Existence of finitely presented intersection-saturated groups

Enric Ventura

Departament de Matemàtiques
Universitat Politècnica de Catalunya

Geometry Seminar

Instytut Matematyczny, Uniwersytet Wroclawski
(joint work with J. Delgado and M. Roy)

June 5th, 2023.

Outline

(1) Our main results
(2) Free-times-free-abelian groups
(3) Realizable / unrealizable k-configurations

4 The free case
(5) Open questions

Outline

(1) Our main results

2 Free-times-free-abelian groups
(3) Realizable / unrealizable k-configurations

4 The free case
(5) Open questions

Free groups

It is well known that subgroups of free groups are free ...

$$
H \leqslant \mathbb{F}_{n} \quad \Rightarrow \quad H \text { is free }
$$

but not necessarily of rank $\leq n$.

Example

Consider $\mathbb{F}_{2}=\langle x, y \mid\rangle$ and the normal closure of x,

Looking at its Stallings graph

we see these generators are a free basis; so, $\mathbb{F}_{\aleph_{0}} \leqslant \mathbb{F}_{2}$.

Free groups

It is well known that subgroups of free groups are free ...

$$
H \leqslant \mathbb{F}_{n} \quad \Rightarrow \quad H \text { is free }
$$

but not necessarily of rank $\leq n$.

Example

Consider $\mathbb{F}_{2}=\langle x, y \mid\rangle$ and the normal closure of x,

Looking at its Stallings graph

we see these generators are a free basis; so, $\mathbb{F}_{\aleph_{0}} \leqslant \mathbb{F}_{2}$.

Free groups

It is well known that subgroups of free groups are free ...

$$
H \leqslant \mathbb{F}_{n} \quad \Rightarrow \quad H \text { is free }
$$

but not necessarily of rank $\leq n$.

Example

Consider $\mathbb{F}_{2}=\langle x, y \mid\rangle$ and the normal closure of x,

$$
\ll x \gg=\left\langle\ldots, y^{2} x y^{-2}, y x y^{-1}, x, y^{-1} x y, y^{-2} x y^{2}, \ldots\right\rangle .
$$

Looking at its Stallings graph

we see these generators are a free basis; so, 1

Free groups

It is well known that subgroups of free groups are free ...

$$
H \leqslant \mathbb{F}_{n} \quad \Rightarrow \quad H \text { is free }
$$

but not necessarily of rank $\leq n$.

Example

Consider $\mathbb{F}_{2}=\langle x, y \mid\rangle$ and the normal closure of x,

$$
\ll x \gg=\left\langle\ldots, y^{2} x y^{-2}, y x y^{-1}, x, y^{-1} x y, y^{-2} x y^{2}, \ldots\right\rangle .
$$

Looking at its Stallings graph

we see these generators are a free basis; so, $\mathbb{F}_{\aleph_{0}} \leqslant \mathbb{F}_{2}$.

The Howson property

Definition

A group G is Howson if, for any finitely generated $H, K \leqslant_{f g} G$, the intersection $\mathrm{H} \cap \mathrm{K}$ is, again, finitely generated.

Theorem (Howson, 1954)

Free groups are Howson.

In other words... the configuration

is not realizable in a free group (o means f.g. and e means non-f.g.).
Observation
Out of $2^{3}=8$ possible such configurations this is the only one
forbidden in free groups.

The Howson property

Definition

A group G is Howson if, for any finitely generated $H, K \leqslant f g$, the intersection $H \cap K$ is, again, finitely generated.

Theorem (Howson, 1954)

Free groups are Howson.

In other words... the configuration

is not realizable in a free group (o means f.g. and e means non-f.g.).

Qbservation

Out of $2^{3}=8$ possible such configurations this is the only one forbidden in free groups.

The Howson property

Definition

A group G is Howson if, for any finitely generated $H, K \leqslant f g$, the intersection $\mathrm{H} \cap \mathrm{K}$ is, again, finitely generated.

Theorem (Howson, 1954)

Free groups are Howson.

In other words... the configuration

is not realizable in a free group (o means f.g. and • means non-f.g.).

Observation

Out of $2^{3}=8$ possible such configurations this is the only one forbidden in free groups.

The Howson property

Definition

A group G is Howson if, for any finitely generated $H, K \leqslant f g$, the intersection $H \cap K$ is, again, finitely generated.

Theorem (Howson, 1954)

Free groups are Howson.

In other words... the configuration

is not realizable in a free group (o means f.g. and • means non-f.g.).
Observation
Out of $2^{3}=8$ possible such configurations this is the only one forbidden in free groups.

Intersection configurations

Question
What about configurations with $k \geq 2$ subgroups (k-configurations)?

Using this convention, what about the following 3-configurations?

Intersection configurations

Question
What about configurations with $k \geq 2$ subgroups (k-configurations)?

Using this convention, what about the following 3-configurations?

Our main results

Theorem (Delgado-Roy-V., '22)
A k-configuration is realizable in $\mathbb{F}_{n}, n \geq 2$, \Leftrightarrow it respects the Howson property.

Theorem (Delgado-Roy-V. '22)

There exist finitely presented intersection-saturated groups.

Our main results

Theorem (Delgado-Roy-V., '22)

A k-configuration is realizable in $\mathbb{F}_{n}, n \geq 2$, \Leftrightarrow it respects the Howson property.

Theorem (Delgado-Roy-V. '22)

There exist finitely presented intersection-saturated groups.

Formal definitions

Definition

A (intersection) k-configuration is a map $\chi: \mathcal{P}([k]) \backslash\{\emptyset\} \rightarrow\{0,1\}$. If $\mathcal{I}=(1) \chi^{-1}$ is the support of χ, we write $\chi=\chi_{\mathcal{I}}$. Notation:

- $0=\chi_{\emptyset}$ is the zero-configuration;
- $1=\chi_{\mathcal{P}([k]) \backslash\{0\}}$ is the one-configuration;
- χ_{I} is an almost-zero k-configuration if $I=\{I\}$

Definition

A k-configuration χ is realizable in a group G if there exists subgroups $H_{1}, \ldots, H_{k} \leq G$ such that, for every $\emptyset \neq I \subseteq[k]$, $H_{l}=\cap_{i \in I} H_{i}$ if f.g. $\Leftrightarrow(I) \chi=0$. Note that $H_{l \cup J}=H_{l} \cap H_{J}$.

Definition

A group G is intersection-saturated if every k-configuration is realizable in G.

Formal definitions

Definition

A (intersection) k-configuration is a map $\chi: \mathcal{P}([k]) \backslash\{\emptyset\} \rightarrow\{0,1\}$. If $\mathcal{I}=(1) \chi^{-1}$ is the support of χ, we write $\chi=\chi_{\mathcal{I}}$. Notation:

- $0=\chi_{\emptyset}$ is the zero-configuration;
- $1=\chi_{\mathcal{P}([k]) \backslash\{0\}}$ is the one-configuration;
- $\chi_{\mathcal{I}}$ is an almost-zero k-configuration if $\mathcal{I}=\{I\}$

Definition

A k-configuration χ is realizable in a group G if there exists
subgroups $H_{1}, \ldots, H_{k} \leq G$ such that, for every $\emptyset \neq I \subseteq[k]$,
$H_{l}=\cap_{i \in I} H_{i}$ if f.g. $\Leftrightarrow(I) \chi=0$. Note that $H_{l \cup J}=H_{l} \cap H_{J}$.

Definition
A group G is intersection-saturated if every k-configuration is realizable in G.

Formal definitions

Definition

A (intersection) k-configuration is a map $\chi: \mathcal{P}([k]) \backslash\{\emptyset\} \rightarrow\{0,1\}$. If $\mathcal{I}=(1) \chi^{-1}$ is the support of χ, we write $\chi=\chi_{\mathcal{I}}$. Notation:

- $0=\chi_{\emptyset}$ is the zero-configuration;
- $\mathbf{1}=\chi_{\mathcal{P}([k]) \backslash\{\emptyset\}}$ is the one-configuration;
- $\chi_{\mathcal{I}}$ is an almost-zero k-configuration if \mathcal{I}

Definition

A k-configuration χ is realizable in a group G if there exists
subgroups $H_{1}, \ldots, H_{k} \leq G$ such that, for every $\emptyset \neq I \subseteq[k]$,
$H_{l}=\cap_{i \in 1} H_{i}$ if f.g. $\Leftrightarrow(I) \chi=0$. Note that $H_{\| \cup J}=H_{l} \cap H_{J}$.

Definition
A group G is intersection-saturated if every k-configuration is realizable in G.

Formal definitions

Definition

A (intersection) k-configuration is a map $\chi: \mathcal{P}([k]) \backslash\{\emptyset\} \rightarrow\{0,1\}$. If $\mathcal{I}=(1) \chi^{-1}$ is the support of χ, we write $\chi=\chi_{\mathcal{I}}$. Notation:

- $0=\chi_{\emptyset}$ is the zero-configuration;
- $1=\chi_{\mathcal{P}([k]) \backslash\{\emptyset\}}$ is the one-configuration;
- $\chi_{\mathcal{I}}$ is an almost-zero k-configuration if $\mathcal{I}=\{I\}$.

Definition

A k-configuration χ is realizable in a group G if there exists
subgroups $H_{1}, \ldots, H_{k} \leq G$ such that, for every $\emptyset \neq I \subseteq[k]$,
$H_{l}=\cap_{i \in I} H_{i}$ if f.g. $\Leftrightarrow(I) \chi=0$. Note that $H_{I \cup J}=H_{I} \cap H_{J}$.

Definition

A group G is intersection-saturated if every k-configuration is realizable in G.

Formal definitions

Definition

A (intersection) k-configuration is a map $\chi: \mathcal{P}([k]) \backslash\{\emptyset\} \rightarrow\{0,1\}$. If $\mathcal{I}=(1) \chi^{-1}$ is the support of χ, we write $\chi=\chi_{\mathcal{I}}$. Notation:

- $0=\chi_{\emptyset}$ is the zero-configuration;
- $1=\chi_{\mathcal{P}([k]) \backslash\{\emptyset\}}$ is the one-configuration;
- $\chi_{\mathcal{I}}$ is an almost-zero k-configuration if $\mathcal{I}=\{l\}$.

Definition

A k-configuration χ is realizable in a group G if there exists subgroups $H_{1}, \ldots, H_{k} \leq G$ such that, for every $\emptyset \neq I \subseteq[k]$, $H_{l}=\cap_{i \in I} H_{i}$ if f.g. $\Leftrightarrow(I) \chi=0$. Note that $H_{l \cup J}=H_{l} \cap H_{J}$.

Definition

A group G is intersection-saturated if every k-configuration is realizable in G.

Formal definitions

Definition

A (intersection) k-configuration is a map $\chi: \mathcal{P}([k]) \backslash\{\emptyset\} \rightarrow\{0,1\}$. If $\mathcal{I}=(1) \chi^{-1}$ is the support of χ, we write $\chi=\chi_{\mathcal{I}}$. Notation:

- $0=\chi_{\emptyset}$ is the zero-configuration;
- $1=\chi_{\mathcal{P}([k]) \backslash\{\emptyset\}}$ is the one-configuration;
- $\chi_{\mathcal{I}}$ is an almost-zero k-configuration if $\mathcal{I}=\{l\}$.

Definition

A k-configuration χ is realizable in a group G if there exists subgroups $H_{1}, \ldots, H_{k} \leq G$ such that, for every $\emptyset \neq I \subseteq[k]$, $H_{l}=\cap_{i \in I} H_{i}$ if f.g. $\Leftrightarrow(I) \chi=0$. Note that $H_{l \cup J}=H_{l} \cap H_{J}$.

Definition

A group G is intersection-saturated if every k-configuration is realizable in G.

Outline

(9) Our main results

(2) Free-times-free-abelian groups
(3) Realizable / unrealizable k-configurations

4 The free case
(5) Open questions

Free-times-free-abelian groups

$$
\mathbb{G}=\mathbb{F}_{n} \times \mathbb{Z}^{m}=\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid\left[x_{i}, t_{j}\right]=1,\left[t_{i}, t_{k}\right]=1\right\rangle .
$$

```
Normal form: \(\forall g \in \mathbb{G}, g=w\left(x_{1}, \ldots, x_{n}\right) t_{1}^{a_{1}} \cdots t_{m}^{a_{m}}=w t^{a}\), where
\(\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{Z}^{m}\). This way, \(\left(u t^{\mathrm{a}}\right)(v t)=u v t^{\mathbf{a}+\mathbf{b}}\).
```


Observation

These groups sit in a split short exact sequence; and, for $H \leqslant \mathbb{G}$,

Moreover, H is finitely generated $\Leftrightarrow H \pi$ is so.

Free-times-free-abelian groups

$$
\mathbb{G}=\mathbb{F}_{n} \times \mathbb{Z}^{m}=\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid\left[x_{i}, t_{j}\right]=1,\left[t_{i}, t_{k}\right]=1\right\rangle .
$$

Normal form: $\forall g \in \mathbb{G}, g=w\left(x_{1}, \ldots, x_{n}\right) t_{1}^{a_{1}} \cdots t_{m}^{a_{m}}=w t^{\mathrm{a}}$, where $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{Z}^{m}$. This way, $\left(u t^{\mathbf{a}}\right)(v t)=u v t^{\mathbf{a}+\mathbf{b}}$.

Observation

These groups sit in a split short exact sequence; and, for H

Moreover, H is finitely generated $\Leftrightarrow H \pi$ is so.

Free-times-free-abelian groups

$$
\mathbb{G}=\mathbb{F}_{n} \times \mathbb{Z}^{m}=\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid\left[x_{i}, t_{j}\right]=1,\left[t_{i}, t_{k}\right]=1\right\rangle .
$$

Normal form: $\forall g \in \mathbb{G}, g=w\left(x_{1}, \ldots, x_{n}\right) t_{1}^{a_{1}} \cdots t_{m}^{a_{m}}=w t^{\mathrm{a}}$, where $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{Z}^{m}$. This way, $\left(u t^{\mathbf{a}}\right)(v t)=u v t^{\mathbf{a}+\mathbf{b}}$.

Observation

These groups sit in a split short exact sequence; and, for $H \leqslant \mathbb{G}$,

$$
\begin{aligned}
& 1 \rightarrow \mathbb{Z}^{m} \stackrel{\iota}{\hookrightarrow} \mathbb{G} \xrightarrow{\pi} \mathbb{F}_{n} \rightarrow 1, \\
& 1 \rightarrow L_{H}=H \cap \mathbb{Z}^{m} \hookrightarrow H \rightarrow H \pi \rightarrow 1 .
\end{aligned}
$$

Moreover, H is finitely generated $\Leftrightarrow H \pi$ is so.

Free-times-free-abelian groups

$$
\mathbb{G}=\mathbb{F}_{n} \times \mathbb{Z}^{m}=\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid\left[x_{i}, t_{j}\right]=1,\left[t_{i}, t_{k}\right]=1\right\rangle .
$$

Normal form: $\forall g \in \mathbb{G}, g=w\left(x_{1}, \ldots, x_{n}\right) t_{1}^{a_{1}} \cdots t_{m}^{a_{m}}=w t^{\mathrm{a}}$, where $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{Z}^{m}$. This way, $\left(u t^{\mathbf{a}}\right)(v t)=u v t^{\mathbf{a}+\mathbf{b}}$.

