Some group-based cryptosystems

Enric Ventura

Departament de Matemàtica Aplicada III
Universitat Politècnica de Catalunya

Zaragoza, January 23, 2009

Outline

(1) The origins of public key cryptography
(2) A protocol based on the word problem
(3) Protocols based on the conjugacy problem

4 Protocols based on the factorization problem
(5) Anshel-Anshel-Goldfeld protocol

6 Some authentication protocols

Outline

(1) The origins of public key cryptography
(2) A protocol based on the word problem
(3) Protocols based on the conjugacy problem

4 Protocols based on the factorization problem
(5) Anshel-Anshel-Goldfeld protocol

6 Some authentication protocols

The goal

$B O B \xrightarrow{m} \quad$ ALICE

Bob wants to send a secret message, m, to Alice over an open chanel (and Eve is trying to illegitimately discover m and break the system).

From Wikipedia: "Diffie-Hellman key agreement was invented in 1976 and was the first practical method for establishing a shared secret over an unprotected communications chanel".

A third author, Merkle, was also involved in the construction (U.S. Patent 4.200.770, now expired, describes the algorithms and credits Diffie, Hellman and Merkle as inventors).

The goal

$B O B \quad \xrightarrow{m} \quad$ ALICE

Bob wants to send a secret message, m, to Alice over an open chanel (and Eve is trying to illegitimately discover m and break the system).

From Wikipedia: "Diffie-Hellman key agreement was invented in 1976
... and was the first practical method for establishing a shared secret over an unprotected communications chanel".

A third author, Merkle, was also involved in the construction (U.S. Patent 4.200.770, now expired, describes the algorithms and credits Diffie, Hellman and Merkle as inventors)

The goal

$B O B \quad \xrightarrow{m} \quad$ ALICE

Bob wants to send a secret message, m, to Alice over an open chanel (and Eve is trying to illegitimately discover m and break the system).

From Wikipedia: "Diffie-Hellman key agreement was invented in 1976 ... and was the first practical method for establishing a shared secret over an unprotected communications chanel".

A third author, Merkle, was also involved in the construction (U.S. Patent 4.200.770, now expired, describes the algorithms and credits Diffie, Hellman and Merkle as inventors).

Reduction to key establishment

- For simplicity, we assume that $m \in\{0,1\}^{n}$.
- Let \mathcal{S} be a set and $H: \mathcal{S} \rightarrow\{0,1\}^{n}$ a function (called the key space and a Hash function, respectively).
- Suppose Bob and Alice share a secret key, $K \in S$.
- Encription: Bob encrypts his message m as

$$
E(m)=m+H(K) .
$$

- Decryption: Alice decrypts in the same way:

$$
r(m)+H(K)=m+(H(K)+H(K))=m .
$$

- Eavesdropper: Eve needs to find $H(K)$, i.e. K.
- Expansion factor is 1 .

Reduction to key establishment

- For simplicity, we assume that $m \in\{0,1\}^{n}$.
- Let \mathcal{S} be a set and $H: \mathcal{S} \rightarrow\{0,1\}^{n}$ a function (called the key space and a Hash function, respectively).
- Suppose Bob and Alice share a secret key, $K \in \mathcal{S}$
- Encription: Bob encrypts his message m as

- Decryption: Alice decrypts in the same way:

- Eavesdropper: Eve needs to find $H(K)$, i.e. K.
- Expansion factor is 1.

Reduction to key establishment

- For simplicity, we assume that $m \in\{0,1\}^{n}$.
- Let \mathcal{S} be a set and $H: \mathcal{S} \rightarrow\{0,1\}^{n}$ a function (called the key space and a Hash function, respectively).
- Suppose Bob and Alice share a secret key, $K \in \mathcal{S}$.
- Encription: Bob encrypts his message m as
$E(m)=m+H(K)$.
- Decryption: Alice decrypts in the same way:

- Eavesdropper: Eve needs to find $H(K)$, i.e. K.
- Expansion factor is 1

Reduction to key establishment

- For simplicity, we assume that $m \in\{0,1\}^{n}$.
- Let \mathcal{S} be a set and $H: \mathcal{S} \rightarrow\{0,1\}^{n}$ a function (called the key space and a Hash function, respectively).
- Suppose Bob and Alice share a secret key, $K \in \mathcal{S}$.
- Encription: Bob encrypts his message m as

$$
E(m)=m+H(K) .
$$

- Decryption: Alice decrypts in the same way

- Eavesdropper: Eve needs to find $H(K)$, i.e. K.
- Expansion factor is 1

Reduction to key establishment

- For simplicity, we assume that $m \in\{0,1\}^{n}$.
- Let \mathcal{S} be a set and $H: \mathcal{S} \rightarrow\{0,1\}^{n}$ a function (called the key space and a Hash function, respectively).
- Suppose Bob and Alice share a secret key, $K \in \mathcal{S}$.
- Encription: Bob encrypts his message m as

$$
E(m)=m+H(K) .
$$

- Decryption: Alice decrypts in the same way:

$$
E(m)+H(K)=m+(H(K)+H(K))=m .
$$

- Eavesdropper: Eve needs to find $H(K)$, i.e.
- Expansion factor is 1

Reduction to key establishment

- For simplicity, we assume that $m \in\{0,1\}^{n}$.
- Let \mathcal{S} be a set and $H: \mathcal{S} \rightarrow\{0,1\}^{n}$ a function (called the key space and a Hash function, respectively).
- Suppose Bob and Alice share a secret key, $K \in \mathcal{S}$.
- Encription: Bob encrypts his message m as

$$
E(m)=m+H(K) .
$$

- Decryption: Alice decrypts in the same way:

$$
E(m)+H(K)=m+(H(K)+H(K))=m .
$$

- Eavesdropper: Eve needs to find $H(K)$, i.e. K.
- Expansion factor is 1

Reduction to key establishment

- For simplicity, we assume that $m \in\{0,1\}^{n}$.
- Let \mathcal{S} be a set and $H: \mathcal{S} \rightarrow\{0,1\}^{n}$ a function (called the key space and a Hash function, respectively).
- Suppose Bob and Alice share a secret key, $K \in \mathcal{S}$.
- Encription: Bob encrypts his message m as

$$
E(m)=m+H(K) .
$$

- Decryption: Alice decrypts in the same way:

$$
E(m)+H(K)=m+(H(K)+H(K))=m .
$$

- Eavesdropper: Eve needs to find $H(K)$, i.e. K.
- Expansion factor is 1 .

Diffie-Hellman key exchange protocol (1976)

- Public: p (prime) and $g \notin p \mathbb{Z}$.
- Alice: picks a random $a \in \mathbb{N}$, and sends $g^{a} \bmod p$.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^{b} \bmod p$.
- Common secret: Alice:

- Eve: knows p, g and $g^{a}, g^{b} \bmod p$, and needs $g^{a b} \bmod p$.
- The protocol is considered to be secure against eavesdroppers, if p and g are chosen properly.

Diffie-Hellman key exchange protocol (1976)

- Public: p (prime) and $g \notin p \mathbb{Z}$.
- Alice: picks a random $a \in \mathbb{N}$, and sends $g^{a} \bmod p$.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^{b} \bmod p$.
- Common secret: Alice:

- Eve: knows p, g and g
- The protocol is considered to be secure against eavesdroppers, if p and g are chosen properly.

Diffie-Hellman key exchange protocol (1976)

- Public: p (prime) and $g \notin p \mathbb{Z}$.
- Alice: picks a random $a \in \mathbb{N}$, and sends $g^{a} \bmod p$.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^{b} \bmod p$.
- Common secret: Alice: Bob:

- Eve: knows p, g and g
- The protocol is considered to be secure against eavesdroppers, if p and g are chosen properly.

Diffie-Hellman key exchange protocol (1976)

- Public: p (prime) and $g \notin p \mathbb{Z}$.
- Alice: picks a random $a \in \mathbb{N}$, and sends $g^{a} \bmod p$.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^{b} \bmod p$.
- Common secret: Alice: $\left(g^{b}\right)^{a}=g^{b a} \bmod p$ Bob: $\quad\left(g^{a}\right)^{b}=g^{a b} \bmod p$.
- Eve: knows p, g and g
and needs $g^{a b} \bmod p$.
- The protocol is considered to be secure against eavesdroppers, if p and g are chosen properly.

Diffie-Hellman key exchange protocol (1976)

- Public: p (prime) and $g \notin p \mathbb{Z}$.
- Alice: picks a random $a \in \mathbb{N}$, and sends $g^{a} \bmod p$.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^{b} \bmod p$.
- Common secret: Alice: $\left(g^{b}\right)^{a}=g^{b a} \bmod p$ Bob: $\quad\left(g^{a}\right)^{b}=g^{a b} \bmod p$.
- Eve: knows p, g and $g^{a}, g^{b} \bmod p$, and needs $g^{a b} \bmod p$.
- The protocol is considered to be secure against eavesdroppers, if p and g are chosen properly.

Diffie-Hellman key exchange protocol (1976)

- Public: p (prime) and $g \notin p \mathbb{Z}$.
- Alice: picks a random $a \in \mathbb{N}$, and sends $g^{a} \bmod p$.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^{b} \bmod p$.
- Common secret: Alice: $\left(g^{b}\right)^{a}=g^{b a} \bmod p$ Bob: $\quad\left(g^{a}\right)^{b}=g^{a b} \bmod p$.
- Eve: knows p, g and $g^{a}, g^{b} \bmod p$, and needs $g^{a b} \bmod p$.
- The protocol is considered to be secure against eavesdroppers, if p and g are chosen properly.

Diffie-Hellman key exchange protocol (1978)

Eve needs to solve the

- Diffie-Hellman Problem: "knowing p, g and $g^{a}, g^{b} \bmod p$, compute $g^{a b} \bmod p "$,
or the
- Discrete Logarithm Problem: "knowing p, g and $g^{a} \bmod p$, compute a",
both currently considered to be "difficult" problems (but not known to be equivalent...).

Diffie-Hellman key exchange protocol (1976)

Eve needs to solve the

- Diffie-Hellman Problem: "knowing p, g and $g^{a}, g^{b} \bmod p$, compute $g^{a b} \bmod p "$,
or the
- Discrete Logarithm Problem: "knowing p, g and $g^{a} \bmod p$, compute a",
both currently considered to be "difficult" problems (but not known to be equivalent...).

Diffie-Hellman key exchange protocol (1976)

Eve needs to solve the

- Diffie-Hellman Problem: "knowing p, g and $g^{a}, g^{b} \bmod p$, compute $g^{a b} \bmod p "$,
or the
- Discrete Logarithm Problem: "knowing p, g and $g^{a} \bmod p$, compute a",
both currently considered to be "difficult" problems (but not known to be equivalent...).

Diffie-Hellman key exchange protocol (1976)

Brute force search for solving the Discrete Logarithm Problem requires computing $g, g^{2}, g^{3}, \ldots, g^{|g|}=1$ (eventually, till $|g|$, the order of g modulo p): this is $O(|g|)$ multiplications.

In practical implementations, $|g|$ is typically about 10^{300}, so brute force attack is computationally infeasible.

This is not a problem for Alice and Bob because computing $g^{a} \bmod p$ for a particular a is much faster, $O\left(\log _{2} a\right)$, by the square-and-multiply method

Diffie-Hellman key exchange protocol (1976)

Brute force search for solving the Discrete Logarithm Problem requires computing $g, g^{2}, g^{3}, \ldots, g^{|g|}=1$ (eventually, till $|g|$, the order of g modulo p): this is $O(|g|)$ multiplications.

In practical implementations, $|g|$ is typically about 10^{300}, so brute force attack is computationally infeasible.

This is not a problem for Alice and Bob because computing $g^{a} \bmod p$ for a particular a is much faster, $O\left(\log _{2} a\right)$, by the square-and-multiply method:

Diffie-Hellman key exchange protocol (1976)

Brute force search for solving the Discrete Logarithm Problem requires computing $g, g^{2}, g^{3}, \ldots, g^{|g|}=1$ (eventually, till $|g|$, the order of g modulo p): this is $O(|g|)$ multiplications.

In practical implementations, $|g|$ is typically about 10^{300}, so brute force attack is computationally infeasible.

This is not a problem for Alice and Bob because computing $g^{a} \bmod p$ for a particular a is much faster, $O\left(\log _{2} a\right)$, by the square-and-multiply method:

Diffie-Hellman key exchange protocol (1976)

Brute force search for solving the Discrete Logarithm Problem requires computing $g, g^{2}, g^{3}, \ldots, g^{|g|}=1$ (eventually, till $|g|$, the order of g modulo p): this is $O(|g|)$ multiplications.

In practical implementations, $|g|$ is typically about 10^{300}, so brute force attack is computationally infeasible.

This is not a problem for Alice and Bob because computing $g^{a} \bmod p$ for a particular a is much faster, $O\left(\log _{2} a\right)$, by the square-and-multiply method:

$$
g^{21}=g^{16} \cdot g^{4} \cdot g=\left(\left(\left(g^{2}\right)^{2}\right)^{2}\right)^{2} \cdot\left(g^{2}\right)^{2} \cdot g
$$

Outline

(1) The origins of public key cryptography
(2) A protocol based on the word problem

3 Protocols based on the conjugacy problem
4 Protocols based on the factorization problem
(5) Anshel-Anshel-Goldfeld protocol

6 Some authentication protocols

The word problem in groups

Let $\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation of a group G.

- Word Problem: "given a word $w\left(x_{1}, \ldots, x_{n}\right)$ decide whether $w={ }_{G} 1$ or not (i.e. whether $w \in \ll R \gg$)".

There are finitely presented groups with unsolvable Word Problem.

A set of words Σ on X is said to have no collision in G if the natural map $\Sigma \rightarrow G$ is injective.

The word problem in groups

Let $\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation of a group G.

- Word Problem: "given a word $w\left(x_{1}, \ldots, x_{n}\right)$ decide whether $w={ }_{G} 1$ or not (i.e. whether $\left.w \in \ll R \gg\right)$ ".

There are finitely presented groups with unsolvable Word Problem.

A set of words Σ on X is said to have no collision in G if the natural map $\Sigma \rightarrow G$ is injective.

The word problem in groups

Let $\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation of a group G.

- Word Problem: "given a word $w\left(x_{1}, \ldots, x_{n}\right)$ decide whether $w={ }_{G} 1$ or not (i.e. whether $\left.w \in \ll R \gg\right)$ ".

There are finitely presented groups with unsolvable Word Problem.

A set of words Σ on X is said to have no collision in G if the natural map $\Sigma \rightarrow G$ is injective.

The word problem in groups

Let $\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation of a group G.

- Word Problem: "given a word $w\left(x_{1}, \ldots, x_{n}\right)$ decide whether $w={ }_{G} 1$ or not (i.e. whether $\left.w \in \ll R \gg\right)$ ".

There are finitely presented groups with unsolvable Word Problem.

A set of words Σ on X is said to have no collision in G if the natural map $\Sigma \rightarrow G$ is injective.

Wagner-Magyarik protocol (1984)

- Public: A platform $G=\langle X \mid R\rangle$ and two words $\Sigma=\left\{w_{0}, w_{1}\right\}$.
- Private: A set of words S such that
- the Word Problem is "difficult" in $G=\langle X \mid R\rangle$
- the Word Problem is "easy" in $G^{\prime}=\langle X, R \cup S\rangle=G / S$,
- Σ has no collision in G^{\prime} (and so, in G).
- Bob: encodes each bit b in his message by an arbitrary (and changing) word w such that $w={ }_{G} w_{b}$.
- Alice: decodes w by solving the Word Problem in G^{\prime} : decide whether $w={ }_{G^{\prime}} w_{0}$ or $w={ }_{G^{\prime}} w_{1}$
- Eve: sees w and needs to decide whether $w={ }_{G} w_{0}$ or $w={ }_{G} w_{1}$. This is the Word Problem in G.

Wagner-Magyarik protocol (1984)

- Public: A platform $G=\langle X \mid R\rangle$ and two words $\Sigma=\left\{w_{0}, w_{1}\right\}$.
- Private: A set of words S such that
- the Word Problem is "difficult" in $G=\langle X \mid R\rangle$,
- the Word Problem is "easy" in $G=\langle X, R \cup S\rangle=G / S$
- Σ has no collision in G^{\prime} (and so, in G).
- Boh: encodes each bit b in his message by an arbitrary (and changing) word w such that $w={ }_{G} W_{b}$.
- Alice: decodes w by solving the Word Problem in G^{\prime} : decide whether $w={ }_{G^{\prime}} w_{0}$ or $w={ }_{G^{\prime}} W_{1}$
- Eve: sees W and needs to decide whether $W={ }_{G} W_{0}$ or $W={ }_{G} W_{1}$ This is the Word Problem in G.

