Some group-based cryptosystems

Enric Ventura

Departament de Matematica Aplicada Il

Universitat Politécnica de Catalunya

Zaragoza, January 23, 2009

Outline

0 The origins of public key cryptography

e A protocol based on the word problem

Q Protocols based on the conjugacy problem
e Protocols based on the factorization problem
© Anshel-Anshel-Goldfeld protocol

e Some authentication protocols

1. The origins
Outline

e The origins of public key cryptography

1. The origins
[Jelelele}

The goal

Bos| " |ALICE]

Bob wants to send a secret message, m, to Alice over an open chanel
(and Eve is trying to illegitimately discover m and break the system).

1. The origins
[Jelelele}

The goal

Bos| " |ALICE]

Bob wants to send a secret message, m, to Alice over an open chanel
(and Eve is trying to illegitimately discover m and break the system).

From Wikipedia: “Diffie-Hellman key agreement was invented in 1976
... and was the first practical method for establishing a shared secret
over an unprotected communications chanel”.

1. The origins
[Jelelele}

The goal

Bos| " |ALICE]

Bob wants to send a secret message, m, to Alice over an open chanel
(and Eve is trying to illegitimately discover m and break the system).

From Wikipedia: “Diffie-Hellman key agreement was invented in 1976
... and was the first practical method for establishing a shared secret
over an unprotected communications chanel”.

A third author, Merkle, was also involved in the construction (U.S.
Patent 4.200.770, now expired, describes the algorithms and credits
Diffie, Hellman and Merkle as inventors).

1. The origins
[¢] lele]e}

Reduction to key establishment

@ For simplicity, we assume that m € {0,1}".

1. The origins
[¢] lele]e}

Reduction to key establishment

@ For simplicity, we assume that m € {0,1}".

@ LetSbeasetand H: S — {0,1}" a function (called the key
space and a Hash function, respectively).

1. The origins
[¢] lele]e}

Reduction to key establishment

@ For simplicity, we assume that m € {0,1}".

@ LetSbeasetand H: S — {0,1}" a function (called the key
space and a Hash function, respectively).

@ Suppose Bob and Alice share a secret key, K € S.

1. The origins
[¢] lele]e}

Reduction to key establishment

@ For simplicity, we assume that m € {0,1}".

@ LetSbeasetand H: S — {0,1}" a function (called the key
space and a Hash function, respectively).

@ Suppose Bob and Alice share a secret key, K € S.
@ Encription: Bob encrypts his message m as

E(m) = m+ H(K).

1. The origins
[¢] lele]e}

Reduction to key establishment

@ For simplicity, we assume that m € {0,1}".

@ LetSbeasetand H: S — {0,1}" a function (called the key
space and a Hash function, respectively).

@ Suppose Bob and Alice share a secret key, K € S.
@ Encription: Bob encrypts his message m as

E(m) = m+ H(K).

@ Decryption: Alice decrypts in the same way:

E(m) + H(K) = m+ (H(K) + H(K)) = m.

1. The origins
[¢] lele]e}

Reduction to key establishment

@ For simplicity, we assume that m € {0,1}".

@ LetSbeasetand H: S — {0,1}" a function (called the key
space and a Hash function, respectively).

Suppose Bob and Alice share a secret key, K € S.
Encription: Bob encrypts his message m as

E(m) = m+ H(K).

Decryption: Alice decrypts in the same way:

E(m) + H(K) = m+ (H(K) + H(K)) = m.

Eavesdropper: Eve needs to find H(K), i.e. K.

1. The origins
[¢] lele]e}

Reduction to key establishment

@ For simplicity, we assume that m € {0,1}".

@ LetSbeasetand H: S — {0,1}" a function (called the key
space and a Hash function, respectively).

Suppose Bob and Alice share a secret key, K € S.
Encription: Bob encrypts his message m as

E(m) = m+ H(K).

Decryption: Alice decrypts in the same way:

E(m) + H(K) = m+ (H(K) + H(K)) = m.

Eavesdropper: Eve needs to find H(K), i.e. K.
Expansion factor is 1.

1. The origins
[e]e] lele}

Diffie-Hellman key exchange protocol (1976)

@ Public: p (prime) and g ¢ pZ.

1. The origins
[e]e] lele}

Diffie-Hellman key exchange protocol (1976)

@ Public: p (prime) and g ¢ pZ.

@ Alice: picks a random a € N, and sends g mod p.

1. The origins
[e]e] lele}

Diffie-Hellman key exchange protocol (1976)

@ Public: p (prime) and g ¢ pZ.
@ Alice: picks a random a € N, and sends g mod p.

@ Bob: picks a random b € N, and sends g° mod p.

1. The origins
[e]e] lele}

Diffie-Hellman key exchange protocol (1976)

@ Public: p (prime) and g ¢ pZ.
@ Alice: picks a random a € N, and sends g mod p.
@ Bob: picks a random b € N, and sends g° mod p.

@ Common secret: Alice: (g°)2 = g®® mod p
Bob: (99" = g% mod p.

1. The origins
[e]e] lele}

Diffie-Hellman key exchange protocol (1976)

@ Public: p (prime) and g ¢ pZ.
@ Alice: picks a random a € N, and sends g mod p.
@ Bob: picks a random b € N, and sends g° mod p.

@ Common secret: Alice: (g°)2 = g®® mod p
Bob: (99" = g% mod p.

@ Eve: knows p. g and g2, g° mod p, and needs g° mod p.

1. The origins
[e]e] lele}

Diffie-Hellman key exchange protocol (1976)

@ Public: p (prime) and g ¢ pZ.
@ Alice: picks a random a € N, and sends g mod p.
@ Bob: picks a random b € N, and sends g° mod p.

@ Common secret: Alice: (g°)2 = g®® mod p
Bob: (99" = g% mod p.

@ Eve: knows p. g and g2, g° mod p, and needs g° mod p.

@ The protocol is considered to be secure against eavesdroppers,
if p and g are chosen properly.

1. The origins
[e]e]e] o}

Diffie-Hellman key exchange protocol (s

Eve needs to solve the

@ Diffie-Hellman Problem: “knowing p, g and g%, g mod p,
compute g% mod p”,

1. The origins
[e]e]e] o}

Diffie-Hellman key exchange protocol (s

Eve needs to solve the

@ Diffie-Hellman Problem: “knowing p, g and g%, g mod p,
compute g% mod p”,

or the

@ Discrete Logarithm Problem: “knowing p, g and g mod p,
compute a’,

1. The origins
[e]e]e] o}

Diffie-Hellman key exchange protocol (s

Eve needs to solve the
@ Diffie-Hellman Problem: “knowing p, g and g%, g mod p,
compute g% mod p”,
or the

@ Discrete Logarithm Problem: “knowing p, g and g mod p,
compute a’,

both currently considered to be “difficult" problems (but not known to
be equivalent...).

1. The origins
[e]e]e]e] }

Diffie-Hellman key exchange protocol (s

Brute force search for solving the Discrete Logarithm Problem
requires computing g, 9%, g%, ..., g!9 = 1 (eventually, ill |g|, the
order of g modulo p): this is O(|g|) multiplications.

1. The origins
[e]e]e]e] }

Diffie-Hellman key exchange protocol (s

Brute force search for solving the Discrete Logarithm Problem
requires computing g, 9%, g%, ..., g!9 = 1 (eventually, ill |g|, the
order of g modulo p): this is O(|g|) multiplications.

In practical implementations, |g| is typically about 103, so brute
force attack is computationally infeasible.

1. The origins
[e]e]e]e] }

Diffie-Hellman key exchange protocol (s

Brute force search for solving the Discrete Logarithm Problem
requires computing g, 9%, g%, ..., g!9 = 1 (eventually, ill |g|, the
order of g modulo p): this is O(|g|) multiplications.

In practical implementations, |g| is typically about 103, so brute
force attack is computationally infeasible.

This is not a problem for Alice and Bob because computing
g2 mod p for a particular a is much faster, O(log, a), by the
square-and-multiply method:

1. The origins
[e]e]e]e] }

Diffie-Hellman key exchange protocol (s

Brute force search for solving the Discrete Logarithm Problem
requires computing g, 9%, g%, ..., g!9 = 1 (eventually, ill |g|, the
order of g modulo p): this is O(|g|) multiplications.

In practical implementations, |g| is typically about 103, so brute
force attack is computationally infeasible.

This is not a problem for Alice and Bob because computing
g2 mod p for a particular a is much faster, O(log, a), by the
square-and-multiply method:

g =9"g" g=(((9°%?77(¢°) g

2. Word problem

Outline

e A protocol based on the word problem

2. Word problem
@00

The word problem in groups

Let (x1,...,%, | r1,-.., Im) be a finite presentation of a group G.

