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The goal

Bos| " |ALICE]

Bob wants to send a secret message, m, to Alice over an open chanel
(and Eve is trying to illegitimately discover m and break the system).

From Wikipedia: “Diffie-Hellman key agreement was invented in 1976
... and was the first practical method for establishing a shared secret
over an unprotected communications chanel”.

A third author, Merkle, was also involved in the construction (U.S.
Patent 4.200.770, now expired, describes the algorithms and credits
Diffie, Hellman and Merkle as inventors).
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Reduction to key establishment

@ For simplicity, we assume that m € {0,1}".

@ LetSbeasetand H: S — {0,1}" a function (called the key
space and a Hash function, respectively).

Suppose Bob and Alice share a secret key, K € S.
Encription: Bob encrypts his message m as

E(m) = m+ H(K).

Decryption: Alice decrypts in the same way:

E(m) + H(K) = m+ (H(K) + H(K)) = m.

Eavesdropper: Eve needs to find H(K), i.e. K.
Expansion factor is 1.
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Diffie-Hellman key exchange protocol (1976)

@ Public: p (prime) and g ¢ pZ.
@ Alice: picks a random a € N, and sends g mod p.
@ Bob: picks a random b € N, and sends g° mod p.

@ Common secret: Alice: (g°)2 = g®® mod p
Bob: (99" = g% mod p.

@ Eve: knows p. g and g2, g° mod p, and needs g° mod p.

@ The protocol is considered to be secure against eavesdroppers,
if p and g are chosen properly.
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Diffie-Hellman key exchange protocol (s

Eve needs to solve the
@ Diffie-Hellman Problem: “knowing p, g and g%, g mod p,
compute g% mod p”,
or the

@ Discrete Logarithm Problem: “knowing p, g and g mod p,
compute a’,

both currently considered to be “difficult" problems (but not known to
be equivalent...).
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Diffie-Hellman key exchange protocol (s

Brute force search for solving the Discrete Logarithm Problem
requires computing g, 9%, g%, ..., g!9 = 1 (eventually, ill |g|, the
order of g modulo p): this is O(|g|) multiplications.

In practical implementations, |g| is typically about 103, so brute
force attack is computationally infeasible.

This is not a problem for Alice and Bob because computing
g2 mod p for a particular a is much faster, O(log, a), by the
square-and-multiply method:

g =9"g" g=(((9°%?77(¢°) g
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The word problem in groups

Let (x1,...,%, | r1,-.., Im) be a finite presentation of a group G.

@ Word Problem: “given a word w(xq, ..., X,) decide whether
w =, 1 or not (i.e. whether w e< R >>)”.

There are finitely presented groups with unsolvable Word Problem.

A set of words X on X is said to have no collision in G if the natural
map ¥ — G s injective.
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Wagner-Magyarik protocol (19s4)

@ Public: A platform G = (X | R) and two words > = {wp, w}.
@ Private: A set of words S such that

o the Word Problem is “difficult” in G = (X | R),
e the Word Problem is “easy” in G’ = (X, RU S) = G/S,
@ X has no collision in G’ (and so, in G).
@ Bob: encodes each bit b in his message by an arbitrary (and
changing) word w such that w =, w,.

@ Alice: decodes w by solving the Word Problem in G': decide
whether w =, wp or w =, wj.

@ Eve: sees w and needs to decide whether w =_ wp or w =, wy.
This is the Word CHOICE Problem in G.

@ Or...: find an alternative private key, T, with easy Word Problem
in G/ T, and no collision for X.
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The conjugacy problem in groups

Let (x1,...,Xn| n,...,rm) be afinite presentation of a group G.

@ Conjugacy Problem: “given u, v € G (as words on the x;’s),
decide whether v =, x~"ux for some x € G”.

Solvable Conjugacy Problem = solvable Word Problem.

Solvable Conjugacy Problem #— solvable Word Problem.

