The conjugacy problem in automaton groups is not solvable

Enric Ventura

Departament de Matemàtica Aplicada III
Universitat Politècnica de Catalunya
Webinar

October 20th, 2011.

Outline

(1) Introduction
(2) Strategy of the proof
(3) Orbit decidability

4 Automaton groups

Outline

(2) Strategy of the proof
(3) Orbit decidability

4 Automaton groups

Main result

Theorem (Sunic-V.)

There exist automaton groups (i.e. self-similar groups generated by finite self-similar sets) with unsolvable conjugacy problem.

Related results:

- Grigorchuk-Nekrashevych-Sushchanskiĭ (00): Is CP solvable for automaton groups ?
- WP is solvable for all such groups (straightforward, at most exponential time).
- WP is solvable in polynomial time, for the subclass of f.g. contracting groups.

Main result

Theorem (Sunic-V.)

There exist automaton groups (i.e. self-similar groups generated by finite self-similar sets) with unsolvable conjugacy problem.

Related results:

- Grigorchuk-Nekrashevych-Sushchanskiĭ (00): Is CP solvable for automaton groups ?
- WP is solvable for all such groups (straightforward, at most exponential time).
- WP is solvable in polynomial time, for the subclass of f.g. contracting groups.

Main result

Theorem (Sunic-V.)

There exist automaton groups (i.e. self-similar groups generated by finite self-similar sets) with unsolvable conjugacy problem.

Related results:

- Grigorchuk-Nekrashevych-Sushchanskiĭ (00): Is CP solvable for automaton groups ?
- WP is solvable for all such groups (straightforward, at most exponential time).
- WP is solvable in polynomial time, for the subclass of f.g contracting groups.

Main result

Theorem (Sunic-V.)

There exist automaton groups (i.e. self-similar groups generated by finite self-similar sets) with unsolvable conjugacy problem.

Related results:

- Grigorchuk-Nekrashevych-Sushchanskiĭ (00): Is CP solvable for automaton groups ?
- WP is solvable for all such groups (straightforward, at most exponential time).
- WP is solvable in polynomial time, for the subclass of f.g. contracting groups.

Related results

- Leonov (98) and Rozhkov (98) indep.: CP for the first Grigorchuk group.
- Wilson-Zaleskii (97): CP for the Gupta-Sidki groups.
- Grigorchuk-Wilson (00): CP for all subgroups of finite index in the first Grigorchuk group.
- Bondarenko-Bondarenko-Sidki-Zapata (10): CP for groups generated by bounded automata (i.e. Pol(0) groups).
- Lysenok-Myasnikov-Ushakov (10): CP in polynomial time for the first Grigorchuk group.

Related results

- Leonov (98) and Rozhkov (98) indep.: CP for the first Grigorchuk group.
- Wilson-Zaleskii (97): CP for the Gupta-Sidki groups.
- Grigorchuk-Wilson (00): CP for all subgroups of finite index in the first Grigorchuk group.
- Bondarenko-Bondarenko-Sidki-Zapata (10): CP for groups generated by bounded automata (i.e. Pol(0) groups).
- Lysenok-Myasnikov-Ushakov (10): CP in polynomial time for the first Grigorchuk group.

Related results

- Leonov (98) and Rozhkov (98) indep.: CP for the first Grigorchuk group.
- Wilson-Zaleskii (97): CP for the Gupta-Sidki groups.
- Grigorchuk-Wilson (00): CP for all subgroups of finite index in the first Grigorchuk group.
- Bondarenko-Bondarenko-Sidki-Zapata (10): CP for groups generated by bounded automata (i.e. Pol(0) groups).
- Lysenok-Myasnikov-Ushakov (10): CP in polynomial time for the first Grigorchuk group.

Related results

- Leonov (98) and Rozhkov (98) indep.: CP for the first Grigorchuk group.
- Wilson-Zaleskii (97): CP for the Gupta-Sidki groups.
- Grigorchuk-Wilson (00): CP for all subgroups of finite index in the first Grigorchuk group.
- Bondarenko-Bondarenko-Sidki-Zapata (10): CP for groups generated by bounded automata (i.e. Pol(0) groups).
- Lysenok-Myasnikov-Ushakov (10): CP in polynomial time for the first Grigorchuk group.

Related results

- Leonov (98) and Rozhkov (98) indep.: CP for the first Grigorchuk group.
- Wilson-Zaleskii (97): CP for the Gupta-Sidki groups.
- Grigorchuk-Wilson (00): CP for all subgroups of finite index in the first Grigorchuk group.
- Bondarenko-Bondarenko-Sidki-Zapata (10): CP for groups generated by bounded automata (i.e. Pol(0) groups).
- Lysenok-Myasnikov-Ushakov (10): CP in polynomial time for the first Grigorchuk group.

A question

Our examples contain free nonabelian subgroups, so

Question

- Is the CP solvable for all f.g., contracting, self-similar groups ?
- Is the CP solvable for automaton groups in $\operatorname{Pol}(n)$, for $n \geqslant 1$?

A question

Our examples contain free nonabelian subgroups, so

Question

- Is the CP solvable for all f.g., contracting, self-similar groups ?
- Is the CP solvable for automaton groups in $\operatorname{Pol}(n)$, for $n \geqslant 1$?

Outline

(2) Strategy of the proof

(3) Orbit decidability

4 Automaton groups

Strategy of the proof

Will use results from Bogopolski-Martino-Ventura:
Observation (B-M-V, 08)
Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit undecidable then $H \rtimes \Gamma$ has unsolvable $C P$.
and

Proposition (B-M-V, 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups 「

and then show that
Theorem (Sunic-V.)
Let $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ be f.a. Then, $\mathbb{Z}^{d} \rtimes \Gamma$ is an automaton group.

Strategy of the proof

Will use results from Bogopolski-Martino-Ventura:

Observation (B-M-V, 08)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit undecidable then $H \rtimes \Gamma$ has unsolvable $C P$.
and
Proposition (B-M-V, 08)
For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.
and then show that
Theorem (Sunic-V.)
Let $\Gamma \leqslant G L_{d}(\mathbb{Z})$ be f.g. Then, $\mathbb{Z}^{d} \rtimes \Gamma$ is an automaton group.

Strategy of the proof

Will use results from Bogopolski-Martino-Ventura:

Observation (B-M-V, 08)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit undecidable then $H \rtimes \Gamma$ has unsolvable $C P$.
and

Proposition (B-M-V, 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.
and then show that
Theorem (Sunic-V.)
Let $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ be f.g. Then, $\mathbb{Z}^{d} \rtimes \Gamma$ is an automaton group.

Strategy of the proof

With an easy and nice idea due to Zoran, we get the improvement
Proposition (Sunic-V.)
For $d \geqslant 6, \mathrm{GL}_{d}(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Hence, we deduce:

Theorem (Sunic.V)

For $d \geqslant 6$, there exists a f.p. group G simultaneously satisfying the following three conditions:

- G is \mathbb{Z}^{d}-by-free,
- G is an automaton group,
- G has unsolvable conjugacy problem.

Strategy of the proof

With an easy and nice idea due to Zoran, we get the improvement

Proposition (Sunic-V.)

For $d \geqslant 6, \mathrm{GL}_{d}(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Hence, we deduce:

Theorem (Sunic-V.)

For $d \geqslant 6$, there exists a f.p. group G simultaneously satisfying the following three conditions:

- G is \mathbb{Z}^{d}-by-free,
- G is an automaton group,
- G has unsolvable conjugacy problem.

Outline

(1) Introduction

(2) Strategy of the proof

(3) Orbit decidability

4 Automaton groups

Orbit decidability

(joint work with O. Bogopolski and A. Martino)

Definition

Let H be f.g. A subgroup $\Gamma \leqslant \operatorname{Aut}(H)$ is said to be orbit decidable
(O.D.) if there is an algorithm s.t., given $u, v \in H$, it decides whether v and $\alpha(u)$ are conjugate, for some $\alpha \in \Gamma$.

First examples: $H=\mathbb{Z}^{d}$

Observation (folklore)

The full group $\operatorname{Aut}\left(\mathbb{Z}^{d}\right)=G \mathrm{~L}_{d}(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^{d}$, there exists $A \in \mathrm{GL}_{d}(\mathbb{Z})$ such that $v=A u$ if and only if $\operatorname{gcd}\left(u_{1}, \ldots, u_{d}\right)=\operatorname{gcd}\left(v_{1}, \ldots, v_{d}\right)$.

Orbit decidability

(joint work with O. Bogopolski and A. Martino)

Definition

Let H be f.g. A subgroup $\Gamma \leqslant \operatorname{Aut}(H)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $u, v \in H$, it decides whether v and $\alpha(u)$ are conjugate, for some $\alpha \in \Gamma$.

First examples: $H=\mathbb{Z}^{d}$

Observation (folklore)

The full aroup $\operatorname{Aut}\left(\mathbb{Z}^{d}\right)=G L_{d}(\mathbb{Z})$ is orbit decidable

Proof. For $u, v \in \mathbb{Z}^{d}$, there exists $A \in G L_{d}(\mathbb{Z})$ such that $v=A u$ if and only if gcd (u_{1} $\left.u_{d}\right)=\operatorname{gcd}\left(v_{1}\right.$

Orbit decidability

(joint work with O. Bogopolski and A. Martino)

Definition

Let H be f.g. A subgroup $\Gamma \leqslant \operatorname{Aut}(H)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $u, v \in H$, it decides whether v and $\alpha(u)$ are conjugate, for some $\alpha \in \Gamma$.