2. Word problem
@00

The word problem in groups

Let (x1,...,%, | r1,-.., Im) be a finite presentation of a group G.

@ Word Problem: “given a word w(xq, ..., X,) decide whether
w =, 1 or not (i.e. whether w e< R >>)”.

2. Word problem
@00

The word problem in groups

Let (x1,...,%, | r1,-.., Im) be a finite presentation of a group G.

@ Word Problem: “given a word w(xq, ..., X,) decide whether
w =, 1 or not (i.e. whether w e< R >>)”.

There are finitely presented groups with unsolvable Word Problem.

2. Word problem
@00

The word problem in groups

Let (x1,...,%, | r1,-.., Im) be a finite presentation of a group G.

@ Word Problem: “given a word w(xq, ..., X,) decide whether
w =, 1 or not (i.e. whether w e< R >>)”.

There are finitely presented groups with unsolvable Word Problem.

A set of words X on X is said to have no collision in G if the natural
map ¥ — G s injective.

2. Word problem
oeo

Wagner-Magyarik protocol (19s4)

@ Public: A platform G = (X | R) and two words > = {wp, w; }.

2. Word problem
oeo

Wagner-Magyarik protocol (19s4)

@ Public: A platform G = (X | R) and two words > = {wp, w; }.
@ Private: A set of words S such that
o the Word Problem is “difficult” in G = (X | R),

2. Word problem
oeo

Wagner-Magyarik protocol (19s4)

@ Public: A platform G = (X | R) and two words > = {wp, w; }.
@ Private: A set of words S such that

e the Word Problem is “difficult” in G = (X | R),
e the Word Problem is “easy” in G' = (X, RU S) = G/S,

2. Word problem
oeo

Wagner-Magyarik protocol (19s4)

@ Public: A platform G = (X | R) and two words > = {wp, w; }.
@ Private: A set of words S such that

e the Word Problem is “difficult” in G = (X | R),
e the Word Problem is “easy” in G' = (X, RU S) = G/S,
@ Y has no collision in G’ (and so, in G).

2. Word problem
oeo

Wagner-Magyarik protocol (19s4)

@ Public: A platform G = (X | R) and two words > = {wp, w; }.
@ Private: A set of words S such that

o the Word Problem is “difficult” in G = (X | R),
e the Word Problem is “easy” in G' = (X, RU S) = G/S,
@ Y has no collision in G’ (and so, in G).
@ Bob: encodes each bit b in his message by an arbitrary (and
changing) word w such that w = wp.

2. Word problem
oeo

Wagner-Magyarik protocol (19s4)

@ Public: A platform G = (X | R) and two words > = {wp, w; }.
@ Private: A set of words S such that
o the Word Problem is “difficult” in G = (X | R),
e the Word Problem is “easy” in G' = (X, RU S) = G/S,
@ Y has no collision in G’ (and so, in G).
@ Bob: encodes each bit b in his message by an arbitrary (and
changing) word w such that w = wp.
@ Alice: decodes w by solving the Word Problem in G': decide

whether w =, wo or w =_, wj.

2. Word problem
oeo

Wagner-Magyarik protocol (19s4)

@ Public: A platform G = (X | R) and two words > = {wp, w; }.
@ Private: A set of words S such that

o the Word Problem is “difficult” in G = (X | R),
e the Word Problem is “easy” in G' = (X, RU S) = G/S,
@ Y has no collision in G’ (and so, in G).
@ Bob: encodes each bit b in his message by an arbitrary (and
changing) word w such that w = wp.
@ Alice: decodes w by solving the Word Problem in G': decide
whether w =, wo or w =_, wj.
@ Eve: sees w and needs to decide whether w =_ wp or w =, wy.
This is the Word Problem in G.

2. Word problem
ooe

Wagner-Magyarik protocol (19s4)

@ Public: A platform G = (X | R) and two words > = {wp, w}.
@ Private: A set of words S such that

o the Word Problem is “difficult” in G = (X | R),
e the Word Problem is “easy” in G’ = (X, RU S) = G/S,
@ X has no collision in G’ (and so, in G).
@ Bob: encodes each bit b in his message by an arbitrary (and
changing) word w such that w =, w,.
@ Alice: decodes w by solving the Word Problem in G': decide
whether w =, wp or w =, wj.
@ Eve: sees w and needs to decide whether w =_ wp or w =, wy.
This is the Word CHOICE Problem in G.

2. Word problem
ooe

Wagner-Magyarik protocol (19s4)

@ Public: A platform G = (X | R) and two words > = {wp, w}.
@ Private: A set of words S such that

o the Word Problem is “difficult” in G = (X | R),
e the Word Problem is “easy” in G’ = (X, RU S) = G/S,
@ X has no collision in G’ (and so, in G).
@ Bob: encodes each bit b in his message by an arbitrary (and
changing) word w such that w =, w,.

@ Alice: decodes w by solving the Word Problem in G': decide
whether w =, wp or w =, wj.

@ Eve: sees w and needs to decide whether w =_ wp or w =, wy.
This is the Word CHOICE Problem in G.

@ Or...: find an alternative private key, T, with easy Word Problem
in G/ T, and no collision for X.

3. Conjugacy problem

Outline

Q Protocols based on the conjugacy problem

3. Conjugacy problem
©0000

The conjugacy problem in groups

Let (x1,...,Xn| n,...,rm) be afinite presentation of a group G.

3. Conjugacy problem
©0000

The conjugacy problem in groups

Let (x1,...,Xn| n,...,rm) be afinite presentation of a group G.

@ Conjugacy Problem: “given u, v € G (as words on the x;’s),
decide whether v =, x~"ux for some x € G”.

3. Conjugacy problem
©0000

The conjugacy problem in groups

Let (x1,...,Xn| n,...,rm) be afinite presentation of a group G.

@ Conjugacy Problem: “given u, v € G (as words on the x;’s),
decide whether v =, x~"ux for some x € G”.

Solvable Conjugacy Problem = solvable Word Problem.

3. Conjugacy problem
©0000

The conjugacy problem in groups

Let (x1,...,Xn| n,...,rm) be afinite presentation of a group G.

@ Conjugacy Problem: “given u, v € G (as words on the x;’s),
decide whether v =, x~"ux for some x € G”.

Solvable Conjugacy Problem = solvable Word Problem.

Solvable Conjugacy Problem #— solvable Word Problem.

3. Conjugacy problem
©0000

The conjugacy problem in groups

Let (x1,...,Xn| n,...,rm) be afinite presentation of a group G.

@ Conjugacy Problem: “given u, v € G (as words on the x;’s),
decide whether v =, x~"ux for some x € G”.

Solvable Conjugacy Problem = solvable Word Problem.

Solvable Conjugacy Problem #— solvable Word Problem.

@ Conjugacy Search Problem: “given u, v € G and the information
that u and v are conjugate to each other in G, find an x € G such
that v =, x~'ux”.

3. Conjugacy problem
©0000

The conjugacy problem in groups

Let (x1,...,Xn| n,...,rm) be afinite presentation of a group G.

@ Conjugacy Problem: “given u, v € G (as words on the x;’s),
decide whether v =, x~"ux for some x € G”.

Solvable Conjugacy Problem = solvable Word Problem.

Solvable Conjugacy Problem #— solvable Word Problem.

@ Conjugacy Search Problem: “given u, v € G and the information
that u and v are conjugate to each other in G, find an x € G such
that v =, x~'ux”.

CSP is always solvable (brute force searching over all possible
x € @G), but at which complexity this is a much more delicate question.

3. Conjugacy problem
0®000

The conjugacy problem in groups

@ Multiple Conjugacy Problem: given uy, ... ug, vi,... v € G,
decide whether 3x € G such that v; =, x~"u;x, Vi.

3. Conjugacy problem
0®000

The conjugacy problem in groups

@ Multiple Conjugacy Problem: given uy, ... ug, vi,... v € G,
decide whether 3x € G such that v; =, x~"u;x, Vi.

Solv. Multiple Conjugacy Problem = solv. Conjugacy Problem.

3. Conjugacy problem
0®000

The conjugacy problem in groups

@ Multiple Conjugacy Problem: given uy, ... ug, vi,... v € G,
decide whether 3x € G such that v; =, x~"u;x, Vi.

Solv. Multiple Conjugacy Problem = solv. Conjugacy Problem.

Solv. Multiple Conjugacy Problem +#= solv. Conjugacy Problem.

3. Conjugacy problem
0®000

The conjugacy problem in groups

@ Multiple Conjugacy Problem: given uy, ... ug, vi,... v € G,
decide whether 3x € G such that v; =, x~"u;x, Vi.