@ Conjugacy Search Problem: “given u, v € G and the information
that u and v are conjugate to each other in G, find an x € G such
that v =, x~'ux”.

CSP is always solvable (brute force searching over all possible
x € @G), but at which complexity this is a much more delicate question.
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The conjugacy problem in groups

@ Multiple Conjugacy Problem: given uy, ... ug, vi,... v € G,
decide whether 3x € G such that v; =, x~"u;x, Vi.

Solv. Multiple Conjugacy Problem = solv. Conjugacy Problem.

Solv. Multiple Conjugacy Problem +#= solv. Conjugacy Problem.

@ Restricted Conjugacy Problem: “given u, v and a subgroup
H < G, decide whether v =, x~"ux for some x € H”.

We can consider all variations search/non-search, multiple/simple,
restricted/non-restricted.
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Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

@ Public: G= (X |R), w € G,and A, B C G such that [a, b] = 1
Vac A, vbe B.
@ Alice: picks a random a ¢ A, and sends a~ ' wa — w?,
@ Bob: picks a random b € B, and sends b~ 'wb = w®.
@ Common secret: Alice: a '(b 'wb)a= wb?,
Bob: b~ '(a 'wa)b= w.

@ Eve: knows w, w?, w”, and needs wa>.
This can be done by solving the Conjugacy Search Problem
Restricted to A (or B),

... but also solving the following seemingly easier problem:
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Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

o Decomposition Problem: “knowing w, w’ € G, find a;, a> € A such
that w' = a;way”.

Eve knows w, w?, w” and suppose she can compute ay, a, € A
such that w2 = a;wa..

Then, a;w’a, = a(b~"wb)a, = b~"(a;wax)b = b~ 'wab = w,
and she finds the secret.
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A protocol based on the Factorization Search Problem

@ Public: G= (X |R) and A, B < Gsuch that [a,b] =1 Va € A,
vb e B.

@ Alice: picks arandom a; € A, by € B and sends ab;.
@ Bob: picks a random a; € A, b, € B and sends a»bs.

@ Common secret: Alice: bi(axb2)a; = asbiboar = axaibibo.
Bob:  ax(aiby)be.

@ Eve: knows asa, and b by, and needs a»a; by bs.
This can be done by solving the Factorization Search Problem in
A (or B).

Note that Eve can compute
(a1b1)(aebo) = @arasbibo  and (aobo)(a1b1) = azaiboby,

but neither of these products equal the secret if a;a> # a»a; and
by1bs # baby.
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Stickel’s protocol (2005)

@ Public: A finite group G, w € G, and a. b € G with ab # ba (of
order N and M, respectively).

@ Alice: picks arandom 0 < n< Nand 0 < m < M, and sends
a'wbm,
@ Bob: picks a random 0 < n < Nand0 < m < M, and sends
a” wbm.
@ Common secret: Alice: a"(a” wb™)b™ = a"" wpm+™
Bob: a"(a"wb™)b™ = a™" whmtm
@ Eve: knows a, b, a’wb™ and 2" wb™', and needs a"t" wb™ "

This can be done by solving a variation of the Discrete Logarithm
Problem (in G).

Or... finding alternative x, y € G such that xa = ax, yb = by and
xwy = a'wb™. Then,

x(a" wb™ )y = a" xwyb™ = a" (a"wb™)b™ = a"t" wh™
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Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without
using any commuting subgroups).

@ Public: A group G = (X | R) and elements a, ..., am € G,

b1 ..... bn S G
@ Alice: picks a word x = x(ai,...,am), and sends b}..... b}.
@ Bob: picks aword y = y(b,...,b,), and sends &, ..., a),.

@ Common secret:
Alice:  x(a],.... an)=x" =y xy, and x~"(y~'xy) = [x, y]
Bob: y(bf,....bf) =y =x"Tyx, and (x 'yx)"'y = [x,y].
@ Eve: knows a;.....am, by, .. .. bn, &, ..., am, by, ..., bX and
needs [x, y].
This can be done by solving the Multiple Restricted Search
Conjugacy Problem.

