Existence of finitely presented intersection-saturated groups

Enric Ventura

Departament de Matemàtiques Universitat Politècnica de Catalunya

Geometry Seminar

Instytut Matematyczny, Uniwersytet Wroclawski

(joint work with J. Delgado and M. Roy)

June 5th. 2023.

Outline

- Our main results
- 2 Free-times-free-abelian groups
- 3 Realizable / unrealizable k-configurations
- 4 The free case
- Open questions

Outline

- Our main results
- Free-times-free-abelian groups
- 3 Realizable / unrealizable k-configurations
- 4 The free case
- Open questions

Free groups

Main results

It is well known that subgroups of free groups are free ...

$$H \leqslant \mathbb{F}_n \Rightarrow H \text{ is free}$$

but not necessarily of rank $\leq n$.

Example

Consider $\mathbb{F}_2 = \langle x, y \mid \rangle$ and the normal closure of x,

$$\ll x \gg = \langle \dots, y^2 x y^{-2}, y x y^{-1}, x, y^{-1} x y, y^{-2} x y^2, \dots \rangle.$$

Looking at its Stallings graph

we see these generators are a free basis; so, $\mathbb{F}_{\aleph_0} \leqslant \mathbb{F}_2$.

Main results

It is well known that subgroups of free groups are free ...

 $H \leq \mathbb{F}_n \Rightarrow H \text{ is free}$

but not necessarily of rank $\leq n$.

$$\ll x \gg = \langle \dots, y^2 x y^{-2}, y x y^{-1}, x, y^{-1} x y, y^{-2} x y^2, \dots \rangle$$

we see these generators are a free basis; so, $\mathbb{F}_{\aleph_0} \leq \mathbb{F}_2$.

Main results

It is well known that subgroups of free groups are free ...

$$H \leqslant \mathbb{F}_n \Rightarrow H$$
 is free

but not necessarily of rank $\leq n$.

Example

Consider $\mathbb{F}_2 = \langle x, y \mid \rangle$ and the normal closure of x,

$$\ll x \gg = \langle \dots, y^2 x y^{-2}, y x y^{-1}, x, y^{-1} x y, y^{-2} x y^2, \dots \rangle.$$

Main results

It is well known that subgroups of free groups are free ...

$$H \leqslant \mathbb{F}_n \quad \Rightarrow \quad H \text{ is free}$$

but not necessarily of rank $\leq n$.

Example

Consider $\mathbb{F}_2 = \langle x, y \mid \rangle$ and the normal closure of x,

$$\ll x \gg = \langle \dots, y^2 x y^{-2}, y x y^{-1}, x, y^{-1} x y, y^{-2} x y^2, \dots \rangle.$$

Looking at its Stallings graph

we see these generators are a free basis; so, $\mathbb{F}_{\aleph_0} \leq \mathbb{F}_2$.

Definition

A group G is Howson if, for any finitely generated H, $K \leq_{fg} G$, the intersection H \cap K is, again, finitely generated.

Theorem (Howson, 1954)

Free groups are Howson

In other words... the configuration

is not realizable in a free group (o means f.g. and o means non-f.g.).

Observation

Out of $2^3 = 8$ possible such configurations this is the only one forbidden in free groups.

Definition

Main results

A group G is Howson if, for any finitely generated H, $K \leq_{fa} G$, the intersection $H \cap K$ is, again, finitely generated.

Theorem (Howson, 1954)

Free groups are Howson.

is not realizable in a free group (o means f.g. and o means non-f.g.).

Definition

A group G is Howson if, for any finitely generated H, $K \leq_{fg} G$, the intersection H \cap K is, again, finitely generated.

Theorem (Howson, 1954)

Free groups are Howson.

In other words... the configuration

is not realizable in a free group (o means f.g. and o means non-f.g.).

Observation

Out of $2^3=8$ possible such configurations this is the only one forbidden in free groups.

Definition

A group G is Howson if, for any finitely generated H, $K \leq_{fg} G$, the intersection H \cap K is, again, finitely generated.

Theorem (Howson, 1954)

Free groups are Howson.

In other words... the configuration

is not realizable in a free group (o means f.g. and o means non-f.g.).

Observation

Out of $2^3 = 8$ possible such configurations this is the only one forbidden in free groups.

Intersection configurations

Question

What about configurations with $k \ge 2$ subgroups (k-configurations)?

Using this convention, what about the following 3-configurations?

Intersection configurations

Question

What about configurations with $k \ge 2$ subgroups (k-configurations)?

Using this convention, what about the following 3-configurations?

Our main results

Theorem (Delgado-Roy-V., '22)

A k-configuration is realizable in \mathbb{F}_n , $n \geq 2$, \Leftrightarrow it respects the Howson property.

Theorem (Delgado-Roy-V. '22)

There exist finitely presented intersection-saturated groups.

Our main results

Theorem (Delgado-Roy-V., '22)

A k-configuration is realizable in \mathbb{F}_n , $n \ge 2$, \Leftrightarrow it respects the Howson property.

Theorem (Delgado-Roy-V. '22)

There exist finitely presented intersection-saturated groups.

Definition

A (intersection) k-configuration is a map $\chi : \mathcal{P}([k]) \setminus \{\emptyset\} \to \{0,1\}$. If $\mathcal{I} = (1)\chi^{-1}$ is the support of χ , we write $\chi = \chi_{\mathcal{I}}$. Notation:

- **0** = χ_{\emptyset} is the zero-configuration;
- 1 = $\chi_{\mathcal{P}([k])\setminus\{\emptyset\}}$ is the one-configuration;
- $\chi_{\mathcal{I}}$ is an almost-zero k-configuration if $\mathcal{I} = \{I\}$.

Definition

A k-configuration χ is realizable in a group G if there exists subgroups $H_1, \ldots, H_k \leq G$ such that, for every $\emptyset \neq I \subseteq [k]$, $H_I = \cap_{i \in I} H_i$ if $f.g. \Leftrightarrow (I)\chi = 0$. Note that $H_{I \cup J} = H_I \cap H_J$.

Definition

Definition

A (intersection) k-configuration is a map $\chi: \mathcal{P}([k]) \setminus \{\emptyset\} \to \{0,1\}$. If

 $\mathcal{I} = (1)\chi^{-1}$ is the support of χ , we write $\chi = \chi_{\mathcal{I}}$. Notation:

- $\mathbf{0} = \chi_{\emptyset}$ is the zero-configuration;
- 1 = $\chi_{\mathcal{P}([k])\setminus\{\emptyset\}}$ is the one-configuration;
- $\chi_{\mathcal{I}}$ is an almost-zero k-configuration if $\mathcal{I} = \{I\}$.

Definition

A k-configuration χ is realizable in a group G if there exists subgroups $H_1, \ldots, H_k \leq G$ such that, for every $\emptyset \neq I \subseteq [k]$, $H_I = \cap_{i \in I} H_i$ if $f.g. \Leftrightarrow (I)\chi = 0$. Note that $H_{I \cup J} = H_I \cap H_J$.

Definition

Definition

A (intersection) k-configuration is a map $\chi \colon \mathcal{P}([k]) \setminus \{\emptyset\} \to \{0,1\}$. If

 $\mathcal{I} = (1)\chi^{-1}$ is the support of χ , we write $\chi = \chi_{\mathcal{I}}$. Notation:

- $\mathbf{0} = \chi_{\emptyset}$ is the zero-configuration;
- **1** = $\chi_{\mathcal{P}([k])\setminus\{\emptyset\}}$ is the one-configuration;
- $\chi_{\mathcal{I}}$ is an almost-zero k-configuration if $\mathcal{I} = \{I\}$.

Definition

A k-configuration χ is realizable in a group G if there exists subgroups $H_1, \ldots, H_k \leq G$ such that, for every $\emptyset \neq I \subseteq [k]$, $H_I = \cap_{i \in I} H_i$ if $f.g. \Leftrightarrow (I)\chi = 0$. Note that $H_{I \cup J} = H_I \cap H_J$.

Definition

Definition

A (intersection) k-configuration is a map $\chi \colon \mathcal{P}([k]) \setminus \{\emptyset\} \to \{0,1\}$. If

 $\mathcal{I} = (1)\chi^{-1}$ is the support of χ , we write $\chi = \chi_{\mathcal{I}}$. Notation:

- $\mathbf{0} = \chi_{\emptyset}$ is the zero-configuration;
- **1** = $\chi_{\mathcal{P}([k])\setminus\{\emptyset\}}$ is the one-configuration;
- $\chi_{\mathcal{I}}$ is an almost-zero k-configuration if $\mathcal{I} = \{I\}$.

Definition

A k-configuration χ is realizable in a group G if there exists subgroups $H_1, \ldots, H_k \leq G$ such that, for every $\emptyset \neq I \subseteq [k]$, $H_I = \cap_{i \in I} H_i$ if $f.g. \Leftrightarrow (I)\chi = 0$. Note that $H_{I \cup J} = H_I \cap H_J$.

Definition

Definition

A (intersection) k-configuration is a map $\chi : \mathcal{P}([k]) \setminus \{\emptyset\} \to \{0,1\}$. If $\mathcal{I} = (1)\chi^{-1}$ is the support of χ , we write $\chi = \chi_{\mathcal{T}}$. Notation:

- $\mathbf{0} = \chi_{\emptyset}$ is the zero-configuration;
- **1** = $\chi_{\mathcal{P}([k])\setminus\{\emptyset\}}$ is the one-configuration;
- $\chi_{\mathcal{I}}$ is an almost-zero k-configuration if $\mathcal{I} = \{I\}$.

Definition

A k-configuration χ is realizable in a group G if there exists subgroups $H_1, \ldots, H_k \leq G$ such that, for every $\emptyset \neq I \subseteq [k]$, $H_I = \cap_{i \in I} H_i$ if $f.g. \Leftrightarrow (I)\chi = 0$. Note that $H_{I \cup J} = H_I \cap H_J$.

Definition

Definition

A (intersection) k-configuration is a map $\chi : \mathcal{P}([k]) \setminus \{\emptyset\} \to \{0,1\}$. If $\mathcal{I} = (1)\chi^{-1}$ is the support of χ , we write $\chi = \chi_{\mathcal{T}}$. Notation:

- $\mathbf{0} = \chi_{\emptyset}$ is the zero-configuration;
- 1 = $\chi_{\mathcal{P}([k])\setminus\{\emptyset\}}$ is the one-configuration;
- $\chi_{\mathcal{I}}$ is an almost-zero k-configuration if $\mathcal{I} = \{I\}$.

Definition

A k-configuration χ is realizable in a group G if there exists subgroups $H_1, \ldots, H_k \leq G$ such that, for every $\emptyset \neq I \subseteq [k]$, $H_I = \cap_{i \in I} H_i$ if $f.g. \Leftrightarrow (I)\chi = 0$. Note that $H_{I \cup J} = H_I \cap H_J$.

Definition

Outline

- Our main results
- 2 Free-times-free-abelian groups
- 3 Realizable / unrealizable k-configurations
- 4 The free case
- Open questions

$$\mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m = \langle x_1, \dots, x_n, t_1, \dots, t_m \mid [x_i, t_j] = 1, [t_i, t_k] = 1 \rangle.$$

Normal form: $\forall g \in \mathbb{G}$, $g = w(x_1, \dots, x_n)t_1^{a_1} \cdots t_m^{a_m} = wt^a$, where $\mathbf{a} = (a_1, \dots, a_m) \in \mathbb{Z}^m$. This way, $(ut^a)(vt) = uvt^{a+b}$.

Observation

These groups sit in a split short exact sequence; and, for $H \leqslant \mathbb{G}$,

$$1 \to \mathbb{Z}^m \stackrel{\iota}{\hookrightarrow} \mathbb{G} \stackrel{\pi}{\twoheadrightarrow} \mathbb{F}_n \to 1,$$
$$1 \to L_H = H \cap \mathbb{Z}^m \hookrightarrow H \twoheadrightarrow H\pi \to 1$$

$$\mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m = \langle x_1, \dots, x_n, t_1, \dots, t_m \mid [x_i, t_j] = 1, [t_i, t_k] = 1 \rangle.$$

Normal form:
$$\forall g \in \mathbb{G}$$
, $g = w(x_1, \dots, x_n)t_1^{a_1} \cdots t_m^{a_m} = wt^a$, where $\mathbf{a} = (a_1, \dots, a_m) \in \mathbb{Z}^m$. This way, $(ut^a)(vt) = uvt^{a+b}$.

Observatior

These groups sit in a split short exact sequence; and, for $H \leqslant \mathbb{G}$,

$$1 \to \mathbb{Z}^m \stackrel{\iota}{\hookrightarrow} \mathbb{G} \stackrel{\pi}{\twoheadrightarrow} \mathbb{F}_n \to 1,$$
$$1 \to L_H = H \cap \mathbb{Z}^m \hookrightarrow H \twoheadrightarrow H\pi \to 1$$

$$\mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m = \langle x_1, \dots, x_n, t_1, \dots, t_m \mid [x_i, t_j] = 1, [t_i, t_k] = 1 \rangle.$$

Normal form:
$$\forall g \in \mathbb{G}$$
, $g = w(x_1, \dots, x_n)t_1^{a_1} \cdots t_m^{a_m} = wt^a$, where $\mathbf{a} = (a_1, \dots, a_m) \in \mathbb{Z}^m$. This way, $(ut^a)(vt) = uvt^{a+b}$.

