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Notation

A = {a1, . . . , an} is a finite alphabet (n letters).
A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , an, a−1
n }.

Fn is the free group on A.
Aut (Fn) ⊆ End (Fn).
I let endomorphisms ϕ : Fn → Fn act on the right, x 7→ xϕ.

So, compositions are αβ : Fn
α→ Fn

β→ Fn, x 7→ xα 7→ xαβ.
conjugations: γu : Fn → Fn, x 7→ u−1xu.
Fix (φ) = {x ∈ Fn | xφ = x} 6 Fn.
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Step 1:

Find a problem you like
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Conjugacy problem for free-by-cyclic groups

Definition

Let Fn = 〈x1, . . . , xn | 〉 be a free group on {x1, . . . , xn} (n ≥ 2), and let
ϕ ∈ Aut (Fn). The free-by-cyclic group Fn oϕ Z is defined as

Fn oϕ Z = 〈x1, . . . , xn, t | t−1xi t = xiϕ〉.

With xi t = t(xiϕ) and xi t−1 = t−1(xiϕ
−1), we can move all t ’s to the

left and get the usual normal form for elements in Fn oϕ Z:

t r w , with r ∈ Z, w ∈ Fn.

Problem
Solve the conjugacy problem in Fn oϕ Z.
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Step 2:

Push the problem into your favorite
territory
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Converting it into a free group problem

Let t r u, tsv , tk g be arbitrary elements in Mϕ = Fn oϕ Z. Then,

(g−1t−k )(t r u)(tk g) = g−1t r (uϕk )g
= t r (gϕr )−1(uϕk )g.

t r u and tsv
conj. in Mϕ

⇐⇒ r = s
v ∼ϕr (uϕk ) for some k ∈ Z.

Definition

For ϕ ∈ End (G), two elements u, v ∈ G are said to be ϕ-twisted
conjugated, denoted u ∼ϕ v, if v = (gϕ)−1ug for some g ∈ G.

Definition

The twisted conjugacy problem for G, denoted TCP(G):
“Given ϕ ∈ Aut (G) and u, v ∈ G decide whether u ∼ϕ v".
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Step 3:

We solved it
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TCP(Fn) is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

TCP(Fn) for automorphisms is solvable.

Proof. Given ϕ ∈ Aut (Fn) and u, v ∈ Fn:
1 Extend to Fn ∗ 〈z〉 and ϕ̂ : Fn ∗ 〈z〉 → Fn ∗ 〈z〉, sending z to uzu−1.

Claim: for g ∈ Fn, v = (gϕ)−1ug ⇔ g−1zg ∈ Fix (ϕ̂γv ).

2 Compute a basis for Fix (ϕ̂γv ).

3 Check whether Fix (ϕ̂γv ) contains g−1zg for some g ∈ Fn, using
Stallings’ automata. �

Theorem (Maslakova)

Fixed subgroups of automorphisms of free groups are computable.
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CP(Fn oϕ Z) is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every ϕ ∈ Aut (Fn), CP(Fn oϕ Z) is solvable.

Proof. Given t r u, tsv ∈ Mϕ = Fn oϕ Z.
t r u and tsv
conj. in Mϕ

⇐⇒ r = s
v ∼ϕr (uϕk ) for some k ∈ Z.

To reduce to finitely many k ’s, note that u ∼ϕ uϕ (because
u = (uϕ)−1(uϕ)u ), so uϕk ∼ϕr uϕk±λr ; hence,

t r u and tsv
conj. in Mϕ

⇐⇒ r = s
v ∼ϕr (uϕk ) for some k = 0, . . . , r − 1.

Thus, CP(Mϕ) reduces to finitely many checks of TCP(Fn).
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Step 4:

A mistake was found
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CP(Fn oϕ Z) is solvable

I Case 2: r = 0
Still infinitely many k ’s:

u and v
conj. in Mϕ

⇐⇒ v ∼ uϕk for some k ∈ Z.

This is precisely Brinkmann’s result:

Theorem (Brinkmann, 2006)

Given an automorphism φ : Fn → Fn and u, v ∈ Fn, it is decidable
whether v ∼ uφk for some k ∈ Z.

Hence, CP(Mϕ) is solvable. �
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Step 5:

Intuition always ahead
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A crucial comment

A. Martino: “The whole argument essentially works the same way in
presence of more stable letters, i.e. for free-by-free groups"

Definition

Let Fn = 〈x1, . . . , xn | 〉 be the free group on {x1, . . . , xn} (n ≥ 2), and
let ϕ1, . . . , ϕm ∈ Aut (Fn). The free-by-free group Fn oϕ1,...,ϕm Fm is

Fn oϕ1,...,ϕm Fm = 〈x1, . . . , xn, t1, . . . , tm | t−1
j xi tj = xiϕj〉.

But this looks wrong, taking into account Miller’s examples...
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The comment was right...

He was right... the whole argument essentially works the same way
except that in the second case, a much stronger problem arises:

u and vconj.
in Mϕ1, ...,ϕm

⇐⇒ v ∼ uϕ for some ϕ ∈ 〈ϕ1, . . . , ϕm〉 6 Aut(Fn).