Wagner-Magyarik protocol (1984)

- Public: A platform $G=\langle X \mid R\rangle$ and two words $\Sigma=\left\{w_{0}, w_{1}\right\}$.
- Private: A set of words S such that
- the Word Problem is "difficult" in $G=\langle X \mid R\rangle$,
- the Word Problem is "easy" in $G^{\prime}=\langle X, R \cup S\rangle=G / S$,
- Bob: encodes each bit b in his message by an arbitrary (and changing) word w such that $w={ }_{G} w_{b}$.
- Alice: decodes w by solving the Word Problem in G^{\prime} : decide whether $w={ }_{G^{\prime}} w_{0}$ or $w={ }_{G^{\prime}} w_{1}$
- Eve: sees w and needs to decide whether $w={ }_{0} w_{0}$ or $w={ }_{6} w_{1}$ This is the Word Problem in G.

Wagner-Magyarik protocol (1984)

- Public: A platform $G=\langle X \mid R\rangle$ and two words $\Sigma=\left\{w_{0}, w_{1}\right\}$.
- Private: A set of words S such that
- the Word Problem is "difficult" in $G=\langle X \mid R\rangle$,
- the Word Problem is "easy" in $G^{\prime}=\langle X, R \cup S\rangle=G / S$,
- Σ has no collision in G^{\prime} (and so, in G).
- Bob: encodes each bit b in his message by an arbitrary (and changing) word w such that $w={ }_{G} w_{b}$.
- Alice: decodes w by solving the Word Problem in G^{\prime} : decide whether $w={ }_{G^{\prime}} w_{0}$ or $w={ }_{\sigma^{\prime}} w_{1}$
- Eve: sees w and needs to decide whether $w={ }_{G} w_{0}$ or $w={ }_{G} w_{1}$ This is the Word Problem in G.

Wagner-Magyarik protocol (1984)

- Public: A platform $G=\langle X \mid R\rangle$ and two words $\Sigma=\left\{w_{0}, w_{1}\right\}$.
- Private: A set of words S such that
- the Word Problem is "difficult" in $G=\langle X \mid R\rangle$,
- the Word Problem is "easy" in $G^{\prime}=\langle X, R \cup S\rangle=G / S$,
- Σ has no collision in G^{\prime} (and so, in G).
- Bob: encodes each bit b in his message by an arbitrary (and changing) word w such that $w={ }_{G} w_{b}$.
- Alice: decodes w by solving the Word Problem in G^{\prime} : decide whether $w={ }_{G^{\prime}} w_{0}$ or $w={ }_{\sigma^{\prime}}, w_{1}$
- Eve: sees w and needs to decide whether $w={ }_{6} w_{0}$ or $w={ }_{6} w_{1}$ This is the Word Problem in G.

Wagner-Magyarik protocol (1984)

- Public: A platform $G=\langle X \mid R\rangle$ and two words $\Sigma=\left\{w_{0}, w_{1}\right\}$.
- Private: A set of words S such that
- the Word Problem is "difficult" in $G=\langle X \mid R\rangle$,
- the Word Problem is "easy" in $G^{\prime}=\langle X, R \cup S\rangle=G / S$,
- Σ has no collision in G^{\prime} (and so, in G).
- Bob: encodes each bit b in his message by an arbitrary (and changing) word w such that $w={ }_{G} w_{b}$.
- Alice: decodes w by solving the Word Problem in G^{\prime} : decide whether $w={ }_{G^{\prime}} w_{0}$ or $w={ }_{G^{\prime}} w_{1}$.
- Eve: sees W and needs to decide whether $w={ }_{G} W$ or $W={ }_{G} W$ This is the Word Problem in G.

Wagner-Magyarik protocol (1984)

- Public: A platform $G=\langle X \mid R\rangle$ and two words $\Sigma=\left\{w_{0}, w_{1}\right\}$.
- Private: A set of words S such that
- the Word Problem is "difficult" in $G=\langle X \mid R\rangle$,
- the Word Problem is "easy" in $G^{\prime}=\langle X, R \cup S\rangle=G / S$,
- Σ has no collision in G^{\prime} (and so, in G).
- Bob: encodes each bit b in his message by an arbitrary (and changing) word w such that $w={ }_{G} w_{b}$.
- Alice: decodes w by solving the Word Problem in G^{\prime} : decide whether $w={ }_{G^{\prime}} w_{0}$ or $w={ }_{G^{\prime}} w_{1}$.
- Eve: sees w and needs to decide whether $w={ }_{G} w_{0}$ or $w={ }_{G} w_{1}$. This is the Word Problem in G.

Wagner-Magyarik protocol (1984)

- Public: A platform $G=\langle X \mid R\rangle$ and two words $\Sigma=\left\{w_{0}, w_{1}\right\}$.
- Private: A set of words S such that
- the Word Problem is "difficult" in $G=\langle X \mid R\rangle$,
- the Word Problem is "easy" in $G^{\prime}=\langle X, R \cup S\rangle=G / S$,
- Σ has no collision in G^{\prime} (and so, in G).
- Bob: encodes each bit b in his message by an arbitrary (and changing) word w such that $w={ }_{G} w_{b}$.
- Alice: decodes w by solving the Word Problem in G^{\prime} : decide whether $w={ }_{G^{\prime}} w_{0}$ or $w={ }_{G^{\prime}} w_{1}$.
- Eve: sees w and needs to decide whether $w={ }_{G} w_{0}$ or $w={ }_{G} w_{1}$. This is the Word CHOICE Problem in G.

in G / T, and no collision for Σ.

Wagner-Magyarik protocol (1984)

- Public: A platform $G=\langle X \mid R\rangle$ and two words $\Sigma=\left\{w_{0}, w_{1}\right\}$.
- Private: A set of words S such that
- the Word Problem is "difficult" in $G=\langle X \mid R\rangle$,
- the Word Problem is "easy" in $G^{\prime}=\langle X, R \cup S\rangle=G / S$,
- Σ has no collision in G^{\prime} (and so, in G).
- Bob: encodes each bit b in his message by an arbitrary (and changing) word w such that $w={ }_{G} w_{b}$.
- Alice: decodes w by solving the Word Problem in G^{\prime} : decide whether $w={ }_{G^{\prime}} w_{0}$ or $w={ }_{G^{\prime}} w_{1}$.
- Eve: sees w and needs to decide whether $w={ }_{G} w_{0}$ or $w={ }_{G} w_{1}$. This is the Word CHOICE Problem in G.
- Or...: find an alternative private key, T, with easy Word Problem in G / T, and no collision for Σ.

Outline

(1) The origins of public key cryptography
(2) A protocol based on the word problem
(3) Protocols based on the conjugacy problem

4 Protocols based on the factorization problem
(5) Anshel-Anshel-Goldfeld protocol

6 Some authentication protocols

The conjugacy problem in groups

Let $\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation of a group G.

- Conjugacy Problem: "given $u, v \in G$ (as words on the x_{i} 's), decide whether $v={ }_{G} x^{-1} u x$ for some $x \in G$ ".

Solvable Conjugacy Problem $\quad \Longrightarrow$ solvable Word Problem.
 Solvable Conjugacy Problem $\&$ solvable Word Problem.
 - Conjugacy Search Problem: "given $u, v \in G$ and the information that u and v are conjugate to each other in G, find an $x \in G$ such that $v={ }_{G} x^{-1} u x^{\prime \prime}$.

CSP is always solvable (brute force searching over all possible
$x \in G)$, but at which complexity this is a much more delicate question.

The conjugacy problem in groups

Let $\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation of a group G.

- Conjugacy Problem: "given $u, v \in G$ (as words on the x_{i} 's), decide whether $v={ }_{G} x^{-1} u x$ for some $x \in G$ ".

Solvable Conjugacy Problem
Solvable Coniugacy Problem $\&$
\square
solvable Word Problem.
solvable Word Problem

- Conjugacy Search Problem: "given $u, v \in G$ and the information that u and v are conjugate to each other in G, find an $x \in G$ such that $v={ }_{6} X^{-1} u x^{\prime \prime}$.

CSP is always solvable (brute force searching over all possible
$x \in G)$, but at which complexity this is a much more delicate question.

The conjugacy problem in groups

Let $\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation of a group G.

- Conjugacy Problem: "given $u, v \in G$ (as words on the x_{i} 's), decide whether $v={ }_{G} x^{-1} u x$ for some $x \in G$ ".

Solvable Conjugacy Problem \Longrightarrow solvable Word Problem.
Solvable Conjugacy Problem $\&$ solvable Word Problem.

- Conjugacy Search Problem: "given $u, v \in G$ and the information that u and v are conjugate to each other in G, find an $x \in G$ such that $v=x^{-1} u x^{\prime \prime}$.

CSP is always solvable (brute force searching over all possible $x \in G)$, but at which complexity this is a much more delicate question

The conjugacy problem in groups

Let $\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation of a group G.

- Conjugacy Problem: "given $u, v \in G$ (as words on the x_{i} 's), decide whether $v={ }_{G} x^{-1} u x$ for some $x \in G$ ".

Solvable Conjugacy Problem \Longrightarrow solvable Word Problem.
Solvable Conjugacy Problem \Longleftarrow solvable Word Problem.

- Conjugacy Search Problem: "given $u, v \in G$ and the information that u and v are conjugate to each other in G, find an $x \in G$ such that $v={ }_{G} X^{-1} u X^{\prime}$

CSP is always solvable (brute force searching over all possible $x \in G$), but at which complexity this is a much more delicate question

The conjugacy problem in groups

Let $\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation of a group G.

- Conjugacy Problem: "given $u, v \in G$ (as words on the x_{i} 's), decide whether $v={ }_{G} x^{-1} u x$ for some $x \in G$.

Solvable Conjugacy Problem \Longrightarrow solvable Word Problem.
Solvable Conjugacy Problem \Longleftarrow solvable Word Problem.

- Conjugacy Search Problem: "given $u, v \in G$ and the information that u and v are conjugate to each other in G, find an $x \in G$ such that $v={ }_{G} x^{-1} u x^{\prime \prime}$.

CSP is always solvable (brute force searching over all possible
$x \in G)$, but at which complexity this is a much more delicate question

The conjugacy problem in groups

Let $\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation of a group G.

- Conjugacy Problem: "given $u, v \in G$ (as words on the x_{i} 's), decide whether $v={ }_{G} x^{-1} u x$ for some $x \in G$ ".

Solvable Conjugacy Problem \Longrightarrow solvable Word Problem.
Solvable Conjugacy Problem \Longleftarrow solvable Word Problem.

- Conjugacy Search Problem: "given $u, v \in G$ and the information that u and v are conjugate to each other in G, find an $x \in G$ such that $v={ }_{G} x^{-1} u x$."

CSP is always solvable (brute force searching over all possible $x \in G)$, but at which complexity this is a much more delicate question.

The conjugacy problem in groups

- Multiple Conjugacy Problem: given $u_{1}, \ldots u_{k}, v_{1}, \ldots v_{k} \in G$, decide whether $\exists x \in G$ such that $v_{i}={ }_{G} x^{-1} u_{i} x, \forall i$.

Solv. Multiple Conjugacy Problem \Longrightarrow solv. Conjugacy Problem.
Solv Multinle Conjugacy Problem $\&$ solv, Coniugacy Problem.

- Restricted Conjugacy Problem: "given u, v and a subgroup $H \leqslant G$, decide whether $v={ }_{G} x^{-1} u x$ for some $x \in H^{\prime \prime}$.

We can consider all variations search/non-search, multiple/simple, restricted/non-restricted.

The conjugacy problem in groups

- Multiple Conjugacy Problem: given $u_{1}, \ldots u_{k}, v_{1}, \ldots v_{k} \in G$, decide whether $\exists x \in G$ such that $v_{i}={ }_{G} x^{-1} u_{i} x, \forall i$.

Solv. Multiple Conjugacy Problem $\quad \Longrightarrow \quad$ solv. Conjugacy Problem.

Solv. Multiple Conjugacy Problem \ddagger solv. Conjugacy Problem.

- Restricted Conjugacy Problem: "given u, v and a subgroup $H \leqslant G$, decide whether $v={ }_{G} x^{-1} u x$ for some $x \in H^{\prime \prime}$.

We can consider all variations search/non-search, multiple/simple, restricted/non-restricted.

The conjugacy problem in groups

- Multiple Conjugacy Problem: given $u_{1}, \ldots u_{k}, v_{1}, \ldots v_{k} \in G$, decide whether $\exists x \in G$ such that $v_{i}={ }_{G} x^{-1} u_{i} x, \forall i$.

Solv. Multiple Conjugacy Problem $\quad \Longrightarrow$ solv. Conjugacy Problem.
Solv. Multiple Conjugacy Problem \Longleftarrow solv. Conjugacy Problem.

- Restricted Conjugacy Problem: "given u, v and a subgroup $H \leqslant G$, decide whether $v={ }_{G} x^{-1} u x$ for some $x \in H^{\prime \prime}$.

We can consider all variations search/non-search, multiple/simple, restricted/non-restricted.

The conjugacy problem in groups

- Multiple Conjugacy Problem: given $u_{1}, \ldots u_{k}, v_{1}, \ldots v_{k} \in G$, decide whether $\exists x \in G$ such that $v_{i}={ }_{G} x^{-1} u_{i} x, \forall i$.

Solv. Multiple Conjugacy Problem $\quad \Longrightarrow$ solv. Conjugacy Problem.
Solv. Multiple Conjugacy Problem \Longleftarrow solv. Conjugacy Problem.

- Restricted Conjugacy Problem: "given u, v and a subgroup $H \leqslant G$, decide whether $v={ }_{G} x^{-1} u x$ for some $x \in H^{\prime \prime}$.

We can consider all variations search/non-search, multiple/simple, restricted/non-restricted.

The conjugacy problem in groups

- Multiple Conjugacy Problem: given $u_{1}, \ldots u_{k}, v_{1}, \ldots v_{k} \in G$, decide whether $\exists x \in G$ such that $v_{i}={ }_{G} x^{-1} u_{i} x, \forall i$.

Solv. Multiple Conjugacy Problem $\quad \Longrightarrow$ solv. Conjugacy Problem.
Solv. Multiple Conjugacy Problem \Longleftarrow solv. Conjugacy Problem.

- Restricted Conjugacy Problem: "given u, v and a subgroup $H \leqslant G$, decide whether $v={ }_{G} x^{-1} u x$ for some $x \in H^{\prime \prime}$.

We can consider all variations search/non-search, multiple/simple, restricted/non-restricted.

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

- Public: $G=\langle X \mid R\rangle, w \in G$, and $A, B \subseteq G$ such that $[a, b]=1$ $\forall a \in A, \forall b \in B$.
- Alice: picks a random $a \in A$, and sends a
- Bob: picks a random $b \in B$, and sends $b^{-1} w b=w^{b}$.
- Common secret: Alice: $a^{-1}\left(b^{-1} w b\right) a=w^{\text {ba }}$, Bob: $\quad b^{-1}\left(a^{-1} w a\right) b=w^{a b}$
- Eve: knows w, w^{a}, w^{b}, and needs $w^{a b}$.

