacy Problem.

- The element x conjugating b_1, \ldots, b_n into b_1^x, \ldots, b_n^x need not be unique.
- After solving the Multiple Search Conjugacy Problem, Eve will find $x' = c_b x$ where $c_b \in C_G(b_1) \cap \cdots \cap C_G(b_n)$, $y' = c_a y$ where $c_a \in C_G(a_1) \cap \cdots \cap C_G(a_m)$.
- Now, $[x', y'] = [x, y] \Leftrightarrow c_a$ commutes with c_b :

$$[x',y'] = (x^{-1}c_b^{-1})(y^{-1}c_a^{-1})(c_bx)(c_ay) = x^{-1}y^{-1}c_b^{-1}c_a^{-1}c_bc_axy.$$

- The only visible way to ensure this is to have $x' \in A$ (so $c_b \in A$ and $[c_a, c_b] = 1$), or $v' \in B$.
- Hence, the (unrestricted) Multiple Search Conjugacy Problem does not seem to be enough in order to break the system.

- The element x conjugating b_1, \ldots, b_n into b_1^x, \ldots, b_n^x need not be unique.
- After solving the Multiple Search Conjugacy Problem, Eve will find $x' = c_b x$ where $c_b \in C_G(b_1) \cap \cdots \cap C_G(b_n)$, $y' = c_a y$ where $c_a \in C_G(a_1) \cap \cdots \cap C_G(a_m)$.
- Now, $[x', y'] = [x, y] \Leftrightarrow c_a$ commutes with c_b :

$$[x',y'] = (x^{-1}c_b^{-1})(y^{-1}c_a^{-1})(c_bx)(c_ay) = x^{-1}y^{-1}c_b^{-1}c_a^{-1}c_bc_axy.$$

- The only visible way to ensure this is to have $x' \in A$ (so $c_b \in A$ and $[c_a, c_b] = 1$), or $y' \in B$.
- Hence, the (unrestricted) Multiple Search Conjugacy Problem does not seem to be enough in order to break the system.

- The element x conjugating b_1, \ldots, b_n into b_1^x, \ldots, b_n^x need not be unique.
- After solving the Multiple Search Conjugacy Problem, Eve will find $x' = c_b x$ where $c_b \in C_G(b_1) \cap \cdots \cap C_G(b_n)$, $y' = c_a y$ where $c_a \in C_G(a_1) \cap \cdots \cap C_G(a_m)$.
- Now, $[x', y'] = [x, y] \Leftrightarrow c_a$ commutes with c_b :

$$[x',y'] = (x^{-1}c_b^{-1})(y^{-1}c_a^{-1})(c_bx)(c_ay) = x^{-1}y^{-1}c_b^{-1}c_a^{-1}c_bc_axy.$$

- The only visible way to ensure this is to have $x' \in A$ (so $c_b \in A$ and $[c_a, c_b] = 1$), or $v' \in B$.
- Hence, the (unrestricted) Multiple Search Conjugacy Problem does not seem to be enough in order to break the system.

- The element x conjugating b_1, \ldots, b_n into b_1^x, \ldots, b_n^x need not be unique.
- After solving the Multiple Search Conjugacy Problem, Eve will find $x' = c_b x$ where $c_b \in C_G(b_1) \cap \cdots \cap C_G(b_n)$, $y' = c_a y$ where $c_a \in C_G(a_1) \cap \cdots \cap C_G(a_m)$.
- Now, $[x', y'] = [x, y] \Leftrightarrow c_a$ commutes with c_b :

$$[x',y'] = (x^{-1}c_b^{-1})(y^{-1}c_a^{-1})(c_bx)(c_ay) = x^{-1}y^{-1}c_b^{-1}c_a^{-1}c_bc_axy.$$

- The only visible way to ensure this is to have $x' \in A$ (so $c_b \in A$ and $[c_a, c_b] = 1$), or $y' \in B$.
- Hence, the (unrestricted) Multiple Search Conjugacy Problem does not seem to be enough in order to break the system.

- The element x conjugating b_1, \ldots, b_n into b_1^x, \ldots, b_n^x need not be unique.
- After solving the Multiple Search Conjugacy Problem, Eve will find $x' = c_b x$ where $c_b \in C_G(b_1) \cap \cdots \cap C_G(b_n)$, $y' = c_a y$ where $c_a \in C_G(a_1) \cap \cdots \cap C_G(a_m)$.
- Now, $[x', y'] = [x, y] \Leftrightarrow c_a$ commutes with c_b :

$$[x',y'] = (x^{-1}c_b^{-1})(y^{-1}c_a^{-1})(c_bx)(c_ay) = x^{-1}y^{-1}c_b^{-1}c_a^{-1}c_bc_axy.$$

- The only visible way to ensure this is to have $x' \in A$ (so $c_b \in A$ and $[c_a, c_b] = 1$), or $y' \in B$.
- Hence, the (unrestricted) Multiple Search Conjugacy Problem does not seem to be enough in order to break the system.

Outline

- The origins of public key cryptography
- 2 A protocol based on the word problem
- Protocols based on the conjugacy problem
- 4 Protocols based on the factorization problem
- 6 Anshel-Anshel-Goldfeld protocol
- 6 Some authentication protocols

Authentication protocols

- These are protocols to ensure that somebody is really who is claiming to be.
- General setting: Every player has a public name, and a secret key. When I call somebody by his name, he must provide me a proof that he knows the corresponding secret key (so, he is who is supposed to be), but without revealing any information about the key itself.
- Many key establishment protocols can be modified to become authentication protocols.