Theorem

CP(Fn oϕ1,...,ϕm Fm) is solvable if and only if 〈ϕ1, . . . , ϕm〉 is orbit
decidable.

Definition

A subgroup A 6 Aut (F ) is said to be orbit decidable (O.D.) if ∃ an
algorithm s.t., given u, v ∈ F decides whether v ∼ uα for some α ∈ A.
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Step 6:

Extend as much as possible
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Outline

1 The conjugacy problem for free-by-cyclic groups

2 The main theorem

3 The conjugacy problem for free-by-free groups

4 The conjugacy problem for (free abelian)-by-free groups

5 The conjugacy problem for Braid-by-free groups

6 The conjugacy problem for Thompson-by-free groups

7 The conjugacy problem for automata
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The main result

Theorem (Bogopolski-Martino-V., 2008)

Let
1 −→ F α−→ G β−→ H −→ 1

be an algorithmic short exact sequence of groups such that
(i) TCP(F ) is solvable,
(ii) CP(H) is solvable,
(iii) there is an algorithm which, given an input 1 6= h ∈ H, computes

a finite set of elements zh,1, . . . , zh,th ∈ H such that

CH(h) = 〈h〉zh,1 t · · · t 〈h〉zh,th .

Then,

CP(G) is solvable ⇐⇒
AG =

{
γg : F → F

x 7→ g−1xg

∣∣∣∣ g ∈ G
}

6 Aut(F ) is orbit decidable.
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The previous result

Previous result in this language:

Theorem (Brinkmann, 2006)

Cyclic subgroups of Aut (Fn) are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

And Miller’s examples must correspond to orbit undecidable
subgroups of Aut(Fn)...
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Negative results

Proposition (Bogopolski-Martino-V., 2008)

Let F be a group, and let A 6 B 6 Aut (F ) and w ∈ F be such that
B ∩ Stab∗(w) = 1. Then,

OD(A) solvable ⇒ MP(A, B) solvable.

Corollary

Let F be a group, and let A 6 B 6 Aut (F ) and w ∈ F be such that
B ∩ Stab∗(w) = 1. If B ' F2 × F2 and A is the Mihailova subgroup
corresponding to a group with unsolvable word problem then,
A 6 Aut (F ) is orbit undecidable.
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Negative results

With the following embedding (and w = qaqbq)

F2 × F2 −→ Aut (F3)
(u, v) 7→ uθv : F3 → F3

q 7→ u−1qv
a 7→ a
b 7→ b

we obtain an alternative proof for unsolvability of the conjugacy
problem in Miller’s examples.

And any other way of embedding F2 × F2 in Aut (F3) will provide new
examples.
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More generally ...

A similar programme can be done for every extension F o H

1 → F → F o H → H → 1

satisfying
(i) TCP(F ) is solvable,
(ii) CP(H) is solvable,
(iii) H has small and computable centralizers

So,

For any group F where you can solve TCP(F ), you are in a perfect
situation to study the conjugacy problem in the family of free (or
torsion-free hyperbolic) extensions of F .
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Free-by-free groups

Theorem (Brinkmann, 2006)

Cyclic subgroups of Aut (Fn) are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead)

The full Aut (Fn) is O.D.

Corollary

If 〈ϕ1, . . . , ϕm〉 = Aut (Fn) then Fn oϕ1,...,ϕm Fm has solvable conjugacy
problem.
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Free-by-free groups

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of Aut (Fn) are O.D.

Corollary

If 〈ϕ1, . . . , ϕm〉 is of finite index in Aut (Fn) then Fn oϕ1,...,ϕm Fm has
solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of Aut(F2) is O.D.

Corollary

Every F2-by-free group has solvable conjugacy problem.
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Free-by-free groups

But...

Theorem (Miller, 70’s)

There are free-by-free groups with unsolvable conjugacy problem.

Corollary

There exist 14 automorphisms ϕ1, . . . , ϕ14 ∈ Aut (F3) such that
〈ϕ1, . . . , ϕ14〉 6 Aut (F3) is orbit undecidable.
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(Free abelian)-by-free groups

Definition

Let Zn = 〈x1, . . . , xn | [xi , xj ]〉 be the free abelian group of rank n ≥ 2,
and let M1, . . . , Mm ∈ Aut (Zn) = GLn(Z). The (free abelian)-by-free
group Zn oM1,...,Mm Fm is defined as

Fn oM1,...,Mm Fm = 〈x1, . . . , xn, t1, . . . , tm | t−1
j xi tj = xiMj , [xi , xj ] = 1〉.

The sequence

1 −→ Zn −→ Zn oM1,...,Mm Fm −→ Fm −→ 1

again satisfies (i), (ii) and (iii). So,

CP(Zn oM1,...,Mm Fm) is solvable ⇔ 〈M1, . . . , Mm〉 6 GLn(Z) is O.D.
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(Free abelian)-by-free groups

Theorem (linear algebra)

Cyclic subgroups of GLn(Z) are O.D.