Solv. Multiple Conjugacy Problem = solv. Conjugacy Problem.

Solv. Multiple Conjugacy Problem +#= solv. Conjugacy Problem.

@ Restricted Conjugacy Problem: “given u, v and a subgroup
H < G, decide whether v =, x~"ux for some x € H”.

3. Conjugacy problem
0®000

The conjugacy problem in groups

@ Multiple Conjugacy Problem: given uy, ... ug, vi,... v € G,
decide whether 3x € G such that v; =, x~"u;x, Vi.

Solv. Multiple Conjugacy Problem = solv. Conjugacy Problem.

Solv. Multiple Conjugacy Problem +#= solv. Conjugacy Problem.

@ Restricted Conjugacy Problem: “given u, v and a subgroup
H < G, decide whether v =, x~"ux for some x € H”.

We can consider all variations search/non-search, multiple/simple,
restricted/non-restricted.

3. Conjugacy problem
00@00

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

@ Public: G= (X |R), w € G,and A, B C G such that [a, b] = 1
Vae A Vbe B.

3. Conjugacy problem
00@00

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

@ Public: G= (X |R), w € G,and A, B C G such that [a, b] = 1
Vae A Vbe B.

@ Alice: picks a random a ¢ A, and sends a~ ' wa — w?,

3. Conjugacy problem
00@00

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

@ Public: G= (X |R), w € G,and A, B C G such that [a, b] = 1
Vae A Vbe B.

@ Alice: picks a random a ¢ A, and sends a~ ' wa — w?,
@ Bob: picks a random b € B, and sends b~ 'wb = w®.

3. Conjugacy problem
00@00

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

@ Public: G= (X |R), w € G,and A, B C G such that [a, b] = 1
Vae A Vbe B.

@ Alice: picks a random a ¢ A, and sends a~ ' wa — w?,
@ Bob: picks a random b € B, and sends b~ 'wb = w®.

@ Common secret: Alice: a (b~ 'wb)a= wb3,
Bob: b~ '(a 'wa)b= w.

3. Conjugacy problem
00@00

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

@ Public: G= (X |R), w € G,and A, B C G such that [a, b] = 1
Vac A, vbe B.
@ Alice: picks a random a ¢ A, and sends a~ ' wa — w?,
@ Bob: picks a random b € B, and sends b~ 'wb = w®.
@ Common secret: Alice: a '(b 'wb)a= wb?,
Bob: b~ '(a 'wa)b= w.

@ Eve: knows w, w?, w”, and needs wa>.

3. Conjugacy problem
00@00

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

@ Public: G= (X |R), w € G,and A, B C G such that [a, b] = 1
Vac A, vbe B.
@ Alice: picks a random a ¢ A, and sends a~ ' wa — w?,
@ Bob: picks a random b € B, and sends b~ 'wb = w®.
@ Common secret: Alice: a '(b 'wb)a= wb?,
Bob: b~ '(a 'wa)b= w.

@ Eve: knows w, w?, w”, and needs wa>.
This can be done by solving the Conjugacy Search Problem
Restricted to A (or B),

3. Conjugacy problem
00@00

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

@ Public: G= (X |R), w € G,and A, B C G such that [a, b] = 1
Vac A, vbe B.
@ Alice: picks a random a ¢ A, and sends a~ ' wa — w?,
@ Bob: picks a random b € B, and sends b~ 'wb = w®.
@ Common secret: Alice: a '(b 'wb)a= wb?,
Bob: b~ '(a 'wa)b= w.

@ Eve: knows w, w?, w”, and needs wa>.
This can be done by solving the Conjugacy Search Problem
Restricted to A (or B),

... but also solving the following seemingly easier problem:

3. Conjugacy problem
[eele] To)

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

o Decomposition Problem: “knowing w, w’ € G, find a;, a> € A such
that w' = a;way”.

3. Conjugacy problem
[eele] To)

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

o Decomposition Problem: “knowing w, w’ € G, find a;, a> € A such
that w' = a;way”.

Eve knows w, w?, w” and suppose she can compute ay, a, € A
such that w2 = a;wa..

3. Conjugacy problem
[eele] To)

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

o Decomposition Problem: “knowing w, w’ € G, find a;, a> € A such
that w' = a;way”.

Eve knows w, w?, w” and suppose she can compute ay, a, € A
such that w2 = a;wa..

Then, a;w’a, = a(b~"wb)a, = b~"(a;wax)b = b~ 'wab = w,
and she finds the secret.

3. Conjugacy problem
0000e

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:
@ Public: G= (X|R)and w ¢ G.

3. Conjugacy problem
0000e

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

@ Public: G= (X|R)and w ¢ G.

@ Alice: picks a random a; € G, a f.g. subgroup A < Cg(as) and
sends generators A = (a1, ..., ap).

3. Conjugacy problem
0000e

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

@ Public: G= (X|R)and w ¢ G.

@ Alice: picks a random a; € G, a f.g. subgroup A < Cg(as) and
sends generators A = (a1, ..., ap).

@ Bob: picks a random b, € B, a f.g. subgroup B < Cg(b2) and
sends generators B = (81, ..., Bm)-

3. Conjugacy problem
0000e

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

@ Public: G= (X|R)and w ¢ G.
@ Alice: picks a random a; € G, a f.g. subgroup A < Cg(as) and

sends generators A = (a1, ..., ap).
@ Bob: picks a random b, € B, a f.g. subgroup B < Cg(b2) and
sends generators B = (81, ..., Bm)-

@ Alice: picks a random a, € B, and sends a; wa..

3. Conjugacy problem
0000e

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

@ Public: G= (X|R)and w ¢ G.
@ Alice: picks a random a; € G, a f.g. subgroup A < Cg(as) and

sends generators A = (a1, ..., ap).
@ Bob: picks a random b, € B, a f.g. subgroup B < Cg(b2) and
sends generators B = (81, ..., Bm)-

@ Alice: picks a random a, € B, and sends a; wa..
@ Bob: picks a random by € A, and sends by wb..

3. Conjugacy problem
0000e

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:
@ Public: G= (X|R)and w ¢ G.
@ Alice: picks a random a; € G, a f.g. subgroup A < Cg(as) and

sends generators A = (a1, ..., ap).
@ Bob: picks a random b, € B, a f.g. subgroup B < Cg(b2) and
sends generators B = (81, ..., Bm)-

@ Alice: picks a random a, € B, and sends a; wa..
@ Bob: picks a random by € A, and sends by wb..

@ Common secret: Alice: a;(biwby)ap,
Bob: by (81 Waz)bg.

3. Conjugacy problem
0000e

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

@ Public: G= (X|R)and w ¢ G.
@ Alice: picks a random a; € G, a f.g. subgroup A < Cg(as) and

sends generators A = (a1, ..., ap).
@ Bob: picks a random b, € B, a f.g. subgroup B < Cg(b2) and
sends generators B = (81, ..., Bm)-

@ Alice: picks a random a, € B, and sends a; wa..
@ Bob: picks a random by € A, and sends by wb..

@ Common secret: Alice: a;(biwby)ap,
Bob: by (81 Waz)bg.

@ Eve: knows w, a;was, bywbs, and needs a; by waob-.

3. Conjugacy problem
0000e

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

@ Public: G= (X|R)and w ¢ G.
@ Alice: picks a random a; € G, a f.g. subgroup A < Cg(as) and

sends generators A = (a1, ..., ap).
@ Bob: picks a random b, € B, a f.g. subgroup B < Cg(b2) and
sends generators B = (81, ..., Bm)-

@ Alice: picks a random a, € B, and sends a; wa..
@ Bob: picks a random by € A, and sends by wb..
@ Common secret: Alice: a;(biwby)ap,

Bob: by (81 Waz)bg.

@ Eve: knows w, a;was, bywbs, and needs a; by waob-.
This can be done by trying to recover a; and a, from w and
ajswap, and knowing that a, € B, but without any information
where to look for a;.

3. Conjugacy problem
0000e

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

@ Public: G= (X|R)and w ¢ G.
@ Alice: picks a random a; € G, a f.g. subgroup A < Cg(as) and

sends generators A = (a1, ..., ap).
@ Bob: picks a random b, € B, a f.g. subgroup B < Cg(b2) and
sends generators B = (81, ..., Bm)-

@ Alice: picks a random a, € B, and sends a; wa..
@ Bob: picks a random by € A, and sends by wb..
@ Common secret: Alice: a;(biwby)ap,

Bob: by (81 Waz)bg.

@ Eve: knows w, a;was, bywbs, and needs a; by waob-.
This can be done by trying to recover a; and a, from w and
ajswap, and knowing that a, € B, but without any information
where to look for a;.