This can be done by solving the Conjugacy Search Problem Restricted to A (or B),
... but also solving the following seemingly easier problem:

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

- Public: $G=\langle X \mid R\rangle, w \in G$, and $A, B \subseteq G$ such that $[a, b]=1$ $\forall a \in A, \forall b \in B$.
- Alice: picks a random $a \in A$, and sends $a^{-1} w a=w^{a}$.
- Bob: picks a random $b \in B$, and sends b
- Common secret: Alice:

- Eve: knows w, wa ${ }^{a}$ w and needs $w^{a b}$

This can be done by solving the Conjugacy Search Problem Restricted to A (or B),
... but also solving the following seemingly easier problem:

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

- Public: $G=\langle X \mid R\rangle, w \in G$, and $A, B \subseteq G$ such that $[a, b]=1$ $\forall a \in A, \forall b \in B$.
- Alice: picks a random $a \in A$, and sends $a^{-1} w a=w^{a}$.
- Bob: picks a random $b \in B$, and sends $b^{-1} w b=w^{b}$.
- Common secret: Alice:

Bob:

- Eve: knows $w, w^{a} . w^{b}$, and needs $w^{a b}$.
This can be done by solving the Conjugacy Search Problem Restricted to A (or B),

... but also solving the following seemingly easier problem:

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

- Public: $G=\langle X \mid R\rangle, w \in G$, and $A, B \subseteq G$ such that $[a, b]=1$ $\forall a \in A, \forall b \in B$.
- Alice: picks a random $a \in A$, and sends $a^{-1} w a=w^{a}$.
- Bob: picks a random $b \in B$, and sends $b^{-1} w b=w^{b}$.
- Common secret: Alice: $a^{-1}\left(b^{-1} w b\right) a=w^{b a}$, Bob: $\quad b^{-1}\left(a^{-1} w a\right) b=w^{a b}$.
- Eve: knows
and needs $w^{a b}$
This can be done by solving the Conjugacy Search Problem Restricted to A (or B),

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

- Public: $G=\langle X \mid R\rangle, w \in G$, and $A, B \subseteq G$ such that $[a, b]=1$ $\forall a \in A, \forall b \in B$.
- Alice: picks a random $a \in A$, and sends $a^{-1} w a=w^{a}$.
- Bob: picks a random $b \in B$, and sends $b^{-1} w b=w^{b}$.
- Common secret: Alice: $a^{-1}\left(b^{-1} w b\right) a=w^{b a}$, Bob: $\quad b^{-1}\left(a^{-1} w a\right) b=w^{a b}$.
- Eve: knows w, w^{a}, w^{b}, and needs $w^{a b}$.

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

- Public: $G=\langle X \mid R\rangle, w \in G$, and $A, B \subseteq G$ such that $[a, b]=1$ $\forall a \in A, \forall b \in B$.
- Alice: picks a random $a \in A$, and sends $a^{-1} w a=w^{a}$.
- Bob: picks a random $b \in B$, and sends $b^{-1} w b=w^{b}$.
- Common secret: Alice: $a^{-1}\left(b^{-1} w b\right) a=w^{b a}$,

Bob: $\quad b^{-1}\left(a^{-1} w a\right) b=w^{a b}$.

- Eve: knows w, w^{a}, w^{b}, and needs $w^{a b}$. This can be done by solving the Conjugacy Search Problem Restricted to A (or B),

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

- Public: $G=\langle X \mid R\rangle, w \in G$, and $A, B \subseteq G$ such that $[a, b]=1$ $\forall a \in A, \forall b \in B$.
- Alice: picks a random $a \in A$, and sends $a^{-1} w a=w^{a}$.
- Bob: picks a random $b \in B$, and sends $b^{-1} w b=w^{b}$.
- Common secret: Alice: $a^{-1}\left(b^{-1} w b\right) a=w^{b a}$,

Bob: $\quad b^{-1}\left(a^{-1} w a\right) b=w^{a b}$.

- Eve: knows w, w^{a}, w^{b}, and needs $w^{a b}$. This can be done by solving the Conjugacy Search Problem Restricted to A (or B),
... but also solving the following seemingly easier problem:

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

- Decomposition Problem: "knowing $w, w^{\prime} \in G$, find $a_{1}, a_{2} \in A$ such that $w^{\prime}=a_{1} w a_{2}$ ".

Eve knows w, w^{a}, w^{b} and suppose she can compute $a_{1}, a_{2} \in A$ such that $w^{a}=a_{1} w a_{2}$.

Then, $a_{1} w^{b} a_{2}=a_{1}\left(b^{-1} w b\right) a_{2}=b^{-1}\left(a_{1} w a_{2}\right) b=b^{-1} w^{a} b=w^{a b}$, and she finds the secret.

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

- Decomposition Problem: "knowing $w, w^{\prime} \in G$, find $a_{1}, a_{2} \in A$ such that $w^{\prime}=a_{1} w a_{2}$ ".

Eve knows w, w^{a}, w^{b} and suppose she can compute $a_{1}, a_{2} \in A$ such that $w^{a}=a_{1} w a_{2}$.

Then, $a_{1} w^{b} a_{2}=a_{1}\left(b^{-1} w b\right) a_{2}=b^{-1}\left(a_{1} w a_{2}\right) b=b^{-1} w^{a} b=w^{a b}$,
and she finds the secret.

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

- Decomposition Problem: "knowing $w, w^{\prime} \in G$, find $a_{1}, a_{2} \in A$ such that $w^{\prime}=a_{1} w a_{2}$ ".

Eve knows w, w^{a}, w^{b} and suppose she can compute $a_{1}, a_{2} \in A$ such that $w^{a}=a_{1} w a_{2}$.

Then, $a_{1} w^{b} a_{2}=a_{1}\left(b^{-1} w b\right) a_{2}=b^{-1}\left(a_{1} w a_{2}\right) b=b^{-1} w^{a} b=w^{a b}$, and she finds the secret.

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

- Public: $G=\langle X \mid R\rangle$ and $w \in G$.
- Alice: picks a random $a_{1} \in G$, a f.g. subgroup $A \leqslant C_{G}\left(a_{1}\right)$ and sends generators $\boldsymbol{A}=\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$
- Bob: picks a random $b_{2} \in B$, a f.g. subgroup $B \leqslant C_{G}\left(b_{2}\right)$ and sends generators $B=\left\langle\beta_{1}, \ldots, \beta_{m}\right\rangle$
- Alice: picks a random $a_{2} \in B$, and sends
- Bob: picks a random $b_{1} \in A$, and sends
- Common secret: Alice:

Bob:

- Eve: knows w. a $a_{1} w a_{2}, b_{1} w b_{2}$, and needs $a_{1} b_{1} w a_{2} b_{2}$.

This can be done by trying to recover a_{1} and a_{2} from w and $a_{1} w a_{2}$, and knowing that $a_{2} \in B$, but without any information where to look for a_{1}

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

- Public: $G=\langle X \mid R\rangle$ and $w \in G$.
- Alice: picks a random $a_{1} \in G$, a f.g. subgroup $A \leqslant C_{G}\left(a_{1}\right)$ and sends generators $\boldsymbol{A}=\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$.
- Bob: picks a random $b_{2} \in B$, a f.g. subgroup $B \leqslant C_{G}\left(b_{2}\right)$ and sends generators $B=\left\langle\beta_{1}, \ldots, \beta_{m}\right\rangle$
- Alice: picks a random $a_{2} \in B$, and sends
- Bob: picks a random $b_{1} \in A$, and sends
- Common secret:

Alice
Bob:

- Eve: knows

This can be done by trying to recover a_{1} and a_{2} from w and $a_{1} w a_{2}$, and knowing that $a_{2} \in B$, but without any information where to look for a

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

- Public: $G=\langle X \mid R\rangle$ and $w \in G$.
- Alice: picks a random $a_{1} \in G$, a f.g. subgroup $A \leqslant C_{G}\left(a_{1}\right)$ and sends generators $\boldsymbol{A}=\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$.
- Bob: picks a random $b_{2} \in B$, a f.g. subgroup $B \leqslant C_{G}\left(b_{2}\right)$ and sends generators $B=\left\langle\beta_{1}, \ldots, \beta_{m}\right\rangle$.
- Alice: picks a random $a_{2} \in B$, and sends
- Bob: picks a random $b_{1} \in A$, and sends
- Common secret:

Alice:
Bob:

- Eve: knows

This can be done by trying to recover a_{1} and a_{2} from w and
and knowing that $a_{2} \in B$, but without any information where to look for a_{1}

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

- Public: $G=\langle X \mid R\rangle$ and $w \in G$.
- Alice: picks a random $a_{1} \in G$, a f.g. subgroup $A \leqslant C_{G}\left(a_{1}\right)$ and sends generators $\boldsymbol{A}=\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$.
- Bob: picks a random $b_{2} \in B$, a f.g. subgroup $B \leqslant C_{G}\left(b_{2}\right)$ and sends generators $B=\left\langle\beta_{1}, \ldots, \beta_{m}\right\rangle$.
- Alice: picks a random $a_{2} \in B$, and sends $a_{1} w a_{2}$.
- Bob: picks a random b1
A, and sends
- Common secret:

Alice
Bob:

- Eve: knows

This can be done by trying to recover a_{1} and a_{2} from w and
and knowing that $a_{2} \in B$, but without any information where to look for a_{1}

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

- Public: $G=\langle X \mid R\rangle$ and $w \in G$.
- Alice: picks a random $a_{1} \in G$, a f.g. subgroup $A \leqslant C_{G}\left(a_{1}\right)$ and sends generators $\boldsymbol{A}=\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$.
- Bob: picks a random $b_{2} \in B$, a f.g. subgroup $B \leqslant C_{G}\left(b_{2}\right)$ and sends generators $B=\left\langle\beta_{1}, \ldots, \beta_{m}\right\rangle$.
- Alice: picks a random $a_{2} \in B$, and sends $a_{1} w a_{2}$.
- Bob: picks a random $b_{1} \in A$, and sends $b_{1} w b_{2}$.
- Common secret:

Bob:

- Eve: knows
and needs $a_{1} b_{1} w a_{2} b_{2}$
This can be done by trying to recover a_{1} and a_{2} from
and knowing that $a_{2} \in B$, but without any information where to look for a_{1}

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

- Public: $G=\langle X \mid R\rangle$ and $w \in G$.
- Alice: picks a random $a_{1} \in G$, a f.g. subgroup $A \leqslant C_{G}\left(a_{1}\right)$ and sends generators $\boldsymbol{A}=\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$.
- Bob: picks a random $b_{2} \in B$, a f.g. subgroup $B \leqslant C_{G}\left(b_{2}\right)$ and sends generators $B=\left\langle\beta_{1}, \ldots, \beta_{m}\right\rangle$.
- Alice: picks a random $a_{2} \in B$, and sends $a_{1} w a_{2}$.
- Bob: picks a random $b_{1} \in A$, and sends $b_{1} w b_{2}$.
- Common secret: Alice: $a_{1}\left(b_{1} w b_{2}\right) a_{2}$,

Bob: $\quad b_{1}\left(a_{1} w a_{2}\right) b_{2}$.

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

- Public: $G=\langle X \mid R\rangle$ and $w \in G$.
- Alice: picks a random $a_{1} \in G$, a f.g. subgroup $A \leqslant C_{G}\left(a_{1}\right)$ and sends generators $\boldsymbol{A}=\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$.
- Bob: picks a random $b_{2} \in B$, a f.g. subgroup $B \leqslant C_{G}\left(b_{2}\right)$ and sends generators $B=\left\langle\beta_{1}, \ldots, \beta_{m}\right\rangle$.
- Alice: picks a random $a_{2} \in B$, and sends $a_{1} w a_{2}$.
- Bob: picks a random $b_{1} \in A$, and sends $b_{1} w b_{2}$.
- Common secret: Alice: $a_{1}\left(b_{1} w b_{2}\right) a_{2}$,

Bob: $\quad b_{1}\left(a_{1} w a_{2}\right) b_{2}$.

- Eve: knows $w, a_{1} w a_{2}, b_{1} w b_{2}$, and needs $a_{1} b_{1} w a_{2} b_{2}$.
and knowing that $a_{2} \in B$, but without any information where to look for a_{1}.

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

- Public: $G=\langle X \mid R\rangle$ and $w \in G$.
- Alice: picks a random $a_{1} \in G$, a f.g. subgroup $A \leqslant C_{G}\left(a_{1}\right)$ and sends generators $\boldsymbol{A}=\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$.
- Bob: picks a random $b_{2} \in B$, a f.g. subgroup $B \leqslant C_{G}\left(b_{2}\right)$ and sends generators $B=\left\langle\beta_{1}, \ldots, \beta_{m}\right\rangle$.
- Alice: picks a random $a_{2} \in B$, and sends $a_{1} w a_{2}$.
- Bob: picks a random $b_{1} \in A$, and sends $b_{1} w b_{2}$.
- Common secret: Alice: $a_{1}\left(b_{1} w b_{2}\right) a_{2}$,

Bob: $\quad b_{1}\left(a_{1} w a_{2}\right) b_{2}$.

- Eve: knows $w, a_{1} w a_{2}, b_{1} w b_{2}$, and needs $a_{1} b_{1} w a_{2} b_{2}$. This can be done by trying to recover a_{1} and a_{2} from w and $a_{1} w a_{2}$, and knowing that $a_{2} \in B$, but without any information where to look for a_{1}.

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

- Public: $G=\langle X \mid R\rangle$ and $w \in G$.
- Alice: picks a random $a_{1} \in G$, a f.g. subgroup $A \leqslant C_{G}\left(a_{1}\right)$ and sends generators $\boldsymbol{A}=\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$.
- Bob: picks a random $b_{2} \in B$, a f.g. subgroup $B \leqslant C_{G}\left(b_{2}\right)$ and sends generators $B=\left\langle\beta_{1}, \ldots, \beta_{m}\right\rangle$.
- Alice: picks a random $a_{2} \in B$, and sends $a_{1} w a_{2}$.
- Bob: picks a random $b_{1} \in A$, and sends $b_{1} w b_{2}$.
- Common secret: Alice: $a_{1}\left(b_{1} w b_{2}\right) a_{2}$,

Bob: $\quad b_{1}\left(a_{1} w a_{2}\right) b_{2}$.

- Eve: knows $w, a_{1} w a_{2}, b_{1} w b_{2}$, and needs $a_{1} b_{1} w a_{2} b_{2}$. This can be done by trying to recover a_{1} and a_{2} from w and $a_{1} w a_{2}$, and knowing that $a_{2} \in B$, but without any information where to look for a_{1}.

Outline

(1) The origins of public key cryptography
(2) A protocol based on the word problem

3 Protocols based on the conjugacy problem
4 Protocols based on the factorization problem
(5) Anshel-Anshel-Goldfeld protocol

6 Some authentication protocols

The factorization problem

- Factorization Problem: "given $u \in G$ and $A, B \leqslant G$, decide whether $u={ }_{G} a b$ for some $a \in A$ and $b \in B$ ".
- Factorization Search Problem: "given $u \in G, A, B \leqslant G$, and the information that $u=a b$ for some $a \in A$ and $b \in B$, find such a and b."
- Triple Factorization Search Problem: "given $u \in G, A, B, C \leqslant G$, and the information that $u=a b c$ for some $a \in A, b \in B$ and $c \in C$, find such a, b and c."

The factorization problem

- Factorization Problem: "given $u \in G$ and $A, B \leqslant G$, decide whether $u={ }_{G} a b$ for some $a \in A$ and $b \in B^{\prime \prime}$.
- Factorization Search Problem: "given $u \in G, A, B \leqslant G$, and the information that $u=a b$ for some $a \in A$ and $b \in B$, find such a and $b . "$
- Triple Factorization Search Problem: "given $u \in G, A, B, C \leqslant G$, and the information that $u=a b c$ for some $a \in A, b \in B$ and $c \in C$, find such a, b and c."

The factorization problem

- Factorization Problem: "given $u \in G$ and $A, B \leqslant G$, decide whether $u={ }_{G} a b$ for some $a \in A$ and $b \in B^{\prime \prime}$.
- Factorization Search Problem: "given $u \in G, A, B \leqslant G$, and the information that $u=a b$ for some $a \in A$ and $b \in B$, find such a and $b . "$
- Triple Factorization Search Problem: "given $u \in G, A, B, C \leqslant G$, and the information that $u=a b c$ for some $a \in A, b \in B$ and $c \in C$, find such a, b and c."

The factorization problem

- Factorization Problem: "given $u \in G$ and $A, B \leqslant G$, decide whether $u={ }_{G} a b$ for some $a \in A$ and $b \in B^{\prime \prime}$.
- Factorization Search Problem: "given $u \in G, A, B \leqslant G$, and the information that $u=a b$ for some $a \in A$ and $b \in B$, find such a and $b . "$
- Triple Factorization Search Problem: "given $u \in G, A, B, C \leqslant G$, and the information that $u=a b c$ for some $a \in A, b \in B$ and $c \in C$, find such a, b and c."

A protocol based on the Factorization Search Problem

- Public: $G=\langle X \mid R\rangle$ and $A, B \leqslant G$ such that $[a, b]=1 \forall a \in A$, $\forall b \in B$.
- Alice: picks a random $a_{1} \in A, b_{1} \in B$ and sends $a_{1} b_{1}$.
- Bob: picks a random $a_{2} \in A, b_{2} \in B$ and sends $a_{2} b_{2}$.
- Common secret: Alice: $b_{1}\left(a_{2} b_{2}\right) a_{1}=a_{2} b_{1} b_{2} a_{1}=a_{2} a_{1} b_{1} b_{2}$.