First examples: $H=\mathbb{Z}^{d}$

Observation (folklore)

The full group $\operatorname{Aut}\left(\mathbb{Z}^{d}\right)=G \mathrm{~L}_{d}(\mathbb{Z})$ is orbit decidable.

Orbit decidability

(joint work with O. Bogopolski and A. Martino)

Definition

Let H be f.g. A subgroup $\Gamma \leqslant \operatorname{Aut}(H)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $u, v \in H$, it decides whether v and $\alpha(u)$ are conjugate, for some $\alpha \in \Gamma$.

First examples: $H=\mathbb{Z}^{d}$

Observation (folklore)

The full group $\operatorname{Aut}\left(\mathbb{Z}^{d}\right)=G \mathrm{~L}_{d}(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^{d}$, there exists $A \in \mathrm{GL}_{d}(\mathbb{Z})$ such that $v=A u$ if and only if $\operatorname{gcd}\left(u_{1}, \ldots, u_{d}\right)=\operatorname{gcd}\left(v_{1}, \ldots, v_{d}\right)$.

OD subgroups in $G L_{d}(\mathbb{Z})$

Proposition (linear algebra)

For $A \in G L_{d}(\mathbb{Z})$, the subgroup $\langle A\rangle \leqslant G L_{d}(\mathbb{Z})$ is O.D.

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of $G L_{d}(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely qenerated subaroup of $G L_{2}(\mathbb{Z})$ is O.D.

OD subgroups in $G L_{d}(\mathbb{Z})$

Proposition (linear algebra)

For $A \in G L_{d}(\mathbb{Z})$, the subgroup $\langle A\rangle \leqslant G L_{d}(\mathbb{Z})$ is O.D.

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of $G L_{d}(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

OD subgroups in $G L_{d}(\mathbb{Z})$

Proposition (linear algebra)

For $A \in G L_{d}(\mathbb{Z})$, the subgroup $\langle A\rangle \leqslant G L_{d}(\mathbb{Z})$ is O.D.

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of $G L_{d}(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

OD subgroups in Aut $\left(F_{r}\right)$

Examples over the free group: $H=F_{r}$

Theorem (Whitehead'30)

The full aroup Aut $\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=\alpha(u)$ for some $\alpha \in \operatorname{Aut}\left(F_{r}\right)$.

Proof. This is a classical and very influential result.

Theorem (Brinkmann, 06)

Cvclic aroups of $\operatorname{Aut}\left(F_{r}\right)$ are orbit decidable. That is, given
$\varphi \in \operatorname{Aut}\left(F_{r}\right)$ and $u, v \in F_{r}$, one can decide whether $v=\varphi^{n}(u)$, up to
conjugacy, for some $n \in \mathbb{Z}$.

Proof. A difficult result using train-tracks.

OD subgroups in Aut $\left(F_{r}\right)$

Examples over the free group: $H=F_{r}$

Theorem (Whitehead'30)

The full group $\operatorname{Aut}\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=\alpha(u)$ for some $\alpha \in \operatorname{Aut}\left(F_{r}\right)$.

Proof. This is a classical and very influential result.

Theorem (Brinkmann, 06)

Cvclic aroups of $\operatorname{Aut}\left(F_{r}\right)$ are orbit decidable. That is, given
$\varphi \in \operatorname{Aut}\left(F_{r}\right)$ and $u, v \in F_{r}$, one can decide whether $v=\varphi^{n}(u)$, up to
conjugacy, for some $n \in \mathbb{Z}$.

Proof. A difficult result using train-tracks.

OD subgroups in Aut $\left(F_{r}\right)$

Examples over the free group: $H=F_{r}$

Theorem (Whitehead'30)

The full group $\operatorname{Aut}\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=\alpha(u)$ for some $\alpha \in \operatorname{Aut}\left(F_{r}\right)$.

Proof. This is a classical and very influential result.

Theorem (Brinkmann, 06)
Cyclic groups of $\operatorname{Aut}\left(F_{r}\right)$ are orbit decidable. That is, given $\varphi \in \operatorname{Aut}\left(F_{r}\right)$ and $u, v \in F_{r}$, one can decide whether $v=\varphi^{n}(u)$, up to conjugacy, for some n

Proof. A difficult result using train-tracks.

OD subgroups in Aut $\left(F_{r}\right)$

Examples over the free group: $H=F_{r}$

Theorem (Whitehead'30)

The full group $\operatorname{Aut}\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=\alpha(u)$ for some $\alpha \in \operatorname{Aut}\left(F_{r}\right)$.

Proof. This is a classical and very influential result.

Theorem (Brinkmann, 06)

Cyclic groups of $\operatorname{Aut}\left(F_{r}\right)$ are orbit decidable. That is, given $\varphi \in \operatorname{Aut}\left(F_{r}\right)$ and $u, v \in F_{r}$, one can decide whether $v=\varphi^{n}(u)$, up to conjugacy, for some $n \in \mathbb{Z}$.

Proof. A difficult result using train-tracks.

OD subgroups in Aut $\left(F_{r}\right)$

Examples over the free group: $H=F_{r}$

Theorem (Whitehead'30)

The full group $\operatorname{Aut}\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=\alpha(u)$ for some $\alpha \in \operatorname{Aut}\left(F_{r}\right)$.

Proof. This is a classical and very influential result.

Theorem (Brinkmann, 06)

Cyclic groups of $\operatorname{Aut}\left(F_{r}\right)$ are orbit decidable. That is, given $\varphi \in \operatorname{Aut}\left(F_{r}\right)$ and $u, v \in F_{r}$, one can decide whether $v=\varphi^{n}(u)$, up to conjugacy, for some $n \in \mathbb{Z}$.

Proof. A difficult result using train-tracks.

OD subgroups of $\operatorname{Aut}\left(F_{r}\right)$

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of $\operatorname{Aut}\left(F_{r}\right)$ are O.D.

Proposition (Bogopolski-Martino-V., 08)
Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

OD subgroups of Aut $\left(F_{r}\right)$

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of $\operatorname{Aut}\left(F_{r}\right)$ are O.D.

Proposition (Bogopolski-Martino-V., 08)
Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Connection to semidirect products

Observation (B-M-V)
Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $G=H \rtimes \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like $\left(h_{1}, \gamma_{1}\right) \cdot\left(h_{2}, \gamma_{2}\right)=\left(h_{1} \gamma_{1}\left(h_{2}\right), \gamma_{1} \gamma_{2}\right)$

For $h_{1}, h_{2} \in H \leqslant G$, we have $h_{1} \sim_{G} h_{2} \Leftrightarrow \exists(h, \gamma) \in H \rtimes \Gamma$ s.t.

$$
\begin{aligned}
\left(h_{2}, l d\right)= & (h, \gamma)^{-1} \cdot\left(h_{1}, l d\right) \cdot(h, \gamma) \\
& \left.\left(\gamma^{-1}\left(h^{-1}\right), \gamma\right)^{-1}\right) \cdot\left(h_{1} h, \gamma\right) \\
& \left(\gamma^{-1}\left(h^{-1} h_{1} h\right), l d\right) .
\end{aligned}
$$

Hence, $h_{1} \sim_{G} h_{2} \Leftrightarrow \exists \gamma \in \Gamma$ and $h \in H$ s.t. $h_{1}=h \gamma\left(h_{2}\right) h^{-1}$

Connection to semidirect products

Observation (B-M-V)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $G=H \rtimes \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like

$$
\begin{gathered}
\left(h_{1}, \gamma_{1}\right) \cdot\left(h_{2}, \gamma_{2}\right)=\left(h_{1} \gamma_{1}\left(h_{2}\right), \gamma_{1} \gamma_{2}\right) \\
(h, \gamma)^{-1}=\left(\gamma^{-1}\left(h^{-1}\right), \gamma^{-1}\right) .
\end{gathered}
$$

For $h_{1}, h_{2} \in H \leqslant G$, we have $h_{1} \sim_{G} h_{2} \Leftrightarrow \exists(h, \gamma) \in H \rtimes \Gamma$ s.t.

Connection to semidirect products

Observation (B-M-V)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $G=H \rtimes \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like

$$
\begin{gathered}
\left(h_{1}, \gamma_{1}\right) \cdot\left(h_{2}, \gamma_{2}\right)=\left(h_{1} \gamma_{1}\left(h_{2}\right), \gamma_{1} \gamma_{2}\right) \\
(h, \gamma)^{-1}=\left(\gamma^{-1}\left(h^{-1}\right), \gamma^{-1}\right) .
\end{gathered}
$$

For $h_{1}, h_{2} \in H \leqslant G$, we have $h_{1} \sim_{G} h_{2} \Leftrightarrow \exists(h, \gamma) \in H \rtimes \Gamma$ s.t.

$$
\begin{aligned}
\left(h_{2}, I d\right)= & (h, \gamma)^{-1} \cdot\left(h_{1}, I d\right) \cdot(h, \gamma) \\
& \left(\gamma^{-1}\left(h^{-1}\right), \gamma^{-1}\right) \cdot\left(h_{1} h, \gamma\right) \\
& \left(\gamma^{-1}\left(h^{-1} h_{1} h\right), I d\right) .
\end{aligned}
$$

Connection to semidirect products

Observation (B-M-V)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $G=H \rtimes \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like

$$
\begin{gathered}
\left(h_{1}, \gamma_{1}\right) \cdot\left(h_{2}, \gamma_{2}\right)=\left(h_{1} \gamma_{1}\left(h_{2}\right), \gamma_{1} \gamma_{2}\right) \\
(h, \gamma)^{-1}=\left(\gamma^{-1}\left(h^{-1}\right), \gamma^{-1}\right) .
\end{gathered}
$$

For $h_{1}, h_{2} \in H \leqslant G$, we have $h_{1} \sim_{G} h_{2} \Leftrightarrow \exists(h, \gamma) \in H \rtimes \Gamma$ s.t.

$$
\begin{aligned}
\left(h_{2}, I d\right)= & (h, \gamma)^{-1} \cdot\left(h_{1}, I d\right) \cdot(h, \gamma) \\
& \left(\gamma^{-1}\left(h^{-1}\right), \gamma^{-1}\right) \cdot\left(h_{1} h, \gamma\right) \\
& \left(\gamma^{-1}\left(h^{-1} h_{1} h\right), I d\right)
\end{aligned}
$$

Hence, $h_{1} \sim_{G} h_{2} \Leftrightarrow \exists \gamma \in \Gamma$ and $h \in H$ s.t. $h_{1}=h \gamma\left(h_{2}\right) h^{-1}$.