Observation

These groups sit in a split short exact sequence; and, for $H \leqslant \mathbb{G}$,

$$
\begin{aligned}
& 1 \rightarrow \mathbb{Z}^{m} \stackrel{\iota}{\hookrightarrow} \mathbb{G} \xrightarrow{\pi} \mathbb{F}_{n} \rightarrow 1, \\
& 1 \rightarrow L_{H}=H \cap \mathbb{Z}^{m} \hookrightarrow H \rightarrow H \pi \rightarrow 1 .
\end{aligned}
$$

Moreover, H is finitely generated $\Leftrightarrow H \pi$ is so.

Free-times-free-abelian groups

Proposition (Delgado-V. '13)

Every subgroup $H \leqslant \mathbb{G}$ admits a (computable) basis

$$
H=\left\langle u_{1} t^{\mathbf{a}_{1}}, u_{2} t^{\mathbf{a}_{2}}, \ldots, u_{r} t^{\mathbf{a}_{\mathbf{r}}} ; t^{\mathbf{b}_{1}}, \ldots, t^{\mathbf{b}_{\mathbf{s}}}\right\rangle,
$$

where $\left\{u_{1}, \ldots, u_{r}\right\}$ is a free-basis for $H \pi, \mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{r}} \in \mathbb{Z}^{m}, 0 \leq r \leq \infty$, $\mathbf{b}_{1}, \ldots, \mathbf{b}_{\mathbf{s}} \in \mathbb{Z}^{m}$ is an abelian-basis for $L_{H}=H \cap \mathbb{Z}^{m}$, and $0 \leq s \leq m$.

Proposition (Moldavanski)

The groups $F_{n} \times \mathbb{Z}^{m}, n \geq 2, m \geq 1$, are not Howson.
Question
Are them intersection-saturated?... ... no... but collectively yes ...
Theorem (Delgado-Roy-V. '22)

- The set of configs realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$ increases strictly with m,
- Every configuration is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$ for $m \gg 0$.

Free-times-free-abelian groups

Proposition (Delgado-V. '13)

Every subgroup $H \leqslant \mathbb{G}$ admits a (computable) basis

$$
H=\left\langle u_{1} t^{\mathbf{a}_{1}}, u_{2} t^{\mathbf{a}_{2}}, \ldots, u_{r} t^{\mathbf{a}_{\mathbf{r}}} ; t^{\mathbf{b}_{1}}, \ldots, t^{\mathbf{b}_{\mathbf{s}}}\right\rangle,
$$

where $\left\{u_{1}, \ldots, u_{r}\right\}$ is a free-basis for $H \pi, \mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{r}} \in \mathbb{Z}^{m}, 0 \leq r \leq \infty$, $\mathbf{b}_{1}, \ldots, \mathbf{b}_{\mathbf{s}} \in \mathbb{Z}^{m}$ is an abelian-basis for $L_{H}=H \cap \mathbb{Z}^{m}$, and $0 \leq s \leq m$.

Proposition (Moldavanski)

The groups $F_{n} \times \mathbb{Z}^{m}, n \geq 2, m \geq 1$, are not Howson.

Free-times-free-abelian groups

Proposition (Delgado-V. '13)

Every subgroup $H \leqslant \mathbb{G}$ admits a (computable) basis

$$
H=\left\langle u_{1} t^{a_{1}}, u_{2} t^{a_{2}}, \ldots, u_{r} t^{a_{r}} ; t^{b_{1}}, \ldots, t^{\mathbf{b}_{\mathbf{s}}}\right\rangle,
$$

where $\left\{u_{1}, \ldots, u_{r}\right\}$ is a free-basis for $H \pi, \mathbf{a}_{1}, \ldots, \mathbf{a}_{r} \in \mathbb{Z}^{m}, 0 \leq r \leq \infty$, $\mathbf{b}_{1}, \ldots, \mathbf{b}_{\mathbf{s}} \in \mathbb{Z}^{m}$ is an abelian-basis for $L_{H}=H \cap \mathbb{Z}^{m}$, and $0 \leq s \leq m$.

Proposition (Moldavanski)

The groups $F_{n} \times \mathbb{Z}^{m}, n \geq 2, m \geq 1$, are not Howson.

Question

Are them intersection-saturated?...

no... but collectively yes

Theorem (Delgado-Roy-V. '22)

- The set of configs realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$ increases strictly with m,
- Every configuration is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$ for $m \gg 0$.

Free-times-free-abelian groups

Proposition (Delgado-V. '13)

Every subgroup $H \leqslant \mathbb{G}$ admits a (computable) basis

$$
H=\left\langle u_{1} t^{a_{1}}, u_{2} t^{a_{2}}, \ldots, u_{r} t^{a_{r}} ; t^{b_{1}}, \ldots, t^{\mathbf{b}_{\mathbf{s}}}\right\rangle,
$$

where $\left\{u_{1}, \ldots, u_{r}\right\}$ is a free-basis for $H \pi, \mathbf{a}_{1}, \ldots, \mathbf{a}_{r} \in \mathbb{Z}^{m}, 0 \leq r \leq \infty$, $\mathbf{b}_{1}, \ldots, \mathbf{b}_{\mathbf{s}} \in \mathbb{Z}^{m}$ is an abelian-basis for $L_{H}=H \cap \mathbb{Z}^{m}$, and $0 \leq s \leq m$.

Proposition (Moldavanski)

The groups $F_{n} \times \mathbb{Z}^{m}, n \geq 2, m \geq 1$, are not Howson.

Question

Are them intersection-saturated?... ... no... but collectively yes
Theorem (Delgado-Roy-V. '22)

- The set of configs realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$ increases strictly with m,
- Every configuration is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$ for $m \gg 0$.

Free-times-free-abelian groups

Proposition (Delgado-V. '13)

Every subgroup $H \leqslant \mathbb{G}$ admits a (computable) basis

$$
H=\left\langle u_{1} t^{\mathbf{a}_{1}}, u_{2} t^{\mathbf{a}_{2}}, \ldots, u_{r} t^{\mathbf{a}_{\mathbf{r}}} ; t^{\mathbf{b}_{1}}, \ldots, t^{\mathbf{b}_{\mathbf{s}}}\right\rangle,
$$

where $\left\{u_{1}, \ldots, u_{r}\right\}$ is a free-basis for $H \pi, \mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{r}} \in \mathbb{Z}^{m}, 0 \leq r \leq \infty$, $\mathbf{b}_{1}, \ldots, \mathbf{b}_{\mathbf{s}} \in \mathbb{Z}^{m}$ is an abelian-basis for $L_{H}=H \cap \mathbb{Z}^{m}$, and $0 \leq s \leq m$.

Proposition (Moldavanski)

The groups $F_{n} \times \mathbb{Z}^{m}, n \geq 2, m \geq 1$, are not Howson.

Question

Are them intersection-saturated?... ... no... but collectively yes ...
Theorem (Delgado-Roy-V. '22)

- The set of configs realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$ increases strictly with m;
- Every configuration is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$ for $m \gg 0$.

Free-times-free-abelian groups

Proposition (Delgado-V. '13)

Every subgroup $H \leqslant \mathbb{G}$ admits a (computable) basis

$$
H=\left\langle u_{1} t^{\mathbf{a}_{1}}, u_{2} t^{\mathbf{a}_{2}}, \ldots, u_{r} t^{a_{r}} ; t^{\mathbf{b}_{1}}, \ldots, t^{\mathbf{b}_{\mathbf{s}}}\right\rangle
$$

where $\left\{u_{1}, \ldots, u_{r}\right\}$ is a free-basis for $H \pi, \mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{r}} \in \mathbb{Z}^{m}, 0 \leq r \leq \infty$, $\mathbf{b}_{1}, \ldots, \mathbf{b}_{\mathbf{s}} \in \mathbb{Z}^{m}$ is an abelian-basis for $L_{H}=H \cap \mathbb{Z}^{m}$, and $0 \leq s \leq m$.

Proposition (Moldavanski)

The groups $F_{n} \times \mathbb{Z}^{m}, n \geq 2, m \geq 1$, are not Howson.

Question

Are them intersection-saturated?... ... no... but collectively yes ...
Theorem (Delgado-Roy-V. '22)

- The set of configs realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$ increases strictly with m;
- Every confiquration is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$ for $m \gg 0$.

Free-times-free-abelian groups

Proposition (Delgado-V. '13)

Every subgroup $H \leqslant \mathbb{G}$ admits a (computable) basis

$$
H=\left\langle u_{1} t^{\mathbf{a}_{1}}, u_{2} t^{\mathbf{a}_{2}}, \ldots, u_{r} t^{\mathbf{a}_{r}} ; t^{\mathbf{b}_{1}}, \ldots, t^{\mathbf{b}_{\mathbf{s}}}\right\rangle,
$$

where $\left\{u_{1}, \ldots, u_{r}\right\}$ is a free-basis for $H \pi, \mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{r}} \in \mathbb{Z}^{m}, 0 \leq r \leq \infty$, $\mathbf{b}_{1}, \ldots, \mathbf{b}_{\mathbf{s}} \in \mathbb{Z}^{m}$ is an abelian-basis for $L_{H}=H \cap \mathbb{Z}^{m}$, and $0 \leq s \leq m$.

Proposition (Moldavanski)

The groups $F_{n} \times \mathbb{Z}^{m}, n \geq 2, m \geq 1$, are not Howson.

Question

Are them intersection-saturated?... ... no... but collectively yes ...
Theorem (Delgado-Roy-V. '22)

- The set of configs realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$ increases strictly with m;
- Every configuration is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$ for $m \gg 0$.

Free-times-free-abelian groups

Theorem (Delgado-V. '13)

There is an algorithm which, on input (a set of generators for) $H, K \leqslant f g \mathbb{G}$, decides whether $H \cap K$ is f.g. and, if so, computes a basis for it.

(Sketch of proof)

Given (basis for) subgroups $H_{1}, H_{2} \leqslant f g=\mathbb{F}_{n} \times \mathbb{Z}^{m}$, consider

A calculation shows that $\left(H_{1} \cap H_{2}\right) \pi=\left(L_{1}+L_{2}\right) R^{-1} \rho^{-1} \unlhd H_{1} \pi \cap H_{2} \pi$
So, $H_{1} \cap H_{2}$ is f.g. \Leftrightarrow

Free-times-free-abelian groups

Theorem (Delgado-V. '13)

There is an algorithm which, on input (a set of generators for) $H, K \leqslant f g \mathbb{G}$, decides whether $H \cap K$ is f.g. and, if so, computes a basis for it.
(Sketch of proof)
Given (basis for) subgroups $H_{1}, H_{2} \leqslant f g \mathbb{G}=\mathbb{F}_{n} \times \mathbb{Z}^{m}$, consider

A calculation shows that $\left(H_{1} \cap H_{2}\right) \pi=\left(L_{1}+L_{2}\right) R^{-1} \rho^{-1} \unlhd H_{1} \pi \cap H_{2} \pi$. So, $H_{1} \cap H_{2}$ is f.g. $\Leftrightarrow\left\{\begin{array}{l}r=0,1 \text { or } \\ r \geq 2 \text { and }\left(H_{1} \cap H_{2}\right) \pi \leqslant f i H_{1} \pi \cap H_{2} \pi \text {. }\end{array}\right.$

Free-times-free-abelian groups

Theorem (Deigado-Roy-V. '22)

There is an algorithm which, on input (a set of generators for) $H_{1}, \ldots, H_{k} \leqslant f g \mathbb{G}$, decides whether $H_{1} \cap \cdots \cap H_{k}$ is f.g. and, if so, computes a basis for it.

Free-times-free-abelian groups

Theorem (Delgado-Roy-V. '22)

There is an algorithm which, on input (a set of generators for) $H_{1}, \ldots, H_{k} \leqslant f g \mathbb{G}$, decides whether $H_{1} \cap \cdots \cap H_{k}$ is f.g. and, if so, computes a basis for it.

Proposition

Let $M^{\prime}, M^{\prime \prime} \leqslant \mathbb{F}_{n}$ be such that $\left\langle M^{\prime}, M^{\prime \prime}\right\rangle=M^{\prime} * M^{\prime \prime}$. Then, for any $H_{1}^{\prime}, \ldots, H_{k}^{\prime} \leqslant M^{\prime} \leqslant \mathbb{F}_{n}$ and $H_{1}^{\prime \prime}, \ldots, H_{k}^{\prime \prime} \leqslant M^{\prime \prime} \leqslant \mathbb{F}_{n}$,

$$
\bigcap_{j=1}^{k}\left\langle H_{j}^{\prime}, H_{j}^{\prime \prime}\right\rangle=\left\langle\bigcap_{j=1}^{k} H_{j}^{\prime}, \bigcap_{j=1}^{k} H_{j}^{\prime \prime}\right\rangle .
$$

Free-times-free-abelian groups

Observation

The same is not true in $\mathbb{G}=\mathbb{F}_{n} \times \mathbb{Z}^{m}$, even with $M^{\prime}, M^{\prime \prime} \leqslant \mathbb{G}$ in strongly complementary position, i.e., $\left\langle M^{\prime} \pi, M^{\prime \prime} \pi\right\rangle=M^{\prime} \pi * M^{\prime \prime} \pi$ and $\left\langle M^{\prime} \tau, M^{\prime \prime} \tau\right\rangle=M^{\prime} \tau \oplus M^{\prime \prime} \tau$.

Example

Consider $\mathbb{G}=\mathbb{F}_{4}$
$M^{\prime}=\left\langle x_{1}, x_{2}, t^{(1,0)}\right\rangle, M^{\prime \prime}=\left\langle x_{3}, x_{4}, t^{(0,1)}\right\rangle$, and the respective subgroups

- $H_{1}^{\prime}=\left\langle x_{1}, x_{2}\right\rangle, H_{2}^{\prime}=\left\langle x_{1} t^{(1,0)}, x_{2}\right\rangle \leqslant M^{\prime}$, and
- $H_{1}^{\prime \prime}=\left\langle x_{3}, x_{4}\right\rangle, H_{2}^{\prime \prime}=\left\langle x_{3} t^{(0,1)}, x_{4}\right\rangle \leqslant M^{\prime \prime}$.

We have $H_{1}^{\prime} \cap H_{2}^{\prime}=\left\langle x_{1}^{-i} x_{2} x_{1}^{\prime}, i \in \mathbb{Z}\right\rangle, H_{1}^{\prime \prime} \cap H_{2}^{\prime \prime}=\left\langle x_{3}^{-i} x_{4} x_{3}^{i}, i \in \mathbb{Z}\right\rangle$, and $\left\langle H_{1}^{\prime} \cap H_{2}^{\prime}, H_{1}^{\prime \prime} \cap H_{2}^{\prime \prime}\right\rangle=\left(H_{1}^{\prime} \cap H_{2}^{\prime}\right) *\left(H_{1}^{\prime \prime} \cap H_{2}^{\prime \prime}\right)=\left\langle x_{1}^{-i} x_{2} x_{1}^{i}, x_{3}^{-i} x_{4} x_{3}^{i} \mid i \in \mathbb{Z}\right\rangle$, which does not contain $x_{3}^{-1} x_{2} x_{3} \in\left\langle H_{1}^{\prime}, H_{1}^{\prime \prime}\right\rangle=\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$

$$
\in\left\langle H_{2}^{\prime}, H_{2}^{\prime \prime}\right\rangle=\left\langle x_{1} t^{(\mathbf{1}, 0)}, x_{2}, x_{3} t^{(0,1)}, x_{4}\right\rangle .
$$

Free-times-free-abelian groups

Observation

The same is not true in $\mathbb{G}=\mathbb{F}_{n} \times \mathbb{Z}^{m}$, even with $M^{\prime}, M^{\prime \prime} \leqslant \mathbb{G}$ in strongly complementary position, i.e., $\left\langle M^{\prime} \pi, M^{\prime \prime} \pi\right\rangle=M^{\prime} \pi * M^{\prime \prime} \pi$ and $\left\langle M^{\prime} \tau, M^{\prime \prime} \tau\right\rangle=M^{\prime} \tau \oplus M^{\prime \prime} \tau$.