Observation

These groups sit in a split short exact sequence; and, for $H \leqslant \mathbb{G}$,

$$1 \to \mathbb{Z}^m \stackrel{\iota}{\hookrightarrow} \mathbb{G} \stackrel{\pi}{\twoheadrightarrow} \mathbb{F}_n \to 1,$$
$$1 \to L_H = H \cap \mathbb{Z}^m \hookrightarrow H \twoheadrightarrow H\pi \to 1.$$

$$\mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m = \langle x_1, \dots, x_n, t_1, \dots, t_m \mid [x_i, t_j] = 1, [t_i, t_k] = 1 \rangle.$$

Normal form:
$$\forall g \in \mathbb{G}$$
, $g = w(x_1, \dots, x_n)t_1^{a_1} \cdots t_m^{a_m} = wt^a$, where $\mathbf{a} = (a_1, \dots, a_m) \in \mathbb{Z}^m$. This way, $(ut^a)(vt) = uvt^{a+b}$.

Observation

These groups sit in a split short exact sequence; and, for $H \leqslant \mathbb{G}$,

$$1 \to \mathbb{Z}^m \stackrel{\iota}{\hookrightarrow} \mathbb{G} \stackrel{\pi}{\twoheadrightarrow} \mathbb{F}_n \to 1,$$
$$1 \to L_H = H \cap \mathbb{Z}^m \hookrightarrow H \twoheadrightarrow H\pi \to 1.$$

Proposition (Delgado-V. '13)

Every subgroup $H \leqslant \mathbb{G}$ admits a (computable) basis

$$H = \langle u_1 t^{\mathbf{a_1}}, u_2 t^{\mathbf{a_2}}, \dots, u_r t^{\mathbf{a_r}}; t^{\mathbf{b_1}}, \dots, t^{\mathbf{b_s}} \rangle,$$

where $\{u_1, \ldots, u_r\}$ is a free-basis for $H\pi$, $\mathbf{a_1}, \ldots, \mathbf{a_r} \in \mathbb{Z}^m$, $0 \le r \le \infty$, $\mathbf{b_1}, \ldots, \mathbf{b_s} \in \mathbb{Z}^m$ is an abelian-basis for $L_H = H \cap \mathbb{Z}^m$, and $0 \le s \le m$.

Proposition (Moldavanski)

The groups $F_n \times \mathbb{Z}^m$, $n \ge 2$, $m \ge 1$, are not Howson.

Question

1. Main results

Are them intersection-saturated?... ... no... but collectively yes ...

Theorem (Delgado-Roy-V. '22)

- The set of configs realizable in $\mathbb{F}_n \times \mathbb{Z}^m$ increases strictly with m;
- Every configuration is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$ for $m \gg 0$.

Proposition (Delgado-V. '13)

Every subgroup $H \leqslant \mathbb{G}$ admits a (computable) basis

$$H = \langle u_1 t^{\mathbf{a_1}}, u_2 t^{\mathbf{a_2}}, \dots, u_r t^{\mathbf{a_r}}; t^{\mathbf{b_1}}, \dots, t^{\mathbf{b_s}} \rangle,$$

where $\{u_1, \ldots, u_r\}$ is a free-basis for $H\pi$, $\mathbf{a_1}, \ldots, \mathbf{a_r} \in \mathbb{Z}^m$, $0 \le r \le \infty$, $\mathbf{b_1}, \ldots, \mathbf{b_s} \in \mathbb{Z}^m$ is an abelian-basis for $L_H = H \cap \mathbb{Z}^m$, and $0 \le s \le m$.

Proposition (Moldavanski)

The groups $F_n \times \mathbb{Z}^m$, $n \ge 2$, $m \ge 1$, are not Howson.

Question

1. Main results

Are them intersection-saturated?... ... no... but collectively yes ...

Theorem (Delgado-Roy-V. '22)

- The set of configs realizable in $\mathbb{F}_n \times \mathbb{Z}^m$ increases strictly with m;
- Every configuration is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$ for $m \gg 0$.

Proposition (Delgado-V. '13)

Every subgroup $H \leqslant \mathbb{G}$ admits a (computable) basis

$$H = \langle u_1 t^{\mathbf{a_1}}, u_2 t^{\mathbf{a_2}}, \dots, u_r t^{\mathbf{a_r}}; t^{\mathbf{b_1}}, \dots, t^{\mathbf{b_s}} \rangle,$$

where $\{u_1, \ldots, u_r\}$ is a free-basis for $H\pi$, $\mathbf{a_1}, \ldots, \mathbf{a_r} \in \mathbb{Z}^m$, $0 \le r \le \infty$, $\mathbf{b_1}, \ldots, \mathbf{b_s} \in \mathbb{Z}^m$ is an abelian-basis for $L_H = H \cap \mathbb{Z}^m$, and $0 \le s \le m$.

Proposition (Moldavanski)

The groups $F_n \times \mathbb{Z}^m$, $n \ge 2$, $m \ge 1$, are not Howson.

Question

1. Main results

Are them intersection-saturated?... ... no... but collectively yes ...

Theorem (Delgado-Roy-V. '22'

- The set of configs realizable in $\mathbb{F}_n \times \mathbb{Z}^m$ increases strictly with m;
- Every configuration is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$ for $m \gg 0$.

Proposition (Delgado-V. '13)

Every subgroup $H \leqslant \mathbb{G}$ admits a (computable) basis

$$H = \langle u_1 t^{\mathbf{a_1}}, u_2 t^{\mathbf{a_2}}, \dots, u_r t^{\mathbf{a_r}}; t^{\mathbf{b_1}}, \dots, t^{\mathbf{b_s}} \rangle,$$

where $\{u_1, \ldots, u_r\}$ is a free-basis for $H\pi$, $\mathbf{a_1}, \ldots, \mathbf{a_r} \in \mathbb{Z}^m$, $0 \le r \le \infty$, $\mathbf{b_1}, \ldots, \mathbf{b_s} \in \mathbb{Z}^m$ is an abelian-basis for $L_H = H \cap \mathbb{Z}^m$, and $0 \le s \le m$.

Proposition (Moldavanski)

The groups $F_n \times \mathbb{Z}^m$, $n \ge 2$, $m \ge 1$, are not Howson.

Question

1. Main results

Are them intersection-saturated?... ... no... but collectively yes ...

Theorem (Delgado-Roy-V. '22'

- The set of configs realizable in $\mathbb{F}_n \times \mathbb{Z}^m$ increases strictly with m;
- Every configuration is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$ for $m \gg 0$.

Proposition (Delgado-V. '13)

Every subgroup $H \leqslant \mathbb{G}$ admits a (computable) basis

$$H = \langle u_1 t^{\mathbf{a_1}}, u_2 t^{\mathbf{a_2}}, \dots, u_r t^{\mathbf{a_r}}; t^{\mathbf{b_1}}, \dots, t^{\mathbf{b_s}} \rangle,$$

where $\{u_1, \ldots, u_r\}$ is a free-basis for $H\pi$, $\mathbf{a_1}, \ldots, \mathbf{a_r} \in \mathbb{Z}^m$, $0 \le r \le \infty$, $\mathbf{b_1}, \ldots, \mathbf{b_s} \in \mathbb{Z}^m$ is an abelian-basis for $L_H = H \cap \mathbb{Z}^m$, and $0 \le s \le m$.

Proposition (Moldavanski)

The groups $F_n \times \mathbb{Z}^m$, $n \ge 2$, $m \ge 1$, are not Howson.

Question

1. Main results

Are them intersection-saturated?... ... no... but collectively yes ...

Theorem (Delgado-Roy-V. '22'

- The set of configs realizable in $\mathbb{F}_n \times \mathbb{Z}^m$ increases strictly with m;
- Every configuration is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$ for $m \gg 0$.

Proposition (Delgado-V. '13)

Every subgroup $H \leq \mathbb{G}$ admits a (computable) basis

$$H = \langle u_1 t^{\mathbf{a_1}}, u_2 t^{\mathbf{a_2}}, \dots, u_r t^{\mathbf{a_r}}; t^{\mathbf{b_1}}, \dots, t^{\mathbf{b_s}} \rangle,$$

where $\{u_1, \ldots, u_r\}$ is a free-basis for $H\pi$, $\mathbf{a_1}, \ldots, \mathbf{a_r} \in \mathbb{Z}^m$, $0 \le r \le \infty$, $\mathbf{b_1}, \ldots, \mathbf{b_s} \in \mathbb{Z}^m$ is an abelian-basis for $L_H = H \cap \mathbb{Z}^m$, and $0 \le s \le m$.

Proposition (Moldavanski)

The groups $F_n \times \mathbb{Z}^m$, $n \ge 2$, $m \ge 1$, are not Howson.

Question

1. Main results

Are them intersection-saturated?... ... no... but collectively yes ...

Theorem (Delgado-Roy-V. '22)

- The set of configs realizable in $\mathbb{F}_n \times \mathbb{Z}^m$ increases strictly with m;
- Every configuration is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$ for $m \gg 0$.

Proposition (Delgado-V. '13)

Every subgroup $H \leqslant \mathbb{G}$ admits a (computable) basis

$$H = \langle u_1 t^{\mathbf{a_1}}, u_2 t^{\mathbf{a_2}}, \dots, u_r t^{\mathbf{a_r}}; t^{\mathbf{b_1}}, \dots, t^{\mathbf{b_s}} \rangle,$$

where $\{u_1, \ldots, u_r\}$ is a free-basis for $H\pi$, $\mathbf{a_1}, \ldots, \mathbf{a_r} \in \mathbb{Z}^m$, $0 \le r \le \infty$, $\mathbf{b_1}, \ldots, \mathbf{b_s} \in \mathbb{Z}^m$ is an abelian-basis for $L_H = H \cap \mathbb{Z}^m$, and $0 \le s \le m$.

Proposition (Moldavanski)

The groups $F_n \times \mathbb{Z}^m$, $n \ge 2$, $m \ge 1$, are not Howson.

Question

1. Main results

Are them intersection-saturated?... ... no... but collectively yes ...

Theorem (Delgado-Roy-V. '22)

- The set of configs realizable in $\mathbb{F}_n \times \mathbb{Z}^m$ increases strictly with m;
- Every configuration is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$ for $m \gg 0$.

Theorem (Delgado-V. '13)

2. $\mathbb{F}_n \times \mathbb{Z}^m$

There is an algorithm which, on input (a set of generators for) $H, K \leq_{fg} \mathbb{G}$, decides whether $H \cap K$ is f.g. and, if so, computes a basis for it.

Theorem (Delgado-V. '13)

2. $\mathbb{F}_n \times \mathbb{Z}^m$

There is an algorithm which, on input (a set of generators for) $H, K \leq_{fa} \mathbb{G}$, decides whether $H \cap K$ is f.g. and, if so, computes a basis for it.

(Sketch of proof)

Given (basis for) subgroups $H_1, H_2 \leq_{fa} \mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$, consider

A calculation shows that $(H_1 \cap H_2)\pi = (L_1 + L_2)R^{-1}\rho^{-1} \leq H_1\pi \cap H_2\pi$.

So, $H_1 \cap H_2$ is f.g. $\Leftrightarrow \begin{cases} r = 0, 1 \text{ or } \\ r \geq 2 \text{ and } (H_1 \cap H_2)\pi \leqslant_{fi} H_1\pi \cap H_2\pi. \end{cases}$

Theorem (Delgado-Roy-V. '22)

There is an algorithm which, on input (a set of generators for) $H_1, \ldots, H_k \leqslant_{fg} \mathbb{G}$, decides whether $H_1 \cap \cdots \cap H_k$ is f.g. and, if so, computes a basis for it.

Proposition

Let $M', M'' \leq \mathbb{F}_n$ be such that $\langle M', M'' \rangle = M' * M''$. Then, for any $H'_1, \ldots, H'_k \leq M' \leq \mathbb{F}_n$ and $H''_1, \ldots, H''_k \leq M'' \leq \mathbb{F}_n$,

$$\bigcap_{i=1}^{k} \langle H'_j, H''_j \rangle = \left\langle \bigcap_{i=1}^{k} H'_j, \bigcap_{i=1}^{k} H''_j \right\rangle$$

Theorem (Delgado-Roy-V. '22)

There is an algorithm which, on input (a set of generators for) $H_1, \ldots, H_k \leqslant_{fg} \mathbb{G}$, decides whether $H_1 \cap \cdots \cap H_k$ is f.g. and, if so, computes a basis for it.

Proposition

Let $M', M'' \leqslant \mathbb{F}_n$ be such that $\langle M', M'' \rangle = M' * M''$. Then, for any $H'_1, \ldots, H'_k \leqslant M' \leqslant \mathbb{F}_n$ and $H''_1, \ldots, H''_k \leqslant M'' \leqslant \mathbb{F}_n$,

$${\bigcap}_{i=1}^k \langle H_j', H_j''' \rangle = \Big\langle \ {\bigcap}_{i=1}^k H_j', \ {\bigcap}_{i=1}^k H_j''' \ \Big\rangle.$$

2. $\mathbb{F}_n \times \mathbb{Z}^m$

Observation

The same is not true in $\mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$, even with $M', M'' \leqslant \mathbb{G}$ in strongly complementary position, i.e., $\langle M'\pi, M''\pi \rangle = M'\pi * M''\pi$ and $\langle M'\tau, M''\tau \rangle = M'\tau \oplus M''\tau$.

Example

Consider $\mathbb{G} = \mathbb{F}_4 \times \mathbb{Z}^2 = \langle x_1, x_2, x_3, x_4 | - \rangle \times \langle t_1, t_2 | [t_1, t_2] \rangle$, $M' = \langle x_1, x_2, t^{(1,0)} \rangle$, $M'' = \langle x_3, x_4, t^{(0,1)} \rangle$, and the respective subgrou

- $H'_1 = \langle x_1, x_2 \rangle$, $H'_2 = \langle x_1 t^{(1,0)}, x_2 \rangle \leqslant M'$, and
- $H_1''' = \langle x_3, x_4 \rangle$, $H_2''' = \langle x_3 t^{(0,1)}, x_4 \rangle \leqslant M''$.