Authentication protocols

- These are protocols to ensure that somebody is really who is claiming to be.
- General setting: Every player has a public name, and a secret key. When I call somebody by his name, he must provide me a proof that he knows the corresponding secret key (so, he is who is supposed to be), but without revealing any information about the key itself.
- Many key establishment protocols can be modified to become authentication protocols.

Authentication protocols

- These are protocols to ensure that somebody is really who is claiming to be.
- General setting: Every player has a public name, and a secret key. When I call somebody by his name, he must provide me a proof that he knows the corresponding secret key (so, he is who is supposed to be), but without revealing any information about the key itself.
- Many key establishment protocols can be modified to become authentication protocols.

- Public: p (prime) and $g \notin p\mathbb{Z}$.
- Every player has a secret key $a \in \mathbb{N}$, and public name $g^a \mod p$.
- Bob, the *verifier*, wants to be sure that Alice (say, Ms. "g^a mod p"), the *prover*, is who is supposed to be.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^b \mod p$ (a *challenge*).
- Alice: sends $(g^b)^a \mod p$.
- Bob: verifies whether $(g^b)^a = (g^a)^b \mod p$.
- Eve: knows p, g and g^a mod p, and needs a to be able to impersonate Alice. This is the Discrete Logarithm Problem.

- Public: p (prime) and $g \notin p\mathbb{Z}$.
- Every player has a secret key $a \in \mathbb{N}$, and public name $g^a \mod p$.
- Bob, the *verifier*, wants to be sure that Alice (say, Ms. "g^a mod p"), the *prover*, is who is supposed to be.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^b \mod p$ (a *challenge*).
- Alice: sends $(g^b)^a \mod p$.
- Bob: verifies whether $(g^b)^a = (g^a)^b \mod p$.
- Eve: knows p, g and g^a mod p, and needs a to be able to impersonate Alice. This is the Discrete Logarithm Problem.

- Public: p (prime) and $g \notin p\mathbb{Z}$.
- Every player has a secret key $a \in \mathbb{N}$, and public name $g^a \mod p$.
- Bob, the *verifier*, wants to be sure that Alice (say, Ms. " $g^a \mod p$ "), the *prover*, is who is supposed to be.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^b \mod p$ (a *challenge*).
- Alice: sends $(g^b)^a \mod p$.
- Bob: verifies whether $(g^b)^a = (g^a)^b \mod p$.
- Eve: knows p, g and g^a mod p, and needs a to be able to impersonate Alice. This is the Discrete Logarithm Problem.

- Public: p (prime) and $g \notin p\mathbb{Z}$.
- Every player has a secret key $a \in \mathbb{N}$, and public name $g^a \mod p$.
- Bob, the *verifier*, wants to be sure that Alice (say, Ms. " $g^a \mod p$ "), the *prover*, is who is supposed to be.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^b \mod p$ (a *challenge*).
- Alice: sends $(g^b)^a \mod p$.
- Bob: verifies whether $(g^b)^a = (g^a)^b \mod p$.
- Eve: knows p, g and g^a mod p, and needs a to be able to impersonate Alice. This is the Discrete Logarithm Problem.

- Public: p (prime) and $g \notin p\mathbb{Z}$.
- Every player has a secret key $a \in \mathbb{N}$, and public name $g^a \mod p$.
- Bob, the *verifier*, wants to be sure that Alice (say, Ms. " $g^a \mod p$ "), the *prover*, is who is supposed to be.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^b \mod p$ (a *challenge*).
- Alice: sends $(g^b)^a \mod p$.
- Bob: verifies whether $(g^b)^a = (g^a)^b \mod p$.
- Eve: knows p, g and g^a mod p, and needs a to be able to impersonate Alice. This is the Discrete Logarithm Problem.

- Public: p (prime) and $g \notin p\mathbb{Z}$.
- Every player has a secret key $a \in \mathbb{N}$, and public name $g^a \mod p$.
- Bob, the *verifier*, wants to be sure that Alice (say, Ms. " $g^a \mod p$ "), the *prover*, is who is supposed to be.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^b \mod p$ (a *challenge*).
- Alice: sends $(g^b)^a \mod p$.
- Bob: verifies whether $(g^b)^a = (g^a)^b \mod p$.
- Eve: knows p, g and g^a mod p, and needs a to be able to impersonate Alice. This is the Discrete Logarithm Problem.

- Public: p (prime) and $g \notin p\mathbb{Z}$.
- Every player has a secret key $a \in \mathbb{N}$, and public name $g^a \mod p$.
- Bob, the *verifier*, wants to be sure that Alice (say, Ms. " $g^a \mod p$ "), the *prover*, is who is supposed to be.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^b \mod p$ (a *challenge*).
- Alice: sends $(g^b)^a \mod p$.
- Bob: verifies whether $(g^b)^a = (g^a)^b \mod p$.
- Eve: knows p, g and g^a mod p, and needs a to be able to impersonate Alice. This is the Discrete Logarithm Problem.

- Public: p (prime) and $g \notin p\mathbb{Z}$.
- Every player has a secret key $a \in \mathbb{N}$, and public name $g^a \mod p$.
- Bob, the *verifier*, wants to be sure that Alice (say, Ms. " $g^a \mod p$ "), the *prover*, is who is supposed to be.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^b \mod p$ (a *challenge*).
- Alice: sends $(g^b)^a \mod p$.
- Bob: verifies whether $(g^b)^a = (g^a)^b \mod p$.
- Eve: knows p, g and g^a mod p, and needs a to be able to impersonate Alice. This is the Discrete Logarithm Problem.