Example

Consider $\mathbb{G}=\mathbb{F}_{4} \times \mathbb{Z}^{2}=\left\langle x_{1}, x_{2}, x_{3}, x_{4} \mid-\right\rangle \times\left\langle t_{1}, t_{2} \mid\left[t_{1}, t_{2}\right]\right\rangle$, $M^{\prime}=\left\langle x_{1}, x_{2}, t^{(1,0)}\right\rangle, M^{\prime \prime}=\left\langle x_{3}, x_{4}, t^{(0,1)}\right\rangle$, and the respective subgroups

- $H_{1}^{\prime \prime}=\left\langle x_{3}, x_{4}\right\rangle$ We have $H_{1}^{\prime} \cap H_{2}^{\prime}=\left\langle x_{1}^{-i} x_{2} x_{1}^{i}, i \in \mathbb{Z}\right\rangle, H_{1}^{\prime \prime} \cap H_{2}^{\prime \prime}=\left\langle x_{3}^{-i} x_{4} x_{3}^{i}, i \in \mathbb{Z}\right\rangle$, and $\left\langle H_{1}^{\prime} \cap H_{2}^{\prime}, H_{1}^{\prime \prime} \cap H_{2}^{\prime \prime}\right\rangle=\left(H_{1}^{\prime} \cap H_{2}^{\prime}\right) *\left(H_{1}^{\prime \prime} \cap H_{2}^{\prime \prime}\right)=\left\langle x_{1}^{-i} x_{2} x_{1}^{i}, x_{3}^{-i} x_{4} x_{3}^{i} \mid i \in \mathbb{Z}\right\rangle$ which does not contain $\begin{aligned} x_{3}^{-1} x_{2} x_{3} & \in\left\langle H_{1}^{\prime}, H_{1}^{\prime \prime \prime}\right\rangle\end{aligned}=\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle,\left(H_{2}^{\prime}, H_{2}^{\prime \prime}\right\rangle=\left\langle x_{1} t^{(1,0)}, x_{2}, x_{3} t^{(0,1)}, x_{4}\right\rangle$.

Free-times-free-abelian groups

Observation

The same is not true in $\mathbb{G}=\mathbb{F}_{n} \times \mathbb{Z}^{m}$, even with $M^{\prime}, M^{\prime \prime} \leqslant \mathbb{G}$ in strongly complementary position, i.e., $\left\langle M^{\prime} \pi, M^{\prime \prime} \pi\right\rangle=M^{\prime} \pi * M^{\prime \prime} \pi$ and $\left\langle M^{\prime} \tau, M^{\prime \prime} \tau\right\rangle=M^{\prime} \tau \oplus M^{\prime \prime} \tau$.

Example

Consider $\mathbb{G}=\mathbb{F}_{4} \times \mathbb{Z}^{2}=\left\langle x_{1}, x_{2}, x_{3}, x_{4} \mid-\right\rangle \times\left\langle t_{1}, t_{2} \mid\left[t_{1}, t_{2}\right]\right\rangle$, $M^{\prime}=\left\langle x_{1}, x_{2}, t^{(1,0)}\right\rangle, M^{\prime \prime}=\left\langle x_{3}, x_{4}, t^{(0,1)}\right\rangle$, and the respective subgroups - $H_{1}^{\prime}=\left\langle x_{1}, x_{2}\right\rangle, \quad H_{2}^{\prime}=\left\langle x_{1} t^{(\mathbf{1}, \mathbf{0})}, x_{2}\right\rangle \leqslant M^{\prime}$, and

We have $H_{1}^{\prime} \cap H_{2}^{\prime}=\left\langle x_{1}^{-i} x_{2} x_{1}^{i}, i \in \mathbb{Z}\right\rangle, H_{1}^{\prime \prime} \cap H_{2}^{\prime \prime}=\left\langle x_{3}^{-i} x_{4} x_{3}^{i}, i \in \mathbb{Z}\right\rangle$, and

$\left\langle H_{1}^{\prime} \cap H_{2}^{\prime}, H_{1}^{\prime \prime} \cap H_{2}^{\prime \prime}\right\rangle=\left(H_{1}^{\prime} \cap H_{2}^{\prime}\right) *\left(H_{1}^{\prime \prime} \cap H_{2}^{\prime \prime}\right)=\left\langle x_{1}^{-i} x_{2} x_{1}^{i}, x_{3}^{-i} x_{4} x_{3}^{i} \mid i \in \mathbb{Z}\right\rangle$

Free-times-free-abelian groups

Observation

The same is not true in $\mathbb{G}=\mathbb{F}_{n} \times \mathbb{Z}^{m}$, even with $M^{\prime}, M^{\prime \prime} \leqslant \mathbb{G}$ in strongly complementary position, i.e., $\left\langle M^{\prime} \pi, M^{\prime \prime} \pi\right\rangle=M^{\prime} \pi * M^{\prime \prime} \pi$ and $\left\langle M^{\prime} \tau, M^{\prime \prime} \tau\right\rangle=M^{\prime} \tau \oplus M^{\prime \prime} \tau$.

Example

Consider $\mathbb{G}=\mathbb{F}_{4} \times \mathbb{Z}^{2}=\left\langle x_{1}, x_{2}, x_{3}, x_{4} \mid-\right\rangle \times\left\langle t_{1}, t_{2} \mid\left[t_{1}, t_{2}\right]\right\rangle$, $M^{\prime}=\left\langle x_{1}, x_{2}, t^{(1,0)}\right\rangle, M^{\prime \prime}=\left\langle x_{3}, x_{4}, t^{(0,1)}\right\rangle$, and the respective subgroups

- $H_{1}^{\prime}=\left\langle x_{1}, x_{2}\right\rangle, \quad H_{2}^{\prime}=\left\langle x_{1} t^{(\mathbf{1}, \mathbf{0})}, x_{2}\right\rangle \leqslant M^{\prime}$, and
- $H_{1}^{\prime \prime}=\left\langle x_{3}, x_{4}\right\rangle, H_{2}^{\prime \prime}=\left\langle x_{3} t^{(0,1)}, x_{4}\right\rangle \leqslant M^{\prime \prime}$.

We have $H_{1}^{\prime} \cap H_{2}^{\prime}=\left\langle x_{1}^{-i} x_{2} x_{1}^{i}, i \in \mathbb{Z}\right\rangle, H_{1}^{\prime \prime} \cap H_{2}^{\prime \prime}=\left\langle x_{3}^{-i} x_{4} x_{3}^{i}, i \in \mathbb{Z}\right\rangle$, and
$\left\langle H_{1}^{\prime} \cap H_{2}^{\prime}, H_{1}^{\prime \prime} \cap H_{2}^{\prime \prime}\right\rangle=\left(H_{1}^{\prime} \cap H_{2}^{\prime}\right) *\left(H_{1}^{\prime \prime} \cap H_{2}^{\prime \prime}\right)=\left\langle x_{1}^{-i} x_{2} x_{1}^{i}, x_{3}^{-i} x_{4} x_{3}^{i} \mid i \in \mathbb{Z}\right\rangle$

Free-times-free-abelian groups

Observation

The same is not true in $\mathbb{G}=\mathbb{F}_{n} \times \mathbb{Z}^{m}$, even with $M^{\prime}, M^{\prime \prime} \leqslant \mathbb{G}$ in strongly complementary position, i.e., $\left\langle M^{\prime} \pi, M^{\prime \prime} \pi\right\rangle=M^{\prime} \pi * M^{\prime \prime} \pi$ and $\left\langle M^{\prime} \tau, M^{\prime \prime} \tau\right\rangle=M^{\prime} \tau \oplus M^{\prime \prime} \tau$.

Example

Consider $\mathbb{G}=\mathbb{F}_{4} \times \mathbb{Z}^{2}=\left\langle x_{1}, x_{2}, x_{3}, x_{4} \mid-\right\rangle \times\left\langle t_{1}, t_{2} \mid\left[t_{1}, t_{2}\right]\right\rangle$, $M^{\prime}=\left\langle x_{1}, x_{2}, t^{(1,0)}\right\rangle, M^{\prime \prime}=\left\langle x_{3}, x_{4}, t^{(0,1)}\right\rangle$, and the respective subgroups

- $H_{1}^{\prime}=\left\langle x_{1}, x_{2}\right\rangle, \quad H_{2}^{\prime}=\left\langle x_{1} t^{(\mathbf{1}, \mathbf{0})}, x_{2}\right\rangle \leqslant M^{\prime}$, and
- $H_{1}^{\prime \prime}=\left\langle x_{3}, x_{4}\right\rangle, H_{2}^{\prime \prime}=\left\langle x_{3} t^{(0,1)}, x_{4}\right\rangle \leqslant M^{\prime \prime}$.

We have $H_{1}^{\prime} \cap H_{2}^{\prime}=\left\langle x_{1}^{-i} x_{2} x_{1}^{i}, i \in \mathbb{Z}\right\rangle, H_{1}^{\prime \prime} \cap H_{2}^{\prime \prime}=\left\langle x_{3}^{-i} x_{4} x_{3}^{i}, i \in \mathbb{Z}\right\rangle$,
$\left\langle H_{1}^{\prime} \cap H_{2}^{\prime}, H_{1}^{\prime \prime} \cap H_{2}^{\prime \prime}\right\rangle=\left(H_{1}^{\prime} \cap H_{2}^{\prime}\right) *\left(H_{1}^{\prime \prime} \cap H_{2}^{\prime \prime}\right)=$ which does not contain $x_{3}^{-1} x_{2} x_{3} \in\left\langle H_{1}^{\prime}, H_{1}^{\prime \prime}\right\rangle=\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$

Free-times-free-abelian groups

Observation

The same is not true in $\mathbb{G}=\mathbb{F}_{n} \times \mathbb{Z}^{m}$, even with $M^{\prime}, M^{\prime \prime} \leqslant \mathbb{G}$ in strongly complementary position, i.e., $\left\langle M^{\prime} \pi, M^{\prime \prime} \pi\right\rangle=M^{\prime} \pi * M^{\prime \prime} \pi$ and $\left\langle M^{\prime} \tau, M^{\prime \prime} \tau\right\rangle=M^{\prime} \tau \oplus M^{\prime \prime} \tau$.

Example

Consider $\mathbb{G}=\mathbb{F}_{4} \times \mathbb{Z}^{2}=\left\langle x_{1}, x_{2}, x_{3}, x_{4} \mid-\right\rangle \times\left\langle t_{1}, t_{2} \mid\left[t_{1}, t_{2}\right]\right\rangle$, $M^{\prime}=\left\langle x_{1}, x_{2}, t^{(1,0)}\right\rangle, M^{\prime \prime}=\left\langle x_{3}, x_{4}, t^{(0,1)}\right\rangle$, and the respective subgroups - $H_{1}^{\prime}=\left\langle x_{1}, x_{2}\right\rangle, \quad H_{2}^{\prime}=\left\langle x_{1} t^{(\mathbf{1}, \mathbf{0})}, x_{2}\right\rangle \leqslant M^{\prime}$, and

- $H_{1}^{\prime \prime}=\left\langle x_{3}, x_{4}\right\rangle, H_{2}^{\prime \prime}=\left\langle x_{3} t^{(0,1)}, x_{4}\right\rangle \leqslant M^{\prime \prime}$.

We have $H_{1}^{\prime} \cap H_{2}^{\prime}=\left\langle x_{1}^{-i} x_{2} x_{1}^{i}, i \in \mathbb{Z}\right\rangle, H_{1}^{\prime \prime} \cap H_{2}^{\prime \prime}=\left\langle x_{3}^{-i} x_{4} x_{3}^{i}, i \in \mathbb{Z}\right\rangle$, and
$\left\langle H_{1}^{\prime} \cap H_{2}^{\prime}, H_{1}^{\prime \prime} \cap H_{2}^{\prime \prime}\right\rangle=\left(H_{1}^{\prime} \cap H_{2}^{\prime}\right) *\left(H_{1}^{\prime \prime} \cap H_{2}^{\prime \prime}\right)=\left\langle x_{1}^{-i} x_{2} x_{1}^{i}, x_{3}^{-i} x_{4} x_{3}^{i} \mid i \in \mathbb{Z}\right\rangle$,

Free-times-free-abelian groups

Observation

The same is not true in $\mathbb{G}=\mathbb{F}_{n} \times \mathbb{Z}^{m}$, even with $M^{\prime}, M^{\prime \prime} \leqslant \mathbb{G}$ in strongly complementary position, i.e., $\left\langle M^{\prime} \pi, M^{\prime \prime} \pi\right\rangle=M^{\prime} \pi * M^{\prime \prime} \pi$ and $\left\langle M^{\prime} \tau, M^{\prime \prime} \tau\right\rangle=M^{\prime} \tau \oplus M^{\prime \prime} \tau$.

Example

Consider $\mathbb{G}=\mathbb{F}_{4} \times \mathbb{Z}^{2}=\left\langle x_{1}, x_{2}, x_{3}, x_{4} \mid-\right\rangle \times\left\langle t_{1}, t_{2} \mid\left[t_{1}, t_{2}\right]\right\rangle$, $M^{\prime}=\left\langle x_{1}, x_{2}, t^{(1,0)}\right\rangle, M^{\prime \prime}=\left\langle x_{3}, x_{4}, t^{(0,1)}\right\rangle$, and the respective subgroups

- $H_{1}^{\prime}=\left\langle x_{1}, x_{2}\right\rangle, \quad H_{2}^{\prime}=\left\langle x_{1} t^{(1,0)}, x_{2}\right\rangle \leqslant M^{\prime}$, and
- $H_{1}^{\prime \prime}=\left\langle x_{3}, x_{4}\right\rangle, H_{2}^{\prime \prime}=\left\langle x_{3} t^{(0,1)}, x_{4}\right\rangle \leqslant M^{\prime \prime}$.