Bob: $a_{2}\left(a_{1} b_{1}\right) b_{2}$.

- Eve: knows $a_{1} a_{2}$ and $b_{1} b_{2}$, and needs $a_{2} a_{1} b_{1} b_{2}$. This can be done by solving the Factorization Search Problem in A (or B).
Note that Eve can compute

$$
\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right)=a_{1} a_{2} b_{1} b_{2} \quad \text { and } \quad\left(a_{2} b_{2}\right)\left(a_{1} b_{1}\right)=a_{2} a_{1} b_{2} b_{1} .
$$

but neither of these products equal the secret if $a_{1} a_{2} \neq a_{2} a_{1}$ and $b_{1} b_{2} \neq b_{2} b_{1}$.

A protocol based on the Factorization Search Problem

- Public: $G=\langle X \mid R\rangle$ and $A, B \leqslant G$ such that $[a, b]=1 \forall a \in A$, $\forall b \in B$.
- Alice: picks a random $a_{1} \in A, b_{1} \in B$ and sends $a_{1} b_{1}$.
- Bob: picks a random $a_{2} \in A, b_{2} \in B$ and sends
- Common secret: Alice: $b_{1}\left(a_{2} b_{2}\right) a_{1}=a_{2} b_{1} b_{2} a_{1}=a_{2} a_{1} b_{1} b_{2}$.

Bob:

- Eve: knows $a_{1} a_{2}$ and $b_{1} b_{2}$, and needs $a_{2} a_{1} b_{1} b_{2}$. This can be done by solving the Factorization Search Problem in A (or B).
Note that Eve can compute

$$
\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right)=a_{1} a_{2} b_{1} b_{2} \quad \text { and } \quad\left(a_{2} b_{2}\right)\left(a_{1} b_{1}\right)=a_{2} a_{1} b_{2} b_{1}
$$

but neither of these products equal the secret if $a_{1} a_{2} \neq a_{2} a_{1}$ and $b_{1} b_{2} \neq b_{2} b_{1}$

A protocol based on the Factorization seareh probenn

- Public: $G=\langle X \mid R\rangle$ and $A, B \leqslant G$ such that $[a, b]=1 \forall a \in A$, $\forall b \in B$.
- Alice: picks a random $a_{1} \in A, b_{1} \in B$ and sends $a_{1} b_{1}$.
- Bob: picks a random $a_{2} \in A, b_{2} \in B$ and sends $a_{2} b_{2}$.
- Common secret: Alice:

- Eve: knows $a_{1} a_{2}$ and $b_{1} b_{2}$, and needs $a_{2} a_{1} b_{1} b_{2}$. This can be done by solving the Factorization Search Problem in A (or B).

Note that Eve can compute

$$
\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right)=a_{1} a_{2} b_{1} b_{2} \quad \text { and } \quad\left(a_{2} b_{2}\right)\left(a_{1} b_{1}\right)=a_{2} a_{1} b_{2} b_{1}
$$

but neither of these products equal the secret if $a_{1} a_{2} \neq a_{2} a_{1}$ and $b_{1} b_{2} \neq b_{2} b_{1}$

A protocol based onthe Factorization search probenn

- Public: $G=\langle X \mid R\rangle$ and $A, B \leqslant G$ such that $[a, b]=1 \forall a \in A$, $\forall b \in B$.
- Alice: picks a random $a_{1} \in A, b_{1} \in B$ and sends $a_{1} b_{1}$.
- Bob: picks a random $a_{2} \in A, b_{2} \in B$ and sends $a_{2} b_{2}$.
- Common secret: Alice: $b_{1}\left(a_{2} b_{2}\right) a_{1}$ Bob: $\quad a_{2}\left(a_{1} b_{1}\right) b_{2}$.
- Eve: knows $a_{1} a_{2}$ and $b_{1} b_{2}$, and needs

This can be done by solving the Factorization Search Problem in A (or B).

Note that Eve can compute

$$
\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right)=a_{1} a_{2} b_{1} b_{2} \quad \text { and } \quad\left(a_{2} b_{2}\right)\left(a_{1} b_{1}\right)=a_{2} a_{1} b_{2} b_{1}
$$

but neither of these products equal the secret if $a_{1} a_{2} \neq a_{2} a_{1}$ and $b_{1} b_{2} \neq b_{2} b_{1}$

A protocol based onthe Factorization search probenn

- Public: $G=\langle X \mid R\rangle$ and $A, B \leqslant G$ such that $[a, b]=1 \forall a \in A$, $\forall b \in B$.
- Alice: picks a random $a_{1} \in A, b_{1} \in B$ and sends $a_{1} b_{1}$.
- Bob: picks a random $a_{2} \in A, b_{2} \in B$ and sends $a_{2} b_{2}$.
- Common secret: Alice: $b_{1}\left(a_{2} b_{2}\right) a_{1}=a_{2} b_{1} b_{2} a_{1}=a_{2} a_{1} b_{1} b_{2}$. Bob: $\quad a_{2}\left(a_{1} b_{1}\right) b_{2}$.
- Eve: knows $a_{1} a_{2}$ and $b_{1} b_{2}$, and needs $a_{2} a_{1} b_{1} b_{2}$.
This can be done by solving the Factorization Search Problem in A (or B)
Note that Eve can compute

$$
\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right)=a_{1} a_{2} b_{1} b_{2} \quad \text { and } \quad\left(a_{2} b_{2}\right)\left(a_{1} b_{1}\right)=a_{2} a_{1} b_{2} b_{1}
$$

but neither of these products equal the secret if $a_{1} a_{2} \neq a_{2} a_{1}$ and $b_{1} b_{2} \neq b_{2} b_{1}$

A protocol based on the Factorization Search Problem

- Public: $G=\langle X \mid R\rangle$ and $A, B \leqslant G$ such that $[a, b]=1 \forall a \in A$, $\forall b \in B$.
- Alice: picks a random $a_{1} \in A, b_{1} \in B$ and sends $a_{1} b_{1}$.
- Bob: picks a random $a_{2} \in A, b_{2} \in B$ and sends $a_{2} b_{2}$.
- Common secret: Alice: $b_{1}\left(a_{2} b_{2}\right) a_{1}=a_{2} b_{1} b_{2} a_{1}=a_{2} a_{1} b_{1} b_{2}$. Bob: $\quad a_{2}\left(a_{1} b_{1}\right) b_{2}$.
- Eve: knows $a_{1} a_{2}$ and $b_{1} b_{2}$, and needs $a_{2} a_{1} b_{1} b_{2}$.

This can be done by solving the Factorization Search Problem in A (or B).
Note that Eve can compute

$$
\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right)=a_{1} a_{2} b_{1} b_{2} \quad \text { and } \quad\left(a_{2} b_{2}\right)\left(a_{1} b_{1}\right)=a_{2} a_{1} b_{2} b_{1}
$$

but neither of these products equal the secret if $a_{1} a_{2} \neq a_{2} a_{1}$ and $b_{1} b_{2} \neq b_{2} b_{1}$

A protocol based on the Factorization Search Problem

- Public: $G=\langle X \mid R\rangle$ and $A, B \leqslant G$ such that $[a, b]=1 \forall a \in A$, $\forall b \in B$.
- Alice: picks a random $a_{1} \in A, b_{1} \in B$ and sends $a_{1} b_{1}$.
- Bob: picks a random $a_{2} \in A, b_{2} \in B$ and sends $a_{2} b_{2}$.
- Common secret: Alice: $b_{1}\left(a_{2} b_{2}\right) a_{1}=a_{2} b_{1} b_{2} a_{1}=a_{2} a_{1} b_{1} b_{2}$. Bob: $\quad a_{2}\left(a_{1} b_{1}\right) b_{2}$.
- Eve: knows $a_{1} a_{2}$ and $b_{1} b_{2}$, and needs $a_{2} a_{1} b_{1} b_{2}$.

This can be done by solving the Factorization Search Problem in A (or B).
Note that Eve can compute

$$
\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right)=a_{1} a_{2} b_{1} b_{2} \quad \text { and } \quad\left(a_{2} b_{2}\right)\left(a_{1} b_{1}\right)=a_{2} a_{1} b_{2} b_{1}
$$

but neither of these products equal the secret if $a_{1} a_{2} \neq a_{2} a_{1}$ and $b_{1} b_{2} \neq b_{2} b_{1}$

A protocol based on the Factorization Search Problem

- Public: $G=\langle X \mid R\rangle$ and $A, B \leqslant G$ such that $[a, b]=1 \forall a \in A$, $\forall b \in B$.
- Alice: picks a random $a_{1} \in A, b_{1} \in B$ and sends $a_{1} b_{1}$.
- Bob: picks a random $a_{2} \in A, b_{2} \in B$ and sends $a_{2} b_{2}$.
- Common secret: Alice: $b_{1}\left(a_{2} b_{2}\right) a_{1}=a_{2} b_{1} b_{2} a_{1}=a_{2} a_{1} b_{1} b_{2}$. Bob: $\quad a_{2}\left(a_{1} b_{1}\right) b_{2}$.
- Eve: knows $a_{1} a_{2}$ and $b_{1} b_{2}$, and needs $a_{2} a_{1} b_{1} b_{2}$.

This can be done by solving the Factorization Search Problem in A (or B).
Note that Eve can compute

$$
\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right)=a_{1} a_{2} b_{1} b_{2} \quad \text { and } \quad\left(a_{2} b_{2}\right)\left(a_{1} b_{1}\right)=a_{2} a_{1} b_{2} b_{1}
$$

but neither of these products equal the secret if $a_{1} a_{2} \neq a_{2} a_{1}$ and $b_{1} b_{2} \neq b_{2} b_{1}$.

Kurt's protocol (2006)

- Public: $G=\langle X \mid R\rangle, 10$ subgroups $A_{1}, A_{2}, A_{3}, X_{1}, X_{2}, B_{1}, B_{2}, B_{3}$, $Y_{1}, Y_{2} \leqslant G$ such that $\left[A_{2}, Y_{1}\right]=\left[A_{3}, Y_{2}\right]=\left[B_{1}, X_{1}\right]=\left[B_{2}, X_{2}\right]=1$.
- Alice: picks a random $a_{1} \in A_{1}, a_{2} \in A_{2}, a_{3} \in A_{3}, x_{1} \in X_{1}$, $x_{2} \in X_{2}$, and sends $a_{1} x_{1}, x_{1}^{-1} a_{2} x_{2}$ and
- Bob: picks a random $b_{1} \in B_{1}, b_{2} \in B_{2}, b_{3} \in B_{3}, y_{1} \in Y_{1}, y_{2} \in Y_{2}$, and sends
- Common secret: Alice: Bob:

- Eve: knows
and
needs $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3}$.
This can be done by recovering a_{1}, a_{2}, a_{3} from $a_{1} a_{2} a_{3}=$ $=\left(a_{1} x_{1}\right)\left(x_{1}^{-1} a_{2} x_{2}\right)\left(x_{2}^{-1} a_{3}\right)$, i.e. solving the Triple Factorization
Search Problem.

Kurt's protocol (2006)

- Public: $G=\langle X \mid R\rangle, 10$ subgroups $A_{1}, A_{2}, A_{3}, X_{1}, X_{2}, B_{1}, B_{2}, B_{3}$, $Y_{1}, Y_{2} \leqslant G$ such that $\left[A_{2}, Y_{1}\right]=\left[A_{3}, Y_{2}\right]=\left[B_{1}, X_{1}\right]=\left[B_{2}, X_{2}\right]=1$.
- Alice: picks a random $a_{1} \in A_{1}, a_{2} \in A_{2}, a_{3} \in A_{3}, x_{1} \in X_{1}$, $x_{2} \in X_{2}$, and sends $a_{1} x_{1}, x_{1}^{-1} a_{2} x_{2}$ and $x_{2}^{-1} a_{3}$.
- Eve: knows
- Public: $G=\langle X \mid R\rangle, 10$ subgroups $A_{1}, A_{2}, A_{3}, X_{1}, X_{2}, B_{1}, B_{2}, B_{3}$, $Y_{1}, Y_{2} \leqslant G$ such that $\left[A_{2}, Y_{1}\right]=\left[A_{3}, Y_{2}\right]=\left[B_{1}, X_{1}\right]=\left[B_{2}, X_{2}\right]=1$.
- Alice: picks a random $a_{1} \in A_{1}, a_{2} \in A_{2}, a_{3} \in A_{3}, x_{1} \in X_{1}$, $x_{2} \in X_{2}$, and sends $a_{1} x_{1}, x_{1}^{-1} a_{2} x_{2}$ and $x_{2}^{-1} a_{3}$.
- Bob: picks a random $b_{1} \in B_{1}, b_{2} \in B_{2}, b_{3} \in B_{3}, y_{1} \in Y_{1}, y_{2} \in Y_{2}$, and sends $b_{1} y_{1}, y_{1}^{-1} b_{2} y_{2}$ and $y_{2}^{-1} b_{3}$.
- Eve: knows

Kurt's protocol (2006)

- Public: $G=\langle X \mid R\rangle, 10$ subgroups $A_{1}, A_{2}, A_{3}, X_{1}, X_{2}, B_{1}, B_{2}, B_{3}$, $Y_{1}, Y_{2} \leqslant G$ such that $\left[A_{2}, Y_{1}\right]=\left[A_{3}, Y_{2}\right]=\left[B_{1}, X_{1}\right]=\left[B_{2}, X_{2}\right]=1$.
- Alice: picks a random $a_{1} \in A_{1}, a_{2} \in A_{2}, a_{3} \in A_{3}, x_{1} \in X_{1}$, $x_{2} \in X_{2}$, and sends $a_{1} x_{1}, x_{1}^{-1} a_{2} x_{2}$ and $x_{2}^{-1} a_{3}$.
- Bob: picks a random $b_{1} \in B_{1}, b_{2} \in B_{2}, b_{3} \in B_{3}, y_{1} \in Y_{1}, y_{2} \in Y_{2}$, and sends $b_{1} y_{1}, y_{1}^{-1} b_{2} y_{2}$ and $y_{2}^{-1} b_{3}$.
- Common secret: Alice: $a_{1}\left(b_{1} y_{1}\right) a_{2}\left(y_{1}^{-1} b_{2} y_{2}\right) a_{3}\left(y_{2}^{-1} b_{3}\right)$ Bob: $\quad\left(a_{1} x_{1}\right) b_{1}\left(x_{1}^{-1} a_{2} x_{2}\right) b_{2}\left(x_{2}^{-1} a_{3}\right) b_{3}$.
- Eve: knows

Kurt's protocol (2006)

- Public: $G=\langle X \mid R\rangle, 10$ subgroups $A_{1}, A_{2}, A_{3}, X_{1}, X_{2}, B_{1}, B_{2}, B_{3}$, $Y_{1}, Y_{2} \leqslant G$ such that $\left[A_{2}, Y_{1}\right]=\left[A_{3}, Y_{2}\right]=\left[B_{1}, X_{1}\right]=\left[B_{2}, X_{2}\right]=1$.
- Alice: picks a random $a_{1} \in A_{1}, a_{2} \in A_{2}, a_{3} \in A_{3}, x_{1} \in X_{1}$, $x_{2} \in X_{2}$, and sends $a_{1} x_{1}, x_{1}^{-1} a_{2} x_{2}$ and $x_{2}^{-1} a_{3}$.
- Bob: picks a random $b_{1} \in B_{1}, b_{2} \in B_{2}, b_{3} \in B_{3}, y_{1} \in Y_{1}, y_{2} \in Y_{2}$, and sends $b_{1} y_{1}, y_{1}^{-1} b_{2} y_{2}$ and $y_{2}^{-1} b_{3}$.
- Common secret: Alice: $a_{1}\left(b_{1} y_{1}\right) a_{2}\left(y_{1}^{-1} b_{2} y_{2}\right) a_{3}\left(y_{2}^{-1} b_{3}\right)$ Bob: $\quad\left(a_{1} x_{1}\right) b_{1}\left(x_{1}^{-1} a_{2} x_{2}\right) b_{2}\left(x_{2}^{-1} a_{3}\right) b_{3}$.
- Eve: knows $a_{1} x_{1}, x_{1}^{-1} a_{2} x_{2}, x_{2}^{-1} a_{3}, b_{1} y_{1}, y_{1}^{-1} b_{2} y_{2}$ and $y_{2}^{-1} b_{3}$, and needs $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3}$.