4. Factorization problem

Outline

e Protocols based on the factorization problem

4. Factorization problem
[Je]ele]

The factorization problem

@ Factorization Problem: “given u € G and A, B < G, decide
whether u =, ab for some ac Aand b € B”.

4. Factorization problem
[Je]ele]

The factorization problem

@ Factorization Problem: “given u € G and A, B < G, decide
whether u =, ab for some ac Aand b € B”.

@ Factorization Search Problem: “given u € G, A, B < G, and the
information that v = ab for some a € Aand b € B, find such a
and b”

4. Factorization problem
[Je]ele]

The factorization problem

@ Factorization Problem: “given u € G and A, B < G, decide
whether u =, ab for some ac Aand b € B”.

@ Factorization Search Problem: “given u € G, A, B < G, and the
information that v = ab for some a € Aand b € B, find such a
and b”

@ Triple Factorization Search Problem: “given u € G, A, B, C < G,
and the information that u = abc for some ac A, b € B and
cc C,findsuch a, band c”

4. Factorization problem
[Je]ele]

The factorization problem

@ Factorization Problem: “given u € G and A, B < G, decide
whether u =, ab for some ac Aand b € B”.

@ Factorization Search Problem: “given u € G, A, B < G, and the
information that v = ab for some a € Aand b € B, find such a
and b”

@ Triple Factorization Search Problem: “given u € G, A, B, C < G,
and the information that u = abc for some ac A, b € B and
cc C,findsuch a, band c”

4. Factorization problem
[e] Jole]

A protocol based on the Factorization Search Problem

@ Public: G= (X |R) and A, B < Gsuch that [a,b] =1 Va € A,
vb e B.

4. Factorization problem
[e] Jole]

A protocol based on the Factorization Search Problem

@ Public: G= (X |R) and A, B < Gsuch that [a,b] =1 Va € A,
vb e B.

@ Alice: picks arandom a; € A, by € B and sends ab;.

4. Factorization problem
[e] Jole]

A protocol based on the Factorization Search Problem

@ Public: G= (X |R) and A, B < Gsuch that [a,b] =1 Va € A,
vb e B.

@ Alice: picks arandom a; € A, by € B and sends ab;.
@ Bob: picks a random a; € A, b, € B and sends a»bs.

4. Factorization problem
[e] Jole]

A protocol based on the Factorization Search Problem

@ Public: G= (X |R) and A, B < Gsuch that [a,b] =1 Va € A,
vb e B.

@ Alice: picks arandom a; € A, by € B and sends ab;.
@ Bob: picks a random a; € A, b, € B and sends a»bs.

@ Common secret: Alice: bi(axbz)ay
Bob: ax(aibi)bs.

4. Factorization problem
[e] Jole]

A protocol based on the Factorization Search Problem

@ Public: G= (X |R) and A, B < Gsuch that [a,b] =1 Va € A,
vb e B.

@ Alice: picks arandom a; € A, by € B and sends ab;.
@ Bob: picks a random a; € A, b, € B and sends a»bs.

@ Common secret: Alice: bi(axb2)a; = asbiboar = axaibibo.
Bob: ax(aiby)be.

4. Factorization problem
[e] Jole]

A protocol based on the Factorization Search Problem

@ Public: G= (X |R) and A, B < Gsuch that [a,b] =1 Va € A,
vb e B.

@ Alice: picks arandom a; € A, by € B and sends ab;.
@ Bob: picks a random a; € A, b, € B and sends a»bs.

@ Common secret: Alice: bi(axb2)a; = asbiboar = axaibibo.
Bob: ax(aiby)be.

@ Eve: knows a;a, and by b», and needs a»a; by bo.

4. Factorization problem
[e] Jole]

A protocol based on the Factorization Search Problem

@ Public: G= (X |R) and A, B < Gsuch that [a,b] =1 Va € A,
vb e B.

@ Alice: picks arandom a; € A, by € B and sends ab;.
@ Bob: picks a random a; € A, b, € B and sends a»bs.

@ Common secret: Alice: bi(axb2)a; = asbiboar = axaibibo.
Bob: ax(aibi)bs.
@ Eve: knows asa, and b by, and needs a»a; by bs.
This can be done by solving the Factorization Search Problem in
A (or B).

4. Factorization problem
[e] Jole]

A protocol based on the Factorization Search Problem

@ Public: G= (X |R) and A, B < Gsuch that [a,b] =1 Va € A,
vb e B.

@ Alice: picks arandom a; € A, by € B and sends ab;.
@ Bob: picks a random a; € A, b, € B and sends a»bs.

@ Common secret: Alice: bi(axb2)a; = asbiboar = axaibibo.
Bob: ax(aiby)be.

@ Eve: knows asa, and b by, and needs a»a; by bs.
This can be done by solving the Factorization Search Problem in
A (or B).

Note that Eve can compute
(a1b1)(aebo) = @arasbibo and (aobo)(a1b1) = azaiboby,

but neither of these products equal the secret if a;a> # a»a; and
by1bs # baby.

4. Factorization problem
[e]e] o]

Kurt’'s protocol (2006)

@ Public: G = <X‘ R>, 10 subgroups Ay, Ao, A3, X1, X5, By, 827 Bg.
Y;. Yo< G such that [AQ, Y1] = [A3, Yg] = [B1,X1] = [BQ,XQ] =1.

4. Factorization problem
[e]e] o]

Kurt’'s protocol (2006)

@ Public: G = <X‘ R>, 10 subgroups Ay, Ao, A3, X1, X5, By, 827 Bg.
Y;. Yo< G such that [AQ, Y1] = [A3, Yg] = [B1,X1] = [BQ,XQ] =1.
@ Alice: picks a random a; € Ay, a» € Az, as € As, X1 € Xy,
X2 € Xo, and sends a;xi, X, 'axx, and x, 'as.

4. Factorization problem
[e]e] o]

Kurt’'s protocol (2006)

@ Public: G = <X‘ R>, 10 subgroups Ay, Ao, A3, X1, X5, By, 827 Bg.
Y;. Yo< G such that [AQ, Y1] = [A3, Yg] = [B1,X1] = [BQ,XQ] =1.

@ Alice: picks a random a; € Ay, a» € Az, as € As, X1 € Xy,
X2 € Xo, and sends a;xi, X, 'axx, and x, 'as.

@ Bob: picks arandom by € By, b € Bo, bz € Bz, y1 € Yy, Yo € Yo,
and sends by yy, ¥, 'boys and y, 'bs.

4. Factorization problem
[e]e] o]

Kurt’'s protocol (2006)

@ Public: G = <X ‘ R>, 10 subgroups Aq, A27 A3, X1, X5, By, Bg., Bg.
Y1, Yo< G such that [AQ, Y1] = [A3, Yg] = [B1,X1] = [BQ,XQ] =1.
@ Alice: picks a random a; € Ay, a» € Az, as € As, X1 € Xy,
X2 € Xo, and sends a;xi, X, 'axx, and x, 'as.
@ Bob: picks arandom by € By, b € Bo, bz € Bz, y1 € Yy, Yo € Yo,
and sends by yy, ¥, 'boys and y, 'bs.
@ Common secret: Alice: ai(biyi)as(y, 'bayz)as(y, 'bs)
Bob: (81 X1)b1 (Xf1 ang)bg(X£1 33)b3.

4. Factorization problem
[e]e] o]

Kurt’'s protocol (2006)

@ Public: G = <X ‘ R>, 10 subgroups Aq, A27 A3, X1, X5, By, Bg., Bg.
Y;. Yo< G such that [AQ, Y1] = [A3, Yg] = [B1,X1] = [BQ,XQ] =1.
@ Alice: picks a random a; € Ay, a» € Az, as € As, X1 € Xy,
X2 € Xo, and sends a;xi, X, 'axx, and x, 'as.
@ Bob: picks arandom by € By, bo € Bo, b3 € B, y1 € Yq, Yo € Yo,
and sends by yy, ¥, 'boys and y, 'bs.
@ Common secret: Alice: ai(biyi)as(y, 'bayz)as(y, 'bs)
Bob: (81 X1)b1 (Xf1 ang)bg(X£1 33)b3.
@ Eve: knows a;xi, X, '@ xz, X, 'as, biyi, ¥, 'boys and y, 'bs, and
needs aibia>boasbs.