Connection to semidirect products

In fact, for the free and free abelian cases (among others), the convers is also true, after "erasing the relations from 「":

Theorem (B-M-V, 08)

Let H be \mathbb{Z}^{d} or F_{r}, and $\Gamma \leqslant \operatorname{Aut}(H)$ generated by $\alpha_{1}, \ldots, \alpha_{m}$. Then, $H \rtimes_{\alpha_{1}, \ldots, \alpha_{m}} F_{m}$ has solvable CP if and only if
$\Gamma=\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Corollary

\mathbb{Z}^{d}-by- \mathbb{Z} groups have solvable conjugacy problem.

Corollary

\square
has solvable conjugacy problem

Corollary

Every m² hy-free group has solvable conjugacy problem.

Connection to semidirect products

In fact, for the free and free abelian cases (among others), the convers is also true, after "erasing the relations from 「":

Theorem (B-M-V, 08)

Let H be \mathbb{Z}^{d} or F_{r}, and $\Gamma \leqslant \operatorname{Aut}(H)$ generated by $\alpha_{1}, \ldots, \alpha_{m}$. Then, $H \rtimes_{\alpha_{1}, \ldots, \alpha_{m}} F_{m}$ has solvable CP if and only if
$\Gamma=\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Corollary

\mathbb{Z}^{d}-by- \mathbb{Z} groups have solvable conjugacy problem.
Corollary

has solvable conjugacy problem.

Corollary

Every...m² ky-free group has solvable conjugacy problem.

Connection to semidirect products

In fact, for the free and free abelian cases (among others), the convers is also true, after "erasing the relations from 「":

Theorem (B-M-V, 08)

Let H be \mathbb{Z}^{d} or F_{r}, and $\Gamma \leqslant \operatorname{Aut}(H)$ generated by $\alpha_{1}, \ldots, \alpha_{m}$. Then, $H \rtimes_{\alpha_{1}, \ldots, \alpha_{m}} F_{m}$ has solvable CP if and only if
$\Gamma=\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Corollary

\mathbb{Z}^{d}-by- \mathbb{Z} groups have solvable conjugacy problem.
Corollary
If $\Gamma=\left\langle M_{1}, \ldots, M_{m}\right\rangle$ is of finite index in $G L_{d}(\mathbb{Z})$ then $\mathbb{Z}^{d} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}$ has solvable conjugacy problem.

[^0]Every \mathbb{Z}^{2}-by-free group has solvable conjugacy problem.

Connection to semidirect products

In fact, for the free and free abelian cases (among others), the convers is also true, after "erasing the relations from 「":

Theorem (B-M-V, 08)

Let H be \mathbb{Z}^{d} or F_{r}, and $\Gamma \leqslant \operatorname{Aut}(H)$ generated by $\alpha_{1}, \ldots, \alpha_{m}$. Then, $H \rtimes_{\alpha_{1}, \ldots, \alpha_{m}} F_{m}$ has solvable CP if and only if
$\Gamma=\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Corollary

\mathbb{Z}^{d}-by- \mathbb{Z} groups have solvable conjugacy problem.
Corollary
If $\Gamma=\left\langle M_{1}, \ldots, M_{m}\right\rangle$ is of finite index in $G L_{d}(\mathbb{Z})$ then $\mathbb{Z}^{d} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}$ has solvable conjugacy problem.

Corollary

Every \mathbb{Z}^{2}-by-free group has solvable conjugacy problem.

Connection to semidirect products

Corollary (Bogopolski-Martino-Maslakova-V., 06)

Free-by-cyclic groups have solvable conjugacy problem.

Corollary
 If $\Gamma=\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ has finite index in $\operatorname{Aut}\left(F_{r}\right)$ then $F_{r} \rtimes_{\varphi_{1} \ldots \ldots \varphi_{m}} F_{m}$ has solvable conjugacy problem.

Corollary

Fverv F_{2}-hv-free group has solvable conjugacy problem.

What we shall use is:

Obsemvation (B-M-V) 08)
Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit undecidable then $H \rtimes \Gamma$ has unsolvable $C P$.

Connection to semidirect products

Corollary (Bogopolski-Martino-Maslakova-V., 06)

Free-by-cyclic groups have solvable conjugacy problem.

Corollary

If $\Gamma=\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ has finite index in $\operatorname{Aut}\left(F_{r}\right)$ then $F_{r} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}$ has solvable conjugacy problem.

Corollary
 Every F_{2}-hy-free group has solvable conjugacy problem

What we shall use is:

Obsemvation (B-M-V, 08)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit undecidable then $H \rtimes \Gamma$ has unsolvable $C P$.

Connection to semidirect products

Corollary (Bogopolski-Martino-Maslakova-V., 06)

Free-by-cyclic groups have solvable conjugacy problem.

Corollary

If $\Gamma=\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ has finite index in $\operatorname{Aut}\left(F_{r}\right)$ then $F_{r} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}$ has solvable conjugacy problem.

Corollary

Every F_{2}-by-free group has solvable conjugacy problem.
What we shall use is:

Connection to semidirect products

Corollary (Bogopolski-Martino-Maslakova-V., 06)

Free-by-cyclic groups have solvable conjugacy problem.

Corollary

If $\Gamma=\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ has finite index in $\operatorname{Aut}\left(F_{r}\right)$ then $F_{r} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}$ has solvable conjugacy problem.

Corollary

Every F_{2}-by-free group has solvable conjugacy problem.
What we shall use is:
Observation (B-M-V, 08)
Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit undecidable then $H \rtimes \Gamma$ has unsolvable $C P$.

Finding orbit undecidable subgroups

But...
Theorem (Miller, 70's)
There are free-by-free groups with unsolvable conjugacy problem.

So, there must be orbit undecidable subgroups in Aut $\left(F_{r}\right)$, for $r \geqslant 3$. Where are them ?

Proposition (Bogopolski-Martino-V., 08)

Let H be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(H)$ and $v \in H$ be such that $B \cap \operatorname{Stab}^{*}(v)=1$. Then,

$$
O D(A) \text { solvable } \Rightarrow M P(A, B) \text { solvable. }
$$

Finding orbit undecidable subgroups

But...
Theorem (Miller, 70's)
There are free-by-free groups with unsolvable conjugacy problem.

So, there must be orbit undecidable subgroups in Aut $\left(F_{r}\right)$, for $r \geqslant 3$. Where are them ?

Proposition (Bogopolski-Martino-V., 08)
Let H be a aroup. and let $A \leqslant B \leqslant \operatorname{Aut}(H)$ and $v \in H$ be such that
$B \cap$ Stab* $^{*}(v)=1$. Then,

Finding orbit undecidable subgroups

But...
Theorem (Miller, 70's)
There are free-by-free groups with unsolvable conjugacy problem.

So, there must be orbit undecidable subgroups in Aut $\left(F_{r}\right)$, for $r \geqslant 3$. Where are them?

Proposition (Bogopolski-Martino-V., 08)
Let H be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(H)$ and $v \in H$ be such that $B \cap \operatorname{Stab}^{*}(v)=1$. Then,

$$
O D(A) \text { solvable } \Rightarrow M P(A, B) \text { solvable. }
$$

Finding orbit undecidable subgroups

But...

Theorem (Miller, 70's)

There are free-by-free groups with unsolvable conjugacy problem.

So, there must be orbit undecidable subgroups in Aut $\left(F_{r}\right)$, for $r \geqslant 3$. Where are them?