Kurt's protocol (2006)

- Public: $G=\langle X \mid R\rangle, 10$ subgroups $A_{1}, A_{2}, A_{3}, X_{1}, X_{2}, B_{1}, B_{2}, B_{3}$, $Y_{1}, Y_{2} \leqslant G$ such that $\left[A_{2}, Y_{1}\right]=\left[A_{3}, Y_{2}\right]=\left[B_{1}, X_{1}\right]=\left[B_{2}, X_{2}\right]=1$.
- Alice: picks a random $a_{1} \in A_{1}, a_{2} \in A_{2}, a_{3} \in A_{3}, x_{1} \in X_{1}$, $x_{2} \in X_{2}$, and sends $a_{1} x_{1}, x_{1}^{-1} a_{2} x_{2}$ and $x_{2}^{-1} a_{3}$.
- Bob: picks a random $b_{1} \in B_{1}, b_{2} \in B_{2}, b_{3} \in B_{3}, y_{1} \in Y_{1}, y_{2} \in Y_{2}$, and sends $b_{1} y_{1}, y_{1}^{-1} b_{2} y_{2}$ and $y_{2}^{-1} b_{3}$.
- Common secret: Alice: $a_{1}\left(b_{1} y_{1}\right) a_{2}\left(y_{1}^{-1} b_{2} y_{2}\right) a_{3}\left(y_{2}^{-1} b_{3}\right)$ Bob: $\quad\left(a_{1} x_{1}\right) b_{1}\left(x_{1}^{-1} a_{2} x_{2}\right) b_{2}\left(x_{2}^{-1} a_{3}\right) b_{3}$.
- Eve: knows $a_{1} x_{1}, x_{1}^{-1} a_{2} x_{2}, x_{2}^{-1} a_{3}, b_{1} y_{1}, y_{1}^{-1} b_{2} y_{2}$ and $y_{2}^{-1} b_{3}$, and needs $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3}$.
This can be done by recovering a_{1}, a_{2}, a_{3} from $a_{1} a_{2} a_{3}=$ $=\left(a_{1} x_{1}\right)\left(x_{1}^{-1} a_{2} x_{2}\right)\left(x_{2}^{-1} a_{3}\right)$, i.e. solving the Triple Factorization Search Problem.

Kurt's protocol (2006)

- Public: $G=\langle X \mid R\rangle, 10$ subgroups $A_{1}, A_{2}, A_{3}, X_{1}, X_{2}, B_{1}, B_{2}, B_{3}$, $Y_{1}, Y_{2} \leqslant G$ such that $\left[A_{2}, Y_{1}\right]=\left[A_{3}, Y_{2}\right]=\left[B_{1}, X_{1}\right]=\left[B_{2}, X_{2}\right]=1$.
- Alice: picks a random $a_{1} \in A_{1}, a_{2} \in A_{2}, a_{3} \in A_{3}, x_{1} \in X_{1}$, $x_{2} \in X_{2}$, and sends $a_{1} x_{1}, x_{1}^{-1} a_{2} x_{2}$ and $x_{2}^{-1} a_{3}$.
- Bob: picks a random $b_{1} \in B_{1}, b_{2} \in B_{2}, b_{3} \in B_{3}, y_{1} \in Y_{1}, y_{2} \in Y_{2}$, and sends $b_{1} y_{1}, y_{1}^{-1} b_{2} y_{2}$ and $y_{2}^{-1} b_{3}$.
- Common secret: Alice: $a_{1}\left(b_{1} y_{1}\right) a_{2}\left(y_{1}^{-1} b_{2} y_{2}\right) a_{3}\left(y_{2}^{-1} b_{3}\right)$ Bob: $\quad\left(a_{1} x_{1}\right) b_{1}\left(x_{1}^{-1} a_{2} x_{2}\right) b_{2}\left(x_{2}^{-1} a_{3}\right) b_{3}$.
- Eve: knows $a_{1} x_{1}, x_{1}^{-1} a_{2} x_{2}, x_{2}^{-1} a_{3}, b_{1} y_{1}, y_{1}^{-1} b_{2} y_{2}$ and $y_{2}^{-1} b_{3}$, and needs $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3}$.
This can be done by recovering a_{1}, a_{2}, a_{3} from $a_{1} a_{2} a_{3}=$ $=\left(a_{1} x_{1}\right)\left(x_{1}^{-1} a_{2} x_{2}\right)\left(x_{2}^{-1} a_{3}\right)$, i.e. solving the Triple Factorization Search Problem.

Stickel's protocol (2005)

- Public: A finite group $G, w \in G$, and $a, b \in G$ with $a b \neq b a$ (of order N and M, respectively).
- Alice: picks a random $0<n<N$ and $0<m<M$, and sends
- Bob: picks a random $0<n^{\prime}<N$ and $0<m^{\prime}<M$, and sends
- Common secret: Alice: $a^{n}\left(a^{n^{\prime}} w b^{m^{\prime}}\right) b^{m}=a^{n+n^{\prime}} w b^{m+m^{\prime}}$

- Eve: knows $a, b, a^{n} w b^{m}$ and $a^{n^{\prime}} w b^{m^{\prime}}$, and needs $a^{n+n^{\prime}} w b^{m+m}$

This can be done by solving a variation of the Discrete Logarithm Problem (in G).
Or... finding alternative $x, y \in G$ such that $x a=a x, y b=b y$ and $x w y=a^{n} w b^{m}$. Then,
$x\left(a^{n^{\prime}} w^{\prime} b^{m^{\prime}}\right) y=a^{n^{\prime}} x w y b^{m^{\prime}}=a^{n^{\prime}}\left(a^{n} w b^{m}\right) b^{m^{\prime}}=a^{n 1} n^{n} w^{\prime} b^{m} \cdot m^{m}$

Stickel's protocol (2005)

- Public: A finite group $G, w \in G$, and $a, b \in G$ with $a b \neq b a$ (of order N and M, respectively).
- Alice: picks a random $0<n<N$ and $0<m<M$, and sends $a^{n} w b^{m}$.
- Bob: picks a random $0<n^{\prime}<N$ and $0<m^{\prime}<M$, and sends
- Common secret: Alice: Bob:

- Eve: knows and

This can be done by solving a variation of the Discrete Logarithm Problem (in G)
Or... finding alternative $x, y \in G$ such that $x a=a x, y b=b y$ and $x w y=a^{n} w b^{m}$. Then,

- Public: A finite group $G, w \in G$, and $a, b \in G$ with $a b \neq b a$ (of order N and M, respectively).
- Alice: picks a random $0<n<N$ and $0<m<M$, and sends $a^{n} w b^{m}$.
- Bob: picks a random $0<n^{\prime}<N$ and $0<m^{\prime}<M$, and sends $a^{n^{\prime}} w b^{m^{\prime}}$.
- Common secret: Alice: Bob:

- Eve: knows and and needs a^{\prime} This can be done by solving a variation of the Discrete Logarithm Problem (in G)
Or... finding alternative $x, y \in G$ such that $x a=a x, y b=b y$ and $x w y=a^{n} w b^{m}$. Then,

Stickel's protocol (2005)

- Public: A finite group $G, w \in G$, and $a, b \in G$ with $a b \neq b a$ (of order N and M, respectively).
- Alice: picks a random $0<n<N$ and $0<m<M$, and sends $a^{n} w b^{m}$.
- Bob: picks a random $0<n^{\prime}<N$ and $0<m^{\prime}<M$, and sends $a^{n^{\prime}} w b^{m^{\prime}}$.
- Common secret: Alice: $a^{n}\left(a^{n^{\prime}} w b^{m^{\prime}}\right) b^{m}=a^{n+n^{\prime}} w b^{m+m^{\prime}}$ Bob: $\quad a^{n^{\prime}}\left(a^{n} w b^{m}\right) b^{m^{\prime}}=a^{n+n^{\prime}} w b^{m+m^{\prime}}$.

Stickel's protocol (2005)

- Public: A finite group $G, w \in G$, and $a, b \in G$ with $a b \neq b a$ (of order N and M, respectively).
- Alice: picks a random $0<n<N$ and $0<m<M$, and sends $a^{n} w b^{m}$.
- Bob: picks a random $0<n^{\prime}<N$ and $0<m^{\prime}<M$, and sends $a^{n^{\prime}} w b^{m^{\prime}}$.
- Common secret: Alice: $a^{n}\left(a^{n^{\prime}} w b^{m^{\prime}}\right) b^{m}=a^{n+n^{\prime}} w b^{m+m^{\prime}}$ Bob: $\quad a^{n^{\prime}}\left(a^{n} w b^{m}\right) b^{m^{\prime}}=a^{n+n^{\prime}} w b^{m+m^{\prime}}$.
- Eve: knows $a, b, a^{n} w b^{m}$ and $a^{n^{\prime}} w b^{m^{\prime}}$, and needs $a^{n+n^{\prime}} w b^{m+m^{\prime}}$.

This can be done by solving a variation of the Discrete Logarithm Problem (in G)
Or... finding alternative $x, y \in G$ such that $x a=a x, y b=b y$ and $x w y=a^{n} w b^{m}$. Then,

Stickel's protocol (2005)

- Public: A finite group $G, w \in G$, and $a, b \in G$ with $a b \neq b a$ (of order N and M, respectively).
- Alice: picks a random $0<n<N$ and $0<m<M$, and sends $a^{n} w b^{m}$.
- Bob: picks a random $0<n^{\prime}<N$ and $0<m^{\prime}<M$, and sends $a^{n^{\prime}} w b^{m^{\prime}}$.
- Common secret: Alice: $a^{n}\left(a^{n^{\prime}} w b^{m^{\prime}}\right) b^{m}=a^{n+n^{\prime}} w b^{m+m^{\prime}}$ Bob: $\quad a^{n^{\prime}}\left(a^{n} w b^{m}\right) b^{m^{\prime}}=a^{n+n^{\prime}} w b^{m+m^{\prime}}$.
- Eve: knows $a, b, a^{n} w b^{m}$ and $a^{n^{\prime}} w b^{m^{\prime}}$, and needs $a^{n+n^{\prime}} w b^{m+m^{\prime}}$. This can be done by solving a variation of the Discrete Logarithm Problem (in G).
Or... finding alternative $x, y \in G$ such that $x a=a x, y b=b y$ and $x w y=a^{n} w b^{m}$. Then,

Stickel's protocol (2005)

- Public: A finite group $G, w \in G$, and $a, b \in G$ with $a b \neq b a$ (of order N and M, respectively).
- Alice: picks a random $0<n<N$ and $0<m<M$, and sends $a^{n} w b^{m}$.
- Bob: picks a random $0<n^{\prime}<N$ and $0<m^{\prime}<M$, and sends $a^{n^{\prime}} w b^{m^{\prime}}$.
- Common secret: Alice: $a^{n}\left(a^{n^{\prime}} w b^{m^{\prime}}\right) b^{m}=a^{n+n^{\prime}} w b^{m+m^{\prime}}$

$$
\text { Bob: } \quad a^{n^{\prime}}\left(a^{n} w b^{m}\right) b^{m^{\prime}}=a^{n+n^{\prime}} w b^{m+m^{\prime}} .
$$

- Eve: knows $a, b, a^{n} w b^{m}$ and $a^{n^{\prime}} w b^{m^{\prime}}$, and needs $a^{n+n^{\prime}} w b^{m+m^{\prime}}$.

This can be done by solving a variation of the Discrete Logarithm Problem (in G).
Or... finding alternative $x, y \in G$ such that $x a=a x, y b=b y$ and $x w y=a^{n} w b^{m}$. Then,

$$
x\left(a^{n^{\prime}} w b^{m^{\prime}}\right) y=a^{n^{\prime}} x w y b^{m^{\prime}}=a^{n^{\prime}}\left(a^{n} w b^{m}\right) b^{m^{\prime}}=a^{n+n^{\prime}} w b^{m+m^{\prime}} .
$$

Outline

(1) The origins of public key cryptography
(2) A protocol based on the word problem

3 Protocols based on the conjugacy problem
4 Protocols based on the factorization problem
(5) Anshel-Anshel-Goldfeld protocol

6 Some authentication protocols

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without using any commuting subgroups).

- Public: A group
- Alice: picks a word $x=x\left(a_{1}, \ldots, a_{m}\right)$, and sends
- Bob: picks a word $v=y\left(b_{1}\right.$
and elements
a_{1}
- Common secret:

Alice:
Bob:

- Eve: knows
needs
This can be done by solving the Multiple Restricted Search Conjugacy Problem.

But there are subtleties here..

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without using any commuting subgroups).

- Public: A group $G=\langle X \mid R\rangle$ and elements $a_{1}, \ldots, a_{m} \in G$, $b_{1}, \ldots, b_{n} \in G$.
- Alice: picks a word $x=x\left(a_{1}, \ldots, a_{m}\right)$, and sends
- Bob: picks a word $y=y\left(b_{1}, \ldots, b_{n}\right)$, and sends
- Common secret: $\begin{aligned} \text { Alice: } & x\left(a_{1}^{y}, \ldots, a_{m}^{y}\right)=x^{y}=y^{-1} x y, \text { and } x^{-1}\left(y^{-1} x y\right)=[x, y] \\ \text { Bob: } & y\left(b_{1}^{x}, \ldots, b_{n}^{x}\right)=y^{x}=x^{-1} y x, \text { and }\left(x^{-1} y x\right)^{-1} y=[x, y] .\end{aligned}$
- Eve: knows

This can be done by solving the Multiple Restricted Search Conjugacy Problem.
But there are subtleties here..

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without using any commuting subgroups).

- Public: A group $G=\langle X \mid R\rangle$ and elements $a_{1}, \ldots, a_{m} \in G$, $b_{1}, \ldots, b_{n} \in G$.
- Alice: picks a word $x=x\left(a_{1}, \ldots, a_{m}\right)$, and sends $b_{1}^{x}, \ldots, b_{n}^{x}$.
- Common secret: $\begin{aligned} \text { Alice: } & x\left(a_{1}^{y}, \ldots, a_{m}^{y}\right)=x^{y}=y^{-1} x y, \text { and } x^{-1}\left(y^{-1} x y\right)=[x, y] \\ \text { Bob: } & y\left(b_{1} \ldots, b_{n}^{x}\right)=y^{x}=x^{-1} y x, \text { and }\left(x^{-1} y x\right)^{-1} y=[x, y] .\end{aligned}$
- Eve: knows

This can be done by solving the Multiple Restricted Search Conjugacy Problem.

But there are subtleties here

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without using any commuting subgroups).

- Public: A group $G=\langle X \mid R\rangle$ and elements $a_{1}, \ldots, a_{m} \in G$, $b_{1}, \ldots, b_{n} \in G$.
- Alice: picks a word $x=x\left(a_{1}, \ldots, a_{m}\right)$, and sends $b_{1}^{x}, \ldots, b_{n}^{x}$.
- Bob: picks a word $y=y\left(b_{1}, \ldots, b_{n}\right)$, and sends $a_{1}^{y}, \ldots, a_{m}^{y}$.
- Common secret:

Alice: Bob:

- Eve: knows

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without using any commuting subgroups).

- Public: A group $G=\langle X \mid R\rangle$ and elements $a_{1}, \ldots, a_{m} \in G$, $b_{1}, \ldots, b_{n} \in G$.
- Alice: picks a word $x=x\left(a_{1}, \ldots, a_{m}\right)$, and sends $b_{1}^{x}, \ldots, b_{n}^{x}$.
- Bob: picks a word $y=y\left(b_{1}, \ldots, b_{n}\right)$, and sends $a_{1}^{y}, \ldots, a_{m}^{y}$.
- Common secret:

Alice: $\quad x\left(a_{1}^{y}, \ldots, a_{m}^{y}\right)=x^{y}=y^{-1} x y$, and $x^{-1}\left(y^{-1} x y\right)=[x, y]$
Bob: $\quad y\left(b_{1}^{x}, \ldots, b_{n}^{x}\right)=y^{x}=x^{-1} y x$, and $\left(x^{-1} y x\right)^{-1} y=[x, y]$.

- Eve: knows
needs
This can be done by solving the Multiple Restricted Search Conjugacy Problem.
But there are subtleties here..

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without using any commuting subgroups).