We have $H'_1 \cap H'_2 = \langle x_1^{-i} x_2 x_1^i, i \in \mathbb{Z} \rangle$, $H''_1 \cap H''_2 = \langle x_3^{-i} x_4 x_3^i, i \in \mathbb{Z} \rangle$, and

$$\langle H_1'\cap H_2',\ H_1''\cap H_2''\rangle = (H_1'\cap H_2')*(H_1''\cap H_2'') = \langle x_1^{-i}x_2x_1^i,\ x_3^{-i}x_4x_3^i\mid i\in\mathbb{Z}\rangle,$$

which does not contain $x_3^{-1}x_2x_3 \in \langle H_1', H_1'' \rangle = \langle x_1, x_2, x_3, x_4 \rangle$ $\in \langle H_2', H_2'' \rangle = \langle x_1 t^{(1,0)}, x_2, x_3 t^{(0,1)}, x_4 \rangle.$

2. $\mathbb{F}_n \times \mathbb{Z}^m$

Observation

The same is not true in $\mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$, even with $M', M'' \leq \mathbb{G}$ in strongly complementary position, i.e., $\langle M'\pi, M''\pi \rangle = M'\pi * M''\pi$ and $\langle M'\tau, M''\tau \rangle = M'\tau \oplus M''\tau.$

Example

Consider $\mathbb{G} = \mathbb{F}_4 \times \mathbb{Z}^2 = \langle x_1, x_2, x_3, x_4 \mid - \rangle \times \langle t_1, t_2 \mid [t_1, t_2] \rangle$, $M' = \langle x_1, x_2, t^{(1,0)} \rangle$, $M'' = \langle x_3, x_4, t^{(0,1)} \rangle$, and the respective subgroups • $H'_1 = \langle x_1, x_2 \rangle$, $H'_2 = \langle x_1 t^{(1,0)}, x_2 \rangle \leqslant M'$, and • $H_1'' = \langle x_3, x_4 \rangle$, $\overline{H_2''} = \langle x_3 t^{(0,1)}, x_4 \rangle \leqslant M''$.

4. The free case

Free-times-free-abelian groups

2. $\mathbb{F}_n \times \mathbb{Z}^m$

Observation

The same is not true in $\mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$, even with $M', M'' \leq \mathbb{G}$ in strongly complementary position, i.e., $\langle M'\pi, M''\pi \rangle = M'\pi * M''\pi$ and $\langle M'\tau, M''\tau \rangle = M'\tau \oplus M''\tau.$

Example

Consider $\mathbb{G} = \mathbb{F}_4 \times \mathbb{Z}^2 = \langle x_1, x_2, x_3, x_4 \mid - \rangle \times \langle t_1, t_2 \mid [t_1, t_2] \rangle$, $M' = \langle x_1, x_2, t^{(1,0)} \rangle$, $M'' = \langle x_3, x_4, t^{(0,1)} \rangle$, and the respective subgroups • $H'_1 = \langle x_1, x_2 \rangle$, $H'_2 = \langle x_1 t^{(1,0)}, x_2 \rangle \leqslant M'$, and

•
$$H_1'' = \langle x_3, x_4 \rangle$$
, $H_2'' = \langle x_3 t^{(0,1)}, x_4 \rangle \leqslant M''$.

$$\langle H_1' \cap H_2', H_1'' \cap H_2'' \rangle = (H_1' \cap H_2') * (H_1'' \cap H_2'') = \langle x_1^{-i} x_2 x_1^i, x_3^{-i} x_4 x_3^i \mid i \in \mathbb{Z} \rangle$$

2. $\mathbb{F}_n \times \mathbb{Z}^m$

Observation

The same is not true in $\mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$, even with $M', M'' \leq \mathbb{G}$ in strongly complementary position, i.e., $\langle M'\pi, M''\pi \rangle = M'\pi * M''\pi$ and $\langle M'\tau, M''\tau \rangle = M'\tau \oplus M''\tau.$

Example

Consider $\mathbb{G} = \mathbb{F}_4 \times \mathbb{Z}^2 = \langle x_1, x_2, x_3, x_4 \mid - \rangle \times \langle t_1, t_2 \mid [t_1, t_2] \rangle$, $M' = \langle x_1, x_2, t^{(1,0)} \rangle$, $M'' = \langle x_3, x_4, t^{(0,1)} \rangle$, and the respective subgroups

- $H'_1 = \langle x_1, x_2 \rangle$, $H'_2 = \langle x_1 t^{(1,0)}, x_2 \rangle \leqslant M'$, and
- $H_1'' = \langle x_3, x_4 \rangle$, $\bar{H_2''} = \langle x_3 t^{(0,1)}, x_4 \rangle \leqslant M''$.

$$\langle H_1' \cap H_2', H_1'' \cap H_2'' \rangle = (H_1' \cap H_2') * (H_1'' \cap H_2'') = \langle x_1^{-i} x_2 x_1^i, x_3^{-i} x_4 x_3^i \mid i \in \mathbb{Z} \rangle$$

2. $\mathbb{F}_n \times \mathbb{Z}^m$

Observation

The same is not true in $\mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$, even with $M', M'' \leq \mathbb{G}$ in strongly complementary position, i.e., $\langle M'\pi, M''\pi \rangle = M'\pi * M''\pi$ and $\langle M'\tau, M''\tau \rangle = M'\tau \oplus M''\tau.$

Example

Consider $\mathbb{G} = \mathbb{F}_4 \times \mathbb{Z}^2 = \langle x_1, x_2, x_3, x_4 \mid - \rangle \times \langle t_1, t_2 \mid [t_1, t_2] \rangle$, $M' = \langle x_1, x_2, t^{(1,0)} \rangle$, $M'' = \langle x_3, x_4, t^{(0,1)} \rangle$, and the respective subgroups

- $H'_1 = \langle x_1, x_2 \rangle$, $H'_2 = \langle x_1 t^{(1,0)}, x_2 \rangle \leqslant M'$, and
- $H_1'' = \langle x_3, x_4 \rangle$, $\bar{H_2''} = \langle x_3 t^{(0,1)}, x_4 \rangle \leqslant M''$.

We have $H'_1 \cap H'_2 = \langle x_1^{-i} x_2 x_1^i, i \in \mathbb{Z} \rangle$, $H''_1 \cap H''_2 = \langle x_3^{-i} x_4 x_3^i, i \in \mathbb{Z} \rangle$, and

$$\langle H_1' \cap H_2', \ H_1'' \cap H_2'' \rangle = (H_1' \cap H_2') * (H_1'' \cap H_2'') = \langle x_1^{-i} x_2 x_1^i, \ x_3^{-i} x_4 x_3^i \mid i \in \mathbb{Z} \rangle$$

2. $\mathbb{F}_n \times \mathbb{Z}^m$

Observation

The same is not true in $\mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$, even with $M', M'' \leq \mathbb{G}$ in strongly complementary position, i.e., $\langle M'\pi, M''\pi \rangle = M'\pi * M''\pi$ and $\langle M'\tau, M''\tau \rangle = M'\tau \oplus M''\tau.$

Example

Consider $\mathbb{G} = \mathbb{F}_4 \times \mathbb{Z}^2 = \langle x_1, x_2, x_3, x_4 \mid - \rangle \times \langle t_1, t_2 \mid [t_1, t_2] \rangle$, $M' = \langle x_1, x_2, t^{(1,0)} \rangle$, $M'' = \langle x_3, x_4, t^{(0,1)} \rangle$, and the respective subgroups

- $H'_1 = \langle x_1, x_2 \rangle$, $H'_2 = \langle x_1 t^{(1,0)}, x_2 \rangle \leqslant M'$, and
- $H_1'' = \langle x_3, x_4 \rangle$, $\bar{H_2''} = \langle x_3 t^{(0,1)}, x_4 \rangle \leqslant M''$.

We have $H'_1 \cap H'_2 = \langle x_1^{-i} x_2 x_1^i, i \in \mathbb{Z} \rangle$, $H''_1 \cap H''_2 = \langle x_3^{-i} x_4 x_3^i, i \in \mathbb{Z} \rangle$, and

$$\langle H_1'\cap H_2',\ H_1''\cap H_2''\rangle = (H_1'\cap H_2')*(H_1''\cap H_2'') = \langle x_1^{-i}x_2x_1^i,\ x_3^{-i}x_4x_3^i\mid i\in\mathbb{Z}\rangle,$$

2. $\mathbb{F}_n \times \mathbb{Z}^m$

0000000

Observation

The same is not true in $\mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$, even with $M', M'' \leq \mathbb{G}$ in strongly complementary position, i.e., $\langle M'\pi, M''\pi \rangle = M'\pi * M''\pi$ and $\langle M'\tau, M''\tau \rangle = M'\tau \oplus M''\tau.$

Example

Consider $\mathbb{G} = \mathbb{F}_4 \times \mathbb{Z}^2 = \langle x_1, x_2, x_3, x_4 \mid - \rangle \times \langle t_1, t_2 \mid [t_1, t_2] \rangle$, $M' = \langle x_1, x_2, t^{(1,0)} \rangle$, $M'' = \langle x_3, x_4, t^{(0,1)} \rangle$, and the respective subgroups

- $H'_1 = \langle x_1, x_2 \rangle$, $H'_2 = \langle x_1 t^{(1,0)}, x_2 \rangle \leqslant M'$, and
- $H_1'' = \langle x_3, x_4 \rangle$, $\bar{H_2''} = \langle x_3 t^{(0,1)}, x_4 \rangle \leqslant M''$.

We have $H'_1 \cap H'_2 = \langle x_1^{-i} x_2 x_1^i, i \in \mathbb{Z} \rangle$, $H''_1 \cap H''_2 = \langle x_3^{-i} x_4 x_3^i, i \in \mathbb{Z} \rangle$, and

$$\langle H_1'\cap H_2',\ H_1''\cap H_2''\rangle = (H_1'\cap H_2')*(H_1''\cap H_2'') = \langle x_1^{-i}x_2x_1^i,\ x_3^{-i}x_4x_3^i\mid i\in\mathbb{Z}\rangle,$$

which does not contain $x_3^{-1}x_2x_3 \in \langle H_1', H_1'' \rangle = \langle x_1, x_2, x_3, x_4 \rangle$ $f \in \langle H_2', H_2''' \rangle = \langle x_1 t^{(1,0)}, x_2, x_3 t^{(0,1)}, x_4 \rangle.$

Theorem

Let
$$H'_1, \ldots, H'_k \leqslant \mathbb{G}' = \mathbb{F}_{n'} \times \mathbb{Z}^{m'}$$
 and $H''_1, \ldots, H''_k \leqslant \mathbb{G}'' = \mathbb{F}_{n''} \times \mathbb{Z}^{m''}$ be $k \geq 2$ subgroups of G' and G'' , resp. Write $r' = \operatorname{rk} \left(\bigcap_{j=1}^k H'_j \pi \right)$, $r'' = \operatorname{rk} \left(\bigcap_{j=1}^k H''_j \pi \right)$, and consider $\langle H'_1, H''_1 \rangle, \ldots, \langle H'_k, H''_k \rangle \leqslant \mathbb{G}' \circledast \mathbb{G}'' = (\mathbb{F}_{n'} * \mathbb{F}_{n''}) \times (\mathbb{Z}^{m'} \oplus \mathbb{Z}^{m''})$. Then, if $\min(r', r'') \neq 1$:
$$\bigcap_{j=1}^k \langle H'_j, H''_j \rangle \text{ is f.g.} \Leftrightarrow \text{both } \bigcap_{j=1}^k H'_j \text{ and } \bigcap_{j=1}^k H''_j \text{ are f.g.}$$

Observation

Again, not true without the hypothesis $min(r', r'') \neq 1$.

Theorem

Let
$$H'_1, \ldots, H'_k \leqslant \mathbb{G}' = \mathbb{F}_{n'} \times \mathbb{Z}^{m'}$$
 and $H''_1, \ldots, H''_k \leqslant \mathbb{G}'' = \mathbb{F}_{n''} \times \mathbb{Z}^{m''}$ be $k \geq 2$ subgroups of G' and G'' , resp. Write $r' = \operatorname{rk} \left(\bigcap_{j=1}^k H'_j \pi \right)$, $r'' = \operatorname{rk} \left(\bigcap_{j=1}^k H''_j \pi \right)$, and consider $\langle H'_1, H''_1 \rangle, \ldots, \langle H'_k, H''_k \rangle \leqslant \mathbb{G}' \circledast \mathbb{G}'' = (\mathbb{F}_{n'} * \mathbb{F}_{n''}) \times (\mathbb{Z}^{m'} \oplus \mathbb{Z}^{m''})$. Then, if $\min(r', r'') \neq 1$:
$$\bigcap_{j=1}^k \langle H'_j, H''_j \rangle \text{ is f.g.} \Leftrightarrow \text{both } \bigcap_{j=1}^k H'_j \text{ and } \bigcap_{j=1}^k H''_j \text{ are f.g.}$$

Observation

Again, not true without the hypothesis $min(r', r'') \neq 1$.

Outline

- Our main results
- Free-times-free-abelian groups
- 3 Realizable / unrealizable k-configurations
- 4 The free case
- Open questions

Definition

Define the join of two k-configurations χ and χ' as

Proposition

Let χ' (resp. χ'') be k-config. realized by $H'_1, \ldots, H'_k \leq \mathbb{G}' = \mathbb{F}_{n'} \times \mathbb{Z}^{m'}$ (resp. $H''_1, \ldots, H''_k \leq \mathbb{G}'' = \mathbb{F}_{n''} \times \mathbb{Z}^{m''}$) with $r'_l = \operatorname{rk} \left(\bigcap_{i \in I} H'_i \pi \right) \neq 1$ (resp. $r''_l \neq 1$) $\forall \ l \subseteq [k]$ with $|l| \geq 2$. Then, $\chi' \vee \chi''$ is realizable in $\mathbb{G}' \circledast \mathbb{G}'' = \mathbb{F}_{n'+n''} \times \mathbb{Z}^{m'+m''}$ by $H_1 = \langle H'_1, H''_1 \rangle, \ldots, H_k = \langle H'_k, H''_k \rangle$, again satisfying $r_l \neq 1 \ \forall \ l \subseteq [k]$ with $|l| \geq 2$.

