
1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Some group-based cryptosystems

Enric Ventura
Departament de Matemàtica Aplicada III

Universitat Politècnica de Catalunya

Zaragoza, January 23, 2009

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Outline

1 The origins of public key cryptography

2 A protocol based on the word problem

3 Protocols based on the conjugacy problem

4 Protocols based on the factorization problem

5 Anshel-Anshel-Goldfeld protocol

6 Some authentication protocols

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Outline

1 The origins of public key cryptography

2 A protocol based on the word problem

3 Protocols based on the conjugacy problem

4 Protocols based on the factorization problem

5 Anshel-Anshel-Goldfeld protocol

6 Some authentication protocols

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The goal

BOB m−→ ALICE

Bob wants to send a secret message, m, to Alice over an open chanel
(and Eve is trying to illegitimately discover m and break the system).

From Wikipedia: “Diffie-Hellman key agreement was invented in 1976
... and was the first practical method for establishing a shared secret
over an unprotected communications chanel".

A third author, Merkle, was also involved in the construction (U.S.
Patent 4.200.770, now expired, describes the algorithms and credits
Diffie, Hellman and Merkle as inventors).

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The goal

BOB m−→ ALICE

Bob wants to send a secret message, m, to Alice over an open chanel
(and Eve is trying to illegitimately discover m and break the system).

From Wikipedia: “Diffie-Hellman key agreement was invented in 1976
... and was the first practical method for establishing a shared secret
over an unprotected communications chanel".

A third author, Merkle, was also involved in the construction (U.S.
Patent 4.200.770, now expired, describes the algorithms and credits
Diffie, Hellman and Merkle as inventors).

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The goal

BOB m−→ ALICE

Bob wants to send a secret message, m, to Alice over an open chanel
(and Eve is trying to illegitimately discover m and break the system).

From Wikipedia: “Diffie-Hellman key agreement was invented in 1976
... and was the first practical method for establishing a shared secret
over an unprotected communications chanel".

A third author, Merkle, was also involved in the construction (U.S.
Patent 4.200.770, now expired, describes the algorithms and credits
Diffie, Hellman and Merkle as inventors).

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Reduction to key establishment

For simplicity, we assume that m ∈ {0, 1}n.
Let S be a set and H : S → {0, 1}n a function (called the key
space and a Hash function, respectively).
Suppose Bob and Alice share a secret key, K ∈ S.
Encription: Bob encrypts his message m as

E(m) = m + H(K).

Decryption: Alice decrypts in the same way:

E(m) + H(K) = m + (H(K) + H(K)) = m.

Eavesdropper: Eve needs to find H(K), i.e. K .
Expansion factor is 1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Reduction to key establishment

For simplicity, we assume that m ∈ {0, 1}n.
Let S be a set and H : S → {0, 1}n a function (called the key
space and a Hash function, respectively).
Suppose Bob and Alice share a secret key, K ∈ S.
Encription: Bob encrypts his message m as

E(m) = m + H(K).

Decryption: Alice decrypts in the same way:

E(m) + H(K) = m + (H(K) + H(K)) = m.

Eavesdropper: Eve needs to find H(K), i.e. K .
Expansion factor is 1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Reduction to key establishment

For simplicity, we assume that m ∈ {0, 1}n.
Let S be a set and H : S → {0, 1}n a function (called the key
space and a Hash function, respectively).
Suppose Bob and Alice share a secret key, K ∈ S.
Encription: Bob encrypts his message m as

E(m) = m + H(K).

Decryption: Alice decrypts in the same way:

E(m) + H(K) = m + (H(K) + H(K)) = m.

Eavesdropper: Eve needs to find H(K), i.e. K .
Expansion factor is 1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Reduction to key establishment

For simplicity, we assume that m ∈ {0, 1}n.
Let S be a set and H : S → {0, 1}n a function (called the key
space and a Hash function, respectively).
Suppose Bob and Alice share a secret key, K ∈ S.
Encription: Bob encrypts his message m as

E(m) = m + H(K).

Decryption: Alice decrypts in the same way:

E(m) + H(K) = m + (H(K) + H(K)) = m.

Eavesdropper: Eve needs to find H(K), i.e. K .
Expansion factor is 1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Reduction to key establishment

For simplicity, we assume that m ∈ {0, 1}n.
Let S be a set and H : S → {0, 1}n a function (called the key
space and a Hash function, respectively).
Suppose Bob and Alice share a secret key, K ∈ S.
Encription: Bob encrypts his message m as

E(m) = m + H(K).

Decryption: Alice decrypts in the same way:

E(m) + H(K) = m + (H(K) + H(K)) = m.

Eavesdropper: Eve needs to find H(K), i.e. K .
Expansion factor is 1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Reduction to key establishment

For simplicity, we assume that m ∈ {0, 1}n.
Let S be a set and H : S → {0, 1}n a function (called the key
space and a Hash function, respectively).
Suppose Bob and Alice share a secret key, K ∈ S.
Encription: Bob encrypts his message m as

E(m) = m + H(K).

Decryption: Alice decrypts in the same way:

E(m) + H(K) = m + (H(K) + H(K)) = m.

Eavesdropper: Eve needs to find H(K), i.e. K .
Expansion factor is 1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Reduction to key establishment

For simplicity, we assume that m ∈ {0, 1}n.
Let S be a set and H : S → {0, 1}n a function (called the key
space and a Hash function, respectively).
Suppose Bob and Alice share a secret key, K ∈ S.
Encription: Bob encrypts his message m as

E(m) = m + H(K).

Decryption: Alice decrypts in the same way:

E(m) + H(K) = m + (H(K) + H(K)) = m.

Eavesdropper: Eve needs to find H(K), i.e. K .
Expansion factor is 1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman key exchange protocol (1976)

Public: p (prime) and g 6∈ pZ.

Alice: picks a random a ∈ N, and sends ga mod p.

Bob: picks a random b ∈ N, and sends gb mod p.

Common secret: Alice: (gb)a = gba mod p
Bob: (ga)b = gab mod p.

Eve: knows p, g and ga, gb mod p, and needs gab mod p.

The protocol is considered to be secure against eavesdroppers,
if p and g are chosen properly.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman key exchange protocol (1976)

Public: p (prime) and g 6∈ pZ.

Alice: picks a random a ∈ N, and sends ga mod p.

Bob: picks a random b ∈ N, and sends gb mod p.

Common secret: Alice: (gb)a = gba mod p
Bob: (ga)b = gab mod p.

Eve: knows p, g and ga, gb mod p, and needs gab mod p.

The protocol is considered to be secure against eavesdroppers,
if p and g are chosen properly.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman key exchange protocol (1976)

Public: p (prime) and g 6∈ pZ.

Alice: picks a random a ∈ N, and sends ga mod p.

Bob: picks a random b ∈ N, and sends gb mod p.

Common secret: Alice: (gb)a = gba mod p
Bob: (ga)b = gab mod p.

Eve: knows p, g and ga, gb mod p, and needs gab mod p.

The protocol is considered to be secure against eavesdroppers,
if p and g are chosen properly.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman key exchange protocol (1976)

Public: p (prime) and g 6∈ pZ.

Alice: picks a random a ∈ N, and sends ga mod p.

Bob: picks a random b ∈ N, and sends gb mod p.

Common secret: Alice: (gb)a = gba mod p
Bob: (ga)b = gab mod p.

Eve: knows p, g and ga, gb mod p, and needs gab mod p.

The protocol is considered to be secure against eavesdroppers,
if p and g are chosen properly.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman key exchange protocol (1976)

Public: p (prime) and g 6∈ pZ.

Alice: picks a random a ∈ N, and sends ga mod p.

Bob: picks a random b ∈ N, and sends gb mod p.

Common secret: Alice: (gb)a = gba mod p
Bob: (ga)b = gab mod p.

Eve: knows p, g and ga, gb mod p, and needs gab mod p.

The protocol is considered to be secure against eavesdroppers,
if p and g are chosen properly.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman key exchange protocol (1976)

Public: p (prime) and g 6∈ pZ.

Alice: picks a random a ∈ N, and sends ga mod p.

Bob: picks a random b ∈ N, and sends gb mod p.

Common secret: Alice: (gb)a = gba mod p
Bob: (ga)b = gab mod p.

Eve: knows p, g and ga, gb mod p, and needs gab mod p.

The protocol is considered to be secure against eavesdroppers,
if p and g are chosen properly.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman key exchange protocol (1976)

Eve needs to solve the

Diffie-Hellman Problem: “knowing p, g and ga, gb mod p,
compute gab mod p”,

or the

Discrete Logarithm Problem: “knowing p, g and ga mod p,
compute a”,

both currently considered to be “difficult" problems (but not known to
be equivalent...).

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman key exchange protocol (1976)

Eve needs to solve the

Diffie-Hellman Problem: “knowing p, g and ga, gb mod p,
compute gab mod p”,

or the

Discrete Logarithm Problem: “knowing p, g and ga mod p,
compute a”,

both currently considered to be “difficult" problems (but not known to
be equivalent...).

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman key exchange protocol (1976)

Eve needs to solve the

Diffie-Hellman Problem: “knowing p, g and ga, gb mod p,
compute gab mod p”,

or the

Discrete Logarithm Problem: “knowing p, g and ga mod p,
compute a”,

both currently considered to be “difficult" problems (but not known to
be equivalent...).

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman key exchange protocol (1976)

Brute force search for solving the Discrete Logarithm Problem
requires computing g, g2, g3, . . . , g|g| = 1 (eventually, till |g|, the
order of g modulo p): this is O(|g|) multiplications.

In practical implementations, |g| is typically about 10300, so brute
force attack is computationally infeasible.

This is not a problem for Alice and Bob because computing
ga mod p for a particular a is much faster, O(log2 a), by the
square-and-multiply method:

g21 = g16 · g4 · g = (((g2)2)2)2 · (g2)2 · g.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman key exchange protocol (1976)

Brute force search for solving the Discrete Logarithm Problem
requires computing g, g2, g3, . . . , g|g| = 1 (eventually, till |g|, the
order of g modulo p): this is O(|g|) multiplications.

In practical implementations, |g| is typically about 10300, so brute
force attack is computationally infeasible.

This is not a problem for Alice and Bob because computing
ga mod p for a particular a is much faster, O(log2 a), by the
square-and-multiply method:

g21 = g16 · g4 · g = (((g2)2)2)2 · (g2)2 · g.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman key exchange protocol (1976)

Brute force search for solving the Discrete Logarithm Problem
requires computing g, g2, g3, . . . , g|g| = 1 (eventually, till |g|, the
order of g modulo p): this is O(|g|) multiplications.

In practical implementations, |g| is typically about 10300, so brute
force attack is computationally infeasible.

This is not a problem for Alice and Bob because computing
ga mod p for a particular a is much faster, O(log2 a), by the
square-and-multiply method:

g21 = g16 · g4 · g = (((g2)2)2)2 · (g2)2 · g.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman key exchange protocol (1976)

Brute force search for solving the Discrete Logarithm Problem
requires computing g, g2, g3, . . . , g|g| = 1 (eventually, till |g|, the
order of g modulo p): this is O(|g|) multiplications.

In practical implementations, |g| is typically about 10300, so brute
force attack is computationally infeasible.

This is not a problem for Alice and Bob because computing
ga mod p for a particular a is much faster, O(log2 a), by the
square-and-multiply method:

g21 = g16 · g4 · g = (((g2)2)2)2 · (g2)2 · g.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Outline

1 The origins of public key cryptography

2 A protocol based on the word problem

3 Protocols based on the conjugacy problem

4 Protocols based on the factorization problem

5 Anshel-Anshel-Goldfeld protocol

6 Some authentication protocols

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The word problem in groups

Let 〈x1, . . . , xn | r1, . . . , rm〉 be a finite presentation of a group G.

Word Problem: “given a word w(x1, . . . , xn) decide whether
w =G 1 or not (i.e. whether w ∈� R �)”.

There are finitely presented groups with unsolvable Word Problem.

A set of words Σ on X is said to have no collision in G if the natural
map Σ → G is injective.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The word problem in groups

Let 〈x1, . . . , xn | r1, . . . , rm〉 be a finite presentation of a group G.

Word Problem: “given a word w(x1, . . . , xn) decide whether
w =G 1 or not (i.e. whether w ∈� R �)”.

There are finitely presented groups with unsolvable Word Problem.

A set of words Σ on X is said to have no collision in G if the natural
map Σ → G is injective.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The word problem in groups

Let 〈x1, . . . , xn | r1, . . . , rm〉 be a finite presentation of a group G.

Word Problem: “given a word w(x1, . . . , xn) decide whether
w =G 1 or not (i.e. whether w ∈� R �)”.

There are finitely presented groups with unsolvable Word Problem.

A set of words Σ on X is said to have no collision in G if the natural
map Σ → G is injective.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The word problem in groups

Let 〈x1, . . . , xn | r1, . . . , rm〉 be a finite presentation of a group G.

Word Problem: “given a word w(x1, . . . , xn) decide whether
w =G 1 or not (i.e. whether w ∈� R �)”.

There are finitely presented groups with unsolvable Word Problem.

A set of words Σ on X is said to have no collision in G if the natural
map Σ → G is injective.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Wagner-Magyarik protocol (1984)

Public: A platform G = 〈X | R〉 and two words Σ = {w0, w1}.
Private: A set of words S such that

the Word Problem is “difficult” in G = 〈X |R〉,
the Word Problem is “easy” in G′ = 〈X , R ∪ S〉 = G/S,
Σ has no collision in G′ (and so, in G).

Bob: encodes each bit b in his message by an arbitrary (and
changing) word w such that w =G wb.
Alice: decodes w by solving the Word Problem in G′: decide
whether w =

G′ w0 or w =
G′ w1.