Proposition (Bogopolski-Martino-V., 08)
Let H be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(H)$ and $v \in H$ be such that $B \cap \operatorname{Stab}^{*}(v)=1$. Then,

$$
O D(A) \text { solvable } \Rightarrow M P(A, B) \text { solvable. }
$$

Finding orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)
Let H be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(H)$ and $v \in H$ be such that $B \cap \operatorname{Stab}^{*}(v)=1$. Then,

$$
O D(A) \text { solvable } \Rightarrow M P(A, B) \text { solvable. }
$$

Proof. Given $\varphi \in B \leq \operatorname{Aut}(H)$, let $w=v \varphi$ and

$$
\{\phi \in B \mid v \phi \sim w\}=B \cap\left(\operatorname{Stab}^{*}(v) \cdot \varphi\right)=\left(B \cap \operatorname{Stab}^{*}(v)\right) \cdot \varphi=\{\varphi\} .
$$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A. Hence,

$$
O D(A) \quad \Rightarrow \quad M P(A, B) \cdot \square
$$

Finding orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)
Let H be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(H)$ and $v \in H$ be such that $B \cap \operatorname{Stab}^{*}(v)=1$. Then,

$$
O D(A) \text { solvable } \Rightarrow M P(A, B) \text { solvable. }
$$

Proof. Given $\varphi \in B \leq \operatorname{Aut}(H)$, let $w=v \varphi$ and

$$
\{\phi \in B \mid v \phi=w\}=B \cap(\operatorname{Stab}(v) \cdot \varphi)=(B \cap \operatorname{Stab}(v)) \cdot \varphi=\{\varphi\} .
$$

Finding orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)
Let H be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(H)$ and $v \in H$ be such that $B \cap \operatorname{Stab}^{*}(v)=1$. Then,

$$
O D(A) \text { solvable } \Rightarrow M P(A, B) \text { solvable. }
$$

Proof. Given $\varphi \in B \leq \operatorname{Aut}(H)$, let $w=v \varphi$ and

$$
\begin{gathered}
\{\phi \in B \mid v \phi=w\}=B \cap(\operatorname{Stab}(v) \cdot \varphi)=(B \cap \operatorname{Stab}(v)) \cdot \varphi=\{\varphi\} . \\
\{\phi \in B \mid v \phi \sim w\}=B \cap\left(\operatorname{Stab}^{*}(v) \cdot \varphi\right)=\left(B \cap \operatorname{Stab}^{*}(v)\right) \cdot \varphi=\{\varphi\} .
\end{gathered}
$$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A. Hence,

Finding orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

Let H be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(H)$ and $v \in H$ be such that $B \cap \operatorname{Stab}^{*}(v)=1$. Then,

$$
O D(A) \text { solvable } \Rightarrow M P(A, B) \text { solvable. }
$$

Proof. Given $\varphi \in B \leq \operatorname{Aut}(H)$, let $w=v \varphi$ and

$$
\begin{gathered}
\{\phi \in B \mid v \phi=w\}=B \cap(\operatorname{Stab}(v) \cdot \varphi)=(B \cap \operatorname{Stab}(v)) \cdot \varphi=\{\varphi\} . \\
\{\phi \in B \mid v \phi \sim w\}=B \cap\left(\operatorname{Stab}^{*}(v) \cdot \varphi\right)=\left(B \cap \operatorname{Stab}^{*}(v)\right) \cdot \varphi=\{\varphi\} .
\end{gathered}
$$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A. Hence,

$$
O D(A) \quad \Rightarrow \quad M P(A, B) . \square
$$

Finding orbit undecidable subgroups

So,...
Taking the copy B of $F_{2} \times F_{2}$ in $\operatorname{Aut}\left(F_{3}\right)$ via the embedding

$$
\begin{array}{rlrl}
F_{2} \times F_{2} & \hookrightarrow & \operatorname{Aut}\left(F_{3}\right), \\
(u, v) & \mapsto & u \theta_{v}: F_{3} & \rightarrow F_{3} \\
& & \mapsto u^{-1} q v \\
& & \mapsto a \\
& b & \mapsto b
\end{array}
$$

and a Mihailova subgroup in there $A \leqslant B \leqslant \operatorname{Aut}\left(F_{3}\right)$ (taking $v=q a q b q$) one obtains precisely the orbit undecidable subgroups corresponding to Miller's examples.

Finding orbit undecidable subgroups

So,...
Taking the copy B of $F_{2} \times F_{2}$ in $\operatorname{Aut}\left(F_{3}\right)$ via the embedding

$$
\left.\begin{array}{rl}
F_{2} \times F_{2} & \hookrightarrow \\
\text { Aut }\left(F_{3}\right), \\
(u, v) & \mapsto
\end{array} u_{v}: F_{3} \rightarrow F_{3}\right)
$$

and a Mihailova subgroup in there $A \leqslant B \leqslant \operatorname{Aut}\left(F_{3}\right)$ (taking $v=q a q b q$) one obtains precisely the orbit undecidable subgroups corresponding to Miller's examples.

Finding orbit undecidable subgroups

Proposition (B-M-V, 08)
For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant G L_{d}(\mathbb{Z})$.

- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.
- $\langle P, Q\rangle \cap \operatorname{Stab}(1,0)=\left\langle\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right\rangle$
- Choose a free subgroup $F_{2} \simeq\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that $\left\langle P^{\prime}, Q^{\prime}\right\rangle \cap \operatorname{Stab}(1,0)=\{I\}$ and consider

- Note that $B \simeq F_{2} \times F_{2}$.

Finding orbit undecidable subgroups

Proposition (B-M-V, 08)
For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

$$
\text { Proof. Consider } F_{2} \simeq\left\langle P=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right), Q=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\right\rangle \leq_{24} G L_{2}(\mathbb{Z}) \text {. }
$$

\square

- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\{($ $\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}$ $\mid n \in \mathbb{Z}\}$
- Choose a free subgroup $F_{2} \simeq\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that $\left\langle P^{\prime}, Q^{\prime}\right\rangle \cap \operatorname{Stab}(1,0)=\{I\}$ and consider

- Note that $B \simeq F_{2} \times F_{2}$.

Finding orbit undecidable subgroups

Proposition (B-M-V, 08)
For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

$$
\text { Proof. Consider } F_{2} \simeq\left\langle P=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right), Q=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\right\rangle \leq_{24} G L_{2}(\mathbb{Z}) .
$$

- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.

- Note that $B \simeq F_{2} \times F_{2}$.

Finding orbit undecidable subgroups

Proposition (B-M-V, 08)
For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant G L_{d}(\mathbb{Z})$.

$$
\text { Proof. Consider } F_{2} \simeq\left\langle P=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right), Q=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\right\rangle \leq_{24} G L_{2}(\mathbb{Z}) .
$$

- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.
- $\langle P, Q\rangle \cap \operatorname{Stab}(1,0)=\left\langle\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right\rangle$.
- Choose a free subgroup $F_{2} \simeq\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that $\left\langle P^{\prime}, Q^{\prime}\right\rangle \cap \operatorname{Stab}(1,0)=\{\mid\}$ and consider

[^1]
Finding orbit undecidable subgroups

Proposition (B-M-V, 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

Proof. Consider $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq_{24} G L_{2}(\mathbb{Z})$.

- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.
- $\langle P, Q\rangle \cap \operatorname{Stab}(1,0)=\left\langle\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right\rangle$.
- Choose a free subgroup $F_{2} \simeq\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that $\left\langle P^{\prime}, Q^{\prime}\right\rangle \cap \operatorname{Stab}(1,0)=\{I\}$ and consider

$$
B=\left\langle\left(\begin{array}{c|c}
P^{\prime} & 0 \\
\hline 0 & I
\end{array}\right),\left(\begin{array}{c|c}
Q^{\prime} & 0 \\
\hline 0 & I
\end{array}\right),\left(\begin{array}{c|c}
1 & 0 \\
\hline 0 & P^{\prime}
\end{array}\right),\left(\begin{array}{c|c}
I & 0 \\
\hline 0 & Q^{\prime}
\end{array}\right)\right\rangle \leq G L_{4}(\mathbb{Z}) .
$$

Finding orbit undecidable subgroups

Proposition (B-M-V, 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

Proof. Consider $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq_{24} G L_{2}(\mathbb{Z})$.

- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.
- $\langle P, Q\rangle \cap \operatorname{Stab}(1,0)=\left\langle\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right\rangle$.
- Choose a free subgroup $F_{2} \simeq\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that $\left\langle P^{\prime}, Q^{\prime}\right\rangle \cap \operatorname{Stab}(1,0)=\{I\}$ and consider

$$
B=\left\langle\left(\begin{array}{c|c}
P^{\prime} & 0 \\
\hline 0 & I
\end{array}\right),\left(\begin{array}{c|c}
Q^{\prime} & 0 \\
\hline 0 & I
\end{array}\right),\left(\begin{array}{c|c}
1 & 0 \\
\hline 0 & P^{\prime}
\end{array}\right),\left(\begin{array}{c|c}
I & 0 \\
\hline 0 & Q^{\prime}
\end{array}\right)\right\rangle \leq G L_{4}(\mathbb{Z}) .
$$

- Note that $B \simeq F_{2} \times F_{2}$.

Finding orbit undecidable subgroups

- Write $v=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(v)=\{I\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \mathrm{GL}_{d}(\mathbb{Z}), d \geqslant 4$. \square

Question

Does there ϵ xist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Finding orbit undecidable subgroups

- Write $v=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(v)=\{I\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \mathrm{GL}_{d}(\mathbb{Z}), d \geqslant 4$. \square

Question

Does there ϵ xist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Finding orbit undecidable subgroups

- Write $v=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(v)=\{I\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.

Question

Finding orbit undecidable subgroups

- Write $v=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(v)=\{I\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \mathrm{GL}_{d}(\mathbb{Z}), d \geqslant 4$. \square

Finding orbit undecidable subgroups

- Write $v=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(v)=\{I\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \mathrm{GL}_{d}(\mathbb{Z}), d \geqslant 4$. \square

Question

Does there exist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Playing with 2 extra dimensions...

These orbit undecidable examples $\Gamma \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \geqslant 6, \mathrm{GL}_{d}(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Proof. Let $d \geqslant 6$

- Since $d-2 \geqslant 4$, there exists $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant G L_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_{m}=\left\langle f_{1}, \ldots, f_{m}\right\rangle$, and choose matrices $s_{1}, \ldots, s_{m} \in \mathrm{GL}_{2}(\mathbb{Z})$ such that $\left\langle s_{1}, \ldots, s_{m}\right\rangle \simeq F_{m}$.
- Consider the homomorphism given by

$$
\begin{aligned}
\phi: F_{m} & \rightarrow \mathrm{GL}_{d}(\mathbb{Z}) \\
f_{i} & \mapsto\left(\begin{array}{cc}
g_{i} & 0 \\
0 & s_{i}
\end{array}\right)
\end{aligned}
$$

Playing with 2 extra dimensions...