Definition

Define the join of two k-configurations χ and χ' as

Proposition

Let χ' (resp. χ'') be k-config. realized by $H'_1, \ldots, H'_k \leqslant \mathbb{G}' = \mathbb{F}_{n'} \times \mathbb{Z}^{m'}$ (resp. $H''_1, \ldots, H''_k \leqslant \mathbb{G}'' = \mathbb{F}_{n''} \times \mathbb{Z}^{m''}$) with $r'_l = \operatorname{rk} \left(\bigcap_{i \in l} H'_i \pi \right) \neq 1$ (resp. $r''_l \neq 1$) $\forall \ l \subseteq [k]$ with $|l| \geq 2$. Then, $\chi' \vee \chi''$ is realizable in $\mathbb{G}' \circledast \mathbb{G}'' = \mathbb{F}_{n'+n''} \times \mathbb{Z}^{m'+m''}$ by $H_1 = \langle H'_1, H''_1 \rangle, \ldots, H_k = \langle H'_k, H''_k \rangle$, again satisfying $r_l \neq 1 \ \forall \ l \subseteq [k]$ with $|l| \geq 2$.

Proposition

The k-config. $\chi_{[k]}$ is realizable in $\mathbb{F}_n \times \mathbb{Z}^{k-1}$.

(Sketch of proof

$$H_{1} = \langle x, y; t^{\mathbf{e}_{2}}, \dots, t^{\mathbf{e}_{k-1}} \rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1},$$

$$H_{2} = \langle x, y; t^{\mathbf{e}_{1}}, t^{\mathbf{e}_{3}}, \dots, t^{\mathbf{e}_{k-1}} \rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1},$$

$$\vdots$$

 $H_k = \langle x, yt^{\mathbf{e}_1}; t^{\mathbf{e}_2 - \mathbf{e}_1}, \dots, t^{\mathbf{e}_{k-1} - \mathbf{e}_1} \rangle = \langle x, yt^{\mathbf{e}_1}, \dots, yt^{\mathbf{e}_{k-1}} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^{k-1}$

Corollary

Any almost-zero k-config. χ_{l_0} is realizable in $\mathbb{F}_n \times \mathbb{Z}^{|l_0|-1}$ by subgroups H_1, \ldots, H_k further satisfying $\operatorname{rk} \left(\bigcap_{i \in I} H_i \pi \right) \neq 1$, for every $\emptyset \neq I \subseteq [k]$.

1. Main results

Proposition

The k-config. $\chi_{[k]}$ is realizable in $\mathbb{F}_n \times \mathbb{Z}^{k-1}$.

(Sketch of proof)

$$\begin{aligned} H_{1} &= \langle x, y; t^{\mathbf{e}_{2}}, \dots, t^{\mathbf{e}_{k-1}} \rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1}, \\ H_{2} &= \langle x, y; t^{\mathbf{e}_{1}}, t^{\mathbf{e}_{3}}, \dots, t^{\mathbf{e}_{k-1}} \rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1}, \\ &\vdots \\ H_{k-1} &= \langle x, y; t^{\mathbf{e}_{1}}, \dots, t^{\mathbf{e}_{k-2}} \rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1}, \\ H_{k} &= \langle x, yt^{\mathbf{e}_{1}}; t^{\mathbf{e}_{2}-\mathbf{e}_{1}}, \dots, t^{\mathbf{e}_{k-1}-\mathbf{e}_{1}} \rangle = \langle x, yt^{\mathbf{e}_{1}}, \dots, yt^{\mathbf{e}_{k-1}} \rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1} \end{aligned}$$

Proposition

The k-config. $\chi_{[k]}$ is realizable in $\mathbb{F}_n \times \mathbb{Z}^{k-1}$.

(Sketch of proof)

$$\begin{array}{l} H_{1} \ = \ \langle x,y;t^{\mathbf{e}_{2}},\ldots,t^{\mathbf{e}_{k-1}}\rangle \ \leqslant \ \mathbb{F}_{2}\times\mathbb{Z}^{k-1}, \\ H_{2} \ = \ \langle x,y;t^{\mathbf{e}_{1}},t^{\mathbf{e}_{3}},\ldots,t^{\mathbf{e}_{k-1}}\rangle \ \leqslant \ \mathbb{F}_{2}\times\mathbb{Z}^{k-1}, \\ \vdots \\ H_{k-1} \ = \ \langle x,y;t^{\mathbf{e}_{1}},\ldots,t^{\mathbf{e}_{k-2}}\rangle \ \leqslant \ \mathbb{F}_{2}\times\mathbb{Z}^{k-1}, \\ H_{k} \ = \ \langle x,yt^{\mathbf{e}_{1}};t^{\mathbf{e}_{2}-\mathbf{e}_{1}},\ldots,t^{\mathbf{e}_{k-1}-\mathbf{e}_{1}}\rangle \ = \ \langle x,yt^{\mathbf{e}_{1}},\ldots,yt^{\mathbf{e}_{k-1}}\rangle \ \leqslant \ \mathbb{F}_{2}\times\mathbb{Z}^{k-1} \end{array}$$

Corollary

Any almost-zero k-config. χ_{l_0} is realizable in $\mathbb{F}_n \times \mathbb{Z}^{\lfloor l_0 \rfloor - 1}$ by subgroups H_1, \ldots, H_k further satisfying $\operatorname{rk} \left(\bigcap_{i \in I} H_i \pi \right) \neq 1$, for every $\emptyset \neq I \subseteq [k]$.

Theorem (Delgado-Roy-V. '22)

Every k-configuration $\chi_{\mathcal{I}}$ is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$, for $n \geq 2$ and $m \geq \sum_{I \in \mathcal{I}} (|I| - 1)$.

(proof)

- Decompose $\chi_{\mathcal{I}} = \chi_{I_1} \vee \cdots \vee \chi_{I_r}$, where $\mathcal{I} = \{I_1, \dots, I_r\}$;
- realize each χ_{l_i} in $\mathbb{F}_2 \times \mathbb{Z}^{|l_j|-1}$, $j = 1, \ldots, r$;
- put together in a strongly complementary way.

Example

$$\chi = \chi_{\{1\}} \vee \chi_{\{2,3\}} \vee \chi_{\{1,3,4\}} \vee \chi_{\{2,3,4\}}$$

Theorem (Delgado-Roy-V. '22)

Every k-configuration $\chi_{\mathcal{I}}$ is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$, for $n \geq 2$ and $m \geq \sum_{I \in \mathcal{I}} (|I| - 1)$.

(proof)

- Decompose $\chi_{\mathcal{I}} = \chi_{I_1} \vee \cdots \vee \chi_{I_r}$, where $\mathcal{I} = \{I_1, \dots, I_r\}$;
- realize each χ_{l_i} in $\mathbb{F}_2 \times \mathbb{Z}^{|l_i|-1}$, $j = 1, \ldots, r$;
- put together in a strongly complementary way.

Example

$$\chi = \chi_{\{1\}} \vee \chi_{\{2,3\}} \vee \chi_{\{1,3,4\}} \vee \chi_{\{2,3,4\}}$$

Theorem (Delgado-Roy-V. '22)

Every k-configuration $\chi_{\mathcal{I}}$ is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$, for $n \geq 2$ and $m \geq \sum_{I \in \mathcal{I}} (|I| - 1)$.

(proof)

- Decompose $\chi_{\mathcal{I}} = \chi_{I_1} \vee \cdots \vee \chi_{I_r}$, where $\mathcal{I} = \{I_1, \dots, I_r\}$;
- realize each χ_{l_i} in $\mathbb{F}_2 \times \mathbb{Z}^{|l_i|-1}$, $j = 1, \ldots, r$;
- put together in a strongly complementary way.

Example

$$\chi = \chi_{\{1\}} \vee \chi_{\{2,3\}} \vee \chi_{\{1,3,4\}} \vee \chi_{\{2,3,4\}}$$

Theorem (Delgado-Roy-V. '22)

Every k-configuration $\chi_{\mathcal{I}}$ is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$, for $n \geq 2$ and $m \geq \sum_{I \in \mathcal{I}} (|I| - 1)$.

(proof)

- Decompose $\chi_{\mathcal{I}} = \chi_{I_1} \vee \cdots \vee \chi_{I_r}$, where $\mathcal{I} = \{I_1, \dots, I_r\}$;
- realize each χ_{l_j} in $\mathbb{F}_2 \times \mathbb{Z}^{|l_j|-1}$, $j=1,\ldots,r$;
- put together in a strongly complementary way.

Example

$$\chi = \chi_{\{1\}} \vee \chi_{\{2,3\}} \vee \chi_{\{1,3,4\}} \vee \chi_{\{2,3,4\}}.$$

Main results

Example (cont.)

In $\mathbb{F}_2 = \langle x, y \mid - \rangle$ take the freely independent words $u_j = y^{-j}xy^j \in \mathbb{F}_2$, $j \in \mathbb{Z}$. Let $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, \mathbf{e_4}, \mathbf{e_5}\}$ be the canonical basis for \mathbb{Z}^5 . Realize:

- $\chi_{\{1\}}$ as $H_1' = \langle \dots, u_{-2}, u_{-1} \rangle$, $H_2' = \{1\}$, $H_3' = \{1\}$, $H_4' = \{1\}$, all inside $G' = \langle \dots, u_{-2}, u_{-1}; \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$;
- $\chi_{\{2,3\}}$ as $H_1'' = \{1\}$, $H_2'' = \langle u_0, u_1 \rangle$, $H_3'' = \langle u_0, u_1 t^{e_1} \rangle$, $H_4'' = \{1\}$, all inside $G'' = \langle u_0, u_1; t^{e_1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$;
- $\chi_{\{1,3,4\}}$ as $H_1''' = \langle u_2, u_3; t^{\mathbf{e}_3} \rangle$, $H_2''' = \{1\}$, $H_3''' = \langle u_2, u_3; t^{\mathbf{e}_2} \rangle$, $H_4''' = \langle u_2, u_3; t^{\mathbf{e}_2}; t^{\mathbf{e}_3 \mathbf{e}_2} \rangle$, all inside $G''' = \langle u_2, u_3; t^{\mathbf{e}_2}, t^{\mathbf{e}_3} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$;
- $\chi_{\{2,3,4\}}$ as $H_1'''' = \{1\}$, $H_2'''' = \langle u_4, u_5; t^{e_5} \rangle$, $H_3'''' = \langle u_4, u_5; t^{e_4} \rangle$,
- $H_4''' = \langle u_4, u_5; t^{\mathbf{e}_4}; t^{\mathbf{e}_5 \mathbf{e}_4} \rangle$, all inside $G'''' = \langle u_4, u_5; t^{\mathbf{e}_4}, t^{\mathbf{e}_5} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$.
- $\operatorname{rk}\left(\bigcap_{i\in I}H_{i}^{\prime\prime\prime}\pi\right)\neq1$, and $\operatorname{rk}\left(\bigcap_{i\in I}H_{i}^{\prime\prime\prime\prime}\pi\right)\neq1$. Therefore, we can realize χ by the following subgroups

Main results

Example (cont.)

```
In \mathbb{F}_2 = \langle x, y \mid - \rangle take the freely independent words u_i = y^{-j}xy^j \in \mathbb{F}_2,
j \in \mathbb{Z}. Let \{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, \mathbf{e_4}, \mathbf{e_5}\} be the canonical basis for \mathbb{Z}^5. Realize:
• \chi_{\{1\}} as H'_1 = \langle \dots, u_{-2}, u_{-1} \rangle, H'_2 = \{1\}, H'_3 = \{1\}, H'_4 = \{1\}, all
inside G' = \langle ..., u_{-2}, u_{-1}; - \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5;
• \chi_{\{2,3\}} as H_1'' = \{1\}, H_2'' = \langle u_0, u_1 \rangle, H_2'' = \langle u_0, u_1 t^{e_1} \rangle, H_4'' = \{1\}, all
• \chi_{\{1,3,4\}} as H_1''' = \langle u_2, u_3; t^{e_3} \rangle, H_2''' = \{1\}, H_2''' = \langle u_2, u_3; t^{e_2} \rangle,
H_{A}^{""} = \langle u_2, u_3 t^{e_2}; t^{e_3 - e_2} \rangle, all inside G^{""} = \langle u_2, u_3; t^{e_2}, t^{e_3} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5;
• \chi_{\{2,3,4\}} as H_1'''' = \{1\}, H_2'''' = \langle u_4, u_5; t^{e_5} \rangle, H_3'''' = \langle u_4, u_5; t^{e_4} \rangle,
H_{A}^{""} = \langle u_4, u_5 t^{\mathbf{e}_4}; t^{\mathbf{e}_5 - \mathbf{e}_4} \rangle, all inside G^{""} = \langle u_4, u_5; t^{\mathbf{e}_4}, t^{\mathbf{e}_5} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5.
```

Main results

Example (cont.)