We have $H_{1}^{\prime} \cap H_{2}^{\prime}=\left\langle x_{1}^{-i} x_{2} x_{1}^{i}, i \in \mathbb{Z}\right\rangle, H_{1}^{\prime \prime} \cap H_{2}^{\prime \prime}=\left\langle x_{3}^{-i} x_{4} x_{3}^{i}, i \in \mathbb{Z}\right\rangle$, and
$\left\langle H_{1}^{\prime} \cap H_{2}^{\prime}, H_{1}^{\prime \prime} \cap H_{2}^{\prime \prime}\right\rangle=\left(H_{1}^{\prime} \cap H_{2}^{\prime}\right) *\left(H_{1}^{\prime \prime} \cap H_{2}^{\prime \prime}\right)=\left\langle x_{1}^{-i} x_{2} x_{1}^{i}, x_{3}^{-i} x_{4} x_{3}^{i} \mid i \in \mathbb{Z}\right\rangle$, which does not contain $x_{3}^{-1} x_{2} x_{3} \in\left\langle H_{1}^{\prime}, H_{1}^{\prime \prime}\right\rangle=\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$

$$
\in\left\langle H_{2}^{\prime}, H_{2}^{\prime \prime}\right\rangle=\left\langle x_{1} t^{(1,0)}, x_{2}, x_{3} t^{(0,1)}, x_{4}\right\rangle .
$$

Free-times-free-abelian groups

Theorem

Let $H_{1}^{\prime}, \ldots, H_{k}^{\prime} \leqslant \mathbb{G}^{\prime}=\mathbb{F}_{n^{\prime}} \times \mathbb{Z}^{m^{\prime}}$ and $H_{1}^{\prime \prime}, \ldots, H_{k}^{\prime \prime} \leqslant \mathbb{G}^{\prime \prime}=\mathbb{F}_{n^{\prime \prime}} \times \mathbb{Z}^{m^{\prime \prime}}$ be $k \geq 2$ subgroups of G^{\prime} and $G^{\prime \prime}$, resp. Write $r^{\prime}=\operatorname{rk}\left(\bigcap_{j=1}^{k} H_{j}^{\prime} \pi\right)$, $r^{\prime \prime}=\operatorname{rk}\left(\bigcap_{j=1}^{k} H_{j}^{\prime \prime} \pi\right)$, and consider $\left\langle H_{1}^{\prime}, H_{1}^{\prime \prime}\right\rangle, \ldots,\left\langle H_{k}^{\prime}, H_{k}^{\prime \prime}\right\rangle \leqslant \mathbb{G}^{\prime} \circledast \mathbb{G}^{\prime \prime}=$ $=\left(\mathbb{F}_{n^{\prime}} * \mathbb{F}_{n^{\prime \prime}}\right) \times\left(\mathbb{Z}^{m^{\prime}} \oplus \mathbb{Z}^{m^{\prime \prime}}\right)$. Then, if $\min \left(r^{\prime}, r^{\prime \prime}\right) \neq 1$:

$$
\bigcap_{j=1}^{k}\left\langle H_{j}^{\prime}, H_{j}^{\prime \prime}\right\rangle \text { is f.g. } \Leftrightarrow \text { both } \bigcap_{j=1}^{k} H_{j}^{\prime} \text { and } \bigcap_{j=1}^{k} H_{j}^{\prime \prime} \text { are f.g. }
$$

Observation

Again, not true without the hypothesis $\min \left(r^{\prime}, r^{\prime \prime}\right) \neq 1$.

Free-times-free-abelian groups

Theorem

Let $H_{1}^{\prime}, \ldots, H_{k}^{\prime} \leqslant \mathbb{G}^{\prime}=\mathbb{F}_{n^{\prime}} \times \mathbb{Z}^{m^{\prime}}$ and $H_{1}^{\prime \prime}, \ldots, H_{k}^{\prime \prime} \leqslant \mathbb{G}^{\prime \prime}=\mathbb{F}_{n^{\prime \prime}} \times \mathbb{Z}^{m^{\prime \prime}}$ be $k \geq 2$ subgroups of G^{\prime} and $G^{\prime \prime}$, resp. Write $r^{\prime}=\operatorname{rk}\left(\bigcap_{j=1}^{k} H_{j}^{\prime} \pi\right)$, $r^{\prime \prime}=\operatorname{rk}\left(\bigcap_{j=1}^{k} H_{j}^{\prime \prime} \pi\right)$, and consider $\left\langle H_{1}^{\prime}, H_{1}^{\prime \prime}\right\rangle, \ldots,\left\langle H_{k}^{\prime}, H_{k}^{\prime \prime}\right\rangle \leqslant \mathbb{G}^{\prime} \circledast \mathbb{G}^{\prime \prime}=$ $=\left(\mathbb{F}_{n^{\prime}} * \mathbb{F}_{n^{\prime \prime}}\right) \times\left(\mathbb{Z}^{m^{\prime}} \oplus \mathbb{Z}^{m^{\prime \prime}}\right)$. Then, if $\min \left(r^{\prime}, r^{\prime \prime}\right) \neq 1$:

$$
\bigcap_{j=1}^{k}\left\langle H_{j}^{\prime}, H_{j}^{\prime \prime}\right\rangle \text { is f.g. } \Leftrightarrow \text { both } \bigcap_{j=1}^{k} H_{j}^{\prime} \text { and } \bigcap_{j=1}^{k} H_{j}^{\prime \prime} \text { are f.g. }
$$

Observation

Again, not true without the hypothesis $\min \left(r^{\prime}, r^{\prime \prime}\right) \neq 1$.

Outline

(1) Our main results

2 Free-times-free-abelian groups
(3) Realizable / unrealizable k-configurations

4 The free case
(5) Open questions

Positive results

Definition

Define the join of two k-configurations χ and χ^{\prime} as

$$
\begin{aligned}
\chi \vee \chi^{\prime}: \mathcal{P}([k]) \backslash\{\varnothing\} & \rightarrow\{0,1\} \\
I & \mapsto \begin{cases}0 & \text { if }(I) \chi=(I) \chi^{\prime}=0, \\
1 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Proposition

Let $\chi^{\prime}\left(\right.$ resp. $\chi^{\prime \prime}$) be k-config. realized by H_{1}^{\prime}

Positive results

Definition

Define the join of two k-configurations χ and χ^{\prime} as

$$
\begin{aligned}
\chi \vee \chi^{\prime}: \mathcal{P}([k]) \backslash\{\varnothing\} & \rightarrow\{0,1\} \\
I & \mapsto \begin{cases}0 & \text { if }(I) \chi=(I) \chi^{\prime}=0, \\
1 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Proposition

Let χ^{\prime} (resp. $\chi^{\prime \prime}$) be k-config. realized by $H_{1}^{\prime}, \ldots, H_{k}^{\prime} \leqslant \mathbb{G}^{\prime}=\mathbb{F}_{n^{\prime}} \times \mathbb{Z}^{m^{\prime}}$ (resp. $\left.H_{1}^{\prime \prime}, \ldots, H_{k}^{\prime \prime} \leqslant \mathbb{G}^{\prime \prime}=\mathbb{F}_{n^{\prime \prime}} \times \mathbb{Z}^{m^{\prime \prime}}\right)$ with $r_{l}^{\prime}=\operatorname{rk}\left(\bigcap_{i \in 1} H_{i}^{\prime} \pi\right) \neq 1$ (resp. $\left.r_{l}^{\prime \prime} \neq 1\right) \forall I \subseteq[k]$ with $|I| \geq 2$. Then, $\chi^{\prime} \vee \chi^{\prime \prime}$ is realizable in $\mathbb{G}^{\prime} \circledast \mathbb{G}^{\prime \prime}=\mathbb{F}_{n^{\prime}+n^{\prime \prime}} \times \mathbb{Z}^{m^{\prime}+m^{\prime \prime}}$ by $H_{1}=\left\langle H_{1}^{\prime}, H_{1}^{\prime \prime}\right\rangle, \ldots, H_{k}=\left\langle H_{k}^{\prime}, H_{k}^{\prime \prime}\right\rangle$, again satisfying $r_{I} \neq 1 \forall I \subseteq[k]$ with $|I| \geq 2$.

Positive results

Proposition

The k-config. $\chi_{[k]}$ is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{k-1}$.

(Sketch of proof)

\square

Corollary
Any almost-zero k-config. χ_{10} is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{\left|0_{0}\right|-1}$ by subgroups H_{1}, \ldots, H_{k} further satisfying rk $\left(\bigcap_{i \in 1} H_{i} \pi\right) \neq 1$, for every $\emptyset \neq I \subseteq[k]$.

Positive results

Proposition

The k-config. $\chi_{[k]}$ is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{k-1}$.

(Sketch of proof)

$$
\begin{aligned}
H_{1} & =\left\langle x, y ; t^{\mathbf{e}_{2}}, \ldots, t^{\mathbf{e}_{k-1}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1} \\
H_{2} & =\left\langle x, y ; t^{\mathbf{e}_{1}}, t^{\mathbf{e}_{3}}, \ldots, t^{\mathbf{e}_{\mathbf{k}-1}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1}, \\
& \vdots \\
H_{k-1} & =\left\langle x, y ; t^{\mathbf{e}_{1}}, \ldots, t^{\mathbf{e}_{\mathbf{k}-2}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1}, \\
H_{k} & =\left\langle x, y t^{\mathbf{e}_{1}} ; t^{\mathbf{e}_{2}-\mathbf{e}_{1}}, \ldots, t^{\mathbf{e}_{\mathbf{k}-1}-\mathbf{e}_{\mathbf{1}}}\right\rangle=\left\langle x, y t^{\mathbf{e}_{1}}, \ldots, y t^{\mathbf{e}_{\mathbf{k}-1}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1}
\end{aligned}
$$

Gorollary

Any almost-zero k-config. $\chi_{1_{0}}$ is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{\left|l_{0}\right|-1}$ by subgroups H_{1}, \ldots, H_{k} further satisfying rk $\left(\bigcap_{i \in 1} H_{i} \pi\right) \neq 1$, for every $\emptyset \neq I \subseteq[k]$.

Positive results

Proposition

The k-config. $\chi_{[k]}$ is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{k-1}$.

(Sketch of proof)

$$
\begin{aligned}
H_{1} & =\left\langle x, y ; t^{e_{2}}, \ldots, t^{e_{k-1}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1} \\
H_{2} & =\left\langle x, y ; t^{e_{1}}, t^{e_{3}}, \ldots, t^{e_{k-1}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1}, \\
& \vdots \\
H_{k-1} & =\left\langle x, y ; t^{e_{1}}, \ldots, t^{e_{k-2}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1}, \\
H_{k} & =\left\langle x, y t^{e_{1}} ; t^{t_{2}-e_{1}}, \ldots, t^{e_{k-1}-\mathbf{e}_{1}}\right\rangle=\left\langle x, y t^{e_{1}}, \ldots, y t^{e_{k-1}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1}
\end{aligned}
$$

Corollary

Any almost-zero k-config. $\chi_{1_{0}}$ is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{\left|l_{0}\right|-1}$ by subgroups H_{1}, \ldots, H_{k} further satisfying $\operatorname{rk}\left(\bigcap_{i \in I} H_{i} \pi\right) \neq 1$, for every $\emptyset \neq I \subseteq[k]$.

Positive results

Theorem (Delgado-Roy-V. '22)

Every k-configuration $\chi_{\mathcal{I}}$ is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$, for $n \geq 2$ and $m \geq \sum_{l \in \mathcal{I}}(| | \mid-1)$.

(proof)

- Decompose $\chi_{\mathcal{I}}=\chi_{I_{1}} \vee \cdots \vee \chi_{I_{r}}$, where $\mathcal{I}=\left\{I_{1}, \ldots, I_{r}\right\}$;
- realize each χ_{1} in \mathbb{F}_{2}
- put together in a strongly complementary way.

Example

Consider χ
where $\mathcal{I}=\{\{1\}$

4\}, \{2, 3, 4\}\}. Let us
realize it in $\mathbb{F}_{2} \times \mathbb{Z}^{m}$ for $m=0+1+2+2=5$. Decomposing χ, we have

Positive results

Theorem (Delgado-Roy-V. '22)

Every k-configuration $\chi_{\mathcal{I}}$ is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$, for $n \geq 2$ and $m \geq \sum_{l \in \mathcal{I}}(|I|-1)$.

(proof)

- Decompose $\chi_{\mathcal{I}}=\chi_{l_{1}} \vee \cdots \vee \chi_{I_{r}}$, where $\mathcal{I}=\left\{I_{1}, \ldots, I_{r}\right\}$;
- realize each $\chi_{l_{j}}$ in $\mathbb{F}_{2} \times \mathbb{Z}^{\left|\left.\right|_{j}\right|-1}, j=1, \ldots, r$;
- put together in a strongly complementary way.

Example

Consider χ
$\{2,3\}$
Let us
realize it in $\mathbb{F}_{2} \times \mathbb{Z}^{m}$ for $m=0+1+2+2=5$. Decomposing χ, we
have

Positive results

Theorem (Delgado-Roy-V. '22)

Every k-configuration $\chi_{\mathcal{I}}$ is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$, for $n \geq 2$ and $m \geq \sum_{l \in \mathcal{I}}(| | \mid-1)$.

(proof)

- Decompose $\chi_{\mathcal{I}}=\chi_{I_{1}} \vee \cdots \vee \chi_{I_{r}}$, where $\mathcal{I}=\left\{I_{1}, \ldots, I_{r}\right\}$;
- realize each $\chi_{l_{j}}$ in $\mathbb{F}_{2} \times \mathbb{Z}^{\left|l_{j}\right|-1}, j=1, \ldots, r$;
- put together in a strongly complementary way.

Example

Consider χ
realize it in $\mathbb{F}_{2} \times \mathbb{Z}^{m}$ for $m=0+1+2+2=5$. Decomposing χ, we
have

Positive results

Theorem (Delgado-Roy-V. '22)

Every k-configuration $\chi_{\mathcal{I}}$ is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$, for $n \geq 2$ and $m \geq \sum_{l \in \mathcal{I}}(| | \mid-1)$.

(proof)

- Decompose $\chi_{\mathcal{I}}=\chi_{l_{1}} \vee \cdots \vee \chi_{I_{r}}$, where $\mathcal{I}=\left\{I_{1}, \ldots, I_{r}\right\}$;
- realize each $\chi_{I_{j}}$ in $\mathbb{F}_{2} \times \mathbb{Z}^{\left|l_{j}\right|-1}, j=1, \ldots, r$;
- put together in a strongly complementary way.

Example

Consider $\chi=\chi_{\mathcal{I}}$, where $\mathcal{I}=\{\{1\},\{2,3\},\{1,3,4\},\{2,3,4\}\}$. Let us realize it in $\mathbb{F}_{2} \times \mathbb{Z}^{m}$ for $m=0+1+2+2=5$. Decomposing χ, we have

$$
\chi=\chi_{\{1\}} \vee \chi_{\{2,3\}} \vee \chi_{\{1,3,4\}} \vee \chi_{\{2,3,4\}} .
$$

Positive results

Example (cont.)

In $\mathbb{F}_{2}=\langle x, y \mid-\rangle$ take the freely independent words $u_{j}=y^{-j} x y^{j} \in \mathbb{F}_{2}$, $j \in \mathbb{Z}$. Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}, \mathbf{e}_{5}\right\}$ be the canonical basis for \mathbb{Z}^{5}. Realize:

Positive results

Example (cont.)

In $\mathbb{F}_{2}=\langle x, y \mid-\rangle$ take the freely independent words $u_{j}=y^{-j} x y^{j} \in \mathbb{F}_{2}$, $j \in \mathbb{Z}$. Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}, \mathbf{e}_{5}\right\}$ be the canonical basis for \mathbb{Z}^{5}. Realize:

- $\chi_{\{1\}}$ as $H_{1}^{\prime}=\left\langle\ldots, u_{-2}, u_{-1}\right\rangle, H_{2}^{\prime}=\{1\}, H_{3}^{\prime}=\{1\}, H_{4}^{\prime}=\{1\}$, all inside $G^{\prime}=\left\langle\ldots, u_{-2}, u_{-1} ;-\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{5}$;

inside $G^{\prime \prime}$

$H_{4}^{\prime \prime \prime}=\left\langle u_{2}\right.$

And note that rk $\left(\bigcap_{i \in 1} H_{i}^{\prime} \pi\right) \neq 1, \operatorname{rk}\left(\bigcap_{i \in 1} H_{i}^{\prime \prime} \pi\right) \neq 1$,

Positive results

Example (cont.)