These orbit undecidable examples $\Gamma \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \geqslant 6, \mathrm{GL}_{d}(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

- Since $d-2 \geqslant 4$, there exists $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_{m}=\left\langle f_{1}, \ldots, f_{m}\right\rangle$, and choose matrices $s_{1}, \ldots, s_{m} \in \mathrm{GL}_{2}(\mathbb{Z})$ such that $\left\langle s_{1}, \ldots, s_{m}\right\rangle \simeq F_{m}$.
- Consider the homomorphism given by

Playing with 2 extra dimensions...

These orbit undecidable examples $\Gamma \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \geqslant 6, \mathrm{GL}_{d}(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Proof. Let $d \geqslant 6$.

- Since $d-2 \geqslant 4$, there exists $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant G L_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_{m}=\left\langle f_{1}, \ldots, f_{m}\right\rangle$, and choose matrices $s_{1}, \ldots, s_{m} \in G L_{2}(\mathbb{Z})$
such that $\left\langle s_{1}, \ldots, s_{m}\right\rangle \simeq F_{m}$.
- Consider the homomorphism given by

Playing with 2 extra dimensions...

These orbit undecidable examples $\Gamma \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \geqslant 6, \mathrm{GL}_{d}(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Proof. Let $d \geqslant 6$.

- Since $d-2 \geqslant 4$, there exists $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$ being orbit undecidable.

Playing with 2 extra dimensions...

These orbit undecidable examples $\Gamma \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \geqslant 6, \mathrm{GL}_{d}(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Proof. Let $d \geqslant 6$.

- Since $d-2 \geqslant 4$, there exists $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_{m}=\left\langle f_{1}, \ldots, f_{m}\right\rangle$, and choose matrices $s_{1}, \ldots, s_{m} \in \mathrm{GL}_{2}(\mathbb{Z})$ such that $\left\langle s_{1}, \ldots, s_{m}\right\rangle \simeq F_{m}$.
- Consider the homomorphism given by

Playing with 2 extra dimensions...

These orbit undecidable examples $\Gamma \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \geqslant 6, \mathrm{GL}_{d}(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Proof. Let $d \geqslant 6$.

- Since $d-2 \geqslant 4$, there exists $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_{m}=\left\langle f_{1}, \ldots, f_{m}\right\rangle$, and choose matrices $s_{1}, \ldots, s_{m} \in \mathrm{GL}_{2}(\mathbb{Z})$ such that $\left\langle s_{1}, \ldots, s_{m}\right\rangle \simeq F_{m}$.
- Consider the homomorphism given by

$$
\begin{aligned}
\phi: F_{m} & \rightarrow \mathrm{GL}_{d}(\mathbb{Z}) \\
f_{i} & \mapsto\left(\begin{array}{cc}
g_{i} & 0 \\
0 & s_{i}
\end{array}\right)
\end{aligned}
$$

Playing with 2 extra dimensions...

- Since $\left\langle s_{1}, \ldots, s_{m}\right\rangle \leqslant G L_{2}(\mathbb{Z})$ is free with basis $\left\{s_{1}, \ldots, s_{m}\right\}$, then ϕ must be one-to-one, and its image F is a free subgroup of $\mathrm{GL}_{d}(\mathbb{Z})$ or rank m.
> - Easy to see that $F \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ is orbit undecidable (using the orbit undecidability of $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$). \square

In summary,
For $d \geqslant 6$, there exists a free $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ such that $\mathbb{Z}^{d} \rtimes \Gamma$ has
unsolvable CP.

Playing with 2 extra dimensions...

- Since $\left\langle s_{1}, \ldots, s_{m}\right\rangle \leqslant G L_{2}(\mathbb{Z})$ is free with basis $\left\{s_{1}, \ldots, s_{m}\right\}$, then ϕ must be one-to-one, and its image F is a free subgroup of $\mathrm{GL}_{d}(\mathbb{Z})$ or rank m.
- Easy to see that $F \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ is orbit undecidable (using the orbit undecidability of $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$). \square

In summary,

For $d \geqslant 6$, there exists a free $\Gamma \leqslant G L_{d}(\mathbb{Z})$ such that $\mathbb{Z}^{d} \rtimes \Gamma$ has
unsolvable CP.

Playing with 2 extra dimensions...

- Since $\left\langle s_{1}, \ldots, s_{m}\right\rangle \leqslant G L_{2}(\mathbb{Z})$ is free with basis $\left\{s_{1}, \ldots, s_{m}\right\}$, then ϕ must be one-to-one, and its image F is a free subgroup of $\mathrm{GL}_{d}(\mathbb{Z})$ or rank m.
- Easy to see that $F \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ is orbit undecidable (using the orbit undecidability of $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$). \square

In summary,
For $d \geqslant 6$, there exists a free $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ such that $\mathbb{Z}^{d} \rtimes \Gamma$ has unsolvable CP.

Outline

(1) Introduction

(2) Strategy of the proof

3 Orbit decidability

4 Automaton groups

Tree automorphisms

(joint work with Z. Sunic)
Let X be an alphabet on k letters, and let X^{*} be the free monoid on X, thought as a rooted k-ary tree:

Definition

- Every tree automorphism g decomposes as a root permutation $\pi_{g}: X \rightarrow X$, and k sections $\left.g\right|_{x}$, for $x \in X$:

Tree automorphisms

(joint work with Z. Sunic)

Let X be an alphabet on k letters, and let X^{*} be the free monoid on X, thought as a rooted k-ary tree:

Definition

- Every tree automorphism g decomposes as a root permutation $\pi_{g}: X \rightarrow X$, and k sections $\left.g\right|_{X}$, for $x \in X$:

Tree automorphisms

(joint work with Z. Sunic)

Let X be an alphabet on k letters, and let X^{*} be the free monoid on X, thought as a rooted k-ary tree:

Definition

- Every tree automorphism g decomposes as a root permutation $\pi_{g}: X \rightarrow X$, and k sections $\left.g\right|_{x}$, for $x \in X$:

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group $G(\mathcal{A})$ of tree automorphisms generated by an automaton \mathcal{A} is called an automaton group.

The Grigorchuk group: $\mathbf{G}=\langle\alpha, \beta, \gamma, \delta\rangle$, where

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group $G(\mathcal{A})$ of tree automorphisms generated by an
automaton \mathcal{A} is called an automaton group.

The Grigorchuk group: $\mathbf{G}=\langle\alpha, \beta, \gamma, \delta\rangle$, where

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group $G(\mathcal{A})$ of tree automorphisms generated by an automaton \mathcal{A} is called an automaton group.

The Grigorchuk group: $\mathbf{G}=\langle\alpha, \beta, \gamma, \delta\rangle$, where

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group $G(\mathcal{A})$ of tree automorphisms generated by an automaton \mathcal{A} is called an automaton group.

The Grigorchuk group: $\mathcal{G}=\langle\alpha, \beta, \gamma, \delta\rangle$, where

$$
\alpha=\sigma(1,1), \quad \beta=1(\alpha, \gamma), \quad \gamma=1(\alpha, \delta), \quad \delta=1(1, \beta)
$$

Affinities of n-adic integers

Definition

Let $\mathcal{M}=\left\{M_{1}, \ldots, M_{m}\right\}$ be integral $d \times d$ matrices with non-zero determinants. Let $n \geqslant 2$ be relatively prime to all these determinants (thus, M_{i} is invertible over the ring \mathbb{Z}_{n} of n-adic integers).

For an integral $d \times d$ matrix M and $v \in \mathbb{Z}^{d}$, consider the invertible affine transformation ${ }_{\mathbf{v}} M: \mathbb{Z}_{n}^{d} \rightarrow \mathbb{Z}_{n}^{d}, \quad{ }_{\mathrm{v}} M(\mathbf{u})=\mathbf{v}+M \mathbf{u}$.

Lemma

- The group GM.n is finitely generated.

on n.

Affinities of n-adic integers

Definition

Let $\mathcal{M}=\left\{M_{1}, \ldots, M_{m}\right\}$ be integral $d \times d$ matrices with non-zero determinants. Let $n \geqslant 2$ be relatively prime to all these determinants (thus, M_{i} is invertible over the ring \mathbb{Z}_{n} of n-adic integers).
For an integral $d \times d$ matrix M and $\mathbf{v} \in \mathbb{Z}^{d}$, consider the invertible affine transformation ${ }_{\mathbf{v}} M: \mathbb{Z}_{n}^{d} \rightarrow \mathbb{Z}_{n}^{d}, \quad{ }_{\mathrm{v}} \mathrm{M}(\mathbf{u})=\mathbf{v}+M \mathbf{u}$.

Lemma

- The group $G_{M, n}$ is finitely generated.

on n.

Affinities of n-adic integers

Definition

Let $\mathcal{M}=\left\{M_{1}, \ldots, M_{m}\right\}$ be integral $d \times d$ matrices with non-zero determinants. Let $n \geqslant 2$ be relatively prime to all these determinants (thus, M_{i} is invertible over the ring \mathbb{Z}_{n} of n-adic integers).
For an integral $d \times d$ matrix M and $\mathbf{v} \in \mathbb{Z}^{d}$, consider the invertible affine transformation ${ }_{\mathbf{v}} M: \mathbb{Z}_{n}^{d} \rightarrow \mathbb{Z}_{n}^{d}, \quad{ }_{\mathrm{v}} \mathrm{M}(\mathbf{u})=\mathbf{v}+M \mathbf{u}$.