4. Factorization problem
[e]e] o]

Kurt’'s protocol (2006)

@ Public: G = <X ‘ R>, 10 subgroups Aq, A27 A3, X1, X5, By, Bg., Bg.
Y;. Yo< G such that [AQ, Y1] = [A3, Yg] = [B1,X1] = [BQ,XQ] =1.
@ Alice: picks a random a; € Ay, a» € Az, as € As, X1 € Xy,
X2 € Xo, and sends a;xi, X, 'axx, and x, 'as.
@ Bob: picks arandom by € By, bo € Bo, b3 € B, y1 € Yq, Yo € Yo,
and sends by yy, ¥, 'boys and y, 'bs.
@ Common secret: Alice: ai(biyi)as(y, 'bayz)as(y, 'bs)
Bob: (a1X1)b1(X171ang)bg(X£183)b3.
@ Eve: knows a;xi, X, '@ xz, X, 'as, biyi, ¥, 'boys and y, 'bs, and
needs a;bya>boasbs.
This can be done by recovering a;, a», as from ajazas =
= (a1x)(x; 'a:x2)(x, 'as), i.e. solving the Triple Factorization
Search Problem.

4. Factorization problem
[e]e] o]

Kurt’'s protocol (2006)

@ Public: G = <X ‘ R>, 10 subgroups Aq, A27 A3, X1, X5, By, Bg., Bg.
Y;. Yo< G such that [AQ, Y1] = [A3, Yg] = [B1,X1] = [BQ,XQ] =1.
@ Alice: picks a random a; € Ay, a» € Az, as € As, X1 € Xy,
X2 € Xo, and sends a;xi, X, 'axx, and x, 'as.
@ Bob: picks arandom by € By, bo € Bo, b3 € B, y1 € Yq, Yo € Yo,
and sends by yy, ¥, 'boys and y, 'bs.
@ Common secret: Alice: ai(biyi)as(y, 'bayz)as(y, 'bs)
Bob: (a1X1)b1(X171ang)bg(X£183)b3.
@ Eve: knows a;xi, X, '@ xz, X, 'as, biyi, ¥, 'boys and y, 'bs, and
needs a;bya>boasbs.
This can be done by recovering a;, a», as from ajazas =
= (a1x)(x; 'a:x2)(x, 'as), i.e. solving the Triple Factorization
Search Problem.

4. Factorization problem
[e]e]e]]

Stickel’s protocol (2005)

@ Public: A finite group G, w € G, and a. b € G with ab # ba (of
order N and M, respectively).

4. Factorization problem
[e]e]e]]

Stickel’s protocol (2005)

@ Public: A finite group G, w € G, and a. b € G with ab # ba (of
order N and M, respectively).

@ Alice: picks arandom 0 < n< Nand 0 < m < M, and sends
a'wbm,

4. Factorization problem
[e]e]e]]

Stickel’s protocol (2005)

@ Public: A finite group G, w € G, and a. b € G with ab # ba (of
order N and M, respectively).

@ Alice: picks arandom 0 < n< Nand 0 < m < M, and sends
a'wbm.

@ Bob: picks arandom 0 < " < Nand 0 < m’ < M, and sends
a’wb™ .

4. Factorization problem
[e]e]e]]

Stickel’s protocol (2005)

@ Public: A finite group G, w € G, and a. b € G with ab # ba (of
order N and M, respectively).

@ Alice: picks arandom 0 < n< Nand 0 < m < M, and sends
a'wb™.
@ Bob: picks arandom 0 < " < Nand 0 < m’ < M, and sends
a” wb™ .
@ Common secret: Alice: a"(a” wb™)b™ = a"" wpm+™
Bob: a"(a"wb™)b™ = a™" whmtm

4. Factorization problem
[e]e]e]]

Stickel’s protocol (2005)

@ Public: A finite group G, w € G, and a. b € G with ab # ba (of
order N and M, respectively).

@ Alice: picks arandom 0 < n< Nand 0 < m < M, and sends
a'wb™.
@ Bob: picks arandom 0 < " < Nand 0 < m’ < M, and sends
a” wb™ .
@ Common secret: Alice: a"(a” wb™)b™ = a"" wpm+™
Bob: a"(a"wb™)b™ = a™" whmtm

@ Eve: knows a, b, a’'wb™ and a” wb™', and needs a"" wbm+m .

4. Factorization problem
[e]e]e]]

Stickel’s protocol (2005)

@ Public: A finite group G, w € G, and a. b € G with ab # ba (of
order N and M, respectively).

@ Alice: picks arandom 0 < n< Nand 0 < m < M, and sends
a'wbm,
@ Bob: picks a random 0 < n < Nand0 < m < M, and sends
a” wbm.
@ Common secret: Alice: a"(a” wb™)b™ = a"" wpm+™
Bob: a"(a"wb™)b™ = a™" whmtm
@ Eve: knows a, b, a’wb™ and 2" wb™', and needs a"t" wb™ "

This can be done by solving a variation of the Discrete Logarithm
Problem (in G).

4. Factorization problem
[e]e]e]]

Stickel’s protocol (2005)

@ Public: A finite group G, w € G, and a. b € G with ab # ba (of
order N and M, respectively).

@ Alice: picks arandom 0 < n< Nand 0 < m < M, and sends
a'wbm,
@ Bob: picks a random 0 < n < Nand0 < m < M, and sends
a” wbm.
@ Common secret: Alice: a"(a” wb™)b™ = a"" wpm+™
Bob: a"(a"wb™)b™ = a™" whmtm
@ Eve: knows a, b, a’wb™ and 2" wb™', and needs a"t" wb™ "

This can be done by solving a variation of the Discrete Logarithm
Problem (in G).

Or... finding alternative x, y € G such that xa = ax, yb = by and
xwy = a'wb™. Then,

x(a" wb™)y = a" xwyb™ = a" (a"wb™)b™ = a"t" wh™

5. Anshel-Anshel-Goldfeld protocol

Outline

© Anshel-Anshel-Goldfeld protocol

5. Anshel-Anshel-Goldfeld protocol
[I}

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without
using any commuting subgroups).

5. Anshel-Anshel-Goldfeld protocol
[I}

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without
using any commuting subgroups).

@ Public: A group G = (X | R) and elements a, ..., am € G,
b‘] bn S G

5. Anshel-Anshel-Goldfeld protocol
[I}

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without
using any commuting subgroups).

@ Public: A group G = (X | R) and elements a, ..., am € G,
b‘] bn S G

@ Alice: picks a word x = x(ai,...,am), and sends b}, ..., b¥.

5. Anshel-Anshel-Goldfeld protocol
[I}

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without
using any commuting subgroups).
@ Public: A group G = (X | R) and elements a, ..., am € G,
b‘] bn S G
@ Alice: picks a word x = x(ai,...,am), and sends b}, ..., b¥.
@ Bob: picks aword y = y(b,...,b,), and sends &, ..., a),.

5. Anshel-Anshel-Goldfeld protocol
[I}

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without
using any commuting subgroups).

@ Public: A group G = (X | R) and elements a, ..., am € G,

b‘] bn S G
@ Alice: picks a word x = x(ai,...,am), and sends b}, ..., b¥.
@ Bob: picks aword y = y(b,...,b,), and sends &, ..., a),.

@ Common secret:
Alice: x(a],.... an)=x" =y xy, and x~"(y~'xy) = [x, y]
Bob: y(bf,....bf) =y =x"Tyx, and (x 'yx)"'y = [x,y].

5. Anshel-Anshel-Goldfeld protocol
[I}

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without
using any commuting subgroups).

@ Public: A group G = (X | R) and elements a, ..., am € G,

b1 bn S G
@ Alice: picks a word x = x(ai,...,am), and sends b}..... b}.
@ Bob: picks aword y = y(b,...,b,), and sends &, ..., a),.

@ Common secret:
Alice: x(a],.... an)=x" =y xy, and x~"(y~'xy) = [x, y]
Bob: y(b}.....by) =y*=x"Tyx, and (x 'yx)"'y = [x,y].

@ Eve: knows a;.....am, by, bn, &, ..., am, by, ..., bX and
needs [x, y].

5. Anshel-Anshel-Goldfeld protocol
[I}

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without
using any commuting subgroups).

@ Public: A group G = (X | R) and elements a, ..., am € G,

b1 bn S G
@ Alice: picks a word x = x(ai,...,am), and sends b}..... b}.
@ Bob: picks aword y = y(b,...,b,), and sends &, ..., a),.

@ Common secret:
Alice: x(a],.... an)=x" =y xy, and x~"(y~'xy) = [x, y]
Bob: y(b}.....by) =y*=x"Tyx, and (x 'yx)"'y = [x,y].

@ Eve: knows a;.....am, by, bn, &, ..., am, by, ..., bX and
needs [x, y].

This can be done by solving the Multiple Restricted Search
Conjugacy Problem.

5. Anshel-Anshel-Goldfeld protocol
[I}

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without
using any commuting subgroups).

@ Public: A group G = (X | R) and elements a, ..., am € G,

b1 bn S G
@ Alice: picks a word x = x(ai,...,am), and sends b}..... b}.
@ Bob: picks aword y = y(b,...,b,), and sends &, ..., a),.