In $\mathbb{F}_{2}=\langle x, y \mid-\rangle$ take the freely independent words $u_{j}=y^{-j} x y^{j} \in \mathbb{F}_{2}$, $j \in \mathbb{Z}$. Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}, \mathbf{e}_{5}\right\}$ be the canonical basis for \mathbb{Z}^{5}. Realize:

- $\chi_{\{1\}}$ as $H_{1}^{\prime}=\left\langle\ldots, u_{-2}, u_{-1}\right\rangle, H_{2}^{\prime}=\{1\}, H_{3}^{\prime}=\{1\}, H_{4}^{\prime}=\{1\}$, all inside $G^{\prime}=\left\langle\ldots, u_{-2}, u_{-1} ;-\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{5}$;
- $\chi_{\{2,3\}}$ as $H_{1}^{\prime \prime}=\{1\}, H_{2}^{\prime \prime}=\left\langle u_{0}, u_{1}\right\rangle, H_{3}^{\prime \prime}=\left\langle u_{0}, u_{1} t^{e_{1}}\right\rangle, H_{4}^{\prime \prime}=\{1\}$, all inside $G^{\prime \prime}=\left\langle u_{0}, u_{1} ; t^{e_{1}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{5}$;

Therefore, we can

realize χ by the following subgroups

Positive results

Example (cont.)

In $\mathbb{F}_{2}=\langle x, y \mid-\rangle$ take the freely independent words $u_{j}=y^{-j} x y^{j} \in \mathbb{F}_{2}$, $j \in \mathbb{Z}$. Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}, \mathbf{e}_{5}\right\}$ be the canonical basis for \mathbb{Z}^{5}. Realize:

- $\chi_{\{1\}}$ as $H_{1}^{\prime}=\left\langle\ldots, u_{-2}, u_{-1}\right\rangle, H_{2}^{\prime}=\{1\}, H_{3}^{\prime}=\{1\}, H_{4}^{\prime}=\{1\}$, all inside $G^{\prime}=\left\langle\ldots, u_{-2}, u_{-1} ;-\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{5}$;
- $\chi_{\{2,3\}}$ as $H_{1}^{\prime \prime}=\{1\}, H_{2}^{\prime \prime}=\left\langle u_{0}, u_{1}\right\rangle, H_{3}^{\prime \prime}=\left\langle u_{0}, u_{1} t^{\mathrm{e}_{1}}\right\rangle, H_{4}^{\prime \prime}=\{1\}$, all inside $G^{\prime \prime}=\left\langle u_{0}, u_{1} ; t^{e^{1}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{5}$;
- $\chi_{\{1,3,4\}}$ as $H_{1}^{\prime \prime \prime}=\left\langle u_{2}, u_{3} ; t^{\mathbf{e}_{3}}\right\rangle, H_{2}^{\prime \prime \prime}=\{1\}, H_{3}^{\prime \prime \prime}=\left\langle u_{2}, u_{3} ; t^{\mathbf{e}_{2}}\right\rangle$, $H_{4}^{\prime \prime \prime}=\left\langle u_{2}, u_{3} t^{\mathbf{e}_{2}} ; t^{\mathrm{e}_{3}-\mathbf{e}_{2}}\right\rangle$, all inside $G^{\prime \prime \prime}=\left\langle u_{2}, u_{3} ; t^{\mathrm{e}_{2}}, t^{\mathrm{e}_{3}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{5} ;$

Positive results

Example (cont.)

In $\mathbb{F}_{2}=\langle x, y \mid-\rangle$ take the freely independent words $u_{j}=y^{-j} x y^{j} \in \mathbb{F}_{2}$, $j \in \mathbb{Z}$. Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}, \mathbf{e}_{5}\right\}$ be the canonical basis for \mathbb{Z}^{5}. Realize:

- $\chi_{\{1\}}$ as $H_{1}^{\prime}=\left\langle\ldots, u_{-2}, u_{-1}\right\rangle, H_{2}^{\prime}=\{1\}, H_{3}^{\prime}=\{1\}, H_{4}^{\prime}=\{1\}$, all inside $G^{\prime}=\left\langle\ldots, u_{-2}, u_{-1} ;-\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{5}$;
- $\chi_{\{2,3\}}$ as $H_{1}^{\prime \prime}=\{1\}, H_{2}^{\prime \prime}=\left\langle u_{0}, u_{1}\right\rangle, H_{3}^{\prime \prime}=\left\langle u_{0}, u_{1} t^{\mathrm{e}_{1}}\right\rangle, H_{4}^{\prime \prime}=\{1\}$, all inside $G^{\prime \prime}=\left\langle u_{0}, u_{1} ; \mathrm{t}^{\mathrm{e}_{1}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{5}$;
- $\chi_{\{1,3,4\}}$ as $H_{1}^{\prime \prime \prime}=\left\langle u_{2}, u_{3} ; t^{\mathbf{e}_{3}}\right\rangle, H_{2}^{\prime \prime \prime}=\{1\}, H_{3}^{\prime \prime \prime}=\left\langle u_{2}, u_{3} ; t^{\mathbf{e}_{2}}\right\rangle$, $H_{4}^{\prime \prime \prime}=\left\langle u_{2}, u_{3} t^{\mathbf{e}_{2}} ; t^{\mathbf{e}_{3}-\mathbf{e}_{2}}\right\rangle$, all inside $G^{\prime \prime \prime}=\left\langle u_{2}, u_{3} ; t^{\mathbf{e}_{2}}, t^{\mathrm{e}_{3}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{5}$;
- $\chi_{\{2,3,4\}}$ as $H_{1}^{\prime \prime \prime \prime}=\{1\}, H_{2}^{\prime \prime \prime}=\left\langle u_{4}, u_{5} ; t^{e_{5}}\right\rangle, H_{3}^{\prime \prime \prime \prime}=\left\langle u_{4}, u_{5} ; t^{e_{4}}\right\rangle$, $H_{4}^{\prime \prime \prime \prime}=\left\langle u_{4}, u_{5} t^{\mathrm{e}_{4}} ; t^{\mathrm{e}_{5}-\mathbf{e}_{4}}\right\rangle$, all inside $G^{\prime \prime \prime \prime}=\left\langle u_{4}, u_{5} ; t^{\mathbf{e}_{4}}, t^{\mathrm{e}_{5}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{5}$.

Positive results

Example (cont.)

In $\mathbb{F}_{2}=\langle x, y \mid-\rangle$ take the freely independent words $u_{j}=y^{-j} x y^{j} \in \mathbb{F}_{2}$, $j \in \mathbb{Z}$. Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}, \mathbf{e}_{5}\right\}$ be the canonical basis for \mathbb{Z}^{5}. Realize:

- $\chi_{\{1\}}$ as $H_{1}^{\prime}=\left\langle\ldots, u_{-2}, u_{-1}\right\rangle, H_{2}^{\prime}=\{1\}, H_{3}^{\prime}=\{1\}, H_{4}^{\prime}=\{1\}$, all inside $G^{\prime}=\left\langle\ldots, u_{-2}, u_{-1} ;-\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{5}$;
- $\chi_{\{2,3\}}$ as $H_{1}^{\prime \prime}=\{1\}, H_{2}^{\prime \prime}=\left\langle u_{0}, u_{1}\right\rangle, H_{3}^{\prime \prime}=\left\langle u_{0}, u_{1} t^{\mathrm{e}_{1}}\right\rangle, H_{4}^{\prime \prime}=\{1\}$, all inside $G^{\prime \prime}=\left\langle u_{0}, u_{1} ; \dot{t}^{\mathrm{e}_{1}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{5}$;
- $\chi_{\{1,3,4\}}$ as $H_{1}^{\prime \prime \prime}=\left\langle u_{2}, u_{3} ; t^{\mathbf{e}_{3}}\right\rangle, H_{2}^{\prime \prime \prime}=\{1\}, H_{3}^{\prime \prime \prime}=\left\langle u_{2}, u_{3} ; t^{\mathbf{e}_{2}}\right\rangle$, $H_{4}^{\prime \prime \prime}=\left\langle u_{2}, u_{3} t^{\mathbf{e}_{2}} ; t^{\mathbf{e}_{3}-\mathbf{e}_{2}}\right\rangle$, all inside $G^{\prime \prime \prime}=\left\langle u_{2}, u_{3} ; t^{\mathbf{e}_{2}}, t^{\mathrm{e}_{3}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{5}$;
- $\chi_{\{2,3,4\}}$ as $H_{1}^{\prime \prime \prime \prime}=\{1\}, H_{2}^{\prime \prime \prime \prime}=\left\langle u_{4}, u_{5} ; t^{e_{5}}\right\rangle, H_{3}^{\prime \prime \prime \prime}=\left\langle u_{4}, u_{5} ; t^{e_{4}}\right\rangle$, $H_{4}^{\prime \prime \prime \prime}=\left\langle u_{4}, u_{5} t^{\mathrm{e}_{4}} ; t^{\mathrm{e}_{5}-\mathrm{e}_{4}}\right\rangle$, all inside $G^{\prime \prime \prime \prime}=\left\langle u_{4}, u_{5} ; t^{\mathrm{e}_{4}}, t^{\mathrm{e}_{5}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{5}$. And note that rk $\left(\bigcap_{i \in I} H_{i}^{\prime} \pi\right) \neq 1$, rk $\left(\bigcap_{i \in I} H_{i}^{\prime \prime} \pi\right) \neq 1$, rk $\left(\bigcap_{i \in 1} H_{i}^{\prime \prime \prime} \pi\right) \neq 1$, and $\mathrm{rk}\left(\bigcap_{i \in 1} H_{i}^{\prime \prime \prime} \pi\right) \neq 1$. Therefore, we can realize χ by the following subgroups

Positive results

Example (cont.)

In $\mathbb{F}_{2}=\langle x, y \mid-\rangle$ take the freely independent words $u_{j}=y^{-j} x y^{j} \in \mathbb{F}_{2}$, $j \in \mathbb{Z}$. Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}, \mathbf{e}_{5}\right\}$ be the canonical basis for \mathbb{Z}^{5}. Realize:

- $\chi_{\{1\}}$ as $H_{1}^{\prime}=\left\langle\ldots, u_{-2}, u_{-1}\right\rangle, H_{2}^{\prime}=\{1\}, H_{3}^{\prime}=\{1\}, H_{4}^{\prime}=\{1\}$, all inside $G^{\prime}=\left\langle\ldots, u_{-2}, u_{-1} ;-\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{5}$;
- $\chi_{\{2,3\}}$ as $H_{1}^{\prime \prime}=\{1\}, H_{2}^{\prime \prime}=\left\langle u_{0}, u_{1}\right\rangle, H_{3}^{\prime \prime}=\left\langle u_{0}, u_{1} t^{\mathrm{e}_{1}}\right\rangle, H_{4}^{\prime \prime}=\{1\}$, all inside $G^{\prime \prime}=\left\langle u_{0}, u_{1} ; \mathrm{t}^{\mathrm{e}_{1}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{5}$;
- $\chi_{\{1,3,4\}}$ as $H_{1}^{\prime \prime \prime}=\left\langle u_{2}, u_{3} ; t^{\mathbf{e}_{3}}\right\rangle, H_{2}^{\prime \prime \prime}=\{1\}, H_{3}^{\prime \prime \prime}=\left\langle u_{2}, u_{3} ; t^{\mathbf{e}_{2}}\right\rangle$, $H_{4}^{\prime \prime \prime}=\left\langle u_{2}, u_{3} t^{\mathbf{e}_{2}} ; t^{\mathrm{e}_{3}-\mathbf{e}_{2}}\right\rangle$, all inside $G^{\prime \prime \prime}=\left\langle u_{2}, u_{3} ; t^{\mathbf{e}_{2}}, t^{\mathrm{e}_{3}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{5}$;
- $\chi_{\{2,3,4\}}$ as $H_{1}^{\prime \prime \prime}=\{1\}, H_{2}^{\prime \prime \prime}=\left\langle u_{4}, u_{5} ; t^{e_{5}}\right\rangle, H_{3}^{\prime \prime \prime \prime}=\left\langle u_{4}, u_{5} ; t^{e_{4}}\right\rangle$, $H_{4}^{\prime \prime \prime}=\left\langle u_{4}, u_{5} t^{\mathbf{e}_{4}} ; t^{\mathbf{e}_{5}-\mathbf{e}_{4}}\right\rangle$, all inside $G^{\prime \prime \prime \prime}=\left\langle u_{4}, u_{5} ; t^{\mathbf{e}_{4}}, t^{\mathbf{e}_{5}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{5}$. And note that rk $\left(\bigcap_{i \in I} H_{i}^{\prime} \pi\right) \neq 1$, rk $\left(\bigcap_{i \in I} H_{i}^{\prime \prime} \pi\right) \neq 1$, rk $\left(\bigcap_{i \in I} H_{i}^{\prime \prime \prime} \pi\right) \neq 1$, and $\mathrm{rk}\left(\bigcap_{i \in I} H_{i}^{\prime \prime \prime \prime} \pi\right) \neq 1$. Therefore, we can realize χ by the following subgroups

Positive results

Example (cont.)

$$
\begin{aligned}
& H_{1}=\left\langle\ldots, u_{-2}, u_{-1}, u_{2}, u_{3} ; t^{\mathbf{e}_{3}}\right\rangle, \\
& H_{2}=\left\langle u_{0}, u_{1}, u_{4}, u_{5} ; t^{\mathbf{e}_{5}}\right\rangle \\
& H_{3}=\left\langle u_{0}, u_{1} \mathbf{e}^{\mathbf{e}}, u_{2}, u_{3}, u_{4}, u_{5} ; t^{\mathbf{e}_{2}}, t^{\mathbf{e}_{4}}\right\rangle \\
& H_{4}=\left\langle u_{2}, u_{3} \mathbf{e}^{\mathbf{e}_{2}}, u_{4}, u_{5} \mathbf{e}^{\mathbf{e}_{4}} ; t^{\mathbf{e}_{3}-\mathbf{e}_{2}}, t^{\mathbf{e}_{5}-\mathbf{e}_{4}}\right\rangle .
\end{aligned}
$$

of $G^{\prime} \circledast G^{\prime \prime} \circledast G^{\prime \prime \prime} \circledast G^{\prime \prime \prime \prime} \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{5}$.

Gorollary

$\mathbb{F}_{2} \times\left(\oplus_{x_{0}} \mathbb{Z}\right)$ is intersection-saturated.

Theorem (Delgado-Roy-V. '22)
There exist finitely presented intersection-saturated groups.

Positive results

Example (cont.)

$$
\begin{aligned}
& H_{1}=\left\langle\ldots, u_{-2}, u_{-1}, u_{2}, u_{3} ; t^{\mathbf{e}_{3}}\right\rangle, \\
& H_{2}=\left\langle u_{0}, u_{1}, u_{4}, u_{5} ; t^{\mathbf{e}_{5}}\right\rangle \\
& H_{3}=\left\langle u_{0}, u_{1} \mathbf{e}^{\mathbf{e}}, u_{2}, u_{3}, u_{4}, u_{5} ; t^{\mathbf{e}_{2}}, t^{\mathbf{e}_{4}}\right\rangle \\
& H_{4}=\left\langle u_{2}, u_{3} \mathbf{e}^{\mathbf{e}_{2}}, u_{4}, u_{5} \mathbf{e}^{\mathbf{e}_{4}} ; t^{\mathbf{e}_{3}-\mathbf{e}_{2}}, t^{\mathbf{e}_{5}-\mathbf{e}_{4}}\right\rangle .
\end{aligned}
$$

of $G^{\prime} \circledast G^{\prime \prime} \circledast G^{\prime \prime \prime} \circledast G^{\prime \prime \prime \prime} \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{5}$.