Let

$$
G_{\mathcal{M}, n}=\left\langle\left\{\mathbf{v} M \mid M \in \mathcal{M}, \mathbf{v} \in \mathbb{Z}^{d}\right\}\right\rangle \leqslant \text { Aff }_{d}\left(\mathbb{Z}_{n}\right) .
$$

Lemma

- The group $G_{M, n}$ is finitely generated.

on n.

Affinities of n-adic integers

Definition

Let $\mathcal{M}=\left\{M_{1}, \ldots, M_{m}\right\}$ be integral $d \times d$ matrices with non-zero determinants. Let $n \geqslant 2$ be relatively prime to all these determinants (thus, M_{i} is invertible over the ring \mathbb{Z}_{n} of n-adic integers).
For an integral $d \times d$ matrix M and $\mathbf{v} \in \mathbb{Z}^{d}$, consider the invertible affine transformation $\mathbf{v} M: \mathbb{Z}_{n}^{d} \rightarrow \mathbb{Z}_{n}^{d}, \quad{ }_{\mathbf{v}} M(\mathbf{u})=\mathbf{v}+M \mathbf{u}$.

Let

$$
G_{\mathcal{M}, n}=\left\langle\left\{\mathbf{v} M \mid M \in \mathcal{M}, \mathbf{v} \in \mathbb{Z}^{d}\right\}\right\rangle \leqslant A f f_{d}\left(\mathbb{Z}_{n}\right) .
$$

Lemma

- The group $G_{\mathcal{M}, n}$ is finitely generated.
- If, in addition, $\operatorname{det} M_{i}= \pm 1$, then $G_{\mathcal{M}, n} \cong \mathbb{Z}^{d} \rtimes \Gamma$, where $\Gamma=\left\langle M_{1}, \ldots, M_{m}\right\rangle \leqslant \mathrm{GL}_{d}(\mathbb{Z})$; in particular, $G_{\mathcal{M}, n}$ does not depend on n.

Affinities of n-adic integers

Proof. Denote the translation by $\tau_{\mathbf{v}}: \mathbb{Z}_{n}^{d} \rightarrow \mathbb{Z}_{n}^{d}, \mathbf{u} \mapsto \mathbf{u}+\mathbf{v}$.
Since ${ }_{\mathrm{v}} M=\tau_{\mathrm{v}} \mathrm{o} M$, we have $G_{\mathcal{M}, n}$ generated by $\mathrm{o}_{\mathrm{M}} \mathrm{M}$ for $M \in \mathcal{M}$, and $\tau_{e_{i}}$, where the e_{i} 's are the canonical vectors.

If $M \in \mathrm{GL}_{d}(\mathbb{Z})$, then ${ }_{\mathrm{v}} M \in$ Aff $_{d}\left(\mathbb{Z}_{n}\right)$ restricts to an integral bijective affine transformation $v M \in$ Aff $_{d}(\mathbb{Z})$; hence, we can view $G_{M, n} \leqslant A_{1}(\mathbb{Z})$ (and is independent irom n; leit's denote it by G_{M}).
They get multiplied as

So, $G_{\mathcal{M}} \cong \mathbb{Z}^{d} \rtimes \Gamma$, where $\Gamma=\left\langle M_{1}\right.$,
$\left.M_{m}\right) \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

Affinities of n-adic integers

Proof. Denote the translation by $\tau_{\mathbf{v}}: \mathbb{Z}_{n}^{d} \rightarrow \mathbb{Z}_{n}^{d}, \mathbf{u} \mapsto \mathbf{u}+\mathbf{v}$.
Since ${ }_{\mathrm{v}} M=\tau_{\mathrm{v}} \mathrm{M}$, we have $G_{\mathcal{M}, n}$ generated by ${ }_{\mathrm{o}} M$ for $M \in \mathcal{M}$, and $\tau_{\mathbf{e}_{i}}$, where the \mathbf{e}_{i} 's are the canonical vectors.

If $M \in \mathrm{GL}_{d}(\mathbb{Z})$, then ${ }_{\mathrm{v}} M \in \operatorname{Aff}_{d}\left(\mathbb{Z}_{n}\right)$ restricts to an integral bijective affine transformation ${ }_{v} M \in A f f_{d}(\mathbb{Z})$; hence, we can view $G_{\mathcal{M}, n} \leqslant \operatorname{Aff}_{d}(\mathbb{Z})$ (and is independent from n; let's denote it by $G_{\mathcal{M}}$) They get multiplied as

$\mathbf{v}+M \mathbf{v}^{\prime}\left(M M^{\prime}\right)(\mathbf{u})$
So, $G_{\mathcal{M}} \cong \mathbb{Z}^{d} \rtimes \Gamma$, where $\Gamma=\left\langle M_{1}\right.$,
$\left.M_{m}\right) \leqslant \mathrm{GL}(\mathbb{Z})$

Affinities of n-adic integers

Proof. Denote the translation by $\tau_{\mathbf{v}}: \mathbb{Z}_{n}^{d} \rightarrow \mathbb{Z}_{n}^{d}, \mathbf{u} \mapsto \mathbf{u}+\mathbf{v}$.
Since ${ }_{\mathrm{v}} M=\tau_{\mathrm{v}} \mathrm{M}$, we have $G_{\mathcal{M}, n}$ generated by ${ }_{\mathrm{o}} M$ for $M \in \mathcal{M}$, and $\tau_{\mathbf{e}_{i}}$, where the \mathbf{e}_{i} 's are the canonical vectors.

If $M \in \mathrm{GL}_{d}(\mathbb{Z})$, then ${ }_{\mathrm{v}} M \in$ Aff $_{d}\left(\mathbb{Z}_{n}\right)$ restricts to an integral bijective affine transformation $\mathrm{v} M \in$ Aff $_{d}(\mathbb{Z})$; hence, we can view $G_{\mathcal{M}, n} \leqslant \operatorname{Aff}_{d}(\mathbb{Z})$ (and is independent from n; let's denote it by $G_{\mathcal{M}}$).

They get multiplied as

So, $G_{M} \cong \mathbb{Z}^{d} \rtimes \Gamma$, where $\Gamma=\left\langle M_{1}\right.$,
$\mathbf{v}+M \mathbf{v}^{\prime}\left(M M^{\prime}\right)(\mathbf{u})$.

Affinities of n-adic integers

Proof. Denote the translation by $\tau_{\mathbf{v}}: \mathbb{Z}_{n}^{d} \rightarrow \mathbb{Z}_{n}^{d}, \mathbf{u} \mapsto \mathbf{u}+\mathbf{v}$.
Since ${ }_{\mathrm{v}} M=\tau_{\mathrm{v}} \mathrm{M}$, we have $G_{\mathcal{M}, n}$ generated by ${ }_{\mathrm{o}} M$ for $M \in \mathcal{M}$, and $\tau_{\mathbf{e}_{i}}$, where the \mathbf{e}_{i} 's are the canonical vectors.

If $M \in \mathrm{GL}_{d}(\mathbb{Z})$, then ${ }_{\mathrm{v}} M \in \operatorname{Aff}_{d}\left(\mathbb{Z}_{n}\right)$ restricts to an integral bijective affine transformation $\mathrm{v} M \in$ Aff $_{d}(\mathbb{Z})$; hence, we can view
$G_{\mathcal{M}, n} \leqslant \operatorname{Aff}_{d}(\mathbb{Z})$ (and is independent from n; let's denote it by $G_{\mathcal{M}}$).
They get multiplied as

$$
\begin{array}{ll}
{ }_{\mathbf{v}} M_{\mathbf{v}^{\prime}} M^{\prime}: \mathbf{u} \longrightarrow \mathbf{v}^{\prime}+M^{\prime} \mathbf{u} \longrightarrow & \mathbf{v}+M\left(\mathbf{v}^{\prime}+M^{\prime} \mathbf{u}\right)= \\
& \left(\mathbf{v}+M \mathbf{v}^{\prime}\right)+M M^{\prime} \mathbf{u}= \\
& \mathbf{v}+M \mathbf{v}^{\prime}\left(M M^{\prime}\right)(\mathbf{u}) .
\end{array}
$$

So, $G_{\mathcal{M}} \cong \mathbb{Z}^{d} \rtimes \Gamma$, where $\Gamma=\left\langle M_{1}, \ldots, M_{m}\right\rangle \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

G_{M} is an automaton group

So, we have the groups $G_{\mathcal{M}, n}$ (with $\mathcal{M}=\left\{M_{1}, \ldots, M_{m}\right\}$ as before) and

$$
\operatorname{det} M_{i}= \pm 1 \Rightarrow G_{\mathcal{M}, n} \cong \mathbb{Z}^{d} \rtimes \Gamma
$$

where $\Gamma=\left\langle M_{1}, \ldots, M_{m}\right\rangle \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

It only remains to prove that:

Proposition

$G_{\mathcal{M}, n}$ is an automaton group.

$G_{\mathcal{M}}$ is an automaton group

So, we have the groups $G_{\mathcal{M}, n}$ (with $\mathcal{M}=\left\{M_{1}, \ldots, M_{m}\right\}$ as before) and

$$
\operatorname{det} M_{i}= \pm 1 \Rightarrow G_{\mathcal{M}, n} \cong \mathbb{Z}^{d} \rtimes \Gamma,
$$

where $\Gamma=\left\langle M_{1}, \ldots, M_{m}\right\rangle \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

It only remains to prove that:

Proposition

$G_{\mathcal{M}, n}$ is an automaton group.