Eve: sees w and needs to decide whether w =G w0 or w =G w1.
This is the Word Problem in G.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Wagner-Magyarik protocol (1984)

Public: A platform G = 〈X | R〉 and two words Σ = {w0, w1}.
Private: A set of words S such that

the Word Problem is “difficult” in G = 〈X |R〉,
the Word Problem is “easy” in G′ = 〈X , R ∪ S〉 = G/S,
Σ has no collision in G′ (and so, in G).

Bob: encodes each bit b in his message by an arbitrary (and
changing) word w such that w =G wb.
Alice: decodes w by solving the Word Problem in G′: decide
whether w =

G′ w0 or w =
G′ w1.

Eve: sees w and needs to decide whether w =G w0 or w =G w1.
This is the Word Problem in G.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Wagner-Magyarik protocol (1984)

Public: A platform G = 〈X | R〉 and two words Σ = {w0, w1}.
Private: A set of words S such that

the Word Problem is “difficult” in G = 〈X |R〉,
the Word Problem is “easy” in G′ = 〈X , R ∪ S〉 = G/S,
Σ has no collision in G′ (and so, in G).

Bob: encodes each bit b in his message by an arbitrary (and
changing) word w such that w =G wb.
Alice: decodes w by solving the Word Problem in G′: decide
whether w =

G′ w0 or w =
G′ w1.

Eve: sees w and needs to decide whether w =G w0 or w =G w1.
This is the Word Problem in G.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Wagner-Magyarik protocol (1984)

Public: A platform G = 〈X | R〉 and two words Σ = {w0, w1}.
Private: A set of words S such that

the Word Problem is “difficult” in G = 〈X |R〉,
the Word Problem is “easy” in G′ = 〈X , R ∪ S〉 = G/S,
Σ has no collision in G′ (and so, in G).

Bob: encodes each bit b in his message by an arbitrary (and
changing) word w such that w =G wb.
Alice: decodes w by solving the Word Problem in G′: decide
whether w =

G′ w0 or w =
G′ w1.

Eve: sees w and needs to decide whether w =G w0 or w =G w1.
This is the Word Problem in G.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Wagner-Magyarik protocol (1984)

Public: A platform G = 〈X | R〉 and two words Σ = {w0, w1}.
Private: A set of words S such that

the Word Problem is “difficult” in G = 〈X |R〉,
the Word Problem is “easy” in G′ = 〈X , R ∪ S〉 = G/S,
Σ has no collision in G′ (and so, in G).

Bob: encodes each bit b in his message by an arbitrary (and
changing) word w such that w =G wb.
Alice: decodes w by solving the Word Problem in G′: decide
whether w =

G′ w0 or w =
G′ w1.

Eve: sees w and needs to decide whether w =G w0 or w =G w1.
This is the Word Problem in G.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Wagner-Magyarik protocol (1984)

Public: A platform G = 〈X | R〉 and two words Σ = {w0, w1}.
Private: A set of words S such that

the Word Problem is “difficult” in G = 〈X |R〉,
the Word Problem is “easy” in G′ = 〈X , R ∪ S〉 = G/S,
Σ has no collision in G′ (and so, in G).

Bob: encodes each bit b in his message by an arbitrary (and
changing) word w such that w =G wb.
Alice: decodes w by solving the Word Problem in G′: decide
whether w =

G′ w0 or w =
G′ w1.

Eve: sees w and needs to decide whether w =G w0 or w =G w1.
This is the Word Problem in G.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Wagner-Magyarik protocol (1984)

Public: A platform G = 〈X | R〉 and two words Σ = {w0, w1}.
Private: A set of words S such that

the Word Problem is “difficult” in G = 〈X |R〉,
the Word Problem is “easy” in G′ = 〈X , R ∪ S〉 = G/S,
Σ has no collision in G′ (and so, in G).

Bob: encodes each bit b in his message by an arbitrary (and
changing) word w such that w =G wb.
Alice: decodes w by solving the Word Problem in G′: decide
whether w =

G′ w0 or w =
G′ w1.

Eve: sees w and needs to decide whether w =G w0 or w =G w1.
This is the Word Problem in G.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Wagner-Magyarik protocol (1984)

Public: A platform G = 〈X | R〉 and two words Σ = {w0, w1}.
Private: A set of words S such that

the Word Problem is “difficult” in G = 〈X |R〉,
the Word Problem is “easy” in G′ = 〈X , R ∪ S〉 = G/S,
Σ has no collision in G′ (and so, in G).

Bob: encodes each bit b in his message by an arbitrary (and
changing) word w such that w =G wb.
Alice: decodes w by solving the Word Problem in G′: decide
whether w =

G′ w0 or w =
G′ w1.

Eve: sees w and needs to decide whether w =G w0 or w =G w1.
This is the Word CHOICE Problem in G.
Or...: find an alternative private key, T , with easy Word Problem
in G/T , and no collision for Σ.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Wagner-Magyarik protocol (1984)

Public: A platform G = 〈X | R〉 and two words Σ = {w0, w1}.
Private: A set of words S such that

the Word Problem is “difficult” in G = 〈X |R〉,
the Word Problem is “easy” in G′ = 〈X , R ∪ S〉 = G/S,
Σ has no collision in G′ (and so, in G).

Bob: encodes each bit b in his message by an arbitrary (and
changing) word w such that w =G wb.
Alice: decodes w by solving the Word Problem in G′: decide
whether w =

G′ w0 or w =
G′ w1.

Eve: sees w and needs to decide whether w =G w0 or w =G w1.
This is the Word CHOICE Problem in G.
Or...: find an alternative private key, T , with easy Word Problem
in G/T , and no collision for Σ.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Outline

1 The origins of public key cryptography

2 A protocol based on the word problem

3 Protocols based on the conjugacy problem

4 Protocols based on the factorization problem

5 Anshel-Anshel-Goldfeld protocol

6 Some authentication protocols

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The conjugacy problem in groups

Let 〈x1, . . . , xn | r1, . . . , rm〉 be a finite presentation of a group G.

Conjugacy Problem: “given u, v ∈ G (as words on the xi ’s),
decide whether v =G x−1ux for some x ∈ G”.

Solvable Conjugacy Problem =⇒ solvable Word Problem.

Solvable Conjugacy Problem 6⇐= solvable Word Problem.

Conjugacy Search Problem: “given u, v ∈ G and the information
that u and v are conjugate to each other in G, find an x ∈ G such
that v =G x−1ux”.

CSP is always solvable (brute force searching over all possible
x ∈ G), but at which complexity this is a much more delicate question.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The conjugacy problem in groups

Let 〈x1, . . . , xn | r1, . . . , rm〉 be a finite presentation of a group G.

Conjugacy Problem: “given u, v ∈ G (as words on the xi ’s),
decide whether v =G x−1ux for some x ∈ G”.

Solvable Conjugacy Problem =⇒ solvable Word Problem.

Solvable Conjugacy Problem 6⇐= solvable Word Problem.

Conjugacy Search Problem: “given u, v ∈ G and the information
that u and v are conjugate to each other in G, find an x ∈ G such
that v =G x−1ux”.

CSP is always solvable (brute force searching over all possible
x ∈ G), but at which complexity this is a much more delicate question.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The conjugacy problem in groups

Let 〈x1, . . . , xn | r1, . . . , rm〉 be a finite presentation of a group G.

Conjugacy Problem: “given u, v ∈ G (as words on the xi ’s),
decide whether v =G x−1ux for some x ∈ G”.

Solvable Conjugacy Problem =⇒ solvable Word Problem.

Solvable Conjugacy Problem 6⇐= solvable Word Problem.

Conjugacy Search Problem: “given u, v ∈ G and the information
that u and v are conjugate to each other in G, find an x ∈ G such
that v =G x−1ux”.

CSP is always solvable (brute force searching over all possible
x ∈ G), but at which complexity this is a much more delicate question.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The conjugacy problem in groups

Let 〈x1, . . . , xn | r1, . . . , rm〉 be a finite presentation of a group G.

Conjugacy Problem: “given u, v ∈ G (as words on the xi ’s),
decide whether v =G x−1ux for some x ∈ G”.

Solvable Conjugacy Problem =⇒ solvable Word Problem.

Solvable Conjugacy Problem 6⇐= solvable Word Problem.

Conjugacy Search Problem: “given u, v ∈ G and the information
that u and v are conjugate to each other in G, find an x ∈ G such
that v =G x−1ux”.

CSP is always solvable (brute force searching over all possible
x ∈ G), but at which complexity this is a much more delicate question.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The conjugacy problem in groups

Let 〈x1, . . . , xn | r1, . . . , rm〉 be a finite presentation of a group G.

Conjugacy Problem: “given u, v ∈ G (as words on the xi ’s),
decide whether v =G x−1ux for some x ∈ G”.

Solvable Conjugacy Problem =⇒ solvable Word Problem.

Solvable Conjugacy Problem 6⇐= solvable Word Problem.

Conjugacy Search Problem: “given u, v ∈ G and the information
that u and v are conjugate to each other in G, find an x ∈ G such
that v =G x−1ux”.

CSP is always solvable (brute force searching over all possible
x ∈ G), but at which complexity this is a much more delicate question.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The conjugacy problem in groups

Let 〈x1, . . . , xn | r1, . . . , rm〉 be a finite presentation of a group G.

Conjugacy Problem: “given u, v ∈ G (as words on the xi ’s),
decide whether v =G x−1ux for some x ∈ G”.

Solvable Conjugacy Problem =⇒ solvable Word Problem.

Solvable Conjugacy Problem 6⇐= solvable Word Problem.

Conjugacy Search Problem: “given u, v ∈ G and the information
that u and v are conjugate to each other in G, find an x ∈ G such
that v =G x−1ux”.

CSP is always solvable (brute force searching over all possible
x ∈ G), but at which complexity this is a much more delicate question.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The conjugacy problem in groups

Multiple Conjugacy Problem: given u1, . . . uk , v1, . . . vk ∈ G,
decide whether ∃x ∈ G such that vi =G x−1uix , ∀i .

Solv. Multiple Conjugacy Problem =⇒ solv. Conjugacy Problem.

Solv. Multiple Conjugacy Problem 6⇐= solv. Conjugacy Problem.

Restricted Conjugacy Problem: “given u, v and a subgroup
H 6 G, decide whether v =G x−1ux for some x ∈ H”.

We can consider all variations search/non-search, multiple/simple,
restricted/non-restricted.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The conjugacy problem in groups

Multiple Conjugacy Problem: given u1, . . . uk , v1, . . . vk ∈ G,
decide whether ∃x ∈ G such that vi =G x−1uix , ∀i .

Solv. Multiple Conjugacy Problem =⇒ solv. Conjugacy Problem.

Solv. Multiple Conjugacy Problem 6⇐= solv. Conjugacy Problem.

Restricted Conjugacy Problem: “given u, v and a subgroup
H 6 G, decide whether v =G x−1ux for some x ∈ H”.

We can consider all variations search/non-search, multiple/simple,
restricted/non-restricted.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The conjugacy problem in groups

Multiple Conjugacy Problem: given u1, . . . uk , v1, . . . vk ∈ G,
decide whether ∃x ∈ G such that vi =G x−1uix , ∀i .

Solv. Multiple Conjugacy Problem =⇒ solv. Conjugacy Problem.

Solv. Multiple Conjugacy Problem 6⇐= solv. Conjugacy Problem.

Restricted Conjugacy Problem: “given u, v and a subgroup
H 6 G, decide whether v =G x−1ux for some x ∈ H”.

We can consider all variations search/non-search, multiple/simple,
restricted/non-restricted.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The conjugacy problem in groups

Multiple Conjugacy Problem: given u1, . . . uk , v1, . . . vk ∈ G,
decide whether ∃x ∈ G such that vi =G x−1uix , ∀i .

Solv. Multiple Conjugacy Problem =⇒ solv. Conjugacy Problem.

Solv. Multiple Conjugacy Problem 6⇐= solv. Conjugacy Problem.

Restricted Conjugacy Problem: “given u, v and a subgroup
H 6 G, decide whether v =G x−1ux for some x ∈ H”.

We can consider all variations search/non-search, multiple/simple,
restricted/non-restricted.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The conjugacy problem in groups

Multiple Conjugacy Problem: given u1, . . . uk , v1, . . . vk ∈ G,
decide whether ∃x ∈ G such that vi =G x−1uix , ∀i .

Solv. Multiple Conjugacy Problem =⇒ solv. Conjugacy Problem.

Solv. Multiple Conjugacy Problem 6⇐= solv. Conjugacy Problem.

Restricted Conjugacy Problem: “given u, v and a subgroup
H 6 G, decide whether v =G x−1ux for some x ∈ H”.

We can consider all variations search/non-search, multiple/simple,
restricted/non-restricted.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

Public: G = 〈X |R〉, w ∈ G, and A, B ⊆ G such that [a, b] = 1
∀a ∈ A, ∀b ∈ B.
Alice: picks a random a ∈ A, and sends a−1wa = wa.
Bob: picks a random b ∈ B, and sends b−1wb = wb.
Common secret: Alice: a−1(b−1wb)a = wba,

Bob: b−1(a−1wa)b = wab.

Eve: knows w , wa, wb, and needs wab.
This can be done by solving the Conjugacy Search Problem
Restricted to A (or B),

... but also solving the following seemingly easier problem:

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

Public: G = 〈X |R〉, w ∈ G, and A, B ⊆ G such that [a, b] = 1
∀a ∈ A, ∀b ∈ B.
Alice: picks a random a ∈ A, and sends a−1wa = wa.
Bob: picks a random b ∈ B, and sends b−1wb = wb.
Common secret: Alice: a−1(b−1wb)a = wba,

Bob: b−1(a−1wa)b = wab.

Eve: knows w , wa, wb, and needs wab.
This can be done by solving the Conjugacy Search Problem
Restricted to A (or B),

... but also solving the following seemingly easier problem:

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

Public: G = 〈X |R〉, w ∈ G, and A, B ⊆ G such that [a, b] = 1
∀a ∈ A, ∀b ∈ B.
Alice: picks a random a ∈ A, and sends a−1wa = wa.
Bob: picks a random b ∈ B, and sends b−1wb = wb.
Common secret: Alice: a−1(b−1wb)a = wba,

Bob: b−1(a−1wa)b = wab.