@ Common secret:
Alice: x(a],.... an)=x" =y xy, and x~"(y~'xy) = [x, y]
Bob: y(bf,....bf) =y =x"Tyx, and (x 'yx)"'y = [x,y].
@ Eve: knows a;.....am, by, bn, &, ..., am, by, ..., bX and
needs [x, y].
This can be done by solving the Multiple Restricted Search
Conjugacy Problem.

But there are subtleties here...

5. Anshel-Anshel-Goldfeld protocol
oe

Anshel-Anshel-Goldfeld protocol (1999)

@ The element x conjugating by, .. ., by into bf, ..., by need not be
unique.

5. Anshel-Anshel-Goldfeld protocol
oe

Anshel-Anshel-Goldfeld protocol (1999)

@ The element x conjugating by, .. ., by into bf, ..., by need not be
unique.
@ After solving the Multiple Search Conjugacy Problem, Eve will
find x' =cpx where ¢, € Cg(by)N---N Cg(bn),
"=cyy Wwherec, € Cglai)N---NCglam).

5. Anshel-Anshel-Goldfeld protocol
oe

Anshel-Anshel-Goldfeld protocol (1999)

@ The element x conjugating by, .. ., by into bf, ..., by need not be
unique.

@ After solving the Multiple Search Conjugacy Problem, Eve will
find x' =cpx where ¢, € Cg(by)N---N Cg(bn),
"=cyy Wwherec, € Cglai)N---NCglam).

@ Now, [X,y']=[x.y] & c,commutes with c,:

X,y =(x""ey)y ea (ewx)(cay) = X'y e, Tea eneaxy.

5. Anshel-Anshel-Goldfeld protocol
oe

Anshel-Anshel-Goldfeld protocol (1999)

@ The element x conjugating by, .. ., by into bf, ..., by need not be
unique.

@ After solving the Multiple Search Conjugacy Problem, Eve will
find x' =cpx where ¢, € Cg(by)N---N Cg(bn),
y' =cay wherecs;e Cg(ar)N---nN Cglam).

@ Now, [X,y']=[x.y] & c,commutes with c,:

X,y =(x""ey)y ea (ewx)(cay) = X'y e, Tea eneaxy.

@ The only visible way to ensure this is to have x’ € A(so ¢, € A
and [ca,) = 1), 0ry’ € B.

5. Anshel-Anshel-Goldfeld protocol
oe

Anshel-Anshel-Goldfeld protocol (1999)

@ The element x conjugating by, .. ., by into bf, ..., by need not be
unique.

@ After solving the Multiple Search Conjugacy Problem, Eve will
find x' =cpx where ¢, € Cg(by)N---N Cg(bn),
y' =cay wherecs;e Cg(ar)N---nN Cglam).
@ Now, [x,y']=[x,y] & c5commutes with cy:

X,y =(x""ey)y ea (ewx)(cay) = X'y e, Tea eneaxy.

@ The only visible way to ensure this is to have x’ € A(so ¢, € A
and [ca,) = 1), 0ry’ € B.

@ Hence, the (unrestricted) Multiple Search Conjugacy Problem
does not seem to be enough in order to break the system.

6. Authentication protocols

Outline

e Some authentication protocols

6. Authentication protocols
©00000000

Authentication protocols

@ These are protocols to ensure that somebody is really who is
claiming to be.

6. Authentication protocols
©00000000

Authentication protocols

@ These are protocols to ensure that somebody is really who is
claiming to be.

@ General setting: Every player has a public name, and a secret
key. When | call somebody by his name, he must provide me a
proof that he knows the corresponding secret key (so, he is who
is supposed to be), but without revealing any information about
the key itself.

6. Authentication protocols
©00000000

Authentication protocols

@ These are protocols to ensure that somebody is really who is
claiming to be.

@ General setting: Every player has a public name, and a secret
key. When | call somebody by his name, he must provide me a
proof that he knows the corresponding secret key (so, he is who
is supposed to be), but without revealing any information about
the key itself.

@ Many key establishment protocols can be modified to become
authentication protocols.

6. Authentication protocols
0®0000000

Diffie-Hellman authentication protocol

@ Public: p (prime) and g ¢ pZ.

6. Authentication protocols
0®0000000

Diffie-Hellman authentication protocol

@ Public: p (prime) and g ¢ pZ.
@ Every player has a secret key a € N, and public name g# mod p.

6. Authentication protocols
0®0000000

Diffie-Hellman authentication protocol

@ Public: p (prime) and g ¢ pZ.
@ Every player has a secret key a € N, and public name g# mod p.

@ Bob, the verifier, wants to be sure that Alice (say, Ms.
“g? mod p”), the prover, is who is supposed to be.

6. Authentication protocols
0®0000000

Diffie-Hellman authentication protocol

@ Public: p (prime) and g ¢ pZ.
@ Every player has a secret key a € N, and public name g# mod p.

@ Bob, the verifier, wants to be sure that Alice (say, Ms.
“g? mod p”), the prover, is who is supposed to be.

@ Bob: picks a random b € N, and sends g° mod p (a challenge).

6. Authentication protocols
0®0000000

Diffie-Hellman authentication protocol

@ Public: p (prime) and g ¢ pZ.
@ Every player has a secret key a € N, and public name g# mod p.

@ Bob, the verifier, wants to be sure that Alice (say, Ms.
“g? mod p”), the prover, is who is supposed to be.

@ Bob: picks a random b € N, and sends g° mod p (a challenge).
@ Alice: sends (g”)? mod p.

6. Authentication protocols
0®0000000

Diffie-Hellman authentication protocol

Public: p (prime) and g ¢ pZ.
Every player has a secret key a € N, and public name g mod p.

Bob, the verifier, wants to be sure that Alice (say, Ms.
“g? mod p”), the prover, is who is supposed to be.

Bob: picks a random b € N, and sends g” mod p (a challenge).
Alice: sends (g”)? mod p.
Bob: verifies whether (9°)? = (97)® mod p.

6. Authentication protocols
0®0000000

Diffie-Hellman authentication protocol

Public: p (prime) and g ¢ pZ.
Every player has a secret key a € N, and public name g mod p.

Bob, the verifier, wants to be sure that Alice (say, Ms.
“g? mod p”), the prover, is who is supposed to be.

Bob: picks a random b € N, and sends g” mod p (a challenge).
Alice: sends (g”)? mod p.
Bob: verifies whether (9°)? = (97)® mod p.

Eve: knows p, g and g mod p, and needs a to be able to
impersonate Alice.

6. Authentication protocols
0®0000000

Diffie-Hellman authentication protocol

Public: p (prime) and g ¢ pZ.
Every player has a secret key a € N, and public name g mod p.

Bob, the verifier, wants to be sure that Alice (say, Ms.
“g? mod p”), the prover, is who is supposed to be.

Bob: picks a random b € N, and sends g” mod p (a challenge).
Alice: sends (g”)? mod p.
Bob: verifies whether (9°)? = (97)® mod p.

Eve: knows p, g and g mod p, and needs a to be able to
impersonate Alice. This is the Discrete Logarithm Problem.

6. Authentication protocols
00@000000

Diffie-Hellman-like authentication protocol

@ Public: G= (X|R) and A, B C G suchthat[a,b] =1Vae A,
Vb € B.

6. Authentication protocols
00@000000

Diffie-Hellman-like authentication protocol

@ Public: G= (X|R) and A, B C G suchthat[a,b] =1Vae A,
Vb € B.

@ Every player has a secret key a € A, and public name (u, u9),
where u € Gis arbitrary (and u? = a~'ua).

6. Authentication protocols
00@000000

Diffie-Hellman-like authentication protocol

@ Public: G= (X|R) and A, B C G suchthat[a,b] =1Vae A,
Vb € B.

@ Every player has a secret key a € A, and public name (u, u9),
where u € Gis arbitrary (and u? = a~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u?)”) is who is
supposed to be.

6. Authentication protocols
00@000000

Diffie-Hellman-like authentication protocol

@ Public: G= (X|R) and A, B C G suchthat[a,b] =1Vae A,
Vb € B.

@ Every player has a secret key a € A, and public name (u, u9),
where u € Gis arbitrary (and u? = a~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u?)”) is who is
supposed to be.

@ Bob: picks a random b € B, and sends u” = b~'ub.

6. Authentication protocols
00@000000

Diffie-Hellman-like authentication protocol

@ Public: G= (X|R) and A, B C G suchthat[a,b] =1Vae A,
Vb € B.

@ Every player has a secret key a € A, and public name (u, u9),
where u € Gis arbitrary (and u? = a~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u?)”) is who is
supposed to be.