Corollary

$\mathbb{F}_{2} \times\left(\oplus_{\aleph_{0}} \mathbb{Z}\right)$ is intersection-saturated.

Theorem (Delgado-Roy-V. '22)
There exist finitely presented intersection-saturated groups.

Positive results

Example (cont.)

$$
\begin{aligned}
& H_{1}=\left\langle\ldots, u_{-2}, u_{-1}, u_{2}, u_{3} ; t^{\mathbf{e}_{3}}\right\rangle, \\
& H_{2}=\left\langle u_{0}, u_{1}, u_{4}, u_{5} ; t^{\mathbf{e}_{5}}\right\rangle \\
& H_{3}=\left\langle u_{0}, u_{1} \mathbf{e}^{\mathbf{e}_{1}}, u_{2}, u_{3}, u_{4}, u_{5} ; t^{\mathbf{e}_{2}}, t^{\mathbf{e}_{4}}\right\rangle \\
& H_{4}=\left\langle u_{2}, u_{3} \mathbf{t}^{\mathbf{e}_{2}}, u_{4}, u_{5} t^{\mathbf{e}_{4}} ; t^{\mathbf{e}_{3}-\mathbf{e}_{2}}, t^{\mathbf{e}_{5}-\mathbf{e}_{4}}\right\rangle .
\end{aligned}
$$

of $G^{\prime} \circledast G^{\prime \prime} \circledast G^{\prime \prime \prime} \circledast G^{\prime \prime \prime \prime} \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{5}$.

Corollary

$\mathbb{F}_{2} \times\left(\oplus_{\aleph_{0}} \mathbb{Z}\right)$ is intersection-saturated.

Theorem (Delgado-Roy-V. '22)
There exist finitely presented intersection-saturated groups.

Positive results

Theorem (Delgado-Roy-V. '22)

There exist finitely presented intersection-saturated groups.

```
(Proof 1)
- Consider Thomson's group F;
- it is well know to be finitely presented and to contain }\mp@subsup{\oplus}{\mp@subsup{\aleph}{0}{}}{}\mathbb{Z}\mathrm{ ;
- therefore, }\mp@subsup{\mathbb{F}}{2}{}\timesF\mathrm{ is intersection-saturated.
- (Need to take }\mp@subsup{\mathbb{F}}{2}{}\times\mathrm{ because F does not contain }\mp@subsup{\mathbb{F}}{2}{}.
```


(Proof 2)

- Consider $G=\left(\oplus_{\aleph_{0}} \mathbb{Z}\right) \rtimes_{\alpha} \mathbb{Z}$, where α is the automorphism given by right translation of generators;
- G is recursively presented so, it embeds in a finitely presented group, $G \hookrightarrow G^{\prime}$;
- $\mathbb{F}_{2} \times G^{\prime}$ is finitely presented and intersection-saturated.

Positive results

Theorem (Delgado-Roy-V. '22)

There exist finitely presented intersection-saturated groups.

(Proof 1)