In $\mathbb{F}_2 = \langle x, y \mid - \rangle$ take the freely independent words $u_j = y^{-j}xy^j \in \mathbb{F}_2$, $j \in \mathbb{Z}$. Let $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, \mathbf{e_4}, \mathbf{e_5}\}$ be the canonical basis for \mathbb{Z}^5 . Realize:

- $\chi_{\{1\}}$ as $H_1' = \langle \dots, u_{-2}, u_{-1} \rangle$, $H_2' = \{1\}$, $H_3' = \{1\}$, $H_4' = \{1\}$, all inside $G' = \langle \dots, u_{-2}, u_{-1}; \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$;
- $\chi_{\{2,3\}}$ as $H_1'' = \{1\}$, $H_2'' = \langle u_0, u_1 \rangle$, $H_3'' = \langle u_0, u_1 t^{\mathbf{e}_1} \rangle$, $H_4'' = \{1\}$, all inside $G'' = \langle u_0, u_1; t^{\mathbf{e}_1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$;
- $\chi_{\{1,3,4\}}$ as $H_1''' = \langle u_2, u_3; t^{e_3} \rangle$, $H_2''' = \{1\}$, $H_3''' = \langle u_2, u_3; t^{e_2} \rangle$, $H_4''' = \langle u_2, u_3 t^{e_2}; t^{e_3-e_2} \rangle$, all inside $G''' = \langle u_2, u_3; t^{e_2}, t^{e_3} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$; $\chi_{\{2,3,4\}}$ as $H_1'''' = \{1\}$, $H_2'''' = \langle u_4, u_5; t^{e_5} \rangle$, $H_3'''' = \langle u_4, u_5; t^{e_4} \rangle$, $H_4'''' = \langle u_4, u_5; t^{e_4}, t^{e_5-e_4} \rangle$, all inside $G'''' = \langle u_4, u_5; t^{e_4}, t^{e_5} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$. And note that $\operatorname{rk} \left(\bigcap_{i \in I} H_i'' \pi \right) \neq 1$, $\operatorname{rk} \left(\bigcap_{i \in I} H_i''' \pi \right) \neq 1$, $\operatorname{rk} \left(\bigcap_{i \in I} H_i''' \pi \right) \neq 1$. Therefore, we can realize χ by the following subgroups

Main results

Example (cont.)

In $\mathbb{F}_2 = \langle x, y \mid - \rangle$ take the freely independent words $u_j = y^{-j}xy^j \in \mathbb{F}_2$, $j \in \mathbb{Z}$. Let $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, \mathbf{e_4}, \mathbf{e_5}\}$ be the canonical basis for \mathbb{Z}^5 . Realize:

- $\chi_{\{1\}}$ as $H_1' = \langle \dots, u_{-2}, u_{-1} \rangle$, $H_2' = \{1\}$, $H_3' = \{1\}$, $H_4' = \{1\}$, all inside $G' = \langle \dots, u_{-2}, u_{-1}; \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$;
- $\chi_{\{2,3\}}$ as $H_1'' = \{1\}$, $H_2'' = \langle u_0, u_1 \rangle$, $H_3'' = \langle u_0, u_1 t^{\mathbf{e}_1} \rangle$, $H_4'' = \{1\}$, all inside $G'' = \langle u_0, u_1; t^{\mathbf{e}_1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$;
- $\chi_{\{1,3,4\}}$ as $H_1''' = \langle u_2, u_3; t^{e_3} \rangle$, $H_2''' = \{1\}$, $H_3''' = \langle u_2, u_3; t^{e_2} \rangle$, $H_4''' = \langle u_2, u_3 t^{e_2}; t^{e_3 e_2} \rangle$, all inside $G''' = \langle u_2, u_3; t^{e_2}, t^{e_3} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$; $\chi_{\{2,3,4\}}$ as $H_1'''' = \{1\}$, $H_2'''' = \langle u_4, u_5; t^{e_5} \rangle$, $H_3'''' = \langle u_4, u_5; t^{e_4} \rangle$, all inside $G'''' = \langle u_4, u_5; t^{e_4} \rangle$, And note that $\operatorname{rk} \left(\bigcap_{i \in I} H_i'' \pi \right) \neq 1$, $\operatorname{rk} \left(\bigcap_{i \in I} H_i''' \pi \right) \neq 1$, and $\operatorname{rk} \left(\bigcap_{i \in I} H_i'''' \pi \right) \neq 1$. Therefore, we can realize χ , by the following subgroups

Main results

Example (cont.)

In $\mathbb{F}_2 = \langle x, y \mid - \rangle$ take the freely independent words $u_j = y^{-j}xy^j \in \mathbb{F}_2$, $j \in \mathbb{Z}$. Let $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, \mathbf{e_4}, \mathbf{e_5}\}$ be the canonical basis for \mathbb{Z}^5 . Realize:

- $\chi_{\{1\}}$ as $H_1' = \langle \dots, u_{-2}, u_{-1} \rangle$, $H_2' = \{1\}$, $H_3' = \{1\}$, $H_4' = \{1\}$, all inside $G' = \langle \dots, u_{-2}, u_{-1}; \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$;
- $\chi_{\{2,3\}}$ as $H_1'' = \{1\}$, $H_2'' = \langle u_0, u_1 \rangle$, $H_3'' = \langle u_0, u_1 t^{\mathbf{e}_1} \rangle$, $H_4'' = \{1\}$, all inside $G'' = \langle u_0, u_1; t^{\mathbf{e}_1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$;
- $\chi_{\{1,3,4\}}$ as $H_1''' = \langle u_2, u_3; t^{\mathbf{e}_3} \rangle$, $H_2''' = \{1\}$, $H_3''' = \langle u_2, u_3; t^{\mathbf{e}_2} \rangle$, $H_4''' = \langle u_2, u_3; t^{\mathbf{e}_2}; t^{\mathbf{e}_3 \mathbf{e}_2} \rangle$, all inside $G''' = \langle u_2, u_3; t^{\mathbf{e}_2}, t^{\mathbf{e}_3} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$:
- $\bullet \ \chi_{\{2,3,4\}} \ \textit{as} \ H_1'''' = \{1\}, \ H_2'''' = \langle u_4, u_5; t^{\mathbf{e}_5} \rangle, \ H_3'''' = \langle u_4, u_5; t^{\mathbf{e}_4} \rangle,$
- $H_4'''' = \langle u_4, u_5 t^{\mathbf{e}_4}; t^{\mathbf{e}_5 \mathbf{e}_4} \rangle$, all inside $G'''' = \langle u_4, u_5; t^{\mathbf{e}_4}, t^{\mathbf{e}_5} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$.

And note that $\mathsf{rk} \left(\bigcap_{i \in I} H_i''\pi \right) \neq 1$, $\mathsf{rk} \left(\bigcap_{i \in I} H_i'''\pi \right) \neq 1$, $\mathsf{rk} \left(\bigcap_{i \in I} H_i'''\pi \right) \neq 1$. Therefore, we car realize χ by the following subgroups

Main results

Example (cont.)

In $\mathbb{F}_2 = \langle x, y \mid - \rangle$ take the freely independent words $u_j = y^{-j}xy^j \in \mathbb{F}_2$, $j \in \mathbb{Z}$. Let $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, \mathbf{e_4}, \mathbf{e_5}\}$ be the canonical basis for \mathbb{Z}^5 . Realize:

- $\chi_{\{1\}}$ as $H_1' = \langle \dots, u_{-2}, u_{-1} \rangle$, $H_2' = \{1\}$, $H_3' = \{1\}$, $H_4' = \{1\}$, all inside $G' = \langle \dots, u_{-2}, u_{-1}; \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$;
- $\chi_{\{2,3\}}$ as $H_1'' = \{1\}$, $H_2'' = \langle u_0, u_1 \rangle$, $H_3'' = \langle u_0, u_1 t^{\mathbf{e}_1} \rangle$, $H_4'' = \{1\}$, all inside $G'' = \langle u_0, u_1; t^{\mathbf{e}_1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$;
- $\begin{array}{l} \bullet \; \chi_{\{1,3,4\}} \; \text{as} \; H_1''' = \langle u_2, u_3; t^{\textbf{e}_3} \rangle, \, H_2''' = \{1\}, \, H_3''' = \langle u_2, u_3; t^{\textbf{e}_2} \rangle, \\ H_4''' = \langle u_2, u_3 t^{\textbf{e}_2}; t^{\textbf{e}_3 \textbf{e}_2} \rangle, \; \text{all inside} \; G''' = \langle u_2, u_3; t^{\textbf{e}_2}, t^{\textbf{e}_3} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5; \end{array}$
- $\begin{array}{l} \bullet \; \chi_{\{2,3,4\}} \; \textit{as} \; H_1'''' = \{1\}, \; H_2'''' = \langle u_4, u_5; t^{\mathbf{e}_5} \rangle, \; H_3'''' = \langle u_4, u_5; t^{\mathbf{e}_4} \rangle, \\ H_4'''' = \langle u_4, u_5; t^{\mathbf{e}_4}; t^{\mathbf{e}_5 \mathbf{e}_4} \rangle, \; \textit{all inside} \; G'''' = \langle u_4, u_5; t^{\mathbf{e}_4}, t^{\mathbf{e}_5} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5. \end{array}$

And note that $\operatorname{rk}\left(\bigcap_{i\in I}H_i''\pi\right)\neq 1$, $\operatorname{rk}\left(\bigcap_{i\in I}H_i'''\pi\right)\neq 1$, $\operatorname{rk}\left(\bigcap_{i\in I}H_i'''\pi\right)\neq 1$. Therefore, we can

realize χ by the following subgroups

Main results

Example (cont.)

In $\mathbb{F}_2 = \langle x, y \mid - \rangle$ take the freely independent words $u_j = y^{-j}xy^j \in \mathbb{F}_2$, $j \in \mathbb{Z}$. Let $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, \mathbf{e_4}, \mathbf{e_5}\}$ be the canonical basis for \mathbb{Z}^5 . Realize:

- $\chi_{\{1\}}$ as $H_1' = \langle \dots, u_{-2}, u_{-1} \rangle$, $H_2' = \{1\}$, $H_3' = \{1\}$, $H_4' = \{1\}$, all inside $G' = \langle \dots, u_{-2}, u_{-1}; \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$;
- $\chi_{\{2,3\}}$ as $H_1'' = \{1\}$, $H_2'' = \langle u_0, u_1 \rangle$, $H_3'' = \langle u_0, u_1 t^{\mathbf{e}_1} \rangle$, $H_4'' = \{1\}$, all inside $G'' = \langle u_0, u_1; t^{\mathbf{e}_1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$;
- $\begin{array}{l} \bullet \; \chi_{\{1,3,4\}} \; \text{as} \; H_1''' = \langle u_2, u_3; t^{\mathbf{e}_3} \rangle, \, H_2''' = \{1\}, \, H_3''' = \langle u_2, u_3; t^{\mathbf{e}_2} \rangle, \\ H_4''' = \langle u_2, u_3; t^{\mathbf{e}_2} \rangle, \, \text{all inside} \; G''' = \langle u_2, u_3; t^{\mathbf{e}_2}, t^{\mathbf{e}_3} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5; \end{array}$
- $\chi_{\{2,3,4\}}$ as $H_1'''' = \{1\}$, $H_2'''' = \langle u_4, u_5; t^{\mathbf{e}_5} \rangle$, $H_3'''' = \langle u_4, u_5; t^{\mathbf{e}_4} \rangle$, $H_4'''' = \langle u_4, u_5; t^{\mathbf{e}_4}; t^{\mathbf{e}_5 \mathbf{e}_4} \rangle$, all inside $G'''' = \langle u_4, u_5; t^{\mathbf{e}_4}, t^{\mathbf{e}_5} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$.

And note that $\operatorname{rk}\left(\bigcap_{i\in I}H_i''\pi\right)\neq 1$, $\operatorname{rk}\left(\bigcap_{i\in I}H_i'''\pi\right)\neq 1$, $\operatorname{rk}\left(\bigcap_{i\in I}H_i'''\pi\right)\neq 1$. Therefore, we can realize χ by the following subgroups

Example (cont.)

$$\begin{split} H_1 &= \langle \dots, u_{-2}, u_{-1}, u_2, u_3; t^{\mathbf{e}_3} \rangle, \\ H_2 &= \langle u_0, u_1, u_4, u_5; t^{\mathbf{e}_5} \rangle, \\ H_3 &= \langle u_0, u_1 t^{\mathbf{e}_1}, u_2, u_3, u_4, u_5; t^{\mathbf{e}_2}, t^{\mathbf{e}_4} \rangle, \\ H_4 &= \langle u_2, u_3 t^{\mathbf{e}_2}, u_4, u_5 t^{\mathbf{e}_4}; t^{\mathbf{e}_3 - \mathbf{e}_2}, t^{\mathbf{e}_5 - \mathbf{e}_4} \rangle. \end{split}$$

of $G' \circledast G'' \circledast G''' \circledast G'''' \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$.

Corollary

 $\mathbb{F}_2 \times (\oplus_{\aleph_0} \mathbb{Z})$ is intersection-saturated

Theorem (Delgado-Roy-V. '22'

There exist finitely presented intersection-saturated groups

Example (cont.)

$$\begin{split} H_1 &= \langle \dots, u_{-2}, u_{-1}, u_2, u_3; t^{\mathbf{e}_3} \rangle, \\ H_2 &= \langle u_0, u_1, u_4, u_5; t^{\mathbf{e}_5} \rangle, \\ H_3 &= \langle u_0, u_1 t^{\mathbf{e}_1}, u_2, u_3, u_4, u_5; t^{\mathbf{e}_2}, t^{\mathbf{e}_4} \rangle, \\ H_4 &= \langle u_2, u_3 t^{\mathbf{e}_2}, u_4, u_5 t^{\mathbf{e}_4}; t^{\mathbf{e}_3 - \mathbf{e}_2}, t^{\mathbf{e}_5 - \mathbf{e}_4} \rangle. \end{split}$$

of $G' \circledast G'' \circledast G''' \circledast G'''' \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$.

Corollary

 $\mathbb{F}_2 \times (\oplus_{\aleph_0} \mathbb{Z})$ is intersection-saturated.