But there are subtleties here...
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Anshel-Anshel-Goldfeld protocol (1999)

@ The element x conjugating by, .. ., by into bf, ..., by need not be
unique.

@ After solving the Multiple Search Conjugacy Problem, Eve will
find x' =cpx where ¢, € Cg(by)N---N Cg(bn),
y' =cay wherecs;e Cg(ar)N---nN Cglam).
@ Now, [x,y']=[x,y] & c5commutes with cy:

X,y =(x""ey )y ea (ewx)(cay) = X'y e, Tea  eneaxy.

@ The only visible way to ensure this is to have x’ € A(so ¢, € A
and [ca, ) = 1), 0ry’ € B.

@ Hence, the (unrestricted) Multiple Search Conjugacy Problem
does not seem to be enough in order to break the system.
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Authentication protocols

@ These are protocols to ensure that somebody is really who is
claiming to be.

@ General setting: Every player has a public name, and a secret
key. When | call somebody by his name, he must provide me a
proof that he knows the corresponding secret key (so, he is who
is supposed to be), but without revealing any information about
the key itself.

@ Many key establishment protocols can be modified to become
authentication protocols.
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Diffie-Hellman authentication protocol

Public: p (prime) and g ¢ pZ.
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@ Public: G = (X | R) (and no commuting subgroups!).

@ Every player has a secret key a € A, and public name (u, u9),
where u € Gis arbitrary (and u? = a~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u%)”) is who is
supposed to be.

First (wrong) attempt:

@ Alice: picks a random b € B, and sends x = b~'(v?)b, and
y=>b.

@ Bob: verifies whether y =" - 7. y = x.

@ Eve: can easily impersonate Alice, by acting in the same way (a
plays no role).
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Sibert-Dehornoy-Girault authentication protocol (2006)

@ Public: G = (X | R) (and no commuting subgroups!).

@ Every player has a secret key a € A, and public name (u, u?),
where u € Gis arbitrary (and u? = a~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u?)”) is who is
supposed to be.

Second (wrong) attempt:

@ Alice: picks a random b € B, and sends x = b~'(v?)b, and
z = ab.

@ Bob: verifies whether z—1 - v - z = x.

@ Eve: can easily impersonate Alice: choosing b € B and sending
x = b~ 'ub and z = b will cheat Bob.
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But combining both, it works:

@ Alice: picks a random b € B, and sends x = b~ '(u?)b
(the commitment).

@ Bob: picks and sends a random bit « = 0, 1.

@ Alice:sends y =bifa=0andz=abifa=1.

@ Bob: verifies whether y~' - 17 - y = x (if « = 0) or whether
7w z=x(ifa=1).

@ Repeat these last three steps, k times.

@ Eve: has to send the commitment before knowing the future
values of «; so, acting like before, she only has probability 217 to
succeed.

@ Eve’s alternative is finding a from v and v, i.e. solving the
Conjugacy Search Problem.
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The Twisted Conjugacy Problem

One can use the same idea, but replacing the Conjugacy Search
Problem to the harder Twisted Conjugacy Search Problem.

@ Twisted Conjugacy Problem: “given u,v € Gand ¢: G — G,
decide whether v =, (xp)~"ux for some x € G”.

Solv. Twisted Conjugacy Problem = solv. Conjugacy Problem.

Solv. Twisted Conjugacy Problem <= solv. Conjugacy Problem.

@ Twisted Conjugacy Search Problem: “given u,v € G, ¢: G — G,
and the information that v and v are p-twisted conjugated to
each other in G, find an x € G such that v = (x¢)~"ux".

TCSP is always solvable (brute force searching over all possible
x € @), but at which complexity this is a much more delicate question.
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