@ Bob: picks a random b € B, and sends u” = b~'ub.
@ Alice: sends (u”)? = uba.

6. Authentication protocols
00@000000

Diffie-Hellman-like authentication protocol

@ Public: G= (X|R) and A, B C G suchthat[a,b] =1Vae A,
Vb € B.

@ Every player has a secret key a € A, and public name (u, u9),
where u € Gis arbitrary (and u? = a~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u?)”) is who is
supposed to be.

@ Bob: picks a random b € B, and sends u” = b~'ub.
@ Alice: sends (u”)? = uba.
@ Bob: verifies whether v"% = (u%)®.

6. Authentication protocols
00@000000

Diffie-Hellman-like authentication protocol

@ Public: G= (X|R) and A, B C G suchthat[a,b] =1Vae A,
Vb € B.

@ Every player has a secret key a € A, and public name (u, u9),
where u € Gis arbitrary (and u? = a~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u?)”) is who is
supposed to be.

@ Bob: picks a random b € B, and sends u” = b~'ub.
@ Alice: sends (u”)? = uba.
@ Bob: verifies whether v"% = (u%)®.

@ Eve: knows v and v4, and needs a to be able to authenticate as
Alice to Bob.

6. Authentication protocols
00@000000

Diffie-Hellman-like authentication protocol

@ Public: G= (X|R) and A, B C G suchthat[a,b] =1Vae A,
Vb € B.

@ Every player has a secret key a € A, and public name (u, u9),
where u € Gis arbitrary (and u? = a~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u?)”) is who is
supposed to be.

@ Bob: picks a random b € B, and sends u” = b~'ub.
@ Alice: sends (u”)? = uba.
@ Bob: verifies whether v"% = (u%)®.

@ Eve: knows v and v4, and needs a to be able to authenticate as
Alice to Bob. This is the Discrete Logarithm Problem.

6. Authentication protocols
000@00000

Sibert-Dehornoy-Girault authentication protocol (2006)

@ Public: G = (X | R) (and no commuting subgroups!).

6. Authentication protocols
000@00000

Sibert-Dehornoy-Girault authentication protocol (2006)

@ Public: G = (X | R) (and no commuting subgroups!).

@ Every player has a secret key a € A, and public name (u, u9),
where u € Gis arbitrary (and u? = a~'ua).

6. Authentication protocols
000@00000

Sibert-Dehornoy-Girault authentication protocol (2006)

@ Public: G = (X | R) (and no commuting subgroups!).
@ Every player has a secret key a € A, and public name (u, u9),
where u € Gis arbitrary (and u? = a~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u%)”) is who is
supposed to be.

6. Authentication protocols
000@00000

Sibert-Dehornoy-Girault authentication protocol (2006)

@ Public: G = (X | R) (and no commuting subgroups!).

@ Every player has a secret key a € A, and public name (u, u9),
where u € Gis arbitrary (and u? = a~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u%)”) is who is
supposed to be.

First (wrong) attempt:

@ Alice: picks a random b € B, and sends x = b~'(v?)b, and
y=>b.

6. Authentication protocols
000@00000

Sibert-Dehornoy-Girault authentication protocol (2006)

@ Public: G = (X | R) (and no commuting subgroups!).

@ Every player has a secret key a € A, and public name (u, u9),
where u € Gis arbitrary (and u? = a~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u%)”) is who is
supposed to be.

First (wrong) attempt:

@ Alice: picks a random b € B, and sends x = b~'(v?)b, and
y=>b.

@ Bob: verifies whether y =" - 7. y = x.

6. Authentication protocols
000@00000

Sibert-Dehornoy-Girault authentication protocol (2006)

@ Public: G = (X | R) (and no commuting subgroups!).

@ Every player has a secret key a € A, and public name (u, u9),
where u € Gis arbitrary (and u? = a~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u%)”) is who is
supposed to be.

First (wrong) attempt:

@ Alice: picks a random b € B, and sends x = b~'(v?)b, and
y=>b.

@ Bob: verifies whether y =" - 7. y = x.

@ Eve: can easily impersonate Alice, by acting in the same way (a
plays no role).

6. Authentication protocols
000080000

Sibert-Dehornoy-Girault authentication protocol (2006)

@ Public: G = (X | R) (and no commuting subgroups!).

@ Every player has a secret key a € A, and public name (u, u?),
where u € Gis arbitrary (and u? = a~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u?)”) is who is
supposed to be.

Second (wrong) attempt:

@ Alice: picks a random b € B, and sends x = b~'(v?)b, and
z = ab.

6. Authentication protocols
000080000

Sibert-Dehornoy-Girault authentication protocol (2006)

@ Public: G = (X | R) (and no commuting subgroups!).

@ Every player has a secret key a € A, and public name (u, u?),
where u € Gis arbitrary (and u? = a~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u?)”) is who is
supposed to be.

Second (wrong) attempt:

@ Alice: picks a random b € B, and sends x = b~'(v?)b, and
z = ab.

@ Bob: verifies whether z—1 - v - z = x.

6. Authentication protocols
000080000

Sibert-Dehornoy-Girault authentication protocol (2006)

@ Public: G = (X | R) (and no commuting subgroups!).

@ Every player has a secret key a € A, and public name (u, u?),
where u € Gis arbitrary (and u? = a~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u?)”) is who is
supposed to be.

Second (wrong) attempt:

@ Alice: picks a random b € B, and sends x = b~'(v?)b, and
z = ab.

@ Bob: verifies whether z—1 - v - z = x.

@ Eve: can easily impersonate Alice: choosing b € B and sending
x = b~ 'ub and z = b will cheat Bob.

6. Authentication protocols
000008000

Sibert-Dehornoy-Girault authentication protocol (2006)

But combining both, it works:

@ Alice: picks a random b € B, and sends x = b~ '(u?)b
(the commitment).

6. Authentication protocols
000008000

Sibert-Dehornoy-Girault authentication protocol (2006)

But combining both, it works:

@ Alice: picks a random b € B, and sends x = b~ '(u?)b
(the commitment).

@ Bob: picks and sends a random bit « = 0, 1.

6. Authentication protocols
000008000

Sibert-Dehornoy-Girault authentication protocol (2006)

But combining both, it works:

@ Alice: picks a random b € B, and sends x = b~ '(u?)b
(the commitment).

@ Bob: picks and sends a random bit « = 0, 1.
@ Alice:sends y =bifa=0and z=abifa = 1.

6. Authentication protocols
000008000

Sibert-Dehornoy-Girault authentication protocol (2006)

But combining both, it works:

@ Alice: picks a random b € B, and sends x = b~ '(u?)b
(the commitment).

@ Bob: picks and sends a random bit « = 0, 1.
@ Alice:sends y =bifa=0and z=abifa = 1.

@ Bob: verifies whether y~' - 17 - y = x (if « = 0) or whether
7w z=x(ifa=1).

6. Authentication protocols
000008000

Sibert-Dehornoy-Girault authentication protocol (2006)

But combining both, it works:

@ Alice: picks a random b € B, and sends x = b~ '(u?)b
(the commitment).

@ Bob: picks and sends a random bit « = 0, 1.
@ Alice:sends y =bifa=0and z=abifa = 1.

@ Bob: verifies whether y~' - 17 - y = x (if « = 0) or whether
7w z=x(ifa=1).

@ Repeat these last three steps, k times.

6. Authentication protocols
000008000

Sibert-Dehornoy-Girault authentication protocol (2006)

But combining both, it works:

@ Alice: picks a random b € B, and sends x = b~ '(u?)b
(the commitment).

@ Bob: picks and sends a random bit « = 0, 1.

@ Alice:sends y =bifa=0andz=abifa=1.

@ Bob: verifies whether y~' - 17 - y = x (if « = 0) or whether
7w z=x(ifa=1).

@ Repeat these last three steps, k times.

@ Eve: has to send the commitment before knowing the future
values of «; so, acting like before, she only has probability 217 to
succeed.

6. Authentication protocols
000008000

Sibert-Dehornoy-Girault authentication protocol (2006)

But combining both, it works:

@ Alice: picks a random b € B, and sends x = b~ '(u?)b
(the commitment).

@ Bob: picks and sends a random bit « = 0, 1.

@ Alice:sends y =bifa=0andz=abifa=1.

@ Bob: verifies whether y~' - 17 - y = x (if « = 0) or whether
7w z=x(ifa=1).

@ Repeat these last three steps, k times.

@ Eve: has to send the commitment before knowing the future
values of «; so, acting like before, she only has probability 217 to
succeed.

@ Eve’s alternative is finding a from v and v, i.e. solving the
Conjugacy Search Problem.

6. Authentication protocols
000000@00

The Twisted Conjugacy Problem

One can use the same idea, but replacing the Conjugacy Search
Problem to the harder Twisted Conjugacy Search Problem.