- Public: $G = \langle X | R \rangle$ and $A, B \subseteq G$ such that $[a, b] = 1 \ \forall a \in A$, $\forall b \in B$.
- Every player has a secret key $a \in A$, and public name (u, u^a) , where $u \in G$ is arbitrary (and $u^a = a^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " (u, u^a) ") is who is supposed to be.
- Bob: picks a random $b \in B$, and sends $u^b = b^{-1}ub$.
- Alice: sends $(u^b)^a = u^{ba}$.
- Bob: verifies whether $u^{ba} = (u^a)^b$.
- Eve: knows *u* and *u*^a, and needs *a* to be able to authenticate as Alice to Bob. This is the Discrete Logarithm Problem.

- Public: $G = \langle X \mid R \rangle$ and $A, B \subseteq G$ such that $[a, b] = 1 \ \forall a \in A$, $\forall b \in B$.
- Every player has a secret key $a \in A$, and public name (u, u^a) , where $u \in G$ is arbitrary (and $u^a = a^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " (u, u^a) ") is who is supposed to be.
- Bob: picks a random $b \in B$, and sends $u^b = b^{-1}ub$.
- Alice: sends $(u^b)^a = u^{ba}$.
- Bob: verifies whether $u^{ba} = (u^a)^b$.
- Eve: knows *u* and *u*^a, and needs *a* to be able to authenticate as Alice to Bob. This is the Discrete Logarithm Problem.

- Public: $G = \langle X \mid R \rangle$ and $A, B \subseteq G$ such that $[a, b] = 1 \ \forall a \in A$, $\forall b \in B$.
- Every player has a secret key $a \in A$, and public name (u, u^a) , where $u \in G$ is arbitrary (and $u^a = a^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " (u, u^a) ") is who is supposed to be.
- Bob: picks a random $b \in B$, and sends $u^b = b^{-1}ub$.
- Alice: sends $(u^b)^a = u^{ba}$.
- Bob: verifies whether $u^{ba} = (u^a)^b$.
- Eve: knows *u* and *u*^a, and needs *a* to be able to authenticate as Alice to Bob. This is the Discrete Logarithm Problem.

- Public: $G = \langle X \mid R \rangle$ and $A, B \subseteq G$ such that $[a, b] = 1 \ \forall a \in A$, $\forall b \in B$.
- Every player has a secret key $a \in A$, and public name (u, u^a) , where $u \in G$ is arbitrary (and $u^a = a^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " (u, u^a) ") is who is supposed to be.
- Bob: picks a random $b \in B$, and sends $u^b = b^{-1}ub$.
- Alice: sends $(u^b)^a = u^{ba}$.
- Bob: verifies whether $u^{ba} = (u^a)^b$.
- Eve: knows *u* and *u*^a, and needs *a* to be able to authenticate as Alice to Bob. This is the Discrete Logarithm Problem.

- Public: $G = \langle X | R \rangle$ and $A, B \subseteq G$ such that $[a, b] = 1 \ \forall a \in A$, $\forall b \in B$.
- Every player has a secret key $a \in A$, and public name (u, u^a) , where $u \in G$ is arbitrary (and $u^a = a^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " (u, u^a) ") is who is supposed to be.
- Bob: picks a random $b \in B$, and sends $u^b = b^{-1}ub$.
- Alice: sends $(u^b)^a = u^{ba}$.
- Bob: verifies whether $u^{ba} = (u^a)^b$.
- Eve: knows *u* and *u*^a, and needs *a* to be able to authenticate as Alice to Bob. This is the Discrete Logarithm Problem.

- Public: $G = \langle X \mid R \rangle$ and $A, B \subseteq G$ such that $[a, b] = 1 \ \forall a \in A$, $\forall b \in B$.
- Every player has a secret key $a \in A$, and public name (u, u^a) , where $u \in G$ is arbitrary (and $u^a = a^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " (u, u^a) ") is who is supposed to be.
- Bob: picks a random $b \in B$, and sends $u^b = b^{-1}ub$.
- Alice: sends $(u^b)^a = u^{ba}$.
- Bob: verifies whether $u^{ba} = (u^a)^b$.
- Eve: knows *u* and *u*^a, and needs *a* to be able to authenticate as Alice to Bob. This is the Discrete Logarithm Problem.

- Public: $G = \langle X \mid R \rangle$ and $A, B \subseteq G$ such that $[a, b] = 1 \ \forall a \in A$, $\forall b \in B$.
- Every player has a secret key $a \in A$, and public name (u, u^a) , where $u \in G$ is arbitrary (and $u^a = a^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " (u, u^a) ") is who is supposed to be.
- Bob: picks a random $b \in B$, and sends $u^b = b^{-1}ub$.
- Alice: sends $(u^b)^a = u^{ba}$.
- Bob: verifies whether $u^{ba} = (u^a)^b$.
- Eve: knows u and u^a , and needs a to be able to authenticate as Alice to Bob. This is the Discrete Logarithm Problem.

- Public: $G = \langle X \mid R \rangle$ and $A, B \subseteq G$ such that $[a, b] = 1 \ \forall a \in A$, $\forall b \in B$.
- Every player has a secret key $a \in A$, and public name (u, u^a) , where $u \in G$ is arbitrary (and $u^a = a^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " (u, u^a) ") is who is supposed to be.
- Bob: picks a random $b \in B$, and sends $u^b = b^{-1}ub$.
- Alice: sends $(u^b)^a = u^{ba}$.
- Bob: verifies whether $u^{ba} = (u^a)^b$.
- Eve: knows u and u^a , and needs a to be able to authenticate as Alice to Bob. This is the Discrete Logarithm Problem.