Theorem (Delgado-Roy-V. '22

There exist finitely presented intersection-saturated groups

Example (cont.)

$$\begin{split} H_1 &= \langle \dots, u_{-2}, u_{-1}, u_2, u_3; t^{\mathbf{e}_3} \rangle, \\ H_2 &= \langle u_0, u_1, u_4, u_5; t^{\mathbf{e}_5} \rangle, \\ H_3 &= \langle u_0, u_1 t^{\mathbf{e}_1}, u_2, u_3, u_4, u_5; t^{\mathbf{e}_2}, t^{\mathbf{e}_4} \rangle, \\ H_4 &= \langle u_2, u_3 t^{\mathbf{e}_2}, u_4, u_5 t^{\mathbf{e}_4}; t^{\mathbf{e}_3 - \mathbf{e}_2}, t^{\mathbf{e}_5 - \mathbf{e}_4} \rangle. \end{split}$$

of $G' \circledast G'' \circledast G''' \circledast G'''' \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$.

Corollary

 $\mathbb{F}_2 \times (\oplus_{\aleph_0} \mathbb{Z})$ is intersection-saturated.

Theorem (Delgado-Roy-V. '22)

There exist finitely presented intersection-saturated groups.

Theorem (Delgado-Roy-V. '22)

There exist finitely presented intersection-saturated groups.

(Proof 1)

- Consider Thomson's group F;
- it is well know to be finitely presented and to contain $\bigoplus_{\aleph_0} \mathbb{Z}$;
- therefore, $\mathbb{F}_2 \times F$ is intersection-saturated.
- (Need to take $\mathbb{F}_2 \times$ because F does not contain \mathbb{F}_2 .)

(Proof 2)

- Consider $G = (\bigoplus_{\aleph_0} \mathbb{Z}) \rtimes_{\alpha} \mathbb{Z}$, where α is the automorphism given by right translation of generators;
- G is recursively presented so, it embeds in a finitely presented group, $G \hookrightarrow G'$;
- $\mathbb{F}_2 \times G'$ is finitely presented and intersection-saturated.

Theorem (Delgado-Roy-V. '22)

There exist finitely presented intersection-saturated groups.

(Proof 1)

- Consider Thomson's group F;
- it is well know to be finitely presented and to contain $\bigoplus_{\aleph_0} \mathbb{Z}$;
- therefore, $\mathbb{F}_2 \times F$ is intersection-saturated.
- (Need to take $\mathbb{F}_2 \times$ because F does not contain \mathbb{F}_2 .)

(Proof 2)

- Consider $G = (\bigoplus_{\aleph_0} \mathbb{Z}) \rtimes_{\alpha} \mathbb{Z}$, where α is the automorphism given by right translation of generators;
- G is recursively presented so, it embeds in a finitely presented group, $G \hookrightarrow G'$;
- $\mathbb{F}_2 \times G'$ is finitely presented and intersection-saturated.

Theorem (Delgado-Roy-V. '22)

There exist finitely presented intersection-saturated groups.

(Proof 1)

- Consider Thomson's group F;
- it is well know to be finitely presented and to contain $\bigoplus_{\aleph_0} \mathbb{Z}$;
- therefore, $\mathbb{F}_2 \times F$ is intersection-saturated.
- (Need to take $\mathbb{F}_2 \times$ because F does not contain \mathbb{F}_2 .)

(Proof 2

- Consider $G = (\bigoplus_{\aleph_0} \mathbb{Z}) \rtimes_{\alpha} \mathbb{Z}$, where α is the automorphism given by right translation of generators;
- ullet G is recursively presented so, it embeds in a finitely presented group, $G\hookrightarrow G'$;
- $\mathbb{F}_2 \times G'$ is finitely presented and intersection-saturated.

Theorem (Delgado-Roy-V. '22)

There exist finitely presented intersection-saturated groups.

(Proof 1)

- Consider Thomson's group F;
- it is well know to be finitely presented and to contain $\bigoplus_{\aleph_0} \mathbb{Z}$;
- therefore, $\mathbb{F}_2 \times F$ is intersection-saturated.
- (Need to take $\mathbb{F}_2 \times$ because F does not contain \mathbb{F}_2 .)

(Proof 2

- Consider $G = (\bigoplus_{\aleph_0} \mathbb{Z}) \rtimes_{\alpha} \mathbb{Z}$, where α is the automorphism given by right translation of generators;
- *G* is recursively presented so, it embeds in a finitely presented group, $G \hookrightarrow G'$;
- $\mathbb{F}_2 \times G'$ is finitely presented and intersection-saturated.

Theorem (Delgado-Roy-V. '22)

There exist finitely presented intersection-saturated groups.

(Proof 1)

- Consider Thomson's group F;
- it is well know to be finitely presented and to contain $\bigoplus_{\aleph_0} \mathbb{Z}$;
- therefore, $\mathbb{F}_2 \times F$ is intersection-saturated.
- (Need to take $\mathbb{F}_2 \times$ because F does not contain \mathbb{F}_2 .)

(Proof 2)

- Consider $G = (\bigoplus_{\aleph_0} \mathbb{Z}) \rtimes_{\alpha} \mathbb{Z}$, where α is the automorphism given by right translation of generators;
- ullet G is recursively presented so, it embeds in a finitely presented group, $G\hookrightarrow G'$;
- $\mathbb{F}_2 \times G'$ is finitely presented and intersection-saturated.

Theorem (Delgado-Roy-V. '22)

There exist finitely presented intersection-saturated groups.

(Proof 1)

- Consider Thomson's group F;
- it is well know to be finitely presented and to contain $\bigoplus_{\aleph_0} \mathbb{Z}$;
- therefore, $\mathbb{F}_2 \times F$ is intersection-saturated.
- (Need to take $\mathbb{F}_2 \times$ because F does not contain \mathbb{F}_2 .)

(Proof 2)

- Consider $G = (\bigoplus_{\aleph_0} \mathbb{Z}) \rtimes_{\alpha} \mathbb{Z}$, where α is the automorphism given by right translation of generators;
- G is recursively presented so, it embeds in a finitely presented group, $G \hookrightarrow G'$;
- $\mathbb{F}_2 \times G'$ is finitely presented and intersection-saturated.

Positive results

Theorem (Delgado-Roy-V. '22)

There exist finitely presented intersection-saturated groups.

(Proof 1)

- Consider Thomson's group F;
- it is well know to be finitely presented and to contain $\bigoplus_{\aleph_0} \mathbb{Z}$;
- therefore, $\mathbb{F}_2 \times F$ is intersection-saturated.
- (Need to take $\mathbb{F}_2 \times$ because F does not contain \mathbb{F}_2 .)

(Proof 2)

- Consider $G = (\bigoplus_{\aleph_0} \mathbb{Z}) \rtimes_{\alpha} \mathbb{Z}$, where α is the automorphism given by right translation of generators;
- *G* is recursively presented so, it embeds in a finitely presented group, $G \hookrightarrow G'$;
- $\mathbb{F}_2 \times G'$ is finitely presented and intersection-saturated.

Positive results

Theorem (Delgado-Roy-V. '22)

There exist finitely presented intersection-saturated groups.

(Proof 1)

- Consider Thomson's group F;
- it is well know to be finitely presented and to contain $\bigoplus_{\aleph_0} \mathbb{Z}$;
- therefore, $\mathbb{F}_2 \times F$ is intersection-saturated.
- (Need to take $\mathbb{F}_2 \times$ because F does not contain \mathbb{F}_2 .)

(Proof 2)

- Consider $G = (\bigoplus_{\aleph_0} \mathbb{Z}) \rtimes_{\alpha} \mathbb{Z}$, where α is the automorphism given by right translation of generators;
- *G* is recursively presented so, it embeds in a finitely presented group, $G \hookrightarrow G'$;
- $\mathbb{F}_2 \times G'$ is finitely presented and intersection-saturated.

Lemma

Let $H_1, \ldots, H_k \leqslant \mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$. Suppose that, for $\emptyset \neq I, J \subseteq [k]$, H_I and H_J are f.g. whereas $H_{I \cup J} = H_I \cap H_J$ is not. Then, $\exists i \in I, \exists j \in J$ s.t. $L_i = H_i \cap \mathbb{Z}^m$ and $L_j = H_j \cap \mathbb{Z}^m$ both have rank strictly smaller than m.

Proposition

Let χ be a k-config. and $\emptyset \neq I_1, \ldots, I_r \subseteq [k]$ be $r \geq 2$ subsets s.t. $\forall j \in [r], (I_1 \cup \cdots \cup \widehat{I_j} \cup \cdots \cup I_r)\chi = \mathbf{0}$, but $(I_1 \cup \cdots \cup I_r)\chi = \mathbf{1}$. Then χ is not realizable in $\mathbb{F}_n \times \mathbb{Z}^{r-2}$.

Corollary

The 3-configurations

are not realizable in $\mathbb{F}_n \times \mathbb{Z}$.

Lemma

Let $H_1, \ldots, H_k \leqslant \mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$. Suppose that, for $\emptyset \neq I, J \subseteq [k]$, H_I and H_J are f.g. whereas $H_{I \cup J} = H_I \cap H_J$ is not. Then, $\exists i \in I, \exists j \in J$ s.t. $L_i = H_i \cap \mathbb{Z}^m$ and $L_j = H_j \cap \mathbb{Z}^m$ both have rank strictly smaller than m.

Proposition

Let χ be a k-config. and $\emptyset \neq I_1, \ldots, I_r \subseteq [k]$ be $r \geq 2$ subsets s.t. $\forall j \in [r], (I_1 \cup \cdots \cup \widehat{I_j} \cup \cdots \cup I_r)\chi = \mathbf{0}$, but $(I_1 \cup \cdots \cup I_r)\chi = \mathbf{1}$. Then χ is not realizable in $\mathbb{F}_n \times \mathbb{Z}^{r-2}$.

Corollary

The 3-configurations

are not realizable in $\mathbb{F}_n \times \mathbb{Z}$.

Lemma

Let $H_1, \ldots, H_k \leqslant \mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$. Suppose that, for $\emptyset \neq I, J \subseteq [k]$, H_I and H_J are f.g. whereas $H_{I \cup J} = H_I \cap H_J$ is not. Then, $\exists i \in I, \exists j \in J$ s.t. $L_i = H_i \cap \mathbb{Z}^m$ and $L_j = H_j \cap \mathbb{Z}^m$ both have rank strictly smaller than m.

Proposition

Let χ be a k-config. and $\emptyset \neq I_1, \ldots, I_r \subseteq [k]$ be $r \geq 2$ subsets s.t. $\forall j \in [r], (I_1 \cup \cdots \cup \widehat{I_j} \cup \cdots \cup I_r)\chi = \mathbf{0}$, but $(I_1 \cup \cdots \cup I_r)\chi = \mathbf{1}$. Then χ is not realizable in $\mathbb{F}_n \times \mathbb{Z}^{r-2}$.

Corollary

The 3-configurations

are not realizable in $\mathbb{F}_n \times \mathbb{Z}$.

Proposition

The k-configuration $\chi_{[k]}$ is realizable in $\mathbb{F}_n \times \mathbb{Z}^{k-1}$, but not in $\mathbb{F}_n \times \mathbb{Z}^{k-2}$.

Hence, the set of configurations realizable in $\mathbb{F}_n \times \mathbb{Z}^m$ increases strictly with m.

Outline

- Our main results
- Free-times-free-abelian groups
- Realizable / unrealizable k-configurations
- 4 The free case
- Open questions

More on configurations

Definition

Let χ be a k-config. and let $i \in [k]$. Its restriction to $\hat{i} = [k] \setminus \{i\}$ is the (k-1)-configuration

$$\begin{array}{ccc} \chi_{\mid \widehat{i}} \colon \mathcal{P}([k] \setminus \{i\}) \setminus \{\varnothing\} & \to & \{0, \ 1\} \\ & I & \mapsto & (I)\chi \ . \end{array}$$

Definition

Given two k-configurations χ , χ' and $\delta \in \{0,1\}$, we define

$$\chi \boxplus_{\delta} \chi' \colon \mathcal{P}([k+1]) \setminus \{\emptyset\} \quad \to \quad \{0, 1\}$$

$$I \quad \mapsto \quad \begin{cases} (I)\chi & \text{if } k+1 \not\in I, \\ (I \setminus \{k+1\})\chi' & \text{if } \{k+1\} \subseteq I, \\ \delta & \text{if } \{k+1\} = I. \end{cases}$$

a(k+1)-configuration.

More on configurations

Definition

Let χ be a k-config. and let $i \in [k]$. Its restriction to $\hat{i} = [k] \setminus \{i\}$ is the (k-1)-configuration

$$\begin{array}{ccc} \chi_{\mid \widehat{i}} \colon \mathcal{P}([k] \setminus \{i\}) \setminus \{\varnothing\} & \to & \{0, \ 1\} \\ & I & \mapsto & (I)\chi \ . \end{array}$$

Definition

Given two k-configurations χ, χ' and $\delta \in \{0, 1\}$, we define

$$\chi \boxplus_{\delta} \chi' \colon \mathcal{P}([k+1]) \setminus \{\emptyset\} \quad \to \quad \{0, 1\}$$

$$I \quad \mapsto \quad \begin{cases} (I)\chi & \text{if } k+1 \notin I, \\ (I \setminus \{k+1\})\chi' & \text{if } \{k+1\} \subseteq I, \\ \delta & \text{if } \{k+1\} = I, \end{cases}$$

a(k+1)-configuration.