- Consider Thomson's group F;
- it is well know to be finitely presented and to contain $\oplus_{\kappa_{0}} \mathbb{Z}$;
- therefore, $\mathbb{F}_{2} \times F$ is intersection-saturated.
- (Need to take $\mathbb{F}_{2} \times$ because F does not conté in \mathbb{F}_{2}.)

```
(Proof 2)
- Consider }G=(\mp@subsup{\oplus}{0}{}\mathbb{Z})\mp@subsup{\rtimes}{\alpha}{}\mathbb{Z}\mathrm{ , where }\alpha\mathrm{ is the automorphism given by
right translation of generators;
- G is recursively presented so, it embeds in a finitely presented
group, G \hookrightarrow G';
- }\mp@subsup{\mathbb{F}}{2}{}\times\mp@subsup{G}{}{\prime}\mathrm{ is finitely presented and intersection-saturated.

\section*{Positive results}

\section*{Theorem (Delgado-Roy-V. '22)}

There exist finitely presented intersection-saturated groups.

\section*{(Proof 1)}
- Consider Thomson's group F;
- it is well know to be finitely presented and to contain \(\oplus_{\aleph_{0}} \mathbb{Z}\);
- therefore, \(\mathbb{F}_{2} \times F\) is intersection-saturated.
- (Need to take \(\mathbb{F}_{2} \times\) because \(F\) does not contain \(\mathbb{F}_{2}\).)


\section*{Positive results}

\section*{Theorem (Delgado-Roy-V. '22)}

There exist finitely presented intersection-saturated groups.

\section*{(Proof 1)}
- Consider Thomson's group F;
- it is well know to be finitely presented and to contain \(\oplus_{\aleph_{0}} \mathbb{Z}\);
- therefore, \(\mathbb{F}_{2} \times F\) is intersection-saturated.
- (Need to take \(\mathbb{F}_{2} \times\) because \(F\) does not contain \(\mathbb{F}_{2}\).)


\section*{Positive results}

\section*{Theorem (Delgado-Roy-V. '22)}

There exist finitely presented intersection-saturated groups.

\section*{(Proof 1)}
- Consider Thomson's group F;
- it is well know to be finitely presented and to contain \(\oplus_{\aleph_{0}} \mathbb{Z}\);
- therefore, \(\mathbb{F}_{2} \times F\) is intersection-saturated.
- (Need to take \(\mathbb{F}_{2} \times\) because \(F\) does not contain \(\mathbb{F}_{2}\).)


\section*{Positive results}

\section*{Theorem (Delgado-Roy-V. '22)}

There exist finitely presented intersection-saturated groups.

\section*{(Proof 1)}
- Consider Thomson's group F;
- it is well know to be finitely presented and to contain \(\oplus_{\aleph_{0}} \mathbb{Z}\);
- therefore, \(\mathbb{F}_{2} \times F\) is intersection-saturated.
- (Need to take \(\mathbb{F}_{2} \times\) because \(F\) does not contain \(\mathbb{F}_{2}\).)

\section*{(Proof 2)}
- Consider \(G=\left(\oplus_{\aleph_{0}} \mathbb{Z}\right) \rtimes_{\alpha} \mathbb{Z}\), where \(\alpha\) is the automorphism given by right translation of generators;
- \(G\) is recursively presented so, it embeds in a finitely presented group,
\(G\) is finitely presented and intersection-saturated.

\section*{Positive results}

\section*{Theorem (Delgado-Roy-V. '22)}

There exist finitely presented intersection-saturated groups.

\section*{(Proof 1)}
- Consider Thomson's group F;
- it is well know to be finitely presented and to contain \(\oplus_{\aleph_{0}} \mathbb{Z}\);
- therefore, \(\mathbb{F}_{2} \times F\) is intersection-saturated.
- (Need to take \(\mathbb{F}_{2} \times\) because \(F\) does not contain \(\mathbb{F}_{2}\).)

\section*{(Proof 2)}
- Consider \(G=\left(\oplus_{\aleph_{0}} \mathbb{Z}\right) \rtimes_{\alpha} \mathbb{Z}\), where \(\alpha\) is the automorphism given by right translation of generators;
- \(G\) is recursively presented so, it embeds in a finitely presented group, \(G \hookrightarrow G^{\prime}\);

\section*{Positive results}

\section*{Theorem (Delgado-Roy-V. '22)}

There exist finitely presented intersection-saturated groups.

\section*{(Proof 1)}
- Consider Thomson's group F;
- it is well know to be finitely presented and to contain \(\oplus_{\aleph_{0}} \mathbb{Z}\);
- therefore, \(\mathbb{F}_{2} \times F\) is intersection-saturated.
- (Need to take \(\mathbb{F}_{2} \times\) because \(F\) does not contain \(\mathbb{F}_{2}\).)

\section*{(Proof 2)}
- Consider \(G=\left(\oplus_{\aleph_{0}} \mathbb{Z}\right) \rtimes_{\alpha} \mathbb{Z}\), where \(\alpha\) is the automorphism given by right translation of generators;
- \(G\) is recursively presented so, it embeds in a finitely presented group, \(G \hookrightarrow G^{\prime}\);
- \(\mathbb{F}_{2} \times G^{\prime}\) is finitely presented and intersection-saturated.

\section*{An obstruction}

\section*{Lemma}

Let \(H_{1}, \ldots, H_{k} \leqslant \mathbb{G}=\mathbb{F}_{n} \times \mathbb{Z}^{m}\). Suppose that, for \(\emptyset \neq I, J \subseteq[k], H_{l}\) and \(H_{J}\) are f.g. whereas \(H_{I \cup J}=H_{l} \cap H_{J}\) is not. Then, \(\exists i \in I, \exists j \in J\) s.t. \(L_{i}=H_{i} \cap \mathbb{Z}^{m}\) and \(L_{j}=H_{j} \cap \mathbb{Z}^{m}\) both have rank strictly smaller than \(m\).

\section*{Proposition}

Let \(\chi\) be a \(k\)-config. and \(\emptyset \neq I_{1}, \ldots, I_{r} \subseteq[k]\) be \(r \geq 2\) subsets s.t.


\section*{Gorollary}


\section*{An obstruction}

\section*{Lemma}

Let \(H_{1}, \ldots, H_{k} \leqslant \mathbb{G}=\mathbb{F}_{n} \times \mathbb{Z}^{m}\). Suppose that, for \(\emptyset \neq I, J \subseteq[k], H_{l}\) and \(H_{J}\) are f.g. whereas \(H_{l \cup J}=H_{l} \cap H_{J}\) is not. Then, \(\exists i \in I, \exists j \in J\) s.t. \(L_{i}=H_{i} \cap \mathbb{Z}^{m}\) and \(L_{j}=H_{j} \cap \mathbb{Z}^{m}\) both have rank strictly smaller than \(m\).

\section*{Proposition}

Let \(\chi\) be a \(k\)-config. and \(\emptyset \neq I_{1}, \ldots, I_{r} \subseteq[k]\) be \(r \geq 2\) subsets s.t. \(\forall j \in[r],\left(I_{1} \cup \cdots \cup \widehat{I}_{j} \cup \cdots \cup I_{r}\right) \chi=\mathbf{0}\), but \(\left(I_{1} \cup \cdots \cup I_{r}\right) \chi=\mathbf{1}\). Then \(\chi\) is not realizable in \(\mathbb{F}_{n} \times \mathbb{Z}^{r-2}\).

Corollary


\section*{An obstruction}

\section*{Lemma}

Let \(H_{1}, \ldots, H_{k} \leqslant \mathbb{G}=\mathbb{F}_{n} \times \mathbb{Z}^{m}\). Suppose that, for \(\emptyset \neq I, J \subseteq[k], H_{l}\) and \(H_{J}\) are f.g. whereas \(H_{\cap \cup J}=H_{l} \cap H_{J}\) is not. Then, \(\exists i \in I, \exists j \in J\) s.t. \(L_{i}=H_{i} \cap \mathbb{Z}^{m}\) and \(L_{j}=H_{j} \cap \mathbb{Z}^{m}\) both have rank strictly smaller than \(m\).

\section*{Proposition}

Let \(\chi\) be a \(k\)-config. and \(\emptyset \neq I_{1}, \ldots, I_{r} \subseteq[k]\) be \(r \geq 2\) subsets s.t. \(\forall j \in[r],\left(I_{1} \cup \cdots \cup \widehat{I}_{j} \cup \cdots \cup I_{r}\right) \chi=\mathbf{0}\), but \(\left(I_{1} \cup \cdots \cup I_{r}\right) \chi=\mathbf{1}\). Then \(\chi\) is not realizable in \(\mathbb{F}_{n} \times \mathbb{Z}^{r-2}\).

\section*{Corollary}

The 3-configurations
 are not realizable in \(\mathbb{F}_{n} \times \mathbb{Z}\).

\section*{An obstruction}

\section*{Proposition}

The \(k\)-configuration \(\chi_{[k]}\) is realizable in \(\mathbb{F}_{n} \times \mathbb{Z}^{k-1}\), but not in \(\mathbb{F}_{n} \times \mathbb{Z}^{k-2}\).
Hence, the set of configurations realizable in \(\mathbb{F}_{n} \times \mathbb{Z}^{m}\) increases strictly with \(m\).

\section*{Outline}

\section*{(1) Our main results}

2 Free-times-free-abelian groups
(3) Realizable / unrealizable \(k\)-configurations

4 The free case
(5) Open questions

\section*{More on configurations}

\section*{Definition}

Let \(\chi\) be a \(k\)-config. and let \(i \in[k]\). Its restriction to \(\widehat{i}=[k] \backslash\{i\}\) is the ( \(k-1\) )-configuration
\[
\left.\begin{array}{rl}
\chi_{\mid \widehat{i}}: \mathcal{P}([k] \backslash\{i\}) \backslash\{\varnothing\} & \rightarrow\{0,1\} \\
I & \mapsto
\end{array}\right)
\]

Definition
Given two \(k\)-configurations \(\chi, \chi^{\prime}\) and \(\delta \in\{0,1\}\), we define

\section*{More on configurations}

\section*{Definition}

Let \(\chi\) be a \(k\)-config. and let \(i \in[k]\). Its restriction to \(\widehat{i}=[k] \backslash\{i\}\) is the ( \(k-1\) )-configuration
\[
\begin{aligned}
\chi_{\mid \widehat{i}}: \mathcal{P}([k] \backslash\{i\}) \backslash\{\varnothing\} & \rightarrow \\
I & \mapsto 0,1\} \\
& \mapsto(I) \chi .
\end{aligned}
\]

\section*{Definition}

Given two \(k\)-configurations \(\chi, \chi^{\prime}\) and \(\delta \in\{0,1\}\), we define \(\chi \boxplus_{\delta} \chi^{\prime}: \mathcal{P}([k+1]) \backslash\{\varnothing\} \quad \rightarrow \quad\{0,1\}\)
\[
I \mapsto \begin{cases}(I) \chi & \text { if } k+1 \notin I, \\ (I \backslash\{k+1\}) \chi^{\prime} & \text { if }\{k+1\} \subsetneq I, \\ \delta & \text { if }\{k+1\}=I,\end{cases}
\]
\(a(k+1)\)-configuration.

\section*{More on cofigurations}

\section*{Example}


\section*{Déefinition}

Let \(\chi\) be a \(k\)-configuration, and \(i \in[k]\). The index \(i\) is said to be 0 -monochromatic (in \(\chi\) ) if \((I) \chi=0 \forall I \subseteq[k]\) containing i; i.e., if \(\chi=\chi_{\mid \hat{i}} \boxplus_{0} 0\). Similarly, the index \(i\) is said to be 1-monochromatic (in \(\chi)\) if \(\chi=\chi_{\mid \hat{i}} \boxplus_{1} 1\).

\section*{Lemma}

If a \(k\)-configuration \(\chi\) is realizable in \(\mathbb{F}_{n}\) with \(n \geq 2\), then the \((k+1)\)-configurations \(\chi \boxplus_{0} \mathbf{0}, \chi \boxplus_{1} \mathbf{1}, \chi \boxplus_{0} \chi\), and \(\chi \boxplus_{1} \chi\) are also realizable in \(\mathbb{F}_{n}\).

\section*{More on cofigurations}

\section*{Example}

\(\boxplus_{1}\)


\section*{Definition}

Let \(\chi\) be a \(k\)-configuration, and \(i \in[k]\). The index \(i\) is said to be 0 -monochromatic (in \(\chi\) ) if \((I) \chi=0 \forall I \subseteq[k]\) containing i; i.e., if \(\chi=\chi_{\mid \widehat{i}} \boxplus_{0} 0\). Similarly, the index \(i\) is said to be 1 -monochromatic (in \(\chi)\) if \(\chi=\chi_{\mid \widehat{i}} \boxplus_{1} 1\).

\section*{More on cofigurations}

\section*{Example}

\(\boxplus_{1}\)


Definition
Let \(\chi\) be a \(k\)-configuration, and \(i \in[k]\). The index \(i\) is said to be 0 -monochromatic (in \(\chi\) ) if (I) \(\chi=0 \forall I \subseteq[k]\) containing i; i.e., if \(\chi=\chi_{\mid \widehat{i}} \boxplus_{0} 0\). Similarly, the index \(i\) is said to be 1-monochromatic (in \(\chi)\) if \(\chi=\chi_{\mid \widehat{i}} \boxplus_{1} 1\).

\section*{Lemma}

If a \(k\)-configuration \(\chi\) is realizable in \(\mathbb{F}_{n}\) with \(n \geq 2\), then the \((k+1)\)-configurations \(\chi \boxplus_{0} \mathbf{0}, \chi \boxplus_{1} \mathbf{1}, \chi \boxplus_{0} \chi\), and \(\chi \boxplus_{1} \chi\) are also realizable in \(\mathbb{F}_{n}\).

\section*{Characterization for the free case}

\section*{(Proof)}

Let \(\mathbb{F}_{2} * \mathbb{F}_{\aleph_{0}} \simeq W * U=\left\langle w_{1}, w_{2}, \ldots\right\rangle *\langle u, v\rangle \leqslant \mathbb{F}_{n}\), and take \(H_{1}, \ldots, H_{k} \leqslant W \leqslant \mathbb{F}_{n}\) realizing \(\chi\). Now, in order to realize:


\section*{Definition}

A \(k\)-configuration \(\chi\) is said to be Howson if, for every \(\emptyset \neq I, J \subseteq[k]\), \((I) \chi=(J) \chi=0 \Rightarrow(I \cup J) \chi=0\).

\section*{Characterization for the free case}

\section*{(Proof)}

Let \(\mathbb{F}_{2} * \mathbb{F}_{\aleph_{0}} \simeq W * U=\left\langle w_{1}, w_{2}, \ldots\right\rangle *\langle u, v\rangle \leqslant \mathbb{F}_{n}\), and take \(H_{1}, \ldots, H_{k} \leqslant W \leqslant \mathbb{F}_{n}\) realizing \(\chi\). Now, in order to realize:
- \(\chi \boxplus_{0} \mathbf{0}\), take \(\widetilde{H}_{1}=H_{1}, \ldots, \widetilde{H}_{k}=H_{k}\), and \(\widetilde{H}_{k+1}=\{1\}\);
 \(i \neq k+1, \widetilde{H}_{k+1} \cap \tilde{H}_{i}=\tilde{H}_{k+1}\) which is non-f.g.;
- \(\chi \boxplus_{n} \chi\), take \(\tilde{H}_{1}=H_{1}\)
- \(\chi \boxplus_{1} \chi\), take \(H_{1}=H_{1}, \ldots, H_{k}=H_{k}\), and \(H_{k+1}=W\).

\section*{Definition}

A \(k\)-configuration \(\chi\) is said to be Howson if, for every \(\emptyset \neq I, J \subseteq[k]\), \((I) \chi=(J) \chi=0 \Rightarrow(I \cup J) \chi=0\).

\section*{Characterization for the free case}

\section*{(Proof)}

Let \(\mathbb{F}_{2} * \mathbb{F}_{\aleph_{0}} \simeq W * U=\left\langle w_{1}, w_{2}, \ldots\right\rangle *\langle u, v\rangle \leqslant \mathbb{F}_{n}\), and take \(H_{1}, \ldots, H_{k} \leqslant W \leqslant \mathbb{F}_{n}\) realizing \(\chi\). Now, in order to realize:
- \(\chi \boxplus_{0} \mathbf{0}\), take \(\widetilde{H}_{1}=H_{1}, \ldots, \widetilde{H}_{k}=H_{k}\), and \(\widetilde{H}_{k+1}=\{1\}\);
- \(\chi \boxplus_{1}\) 1, take \(\widetilde{H}_{1}=H_{1} *\langle u, v\rangle, \ldots, \widetilde{H}_{k}=H_{k} *\langle u, v\rangle\) and \(\widetilde{H}_{k+1}=\ll u>_{u}: \widetilde{H}_{1}, \ldots, \widetilde{H}_{k}\) realize \(\chi \vee \mathbf{0}=\chi\) and, for every \(i \neq k+1, \widetilde{H}_{k+1} \cap \widetilde{H}_{i}=\widetilde{H}_{k+1}\) which is non-f.g.;

\section*{Definition}

A \(k\)-configuration \(\chi\) is said to be Howson if, for every \(\theta \neq I, J \subseteq[k]\),
\((I) \chi=(J) \chi=0 \Rightarrow(I \cup J) \chi=0\).

\section*{Characterization for the free case}

\section*{(Proof)}

Let \(\mathbb{F}_{2} * \mathbb{F}_{\aleph_{0}} \simeq W * U=\left\langle w_{1}, w_{2}, \ldots\right\rangle *\langle u, v\rangle \leqslant \mathbb{F}_{n}\), and take \(H_{1}, \ldots, H_{k} \leqslant W \leqslant \mathbb{F}_{n}\) realizing \(\chi\). Now, in order to realize:
- \(\chi \boxplus_{0} \mathbf{0}\), take \(\widetilde{H}_{1}=H_{1}, \ldots, \widetilde{H}_{k}=H_{k}\), and \(\widetilde{H}_{k+1}=\{1\}\);
- \(\chi \boxplus_{1}\) 1, take \(\widetilde{H}_{1}=H_{1} *\langle u, v\rangle, \ldots, \widetilde{H}_{k}=H_{k} *\langle u, v\rangle\) and \(\widetilde{H}_{k+1}=\ll u \Vdash_{u}: \widetilde{H}_{1}, \ldots, \widetilde{H}_{k}\) realize \(\chi \vee \mathbf{0}=\chi\) and, for every \(i \neq k+1, \widetilde{H}_{k+1} \cap \widetilde{H}_{i}=\widetilde{H}_{k+1}\) which is non-f.g.;
- \(\chi \boxplus_{0} \chi\), take \(\widetilde{H}_{1}=H_{1}, \ldots, \widetilde{H}_{k}=H_{k}\), and \(\widetilde{H}_{k+1}=\mathbb{F}_{n}\);

\section*{Definition}

A \(k\)-configuration \(\chi\) is said to be Howson if, for every \(\theta \neq I, J \subseteq[k]\),
\((I) \chi=(J) \chi=0 \Rightarrow(I \cup J) \chi=0\).

\section*{Characterization for the free case}

\section*{(Proof)}

Let \(\mathbb{F}_{2} * \mathbb{F}_{\aleph_{0}} \simeq W * U=\left\langle w_{1}, w_{2}, \ldots\right\rangle *\langle u, v\rangle \leqslant \mathbb{F}_{n}\), and take \(H_{1}, \ldots, H_{k} \leqslant W \leqslant \mathbb{F}_{n}\) realizing \(\chi\). Now, in order to realize:
- \(\chi \boxplus_{0} \mathbf{0}\), take \(\widetilde{H}_{1}=H_{1}, \ldots, \widetilde{H}_{k}=H_{k}\), and \(\widetilde{H}_{k+1}=\{1\}\);
- \(\chi \boxplus_{1}\) 1, take \(\widetilde{H}_{1}=H_{1} *\langle u, v\rangle, \ldots, \widetilde{H}_{k}=H_{k} *\langle u, v\rangle\) and \(\widetilde{H}_{k+1}=\ll u \Vdash_{u}: \widetilde{H}_{1}, \ldots, \widetilde{H}_{k}\) realize \(\chi \vee \mathbf{0}=\chi\) and, for every \(i \neq k+1, \widetilde{H}_{k+1} \cap \widetilde{H}_{i}=\widetilde{H}_{k+1}\) which is non-f.g.;
- \(\chi \boxplus_{0} \chi\), take \(\widetilde{H}_{1}=H_{1}, \ldots, \widetilde{H}_{k}=H_{k}\), and \(\widetilde{H}_{k+1}=\mathbb{F}_{n}\);
- \(\chi \boxplus_{1} \chi\), take \(\widetilde{H}_{1}=H_{1}, \ldots, \widetilde{H}_{k}=H_{k}\), and \(\widetilde{H}_{k+1}=W\).

\section*{Definition}

A \(k\)-configuration \(\chi\) is said to be Howson if, for every \(\theta \neq 1, J \subseteq[k]\), \((I) \chi=(J) \chi=0 \Rightarrow(I \cup J) \chi=0\).

\section*{Characterization for the free case}

\section*{(Proof)}

Let \(\mathbb{F}_{2} * \mathbb{F}_{\aleph_{0}} \simeq W * U=\left\langle w_{1}, w_{2}, \ldots\right\rangle *\langle u, v\rangle \leqslant \mathbb{F}_{n}\), and take \(H_{1}, \ldots, H_{k} \leqslant W \leqslant \mathbb{F}_{n}\) realizing \(\chi\). Now, in order to realize:
- \(\chi \boxplus_{0} \mathbf{0}\), take \(\widetilde{H}_{1}=H_{1}, \ldots, \widetilde{H}_{k}=H_{k}\), and \(\widetilde{H}_{k+1}=\{1\}\);