Eve: knows w , wa, wb, and needs wab.
This can be done by solving the Conjugacy Search Problem
Restricted to A (or B),

... but also solving the following seemingly easier problem:

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

Public: G = 〈X |R〉, w ∈ G, and A, B ⊆ G such that [a, b] = 1
∀a ∈ A, ∀b ∈ B.
Alice: picks a random a ∈ A, and sends a−1wa = wa.
Bob: picks a random b ∈ B, and sends b−1wb = wb.
Common secret: Alice: a−1(b−1wb)a = wba,

Bob: b−1(a−1wa)b = wab.

Eve: knows w , wa, wb, and needs wab.
This can be done by solving the Conjugacy Search Problem
Restricted to A (or B),

... but also solving the following seemingly easier problem:

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

Public: G = 〈X |R〉, w ∈ G, and A, B ⊆ G such that [a, b] = 1
∀a ∈ A, ∀b ∈ B.
Alice: picks a random a ∈ A, and sends a−1wa = wa.
Bob: picks a random b ∈ B, and sends b−1wb = wb.
Common secret: Alice: a−1(b−1wb)a = wba,

Bob: b−1(a−1wa)b = wab.

Eve: knows w , wa, wb, and needs wab.
This can be done by solving the Conjugacy Search Problem
Restricted to A (or B),

... but also solving the following seemingly easier problem:

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

Public: G = 〈X |R〉, w ∈ G, and A, B ⊆ G such that [a, b] = 1
∀a ∈ A, ∀b ∈ B.
Alice: picks a random a ∈ A, and sends a−1wa = wa.
Bob: picks a random b ∈ B, and sends b−1wb = wb.
Common secret: Alice: a−1(b−1wb)a = wba,

Bob: b−1(a−1wa)b = wab.

Eve: knows w , wa, wb, and needs wab.
This can be done by solving the Conjugacy Search Problem
Restricted to A (or B),

... but also solving the following seemingly easier problem:

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

Public: G = 〈X |R〉, w ∈ G, and A, B ⊆ G such that [a, b] = 1
∀a ∈ A, ∀b ∈ B.
Alice: picks a random a ∈ A, and sends a−1wa = wa.
Bob: picks a random b ∈ B, and sends b−1wb = wb.
Common secret: Alice: a−1(b−1wb)a = wba,

Bob: b−1(a−1wa)b = wab.

Eve: knows w , wa, wb, and needs wab.
This can be done by solving the Conjugacy Search Problem
Restricted to A (or B),

... but also solving the following seemingly easier problem:

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

Decomposition Problem: “knowing w , w ′ ∈ G, find a1, a2 ∈ A such
that w ′ = a1wa2”.

Eve knows w , wa, wb and suppose she can compute a1, a2 ∈ A
such that wa = a1wa2.

Then, a1wba2 = a1(b−1wb)a2 = b−1(a1wa2)b = b−1wab = wab,
and she finds the secret.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

Decomposition Problem: “knowing w , w ′ ∈ G, find a1, a2 ∈ A such
that w ′ = a1wa2”.

Eve knows w , wa, wb and suppose she can compute a1, a2 ∈ A
such that wa = a1wa2.

Then, a1wba2 = a1(b−1wb)a2 = b−1(a1wa2)b = b−1wab = wab,
and she finds the secret.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Ko-Lee-Cheon-Han-Kang-Park Protocol (2000)

Decomposition Problem: “knowing w , w ′ ∈ G, find a1, a2 ∈ A such
that w ′ = a1wa2”.

Eve knows w , wa, wb and suppose she can compute a1, a2 ∈ A
such that wa = a1wa2.

Then, a1wba2 = a1(b−1wb)a2 = b−1(a1wa2)b = b−1wab = wab,
and she finds the secret.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

Public: G = 〈X |R〉 and w ∈ G.
Alice: picks a random a1 ∈ G, a f.g. subgroup A 6 CG(a1) and
sends generators A = 〈α1, . . . , αn〉.
Bob: picks a random b2 ∈ B, a f.g. subgroup B 6 CG(b2) and
sends generators B = 〈β1, . . . , βm〉.
Alice: picks a random a2 ∈ B, and sends a1wa2.
Bob: picks a random b1 ∈ A, and sends b1wb2.
Common secret: Alice: a1(b1wb2)a2,

Bob: b1(a1wa2)b2.

Eve: knows w , a1wa2, b1wb2, and needs a1b1wa2b2.
This can be done by trying to recover a1 and a2 from w and
a1wa2, and knowing that a2 ∈ B, but without any information
where to look for a1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

Public: G = 〈X |R〉 and w ∈ G.
Alice: picks a random a1 ∈ G, a f.g. subgroup A 6 CG(a1) and
sends generators A = 〈α1, . . . , αn〉.
Bob: picks a random b2 ∈ B, a f.g. subgroup B 6 CG(b2) and
sends generators B = 〈β1, . . . , βm〉.
Alice: picks a random a2 ∈ B, and sends a1wa2.
Bob: picks a random b1 ∈ A, and sends b1wb2.
Common secret: Alice: a1(b1wb2)a2,

Bob: b1(a1wa2)b2.

Eve: knows w , a1wa2, b1wb2, and needs a1b1wa2b2.
This can be done by trying to recover a1 and a2 from w and
a1wa2, and knowing that a2 ∈ B, but without any information
where to look for a1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

Public: G = 〈X |R〉 and w ∈ G.
Alice: picks a random a1 ∈ G, a f.g. subgroup A 6 CG(a1) and
sends generators A = 〈α1, . . . , αn〉.
Bob: picks a random b2 ∈ B, a f.g. subgroup B 6 CG(b2) and
sends generators B = 〈β1, . . . , βm〉.
Alice: picks a random a2 ∈ B, and sends a1wa2.
Bob: picks a random b1 ∈ A, and sends b1wb2.
Common secret: Alice: a1(b1wb2)a2,

Bob: b1(a1wa2)b2.

Eve: knows w , a1wa2, b1wb2, and needs a1b1wa2b2.
This can be done by trying to recover a1 and a2 from w and
a1wa2, and knowing that a2 ∈ B, but without any information
where to look for a1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

Public: G = 〈X |R〉 and w ∈ G.
Alice: picks a random a1 ∈ G, a f.g. subgroup A 6 CG(a1) and
sends generators A = 〈α1, . . . , αn〉.
Bob: picks a random b2 ∈ B, a f.g. subgroup B 6 CG(b2) and
sends generators B = 〈β1, . . . , βm〉.
Alice: picks a random a2 ∈ B, and sends a1wa2.
Bob: picks a random b1 ∈ A, and sends b1wb2.
Common secret: Alice: a1(b1wb2)a2,

Bob: b1(a1wa2)b2.

Eve: knows w , a1wa2, b1wb2, and needs a1b1wa2b2.
This can be done by trying to recover a1 and a2 from w and
a1wa2, and knowing that a2 ∈ B, but without any information
where to look for a1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

Public: G = 〈X |R〉 and w ∈ G.
Alice: picks a random a1 ∈ G, a f.g. subgroup A 6 CG(a1) and
sends generators A = 〈α1, . . . , αn〉.
Bob: picks a random b2 ∈ B, a f.g. subgroup B 6 CG(b2) and
sends generators B = 〈β1, . . . , βm〉.
Alice: picks a random a2 ∈ B, and sends a1wa2.
Bob: picks a random b1 ∈ A, and sends b1wb2.
Common secret: Alice: a1(b1wb2)a2,

Bob: b1(a1wa2)b2.

Eve: knows w , a1wa2, b1wb2, and needs a1b1wa2b2.
This can be done by trying to recover a1 and a2 from w and
a1wa2, and knowing that a2 ∈ B, but without any information
where to look for a1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

Public: G = 〈X |R〉 and w ∈ G.
Alice: picks a random a1 ∈ G, a f.g. subgroup A 6 CG(a1) and
sends generators A = 〈α1, . . . , αn〉.
Bob: picks a random b2 ∈ B, a f.g. subgroup B 6 CG(b2) and
sends generators B = 〈β1, . . . , βm〉.
Alice: picks a random a2 ∈ B, and sends a1wa2.
Bob: picks a random b1 ∈ A, and sends b1wb2.
Common secret: Alice: a1(b1wb2)a2,

Bob: b1(a1wa2)b2.

Eve: knows w , a1wa2, b1wb2, and needs a1b1wa2b2.
This can be done by trying to recover a1 and a2 from w and
a1wa2, and knowing that a2 ∈ B, but without any information
where to look for a1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

Public: G = 〈X |R〉 and w ∈ G.
Alice: picks a random a1 ∈ G, a f.g. subgroup A 6 CG(a1) and
sends generators A = 〈α1, . . . , αn〉.
Bob: picks a random b2 ∈ B, a f.g. subgroup B 6 CG(b2) and
sends generators B = 〈β1, . . . , βm〉.
Alice: picks a random a2 ∈ B, and sends a1wa2.
Bob: picks a random b1 ∈ A, and sends b1wb2.
Common secret: Alice: a1(b1wb2)a2,

Bob: b1(a1wa2)b2.

Eve: knows w , a1wa2, b1wb2, and needs a1b1wa2b2.
This can be done by trying to recover a1 and a2 from w and
a1wa2, and knowing that a2 ∈ B, but without any information
where to look for a1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

Public: G = 〈X |R〉 and w ∈ G.
Alice: picks a random a1 ∈ G, a f.g. subgroup A 6 CG(a1) and
sends generators A = 〈α1, . . . , αn〉.
Bob: picks a random b2 ∈ B, a f.g. subgroup B 6 CG(b2) and
sends generators B = 〈β1, . . . , βm〉.
Alice: picks a random a2 ∈ B, and sends a1wa2.
Bob: picks a random b1 ∈ A, and sends b1wb2.
Common secret: Alice: a1(b1wb2)a2,

Bob: b1(a1wa2)b2.

Eve: knows w , a1wa2, b1wb2, and needs a1b1wa2b2.
This can be done by trying to recover a1 and a2 from w and
a1wa2, and knowing that a2 ∈ B, but without any information
where to look for a1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Hiding one of the subgroups, Shpilrain-Ushakov (2006)

Shpilrain-Ushakov did the following variation of Ko-Lee protocol:

Public: G = 〈X |R〉 and w ∈ G.
Alice: picks a random a1 ∈ G, a f.g. subgroup A 6 CG(a1) and
sends generators A = 〈α1, . . . , αn〉.
Bob: picks a random b2 ∈ B, a f.g. subgroup B 6 CG(b2) and
sends generators B = 〈β1, . . . , βm〉.
Alice: picks a random a2 ∈ B, and sends a1wa2.
Bob: picks a random b1 ∈ A, and sends b1wb2.
Common secret: Alice: a1(b1wb2)a2,

Bob: b1(a1wa2)b2.

Eve: knows w , a1wa2, b1wb2, and needs a1b1wa2b2.
This can be done by trying to recover a1 and a2 from w and
a1wa2, and knowing that a2 ∈ B, but without any information
where to look for a1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Outline

1 The origins of public key cryptography

2 A protocol based on the word problem

3 Protocols based on the conjugacy problem

4 Protocols based on the factorization problem

5 Anshel-Anshel-Goldfeld protocol

6 Some authentication protocols

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The factorization problem

Factorization Problem: “given u ∈ G and A, B 6 G, decide
whether u =G ab for some a ∈ A and b ∈ B”.

Factorization Search Problem: “given u ∈ G, A, B 6 G, and the
information that u = ab for some a ∈ A and b ∈ B, find such a
and b.”

Triple Factorization Search Problem: “given u ∈ G, A, B, C 6 G,
and the information that u = abc for some a ∈ A, b ∈ B and
c ∈ C, find such a, b and c.”

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The factorization problem

Factorization Problem: “given u ∈ G and A, B 6 G, decide
whether u =G ab for some a ∈ A and b ∈ B”.

Factorization Search Problem: “given u ∈ G, A, B 6 G, and the
information that u = ab for some a ∈ A and b ∈ B, find such a
and b.”

Triple Factorization Search Problem: “given u ∈ G, A, B, C 6 G,
and the information that u = abc for some a ∈ A, b ∈ B and
c ∈ C, find such a, b and c.”

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The factorization problem

Factorization Problem: “given u ∈ G and A, B 6 G, decide
whether u =G ab for some a ∈ A and b ∈ B”.

Factorization Search Problem: “given u ∈ G, A, B 6 G, and the
information that u = ab for some a ∈ A and b ∈ B, find such a
and b.”

Triple Factorization Search Problem: “given u ∈ G, A, B, C 6 G,
and the information that u = abc for some a ∈ A, b ∈ B and
c ∈ C, find such a, b and c.”

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The factorization problem

Factorization Problem: “given u ∈ G and A, B 6 G, decide
whether u =G ab for some a ∈ A and b ∈ B”.

Factorization Search Problem: “given u ∈ G, A, B 6 G, and the
information that u = ab for some a ∈ A and b ∈ B, find such a
and b.”

Triple Factorization Search Problem: “given u ∈ G, A, B, C 6 G,
and the information that u = abc for some a ∈ A, b ∈ B and
c ∈ C, find such a, b and c.”

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

A protocol based on the Factorization Search Problem

Public: G = 〈X |R〉 and A, B 6 G such that [a, b] = 1 ∀a ∈ A,
∀b ∈ B.
Alice: picks a random a1 ∈ A, b1 ∈ B and sends a1b1.
Bob: picks a random a2 ∈ A, b2 ∈ B and sends a2b2.
Common secret: Alice: b1(a2b2)a1

Bob: a2(a1b1)b2.
= a2b1b2a1 = a2a1b1b2.