- Public: $G = \langle X | R \rangle$ (and no commuting subgroups!).
- Every player has a secret key $a \in A$, and public name (u, u^a) , where $u \in G$ is arbitrary (and $u^a = a^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " (u, u^a) ") is who is supposed to be.

- Alice: picks a random $b \in B$, and sends $x = b^{-1}(u^a)b$, and y = b.
- Bob: verifies whether $y^{-1} \cdot u^a \cdot y = x$.
- Eve: can easily impersonate Alice, by acting in the same way (a plays no role).

- Public: $G = \langle X | R \rangle$ (and no commuting subgroups!).
- Every player has a secret key $a \in A$, and public name (u, u^a) , where $u \in G$ is arbitrary (and $u^a = a^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " (u, u^a) ") is who is supposed to be.

- Alice: picks a random $b \in B$, and sends $x = b^{-1}(u^a)b$, and y = b.
- Bob: verifies whether $y^{-1} \cdot u^a \cdot y = x$.
- Eve: can easily impersonate Alice, by acting in the same way (a plays no role).

- Public: $G = \langle X | R \rangle$ (and no commuting subgroups!).
- Every player has a secret key $a \in A$, and public name (u, u^a) , where $u \in G$ is arbitrary (and $u^a = a^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " (u, u^a) ") is who is supposed to be.

- Alice: picks a random $b \in B$, and sends $x = b^{-1}(u^a)b$, and y = b.
- Bob: verifies whether $y^{-1} \cdot u^a \cdot y = x$.
- Eve: can easily impersonate Alice, by acting in the same way (a plays no role).

- Public: $G = \langle X | R \rangle$ (and no commuting subgroups!).
- Every player has a secret key $a \in A$, and public name (u, u^a) , where $u \in G$ is arbitrary (and $u^a = a^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " (u, u^a) ") is who is supposed to be.

- Alice: picks a random $b \in B$, and sends $x = b^{-1}(u^a)b$, and y = b.
- Bob: verifies whether $y^{-1} \cdot u^a \cdot y = x$.
- Eve: can easily impersonate Alice, by acting in the same way (a plays no role).

- Public: $G = \langle X | R \rangle$ (and no commuting subgroups!).
- Every player has a secret key $a \in A$, and public name (u, u^a) , where $u \in G$ is arbitrary (and $u^a = a^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " (u, u^a) ") is who is supposed to be.

- Alice: picks a random $b \in B$, and sends $x = b^{-1}(u^a)b$, and y = b.
- Bob: verifies whether $y^{-1} \cdot u^a \cdot y = x$.
- Eve: can easily impersonate Alice, by acting in the same way (a plays no role).

- Public: $G = \langle X | R \rangle$ (and no commuting subgroups!).
- Every player has a secret key $a \in A$, and public name (u, u^a) , where $u \in G$ is arbitrary (and $u^a = a^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " (u, u^a) ") is who is supposed to be.

- Alice: picks a random $b \in B$, and sends $x = b^{-1}(u^a)b$, and y = b.
- Bob: verifies whether $y^{-1} \cdot u^a \cdot y = x$.
- Eve: can easily impersonate Alice, by acting in the same way (a plays no role).

- Public: $G = \langle X | R \rangle$ (and no commuting subgroups!).
- Every player has a secret key $a \in A$, and public name (u, u^a) , where $u \in G$ is arbitrary (and $u^a = a^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " (u, u^a) ") is who is supposed to be.

Second (wrong) attempt:

- Alice: picks a random $b \in B$, and sends $x = b^{-1}(u^a)b$, and z = ab.
- Bob: verifies whether $z^{-1} \cdot u \cdot z = x$.
- Eve: can easily impersonate Alice: choosing $b \in B$ and sending $x = b^{-1}ub$ and z = b will cheat Bob

- Public: $G = \langle X | R \rangle$ (and no commuting subgroups!).
- Every player has a secret key $a \in A$, and public name (u, u^a) , where $u \in G$ is arbitrary (and $u^a = a^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " (u, u^a) ") is who is supposed to be.

Second (wrong) attempt:

- Alice: picks a random $b \in B$, and sends $x = b^{-1}(u^a)b$, and z = ab.
- Bob: verifies whether $z^{-1} \cdot u \cdot z = x$.
- Eve: can easily impersonate Alice: choosing $b \in B$ and sending $x = b^{-1}ub$ and z = b will cheat Bob

- Public: $G = \langle X | R \rangle$ (and no commuting subgroups!).
- Every player has a secret key $a \in A$, and public name (u, u^a) , where $u \in G$ is arbitrary (and $u^a = a^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " (u, u^a) ") is who is supposed to be.

Second (wrong) attempt:

- Alice: picks a random $b \in B$, and sends $x = b^{-1}(u^a)b$, and z = ab.
- Bob: verifies whether $z^{-1} \cdot u \cdot z = x$.
- Eve: can easily impersonate Alice: choosing $b \in B$ and sending $x = b^{-1}ub$ and z = b will cheat Bob.