$G_{\mathcal{M}}$ is an automaton group

Definition

Elements in \mathbb{Z}_{n} may be (uniquely) represented as right infinite words over $Y_{n}=\{0, \ldots, n-1\}$:

$$
y_{1} y_{2} y_{3} \cdots \quad \longleftrightarrow \quad y_{1}+n \cdot y_{2}+n^{2} \cdot y_{3}+\cdots
$$

Similarly, elements of \mathbb{Z}_{n}^{d} (the free d-dimensional module, viewed as column vectors), may be (uniquely) represented as right infinite words over $X_{n}=Y_{n}^{d}=\left\{\left(y_{1}, \ldots, y_{d}\right)^{T} \mid y_{i} \in Y_{n}\right\}$:

Note that $\left|Y_{n}\right|=n$ and $\left|X_{n}\right|=n^{d}$.

$G_{\mathcal{M}}$ is an automaton group

Definition

Elements in \mathbb{Z}_{n} may be (uniquely) represented as right infinite words over $Y_{n}=\{0, \ldots, n-1\}$:

$$
y_{1} y_{2} y_{3} \cdots \quad \longleftrightarrow \quad y_{1}+n \cdot y_{2}+n^{2} \cdot y_{3}+\cdots
$$

Similarly, elements of \mathbb{Z}_{n}^{d} (the free d-dimensional module, viewed as column vectors), may be (uniquely) represented as right infinite words over $X_{n}=Y_{n}^{d}=\left\{\left(y_{1}, \ldots, y_{d}\right)^{T} \mid y_{i} \in Y_{n}\right\}$:

$$
\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots \quad \longleftrightarrow \quad \mathbf{x}_{1}+n \cdot \mathbf{x}_{2}+n^{2} \cdot \mathbf{x}_{3}+\cdots .
$$

Note that $\left|Y_{n}\right|=n$ and $\left|X_{n}\right|=n^{d}$.

$G_{\mathcal{M}}$ is an automaton group

Definition

Elements in \mathbb{Z}_{n} may be (uniquely) represented as right infinite words over $Y_{n}=\{0, \ldots, n-1\}$:

$$
y_{1} y_{2} y_{3} \cdots \quad \longleftrightarrow \quad y_{1}+n \cdot y_{2}+n^{2} \cdot y_{3}+\cdots
$$

Similarly, elements of \mathbb{Z}_{n}^{d} (the free d-dimensional module, viewed as column vectors), may be (uniquely) represented as right infinite words over $X_{n}=Y_{n}^{d}=\left\{\left(y_{1}, \ldots, y_{d}\right)^{T} \mid y_{i} \in Y_{n}\right\}$:

$$
\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots \quad \longleftrightarrow \quad \mathbf{x}_{1}+n \cdot \mathbf{x}_{2}+n^{2} \cdot \mathbf{x}_{3}+\cdots .
$$

Note that $\left|Y_{n}\right|=n$ and $\left|X_{n}\right|=n^{d}$.

$G_{\mathcal{M}}$ is an automaton group

Definition

For $\mathbf{v} \in \mathbb{Z}^{d}$, define vectors $\operatorname{Mod}(\mathbf{v}) \in X_{n}$ and $\operatorname{Div}(\mathbf{v}) \in \mathbb{Z}^{d}$ s.t. $\mathbf{v}=\operatorname{Mod}(\mathbf{v})+n \cdot \operatorname{Div}(\mathbf{v})$.

Lemma

For every $\mathbf{v} \in \mathbb{Z}^{d}$, and every $\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \ldots \in \mathbb{Z}_{n}^{d}$, we have

$$
{ }_{\mathrm{v}} M\left(\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \cdots\right)=\operatorname{Mod}\left(\mathrm{v}+M \mathrm{x}_{1}\right)+n \cdot \operatorname{Div}\left(\mathrm{v}+M \mathrm{x}_{1}\right) M\left(\mathrm{x}_{2} \mathrm{x}_{3} \mathrm{x}_{4}\right.
$$

Proof.

$G_{\mathcal{M}}$ is an automaton group

Definition

For $\mathbf{v} \in \mathbb{Z}^{d}$, define vectors $\operatorname{Mod}(\mathbf{v}) \in X_{n}$ and $\operatorname{Div}(\mathbf{v}) \in \mathbb{Z}^{d}$ s.t. $\mathbf{v}=\operatorname{Mod}(\mathbf{v})+n \cdot \operatorname{Div}(\mathbf{v})$.

Lemma

For every $\mathbf{v} \in \mathbb{Z}^{d}$, and every $\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \ldots \in \mathbb{Z}_{n}^{d}$, we have

$$
{ }_{\mathrm{v}} M\left(\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots\right)=\operatorname{Mod}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+n \cdot \operatorname{Div}\left(\mathbf{v}+M \mathbf{x}_{1}\right) M\left(\mathbf{x}_{2} \mathbf{x}_{3} \mathbf{x}_{4} \cdots\right) .
$$

Proof.

$G_{\mathcal{M}}$ is an automaton group

Definition

For $\mathbf{v} \in \mathbb{Z}^{d}$, define vectors $\operatorname{Mod}(\mathbf{v}) \in X_{n}$ and $\operatorname{Div}(\mathbf{v}) \in \mathbb{Z}^{d}$ s.t. $\mathbf{v}=\operatorname{Mod}(\mathbf{v})+n \cdot \operatorname{Div}(\mathbf{v})$.

Lemma

For every $\mathbf{v} \in \mathbb{Z}^{d}$, and every $\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \ldots \in \mathbb{Z}_{n}^{d}$, we have

$$
{ }_{\mathbf{v}} M\left(\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots\right)=\operatorname{Mod}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+n \cdot \operatorname{Div}\left(\mathbf{v}+M \mathbf{x}_{1}\right) M\left(\mathbf{x}_{2} \mathbf{x}_{3} \mathbf{x}_{4} \cdots\right) .
$$

Proof.

$$
\begin{aligned}
{ }_{\mathbf{v}} M\left(\mathbf{x}_{1} \mathbf{x}_{2} \cdots\right) & =\mathbf{v}+M \mathbf{x}_{1} \mathbf{x}_{2} \cdots=\mathbf{v}+M\left(\mathbf{x}_{1}+n \cdot\left(\mathbf{x}_{2} \mathbf{x}_{3} \cdots\right)\right) \\
& =\mathbf{v}+M \mathbf{x}_{1}+n \cdot M \mathbf{x}_{2} \mathbf{x}_{3} \cdots \\
& =\operatorname{Mod}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+n \cdot \operatorname{Div}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+n M \mathbf{x}_{2} \mathbf{x}_{3} \cdots \\
& =\operatorname{Mod}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+n \cdot\left(\operatorname{Div}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+M \mathbf{x}_{2} \mathbf{x}_{3} \cdots\right) \\
& =\operatorname{Mod}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+n \cdot \operatorname{Div}\left(\mathbf{v}+M \mathbf{x}_{1}\right) M\left(\mathbf{x}_{2} \mathbf{x}_{3} \cdots\right) .
\end{aligned}
$$

$G_{\mathcal{M}}$ is an automaton group

$$
{ }_{\mathbf{v}} M\left(\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots\right)=\operatorname{Mod}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+n \cdot \operatorname{Div}\left(\mathbf{v}+M \mathbf{x}_{1}\right) M\left(\mathbf{x}_{2} \mathbf{x}_{3} \mathbf{x}_{4} \cdots\right) .
$$

Definition

For $M \in \mathcal{M}$, let V_{M} be the set of integral vectors with coordinates between $-\|M\|$ and $\|M\|-1$ (note that $\left|V_{M}\right|=(2\|M\|)^{d}$).

Definition

Construct the automaton $A_{m . n:}$

- Alphabet: X_{n}.
- States: m_{v} for $\mathbf{v} \in V_{M}$, with root permutation and sections

$$
m_{\mathrm{v}}(\mathrm{x})=\operatorname{Mod}^{\prime}(\mathrm{v}+M \mathrm{x}), \quad \text { and }\left.\quad m_{\mathrm{v}}\right|_{\mathrm{x}}=m_{\mathrm{Div}}(\mathrm{v}+M \mathrm{x}) .
$$

- Straightforward to see that sections are again states.

$G_{\mathcal{M}}$ is an automaton group

$$
{ }_{\mathrm{v}} M\left(\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots\right)=\operatorname{Mod}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+n \cdot \operatorname{Div}\left(\mathbf{v}+M \mathbf{x}_{1}\right) M\left(\mathbf{x}_{2} \mathbf{x}_{3} \mathbf{x}_{4} \cdots\right) .
$$

Definition

For $M \in \mathcal{M}$, let V_{M} be the set of integral vectors with coordinates between $-\|M\|$ and $\|M\|-1$ (note that $\left|V_{M}\right|=(2\|M\|)^{d}$).

Definition

Construct the automaton $\mathcal{A}_{M, n}$:

- Alphabet: X_{n}
- States: $m_{\mathbf{v}}$ for $\mathbf{v} \in V_{M}$, with root permutation and sections

$$
m_{\mathrm{v}}(\mathrm{x})=\operatorname{Mod}(\mathrm{v}+M \mathbf{x}), \quad \text { and }\left.\quad m_{\mathrm{v}}\right|_{\mathrm{x}}=m_{\operatorname{Div}(\mathrm{v}+M \mathrm{x})}
$$

- Straightforward to see that sections are again states.