Eve: knows a1a2 and b1b2, and needs a2a1b1b2.
This can be done by solving the Factorization Search Problem in
A (or B).
Note that Eve can compute

(a1b1)(a2b2) = a1a2b1b2 and (a2b2)(a1b1) = a2a1b2b1,

but neither of these products equal the secret if a1a2 6= a2a1 and
b1b2 6= b2b1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

A protocol based on the Factorization Search Problem

Public: G = 〈X |R〉 and A, B 6 G such that [a, b] = 1 ∀a ∈ A,
∀b ∈ B.
Alice: picks a random a1 ∈ A, b1 ∈ B and sends a1b1.
Bob: picks a random a2 ∈ A, b2 ∈ B and sends a2b2.
Common secret: Alice: b1(a2b2)a1

Bob: a2(a1b1)b2.
= a2b1b2a1 = a2a1b1b2.

Eve: knows a1a2 and b1b2, and needs a2a1b1b2.
This can be done by solving the Factorization Search Problem in
A (or B).
Note that Eve can compute

(a1b1)(a2b2) = a1a2b1b2 and (a2b2)(a1b1) = a2a1b2b1,

but neither of these products equal the secret if a1a2 6= a2a1 and
b1b2 6= b2b1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

A protocol based on the Factorization Search Problem

Public: G = 〈X |R〉 and A, B 6 G such that [a, b] = 1 ∀a ∈ A,
∀b ∈ B.
Alice: picks a random a1 ∈ A, b1 ∈ B and sends a1b1.
Bob: picks a random a2 ∈ A, b2 ∈ B and sends a2b2.
Common secret: Alice: b1(a2b2)a1

Bob: a2(a1b1)b2.
= a2b1b2a1 = a2a1b1b2.

Eve: knows a1a2 and b1b2, and needs a2a1b1b2.
This can be done by solving the Factorization Search Problem in
A (or B).
Note that Eve can compute

(a1b1)(a2b2) = a1a2b1b2 and (a2b2)(a1b1) = a2a1b2b1,

but neither of these products equal the secret if a1a2 6= a2a1 and
b1b2 6= b2b1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

A protocol based on the Factorization Search Problem

Public: G = 〈X |R〉 and A, B 6 G such that [a, b] = 1 ∀a ∈ A,
∀b ∈ B.
Alice: picks a random a1 ∈ A, b1 ∈ B and sends a1b1.
Bob: picks a random a2 ∈ A, b2 ∈ B and sends a2b2.
Common secret: Alice: b1(a2b2)a1

Bob: a2(a1b1)b2.
= a2b1b2a1 = a2a1b1b2.

Eve: knows a1a2 and b1b2, and needs a2a1b1b2.
This can be done by solving the Factorization Search Problem in
A (or B).
Note that Eve can compute

(a1b1)(a2b2) = a1a2b1b2 and (a2b2)(a1b1) = a2a1b2b1,

but neither of these products equal the secret if a1a2 6= a2a1 and
b1b2 6= b2b1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

A protocol based on the Factorization Search Problem

Public: G = 〈X |R〉 and A, B 6 G such that [a, b] = 1 ∀a ∈ A,
∀b ∈ B.
Alice: picks a random a1 ∈ A, b1 ∈ B and sends a1b1.
Bob: picks a random a2 ∈ A, b2 ∈ B and sends a2b2.
Common secret: Alice: b1(a2b2)a1

Bob: a2(a1b1)b2.
= a2b1b2a1 = a2a1b1b2.

Eve: knows a1a2 and b1b2, and needs a2a1b1b2.
This can be done by solving the Factorization Search Problem in
A (or B).
Note that Eve can compute

(a1b1)(a2b2) = a1a2b1b2 and (a2b2)(a1b1) = a2a1b2b1,

but neither of these products equal the secret if a1a2 6= a2a1 and
b1b2 6= b2b1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

A protocol based on the Factorization Search Problem

Public: G = 〈X |R〉 and A, B 6 G such that [a, b] = 1 ∀a ∈ A,
∀b ∈ B.
Alice: picks a random a1 ∈ A, b1 ∈ B and sends a1b1.
Bob: picks a random a2 ∈ A, b2 ∈ B and sends a2b2.
Common secret: Alice: b1(a2b2)a1

Bob: a2(a1b1)b2.
= a2b1b2a1 = a2a1b1b2.

Eve: knows a1a2 and b1b2, and needs a2a1b1b2.
This can be done by solving the Factorization Search Problem in
A (or B).
Note that Eve can compute

(a1b1)(a2b2) = a1a2b1b2 and (a2b2)(a1b1) = a2a1b2b1,

but neither of these products equal the secret if a1a2 6= a2a1 and
b1b2 6= b2b1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

A protocol based on the Factorization Search Problem

Public: G = 〈X |R〉 and A, B 6 G such that [a, b] = 1 ∀a ∈ A,
∀b ∈ B.
Alice: picks a random a1 ∈ A, b1 ∈ B and sends a1b1.
Bob: picks a random a2 ∈ A, b2 ∈ B and sends a2b2.
Common secret: Alice: b1(a2b2)a1

Bob: a2(a1b1)b2.
= a2b1b2a1 = a2a1b1b2.

Eve: knows a1a2 and b1b2, and needs a2a1b1b2.
This can be done by solving the Factorization Search Problem in
A (or B).
Note that Eve can compute

(a1b1)(a2b2) = a1a2b1b2 and (a2b2)(a1b1) = a2a1b2b1,

but neither of these products equal the secret if a1a2 6= a2a1 and
b1b2 6= b2b1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

A protocol based on the Factorization Search Problem

Public: G = 〈X |R〉 and A, B 6 G such that [a, b] = 1 ∀a ∈ A,
∀b ∈ B.
Alice: picks a random a1 ∈ A, b1 ∈ B and sends a1b1.
Bob: picks a random a2 ∈ A, b2 ∈ B and sends a2b2.
Common secret: Alice: b1(a2b2)a1

Bob: a2(a1b1)b2.
= a2b1b2a1 = a2a1b1b2.

Eve: knows a1a2 and b1b2, and needs a2a1b1b2.
This can be done by solving the Factorization Search Problem in
A (or B).
Note that Eve can compute

(a1b1)(a2b2) = a1a2b1b2 and (a2b2)(a1b1) = a2a1b2b1,

but neither of these products equal the secret if a1a2 6= a2a1 and
b1b2 6= b2b1.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Kurt’s protocol (2006)

Public: G = 〈X |R〉, 10 subgroups A1, A2, A3, X1, X2, B1, B2, B3,
Y1, Y26 G such that [A2, Y1] = [A3, Y2] = [B1, X1] = [B2, X2] = 1.
Alice: picks a random a1 ∈ A1, a2 ∈ A2, a3 ∈ A3, x1 ∈ X1,
x2 ∈ X2, and sends a1x1, x−1

1 a2x2 and x−1
2 a3.

Bob: picks a random b1 ∈ B1, b2 ∈ B2, b3 ∈ B3, y1 ∈ Y1, y2 ∈ Y2,
and sends b1y1, y−1

1 b2y2 and y−1
2 b3.

Common secret: Alice: a1(b1y1)a2(y−1
1 b2y2)a3(y−1

2 b3)

Bob: (a1x1)b1(x−1
1 a2x2)b2(x−1

2 a3)b3.

Eve: knows a1x1, x−1
1 a2x2, x−1

2 a3, b1y1, y−1
1 b2y2 and y−1

2 b3, and
needs a1b1a2b2a3b3.
This can be done by recovering a1, a2, a3 from a1a2a3 =
= (a1x1)(x−1

1 a2x2)(x−1
2 a3), i.e. solving the Triple Factorization

Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Kurt’s protocol (2006)

Public: G = 〈X |R〉, 10 subgroups A1, A2, A3, X1, X2, B1, B2, B3,
Y1, Y26 G such that [A2, Y1] = [A3, Y2] = [B1, X1] = [B2, X2] = 1.
Alice: picks a random a1 ∈ A1, a2 ∈ A2, a3 ∈ A3, x1 ∈ X1,
x2 ∈ X2, and sends a1x1, x−1

1 a2x2 and x−1
2 a3.

Bob: picks a random b1 ∈ B1, b2 ∈ B2, b3 ∈ B3, y1 ∈ Y1, y2 ∈ Y2,
and sends b1y1, y−1

1 b2y2 and y−1
2 b3.

Common secret: Alice: a1(b1y1)a2(y−1
1 b2y2)a3(y−1

2 b3)

Bob: (a1x1)b1(x−1
1 a2x2)b2(x−1

2 a3)b3.

Eve: knows a1x1, x−1
1 a2x2, x−1

2 a3, b1y1, y−1
1 b2y2 and y−1

2 b3, and
needs a1b1a2b2a3b3.
This can be done by recovering a1, a2, a3 from a1a2a3 =
= (a1x1)(x−1

1 a2x2)(x−1
2 a3), i.e. solving the Triple Factorization

Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Kurt’s protocol (2006)

Public: G = 〈X |R〉, 10 subgroups A1, A2, A3, X1, X2, B1, B2, B3,
Y1, Y26 G such that [A2, Y1] = [A3, Y2] = [B1, X1] = [B2, X2] = 1.
Alice: picks a random a1 ∈ A1, a2 ∈ A2, a3 ∈ A3, x1 ∈ X1,
x2 ∈ X2, and sends a1x1, x−1

1 a2x2 and x−1
2 a3.

Bob: picks a random b1 ∈ B1, b2 ∈ B2, b3 ∈ B3, y1 ∈ Y1, y2 ∈ Y2,
and sends b1y1, y−1

1 b2y2 and y−1
2 b3.

Common secret: Alice: a1(b1y1)a2(y−1
1 b2y2)a3(y−1

2 b3)

Bob: (a1x1)b1(x−1
1 a2x2)b2(x−1

2 a3)b3.

Eve: knows a1x1, x−1
1 a2x2, x−1

2 a3, b1y1, y−1
1 b2y2 and y−1

2 b3, and
needs a1b1a2b2a3b3.
This can be done by recovering a1, a2, a3 from a1a2a3 =
= (a1x1)(x−1

1 a2x2)(x−1
2 a3), i.e. solving the Triple Factorization

Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Kurt’s protocol (2006)

Public: G = 〈X |R〉, 10 subgroups A1, A2, A3, X1, X2, B1, B2, B3,
Y1, Y26 G such that [A2, Y1] = [A3, Y2] = [B1, X1] = [B2, X2] = 1.
Alice: picks a random a1 ∈ A1, a2 ∈ A2, a3 ∈ A3, x1 ∈ X1,
x2 ∈ X2, and sends a1x1, x−1

1 a2x2 and x−1
2 a3.

Bob: picks a random b1 ∈ B1, b2 ∈ B2, b3 ∈ B3, y1 ∈ Y1, y2 ∈ Y2,
and sends b1y1, y−1

1 b2y2 and y−1
2 b3.

Common secret: Alice: a1(b1y1)a2(y−1
1 b2y2)a3(y−1

2 b3)

Bob: (a1x1)b1(x−1
1 a2x2)b2(x−1

2 a3)b3.

Eve: knows a1x1, x−1
1 a2x2, x−1

2 a3, b1y1, y−1
1 b2y2 and y−1

2 b3, and
needs a1b1a2b2a3b3.
This can be done by recovering a1, a2, a3 from a1a2a3 =
= (a1x1)(x−1

1 a2x2)(x−1
2 a3), i.e. solving the Triple Factorization

Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Kurt’s protocol (2006)

Public: G = 〈X |R〉, 10 subgroups A1, A2, A3, X1, X2, B1, B2, B3,
Y1, Y26 G such that [A2, Y1] = [A3, Y2] = [B1, X1] = [B2, X2] = 1.
Alice: picks a random a1 ∈ A1, a2 ∈ A2, a3 ∈ A3, x1 ∈ X1,
x2 ∈ X2, and sends a1x1, x−1

1 a2x2 and x−1
2 a3.

Bob: picks a random b1 ∈ B1, b2 ∈ B2, b3 ∈ B3, y1 ∈ Y1, y2 ∈ Y2,
and sends b1y1, y−1

1 b2y2 and y−1
2 b3.

Common secret: Alice: a1(b1y1)a2(y−1
1 b2y2)a3(y−1

2 b3)

Bob: (a1x1)b1(x−1
1 a2x2)b2(x−1

2 a3)b3.

Eve: knows a1x1, x−1
1 a2x2, x−1

2 a3, b1y1, y−1
1 b2y2 and y−1

2 b3, and
needs a1b1a2b2a3b3.
This can be done by recovering a1, a2, a3 from a1a2a3 =
= (a1x1)(x−1

1 a2x2)(x−1
2 a3), i.e. solving the Triple Factorization

Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Kurt’s protocol (2006)

Public: G = 〈X |R〉, 10 subgroups A1, A2, A3, X1, X2, B1, B2, B3,
Y1, Y26 G such that [A2, Y1] = [A3, Y2] = [B1, X1] = [B2, X2] = 1.
Alice: picks a random a1 ∈ A1, a2 ∈ A2, a3 ∈ A3, x1 ∈ X1,
x2 ∈ X2, and sends a1x1, x−1

1 a2x2 and x−1
2 a3.

Bob: picks a random b1 ∈ B1, b2 ∈ B2, b3 ∈ B3, y1 ∈ Y1, y2 ∈ Y2,
and sends b1y1, y−1

1 b2y2 and y−1
2 b3.

Common secret: Alice: a1(b1y1)a2(y−1
1 b2y2)a3(y−1

2 b3)

Bob: (a1x1)b1(x−1
1 a2x2)b2(x−1

2 a3)b3.