Example

1. Main results

More on cofigurations

Example

1. Main results

Definition

Let χ be a k-configuration, and $i \in [k]$. The index i is said to be *0-monochromatic* (in χ) if (I) $\chi = 0 \ \forall I \subseteq [k]$ containing i; i.e., if $\chi = \chi_{|\hat{i}|} \boxplus_0 0$. Similarly, the index i is said to be 1-monochromatic (in χ) if $\chi = \chi_{\widehat{i}} \boxplus_1 1$.

More on cofigurations

Example

Main results

Definition

Let χ be a k-configuration, and $i \in [k]$. The index i is said to be *0-monochromatic (in* χ) *if* $(I)\chi = 0 \ \forall I \subseteq [k]$ *containing i; i.e., if* $\chi = \chi_{|\hat{i}|} \boxplus_0 0$. Similarly, the index i is said to be 1-monochromatic (in χ) if $\chi = \chi_{\widehat{i}} \boxplus_1 1$.

Lemma

If a k-configuration χ is realizable in \mathbb{F}_n with n > 2, then the (k+1)-configurations $\chi \boxplus_0 \mathbf{0}, \chi \boxplus_1 \mathbf{1}, \chi \boxplus_0 \chi$, and $\chi \boxplus_1 \chi$ are also realizable in \mathbb{F}_n .

(Proof)

Let $\mathbb{F}_2 * \mathbb{F}_{\aleph_0} \simeq W * U = \langle w_1, w_2, \ldots \rangle * \langle u, v \rangle \leqslant \mathbb{F}_n$, and take $H_1, \ldots, H_k \leqslant W \leqslant \mathbb{F}_n$ realizing χ . Now, in order to realize:

- $\chi \boxplus_0 \mathbf{0}$, take $H_1 = H_1, \dots, H_k = H_k$, and $H_{k+1} = \{1\}$;
- $\chi \boxplus_1$ 1, take $H_1 = H_1 * \langle u, v \rangle, \dots, H_k = H_k * \langle u, v \rangle$ and $\widetilde{H}_{k+1} = \ll u \gg_U : \widetilde{H}_1, \dots, \widetilde{H}_k$ realize $\chi \vee \mathbf{0} = \chi$ and, for every $i \neq k+1$, $\widetilde{H}_{k+1} \cap \widetilde{H}_i = \widetilde{H}_{k+1}$ which is non-f.g.;
- $\chi \boxplus_0 \chi$, take $H_1 = H_1, \dots, H_k = H_k$, and $H_{k+1} = \mathbb{F}_n$,
- $\chi \boxplus_1 \chi$, take $\widetilde{H}_1 = H_1, \dots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = W$.

Definition

(Proof)

Let $\mathbb{F}_2 * \mathbb{F}_{\aleph_0} \simeq W * U = \langle w_1, w_2, \ldots \rangle * \langle u, v \rangle \leqslant \mathbb{F}_n$, and take $H_1, \ldots, H_k \leqslant W \leqslant \mathbb{F}_n$ realizing χ . Now, in order to realize:

- $\chi \boxplus_0 \mathbf{0}$, take $\widetilde{H}_1 = H_1, \dots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = \{1\}$;
- $\chi \boxplus_1 \mathbf{1}$, take $H_1 = H_1 * \langle u, v \rangle, \dots, H_k = H_k * \langle u, v \rangle$ and $\widetilde{H}_{k+1} = \ll u \gg_U : \widetilde{H}_1, \dots, \widetilde{H}_k$ realize $\chi \vee \mathbf{0} = \chi$ and, for every $i \neq k+1$, $\widetilde{H}_{k+1} \cap \widetilde{H}_i = \widetilde{H}_{k+1}$ which is non-f.g.;
- $\chi \boxplus_0 \chi$, take $H_1 = H_1, \ldots, H_k = H_k$, and $H_{k+1} = \mathbb{F}_n$;
- $\chi \boxplus_1 \chi$, take $\widetilde{H}_1 = H_1, \dots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = W$.

Definition

(Proof)

Let $\mathbb{F}_2 * \mathbb{F}_{\aleph_0} \simeq W * U = \langle w_1, w_2, \ldots \rangle * \langle u, v \rangle \leqslant \mathbb{F}_n$, and take $H_1, \ldots, H_k \leqslant W \leqslant \mathbb{F}_n$ realizing χ . Now, in order to realize:

- $\chi \boxplus_0 \mathbf{0}$, take $H_1 = H_1, \dots, H_k = H_k$, and $H_{k+1} = \{1\}$;
- $\chi \boxplus_1$ 1, take $\widetilde{H}_1 = H_1 * \langle u, v \rangle, \dots, \widetilde{H}_k = H_k * \langle u, v \rangle$ and $\widetilde{H}_{k+1} = \ll u \gg_U : \widetilde{H}_1, \dots, \widetilde{H}_k$ realize $\chi \vee \mathbf{0} = \chi$ and, for every $i \neq k+1$, $\widetilde{H}_{k+1} \cap \widetilde{H}_i = \widetilde{H}_{k+1}$ which is non-f.g.;
- $\chi \boxplus_0 \chi$, take $\widetilde{H}_1 = H_1, \dots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = \mathbb{F}_n$;
- $\chi \boxplus_1 \chi$, take $\widetilde{H}_1 = H_1, \dots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = W$.

Definition

(Proof)

Let $\mathbb{F}_2 * \mathbb{F}_{\aleph_0} \simeq W * U = \langle w_1, w_2, \ldots \rangle * \langle u, v \rangle \leqslant \mathbb{F}_n$, and take $H_1, \ldots, H_k \leqslant W \leqslant \mathbb{F}_n$ realizing χ . Now, in order to realize:

- $\chi \boxplus_0 \mathbf{0}$, take $\widetilde{H}_1 = H_1, \dots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = \{1\}$;
- $\chi \boxplus_1$ 1, take $\widetilde{H}_1 = H_1 * \langle u, v \rangle, \dots, \widetilde{H}_k = H_k * \langle u, v \rangle$ and $\widetilde{H}_{k+1} = \ll u \gg_U : \widetilde{H}_1, \dots, \widetilde{H}_k$ realize $\chi \vee \mathbf{0} = \chi$ and, for every $i \neq k+1$, $\widetilde{H}_{k+1} \cap \widetilde{H}_i = \widetilde{H}_{k+1}$ which is non-f.g.;
- $\chi \boxplus_0 \chi$, take $\widetilde{H}_1 = H_1, \dots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = \mathbb{F}_n$;
- $\chi \boxplus_1 \chi$, take $\widetilde{H}_1 = H_1, \dots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = W$.

Definition

(Proof)

Let $\mathbb{F}_2 * \mathbb{F}_{\aleph_0} \simeq W * U = \langle w_1, w_2, \ldots \rangle * \langle u, v \rangle \leqslant \mathbb{F}_n$, and take $H_1, \ldots, H_k \leqslant W \leqslant \mathbb{F}_n$ realizing χ . Now, in order to realize:

- $\chi \boxplus_0 \mathbf{0}$, take $\widetilde{H}_1 = H_1, \dots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = \{1\}$;
- $\chi \boxplus_1$ **1**, $take \widetilde{H}_1 = H_1 * \langle u, v \rangle, \dots, \widetilde{H}_k = H_k * \langle u, v \rangle$ and $\widetilde{H}_{k+1} = \ll u \gg_U : \widetilde{H}_1, \dots, \widetilde{H}_k$ realize $\chi \vee \mathbf{0} = \chi$ and, for every $i \neq k+1$, $\widetilde{H}_{k+1} \cap \widetilde{H}_i = \widetilde{H}_{k+1}$ which is non-f.g.;
- $\chi \boxplus_0 \chi$, take $\widetilde{H}_1 = H_1, \dots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = \mathbb{F}_n$;
- $\chi \boxplus_1 \chi$, take $\widetilde{H}_1 = H_1, \dots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = W$.

Definition

(Proof)

Let $\mathbb{F}_2 * \mathbb{F}_{\aleph_0} \simeq W * U = \langle w_1, w_2, \ldots \rangle * \langle u, v \rangle \leqslant \mathbb{F}_n$, and take $H_1, \ldots, H_k \leqslant W \leqslant \mathbb{F}_n$ realizing χ . Now, in order to realize:

- $\chi \boxplus_0 \mathbf{0}$, take $\widetilde{H}_1 = H_1, \dots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = \{1\}$;
- $\chi \boxplus_1$ **1**, $take \widetilde{H}_1 = H_1 * \langle u, v \rangle, \dots, \widetilde{H}_k = H_k * \langle u, v \rangle$ and $\widetilde{H}_{k+1} = \ll u \gg_U : \widetilde{H}_1, \dots, \widetilde{H}_k$ realize $\chi \vee \mathbf{0} = \chi$ and, for every $i \neq k+1$, $\widetilde{H}_{k+1} \cap \widetilde{H}_i = \widetilde{H}_{k+1}$ which is non-f.g.;
- $\chi \boxplus_0 \chi$, take $\widetilde{H}_1 = H_1, \dots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = \mathbb{F}_n$;
- $\chi \coprod_1 \chi$, take $\widetilde{H}_1 = H_1, \ldots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = W$.

Definition

Theorem (Delgado-Roy-V., '22)

A k-configuration is realizable in \mathbb{F}_n , $n \geq 2 \Leftrightarrow$ it is Howson.

Main results

- If s=0 then $\chi=0$, clearly realizable in \mathbb{F}_2 .
- Given χ with $|\operatorname{supp}(\chi)| = s$ and being Howson, define the cone of χ with vertex $I \subseteq [k]$, denoted by $c_i(\chi)$, as

$$c_{I}(\chi) \colon \mathcal{P}([k]) \setminus \{\varnothing\} \quad \to \quad \{0, 1\}$$

$$J \quad \mapsto \quad \left\{ \begin{array}{cc} 0 & \text{if } J \not\subseteq I, \\ (J)\chi & \text{if } J \subseteq I. \end{array} \right.$$

• Now let $I_1, \ldots, I_p \subseteq [k]$ be the maximal elements in supp (χ) (w.r.t. inclusion). It is clear that $\chi = c_{l_1}(\chi) \vee \cdots \vee c_{l_n}(\chi)$.

Theorem (Delgado-Roy-V., '22)

A k-configuration is realizable in \mathbb{F}_n , $n \geq 2 \Leftrightarrow$ it is Howson.

(Proof)

1. Main results

For \Leftarrow , we will do induction on the cardinal of the support of χ , say s (regardless of its size k).

- If s=0 then $\chi=0$, clearly realizable in \mathbb{F}_2 .
- Given χ with $|\operatorname{supp}(\chi)| = s$ and being Howson, define the cone

$$C_{I}(\chi) \colon \mathcal{P}([k]) \setminus \{\emptyset\} \quad \to \quad \{0, 1\}$$

$$J \quad \mapsto \quad \left\{ \begin{array}{cc} 0 & \text{if } J \not\subseteq I \\ (J)\chi & \text{if } J \subseteq I \end{array} \right.$$

• Now let $I_1, \ldots, I_p \subseteq [k]$ be the maximal elements in supp (χ) (w.r.t.

Theorem (Delgado-Roy-V., '22)

A k-configuration is realizable in \mathbb{F}_n , $n \geq 2 \Leftrightarrow$ it is Howson.

(Proof)

1. Main results

For \Leftarrow , we will do induction on the cardinal of the support of χ , say s (regardless of its size k).

- If s = 0 then $\chi = \mathbf{0}$, clearly realizable in \mathbb{F}_2 .
- Given χ with $|\operatorname{supp}(\chi)| = s$ and being Howson, define the cone of χ with vertex $I \subseteq [k]$, denoted by $c_l(\chi)$, as

$$\begin{array}{ccc} c_I(\chi) \colon \mathcal{P}([k]) \setminus \{\varnothing\} & \to & \{0, \ 1\} \\ J & \mapsto & \left\{ \begin{array}{ccc} 0 & \text{if } J \not\subseteq I \\ (J)\chi & \text{if } J \subseteq I \end{array} \right. \end{array}$$

• Now let $l_1, \ldots, l_p \subseteq [k]$ be the maximal elements in $supp(\chi)$ (w.r.t. inclusion). It is clear that $\chi = c_l(\chi) \vee \cdots \vee c_l(\chi)$.

Theorem (Delgado-Roy-V., '22)

A k-configuration is realizable in \mathbb{F}_n , $n \geq 2 \Leftrightarrow$ it is Howson.

(Proof)

For \Leftarrow , we will do induction on the cardinal of the support of χ , say s (regardless of its size k).

- If s = 0 then $\chi = \mathbf{0}$, clearly realizable in \mathbb{F}_2 .
- Given χ with $|\operatorname{supp}(\chi)| = s$ and being Howson, define the cone of χ with vertex $I \subseteq [k]$, denoted by $c_l(\chi)$, as

$$\begin{array}{ccc} c_I(\chi) \colon \mathcal{P}([k]) \setminus \{\varnothing\} & \to & \{0, \, 1\} \\ J & \mapsto & \left\{ \begin{array}{ccc} 0 & \text{if } J \not\subseteq I, \\ (J)\chi & \text{if } J \subseteq I. \end{array} \right. \end{array}$$

• Now let $l_1, \ldots, l_p \subseteq [k]$ be the maximal elements in $supp(\chi)$ (w.r.t. inclusion). It is clear that $\chi = c_h(\chi) \vee \cdots \vee c_h(\chi)$.

Theorem (Delgado-Roy-V., '22)

A k-configuration is realizable in \mathbb{F}_n , $n \geq 2 \Leftrightarrow$ it is Howson.

(Proof)

Main results

For \Leftarrow , we will do induction on the cardinal of the support of χ , say s (regardless of its size k).