- \(\chi \boxplus_{1}\) 1, take \(\widetilde{H}_{1}=H_{1} *\langle u, v\rangle, \ldots, \widetilde{H}_{k}=H_{k} *\langle u, v\rangle\) and \(\widetilde{H}_{k+1}=\ll u>\overbrace{u}: \widetilde{H}_{1}, \ldots, \widetilde{H}_{k}\) realize \(\chi \vee \mathbf{0}=\chi\) and, for every \(i \neq k+1, \widetilde{H}_{k+1} \cap \widetilde{H}_{i}=\widetilde{H}_{k+1}\) which is non-f.g.;
- \(\chi \boxplus_{0} \chi\), take \(\widetilde{H}_{1}=H_{1}, \ldots, \widetilde{H}_{k}=H_{k}\), and \(\widetilde{H}_{k+1}=\mathbb{F}_{n}\);
- \(\chi \boxplus_{1} \chi\), take \(\widetilde{H}_{1}=H_{1}, \ldots, \widetilde{H}_{k}=H_{k}\), and \(\widetilde{H}_{k+1}=W\).

\section*{Definition}

A \(k\)-configuration \(\chi\) is said to be Howson if, for every \(\emptyset \neq I, J \subseteq[k]\), \((I) \chi=(J) \chi=0 \Rightarrow(I \cup J) \chi=0\).

\section*{Characterization for the free case}

Theorem (Delgado-Roy-V., '22)
A \(k\)-configuration is realizable in \(\mathbb{F}_{n}, n \geq 2 \Leftrightarrow\) it is Howson.
(Proof)
For \(\Leftarrow\), we will do induction on the cardinal of the support of \(\chi\), say s (regardless of its size \(k\) ).
- If \(s=0\) then \(\chi=\mathbf{0}\), clearly realizable in \(\mathbb{F}_{2}\).
- Given \(\chi\) with \(|\operatorname{supp}(\chi)|=s\) and being Howson, define the cone of \(\chi\) with vertex \(I \subseteq[k]\), denoted by \(c_{I}(\chi)\), as

- Now let \(I_{1}, \ldots, I_{p} \subseteq[k]\) be the maximal elements in \(\operatorname{supp}(\chi)\) (w.r.t. inclusion). It is clear that \(\chi=c_{l_{1}}(\chi) \vee \cdots \vee c_{l_{p}}(\chi)\).

\section*{Characterization for the free case}

\section*{Theorem (Delgado-Roy-V., '22)}

A \(k\)-configuration is realizable in \(\mathbb{F}_{n}, n \geq 2 \Leftrightarrow\) it is Howson.

\section*{(Proof)}

For \(\Leftarrow\), we will do induction on the cardinal of the support of \(\chi\), say \(s\) (regardless of its size \(k\) ).
- If \(s=0\) then \(\chi=0\), clearly realizable in \(\mathbb{F}_{2}\).
- Given \(\chi\) with \(|\operatorname{supp}(\chi)|=s\) and being Howson, define the cone of \(\chi\) with vertex \(I \subseteq[k]\), denoted by \(c_{l}(\chi)\), as

\section*{- Now let \(I_{1}, \ldots, I_{p} \subseteq[k]\) be the maximal elements in \(\operatorname{supp}(\chi)\) (w.r.t.} inclusion). It is clear that \(\chi=c_{l_{1}}(\chi)\)

\section*{Characterization for the free case}

\section*{Theorem (Delgado-Roy-V., '22)}

A \(k\)-configuration is realizable in \(\mathbb{F}_{n}, n \geq 2 \Leftrightarrow\) it is Howson.

\section*{(Proof)}

For \(\Leftarrow\), we will do induction on the cardinal of the support of \(\chi\), say s (regardless of its size \(k\) ).
- If \(s=0\) then \(\chi=\mathbf{0}\), clearly realizable in \(\mathbb{F}_{2}\).
- Given \(\chi\) with \(|\operatorname{supp}(\chi)|=s\) and being Howson, define the cone of \(\chi\) with vertex \(I \subseteq[k]\), denoted by \(c_{l}(\chi)\), as
- Now let \(I_{1}, \ldots, I_{p} \subseteq[k]\) be the maximal elements in \(\operatorname{supp}(\chi)\) (w.r.t.
inclusion). It is clear that \(\chi\)

\section*{Characterization for the free case}

\section*{Theorem (Delgado-Roy-V., '22)}

A \(k\)-configuration is realizable in \(\mathbb{F}_{n}, n \geq 2 \Leftrightarrow\) it is Howson.

\section*{(Proof)}

For \(\Leftarrow\), we will do induction on the cardinal of the support of \(\chi\), say s (regardless of its size \(k\) ).
- If \(s=0\) then \(\chi=\mathbf{0}\), clearly realizable in \(\mathbb{F}_{2}\).
- Given \(\chi\) with \(|\operatorname{supp}(\chi)|=s\) and being Howson, define the cone of \(\chi\) with vertex \(I \subseteq[k]\), denoted by \(c_{l}(\chi)\), as
\[
\begin{aligned}
c_{l}(\chi): \mathcal{P}([k]) \backslash\{\varnothing\} & \rightarrow\{0,1\} \\
J & \mapsto \begin{cases}0 & \text { if } J \nsubseteq I, \\
(J) \chi & \text { if } J \subseteq I .\end{cases}
\end{aligned}
\]
- Now let \(I_{1}, \ldots, I_{p} \subseteq[k]\) be the maximal elements in \(\operatorname{supp}(\chi)\) (w.r.t. inclusion). It is clear that \(\chi\)

\section*{Characterization for the free case}

\section*{Theorem (Delgado-Roy-V., '22)}

A \(k\)-configuration is realizable in \(\mathbb{F}_{n}, n \geq 2 \Leftrightarrow\) it is Howson.

\section*{(Proof)}

For \(\Leftarrow\), we will do induction on the cardinal of the support of \(\chi\), say s (regardless of its size \(k\) ).
- If \(s=0\) then \(\chi=\mathbf{0}\), clearly realizable in \(\mathbb{F}_{2}\).
- Given \(\chi\) with \(|\operatorname{supp}(\chi)|=s\) and being Howson, define the cone of \(\chi\) with vertex \(I \subseteq[k]\), denoted by \(c_{l}(\chi)\), as
\[
\begin{aligned}
c_{l}(\chi): \mathcal{P}([k]) \backslash\{\varnothing\} & \rightarrow\{0,1\} \\
J & \mapsto \begin{cases}0 & \text { if } J \nsubseteq I, \\
(J) \chi & \text { if } J \subseteq I .\end{cases}
\end{aligned}
\]
- Now let \(l_{1}, \ldots, I_{p} \subseteq[k]\) be the maximal elements in \(\operatorname{supp}(\chi)\) (w.r.t. inclusion). It is clear that \(\chi=c_{l_{1}}(\chi) \vee \cdots \vee c_{l_{p}}(\chi)\).

\section*{Characterization for the free case}

\section*{(cont.)}
- If \(p \geq 2\), by the induction hypothesis we can realize each of \(c_{l_{1}}(\chi), \ldots, c_{l_{\rho}}(\chi)\) in \(\mathbb{F}_{2}\), and so, realize their join \(\chi\), in \(\mathbb{F}_{2}\) as well.
- Hence, we are reduced to the case \(p=1\) : \(\chi\) is Howson and \(\exists \emptyset \neq I_{1} \subseteq[k]\) with \(\left(I_{1}\right) \chi=1\), and \((J) \chi=0\) for every \(J \nsubseteq I_{1}\)
- If \(I_{1} \neq[k]\) then any \(j \in[k] \backslash I_{1}\) is 0 -monochromatic, \(\chi=\chi_{1 \hat{i}} \boxplus_{0} 0\), and we are reduced to realize \(\chi_{\uparrow \hat{i}}\); repeating, we can assume \(I_{1}=[k]\). That is, \(\chi\) is a Howson \(k\)-config. s.t. \(([k]) \chi=1\)
- If \(\chi=1\) then it is clearly realizable in \(\mathbb{F}_{2}\).
- Otherwise, take \(\varnothing \neq I_{2} \subseteq[k]\) with \(\left(I_{2}\right) \chi=0\) and with maximal possible cardinal.
- Since \(I_{2} \neq[k], \exists j \notin l_{2}\), and any such index is 1 -monochromatic. in fact, any \(j \in J \subseteq[k]\) satisfies \(\left|I_{2} \cup J\right|>\left|I_{2}\right|\) so \(\left(I_{2} \cup J\right) \chi=1\) and, since \(\chi\) is Howson and \(\left(I_{2}\right) \chi=0\), then \((J) \chi=1\)
- Hence, by induction hypothesis, \(\chi_{\mid \hat{j}}\) is realizable in \(\mathbb{F}_{2}\) and \(\chi=\chi_{\widehat{\imath}} \boxplus_{1} 1\) as well.

\section*{Characterization for the free case}

\section*{(cont.)}
- If \(p \geq 2\), by the induction hypothesis we can realize each of \(c_{l_{1}}(\chi), \ldots, c_{l_{p}}(\chi)\) in \(\mathbb{F}_{2}\), and so, realize their join \(\chi\), in \(\mathbb{F}_{2}\) as well.
- Hence, we are reduced to the case \(p=1\) : \(\chi\) is Howson and \(\exists \emptyset \neq I_{1} \subseteq[k]\) with \(\left(I_{1}\right) \chi=1\), and \((J) \chi=0\) for every \(J \nsubseteq I_{1}\).
- If \(I_{1} \neq[k]\) then any \(j \in[k] \backslash I_{1}\) is 0 -monochromatic, \(\chi=\chi_{\mid \vec{i}} \boxplus_{0} 0\), and we are reduced to realize \(\chi_{\hat{i}}\); repeating, we can assume \(I_{1}=[k]\). That is, \(\chi\) is a Howson \(k\)-config. s.t. \(([k]) \chi=1\) - If \(\chi=1\) then it is clearly realizable in \(\mathbb{F}_{2}\).
- Otherwise, take \(\varnothing \neq I_{2} \subseteq[k]\) with \(\left(I_{2}\right) \chi=0\) and with maximal possible cardinal.
- Since \(I_{2} \neq[k], \exists j \notin I_{2}\), and any such index is 1-monochromatic: in fact, any \(j \in J \subseteq[k]\) satisfies \(\left|I_{2} \cup J\right|>\left|I_{2}\right|\) so \(\left(I_{2} \cup J\right) \chi=1\) and, since \(\chi\) is Howson and \(\left(I_{2}\right) \chi=0\), then \((J) \chi=1\)
- Hence, by induction hypothesis, \(\chi_{\hat{i}}\) is realizable in \(\mathbb{F}_{2}\) and \(\chi=\chi_{\hat{j}} \boxplus_{1} 1\) as well.

\section*{Characterization for the free case}

\section*{(cont.)}
- If \(p \geq 2\), by the induction hypothesis we can realize each of \(c_{l_{1}}(\chi), \ldots, c_{l_{p}}(\chi)\) in \(\mathbb{F}_{2}\), and so, realize their join \(\chi\), in \(\mathbb{F}_{2}\) as well.
- Hence, we are reduced to the case \(p=1\) : \(\chi\) is Howson and \(\exists \emptyset \neq I_{1} \subseteq[k]\) with \(\left(I_{1}\right) \chi=1\), and \((J) \chi=0\) for every \(J \nsubseteq I_{1}\).
- If \(I_{1} \neq[k]\) then any \(j \in[k] \backslash I_{1}\) is 0 -monochromatic, \(\chi=\chi_{\mid \hat{j}} \boxplus_{0} \mathbf{0}\), and we are reduced to realize \(\chi_{\mid \hat{j}}\); repeating, we can assume \(I_{1}=[k]\). That is, \(\chi\) is a Howson \(k\)-config. s.t. \(([k]) \chi=1\).
- If \(\chi=1\) then it is clearly realizable in \(\mathbb{F}_{2}\).
- Otherwise, take \(\varnothing \neq I_{2} \subseteq[k]\) with \(\left(I_{2}\right) \chi=0\) and with maximal possible cardinal.
- Since \(I_{2} \neq[k], \exists j \notin I_{2}\), and any such index is 1-monochromatic: in fact, any \(j \in J \subseteq[k]\) satisfies \(\left|I_{2} \cup J\right|>\left|I_{2}\right|\) so \(\left(I_{2} \cup J\right) \chi=1\) and, since \(\chi\) is Howson and \(\left(I_{2}\right) \chi=0\), then \((J) \chi=1\)
- Hence, by induction hypothesis, \(\chi_{\hat{i}}\) is realizable in \(\mathbb{F}_{2}\) and \(\chi=\chi_{\mid-1} \boxplus_{1} 1\) as well.

\section*{Characterization for the free case}

\section*{(cont.)}
- If \(p \geq 2\), by the induction hypothesis we can realize each of \(c_{l_{1}}(\chi), \ldots, c_{l_{p}}(\chi)\) in \(\mathbb{F}_{2}\), and so, realize their join \(\chi\), in \(\mathbb{F}_{2}\) as well.
- Hence, we are reduced to the case \(p=1\) : \(\chi\) is Howson and \(\exists \emptyset \neq I_{1} \subseteq[k]\) with \(\left(I_{1}\right) \chi=1\), and \((J) \chi=0\) for every \(J \nsubseteq I_{1}\).
- If \(I_{1} \neq[k]\) then any \(j \in[k] \backslash I_{1}\) is 0 -monochromatic, \(\chi=\chi_{\mid \hat{j}} \boxplus_{0} \mathbf{0}\), and we are reduced to realize \(\chi_{\mid \hat{j}}\); repeating, we can assume \(I_{1}=[k]\). That is, \(\chi\) is a Howson \(k\)-config. s.t. \(([k]) \chi=1\).
- If \(\chi=\mathbf{1}\) then it is clearly realizable in \(\mathbb{F}_{2}\).
- Otherwise, take e

\section*{Characterization for the free case}

\section*{(cont.)}
- If \(p \geq 2\), by the induction hypothesis we can realize each of \(c_{l_{1}}(\chi), \ldots, c_{l_{p}}(\chi)\) in \(\mathbb{F}_{2}\), and so, realize their join \(\chi\), in \(\mathbb{F}_{2}\) as well.
- Hence, we are reduced to the case \(p=1\) : \(\chi\) is Howson and \(\exists \emptyset \neq I_{1} \subseteq[k]\) with \(\left(I_{1}\right) \chi=1\), and \((J) \chi=0\) for every \(J \nsubseteq I_{1}\).
- If \(I_{1} \neq[k]\) then any \(j \in[k] \backslash I_{1}\) is 0 -monochromatic, \(\chi=\chi_{\mid \hat{j}} \boxplus_{0} \mathbf{0}\), and we are reduced to realize \(\chi_{\mid \hat{j}}\); repeating, we can assume \(I_{1}=[k]\). That is, \(\chi\) is a Howson \(k\)-config. s.t. \(([k]) \chi=1\).
- If \(\chi=\mathbf{1}\) then it is clearly realizable in \(\mathbb{F}_{2}\).
- Otherwise, take \(\varnothing \neq I_{2} \subseteq[k]\) with \(\left(I_{2}\right) \chi=0\) and with maximal possible cardinal.

\section*{Characterization for the free case}

\section*{(cont.)}
- If \(p \geq 2\), by the induction hypothesis we can realize each of \(c_{l_{1}}(\chi), \ldots, c_{l_{p}}(\chi)\) in \(\mathbb{F}_{2}\), and so, realize their join \(\chi\), in \(\mathbb{F}_{2}\) as well.
- Hence, we are reduced to the case \(p=1\) : \(\chi\) is Howson and \(\exists \emptyset \neq I_{1} \subseteq[k]\) with \(\left(I_{1}\right) \chi=1\), and \((J) \chi=0\) for every \(J \nsubseteq I_{1}\).
- If \(I_{1} \neq[k]\) then any \(j \in[k] \backslash I_{1}\) is 0 -monochromatic, \(\chi=\chi_{\mid \hat{j}} \boxplus_{0} \mathbf{0}\), and we are reduced to realize \(\chi_{\mid \hat{j}}\); repeating, we can assume \(I_{1}=[k]\). That is, \(\chi\) is a Howson \(k\)-config. s.t. \(([k]) \chi=1\).
- If \(\chi=\mathbf{1}\) then it is clearly realizable in \(\mathbb{F}_{2}\).
- Otherwise, take \(\varnothing \neq I_{2} \subseteq[k]\) with \(\left(I_{2}\right) \chi=0\) and with maximal possible cardinal.
- Since \(I_{2} \neq[k], \exists j \notin I_{2}\), and any such index is 1 -monochromatic: in fact, any \(j \in J \subseteq[k]\) satisfies \(\left|I_{2} \cup J\right|>\left|I_{2}\right|\) so \(\left(I_{2} \cup J\right) \chi=1\) and, since \(\chi\) is Howson and \(\left(I_{2}\right) \chi=0\), then \((J) \chi=1\).

\section*{Characterization for the free case}

\section*{(cont.)}
- If \(p \geq 2\), by the induction hypothesis we can realize each of \(c_{l_{1}}(\chi), \ldots, c_{l_{p}}(\chi)\) in \(\mathbb{F}_{2}\), and so, realize their join \(\chi\), in \(\mathbb{F}_{2}\) as well.
- Hence, we are reduced to the case \(p=1\) : \(\chi\) is Howson and \(\exists \emptyset \neq I_{1} \subseteq[k]\) with \(\left(I_{1}\right) \chi=1\), and \((J) \chi=0\) for every \(J \nsubseteq I_{1}\).
- If \(I_{1} \neq[k]\) then any \(j \in[k] \backslash I_{1}\) is 0 -monochromatic, \(\chi=\chi_{\mid \hat{j}} \boxplus_{0} \mathbf{0}\), and we are reduced to realize \(\chi_{\mid \hat{j}}\); repeating, we can assume \(I_{1}=[k]\). That is, \(\chi\) is a Howson \(k\)-config. s.t. \(([k]) \chi=1\).
- If \(\chi=\mathbf{1}\) then it is clearly realizable in \(\mathbb{F}_{2}\).
- Otherwise, take \(\varnothing \neq I_{2} \subseteq[k]\) with \(\left(I_{2}\right) \chi=0\) and with maximal possible cardinal.
- Since \(I_{2} \neq[k], \exists j \notin I_{2}\), and any such index is 1 -monochromatic: in fact, any \(j \in J \subseteq[k]\) satisfies \(\left|I_{2} \cup J\right|>\left|I_{2}\right|\) so \(\left(I_{2} \cup J\right) \chi=1\) and, since \(\chi\) is Howson and \(\left(I_{2}\right) \chi=0\), then \((J) \chi=1\).
- Hence, by induction hypothesis, \(\chi_{\mid \hat{j}}\) is realizable in \(\mathbb{F}_{2}\) and \(\chi=\chi_{\mid \widehat{j}} \boxplus_{1} 1\) as well.

\section*{Outline}

\section*{(9) Our main results}
(2) Free-times-free-abelian groups
(3) Realizable / unrealizable \(k\)-configurations

4 The free case
(5) Open questions

\section*{Open questions}

\section*{Question}

Can we characterize the \(k\)-configurations realizable in \(\mathbb{F}_{n} \times \mathbb{Z}^{m}\), for each particular m?

\section*{Question}

Is there an algorithm which, on input \(m\) and \(\chi\), decides whether \(\chi\) is realizable in \(\mathbb{F}_{n} \times \mathbb{Z}^{m}\) (and, in the affirmative case, computes such a realization)?

Question
Is there a finitely presented intersection-saturated group \(G\) which does not contain

\section*{Open questions}

\section*{Question}

Can we characterize the \(k\)-configurations realizable in \(\mathbb{F}_{n} \times \mathbb{Z}^{m}\), for each particular m?

\section*{Question}

Is there an algorithm which, on input \(m\) and \(\chi\), decides whether \(\chi\) is realizable in \(\mathbb{F}_{n} \times \mathbb{Z}^{m}\) (and, in the affirmative case, computes such a realization)?

Question
Is there a finitely presented intersection-saturated group \(G\) which
does not contain \(\mathbb{F}_{2} \times \mathbb{Z}^{m}\), for some \(m \in \mathbb{N}\) ?

\section*{Open questions}

\section*{Question}

Can we characterize the \(k\)-configurations realizable in \(\mathbb{F}_{n} \times \mathbb{Z}^{m}\), for each particular m?

\section*{Question}

Is there an algorithm which, on input \(m\) and \(\chi\), decides whether \(\chi\) is realizable in \(\mathbb{F}_{n} \times \mathbb{Z}^{m}\) (and, in the affirmative case, computes such a realization)?

\section*{Question}

Is there a finitely presented intersection-saturated group \(G\) which does not contain \(\mathbb{F}_{2} \times \mathbb{Z}^{m}\), for some \(m \in \mathbb{N}\) ?

\section*{DZIĘKUJE}

\section*{THANKS}```