But combining both, it works:

- Alice: picks a random $b \in B$, and sends $x = b^{-1}(u^a)b$ (the *commitment*).
- Bob: picks and sends a random bit $\alpha = 0, 1$.
- Alice: sends y = b if $\alpha = 0$ and z = ab if $\alpha = 1$.
- Bob: verifies whether $y^{-1} \cdot u^a \cdot y = x$ (if $\alpha = 0$) or whether $z^{-1} \cdot u \cdot z = x$ (if $\alpha = 1$).
- Repeat these last three steps, *k* times.
- Eve: has to send the commitment before knowing the future values of α ; so, acting like before, she only has probability $\frac{1}{2^k}$ to succeed.
- Eve's alternative is finding a from u and u^a , i.e. solving the Conjugacy Search Problem.

But combining both, it works:

- Alice: picks a random $b \in B$, and sends $x = b^{-1}(u^a)b$ (the *commitment*).
- Bob: picks and sends a random bit $\alpha = 0, 1$.
- Alice: sends y = b if $\alpha = 0$ and z = ab if $\alpha = 1$.
- Bob: verifies whether $y^{-1} \cdot u^a \cdot y = x$ (if $\alpha = 0$) or whether $z^{-1} \cdot u \cdot z = x$ (if $\alpha = 1$).
- Repeat these last three steps, *k* times.
- Eve: has to send the commitment before knowing the future values of α ; so, acting like before, she only has probability $\frac{1}{2^k}$ to succeed.
- Eve's alternative is finding *a* from *u* and *u*^a, i.e. solving the Conjugacy Search Problem.

But combining both, it works:

- Alice: picks a random $b \in B$, and sends $x = b^{-1}(u^a)b$ (the *commitment*).
- Bob: picks and sends a random bit $\alpha = 0, 1$.
- Alice: sends y = b if $\alpha = 0$ and z = ab if $\alpha = 1$.
- Bob: verifies whether $y^{-1} \cdot u^a \cdot y = x$ (if $\alpha = 0$) or whether $z^{-1} \cdot u \cdot z = x$ (if $\alpha = 1$).
- Repeat these last three steps, *k* times.
- Eve: has to send the commitment before knowing the future values of α ; so, acting like before, she only has probability $\frac{1}{2^k}$ to succeed.
- Eve's alternative is finding a from u and u^a, i.e. solving the Conjugacy Search Problem.

- Alice: picks a random $b \in B$, and sends $x = b^{-1}(u^a)b$ (the *commitment*).
- Bob: picks and sends a random bit $\alpha = 0, 1$.
- Alice: sends y = b if $\alpha = 0$ and z = ab if $\alpha = 1$.
- Bob: verifies whether $y^{-1} \cdot u^a \cdot y = x$ (if $\alpha = 0$) or whether $z^{-1} \cdot u \cdot z = x$ (if $\alpha = 1$).
- Repeat these last three steps, *k* times.
- Eve: has to send the commitment before knowing the future values of α ; so, acting like before, she only has probability $\frac{1}{2^k}$ to succeed.
- Eve's alternative is finding a from u and u^a , i.e. solving the Conjugacy Search Problem.

- Alice: picks a random $b \in B$, and sends $x = b^{-1}(u^a)b$ (the *commitment*).
- Bob: picks and sends a random bit $\alpha = 0, 1$.
- Alice: sends y = b if $\alpha = 0$ and z = ab if $\alpha = 1$.
- Bob: verifies whether $y^{-1} \cdot u^a \cdot y = x$ (if $\alpha = 0$) or whether $z^{-1} \cdot u \cdot z = x$ (if $\alpha = 1$).
- Repeat these last three steps, *k* times.
- Eve: has to send the commitment before knowing the future values of α ; so, acting like before, she only has probability $\frac{1}{2^k}$ to succeed.
- Eve's alternative is finding a from u and u^a, i.e. solving the Conjugacy Search Problem.

- Alice: picks a random $b \in B$, and sends $x = b^{-1}(u^a)b$ (the *commitment*).
- Bob: picks and sends a random bit $\alpha = 0, 1$.
- Alice: sends y = b if $\alpha = 0$ and z = ab if $\alpha = 1$.
- Bob: verifies whether $y^{-1} \cdot u^a \cdot y = x$ (if $\alpha = 0$) or whether $z^{-1} \cdot u \cdot z = x$ (if $\alpha = 1$).
- Repeat these last three steps, *k* times.
- Eve: has to send the commitment before knowing the future values of α ; so, acting like before, she only has probability $\frac{1}{2^k}$ to succeed.
- Eve's alternative is finding a from u and u^a, i.e. solving the Conjugacy Search Problem.

- Alice: picks a random $b \in B$, and sends $x = b^{-1}(u^a)b$ (the *commitment*).
- Bob: picks and sends a random bit $\alpha = 0, 1$.
- Alice: sends y = b if $\alpha = 0$ and z = ab if $\alpha = 1$.
- Bob: verifies whether $y^{-1} \cdot u^a \cdot y = x$ (if $\alpha = 0$) or whether $z^{-1} \cdot u \cdot z = x$ (if $\alpha = 1$).
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α ; so, acting like before, she only has probability $\frac{1}{2^k}$ to succeed.
- Eve's alternative is finding *a* from *u* and *u*^a, i.e. solving the Conjugacy Search Problem.

One can use the same idea, but replacing the Conjugacy Search Problem to the harder Twisted Conjugacy Search Problem.

• Twisted Conjugacy Problem: "given $u, v \in G$ and $\varphi \colon G \to G$, decide whether $v =_G (x\varphi)^{-1}ux$ for some $x \in G$ ".

Solv. Twisted Conjugacy Problem \implies solv. Conjugacy Problem.