- If s=0 then $\chi=\mathbf{0}$, clearly realizable in \mathbb{F}_2 .
- Given χ with $|\operatorname{supp}(\chi)| = s$ and being Howson, define the cone of χ with vertex $I \subseteq [k]$, denoted by $c_l(\chi)$, as

$$\begin{array}{ccc} c_I(\chi) \colon \mathcal{P}([k]) \setminus \{\varnothing\} & \to & \{0, 1\} \\ J & \mapsto & \left\{ \begin{array}{ccc} 0 & \text{if } J \not\subseteq I, \\ (J)\chi & \text{if } J \subseteq I. \end{array} \right. \end{array}$$

• Now let $I_1, \ldots, I_p \subseteq [k]$ be the maximal elements in supp (χ) (w.r.t. inclusion). It is clear that $\chi = c_{l_1}(\chi) \vee \cdots \vee c_{l_n}(\chi)$.

- If $p \ge 2$, by the induction hypothesis we can realize each of $c_{l_1}(\chi), \ldots, c_{l_p}(\chi)$ in \mathbb{F}_2 , and so, realize their join χ , in \mathbb{F}_2 as well.
- Hence, we are reduced to the case p = 1: χ is Howson and $\exists \emptyset \neq I_1 \subseteq [k]$ with $(I_1)\chi = 1$, and $(J)\chi = 0$ for every $J \not\subseteq I_1$.
- If $l_1 \neq [k]$ then any $j \in [k] \setminus l_1$ is 0-monochromatic, $\chi = \chi_{|\widehat{j}|} \boxplus_0 \mathbf{0}$, and we are reduced to realize $\chi_{|\widehat{j}|}$; repeating, we can assume $l_1 = [k]$. That is, χ is a Howson k-config. s.t. $([k])\chi = 1$.
- If $\chi = 1$ then it is clearly realizable in \mathbb{F}_2 .
- Otherwise, take $\emptyset \neq l_2 \subseteq [k]$ with $(l_2)\chi = 0$ and with maximal possible cardinal.
- Since $l_2 \neq [k]$, $\exists j \notin l_2$, and any such index is 1-monochromatic: in fact, any $j \in J \subseteq [k]$ satisfies $|l_2 \cup J| > |l_2|$ so $(l_2 \cup J)\chi = 1$ and, since χ is Howson and $(l_2)\chi = 0$, then $(J)\chi = 1$.
- Hence, by induction hypothesis, $\chi_{|\hat{j}|}$ is realizable in \mathbb{F}_2 and $\chi = \chi_{|\hat{j}|} \oplus_1 \mathbf{1}$ as well.

- If $p \ge 2$, by the induction hypothesis we can realize each of $c_{l_1}(\chi), \ldots, c_{l_p}(\chi)$ in \mathbb{F}_2 , and so, realize their join χ , in \mathbb{F}_2 as well.
- Hence, we are reduced to the case p = 1: χ is Howson and $\exists \emptyset \neq I_1 \subseteq [k]$ with $(I_1)\chi = 1$, and $(J)\chi = 0$ for every $J \not\subseteq I_1$.
- If $I_1 \neq [k]$ then any $j \in [k] \setminus I_1$ is 0-monochromatic, $\chi = \chi_{|\widehat{j}|} \boxplus_0 \mathbf{0}$, and we are reduced to realize $\chi_{|\widehat{j}|}$; repeating, we can assume $I_1 = [k]$. That is, χ is a Howson k-config. s.t. $([k])\chi = 1$.
- If $\chi = 1$ then it is clearly realizable in \mathbb{F}_2 .
- Otherwise, take $\emptyset \neq l_2 \subseteq [k]$ with $(l_2)\chi = 0$ and with maximal possible cardinal.
- Since $l_2 \neq [k]$, $\exists j \notin l_2$, and any such index is 1-monochromatic: in fact, any $j \in J \subseteq [k]$ satisfies $|l_2 \cup J| > |l_2|$ so $(l_2 \cup J)\chi = 1$ and, since χ is Howson and $(l_2)\chi = 0$, then $(J)\chi = 1$.
- Hence, by induction hypothesis, $\chi_{|\hat{j}|}$ is realizable in \mathbb{F}_2 and $\chi = \chi_{|\hat{j}|} \oplus_1 \mathbf{1}$ as well.

- If $p \ge 2$, by the induction hypothesis we can realize each of $c_{l_1}(\chi), \ldots, c_{l_p}(\chi)$ in \mathbb{F}_2 , and so, realize their join χ , in \mathbb{F}_2 as well.
- Hence, we are reduced to the case p = 1: χ is Howson and $\exists \emptyset \neq I_1 \subseteq [k]$ with $(I_1)\chi = 1$, and $(J)\chi = 0$ for every $J \not\subseteq I_1$.
- If $I_1 \neq [k]$ then any $j \in [k] \setminus I_1$ is 0-monochromatic, $\chi = \chi_{|\widehat{j}} \boxplus_0 \mathbf{0}$, and we are reduced to realize $\chi_{|\widehat{j}}$; repeating, we can assume $I_1 = [k]$. That is, χ is a Howson k-config. s.t. $([k])\chi = 1$.
- If $\chi = 1$ then it is clearly realizable in \mathbb{F}_2 .
- Otherwise, take $\emptyset \neq l_2 \subseteq [k]$ with $(l_2)\chi = 0$ and with maximal possible cardinal.
- Since $l_2 \neq [k]$, $\exists j \notin l_2$, and any such index is 1-monochromatic: in fact, any $j \in J \subseteq [k]$ satisfies $|l_2 \cup J| > |l_2|$ so $(l_2 \cup J)\chi = 1$ and, since χ is Howson and $(l_2)\chi = 0$, then $(J)\chi = 1$.
- Hence, by induction hypothesis, $\chi_{|\widehat{j}|}$ is realizable in \mathbb{F}_2 and $\chi = \chi_{|\widehat{i}|} \boxplus_1 \mathbf{1}$ as well.

- If $p \ge 2$, by the induction hypothesis we can realize each of $c_{l_1}(\chi), \ldots, c_{l_p}(\chi)$ in \mathbb{F}_2 , and so, realize their join χ , in \mathbb{F}_2 as well.
- Hence, we are reduced to the case p = 1: χ is Howson and $\exists \emptyset \neq I_1 \subseteq [k]$ with $(I_1)\chi = 1$, and $(J)\chi = 0$ for every $J \not\subseteq I_1$.
- If $I_1 \neq [k]$ then any $j \in [k] \setminus I_1$ is 0-monochromatic, $\chi = \chi_{|\widehat{j}} \boxplus_0 \mathbf{0}$, and we are reduced to realize $\chi_{|\widehat{j}|}$; repeating, we can assume $I_1 = [k]$. That is, χ is a Howson k-config. s.t. $([k])\chi = 1$.
- If $\chi = 1$ then it is clearly realizable in \mathbb{F}_2 .
- Otherwise, take $\emptyset \neq l_2 \subseteq [k]$ with $(l_2)\chi = 0$ and with maximal possible cardinal.
- Since $l_2 \neq [k]$, $\exists j \notin l_2$, and any such index is 1-monochromatic: in fact, any $j \in J \subseteq [k]$ satisfies $|l_2 \cup J| > |l_2|$ so $(l_2 \cup J)\chi = 1$ and, since χ is Howson and $(l_2)\chi = 0$, then $(J)\chi = 1$.
- Hence, by induction hypothesis, $\chi_{|\widehat{j}|}$ is realizable in \mathbb{F}_2 and $\chi = \chi_{|\widehat{j}|} \boxplus_1 \mathbf{1}$ as well.

- If $p \ge 2$, by the induction hypothesis we can realize each of $c_{l_1}(\chi), \ldots, c_{l_p}(\chi)$ in \mathbb{F}_2 , and so, realize their join χ , in \mathbb{F}_2 as well.
- Hence, we are reduced to the case p = 1: χ is Howson and $\exists \emptyset \neq I_1 \subseteq [k]$ with $(I_1)\chi = 1$, and $(J)\chi = 0$ for every $J \not\subseteq I_1$.
- If $I_1 \neq [k]$ then any $j \in [k] \setminus I_1$ is 0-monochromatic, $\chi = \chi_{|\widehat{j}} \boxplus_0 \mathbf{0}$, and we are reduced to realize $\chi_{|\widehat{j}|}$; repeating, we can assume $I_1 = [k]$. That is, χ is a Howson k-config. s.t. $([k])\chi = 1$.
- If $\chi = 1$ then it is clearly realizable in \mathbb{F}_2 .
- Otherwise, take $\emptyset \neq l_2 \subseteq [k]$ with $(l_2)\chi = 0$ and with maximal possible cardinal.
- Since $l_2 \neq [k]$, $\exists j \notin l_2$, and any such index is 1-monochromatic: in fact, any $j \in J \subseteq [k]$ satisfies $|l_2 \cup J| > |l_2|$ so $(l_2 \cup J)\chi = 1$ and, since χ is Howson and $(l_2)\chi = 0$, then $(J)\chi = 1$.
- Hence, by induction hypothesis, $\chi_{|\widehat{j}|}$ is realizable in \mathbb{F}_2 and $\chi = \chi_{|\widehat{j}|} \boxplus_1 \mathbf{1}$ as well.

- If $p \ge 2$, by the induction hypothesis we can realize each of $c_{l_1}(\chi), \ldots, c_{l_p}(\chi)$ in \mathbb{F}_2 , and so, realize their join χ , in \mathbb{F}_2 as well.
- Hence, we are reduced to the case p = 1: χ is Howson and $\exists \emptyset \neq I_1 \subseteq [k]$ with $(I_1)\chi = 1$, and $(J)\chi = 0$ for every $J \not\subseteq I_1$.
- If $I_1 \neq [k]$ then any $j \in [k] \setminus I_1$ is 0-monochromatic, $\chi = \chi_{|\widehat{j}} \boxplus_0 \mathbf{0}$, and we are reduced to realize $\chi_{|\widehat{j}}$; repeating, we can assume $I_1 = [k]$. That is, χ is a Howson k-config. s.t. $([k])\chi = 1$.
- If $\chi = 1$ then it is clearly realizable in \mathbb{F}_2 .
- Otherwise, take $\emptyset \neq l_2 \subseteq [k]$ with $(l_2)\chi = 0$ and with maximal possible cardinal.
- Since $l_2 \neq [k]$, $\exists j \notin l_2$, and any such index is 1-monochromatic: in fact, any $j \in J \subseteq [k]$ satisfies $|l_2 \cup J| > |l_2|$ so $(l_2 \cup J)\chi = 1$ and, since χ is Howson and $(l_2)\chi = 0$, then $(J)\chi = 1$.
- Hence, by induction hypothesis, $\chi_{|\widehat{j}|}$ is realizable in \mathbb{F}_2 and $\chi = \chi_{|\widehat{j}|} \boxplus_1 \mathbf{1}$ as well.

- If $p \ge 2$, by the induction hypothesis we can realize each of $c_{l_1}(\chi), \ldots, c_{l_p}(\chi)$ in \mathbb{F}_2 , and so, realize their join χ , in \mathbb{F}_2 as well.
- Hence, we are reduced to the case p = 1: χ is Howson and $\exists \emptyset \neq I_1 \subseteq [k]$ with $(I_1)\chi = 1$, and $(J)\chi = 0$ for every $J \not\subseteq I_1$.
- If $I_1 \neq [k]$ then any $j \in [k] \setminus I_1$ is 0-monochromatic, $\chi = \chi_{|\widehat{j}|} \boxplus_0 \mathbf{0}$, and we are reduced to realize $\chi_{|\widehat{j}|}$; repeating, we can assume $I_1 = [k]$. That is, χ is a Howson k-config. s.t. $([k])\chi = 1$.
- If $\chi = 1$ then it is clearly realizable in \mathbb{F}_2 .
- Otherwise, take $\emptyset \neq l_2 \subseteq [k]$ with $(l_2)\chi = 0$ and with maximal possible cardinal.
- Since $l_2 \neq [k]$, $\exists j \notin l_2$, and any such index is 1-monochromatic: in fact, any $j \in J \subseteq [k]$ satisfies $|l_2 \cup J| > |l_2|$ so $(l_2 \cup J)\chi = 1$ and, since χ is Howson and $(l_2)\chi = 0$, then $(J)\chi = 1$.
- Hence, by induction hypothesis, $\chi_{|\widehat{j}|}$ is realizable in \mathbb{F}_2 and $\chi = \chi_{|\widehat{j}|} \boxplus_1 \mathbf{1}$ as well.

Outline

- Our main results
- Free-times-free-abelian groups
- 3 Realizable / unrealizable k-configurations
- 4 The free case
- Open questions

Open questions

Question

Can we characterize the k-configurations realizable in $\mathbb{F}_n \times \mathbb{Z}^m$, for each particular m?

Question

Is there an algorithm which, on input m and χ , decides whether χ is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$ (and, in the affirmative case, computes such a realization)?

Question

Is there a finitely presented intersection-saturated group G which does not contain $\mathbb{F}_2 \times \mathbb{Z}^m$, for some $m \in \mathbb{N}$?

Open questions

Question

Can we characterize the k-configurations realizable in $\mathbb{F}_n \times \mathbb{Z}^m$, for each particular m?

Question

Is there an algorithm which, on input m and χ , decides whether χ is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$ (and, in the affirmative case, computes such a realization)?

Question

Is there a finitely presented intersection-saturated group G which does not contain $\mathbb{F}_2 \times \mathbb{Z}^m$, for some $m \in \mathbb{N}$?

Open questions

Question

Can we characterize the k-configurations realizable in $\mathbb{F}_n \times \mathbb{Z}^m$, for each particular m?

Question

Is there an algorithm which, on input m and χ , decides whether χ is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$ (and, in the affirmative case, computes such a realization)?

Question

Is there a finitely presented intersection-saturated group G which does not contain $\mathbb{F}_2 \times \mathbb{Z}^m$, for some $m \in \mathbb{N}$?

DZIĘKUJĘ

THANKS