Eve: knows a1x1, x−1
1 a2x2, x−1

2 a3, b1y1, y−1
1 b2y2 and y−1

2 b3, and
needs a1b1a2b2a3b3.
This can be done by recovering a1, a2, a3 from a1a2a3 =
= (a1x1)(x−1

1 a2x2)(x−1
2 a3), i.e. solving the Triple Factorization

Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Kurt’s protocol (2006)

Public: G = 〈X |R〉, 10 subgroups A1, A2, A3, X1, X2, B1, B2, B3,
Y1, Y26 G such that [A2, Y1] = [A3, Y2] = [B1, X1] = [B2, X2] = 1.
Alice: picks a random a1 ∈ A1, a2 ∈ A2, a3 ∈ A3, x1 ∈ X1,
x2 ∈ X2, and sends a1x1, x−1

1 a2x2 and x−1
2 a3.

Bob: picks a random b1 ∈ B1, b2 ∈ B2, b3 ∈ B3, y1 ∈ Y1, y2 ∈ Y2,
and sends b1y1, y−1

1 b2y2 and y−1
2 b3.

Common secret: Alice: a1(b1y1)a2(y−1
1 b2y2)a3(y−1

2 b3)

Bob: (a1x1)b1(x−1
1 a2x2)b2(x−1

2 a3)b3.

Eve: knows a1x1, x−1
1 a2x2, x−1

2 a3, b1y1, y−1
1 b2y2 and y−1

2 b3, and
needs a1b1a2b2a3b3.
This can be done by recovering a1, a2, a3 from a1a2a3 =
= (a1x1)(x−1

1 a2x2)(x−1
2 a3), i.e. solving the Triple Factorization

Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Stickel’s protocol (2005)

Public: A finite group G, w ∈ G, and a, b ∈ G with ab 6= ba (of
order N and M, respectively).
Alice: picks a random 0 < n < N and 0 < m < M, and sends
anwbm.
Bob: picks a random 0 < n′ < N and 0 < m′ < M, and sends
an′

wbm′
.

Common secret: Alice: an(an′
wbm′

)bm = an+n′
wbm+m′

Bob: an′
(anwbm)bm′

= an+n′
wbm+m′

.

Eve: knows a, b, anwbm and an′
wbm′

, and needs an+n′
wbm+m′

.
This can be done by solving a variation of the Discrete Logarithm
Problem (in G).
Or... finding alternative x , y ∈ G such that xa = ax , yb = by and
xwy = anwbm. Then,
x(an′

wbm′
)y = an′

xwybm′
= an′

(anwbm)bm′
= an+n′

wbm+m′
.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Stickel’s protocol (2005)

Public: A finite group G, w ∈ G, and a, b ∈ G with ab 6= ba (of
order N and M, respectively).
Alice: picks a random 0 < n < N and 0 < m < M, and sends
anwbm.
Bob: picks a random 0 < n′ < N and 0 < m′ < M, and sends
an′

wbm′
.

Common secret: Alice: an(an′
wbm′

)bm = an+n′
wbm+m′

Bob: an′
(anwbm)bm′

= an+n′
wbm+m′

.

Eve: knows a, b, anwbm and an′
wbm′

, and needs an+n′
wbm+m′

.
This can be done by solving a variation of the Discrete Logarithm
Problem (in G).
Or... finding alternative x , y ∈ G such that xa = ax , yb = by and
xwy = anwbm. Then,
x(an′

wbm′
)y = an′

xwybm′
= an′

(anwbm)bm′
= an+n′

wbm+m′
.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Stickel’s protocol (2005)

Public: A finite group G, w ∈ G, and a, b ∈ G with ab 6= ba (of
order N and M, respectively).
Alice: picks a random 0 < n < N and 0 < m < M, and sends
anwbm.
Bob: picks a random 0 < n′ < N and 0 < m′ < M, and sends
an′

wbm′
.

Common secret: Alice: an(an′
wbm′

)bm = an+n′
wbm+m′

Bob: an′
(anwbm)bm′

= an+n′
wbm+m′

.

Eve: knows a, b, anwbm and an′
wbm′

, and needs an+n′
wbm+m′

.
This can be done by solving a variation of the Discrete Logarithm
Problem (in G).
Or... finding alternative x , y ∈ G such that xa = ax , yb = by and
xwy = anwbm. Then,
x(an′

wbm′
)y = an′

xwybm′
= an′

(anwbm)bm′
= an+n′

wbm+m′
.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Stickel’s protocol (2005)

Public: A finite group G, w ∈ G, and a, b ∈ G with ab 6= ba (of
order N and M, respectively).
Alice: picks a random 0 < n < N and 0 < m < M, and sends
anwbm.
Bob: picks a random 0 < n′ < N and 0 < m′ < M, and sends
an′

wbm′
.

Common secret: Alice: an(an′
wbm′

)bm = an+n′
wbm+m′

Bob: an′
(anwbm)bm′

= an+n′
wbm+m′

.

Eve: knows a, b, anwbm and an′
wbm′

, and needs an+n′
wbm+m′

.
This can be done by solving a variation of the Discrete Logarithm
Problem (in G).
Or... finding alternative x , y ∈ G such that xa = ax , yb = by and
xwy = anwbm. Then,
x(an′

wbm′
)y = an′

xwybm′
= an′

(anwbm)bm′
= an+n′

wbm+m′
.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Stickel’s protocol (2005)

Public: A finite group G, w ∈ G, and a, b ∈ G with ab 6= ba (of
order N and M, respectively).
Alice: picks a random 0 < n < N and 0 < m < M, and sends
anwbm.
Bob: picks a random 0 < n′ < N and 0 < m′ < M, and sends
an′

wbm′
.

Common secret: Alice: an(an′
wbm′

)bm = an+n′
wbm+m′

Bob: an′
(anwbm)bm′

= an+n′
wbm+m′

.

Eve: knows a, b, anwbm and an′
wbm′

, and needs an+n′
wbm+m′

.
This can be done by solving a variation of the Discrete Logarithm
Problem (in G).
Or... finding alternative x , y ∈ G such that xa = ax , yb = by and
xwy = anwbm. Then,
x(an′

wbm′
)y = an′

xwybm′
= an′

(anwbm)bm′
= an+n′

wbm+m′
.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Stickel’s protocol (2005)

Public: A finite group G, w ∈ G, and a, b ∈ G with ab 6= ba (of
order N and M, respectively).
Alice: picks a random 0 < n < N and 0 < m < M, and sends
anwbm.
Bob: picks a random 0 < n′ < N and 0 < m′ < M, and sends
an′

wbm′
.

Common secret: Alice: an(an′
wbm′

)bm = an+n′
wbm+m′

Bob: an′
(anwbm)bm′

= an+n′
wbm+m′

.

Eve: knows a, b, anwbm and an′
wbm′

, and needs an+n′
wbm+m′

.
This can be done by solving a variation of the Discrete Logarithm
Problem (in G).
Or... finding alternative x , y ∈ G such that xa = ax , yb = by and
xwy = anwbm. Then,
x(an′

wbm′
)y = an′

xwybm′
= an′

(anwbm)bm′
= an+n′

wbm+m′
.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Stickel’s protocol (2005)

Public: A finite group G, w ∈ G, and a, b ∈ G with ab 6= ba (of
order N and M, respectively).
Alice: picks a random 0 < n < N and 0 < m < M, and sends
anwbm.
Bob: picks a random 0 < n′ < N and 0 < m′ < M, and sends
an′

wbm′
.

Common secret: Alice: an(an′
wbm′

)bm = an+n′
wbm+m′

Bob: an′
(anwbm)bm′

= an+n′
wbm+m′

.

Eve: knows a, b, anwbm and an′
wbm′

, and needs an+n′
wbm+m′

.
This can be done by solving a variation of the Discrete Logarithm
Problem (in G).
Or... finding alternative x , y ∈ G such that xa = ax , yb = by and
xwy = anwbm. Then,
x(an′

wbm′
)y = an′

xwybm′
= an′

(anwbm)bm′
= an+n′

wbm+m′
.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Outline

1 The origins of public key cryptography

2 A protocol based on the word problem

3 Protocols based on the conjugacy problem

4 Protocols based on the factorization problem

5 Anshel-Anshel-Goldfeld protocol

6 Some authentication protocols

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without
using any commuting subgroups).

Public: A group G = 〈X |R〉 and elements a1, . . . , am ∈ G,
b1, . . . , bn ∈ G.
Alice: picks a word x = x(a1, . . . , am), and sends bx

1 , . . . , bx
n .

Bob: picks a word y = y(b1, . . . , bn), and sends ay
1 , . . . , ay

m.
Common secret:
Alice: x(ay

1 , . . . , ay
m) = xy = y−1xy , and x−1(y−1xy) = [x , y]

Bob: y(bx
1 , . . . , bx

n) = yx = x−1yx , and (x−1yx)−1y = [x , y].

Eve: knows a1, . . . , am, b1, . . . , bn, ay
1 , . . . , ay

m, bx
1 , . . . , bx

n and
needs [x , y].
This can be done by solving the Multiple Restricted Search
Conjugacy Problem.
But there are subtleties here...

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without
using any commuting subgroups).

Public: A group G = 〈X |R〉 and elements a1, . . . , am ∈ G,
b1, . . . , bn ∈ G.
Alice: picks a word x = x(a1, . . . , am), and sends bx

1 , . . . , bx
n .

Bob: picks a word y = y(b1, . . . , bn), and sends ay
1 , . . . , ay

m.
Common secret:
Alice: x(ay

1 , . . . , ay
m) = xy = y−1xy , and x−1(y−1xy) = [x , y]

Bob: y(bx
1 , . . . , bx

n) = yx = x−1yx , and (x−1yx)−1y = [x , y].

Eve: knows a1, . . . , am, b1, . . . , bn, ay
1 , . . . , ay

m, bx
1 , . . . , bx

n and
needs [x , y].
This can be done by solving the Multiple Restricted Search
Conjugacy Problem.
But there are subtleties here...

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without
using any commuting subgroups).

Public: A group G = 〈X |R〉 and elements a1, . . . , am ∈ G,
b1, . . . , bn ∈ G.
Alice: picks a word x = x(a1, . . . , am), and sends bx

1 , . . . , bx
n .

Bob: picks a word y = y(b1, . . . , bn), and sends ay
1 , . . . , ay

m.
Common secret:
Alice: x(ay

1 , . . . , ay
m) = xy = y−1xy , and x−1(y−1xy) = [x , y]

Bob: y(bx
1 , . . . , bx

n) = yx = x−1yx , and (x−1yx)−1y = [x , y].

Eve: knows a1, . . . , am, b1, . . . , bn, ay
1 , . . . , ay

m, bx
1 , . . . , bx

n and
needs [x , y].
This can be done by solving the Multiple Restricted Search
Conjugacy Problem.
But there are subtleties here...

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without
using any commuting subgroups).

Public: A group G = 〈X |R〉 and elements a1, . . . , am ∈ G,
b1, . . . , bn ∈ G.
Alice: picks a word x = x(a1, . . . , am), and sends bx

1 , . . . , bx
n .

Bob: picks a word y = y(b1, . . . , bn), and sends ay
1 , . . . , ay

m.
Common secret:
Alice: x(ay

1 , . . . , ay
m) = xy = y−1xy , and x−1(y−1xy) = [x , y]

Bob: y(bx
1 , . . . , bx

n) = yx = x−1yx , and (x−1yx)−1y = [x , y].

Eve: knows a1, . . . , am, b1, . . . , bn, ay
1 , . . . , ay

m, bx
1 , . . . , bx

n and
needs [x , y].
This can be done by solving the Multiple Restricted Search
Conjugacy Problem.
But there are subtleties here...

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without
using any commuting subgroups).

Public: A group G = 〈X |R〉 and elements a1, . . . , am ∈ G,
b1, . . . , bn ∈ G.
Alice: picks a word x = x(a1, . . . , am), and sends bx

1 , . . . , bx
n .

Bob: picks a word y = y(b1, . . . , bn), and sends ay
1 , . . . , ay

m.
Common secret:
Alice: x(ay

1 , . . . , ay
m) = xy = y−1xy , and x−1(y−1xy) = [x , y]

Bob: y(bx
1 , . . . , bx

n) = yx = x−1yx , and (x−1yx)−1y = [x , y].

Eve: knows a1, . . . , am, b1, . . . , bn, ay
1 , . . . , ay

m, bx
1 , . . . , bx

n and
needs [x , y].
This can be done by solving the Multiple Restricted Search
Conjugacy Problem.
But there are subtleties here...

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without
using any commuting subgroups).

Public: A group G = 〈X |R〉 and elements a1, . . . , am ∈ G,
b1, . . . , bn ∈ G.
Alice: picks a word x = x(a1, . . . , am), and sends bx

1 , . . . , bx
n .

Bob: picks a word y = y(b1, . . . , bn), and sends ay
1 , . . . , ay

m.
Common secret:
Alice: x(ay

1 , . . . , ay
m) = xy = y−1xy , and x−1(y−1xy) = [x , y]

Bob: y(bx
1 , . . . , bx

n) = yx = x−1yx , and (x−1yx)−1y = [x , y].

Eve: knows a1, . . . , am, b1, . . . , bn, ay
1 , . . . , ay

m, bx
1 , . . . , bx

n and
needs [x , y].
This can be done by solving the Multiple Restricted Search
Conjugacy Problem.
But there are subtleties here...

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without
using any commuting subgroups).

Public: A group G = 〈X |R〉 and elements a1, . . . , am ∈ G,
b1, . . . , bn ∈ G.
Alice: picks a word x = x(a1, . . . , am), and sends bx

1 , . . . , bx
n .

Bob: picks a word y = y(b1, . . . , bn), and sends ay
1 , . . . , ay

m.
Common secret:
Alice: x(ay

1 , . . . , ay
m) = xy = y−1xy , and x−1(y−1xy) = [x , y]

Bob: y(bx
1 , . . . , bx

n) = yx = x−1yx , and (x−1yx)−1y = [x , y].

Eve: knows a1, . . . , am, b1, . . . , bn, ay
1 , . . . , ay

m, bx
1 , . . . , bx

n and
needs [x , y].
This can be done by solving the Multiple Restricted Search
Conjugacy Problem.
But there are subtleties here...