Solv. Twisted Conjugacy Problem $\not =$ solv. Conjugacy Problem.

• Twisted Conjugacy Search Problem: "given $u, v \in G, \varphi \colon G \to G$, and the information that u and v are φ -twisted conjugated to each other in G, find an $x \in G$ such that $v =_G (x\varphi)^{-1}ux$ ".

One can use the same idea, but replacing the Conjugacy Search Problem to the harder Twisted Conjugacy Search Problem.

• Twisted Conjugacy Problem: "given $u, v \in G$ and $\varphi \colon G \to G$, decide whether $v =_G (x\varphi)^{-1}ux$ for some $x \in G$ ".

Solv. Twisted Conjugacy Problem ⇒ solv. Conjugacy Problem.

Solv. Twisted Conjugacy Problem $\not =$ solv. Conjugacy Problem.

• Twisted Conjugacy Search Problem: "given $u, v \in G, \varphi \colon G \to G$, and the information that u and v are φ -twisted conjugated to each other in G, find an $x \in G$ such that $v =_G (x\varphi)^{-1}ux$ ".

One can use the same idea, but replacing the Conjugacy Search Problem to the harder Twisted Conjugacy Search Problem.

• Twisted Conjugacy Problem: "given $u, v \in G$ and $\varphi \colon G \to G$, decide whether $v =_G (x\varphi)^{-1} ux$ for some $x \in G$ ".

Solv. Twisted Conjugacy Problem \implies solv. Conjugacy Problem.

Solv. Twisted Conjugacy Problem $\not =$ solv. Conjugacy Problem.

• Twisted Conjugacy Search Problem: "given $u, v \in G, \varphi \colon G \to G$, and the information that u and v are φ -twisted conjugated to each other in G, find an $x \in G$ such that $v =_G (x\varphi)^{-1}ux$ ".

One can use the same idea, but replacing the Conjugacy Search Problem to the harder Twisted Conjugacy Search Problem.

• Twisted Conjugacy Problem: "given $u, v \in G$ and $\varphi \colon G \to G$, decide whether $v =_G (x\varphi)^{-1} ux$ for some $x \in G$ ".

Solv. Twisted Conjugacy Problem \implies solv. Conjugacy Problem.

Solv. Twisted Conjugacy Problem $\not =$ solv. Conjugacy Problem.

• Twisted Conjugacy Search Problem: "given $u, v \in G$, $\varphi : G \to G$, and the information that u and v are φ -twisted conjugated to each other in G, find an $x \in G$ such that $v =_G (x\varphi)^{-1}ux$ ".

One can use the same idea, but replacing the Conjugacy Search Problem to the harder Twisted Conjugacy Search Problem.

• Twisted Conjugacy Problem: "given $u, v \in G$ and $\varphi \colon G \to G$, decide whether $v =_G (x\varphi)^{-1}ux$ for some $x \in G$ ".

Solv. Twisted Conjugacy Problem \implies solv. Conjugacy Problem.

Solv. Twisted Conjugacy Problem $\not =$ solv. Conjugacy Problem.

• Twisted Conjugacy Search Problem: "given $u, v \in G$, $\varphi : G \to G$, and the information that u and v are φ -twisted conjugated to each other in G, find an $x \in G$ such that $v =_G (x\varphi)^{-1}ux$ ".

- Public: $G = \langle X | R \rangle$ and $\varphi \colon G \to G$, an endomorphism.
- Every player has a secret key $a \in A$, and public name $(u, u^{a_{\varphi}})$, where $u \in G$ is arbitrary (and $u^{a_{\varphi}} = (a\varphi)^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " $(u, u^{a_{\varphi}})$ ") is who is supposed to be.
- Alice: picks a random $b \in B$, and sends the commitment $x = (b\varphi)^{-1}(u^{a_{\varphi}})b = (b\varphi)^{-1}(a\varphi)^{-1}uab = ((ab)\varphi)^{-1}u(ab)$
- Bob: picks and sends a random bit $\alpha = 0, 1$.
- Alice: sends y = b if $\alpha = 0$, and z = ab if $\alpha = 1$.
- Bob: verifies whether $(y\varphi)^{-1} \cdot u^{a_{\varphi}} \cdot y = x$ (if $\alpha = 0$) or whether $(z\varphi)^{-1} \cdot u \cdot z = x$ (if $\alpha = 1$).
- Repeat these last three steps, *k* times.
- Eve: has to send the commitment before knowing the future values of α ; so, acting like before, she only has probability $\frac{1}{2^k}$ to succeed.
- Eve's alternative is finding a from u and $u^{a_{\varphi}}$, i.e. solving the Twisted Conjugacy Search Problem.

- Public: $G = \langle X | R \rangle$ and $\varphi : G \rightarrow G$, an endomorphism.
- Every player has a secret key $a \in A$, and public name $(u, u^{a_{\varphi}})$, where $u \in G$ is arbitrary (and $u^{a_{\varphi}} = (a\varphi)^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " $(u, u^{a_{\varphi}})$ ") is who is supposed to be.
- Alice: picks a random $b \in B$, and sends the commitment $x = (b\varphi)^{-1}(u^{a_{\varphi}})b = (b\varphi)^{-1}(a\varphi)^{-1}uab = ((ab)\varphi)^{-1}u(ab)$.
- Bob: picks and sends a random bit $\alpha = 0, 1$.
- Alice: sends y = b if $\alpha = 0$, and z = ab if $\alpha = 1$.
- Bob: verifies whether $(y\varphi)^{-1} \cdot u^{a_{\varphi}} \cdot y = x$ (if $\alpha = 0$) or whether $(z\varphi)^{-1} \cdot u \cdot z = x$ (if $\alpha = 1$).
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α ; so, acting like before, she only has probability $\frac{1}{2^k}$ to succeed.
- Eve's alternative is finding \underline{a} from \underline{u} and $\underline{u}^{a_{\varphi}}$, i.e. solving the Twisted Conjugacy Search Problem.