@ Twisted Conjugacy Problem: “given u,v € Gand ¢: G — G,
decide whether v =, (xp)~"ux for some x € G”.

6. Authentication protocols
000000@00

The Twisted Conjugacy Problem

One can use the same idea, but replacing the Conjugacy Search
Problem to the harder Twisted Conjugacy Search Problem.

@ Twisted Conjugacy Problem: “given u,v € Gand ¢: G — G,
decide whether v =, (xp)~"ux for some x € G”.

Solv. Twisted Conjugacy Problem = solv. Conjugacy Problem.

6. Authentication protocols
000000@00

The Twisted Conjugacy Problem

One can use the same idea, but replacing the Conjugacy Search
Problem to the harder Twisted Conjugacy Search Problem.

@ Twisted Conjugacy Problem: “given u,v € Gand ¢: G — G,
decide whether v =, (xp)~"ux for some x € G”.

Solv. Twisted Conjugacy Problem = solv. Conjugacy Problem.

Solv. Twisted Conjugacy Problem <= solv. Conjugacy Problem.

6. Authentication protocols
000000@00

The Twisted Conjugacy Problem

One can use the same idea, but replacing the Conjugacy Search
Problem to the harder Twisted Conjugacy Search Problem.

@ Twisted Conjugacy Problem: “given u,v € Gand ¢: G — G,
decide whether v =, (xp)~"ux for some x € G”.

Solv. Twisted Conjugacy Problem = solv. Conjugacy Problem.

Solv. Twisted Conjugacy Problem <= solv. Conjugacy Problem.

@ Twisted Conjugacy Search Problem: “given u,v € G, ¢: G — G,
and the information that v and v are p-twisted conjugated to
each other in G, find an x € G such that v = (x¢)~"ux".

6. Authentication protocols
000000@00

The Twisted Conjugacy Problem

One can use the same idea, but replacing the Conjugacy Search
Problem to the harder Twisted Conjugacy Search Problem.

@ Twisted Conjugacy Problem: “given u,v € Gand ¢: G — G,
decide whether v =, (xp)~"ux for some x € G”.

Solv. Twisted Conjugacy Problem = solv. Conjugacy Problem.

Solv. Twisted Conjugacy Problem <= solv. Conjugacy Problem.

@ Twisted Conjugacy Search Problem: “given u,v € G, ¢: G — G,
and the information that v and v are p-twisted conjugated to
each other in G, find an x € G such that v = (x¢)~"ux".

TCSP is always solvable (brute force searching over all possible
x € @), but at which complexity this is a much more delicate question.

6. Authentication protocols
000000000

Shpilrain-Ushakov authentication protocol (200s)

@ Public: G = (X|R) and ¢: G — G, an endomorphism.

6. Authentication protocols
000000000

Shpilrain-Ushakov authentication protocol (200s)

@ Public: G = (X|R) and ¢: G — G, an endomorphism.
@ Every player has a secret key a € A, and public name (u, u?),
where u € Gis arbitrary (and u? = (ap)~'ua).

6. Authentication protocols
000000000

Shpilrain-Ushakov authentication protocol (200s)

@ Public: G = (X|R) and ¢: G — G, an endomorphism.

@ Every player has a secret key a € A, and public name (u, u?),
where u € Gis arbitrary (and v = (ap)~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u)”) is who is
supposed to be.

6. Authentication protocols
000000000

Shpilrain-Ushakov authentication protocol (200s)

@ Public: G = (X|R) and ¢: G — G, an endomorphism.

@ Every player has a secret key a € A, and public name (u, u?),
where u € Gis arbitrary (and v = (ap)~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u)”) is who is
supposed to be.

@ Alice: picks a random b € B, and sends the commitment
x = (bp)~'(u?)b = (bp)~"(ap)~" uab = ((ab)y) " u(ab).

6. Authentication protocols
000000000

Shpilrain-Ushakov authentication protocol (200s)

@ Public: G = (X|R) and ¢: G — G, an endomorphism.

@ Every player has a secret key a € A, and public name (u, u?),
where u € Gis arbitrary (and v = (ap)~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u)”) is who is
supposed to be.

@ Alice: picks a random b € B, and sends the commitment
x = (bp)~'(u?")b = (bp)~"(ap)~" uab = ((ab)y) " u(ab).

@ Bob: picks and sends a random bit o« = 0, 1.

6. Authentication protocols
000000000

Shpilrain-Ushakov authentication protocol (200s)

@ Public: G = (X|R) and ¢: G — G, an endomorphism.

@ Every player has a secret key a € A, and public name (u, u?),
where u € Gis arbitrary (and v = (ap)~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u)”) is who is
supposed to be.

@ Alice: picks a random b € B, and sends the commitment
x = (bp)~'(u?")b = (bp)~"(ap)~" uab = ((ab)y) " u(ab).

@ Bob: picks and sends a random bit o« = 0, 1.

@ Alice:sends y =bifa=0,andz=abif a = 1.

6. Authentication protocols
000000000

Shpilrain-Ushakov authentication protocol (200s)

@ Public: G = (X|R) and ¢: G — G, an endomorphism.

@ Every player has a secret key a € A, and public name (u, u?),
where u € Gis arbitrary (and v = (ap)~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u)”) is who is
supposed to be.

@ Alice: picks a random b € B, and sends the commitment
x = (bp)~'(u?)b = (bp)~(ap)~"uab = ((ab)y)~"u(ab).

@ Bob: picks and sends a random bit o« = 0, 1.

@ Alice:sends y =bifa=0,andz=abif a = 1.

@ Bob: verifies whether (y») " - u% - y = x (if « = 0) or whether
(zp) " u-z=x(fa=1).

6. Authentication protocols
000000000

Shpilrain-Ushakov authentication protocol (200s)

@ Public: G = (X|R) and ¢: G — G, an endomorphism.

@ Every player has a secret key a € A, and public name (u, u?),
where u € Gis arbitrary (and v = (ap)~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u)”) is who is
supposed to be.

@ Alice: picks a random b € B, and sends the commitment
x = (bp)~'(u?)b = (bp)~(ap)~"uab = ((ab)y)~"u(ab).

@ Bob: picks and sends a random bit o« = 0, 1.

@ Alice:sends y =bifa=0,andz=abif a = 1.

@ Bob: verifies whether (y») " - u% - y = x (if « = 0) or whether
(zp) " u-z=x(fa=1).

@ Repeat these last three steps, k times.

6. Authentication protocols
000000000

Shpilrain-Ushakov authentication protocol (200s)

@ Public: G = (X|R) and ¢: G — G, an endomorphism.

@ Every player has a secret key a € A, and public name (u, u?),
where u € Gis arbitrary (and v = (ap)~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u)”) is who is
supposed to be.

@ Alice: picks a random b € B, and sends the commitment
x = (bp)~'(u?)b = (bp)~(ap)~"uab = ((ab)y)~"u(ab).

@ Bob: picks and sends a random bit o« = 0, 1.

@ Alice:sends y =bifa=0,andz=abif a = 1.

@ Bob: verifies whether (y») " - u% - y = x (if « = 0) or whether
(zp) " u-z=x(fa=1).

@ Repeat these last three steps, k times.

@ Eve: has to send the commitment before knowing the future
values of «; so, acting like before, she only has probability 2‘7 to
succeed.

6. Authentication protocols
000000000

Shpilrain-Ushakov authentication protocol (200s)

@ Public: G = (X|R) and ¢: G — G, an endomorphism.

@ Every player has a secret key a € A, and public name (u, u?),
where u € Gis arbitrary (and v = (ap)~'ua).

@ Bob wants to be sure that Alice (say, Ms. “(u, u)”) is who is
supposed to be.

@ Alice: picks a random b € B, and sends the commitment
x = (bp)~'(u?)b = (bp)~(ap)~"uab = ((ab)y)~"u(ab).

@ Bob: picks and sends a random bit « = 0, 1.

@ Alice:sends y =bifa=0,andz=abif a = 1.

@ Bob: verifies whether (y») " - u% - y = x (if « = 0) or whether
(zp) " u-z=x(fa=1).

@ Repeat these last three steps, k times.

@ Eve: has to send the commitment before knowing the future
values of «; so, acting like before, she only has probability 2‘7 to
succeed.

@ Eve’s alternative is finding a from v and v?-, i.e. solving the
Twisted Conjugacy Search Problem.

THANKS

	The origins of public key cryptography
	

	A protocol based on the word problem
	

	Protocols based on the conjugacy problem
	

	Protocols based on the factorization problem
	

	Anshel-Anshel-Goldfeld protocol
	

	Some authentication protocols
	