- Public: A group $G=\langle X \mid R\rangle$ and elements $a_{1}, \ldots, a_{m} \in G$, $b_{1}, \ldots, b_{n} \in G$.
- Alice: picks a word $x=x\left(a_{1}, \ldots, a_{m}\right)$, and sends $b_{1}^{x}, \ldots, b_{n}^{x}$.
- Bob: picks a word $y=y\left(b_{1}, \ldots, b_{n}\right)$, and sends $a_{1}^{y}, \ldots, a_{m}^{y}$.
- Common secret:

Alice: $\quad x\left(a_{1}^{y}, \ldots, a_{m}^{y}\right)=x^{y}=y^{-1} x y$, and $x^{-1}\left(y^{-1} x y\right)=[x, y]$
Bob: $\quad y\left(b_{1}^{x}, \ldots, b_{n}^{x}\right)=y^{x}=x^{-1} y x$, and $\left(x^{-1} y x\right)^{-1} y=[x, y]$.

- Eve: knows $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}, a_{1}^{y}, \ldots, a_{m}^{y}, b_{1}^{x}, \ldots, b_{n}^{x}$ and needs $[x, y]$.
This can be done by solving the Multiple Restricted Search Conjugacy Problem.

But there are subtleties here.

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without using any commuting subgroups).

- Public: A group $G=\langle X \mid R\rangle$ and elements $a_{1}, \ldots, a_{m} \in G$, $b_{1}, \ldots, b_{n} \in G$.
- Alice: picks a word $x=x\left(a_{1}, \ldots, a_{m}\right)$, and sends $b_{1}^{x}, \ldots, b_{n}^{x}$.
- Bob: picks a word $y=y\left(b_{1}, \ldots, b_{n}\right)$, and sends $a_{1}^{y}, \ldots, a_{m}^{y}$.
- Common secret:

Alice: $\quad x\left(a_{1}^{y}, \ldots, a_{m}^{y}\right)=x^{y}=y^{-1} x y$, and $x^{-1}\left(y^{-1} x y\right)=[x, y]$
Bob: $\quad y\left(b_{1}^{x}, \ldots, b_{n}^{x}\right)=y^{x}=x^{-1} y x$, and $\left(x^{-1} y x\right)^{-1} y=[x, y]$.

- Eve: knows $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}, a_{1}^{y}, \ldots, a_{m}^{y}, b_{1}^{x}, \ldots, b_{n}^{x}$ and needs $[x, y]$.
This can be done by solving the Multiple Restricted Search Conjugacy Problem.

But there are subtleties here.

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without using any commuting subgroups).

- Public: A group $G=\langle X \mid R\rangle$ and elements $a_{1}, \ldots, a_{m} \in G$, $b_{1}, \ldots, b_{n} \in G$.
- Alice: picks a word $x=x\left(a_{1}, \ldots, a_{m}\right)$, and sends $b_{1}^{x}, \ldots, b_{n}^{x}$.
- Bob: picks a word $y=y\left(b_{1}, \ldots, b_{n}\right)$, and sends $a_{1}^{y}, \ldots, a_{m}^{y}$.
- Common secret:

Alice: $\quad x\left(a_{1}^{y}, \ldots, a_{m}^{y}\right)=x^{y}=y^{-1} x y$, and $x^{-1}\left(y^{-1} x y\right)=[x, y]$
Bob: $\quad y\left(b_{1}^{x}, \ldots, b_{n}^{x}\right)=y^{x}=x^{-1} y x$, and $\left(x^{-1} y x\right)^{-1} y=[x, y]$.

- Eve: knows $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}, a_{1}^{y}, \ldots, a_{m}^{y}, b_{1}^{x}, \ldots, b_{n}^{x}$ and needs $[x, y]$.
This can be done by solving the Multiple Restricted Search Conjugacy Problem.
But there are subtleties here...

Anshel-Anshel-Goldfeld protocol (1999)

- The element x conjugating b_{1}, \ldots, b_{n} into $b_{1}^{x}, \ldots, b_{n}^{x}$ need not be unique.
- After solving the Multiple Search Conjugacy Problem, Eve will find $x^{\prime}=c_{b} x \quad$ where $c_{b} \in C_{G}\left(b_{1}\right) \cap \cdots \cap C_{G}\left(b_{n}\right)$, $y^{\prime}=c_{a} y \quad$ where $c_{a} \in C_{G}\left(a_{1}\right) \cap \cdots \cap C_{G}\left(a_{m}\right)$.
- Now, $\left[x^{\prime}, y^{\prime}\right]=[x, y] \Leftrightarrow c_{a}$ commutes with c_{b} :

- The only visible way to ensure this is to have $x^{\prime} \in A$ (so $c_{b} \in A$ and $\left[c_{a}, c_{b}\right]=1$), or $y^{\prime} \in B$.
- Hence, the (unrestricted) Multiple Search Conjugacy Problem does not seem to be enough in order to break the system.

Anshel-Anshel-Goldfeld protocol (1999)

- The element x conjugating b_{1}, \ldots, b_{n} into $b_{1}^{x}, \ldots, b_{n}^{x}$ need not be unique.
- After solving the Multiple Search Conjugacy Problem, Eve will find $x^{\prime}=c_{b} x \quad$ where $c_{b} \in C_{G}\left(b_{1}\right) \cap \cdots \cap C_{G}\left(b_{n}\right)$,

$$
y^{\prime}=c_{a} y \quad \text { where } c_{a} \in C_{G}\left(a_{1}\right) \cap \cdots \cap C_{G}\left(a_{m}\right) .
$$

- Now, $\left[x^{\prime}, y^{\prime}\right]=[x, y] \Leftrightarrow c_{a}$ commutes with c_{b} :

- The only visible way to ensure this is to have $x^{\prime} \in A$ (so $c_{b} \in A$ and $\left[c_{a}, c_{b}\right]=1$), or $y^{\prime} \in B$.
- Hence, the (unrestricted) Multiple Search Conjugacy Problem does not seem to be enough in order to break the system.

Anshel-Anshel-Goldfeld protocol (1999)

- The element x conjugating b_{1}, \ldots, b_{n} into $b_{1}^{x}, \ldots, b_{n}^{x}$ need not be unique.
- After solving the Multiple Search Conjugacy Problem, Eve will find $x^{\prime}=c_{b} x \quad$ where $c_{b} \in C_{G}\left(b_{1}\right) \cap \cdots \cap C_{G}\left(b_{n}\right)$,

$$
y^{\prime}=c_{a} y \quad \text { where } c_{a} \in C_{G}\left(a_{1}\right) \cap \cdots \cap C_{G}\left(a_{m}\right) .
$$

- Now, $\left[x^{\prime}, y^{\prime}\right]=[x, y] \Leftrightarrow c_{a}$ commutes with c_{b} :

$$
\left[x^{\prime}, y^{\prime}\right]=\left(x^{-1} c_{b}^{-1}\right)\left(y^{-1} c_{a}^{-1}\right)\left(c_{b} x\right)\left(c_{a} y\right)=x^{-1} y^{-1} c_{b}^{-1} c_{a}^{-1} c_{b} c_{a} x y .
$$

- The only visible way to ensure this is to have $x^{\prime} \in A$ (so $c_{b} \in A$ and $\left[c_{a}, c_{b}\right]=1$), or $y^{\prime} \in B$.
- Hence, the (unrestricted) Multiple Search Conjugacy Problem does not seem to be enough in order to break the system.

Anshel-Anshel-Goldfeld protocol (1999)

- The element x conjugating b_{1}, \ldots, b_{n} into $b_{1}^{x}, \ldots, b_{n}^{x}$ need not be unique.
- After solving the Multiple Search Conjugacy Problem, Eve will find $x^{\prime}=c_{b} x \quad$ where $c_{b} \in C_{G}\left(b_{1}\right) \cap \cdots \cap C_{G}\left(b_{n}\right)$,

$$
y^{\prime}=c_{a} y \quad \text { where } c_{a} \in C_{G}\left(a_{1}\right) \cap \cdots \cap C_{G}\left(a_{m}\right) .
$$

- Now, $\left[x^{\prime}, y^{\prime}\right]=[x, y] \Leftrightarrow c_{a}$ commutes with c_{b} :

$$
\left[x^{\prime}, y^{\prime}\right]=\left(x^{-1} c_{b}^{-1}\right)\left(y^{-1} c_{a}^{-1}\right)\left(c_{b} x\right)\left(c_{a} y\right)=x^{-1} y^{-1} c_{b}^{-1} c_{a}^{-1} c_{b} c_{a} x y .
$$

- The only visible way to ensure this is to have $x^{\prime} \in A$ (so $c_{b} \in A$ and $\left[c_{a}, c_{b}\right]=1$), or $y^{\prime} \in B$.
- Hence, the (unrestricted) Multiple Search Conjugacy Problem does not seem to be enough in order to break the system.

Anshel-Anshel-Goldfeld protocol (1999)

- The element x conjugating b_{1}, \ldots, b_{n} into $b_{1}^{x}, \ldots, b_{n}^{x}$ need not be unique.
- After solving the Multiple Search Conjugacy Problem, Eve will find $x^{\prime}=c_{b} x \quad$ where $c_{b} \in C_{G}\left(b_{1}\right) \cap \cdots \cap C_{G}\left(b_{n}\right)$,

$$
y^{\prime}=c_{a} y \quad \text { where } c_{a} \in C_{G}\left(a_{1}\right) \cap \cdots \cap C_{G}\left(a_{m}\right) .
$$

- Now, $\left[x^{\prime}, y^{\prime}\right]=[x, y] \Leftrightarrow c_{a}$ commutes with c_{b} :

$$
\left[x^{\prime}, y^{\prime}\right]=\left(x^{-1} c_{b}^{-1}\right)\left(y^{-1} c_{a}^{-1}\right)\left(c_{b} x\right)\left(c_{a} y\right)=x^{-1} y^{-1} c_{b}^{-1} c_{a}^{-1} c_{b} c_{a} x y .
$$

- The only visible way to ensure this is to have $x^{\prime} \in A$ (so $c_{b} \in A$ and $\left[c_{a}, c_{b}\right]=1$), or $y^{\prime} \in B$.
- Hence, the (unrestricted) Multiple Search Conjugacy Problem does not seem to be enough in order to break the system.

Outline

(1) The origins of public key cryptography
(2) A protocol based on the word problem

3 Protocols based on the conjugacy problem
4 Protocols based on the factorization problem
(5) Anshel-Anshel-Goldfeld protocol

6 Some authentication protocols

Authentication protocols

- These are protocols to ensure that somebody is really who is claiming to be.
- General setting: Every player has a public name, and a secret key. When I call somebody by his name, he must provide me a proof that he knows the corresponding secret key (so, he is who is supposed to be), but without revealing any information about the key itself.
- Many key establishment protocols can be modified to become authentication protocols.

Authentication protocols

- These are protocols to ensure that somebody is really who is claiming to be.
- General setting: Every player has a public name, and a secret key. When I call somebody by his name, he must provide me a proof that he knows the corresponding secret key (so, he is who is supposed to be), but without revealing any information about the key itself.
- Many key establishment protocols can be modified to become authentication protocols.

Authentication protocols

- These are protocols to ensure that somebody is really who is claiming to be.
- General setting: Every player has a public name, and a secret key. When I call somebody by his name, he must provide me a proof that he knows the corresponding secret key (so, he is who is supposed to be), but without revealing any information about the key itself.
- Many key establishment protocols can be modified to become authentication protocols.

Diffie-Hellman authentication protocol

- Public: p (prime) and $g \notin p \mathbb{Z}$.
- Every player has a secret key $a \in \mathbb{N}$, and public name $g^{a} \bmod p$.
- Bob, the verifier, wants to be sure that Alice (say, Ms. " $g^{a} \bmod p$ "), the prover, is who is supposed to be.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^{b} \bmod p($ a challenge).
- Alice: sends
- Bob: verifies whether $\left(g^{b}\right)^{a}=\left(g^{a}\right)^{b} \bmod p$.
- Eve: knows p, g and $g^{a} \bmod p$, and needs a to be able to impersonate Alice. This is the Discrete Logarithm Problem.

Diffie-Hellman authentication protocol

- Public: p (prime) and $g \notin p \mathbb{Z}$.
- Every player has a secret key $a \in \mathbb{N}$, and public name $g^{a} \bmod p$.
- Bob, the verifier, wants to be sure that Alice (say, Ms. " $g^{a} \bmod p$ "), the prover, is who is supposed to be.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^{b} \bmod p$ (a challenge).
- Alice: sends
- Bob: verifies whether $\left(g^{b}\right)^{a}=\left(g^{a}\right)^{b} \bmod p$.
- Eve: knows p, g and $g^{a} \bmod p$, and needs a to be able to impersonate Alice. This is the Discrete Logarithm Problem.

Diffie-Hellman authentication protocol

- Public: p (prime) and $g \notin p \mathbb{Z}$.
- Every player has a secret key $a \in \mathbb{N}$, and public name $g^{a} \bmod p$.
- Bob, the verifier, wants to be sure that Alice (say, Ms. " $g^{a} \bmod p$ "), the prover, is who is supposed to be.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^{b} \bmod p$ (a challenge)
- Alice: sends
- Bob: verifies whether $\left(g^{b}\right)^{a}=\left(g^{a}\right)^{b} \bmod p$.
- Eve: knows p, g and $g^{a} \bmod p$, and needs a to be able to impersonate Alice. This is the Discrete Logarithm Problem.

Diffie-Hellman authentication protocol

- Public: p (prime) and $g \notin p \mathbb{Z}$.
- Every player has a secret key $a \in \mathbb{N}$, and public name $g^{a} \bmod p$.
- Bob, the verifier, wants to be sure that Alice (say, Ms. " $g^{a} \bmod p$ "), the prover, is who is supposed to be.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^{b} \bmod p($ a challenge).
- Alice: sends
- Bob: verifies whether $\left(g^{b}\right)^{a}=\left(g^{a}\right)^{b} \bmod p$.
- Eve: knows

Diffie-Hellman authentication protocol

- Public: p (prime) and $g \notin p \mathbb{Z}$.
- Every player has a secret key $a \in \mathbb{N}$, and public name $g^{a} \bmod p$.
- Bob, the verifier, wants to be sure that Alice (say, Ms. " $g^{a} \bmod p$ "), the prover, is who is supposed to be.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^{b} \bmod p($ a challenge).
- Alice: sends $\left(g^{b}\right)^{a} \bmod p$.
- Bob: verifies whether $\left(g^{b}\right)^{a}=\left(g^{a}\right)^{b} \bmod p$.
- Eve: knows p, g and g^{a} mod p, and needs a to be able to impersonate Alice. This is the Discrete Logarithm Problem.

Diffie-Hellman authentication protocol

- Public: p (prime) and $g \notin p \mathbb{Z}$.
- Every player has a secret key $a \in \mathbb{N}$, and public name $g^{a} \bmod p$.
- Bob, the verifier, wants to be sure that Alice (say, Ms. " $g^{a} \bmod p$ "), the prover, is who is supposed to be.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^{b} \bmod p($ a challenge).
- Alice: sends $\left(g^{b}\right)^{a} \bmod p$.
- Bob: verifies whether $\left(g^{b}\right)^{a}=\left(g^{a}\right)^{b} \bmod p$.
- Eve: knows

Diffie-Hellman authentication protocol

- Public: p (prime) and $g \notin p \mathbb{Z}$.
- Every player has a secret key $a \in \mathbb{N}$, and public name $g^{a} \bmod p$.
- Bob, the verifier, wants to be sure that Alice (say, Ms. " $g^{a} \bmod p$ "), the prover, is who is supposed to be.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^{b} \bmod p($ a challenge).
- Alice: sends $\left(g^{b}\right)^{a} \bmod p$.
- Bob: verifies whether $\left(g^{b}\right)^{a}=\left(g^{a}\right)^{b} \bmod p$.
- Eve: knows p, g and $g^{a} \bmod p$, and needs a to be able to impersonate Alice.

Diffie-Hellman authentication protocol

- Public: p (prime) and $g \notin p \mathbb{Z}$.
- Every player has a secret key $a \in \mathbb{N}$, and public name $g^{a} \bmod p$.
- Bob, the verifier, wants to be sure that Alice (say, Ms. " $g^{a} \bmod p$ "), the prover, is who is supposed to be.
- Bob: picks a random $b \in \mathbb{N}$, and sends $g^{b} \bmod p($ a challenge $)$.
- Alice: sends $\left(g^{b}\right)^{a} \bmod p$.
- Bob: verifies whether $\left(g^{b}\right)^{a}=\left(g^{a}\right)^{b} \bmod p$.
- Eve: knows p, g and $g^{a} \bmod p$, and needs a to be able to impersonate Alice. This is the Discrete Logarithm Problem.