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Anshel-Anshel-Goldfeld protocol (1999)

This is a protocol genuinely based on non-commutativity (i.e. without
using any commuting subgroups).

Public: A group G = 〈X |R〉 and elements a1, . . . , am ∈ G,
b1, . . . , bn ∈ G.
Alice: picks a word x = x(a1, . . . , am), and sends bx

1 , . . . , bx
n .

Bob: picks a word y = y(b1, . . . , bn), and sends ay
1 , . . . , ay

m.
Common secret:
Alice: x(ay

1 , . . . , ay
m) = xy = y−1xy , and x−1(y−1xy) = [x , y]

Bob: y(bx
1 , . . . , bx

n) = yx = x−1yx , and (x−1yx)−1y = [x , y].

Eve: knows a1, . . . , am, b1, . . . , bn, ay
1 , . . . , ay

m, bx
1 , . . . , bx

n and
needs [x , y].
This can be done by solving the Multiple Restricted Search
Conjugacy Problem.
But there are subtleties here...

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Anshel-Anshel-Goldfeld protocol (1999)

The element x conjugating b1, . . . , bn into bx
1 , . . . , bx

n need not be
unique.
After solving the Multiple Search Conjugacy Problem, Eve will
find x ′ = cbx where cb ∈ CG(b1) ∩ · · · ∩ CG(bn),

y ′ = cay where ca ∈ CG(a1) ∩ · · · ∩ CG(am).

Now, [x ′, y ′] = [x , y] ⇔ ca commutes with cb:

[x ′, y ′] = (x−1c−1
b)(y−1c−1

a)(cbx)(cay) = x−1y−1c−1
b c−1

a cbcaxy .

The only visible way to ensure this is to have x ′ ∈ A (so cb ∈ A
and [ca, cb] = 1), or y ′ ∈ B.
Hence, the (unrestricted) Multiple Search Conjugacy Problem
does not seem to be enough in order to break the system.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Anshel-Anshel-Goldfeld protocol (1999)

The element x conjugating b1, . . . , bn into bx
1 , . . . , bx

n need not be
unique.
After solving the Multiple Search Conjugacy Problem, Eve will
find x ′ = cbx where cb ∈ CG(b1) ∩ · · · ∩ CG(bn),

y ′ = cay where ca ∈ CG(a1) ∩ · · · ∩ CG(am).

Now, [x ′, y ′] = [x , y] ⇔ ca commutes with cb:

[x ′, y ′] = (x−1c−1
b)(y−1c−1

a)(cbx)(cay) = x−1y−1c−1
b c−1

a cbcaxy .

The only visible way to ensure this is to have x ′ ∈ A (so cb ∈ A
and [ca, cb] = 1), or y ′ ∈ B.
Hence, the (unrestricted) Multiple Search Conjugacy Problem
does not seem to be enough in order to break the system.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Anshel-Anshel-Goldfeld protocol (1999)

The element x conjugating b1, . . . , bn into bx
1 , . . . , bx

n need not be
unique.
After solving the Multiple Search Conjugacy Problem, Eve will
find x ′ = cbx where cb ∈ CG(b1) ∩ · · · ∩ CG(bn),

y ′ = cay where ca ∈ CG(a1) ∩ · · · ∩ CG(am).

Now, [x ′, y ′] = [x , y] ⇔ ca commutes with cb:

[x ′, y ′] = (x−1c−1
b)(y−1c−1

a)(cbx)(cay) = x−1y−1c−1
b c−1

a cbcaxy .

The only visible way to ensure this is to have x ′ ∈ A (so cb ∈ A
and [ca, cb] = 1), or y ′ ∈ B.
Hence, the (unrestricted) Multiple Search Conjugacy Problem
does not seem to be enough in order to break the system.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Anshel-Anshel-Goldfeld protocol (1999)

The element x conjugating b1, . . . , bn into bx
1 , . . . , bx

n need not be
unique.
After solving the Multiple Search Conjugacy Problem, Eve will
find x ′ = cbx where cb ∈ CG(b1) ∩ · · · ∩ CG(bn),

y ′ = cay where ca ∈ CG(a1) ∩ · · · ∩ CG(am).

Now, [x ′, y ′] = [x , y] ⇔ ca commutes with cb:

[x ′, y ′] = (x−1c−1
b)(y−1c−1

a)(cbx)(cay) = x−1y−1c−1
b c−1

a cbcaxy .

The only visible way to ensure this is to have x ′ ∈ A (so cb ∈ A
and [ca, cb] = 1), or y ′ ∈ B.
Hence, the (unrestricted) Multiple Search Conjugacy Problem
does not seem to be enough in order to break the system.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Anshel-Anshel-Goldfeld protocol (1999)

The element x conjugating b1, . . . , bn into bx
1 , . . . , bx

n need not be
unique.
After solving the Multiple Search Conjugacy Problem, Eve will
find x ′ = cbx where cb ∈ CG(b1) ∩ · · · ∩ CG(bn),

y ′ = cay where ca ∈ CG(a1) ∩ · · · ∩ CG(am).

Now, [x ′, y ′] = [x , y] ⇔ ca commutes with cb:

[x ′, y ′] = (x−1c−1
b)(y−1c−1

a)(cbx)(cay) = x−1y−1c−1
b c−1

a cbcaxy .

The only visible way to ensure this is to have x ′ ∈ A (so cb ∈ A
and [ca, cb] = 1), or y ′ ∈ B.
Hence, the (unrestricted) Multiple Search Conjugacy Problem
does not seem to be enough in order to break the system.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Outline

1 The origins of public key cryptography

2 A protocol based on the word problem

3 Protocols based on the conjugacy problem

4 Protocols based on the factorization problem

5 Anshel-Anshel-Goldfeld protocol

6 Some authentication protocols

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Authentication protocols

These are protocols to ensure that somebody is really who is
claiming to be.

General setting: Every player has a public name, and a secret
key. When I call somebody by his name, he must provide me a
proof that he knows the corresponding secret key (so, he is who
is supposed to be), but without revealing any information about
the key itself.

Many key establishment protocols can be modified to become
authentication protocols.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Authentication protocols

These are protocols to ensure that somebody is really who is
claiming to be.

General setting: Every player has a public name, and a secret
key. When I call somebody by his name, he must provide me a
proof that he knows the corresponding secret key (so, he is who
is supposed to be), but without revealing any information about
the key itself.

Many key establishment protocols can be modified to become
authentication protocols.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Authentication protocols

These are protocols to ensure that somebody is really who is
claiming to be.

General setting: Every player has a public name, and a secret
key. When I call somebody by his name, he must provide me a
proof that he knows the corresponding secret key (so, he is who
is supposed to be), but without revealing any information about
the key itself.

Many key establishment protocols can be modified to become
authentication protocols.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman authentication protocol

Public: p (prime) and g 6∈ pZ.
Every player has a secret key a ∈ N, and public name ga mod p.

Bob, the verifier, wants to be sure that Alice (say, Ms.
“ga mod p”), the prover, is who is supposed to be.

Bob: picks a random b ∈ N, and sends gb mod p (a challenge).
Alice: sends (gb)a mod p.
Bob: verifies whether (gb)a = (ga)b mod p.

Eve: knows p, g and ga mod p, and needs a to be able to
impersonate Alice. This is the Discrete Logarithm Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman authentication protocol

Public: p (prime) and g 6∈ pZ.
Every player has a secret key a ∈ N, and public name ga mod p.

Bob, the verifier, wants to be sure that Alice (say, Ms.
“ga mod p”), the prover, is who is supposed to be.

Bob: picks a random b ∈ N, and sends gb mod p (a challenge).
Alice: sends (gb)a mod p.
Bob: verifies whether (gb)a = (ga)b mod p.

Eve: knows p, g and ga mod p, and needs a to be able to
impersonate Alice. This is the Discrete Logarithm Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman authentication protocol

Public: p (prime) and g 6∈ pZ.
Every player has a secret key a ∈ N, and public name ga mod p.

Bob, the verifier, wants to be sure that Alice (say, Ms.
“ga mod p”), the prover, is who is supposed to be.

Bob: picks a random b ∈ N, and sends gb mod p (a challenge).
Alice: sends (gb)a mod p.
Bob: verifies whether (gb)a = (ga)b mod p.

Eve: knows p, g and ga mod p, and needs a to be able to
impersonate Alice. This is the Discrete Logarithm Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman authentication protocol

Public: p (prime) and g 6∈ pZ.
Every player has a secret key a ∈ N, and public name ga mod p.

Bob, the verifier, wants to be sure that Alice (say, Ms.
“ga mod p”), the prover, is who is supposed to be.

Bob: picks a random b ∈ N, and sends gb mod p (a challenge).
Alice: sends (gb)a mod p.
Bob: verifies whether (gb)a = (ga)b mod p.

Eve: knows p, g and ga mod p, and needs a to be able to
impersonate Alice. This is the Discrete Logarithm Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman authentication protocol

Public: p (prime) and g 6∈ pZ.
Every player has a secret key a ∈ N, and public name ga mod p.

Bob, the verifier, wants to be sure that Alice (say, Ms.
“ga mod p”), the prover, is who is supposed to be.

Bob: picks a random b ∈ N, and sends gb mod p (a challenge).
Alice: sends (gb)a mod p.
Bob: verifies whether (gb)a = (ga)b mod p.

Eve: knows p, g and ga mod p, and needs a to be able to
impersonate Alice. This is the Discrete Logarithm Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman authentication protocol

Public: p (prime) and g 6∈ pZ.
Every player has a secret key a ∈ N, and public name ga mod p.

Bob, the verifier, wants to be sure that Alice (say, Ms.
“ga mod p”), the prover, is who is supposed to be.

Bob: picks a random b ∈ N, and sends gb mod p (a challenge).
Alice: sends (gb)a mod p.
Bob: verifies whether (gb)a = (ga)b mod p.

Eve: knows p, g and ga mod p, and needs a to be able to
impersonate Alice. This is the Discrete Logarithm Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman authentication protocol

Public: p (prime) and g 6∈ pZ.
Every player has a secret key a ∈ N, and public name ga mod p.

Bob, the verifier, wants to be sure that Alice (say, Ms.
“ga mod p”), the prover, is who is supposed to be.

Bob: picks a random b ∈ N, and sends gb mod p (a challenge).
Alice: sends (gb)a mod p.
Bob: verifies whether (gb)a = (ga)b mod p.

Eve: knows p, g and ga mod p, and needs a to be able to
impersonate Alice. This is the Discrete Logarithm Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman authentication protocol

Public: p (prime) and g 6∈ pZ.
Every player has a secret key a ∈ N, and public name ga mod p.

Bob, the verifier, wants to be sure that Alice (say, Ms.
“ga mod p”), the prover, is who is supposed to be.

Bob: picks a random b ∈ N, and sends gb mod p (a challenge).
Alice: sends (gb)a mod p.
Bob: verifies whether (gb)a = (ga)b mod p.

Eve: knows p, g and ga mod p, and needs a to be able to
impersonate Alice. This is the Discrete Logarithm Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman-like authentication protocol

Public: G = 〈X |R〉 and A, B ⊆ G such that [a, b] = 1 ∀a ∈ A,
∀b ∈ B.
Every player has a secret key a ∈ A, and public name (u, ua),
where u ∈ G is arbitrary (and ua = a−1ua).

Bob wants to be sure that Alice (say, Ms. “(u, ua)”) is who is
supposed to be.

Bob: picks a random b ∈ B, and sends ub = b−1ub.
Alice: sends (ub)a = uba.
Bob: verifies whether uba = (ua)b.

Eve: knows u and ua, and needs a to be able to authenticate as
Alice to Bob. This is the Discrete Logarithm Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman-like authentication protocol

Public: G = 〈X |R〉 and A, B ⊆ G such that [a, b] = 1 ∀a ∈ A,
∀b ∈ B.
Every player has a secret key a ∈ A, and public name (u, ua),
where u ∈ G is arbitrary (and ua = a−1ua).

Bob wants to be sure that Alice (say, Ms. “(u, ua)”) is who is
supposed to be.

Bob: picks a random b ∈ B, and sends ub = b−1ub.
Alice: sends (ub)a = uba.
Bob: verifies whether uba = (ua)b.

Eve: knows u and ua, and needs a to be able to authenticate as
Alice to Bob. This is the Discrete Logarithm Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman-like authentication protocol

Public: G = 〈X |R〉 and A, B ⊆ G such that [a, b] = 1 ∀a ∈ A,
∀b ∈ B.
Every player has a secret key a ∈ A, and public name (u, ua),
where u ∈ G is arbitrary (and ua = a−1ua).

Bob wants to be sure that Alice (say, Ms. “(u, ua)”) is who is
supposed to be.

Bob: picks a random b ∈ B, and sends ub = b−1ub.
Alice: sends (ub)a = uba.
Bob: verifies whether uba = (ua)b.

Eve: knows u and ua, and needs a to be able to authenticate as
Alice to Bob. This is the Discrete Logarithm Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman-like authentication protocol

Public: G = 〈X |R〉 and A, B ⊆ G such that [a, b] = 1 ∀a ∈ A,
∀b ∈ B.
Every player has a secret key a ∈ A, and public name (u, ua),
where u ∈ G is arbitrary (and ua = a−1ua).

Bob wants to be sure that Alice (say, Ms. “(u, ua)”) is who is
supposed to be.

Bob: picks a random b ∈ B, and sends ub = b−1ub.
Alice: sends (ub)a = uba.
Bob: verifies whether uba = (ua)b.

Eve: knows u and ua, and needs a to be able to authenticate as
Alice to Bob. This is the Discrete Logarithm Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman-like authentication protocol

Public: G = 〈X |R〉 and A, B ⊆ G such that [a, b] = 1 ∀a ∈ A,
∀b ∈ B.
Every player has a secret key a ∈ A, and public name (u, ua),
where u ∈ G is arbitrary (and ua = a−1ua).

Bob wants to be sure that Alice (say, Ms. “(u, ua)”) is who is
supposed to be.