- Public: $G = \langle X | R \rangle$ and $\varphi : G \rightarrow G$, an endomorphism.
- Every player has a secret key $a \in A$, and public name $(u, u^{a_{\varphi}})$, where $u \in G$ is arbitrary (and $u^{a_{\varphi}} = (a\varphi)^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " $(u, u^{a_{\varphi}})$ ") is who is supposed to be.
- Alice: picks a random $b \in B$, and sends the commitment $x = (b\varphi)^{-1}(u^{a_{\varphi}})b = (b\varphi)^{-1}(a\varphi)^{-1}uab = ((ab)\varphi)^{-1}u(ab)$.
- Bob: picks and sends a random bit $\alpha = 0, 1$.
- Alice: sends y = b if $\alpha = 0$, and z = ab if $\alpha = 1$.
- Bob: verifies whether $(y\varphi)^{-1} \cdot u^{a_{\varphi}} \cdot y = x$ (if $\alpha = 0$) or whether $(z\varphi)^{-1} \cdot u \cdot z = x$ (if $\alpha = 1$).
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α ; so, acting like before, she only has probability $\frac{1}{2^k}$ to succeed.
- Eve's alternative is finding \underline{a} from \underline{u} and $\underline{u}^{a_{\varphi}}$, i.e. solving the Twisted Conjugacy Search Problem.

- Public: $G = \langle X | R \rangle$ and $\varphi \colon G \to G$, an endomorphism.
- Every player has a secret key $a \in A$, and public name $(u, u^{a_{\varphi}})$, where $u \in G$ is arbitrary (and $u^{a_{\varphi}} = (a\varphi)^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " $(u, u^{a_{\varphi}})$ ") is who is supposed to be.
- Alice: picks a random $b \in B$, and sends the commitment $x = (b\varphi)^{-1}(u^{a_{\varphi}})b = (b\varphi)^{-1}(a\varphi)^{-1}uab = ((ab)\varphi)^{-1}u(ab)$.
- Bob: picks and sends a random bit $\alpha = 0, 1$.
- Alice: sends y = b if $\alpha = 0$, and z = ab if $\alpha = 1$.
- Bob: verifies whether $(y\varphi)^{-1} \cdot u^{a_{\varphi}} \cdot y = x$ (if $\alpha = 0$) or whether $(z\varphi)^{-1} \cdot u \cdot z = x$ (if $\alpha = 1$).
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α ; so, acting like before, she only has probability $\frac{1}{2^k}$ to succeed.
- Eve's alternative is finding \underline{a} from \underline{u} and $\underline{u}^{a_{\varphi}}$, i.e. solving the Twisted Conjugacy Search Problem.

- Public: $G = \langle X | R \rangle$ and $\varphi \colon G \to G$, an endomorphism.
- Every player has a secret key $a \in A$, and public name $(u, u^{a_{\varphi}})$, where $u \in G$ is arbitrary (and $u^{a_{\varphi}} = (a\varphi)^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " $(u, u^{a_{\varphi}})$ ") is who is supposed to be.
- Alice: picks a random $b \in B$, and sends the commitment $x = (b\varphi)^{-1}(u^{a_{\varphi}})b = (b\varphi)^{-1}(a\varphi)^{-1}uab = ((ab)\varphi)^{-1}u(ab)$.
- Bob: picks and sends a random bit $\alpha = 0, 1$.
- Alice: sends y = b if $\alpha = 0$, and z = ab if $\alpha = 1$.
- Bob: verifies whether $(y\varphi)^{-1} \cdot u^{a_{\varphi}} \cdot y = x$ (if $\alpha = 0$) or whether $(z\varphi)^{-1} \cdot u \cdot z = x$ (if $\alpha = 1$).
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α ; so, acting like before, she only has probability $\frac{1}{2^k}$ to succeed.
- Eve's alternative is finding \underline{a} from \underline{u} and $\underline{u}^{a_{\varphi}}$, i.e. solving the Twisted Conjugacy Search Problem

- Public: $G = \langle X | R \rangle$ and $\varphi : G \rightarrow G$, an endomorphism.
- Every player has a secret key $a \in A$, and public name $(u, u^{a_{\varphi}})$, where $u \in G$ is arbitrary (and $u^{a_{\varphi}} = (a\varphi)^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " $(u, u^{a_{\varphi}})$ ") is who is supposed to be.
- Alice: picks a random $b \in B$, and sends the commitment $x = (b\varphi)^{-1}(u^{a_{\varphi}})b = (b\varphi)^{-1}(a\varphi)^{-1}uab = ((ab)\varphi)^{-1}u(ab)$.
- Bob: picks and sends a random bit $\alpha = 0, 1$.
- Alice: sends y = b if $\alpha = 0$, and z = ab if $\alpha = 1$.
- Bob: verifies whether $(y\varphi)^{-1} \cdot u^{a\varphi} \cdot y = x$ (if $\alpha = 0$) or whether $(z\varphi)^{-1} \cdot u \cdot z = x$ (if $\alpha = 1$).
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α ; so, acting like before, she only has probability $\frac{1}{2^k}$ to succeed.
- Eve's alternative is finding \underline{a} from \underline{u} and $\underline{u}^{a_{\varphi}}$, i.e. solving the Twisted Conjugacy Search Problem