Diffie-Hellman-like authentication protocol

- Public: $G=\langle X \mid R\rangle$ and $A, B \subseteq G$ such that $[a, b]=1 \forall a \in A$, $\forall b \in B$.
- Every player has a secret key $a \in A$, and public name (u, u^{a}), where $u \in G$ is arbitrary (and $u^{a}=a^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{\alpha}\right)^{\prime}$ ") is who is supposed to be.
- Bob: picks a random $b \in B$, and sends $u^{b}=b^{-1} u b$.
- Alice: sends $\left(u^{b}\right)^{a}=u^{b a}$
- Bob: verifies whether $u^{b a}=\left(u^{a}\right)^{b}$.
- Eve: knows u and u^{a}, and needs a to be able to authenticate as Alice to Bob. This is the Discrete Logarithm Problem.

Diffie-Hellman-like authentication protocol

- Public: $G=\langle X \mid R\rangle$ and $A, B \subseteq G$ such that $[a, b]=1 \forall a \in A$, $\forall b \in B$.
- Every player has a secret key $a \in A$, and public name $\left(u, u^{a}\right)$, where $u \in G$ is arbitrary (and $u^{a}=a^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{a}\right)$ ") is who is supposed to be.
- Bob: picks a random $b \in B$, and sends $u^{b}=b^{-1} u b$.
- Alice: sends $\left(u^{b}\right)^{a}=u^{b a}$
- Bob: verifies whether $u^{b a}=\left(u^{a}\right)^{b}$
- Eve: knows u and u^{a}, and needs a to be able to authenticate as Alice to Bob. This is the Discrete Logarithm Problem.

Diffie-Hellman-like authentication protocol

- Public: $G=\langle X \mid R\rangle$ and $A, B \subseteq G$ such that $[a, b]=1 \forall a \in A$, $\forall b \in B$.
- Every player has a secret key $a \in A$, and public name $\left(u, u^{a}\right)$, where $u \in G$ is arbitrary (and $u^{a}=a^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{a}\right)$ ") is who is supposed to be.
- Bob: picks a random $b \in B$, and sends $u^{b}=b^{-1} u b$.
- Alice: sends $\left(u^{b}\right)^{a}=u^{b a}$.
- Bob: verifies whether $u^{b a}=\left(u^{a}\right)^{b}$
- Eve: knows u and u^{a}, and needs a to be able to authenticate as Alice to Bob. This is the Discrete Logarithm Problem.

Diffie-Hellman-like authentication protocol

- Public: $G=\langle X \mid R\rangle$ and $A, B \subseteq G$ such that $[a, b]=1 \forall a \in A$, $\forall b \in B$.
- Every player has a secret key $a \in A$, and public name $\left(u, u^{a}\right)$, where $u \in G$ is arbitrary (and $u^{a}=a^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{a}\right)$ ") is who is supposed to be.
- Bob: picks a random $b \in B$, and sends $u^{b}=b^{-1} u b$.
- Alice: sends $\left(u^{b}\right)^{a}=u^{b a}$.
- Bob: verifies whether $u^{b a}=\left(u^{a}\right)^{b}$
- Eve: knows 4 and and needs a to be able to authenticate as Alice to Bob. This is the Discrete Logarithm Problem.

Diffie-Hellman-like authentication protocol

- Public: $G=\langle X \mid R\rangle$ and $A, B \subseteq G$ such that $[a, b]=1 \forall a \in A$, $\forall b \in B$.
- Every player has a secret key $a \in A$, and public name $\left(u, u^{a}\right)$, where $u \in G$ is arbitrary (and $u^{a}=a^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{a}\right)$ ") is who is supposed to be.
- Bob: picks a random $b \in B$, and sends $u^{b}=b^{-1} u b$.
- Alice: sends $\left(u^{b}\right)^{a}=u^{b a}$.
- Bob: verifies whether
- Eve: knows
and

Diffie-Hellman-like authentication protocol

- Public: $G=\langle X \mid R\rangle$ and $A, B \subseteq G$ such that $[a, b]=1 \forall a \in A$, $\forall b \in B$.
- Every player has a secret key $a \in A$, and public name $\left(u, u^{a}\right)$, where $u \in G$ is arbitrary (and $u^{a}=a^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{a}\right)$ ") is who is supposed to be.
- Bob: picks a random $b \in B$, and sends $u^{b}=b^{-1} u b$.
- Alice: sends $\left(u^{b}\right)^{a}=u^{b a}$.
- Bob: verifies whether $u^{b a}=\left(u^{a}\right)^{b}$.

Diffie-Hellman-like authentication protocol

- Public: $G=\langle X \mid R\rangle$ and $A, B \subseteq G$ such that $[a, b]=1 \forall a \in A$, $\forall b \in B$.
- Every player has a secret key $a \in A$, and public name $\left(u, u^{a}\right)$, where $u \in G$ is arbitrary (and $u^{a}=a^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{2}\right)^{\text {") }}$) is who is supposed to be.
- Bob: picks a random $b \in B$, and sends $u^{b}=b^{-1} u b$.
- Alice: sends $\left(u^{b}\right)^{a}=u^{b a}$.
- Bob: verifies whether $u^{b a}=\left(u^{a}\right)^{b}$.
- Eve: knows u and u^{a}, and needs a to be able to authenticate as Alice to Bob.

Diffie-Hellman-like authentication protocol

- Public: $G=\langle X \mid R\rangle$ and $A, B \subseteq G$ such that $[a, b]=1 \forall a \in A$, $\forall b \in B$.
- Every player has a secret key $a \in A$, and public name $\left(u, u^{a}\right)$, where $u \in G$ is arbitrary (and $u^{a}=a^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{2}\right)^{\text {") }}$) is who is supposed to be.
- Bob: picks a random $b \in B$, and sends $u^{b}=b^{-1} u b$.
- Alice: sends $\left(u^{b}\right)^{a}=u^{b a}$.
- Bob: verifies whether $u^{b a}=\left(u^{a}\right)^{b}$.
- Eve: knows u and u^{a}, and needs a to be able to authenticate as Alice to Bob. This is the Discrete Logarithm Problem.

Sibert-Dehornoy-Girault authentication protocol (2006)

- Public: $G=\langle X \mid R\rangle$ (and no commuting subgroups!).
- Every player has a secret key $a \in A$, and public name where $u \in G$ is arbitrary (and $u^{a}=a^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left.\left(u, u^{a}\right)^{3}\right)$ is who is supposed to be.

First (wrong) attempt:

- Alice: picks a random $b \in B$, and sends $x=b^{-1}\left(u^{a}\right) b$, and
- Bob: verifies whether y
- Eve: can easily impersonate Alice, by acting in the same way (a plays no role).

Sibert-Dehornoy-Girault authentication protocol (2006)

- Public: $G=\langle X \mid R\rangle$ (and no commuting subgroups!).
- Every player has a secret key $a \in A$, and public name $\left(u, u^{a}\right)$, where $u \in G$ is arbitrary (and $u^{a}=a^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left.\left(u, u^{a}\right)^{\prime}\right)$) is who is supposed to be.

First (wrong) attempt:

- Alice: picks a random $b \in B$, and sends $x=b^{-1}\left(u^{a}\right) b$, and
- Bob: verifies whether
- Eve: can easily impersonate Alice, by acting in the same way (a plays no role).

Sibert-Dehornoy-Girault authentication protocol (2006)

- Public: $G=\langle X \mid R\rangle$ (and no commuting subgroups!).
- Every player has a secret key $a \in A$, and public name $\left(u, u^{a}\right)$, where $u \in G$ is arbitrary (and $u^{a}=a^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{a}\right)$)" is who is supposed to be.

First (wrong) attempt:

- Alice: picks a random $b \in B$, and sends $x=b^{-1}\left(u^{a}\right) b$, and
- Bob: verifies whether
- Eve: can easily impersorate Alice, by acting in the same way (a plays no role).

Sibert-Dehornoy-Girault authentication protocol (2006)

- Public: $G=\langle X \mid R\rangle$ (and no commuting subgroups!).
- Every player has a secret key $a \in A$, and public name (u, u^{a}), where $u \in G$ is arbitrary (and $u^{a}=a^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{a}\right)$ ") is who is supposed to be.

First (wrong) attempt:

- Alice: picks a random $b \in B$, and sends $x=b^{-1}\left(u^{a}\right) b$, and $y=b$.
- Bob: verifies whether
- Eve: can easily impersonate Alice, by acting in the same way (a plays no role)

Sibert-Dehornoy-Girault authentication protocol (2006)

- Public: $G=\langle X \mid R\rangle$ (and no commuting subgroups!).
- Every player has a secret key $a \in A$, and public name (u, u^{a}), where $u \in G$ is arbitrary (and $u^{a}=a^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{a}\right)$ ") is who is supposed to be.

First (wrong) attempt:

- Alice: picks a random $b \in B$, and sends $x=b^{-1}\left(u^{a}\right) b$, and $y=b$.
- Bob: verifies whether $y^{-1} \cdot u^{a} \cdot y=x$.
- Eve: can easily impersonate Alice, by acting in the same way (a plays no role).

Sibert-Dehornoy-Girault authentication protocol (2006)

- Public: $G=\langle X \mid R\rangle$ (and no commuting subgroups!).
- Every player has a secret key $a \in A$, and public name $\left(u, u^{a}\right)$, where $u \in G$ is arbitrary (and $u^{a}=a^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{2}\right)^{\prime}$) is who is supposed to be.

First (wrong) attempt:

- Alice: picks a random $b \in B$, and sends $x=b^{-1}\left(u^{a}\right) b$, and $y=b$.
- Bob: verifies whether $y^{-1} \cdot u^{a} \cdot y=x$.
- Eve: can easily impersonate Alice, by acting in the same way (a plays no role).

Sibert-Dehornoy-Girault authentication protocol (2006)

- Public: $G=\langle X \mid R\rangle$ (and no commuting subgroups!).
- Every player has a secret key $a \in A$, and public name (u, u^{a}), where $u \in G$ is arbitrary (and $u^{a}=a^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{\alpha}\right)^{\prime}$ ") is who is supposed to be.

Second (wrong) attempt:

- Alice: picks a random $b \in B$, and sends $x=b^{-1}\left(u^{a}\right) b$, and $z=a b$.
- Bob: verifies whether
- Eve: can easily impersonate Alice: choosing $b \in B$ and sending $x=b^{-1} u b$ and $z=b$ will cheat Bob.

Sibert-Dehornoy-Girault authentication protocol (2006)

- Public: $G=\langle X \mid R\rangle$ (and no commuting subgroups!).
- Every player has a secret key $a \in A$, and public name (u, u^{a}), where $u \in G$ is arbitrary (and $u^{a}=a^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{a}\right)^{\prime}$ ") is who is supposed to be.

Second (wrong) attempt:

- Alice: picks a random $b \in B$, and sends $x=b^{-1}\left(u^{a}\right) b$, and $z=a b$.
- Bob: verifies whether $z^{-1} \cdot u \cdot z=x$.
- Eve: can easily impersonate Alice: choosing $b \in B$ and sending $x=b^{-1} u b$ and $z=b$ will cheat Bob.

Sibert-Dehornoy-Girault authentication protocol (2006)

- Public: $G=\langle X \mid R\rangle$ (and no commuting subgroups!).
- Every player has a secret key $a \in A$, and public name (u, u^{a}), where $u \in G$ is arbitrary (and $u^{a}=a^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{a}\right)$ ") is who is supposed to be.

Second (wrong) attempt:

- Alice: picks a random $b \in B$, and sends $x=b^{-1}\left(u^{a}\right) b$, and $z=a b$.
- Bob: verifies whether $z^{-1} \cdot u \cdot z=x$.
- Eve: can easily impersonate Alice: choosing $b \in B$ and sending $x=b^{-1} u b$ and $z=b$ will cheat Bob.

Sibert-Dehornoy-Girault authentication protocol (2006)

But combining both, it works:

- Alice: picks a random $b \in B$, and sends $x=b^{-1}\left(u^{a}\right) b$ (the commitment).
- Bob: picks and sends a random bit $\alpha=0,1$.
- Alice: sends $y=b$ if $\alpha=0$ and $z=a b$ if $\alpha=1$.
- Bob: verifies whether $y^{-1} \cdot u^{a} \cdot y=x$ (if $\alpha=0$) or whether $z^{-1} \cdot u \cdot z=x($ if $\alpha=1$).
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α; so, acting like before, she only has probability $\frac{1}{2^{k}}$ to succeed.
- Eve's alternative is finding a from u and u^{a}, i.e. solving the Conjugacy Search Problem.

Sibert-Dehornoy-Girault authentication protocol (2006)

But combining both, it works:

- Alice: picks a random $b \in B$, and sends $x=b^{-1}\left(u^{a}\right) b$ (the commitment).
- Bob: picks and sends a random bit $\alpha=0,1$.
- Alice: sends $y=b$ if $\alpha=0$ and $z=a b$ if $\alpha=1$
- Bob: verifies whether $y^{-1} \cdot u^{a} \cdot y=x$ (if $\alpha=0$) or whether
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α; so, acting like before, she only has probability $\frac{1}{\partial k}$ to succeed.
- Eve's alternative is finding a from u and $u^{\text {a }}$, i.e. solving the Conjugacy Search Problem.

Sibert-Dehornoy-Girault authentication protocol (2006)

But combining both, it works:

- Alice: picks a random $b \in B$, and sends $x=b^{-1}\left(u^{a}\right) b$ (the commitment).
- Bob: picks and sends a random bit $\alpha=0,1$.
- Alice: sends $y=b$ if $\alpha=0$ and $z=a b$ if $\alpha=1$.
- Bob: verifies whether (if $\alpha=0$) or whether
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α; so, acting like before, she only has probability $\frac{1}{2^{k}}$ to succeed.
- Eve's alternative is finding a from u and $u^{\text {a }}$, i.e. solving the Conjugacy Search Problem.

Sibert-Dehornoy-Girault authentication protocol (2006)

But combining both, it works:

- Alice: picks a random $b \in B$, and sends $x=b^{-1}\left(u^{a}\right) b$ (the commitment).
- Bob: picks and sends a random bit $\alpha=0,1$.
- Alice: sends $y=b$ if $\alpha=0$ and $z=a b$ if $\alpha=1$.
- Bob: verifies whether $y^{-1} \cdot u^{a} \cdot y=x$ (if $\alpha=0$) or whether $z^{-1} \cdot u \cdot z=x($ if $\alpha=1)$.
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α; so, acting like before, she only has probability $\frac{1}{2^{k}}$ to succeed.
- Eve's alternative is finding a from u and $u^{\text {a }}$, i.e. solving the Conjugacy Search Problem.

Sibert-Dehornoy-Girault authentication protocol (2006)

But combining both, it works:

- Alice: picks a random $b \in B$, and sends $x=b^{-1}\left(u^{a}\right) b$ (the commitment).
- Bob: picks and sends a random bit $\alpha=0,1$.
- Alice: sends $y=b$ if $\alpha=0$ and $z=a b$ if $\alpha=1$.
- Bob: verifies whether $y^{-1} \cdot u^{a} \cdot y=x$ (if $\alpha=0$) or whether $z^{-1} \cdot u \cdot z=x$ (if $\alpha=1$).
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α; so, acting like before, she only has probability $\frac{1}{\partial^{k}}$ to succeed.
- Eve's alternative is finding a from u and $u^{\text {a }}$, i.e. solving the Conjugacy Search Problem.

Sibert-Dehornoy-Girault authentication protocol (2006)

But combining both, it works:

- Alice: picks a random $b \in B$, and sends $x=b^{-1}\left(u^{a}\right) b$ (the commitment).
- Bob: picks and sends a random bit $\alpha=0,1$.
- Alice: sends $y=b$ if $\alpha=0$ and $z=a b$ if $\alpha=1$.
- Bob: verifies whether $y^{-1} \cdot u^{a} \cdot y=x$ (if $\alpha=0$) or whether $z^{-1} \cdot u \cdot z=x$ (if $\alpha=1$).
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α; so, acting like before, she only has probability $\frac{1}{2^{\kappa}}$ to succeed.
- Eve's alternative is finding a from u and $u^{\text {a }}$, i.e. solving the Conjugacy Search Problem.