G_{M} is an automaton group

$$
{ }_{\mathrm{v}} M\left(\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots\right)=\operatorname{Mod}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+n \cdot \operatorname{Div}\left(\mathbf{v}+M \mathbf{x}_{1}\right) M\left(\mathbf{x}_{2} \mathbf{x}_{3} \mathbf{x}_{4} \cdots\right) .
$$

Definition

For $M \in \mathcal{M}$, let V_{M} be the set of integral vectors with coordinates between $-\|M\|$ and $\|M\|-1$ (note that $\left|V_{M}\right|=(2\|M\|)^{d}$).

Definition

Construct the automaton $\mathcal{A}_{M, n}$:

- Alphabet: X_{n}.
- States: m_{v} for $\mathrm{v} \in V_{M}$, with root permutation and sections $m_{\mathbf{v}}(\mathbf{x})=\operatorname{Mod}(\mathbf{v}+M \mathbf{x}), \quad$ and $\quad m_{\mathbf{v}} \mid \mathbf{x}=m_{\operatorname{Div}(\mathbf{v}+M \mathbf{x})}$.
- Straightforward to see that sections are again states.

$G_{\mathcal{M}}$ is an automaton group

$$
{ }_{\mathrm{v}} M\left(\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots\right)=\operatorname{Mod}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+n \cdot \operatorname{Div}\left(\mathbf{v}+M \mathbf{x}_{1}\right) M\left(\mathbf{x}_{2} \mathbf{x}_{3} \mathbf{x}_{4} \cdots\right) .
$$

Definition

For $M \in \mathcal{M}$, let V_{M} be the set of integral vectors with coordinates between $-\|M\|$ and $\|M\|-1$ (note that $\left|V_{M}\right|=(2\|M\|)^{d}$).

Definition

Construct the automaton $\mathcal{A}_{M, n}$:

- Alphabet: X_{n}.
- States: m_{v} for $\mathbf{v} \in V_{M}$, with root permutation and sections

$$
m_{\mathbf{v}}(\mathbf{x})=\operatorname{Mod}(\mathbf{v}+M \mathbf{x}), \quad \text { and }\left.\quad m_{\mathbf{v}}\right|_{\mathbf{x}}=m_{\operatorname{Div}(\mathbf{v}+M \mathbf{x})}
$$

$G_{\mathcal{M}}$ is an automaton group

$$
{ }_{\mathrm{v}} M\left(\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots\right)=\operatorname{Mod}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+n \cdot \operatorname{Div}\left(\mathbf{v}+M \mathbf{x}_{1}\right) M\left(\mathbf{x}_{2} \mathbf{x}_{3} \mathbf{x}_{4} \cdots\right) .
$$

Definition

For $M \in \mathcal{M}$, let V_{M} be the set of integral vectors with coordinates between $-\|M\|$ and $\|M\|-1$ (note that $\left.\left|V_{M}\right|=(2\|M\|)^{d}\right)$.

Definition

Construct the automaton $\mathcal{A}_{M, n}$:

- Alphabet: X_{n}.
- States: m_{v} for $\mathbf{v} \in V_{M}$, with root permutation and sections

$$
m_{\mathbf{v}}(\mathbf{x})=\operatorname{Mod}(\mathbf{v}+M \mathbf{x}), \quad \text { and }\left.\quad m_{\mathbf{v}}\right|_{\mathbf{x}}=m_{\operatorname{Div}(\mathbf{v}+M \mathbf{x})}
$$

- Straightforward to see that sections are again states.

Observation

The state $m_{v} \in \mathcal{A}_{M, n}$ acts on a vector $\mathbf{u}=\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots \in \mathbb{Z}_{n}^{d}$ as $m_{\mathbf{v}}(\mathbf{u})={ }_{\mathrm{v}} M(\mathbf{u})$.

Definition

Construct the automaton $\mathcal{A}_{\mathcal{M}, n}$ as the disjoint union of the automata $\mathcal{A}_{M_{1}, n}, \ldots, \mathcal{A}_{M_{m}, n}$.

- Alphabet: X_{n},
- It has $2^{d} \sum_{i=1}^{m}\left\|M_{i}\right\|^{d}$ states.

Proposition

$G_{\mathcal{M} . n}$ is an automaton group generated by the automaton $\mathcal{A}_{\mathrm{M}, n}$ (over an alphabet of size n^{d}, and having $2^{d} \sum_{i=1}^{m}\left\|M_{i}\right\|^{d}$ states).

$G_{\mathcal{M}}$ is an automaton group

Observation

The state $m_{v} \in \mathcal{A}_{M, n}$ acts on a vector $\mathbf{u}=\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots \in \mathbb{Z}_{n}^{d}$ as $m_{\mathbf{v}}(\mathbf{u})={ }_{\mathrm{v}} M(\mathbf{u})$.

Definition

Construct the automaton $\mathcal{A}_{\mathcal{M}, n}$ as the disjoint union of the automata $\mathcal{A}_{M_{1}, n}, \ldots, \mathcal{A}_{M_{m}, n}$.

- Alphabet: X_{n},
- It has $2^{d} \sum_{i=1}^{m}\left\|M_{i}\right\|^{d}$ states.

Proposition

$G_{\mathcal{M}, n}$ is an automaton group generated by the automaton $\mathcal{A}_{\mathcal{M}, n}$ (over an alphabet of size n^{d}, and having $2^{d} \sum_{i=1}^{m}\left\|M_{i}\right\|^{d}$ states).

$G_{\mathcal{M}}$ is an automaton group

Observation

The state $m_{v} \in \mathcal{A}_{M, n}$ acts on a vector $\mathbf{u}=\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots \in \mathbb{Z}_{n}^{d}$ as $m_{\mathbf{v}}(\mathbf{u})={ }_{\mathrm{v}} M(\mathbf{u})$.

Definition

Construct the automaton $\mathcal{A}_{\mathcal{M}, n}$ as the disjoint union of the automata $\mathcal{A}_{M_{1}, n}, \ldots, \mathcal{A}_{M_{m}, n}$.

- Alphabet: X_{n},
- It has $2^{d} \sum_{i=1}^{m}\left\|M_{i}\right\|^{d}$ states.

Proposition

$G_{\mathcal{M}, n}$ is an automaton group generated by the automaton $\mathcal{A}_{\mathcal{M}, n}$ (over an alphabet of size n^{d}, and having $2^{d} \sum_{i=1}^{m}\left\|M_{i}\right\|^{d}$ states).

G_{M} is an automaton group

Proof. Clearly, $G\left(\mathcal{A}_{\mathcal{M}, n}\right) \leqslant G_{\mathcal{M}, n}$.
For the other inclusion it remains to see that $\mathcal{A}_{\mathcal{M}, n}$ has enough states
to generate $G_{\mathcal{M}, n}$. In fact, for every $M \in \mathcal{M}$, we have states
$m_{0}, m_{-\mathbf{e}_{1}}, \ldots, m_{-\mathbf{e}_{d}}$ and so, also have

$$
m_{0}={ }_{o} M: \mathbf{u} \mapsto M \mathbf{u}
$$

and
which generate $G_{\mathcal{M}, n} . \square$

G_{M} is an automaton group

Proof. Clearly, $G\left(\mathcal{A}_{\mathcal{M}, n}\right) \leqslant G_{\mathcal{M}, n}$.
For the other inclusion it remains to see that $\mathcal{A}_{\mathcal{M}, n}$ has enough states to generate $G_{\mathcal{M}, n}$. In fact, for every $M \in \mathcal{M}$, we have states $m_{0}, m_{-\mathbf{e}_{1}}, \ldots, m_{-\mathbf{e}_{d}}$ and so, also have

$$
m_{0}={ }_{o} M: \mathbf{u} \mapsto M \mathbf{u}
$$

which generate $G_{\mathcal{M}, n} . \square$

$G_{\mathcal{M}}$ is an automaton group

Proof. Clearly, $G\left(\mathcal{A}_{\mathcal{M}, n}\right) \leqslant G_{\mathcal{M}, n}$.
For the other inclusion it remains to see that $\mathcal{A}_{\mathcal{M}, n}$ has enough states to generate $G_{\mathcal{M}, n}$. In fact, for every $M \in \mathcal{M}$, we have states
$m_{0}, m_{-\mathbf{e}_{1}}, \ldots, m_{-\mathbf{e}_{d}}$ and so, also have

$$
m_{0}={ }_{o} M: \mathbf{u} \mapsto M \mathbf{u}
$$

and

$$
\tau_{\mathbf{e}_{j}}=m_{0}\left(m_{-\mathbf{e}_{j}}\right)^{-1}: \mathbf{u} \mapsto M^{-1}\left(\mathbf{e}_{j}+\mathbf{u}\right) \mapsto M M^{-1}\left(\mathbf{e}_{j}+\mathbf{u}\right)=\mathbf{e}_{j}+\mathbf{u}
$$

which generate $G_{\mathcal{M}, n}$.

Conclusion

So, we have proved that

Theorem

For $d \geqslant 6$, there exists $\mathcal{M}=\left\{M_{1}, \ldots, M_{m}\right\}$ such that
$\Gamma=\left\langle M_{1}, \ldots, M_{m}\right\rangle \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ is free and orbit undecidable. Hence, the group $\mathcal{A}_{\mathcal{M}, n} \simeq G_{\mathcal{M}, n}$

- is an automaton group,
- is \mathbb{Z}^{d}-by-free (i.e. $\simeq \mathbb{Z}^{d} \rtimes \Gamma$),
- has unsolvable conjugacy problem.

THANKS

[^0]: Corollary

[^1]: - Note that $B \simeq F_{2} \times F_{2}$.