Bob: picks a random b ∈ B, and sends ub = b−1ub.
Alice: sends (ub)a = uba.
Bob: verifies whether uba = (ua)b.

Eve: knows u and ua, and needs a to be able to authenticate as
Alice to Bob. This is the Discrete Logarithm Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman-like authentication protocol

Public: G = 〈X |R〉 and A, B ⊆ G such that [a, b] = 1 ∀a ∈ A,
∀b ∈ B.
Every player has a secret key a ∈ A, and public name (u, ua),
where u ∈ G is arbitrary (and ua = a−1ua).

Bob wants to be sure that Alice (say, Ms. “(u, ua)”) is who is
supposed to be.

Bob: picks a random b ∈ B, and sends ub = b−1ub.
Alice: sends (ub)a = uba.
Bob: verifies whether uba = (ua)b.

Eve: knows u and ua, and needs a to be able to authenticate as
Alice to Bob. This is the Discrete Logarithm Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman-like authentication protocol

Public: G = 〈X |R〉 and A, B ⊆ G such that [a, b] = 1 ∀a ∈ A,
∀b ∈ B.
Every player has a secret key a ∈ A, and public name (u, ua),
where u ∈ G is arbitrary (and ua = a−1ua).

Bob wants to be sure that Alice (say, Ms. “(u, ua)”) is who is
supposed to be.

Bob: picks a random b ∈ B, and sends ub = b−1ub.
Alice: sends (ub)a = uba.
Bob: verifies whether uba = (ua)b.

Eve: knows u and ua, and needs a to be able to authenticate as
Alice to Bob. This is the Discrete Logarithm Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Diffie-Hellman-like authentication protocol

Public: G = 〈X |R〉 and A, B ⊆ G such that [a, b] = 1 ∀a ∈ A,
∀b ∈ B.
Every player has a secret key a ∈ A, and public name (u, ua),
where u ∈ G is arbitrary (and ua = a−1ua).

Bob wants to be sure that Alice (say, Ms. “(u, ua)”) is who is
supposed to be.

Bob: picks a random b ∈ B, and sends ub = b−1ub.
Alice: sends (ub)a = uba.
Bob: verifies whether uba = (ua)b.

Eve: knows u and ua, and needs a to be able to authenticate as
Alice to Bob. This is the Discrete Logarithm Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Sibert-Dehornoy-Girault authentication protocol (2006)

Public: G = 〈X |R〉 (and no commuting subgroups!).
Every player has a secret key a ∈ A, and public name (u, ua),
where u ∈ G is arbitrary (and ua = a−1ua).
Bob wants to be sure that Alice (say, Ms. “(u, ua)”) is who is
supposed to be.

First (wrong) attempt:
Alice: picks a random b ∈ B, and sends x = b−1(ua)b, and
y = b.
Bob: verifies whether y−1 · ua · y = x .
Eve: can easily impersonate Alice, by acting in the same way (a
plays no role).

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Sibert-Dehornoy-Girault authentication protocol (2006)

Public: G = 〈X |R〉 (and no commuting subgroups!).
Every player has a secret key a ∈ A, and public name (u, ua),
where u ∈ G is arbitrary (and ua = a−1ua).
Bob wants to be sure that Alice (say, Ms. “(u, ua)”) is who is
supposed to be.

First (wrong) attempt:
Alice: picks a random b ∈ B, and sends x = b−1(ua)b, and
y = b.
Bob: verifies whether y−1 · ua · y = x .
Eve: can easily impersonate Alice, by acting in the same way (a
plays no role).

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Sibert-Dehornoy-Girault authentication protocol (2006)

Public: G = 〈X |R〉 (and no commuting subgroups!).
Every player has a secret key a ∈ A, and public name (u, ua),
where u ∈ G is arbitrary (and ua = a−1ua).
Bob wants to be sure that Alice (say, Ms. “(u, ua)”) is who is
supposed to be.

First (wrong) attempt:
Alice: picks a random b ∈ B, and sends x = b−1(ua)b, and
y = b.
Bob: verifies whether y−1 · ua · y = x .
Eve: can easily impersonate Alice, by acting in the same way (a
plays no role).

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Sibert-Dehornoy-Girault authentication protocol (2006)

Public: G = 〈X |R〉 (and no commuting subgroups!).
Every player has a secret key a ∈ A, and public name (u, ua),
where u ∈ G is arbitrary (and ua = a−1ua).
Bob wants to be sure that Alice (say, Ms. “(u, ua)”) is who is
supposed to be.

First (wrong) attempt:
Alice: picks a random b ∈ B, and sends x = b−1(ua)b, and
y = b.
Bob: verifies whether y−1 · ua · y = x .
Eve: can easily impersonate Alice, by acting in the same way (a
plays no role).

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Sibert-Dehornoy-Girault authentication protocol (2006)

Public: G = 〈X |R〉 (and no commuting subgroups!).
Every player has a secret key a ∈ A, and public name (u, ua),
where u ∈ G is arbitrary (and ua = a−1ua).
Bob wants to be sure that Alice (say, Ms. “(u, ua)”) is who is
supposed to be.

First (wrong) attempt:
Alice: picks a random b ∈ B, and sends x = b−1(ua)b, and
y = b.
Bob: verifies whether y−1 · ua · y = x .
Eve: can easily impersonate Alice, by acting in the same way (a
plays no role).

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Sibert-Dehornoy-Girault authentication protocol (2006)

Public: G = 〈X |R〉 (and no commuting subgroups!).
Every player has a secret key a ∈ A, and public name (u, ua),
where u ∈ G is arbitrary (and ua = a−1ua).
Bob wants to be sure that Alice (say, Ms. “(u, ua)”) is who is
supposed to be.

First (wrong) attempt:
Alice: picks a random b ∈ B, and sends x = b−1(ua)b, and
y = b.
Bob: verifies whether y−1 · ua · y = x .
Eve: can easily impersonate Alice, by acting in the same way (a
plays no role).

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Sibert-Dehornoy-Girault authentication protocol (2006)

Public: G = 〈X |R〉 (and no commuting subgroups!).
Every player has a secret key a ∈ A, and public name (u, ua),
where u ∈ G is arbitrary (and ua = a−1ua).
Bob wants to be sure that Alice (say, Ms. “(u, ua)”) is who is
supposed to be.

Second (wrong) attempt:
Alice: picks a random b ∈ B, and sends x = b−1(ua)b, and
z = ab.
Bob: verifies whether z−1 · u · z = x .
Eve: can easily impersonate Alice: choosing b ∈ B and sending
x = b−1ub and z = b will cheat Bob.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Sibert-Dehornoy-Girault authentication protocol (2006)

Public: G = 〈X |R〉 (and no commuting subgroups!).
Every player has a secret key a ∈ A, and public name (u, ua),
where u ∈ G is arbitrary (and ua = a−1ua).
Bob wants to be sure that Alice (say, Ms. “(u, ua)”) is who is
supposed to be.

Second (wrong) attempt:
Alice: picks a random b ∈ B, and sends x = b−1(ua)b, and
z = ab.
Bob: verifies whether z−1 · u · z = x .
Eve: can easily impersonate Alice: choosing b ∈ B and sending
x = b−1ub and z = b will cheat Bob.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Sibert-Dehornoy-Girault authentication protocol (2006)

Public: G = 〈X |R〉 (and no commuting subgroups!).
Every player has a secret key a ∈ A, and public name (u, ua),
where u ∈ G is arbitrary (and ua = a−1ua).
Bob wants to be sure that Alice (say, Ms. “(u, ua)”) is who is
supposed to be.

Second (wrong) attempt:
Alice: picks a random b ∈ B, and sends x = b−1(ua)b, and
z = ab.
Bob: verifies whether z−1 · u · z = x .
Eve: can easily impersonate Alice: choosing b ∈ B and sending
x = b−1ub and z = b will cheat Bob.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Sibert-Dehornoy-Girault authentication protocol (2006)

But combining both, it works:
Alice: picks a random b ∈ B, and sends x = b−1(ua)b
(the commitment).
Bob: picks and sends a random bit α = 0, 1.
Alice: sends y = b if α = 0 and z = ab if α = 1.
Bob: verifies whether y−1 · ua · y = x (if α = 0) or whether
z−1 · u · z = x (if α = 1).
Repeat these last three steps, k times.

Eve: has to send the commitment before knowing the future
values of α; so, acting like before, she only has probability 1

2k to
succeed.
Eve’s alternative is finding a from u and ua, i.e. solving the
Conjugacy Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Sibert-Dehornoy-Girault authentication protocol (2006)

But combining both, it works:
Alice: picks a random b ∈ B, and sends x = b−1(ua)b
(the commitment).
Bob: picks and sends a random bit α = 0, 1.
Alice: sends y = b if α = 0 and z = ab if α = 1.
Bob: verifies whether y−1 · ua · y = x (if α = 0) or whether
z−1 · u · z = x (if α = 1).
Repeat these last three steps, k times.

Eve: has to send the commitment before knowing the future
values of α; so, acting like before, she only has probability 1

2k to
succeed.
Eve’s alternative is finding a from u and ua, i.e. solving the
Conjugacy Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Sibert-Dehornoy-Girault authentication protocol (2006)

But combining both, it works:
Alice: picks a random b ∈ B, and sends x = b−1(ua)b
(the commitment).
Bob: picks and sends a random bit α = 0, 1.
Alice: sends y = b if α = 0 and z = ab if α = 1.
Bob: verifies whether y−1 · ua · y = x (if α = 0) or whether
z−1 · u · z = x (if α = 1).
Repeat these last three steps, k times.

Eve: has to send the commitment before knowing the future
values of α; so, acting like before, she only has probability 1

2k to
succeed.
Eve’s alternative is finding a from u and ua, i.e. solving the
Conjugacy Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Sibert-Dehornoy-Girault authentication protocol (2006)

But combining both, it works:
Alice: picks a random b ∈ B, and sends x = b−1(ua)b
(the commitment).
Bob: picks and sends a random bit α = 0, 1.
Alice: sends y = b if α = 0 and z = ab if α = 1.
Bob: verifies whether y−1 · ua · y = x (if α = 0) or whether
z−1 · u · z = x (if α = 1).
Repeat these last three steps, k times.

Eve: has to send the commitment before knowing the future
values of α; so, acting like before, she only has probability 1

2k to
succeed.
Eve’s alternative is finding a from u and ua, i.e. solving the
Conjugacy Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Sibert-Dehornoy-Girault authentication protocol (2006)

But combining both, it works:
Alice: picks a random b ∈ B, and sends x = b−1(ua)b
(the commitment).
Bob: picks and sends a random bit α = 0, 1.
Alice: sends y = b if α = 0 and z = ab if α = 1.
Bob: verifies whether y−1 · ua · y = x (if α = 0) or whether
z−1 · u · z = x (if α = 1).
Repeat these last three steps, k times.

Eve: has to send the commitment before knowing the future
values of α; so, acting like before, she only has probability 1

2k to
succeed.
Eve’s alternative is finding a from u and ua, i.e. solving the
Conjugacy Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Sibert-Dehornoy-Girault authentication protocol (2006)

But combining both, it works:
Alice: picks a random b ∈ B, and sends x = b−1(ua)b
(the commitment).
Bob: picks and sends a random bit α = 0, 1.
Alice: sends y = b if α = 0 and z = ab if α = 1.
Bob: verifies whether y−1 · ua · y = x (if α = 0) or whether
z−1 · u · z = x (if α = 1).
Repeat these last three steps, k times.

Eve: has to send the commitment before knowing the future
values of α; so, acting like before, she only has probability 1

2k to
succeed.
Eve’s alternative is finding a from u and ua, i.e. solving the
Conjugacy Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Sibert-Dehornoy-Girault authentication protocol (2006)

But combining both, it works:
Alice: picks a random b ∈ B, and sends x = b−1(ua)b
(the commitment).
Bob: picks and sends a random bit α = 0, 1.
Alice: sends y = b if α = 0 and z = ab if α = 1.
Bob: verifies whether y−1 · ua · y = x (if α = 0) or whether
z−1 · u · z = x (if α = 1).
Repeat these last three steps, k times.

Eve: has to send the commitment before knowing the future
values of α; so, acting like before, she only has probability 1

2k to
succeed.
Eve’s alternative is finding a from u and ua, i.e. solving the
Conjugacy Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The Twisted Conjugacy Problem

One can use the same idea, but replacing the Conjugacy Search
Problem to the harder Twisted Conjugacy Search Problem.

Twisted Conjugacy Problem: “given u, v ∈ G and ϕ : G → G,
decide whether v =G (xϕ)−1ux for some x ∈ G”.

Solv. Twisted Conjugacy Problem =⇒ solv. Conjugacy Problem.

Solv. Twisted Conjugacy Problem 6⇐= solv. Conjugacy Problem.

Twisted Conjugacy Search Problem: “given u, v ∈ G, ϕ : G → G,
and the information that u and v are ϕ-twisted conjugated to
each other in G, find an x ∈ G such that v =G (xϕ)−1ux”.

TCSP is always solvable (brute force searching over all possible
x ∈ G), but at which complexity this is a much more delicate question.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The Twisted Conjugacy Problem

One can use the same idea, but replacing the Conjugacy Search
Problem to the harder Twisted Conjugacy Search Problem.

Twisted Conjugacy Problem: “given u, v ∈ G and ϕ : G → G,
decide whether v =G (xϕ)−1ux for some x ∈ G”.

Solv. Twisted Conjugacy Problem =⇒ solv. Conjugacy Problem.

Solv. Twisted Conjugacy Problem 6⇐= solv. Conjugacy Problem.

Twisted Conjugacy Search Problem: “given u, v ∈ G, ϕ : G → G,
and the information that u and v are ϕ-twisted conjugated to
each other in G, find an x ∈ G such that v =G (xϕ)−1ux”.