Corollary

Zn-by-Z groups have solvable conjugacy problem.

Theorem (elementary)

The full GLn(Z) is O.D.

Corollary

If 〈M1, . . . , Mm〉 = GLn(Z) then Zn oM1,...,Mm Fm has solvable
conjugacy problem.
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(Free abelian)-by-free groups

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of GLn(Z) are O.D.

Corollary

If 〈M1, . . . , Mm〉 is of finite index in GLn(Z) then Zn oM1,...,Mm Fm has
solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of GL2(Z) is O.D.

Corollary

Every Z2-by-free group has solvable conjugacy problem.
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(Free abelian)-by-free groups

F2 × F2 6 GL2(Z)×GL2(Z) 6 GL4(Z). So...

Theorem (Bogopolski-Martino-V., 2008)

There exist 14 matrices M1, . . . , M14 ∈ GLn(Z), for n > 4, such that
〈M1, . . . , M14〉 6 GLn(Z) is orbit undecidable.

Corollary

There exists a Z4-by-F14 group with unsolvable conjugacy problem.

Question

Does GL3(Z) contain orbit undecidable subgroups ?

Question

Does there exist Z3-by-free groups with unsolvable conjugacy
problem ?
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Braid-by-free groups

Consider the braid group on n strands, given by the classical
presentation

Bn =

〈
σ1, σ2, . . . , σn−1

∣∣∣∣ σiσj = σjσi (|i − j | > 2)
σiσi+1σi = σi+1σiσi+1 (1 6 i 6 n − 2)

〉
.

Theorem
The conjugacy problem is solvable in Bn.

And the automorphism group is easy:

Theorem (Dyer, Grossman)

|Out(Bn)| = 2. More precisely, Aut(Bn) = Inn(Bn) t Inn(Bn) · ε, where
ε : Bn → Bn is the automorphism which inverts all generators,
σi 7→ σ−1

i .
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Braid-by-free groups

Theorem (González-Meneses, V. 2009)

TCP(Bn) is solvable.

Observation

Every subgroup A 6 Aut(Bn) is orbit decidable.

Corollary (González-Meneses, V. 2009)

Every extension of Bn by a free group (or torsion-free hyperbolic) has
solvable conjugacy problem.
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Thompson-by-free groups

Consider Thompson’s group F (piecewise linear increasing maps
[0, 1] → [0, 1] with diadic breakpoints, and slopes being powers of 2).

Theorem
The conjugacy problem is solvable in Bn.

And the automorphism group is big, but easy:

Theorem (Brin)

For every ϕ ∈ Aut(F ), there exists τ ∈ EP2 such that ϕ(g) = τ−1gτ ,
for every g ∈ F.



1. CP for Fn -by-Z 3. Main theorem 4. Fn -by-Fm 5. Zn -by-Fm 6. Bn -by-Fm 7. F -by-Fm 8. Automata gr.

Thompson-by-free groups

Consider Thompson’s group F (piecewise linear increasing maps
[0, 1] → [0, 1] with diadic breakpoints, and slopes being powers of 2).

Theorem
The conjugacy problem is solvable in Bn.

And the automorphism group is big, but easy:

Theorem (Brin)

For every ϕ ∈ Aut(F ), there exists τ ∈ EP2 such that ϕ(g) = τ−1gτ ,
for every g ∈ F.



1. CP for Fn -by-Z 3. Main theorem 4. Fn -by-Fm 5. Zn -by-Fm 6. Bn -by-Fm 7. F -by-Fm 8. Automata gr.

Thompson-by-free groups

Consider Thompson’s group F (piecewise linear increasing maps
[0, 1] → [0, 1] with diadic breakpoints, and slopes being powers of 2).

Theorem
The conjugacy problem is solvable in Bn.

And the automorphism group is big, but easy:

Theorem (Brin)

For every ϕ ∈ Aut(F ), there exists τ ∈ EP2 such that ϕ(g) = τ−1gτ ,
for every g ∈ F.



1. CP for Fn -by-Z 3. Main theorem 4. Fn -by-Fm 5. Zn -by-Fm 6. Bn -by-Fm 7. F -by-Fm 8. Automata gr.

Thompson-by-free groups

Theorem (Burillo-Matucci-V. 2010)

TCP(F ) is solvable.

But...

Observation

F2 × F2 embeds in Aut(F ).

Corollary (Burillo-Matucci-V. 2010)

There are extensions of Thompson’s group F by a free group,
F o Fm, with unsolvable conjugacy problem.
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Automata groups

Proposition (S̆unić-V., 2010)

For d > 6, the group GLd (Z) contains orbit undecidable, free
subgroups.

So, for d > 6, there exists a group of the form

Γ = Zd o Fm 6 Zd o GLd (Z)

with unsolvable conjugacy problem.

Theorem (S̆unić-V., 2010)

Such a group Γ = Zd o Fm can be realized as an automaton group.

Corollary

There exists automaton groups with unsolvable conjugacy problem.
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Corollary

There exists automaton groups with unsolvable conjugacy problem.
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