Sibert-Dehornoy-Girault authentication protocol (2006)

But combining both, it works:

- Alice: picks a random $b \in B$, and sends $x=b^{-1}\left(u^{a}\right) b$ (the commitment).
- Bob: picks and sends a random bit $\alpha=0,1$.
- Alice: sends $y=b$ if $\alpha=0$ and $z=a b$ if $\alpha=1$.
- Bob: verifies whether $y^{-1} \cdot u^{a} \cdot y=x$ (if $\alpha=0$) or whether $z^{-1} \cdot u \cdot z=x$ (if $\alpha=1$).
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α; so, acting like before, she only has probability $\frac{1}{2^{k}}$ to succeed.
- Eve's alternative is finding a from u and u^{a}, i.e. solving the Conjugacy Search Problem.

The Twisted Conjugacy Problem

One can use the same idea, but replacing the Conjugacy Search Problem to the harder Twisted Conjugacy Search Problem.

- Twisted Conjugacy Problem: "given $u, v \in G$ and $\varphi: G \rightarrow G$, decide whether $v={ }_{G}(x \varphi)^{-1} u x$ for some $x \in G$ ".

Solv. Twisted Conjugacy Problem solv. Conjugacy Problem

Solv. Twisted Conjugacy Problem \square solv. Conjugacy Problem.

- Twisted Conjugacy Search Problem: "given $u, v \in G, \varphi: G \rightarrow G$, and the information that u and v are φ-twisted conjugated to each other in G, find an $x \in G$ such that $v={ }_{G}(x \varphi)^{-1} u x$ ".

TCSP is always solvable (brute force searching over all possible $x \in G$), but at which complexity this is a much more delicate question

The Twisted Conjugacy Problem

One can use the same idea, but replacing the Conjugacy Search Problem to the harder Twisted Conjugacy Search Problem.

- Twisted Conjugacy Problem: "given $u, v \in G$ and $\varphi: G \rightarrow G$, decide whether $v={ }_{G}(x \varphi)^{-1} u x$ for some $x \in G$ ".

Solv. Twisted Conjugacy Problem $\quad \Longrightarrow \quad$ solv. Conjugacy Problem.
Solv. Twisted Conjugacy Problem \qquad solv. Conjugacy Problem.

- Twisted Conjugacy Search Problem: "given $u, v \in G, \varphi: G \rightarrow G$, and the information that u and v are φ-twisted conjugated to each other in G, find an $x \in G$ such that $v=(x \varphi)^{-1} u x^{*}$

TCSP is always solvable (brute force searching over all possible $x \in G)$, but at which complexity this is a much more delicate question

The Twisted Conjugacy Problem

One can use the same idea, but replacing the Conjugacy Search Problem to the harder Twisted Conjugacy Search Problem.

- Twisted Conjugacy Problem: "given $u, v \in G$ and $\varphi: G \rightarrow G$, decide whether $v={ }_{G}(x \varphi)^{-1} u x$ for some $x \in G "$.

Solv. Twisted Conjugacy Problem $\quad \Longrightarrow \quad$ solv. Conjugacy Problem.
Solv. Twisted Conjugacy Problem \Longleftarrow solv. Conjugacy Problem.

- Twisted Conjugacy Search Problem: "given $u, v \in G, \varphi: G \rightarrow G$, and the information that u and v are φ-twisted conjugated to each other in G, find an $x \in G$ such that $v={ }_{G}(x \varphi)^{-1} u x^{\prime \prime}$

TCSP is always solvable (brute force searching over all possible $x \in G)$, but at which complexity this is a much more delicate question

The Twisted Conjugacy Problem

One can use the same idea, but replacing the Conjugacy Search Problem to the harder Twisted Conjugacy Search Problem.

- Twisted Conjugacy Problem: "given $u, v \in G$ and $\varphi: G \rightarrow G$, decide whether $v={ }_{G}(x \varphi)^{-1} u x$ for some $x \in G$ ".

Solv. Twisted Conjugacy Problem $\quad \Longrightarrow \quad$ solv. Conjugacy Problem.
Solv. Twisted Conjugacy Problem \Longleftarrow solv. Conjugacy Problem.

- Twisted Conjugacy Search Problem: "given $u, v \in G, \varphi: G \rightarrow G$, and the information that u and v are φ-twisted conjugated to each other in G, find an $x \in G$ such that $v={ }_{G}(x \varphi)^{-1} u x$ ".

TCSP is always solvable (brute force searching over all possible
\square

The Twisted Conjugacy Problem

One can use the same idea, but replacing the Conjugacy Search Problem to the harder Twisted Conjugacy Search Problem.

- Twisted Conjugacy Problem: "given $u, v \in G$ and $\varphi: G \rightarrow G$, decide whether $v={ }_{G}(x \varphi)^{-1} u x$ for some $x \in G$ ".

Solv. Twisted Conjugacy Problem $\quad \Longrightarrow \quad$ solv. Conjugacy Problem.
Solv. Twisted Conjugacy Problem \Longleftarrow solv. Conjugacy Problem.

- Twisted Conjugacy Search Problem: "given $u, v \in G, \varphi: G \rightarrow G$, and the information that u and v are φ-twisted conjugated to each other in G, find an $x \in G$ such that $v={ }_{G}(x \varphi)^{-1} u x$ ".

TCSP is always solvable (brute force searching over all possible $x \in G)$, but at which complexity this is a much more delicate question.

Shpilrain-Ushakov authentication protocol (2008)

- Public: $G=\langle X \mid R\rangle$ and $\varphi: G \rightarrow G$, an endomorphism.
- Every player has a secret key $a \in A$, and public name where $u \in G$ is arbitrary (and $\left.u^{a_{\varphi}}=(a \varphi)^{-1} u a\right)$.
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{a_{\varphi}}\right)^{\prime}$) is who is supposed to be.
- Alice: picks a random $b \in B$, and sends the commitment $x=(b \varphi)^{-1}\left(u^{a_{\varphi}}\right) b=(b \varphi)^{-1}(a \varphi)^{-1} u a b=((a b) \varphi)^{-1} u(a b)$.
- Bob: picks and sends a random bit $\alpha=0,1$.
- Alice: sends $y=b$ if $\alpha=0$, and $z=a b$ if $\alpha=1$.
- Bob: verifies whether $(y \varphi)^{-1} \cdot u^{a_{\rho}} \cdot y=x$ (if $\alpha=0$) or whether $z=x$ (if $\alpha=1$).
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α; so, acting like before, she only has probability $\frac{1}{2^{k}}$ to succeed.
- Eve's alternative is finding a from u and $u^{\text {ap }}$, i.e. solving the Twisted Conjugacy Search Problem.

Shpilrain-Ushakov authentication protocol (2008)

- Public: $G=\langle X \mid R\rangle$ and $\varphi: G \rightarrow G$, an endomorphism.
- Every player has a secret key $a \in A$, and public name ($u, u^{a_{\varphi}}$), where $u \in G$ is arbitrary (and $u^{a_{\varphi}}=(a \varphi)^{-1} u a$).
supposed to be.
- Alice: picks a random $b \in B$, and sends the commitment

- Bob: picks and sends a random bit $\alpha=0,1$
- Alice: sends $y=b$ if $\alpha=0$, and $z=a b$ if $\alpha=1$
- Bob: verifies whether $(y \varphi)^{-1} \cdot u^{a_{\varphi}} \cdot y=x$ (if $\alpha=0$) or whether
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α; so, acting like before, she only has probability $\frac{1}{2^{k}}$ to succeed.
- Eve's alternative is finding a from u and $u^{a_{\varphi}}$, i.e. solving the Twisted Conjugacy Search Problem

Shpilrain-Ushakov authentication protocol (2008)

- Public: $G=\langle X \mid R\rangle$ and $\varphi: G \rightarrow G$, an endomorphism.
- Every player has a secret key $a \in A$, and public name ($u, u^{a_{\varphi}}$), where $u \in G$ is arbitrary (and $u^{a_{\varphi}}=(a \varphi)^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{a_{\varphi}}\right)^{\prime}$) is who is supposed to be.

- Bob: picks and sends a random bit $\alpha=0,1$
- Alice: sends $v=b$ if $\alpha=0$, and $z=a b$ if $\alpha=1$
- Bob: verifies whether $(y \varphi)^{-1} \cdot u^{a_{\varphi}} \cdot y=x$ (if $\alpha=0$) or whether
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α : so, acting like before, she onlv has probability $\frac{1}{2^{k}}$ to succeed.
- Eve's alternative is finding a from u and $u^{a_{\varphi}}$, i.e. solving the Twisted Coniuaacv Search Problem

Shpilrain-Ushakov authentication protocol (2008)

- Public: $G=\langle X \mid R\rangle$ and $\varphi: G \rightarrow G$, an endomorphism.
- Every player has a secret key $a \in A$, and public name ($u, u^{a_{\varphi}}$), where $u \in G$ is arbitrary (and $u^{a_{\varphi}}=(a \varphi)^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{a_{\varphi}}\right)^{\prime}$) is who is supposed to be.
- Alice: picks a random $b \in B$, and sends the commitment $x=(b \varphi)^{-1}\left(u^{a_{\varphi}}\right) b=(b \varphi)^{-1}(a \varphi)^{-1} u a b=((a b) \varphi)^{-1} u(a b)$.
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α; so, acting like before, she only has probability $\frac{1}{2^{k}}$ to succeed.
- Eve's alternative is finding a from u and $u^{a_{\varphi}}$, i.e. solving the Twisted Coniuaacv Search Problem.

Shpilrain-Ushakov authentication protocol (2008)

- Public: $G=\langle X \mid R\rangle$ and $\varphi: G \rightarrow G$, an endomorphism.
- Every player has a secret key $a \in A$, and public name ($u, u^{a_{\varphi}}$), where $u \in G$ is arbitrary (and $u^{a_{\varphi}}=(a \varphi)^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{a_{\varphi}}\right)^{\prime}$) is who is supposed to be.
- Alice: picks a random $b \in B$, and sends the commitment $x=(b \varphi)^{-1}\left(u^{a_{\varphi}}\right) b=(b \varphi)^{-1}(a \varphi)^{-1} u a b=((a b) \varphi)^{-1} u(a b)$.
- Bob: picks and sends a random bit $\alpha=0,1$.

- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α : so, acting like before, she onlv has probability $\frac{1}{2^{k}}$ to succeed.
- Eve's alternative is finding a from u and $u^{a_{\varphi}}$, i.e. solving the Twisted Coniuaacv Search Problem.

Shpilrain-Ushakov authentication protocol (2008)

- Public: $G=\langle X \mid R\rangle$ and $\varphi: G \rightarrow G$, an endomorphism.
- Every player has a secret key $a \in A$, and public name ($u, u^{a_{\varphi}}$), where $u \in G$ is arbitrary (and $u^{a_{\varphi}}=(a \varphi)^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{a_{\varphi}}\right)^{\prime}$) is who is supposed to be.
- Alice: picks a random $b \in B$, and sends the commitment $x=(b \varphi)^{-1}\left(u^{a_{\varphi}}\right) b=(b \varphi)^{-1}(a \varphi)^{-1} u a b=((a b) \varphi)^{-1} u(a b)$.
- Bob: picks and sends a random bit $\alpha=0,1$.
- Alice: sends $y=b$ if $\alpha=0$, and $z=a b$ if $\alpha=1$.
- Bob: verifies whether
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α; so, acting like before, she only has probability $\frac{1}{2^{k}}$ to succeed.

Shpilrain-Ushakov authentication protocol (2008)

- Public: $G=\langle X \mid R\rangle$ and $\varphi: G \rightarrow G$, an endomorphism.
- Every player has a secret key $a \in A$, and public name ($u, u^{a_{\varphi}}$), where $u \in G$ is arbitrary (and $u^{a_{\varphi}}=(a \varphi)^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{a_{\varphi}}\right)^{\prime}$) is who is supposed to be.
- Alice: picks a random $b \in B$, and sends the commitment $x=(b \varphi)^{-1}\left(u^{a_{\varphi}}\right) b=(b \varphi)^{-1}(a \varphi)^{-1} u a b=((a b) \varphi)^{-1} u(a b)$.
- Bob: picks and sends a random bit $\alpha=0,1$.
- Alice: sends $y=b$ if $\alpha=0$, and $z=a b$ if $\alpha=1$.
- Bob: verifies whether $(y \varphi)^{-1} \cdot u^{a_{\varphi}} \cdot y=x$ (if $\alpha=0$) or whether $(z \varphi)^{-1} \cdot u \cdot z=x($ if $\alpha=1)$.
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α : so, acting like before, she only has probability $\frac{1}{2^{k}}$ to succeed.

Shpilrain-Ushakov authentication protocol (2008)

- Public: $G=\langle X \mid R\rangle$ and $\varphi: G \rightarrow G$, an endomorphism.
- Every player has a secret key $a \in A$, and public name ($u, u^{a_{\varphi}}$), where $u \in G$ is arbitrary (and $\left.u^{a_{\varphi}}=(a \varphi)^{-1} u a\right)$.
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{a_{\varphi}}\right)^{\prime}$) is who is supposed to be.
- Alice: picks a random $b \in B$, and sends the commitment $x=(b \varphi)^{-1}\left(u^{a_{\varphi}}\right) b=(b \varphi)^{-1}(a \varphi)^{-1} u a b=((a b) \varphi)^{-1} u(a b)$.
- Bob: picks and sends a random bit $\alpha=0,1$.
- Alice: sends $y=b$ if $\alpha=0$, and $z=a b$ if $\alpha=1$.
- Bob: verifies whether $(y \varphi)^{-1} \cdot u^{a_{\varphi}} \cdot y=x$ (if $\alpha=0$) or whether $(z \varphi)^{-1} \cdot u \cdot z=x$ (if $\alpha=1$).
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α : so, acting like before, she only has probability $\frac{1}{2^{1}}$ to succeed.

Shpilrain-Ushakov authentication protocol (2008)

- Public: $G=\langle X \mid R\rangle$ and $\varphi: G \rightarrow G$, an endomorphism.
- Every player has a secret key $a \in A$, and public name ($u, u^{a_{\varphi}}$), where $u \in G$ is arbitrary (and $\left.u^{a_{\varphi}}=(a \varphi)^{-1} u a\right)$.
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{a_{\varphi}}\right)$ ") is who is supposed to be.
- Alice: picks a random $b \in B$, and sends the commitment $x=(b \varphi)^{-1}\left(u^{a_{\varphi}}\right) b=(b \varphi)^{-1}(a \varphi)^{-1} u a b=((a b) \varphi)^{-1} u(a b)$.
- Bob: picks and sends a random bit $\alpha=0,1$.
- Alice: sends $y=b$ if $\alpha=0$, and $z=a b$ if $\alpha=1$.
- Bob: verifies whether $(y \varphi)^{-1} \cdot u^{a_{\varphi}} \cdot y=x$ (if $\alpha=0$) or whether $(z \varphi)^{-1} \cdot u \cdot z=x$ (if $\alpha=1$).
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α; so, acting like before, she only has probability $\frac{1}{2^{\kappa}}$ to succeed.

Shpilrain-Ushakov authentication protocol (2008)

- Public: $G=\langle X \mid R\rangle$ and $\varphi: G \rightarrow G$, an endomorphism.
- Every player has a secret key $a \in A$, and public name ($u, u^{a_{\varphi}}$), where $u \in G$ is arbitrary (and $u^{a_{\varphi}}=(a \varphi)^{-1} u a$).
- Bob wants to be sure that Alice (say, Ms. " $\left(u, u^{a_{\varphi}}\right)^{\prime}$) is who is supposed to be.
- Alice: picks a random $b \in B$, and sends the commitment $x=(b \varphi)^{-1}\left(u^{a \varphi}\right) b=(b \varphi)^{-1}(a \varphi)^{-1} u a b=((a b) \varphi)^{-1} u(a b)$.
- Bob: picks and sends a random bit $\alpha=0,1$.
- Alice: sends $y=b$ if $\alpha=0$, and $z=a b$ if $\alpha=1$.
- Bob: verifies whether $(y \varphi)^{-1} \cdot u^{a_{\varphi}} \cdot y=x$ (if $\alpha=0$) or whether $(z \varphi)^{-1} \cdot u \cdot z=x$ (if $\alpha=1$).
- Repeat these last three steps, k times.
- Eve: has to send the commitment before knowing the future values of α; so, acting like before, she only has probability $\frac{1}{2^{k}}$ to succeed.
- Eve's alternative is finding a from u and $u^{a_{\varphi}}$, i.e. solving the Twisted Conjugacy Search Problem.

THANKS