TCSP is always solvable (brute force searching over all possible
x ∈ G), but at which complexity this is a much more delicate question.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The Twisted Conjugacy Problem

One can use the same idea, but replacing the Conjugacy Search
Problem to the harder Twisted Conjugacy Search Problem.

Twisted Conjugacy Problem: “given u, v ∈ G and ϕ : G → G,
decide whether v =G (xϕ)−1ux for some x ∈ G”.

Solv. Twisted Conjugacy Problem =⇒ solv. Conjugacy Problem.

Solv. Twisted Conjugacy Problem 6⇐= solv. Conjugacy Problem.

Twisted Conjugacy Search Problem: “given u, v ∈ G, ϕ : G → G,
and the information that u and v are ϕ-twisted conjugated to
each other in G, find an x ∈ G such that v =G (xϕ)−1ux”.

TCSP is always solvable (brute force searching over all possible
x ∈ G), but at which complexity this is a much more delicate question.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The Twisted Conjugacy Problem

One can use the same idea, but replacing the Conjugacy Search
Problem to the harder Twisted Conjugacy Search Problem.

Twisted Conjugacy Problem: “given u, v ∈ G and ϕ : G → G,
decide whether v =G (xϕ)−1ux for some x ∈ G”.

Solv. Twisted Conjugacy Problem =⇒ solv. Conjugacy Problem.

Solv. Twisted Conjugacy Problem 6⇐= solv. Conjugacy Problem.

Twisted Conjugacy Search Problem: “given u, v ∈ G, ϕ : G → G,
and the information that u and v are ϕ-twisted conjugated to
each other in G, find an x ∈ G such that v =G (xϕ)−1ux”.

TCSP is always solvable (brute force searching over all possible
x ∈ G), but at which complexity this is a much more delicate question.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

The Twisted Conjugacy Problem

One can use the same idea, but replacing the Conjugacy Search
Problem to the harder Twisted Conjugacy Search Problem.

Twisted Conjugacy Problem: “given u, v ∈ G and ϕ : G → G,
decide whether v =G (xϕ)−1ux for some x ∈ G”.

Solv. Twisted Conjugacy Problem =⇒ solv. Conjugacy Problem.

Solv. Twisted Conjugacy Problem 6⇐= solv. Conjugacy Problem.

Twisted Conjugacy Search Problem: “given u, v ∈ G, ϕ : G → G,
and the information that u and v are ϕ-twisted conjugated to
each other in G, find an x ∈ G such that v =G (xϕ)−1ux”.

TCSP is always solvable (brute force searching over all possible
x ∈ G), but at which complexity this is a much more delicate question.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Shpilrain-Ushakov authentication protocol (2008)

Public: G = 〈X |R〉 and ϕ : G → G, an endomorphism.
Every player has a secret key a ∈ A, and public name (u, uaϕ),
where u ∈ G is arbitrary (and uaϕ = (aϕ)−1ua).
Bob wants to be sure that Alice (say, Ms. “(u, uaϕ)”) is who is
supposed to be.
Alice: picks a random b ∈ B, and sends the commitment
x = (bϕ)−1(uaϕ)b = (bϕ)−1(aϕ)−1uab = ((ab)ϕ)−1u(ab).
Bob: picks and sends a random bit α = 0, 1.
Alice: sends y = b if α = 0, and z = ab if α = 1.
Bob: verifies whether (yϕ)−1 · uaϕ · y = x (if α = 0) or whether
(zϕ)−1 · u · z = x (if α = 1).
Repeat these last three steps, k times.

Eve: has to send the commitment before knowing the future
values of α; so, acting like before, she only has probability 1

2k to
succeed.
Eve’s alternative is finding a from u and uaϕ , i.e. solving the
Twisted Conjugacy Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Shpilrain-Ushakov authentication protocol (2008)

Public: G = 〈X |R〉 and ϕ : G → G, an endomorphism.
Every player has a secret key a ∈ A, and public name (u, uaϕ),
where u ∈ G is arbitrary (and uaϕ = (aϕ)−1ua).
Bob wants to be sure that Alice (say, Ms. “(u, uaϕ)”) is who is
supposed to be.
Alice: picks a random b ∈ B, and sends the commitment
x = (bϕ)−1(uaϕ)b = (bϕ)−1(aϕ)−1uab = ((ab)ϕ)−1u(ab).
Bob: picks and sends a random bit α = 0, 1.
Alice: sends y = b if α = 0, and z = ab if α = 1.
Bob: verifies whether (yϕ)−1 · uaϕ · y = x (if α = 0) or whether
(zϕ)−1 · u · z = x (if α = 1).
Repeat these last three steps, k times.

Eve: has to send the commitment before knowing the future
values of α; so, acting like before, she only has probability 1

2k to
succeed.
Eve’s alternative is finding a from u and uaϕ , i.e. solving the
Twisted Conjugacy Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Shpilrain-Ushakov authentication protocol (2008)

Public: G = 〈X |R〉 and ϕ : G → G, an endomorphism.
Every player has a secret key a ∈ A, and public name (u, uaϕ),
where u ∈ G is arbitrary (and uaϕ = (aϕ)−1ua).
Bob wants to be sure that Alice (say, Ms. “(u, uaϕ)”) is who is
supposed to be.
Alice: picks a random b ∈ B, and sends the commitment
x = (bϕ)−1(uaϕ)b = (bϕ)−1(aϕ)−1uab = ((ab)ϕ)−1u(ab).
Bob: picks and sends a random bit α = 0, 1.
Alice: sends y = b if α = 0, and z = ab if α = 1.
Bob: verifies whether (yϕ)−1 · uaϕ · y = x (if α = 0) or whether
(zϕ)−1 · u · z = x (if α = 1).
Repeat these last three steps, k times.

Eve: has to send the commitment before knowing the future
values of α; so, acting like before, she only has probability 1

2k to
succeed.
Eve’s alternative is finding a from u and uaϕ , i.e. solving the
Twisted Conjugacy Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Shpilrain-Ushakov authentication protocol (2008)

Public: G = 〈X |R〉 and ϕ : G → G, an endomorphism.
Every player has a secret key a ∈ A, and public name (u, uaϕ),
where u ∈ G is arbitrary (and uaϕ = (aϕ)−1ua).
Bob wants to be sure that Alice (say, Ms. “(u, uaϕ)”) is who is
supposed to be.
Alice: picks a random b ∈ B, and sends the commitment
x = (bϕ)−1(uaϕ)b = (bϕ)−1(aϕ)−1uab = ((ab)ϕ)−1u(ab).
Bob: picks and sends a random bit α = 0, 1.
Alice: sends y = b if α = 0, and z = ab if α = 1.
Bob: verifies whether (yϕ)−1 · uaϕ · y = x (if α = 0) or whether
(zϕ)−1 · u · z = x (if α = 1).
Repeat these last three steps, k times.

Eve: has to send the commitment before knowing the future
values of α; so, acting like before, she only has probability 1

2k to
succeed.
Eve’s alternative is finding a from u and uaϕ , i.e. solving the
Twisted Conjugacy Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Shpilrain-Ushakov authentication protocol (2008)

Public: G = 〈X |R〉 and ϕ : G → G, an endomorphism.
Every player has a secret key a ∈ A, and public name (u, uaϕ),
where u ∈ G is arbitrary (and uaϕ = (aϕ)−1ua).
Bob wants to be sure that Alice (say, Ms. “(u, uaϕ)”) is who is
supposed to be.
Alice: picks a random b ∈ B, and sends the commitment
x = (bϕ)−1(uaϕ)b = (bϕ)−1(aϕ)−1uab = ((ab)ϕ)−1u(ab).
Bob: picks and sends a random bit α = 0, 1.
Alice: sends y = b if α = 0, and z = ab if α = 1.
Bob: verifies whether (yϕ)−1 · uaϕ · y = x (if α = 0) or whether
(zϕ)−1 · u · z = x (if α = 1).
Repeat these last three steps, k times.

Eve: has to send the commitment before knowing the future
values of α; so, acting like before, she only has probability 1

2k to
succeed.
Eve’s alternative is finding a from u and uaϕ , i.e. solving the
Twisted Conjugacy Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Shpilrain-Ushakov authentication protocol (2008)

Public: G = 〈X |R〉 and ϕ : G → G, an endomorphism.
Every player has a secret key a ∈ A, and public name (u, uaϕ),
where u ∈ G is arbitrary (and uaϕ = (aϕ)−1ua).
Bob wants to be sure that Alice (say, Ms. “(u, uaϕ)”) is who is
supposed to be.
Alice: picks a random b ∈ B, and sends the commitment
x = (bϕ)−1(uaϕ)b = (bϕ)−1(aϕ)−1uab = ((ab)ϕ)−1u(ab).
Bob: picks and sends a random bit α = 0, 1.
Alice: sends y = b if α = 0, and z = ab if α = 1.
Bob: verifies whether (yϕ)−1 · uaϕ · y = x (if α = 0) or whether
(zϕ)−1 · u · z = x (if α = 1).
Repeat these last three steps, k times.

Eve: has to send the commitment before knowing the future
values of α; so, acting like before, she only has probability 1

2k to
succeed.
Eve’s alternative is finding a from u and uaϕ , i.e. solving the
Twisted Conjugacy Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Shpilrain-Ushakov authentication protocol (2008)

Public: G = 〈X |R〉 and ϕ : G → G, an endomorphism.
Every player has a secret key a ∈ A, and public name (u, uaϕ),
where u ∈ G is arbitrary (and uaϕ = (aϕ)−1ua).
Bob wants to be sure that Alice (say, Ms. “(u, uaϕ)”) is who is
supposed to be.
Alice: picks a random b ∈ B, and sends the commitment
x = (bϕ)−1(uaϕ)b = (bϕ)−1(aϕ)−1uab = ((ab)ϕ)−1u(ab).
Bob: picks and sends a random bit α = 0, 1.
Alice: sends y = b if α = 0, and z = ab if α = 1.
Bob: verifies whether (yϕ)−1 · uaϕ · y = x (if α = 0) or whether
(zϕ)−1 · u · z = x (if α = 1).
Repeat these last three steps, k times.

Eve: has to send the commitment before knowing the future
values of α; so, acting like before, she only has probability 1

2k to
succeed.
Eve’s alternative is finding a from u and uaϕ , i.e. solving the
Twisted Conjugacy Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Shpilrain-Ushakov authentication protocol (2008)

Public: G = 〈X |R〉 and ϕ : G → G, an endomorphism.
Every player has a secret key a ∈ A, and public name (u, uaϕ),
where u ∈ G is arbitrary (and uaϕ = (aϕ)−1ua).
Bob wants to be sure that Alice (say, Ms. “(u, uaϕ)”) is who is
supposed to be.
Alice: picks a random b ∈ B, and sends the commitment
x = (bϕ)−1(uaϕ)b = (bϕ)−1(aϕ)−1uab = ((ab)ϕ)−1u(ab).
Bob: picks and sends a random bit α = 0, 1.
Alice: sends y = b if α = 0, and z = ab if α = 1.
Bob: verifies whether (yϕ)−1 · uaϕ · y = x (if α = 0) or whether
(zϕ)−1 · u · z = x (if α = 1).
Repeat these last three steps, k times.

Eve: has to send the commitment before knowing the future
values of α; so, acting like before, she only has probability 1

2k to
succeed.
Eve’s alternative is finding a from u and uaϕ , i.e. solving the
Twisted Conjugacy Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Shpilrain-Ushakov authentication protocol (2008)

Public: G = 〈X |R〉 and ϕ : G → G, an endomorphism.
Every player has a secret key a ∈ A, and public name (u, uaϕ),
where u ∈ G is arbitrary (and uaϕ = (aϕ)−1ua).
Bob wants to be sure that Alice (say, Ms. “(u, uaϕ)”) is who is
supposed to be.
Alice: picks a random b ∈ B, and sends the commitment
x = (bϕ)−1(uaϕ)b = (bϕ)−1(aϕ)−1uab = ((ab)ϕ)−1u(ab).
Bob: picks and sends a random bit α = 0, 1.
Alice: sends y = b if α = 0, and z = ab if α = 1.
Bob: verifies whether (yϕ)−1 · uaϕ · y = x (if α = 0) or whether
(zϕ)−1 · u · z = x (if α = 1).
Repeat these last three steps, k times.

Eve: has to send the commitment before knowing the future
values of α; so, acting like before, she only has probability 1

2k to
succeed.
Eve’s alternative is finding a from u and uaϕ , i.e. solving the
Twisted Conjugacy Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

Shpilrain-Ushakov authentication protocol (2008)

Public: G = 〈X |R〉 and ϕ : G → G, an endomorphism.
Every player has a secret key a ∈ A, and public name (u, uaϕ),
where u ∈ G is arbitrary (and uaϕ = (aϕ)−1ua).
Bob wants to be sure that Alice (say, Ms. “(u, uaϕ)”) is who is
supposed to be.
Alice: picks a random b ∈ B, and sends the commitment
x = (bϕ)−1(uaϕ)b = (bϕ)−1(aϕ)−1uab = ((ab)ϕ)−1u(ab).
Bob: picks and sends a random bit α = 0, 1.
Alice: sends y = b if α = 0, and z = ab if α = 1.
Bob: verifies whether (yϕ)−1 · uaϕ · y = x (if α = 0) or whether
(zϕ)−1 · u · z = x (if α = 1).
Repeat these last three steps, k times.

Eve: has to send the commitment before knowing the future
values of α; so, acting like before, she only has probability 1

2k to
succeed.
Eve’s alternative is finding a from u and uaϕ , i.e. solving the
Twisted Conjugacy Search Problem.

1. The origins 2. Word problem 3. Conjugacy problem 4. Factorization problem 5. Anshel-Anshel-Goldfeld protocol 6. Authentication protocols

THANKS

	The origins of public key cryptography
	

	A protocol based on the word problem
	

	Protocols based on the conjugacy problem
	

	Protocols based on the factorization problem
	

	Anshel-Anshel-Goldfeld protocol
	

	Some authentication protocols
	