- Public: $G = \langle X | R \rangle$ and $\varphi : G \rightarrow G$, an endomorphism.
- Every player has a secret key $a \in A$, and public name $(u, u^{a_{\varphi}})$, where $u \in G$ is arbitrary (and $u^{a_{\varphi}} = (a\varphi)^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " $(u, u^{a_{\varphi}})$ ") is who is supposed to be.
- Alice: picks a random $b \in B$, and sends the commitment $x = (b\varphi)^{-1}(u^{a_{\varphi}})b = (b\varphi)^{-1}(a\varphi)^{-1}uab = ((ab)\varphi)^{-1}u(ab)$.
- Bob: picks and sends a random bit $\alpha = 0, 1$.
- Alice: sends y = b if $\alpha = 0$, and z = ab if $\alpha = 1$.
- Bob: verifies whether $(y\varphi)^{-1} \cdot u^{a_{\varphi}} \cdot y = x$ (if $\alpha = 0$) or whether $(z\varphi)^{-1} \cdot u \cdot z = x$ (if $\alpha = 1$).
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α ; so, acting like before, she only has probability $\frac{1}{2^k}$ to succeed.
- Eve's alternative is finding *a* from u and $u^{a_{\varphi}}$, i.e. solving the Twisted Conjugacy Search Problem.

- Public: $G = \langle X | R \rangle$ and $\varphi \colon G \to G$, an endomorphism.
- Every player has a secret key $a \in A$, and public name $(u, u^{a_{\varphi}})$, where $u \in G$ is arbitrary (and $u^{a_{\varphi}} = (a\varphi)^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " $(u, u^{a_{\varphi}})$ ") is who is supposed to be.
- Alice: picks a random $b \in B$, and sends the commitment $x = (b\varphi)^{-1}(u^{a_{\varphi}})b = (b\varphi)^{-1}(a\varphi)^{-1}uab = ((ab)\varphi)^{-1}u(ab)$.
- Bob: picks and sends a random bit $\alpha = 0, 1$.
- Alice: sends y = b if $\alpha = 0$, and z = ab if $\alpha = 1$.
- Bob: verifies whether $(y\varphi)^{-1} \cdot u^{a_{\varphi}} \cdot y = x$ (if $\alpha = 0$) or whether $(z\varphi)^{-1} \cdot u \cdot z = x$ (if $\alpha = 1$).
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α ; so, acting like before, she only has probability $\frac{1}{2^k}$ to succeed.
- Eve's alternative is finding a from u and $u^{a_{\varphi}}$, i.e. solving the Twisted Conjugacy Search Problem.

- Public: $G = \langle X | R \rangle$ and $\varphi : G \rightarrow G$, an endomorphism.
- Every player has a secret key $a \in A$, and public name $(u, u^{a_{\varphi}})$, where $u \in G$ is arbitrary (and $u^{a_{\varphi}} = (a\varphi)^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " $(u, u^{a_{\varphi}})$ ") is who is supposed to be.
- Alice: picks a random $b \in B$, and sends the commitment $x = (b\varphi)^{-1}(u^{a_{\varphi}})b = (b\varphi)^{-1}(a\varphi)^{-1}uab = ((ab)\varphi)^{-1}u(ab)$.
- Bob: picks and sends a random bit $\alpha = 0, 1$.
- Alice: sends y = b if $\alpha = 0$, and z = ab if $\alpha = 1$.
- Bob: verifies whether $(y\varphi)^{-1} \cdot u^{a_{\varphi}} \cdot y = x$ (if $\alpha = 0$) or whether $(z\varphi)^{-1} \cdot u \cdot z = x$ (if $\alpha = 1$).
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α ; so, acting like before, she only has probability $\frac{1}{2^k}$ to succeed.
- Eve's alternative is finding a from u and $u^{a_{\varphi}}$, i.e. solving the Twisted Conjugacy Search Problem.

- Public: $G = \langle X | R \rangle$ and $\varphi : G \rightarrow G$, an endomorphism.
- Every player has a secret key $a \in A$, and public name $(u, u^{a_{\varphi}})$, where $u \in G$ is arbitrary (and $u^{a_{\varphi}} = (a\varphi)^{-1}ua$).
- Bob wants to be sure that Alice (say, Ms. " $(u, u^{a_{\varphi}})$ ") is who is supposed to be.
- Alice: picks a random $b \in B$, and sends the commitment $x = (b\varphi)^{-1}(u^{a_{\varphi}})b = (b\varphi)^{-1}(a\varphi)^{-1}uab = ((ab)\varphi)^{-1}u(ab)$.
- Bob: picks and sends a random bit $\alpha = 0, 1$.
- Alice: sends y = b if $\alpha = 0$, and z = ab if $\alpha = 1$.
- Bob: verifies whether $(y\varphi)^{-1} \cdot u^{a_{\varphi}} \cdot y = x$ (if $\alpha = 0$) or whether $(z\varphi)^{-1} \cdot u \cdot z = x$ (if $\alpha = 1$).
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α ; so, acting like before, she only has probability $\frac{1}{2^k}$ to succeed.
- Eve's alternative is finding \underline{a} from \underline{u} and $\underline{u}^{a_{\varphi}}$, i.e. solving the Twisted Conjugacy Search Problem.

THANKS