The conjugacy problem for some extensions of $F_{n}, \mathbb{Z}^{m}, B_{n}$ and F.

Enric Ventura

Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya
and

CRM-Montreal

Urbana Group Theory Seminar

October 28th, 2010.

- O. Bogopolski, A. Martino, O. Maslakova, E. Ventura, Free-by-cyclic groups have solvable conjugacy problem, Bulletin of the London Mathematical Society, 38(5) (2006), 787-794.
- O. Bogopolski, A. Martino, E. Ventura, Orbit decidability and the conjugacy problem for some extensions of groups, Transactions of the American Mathematical Society 362 (2010), 2003-2036.
- V. Romanko'v, E. Ventura, Twisted conjugacy problem for endomorphisms of metabelian groups, Algebra and Logic 48(2) (2009), 89-98.
- J. González-Meneses, E. Ventura, Twisted conjugacy in the braid group, preprint.
- J. Burillo, F. Matucci, E. Ventura, The conjugacy problem for extensions of Thompson's group, preprint.
- Z. Šunić, E. Ventura, The conjugacy problem in self-similar groups, preprint, arXiv:1010.1993v1, Oct. 2010.

Outline

(1) The conjugacy problem for free-by-cyclic groups
(2) The main theorem
(3) The conjugacy problem for free-by-free groups
(4) The conjugacy problem for (free abelian)-by-free groups
(5) The conjugacy problem for Braid-by-free groups

6 The conjugacy problem for Thompson-by-free groups
(7) The conjugacy problem for automata

Outline

(1) The conjugacy problem for free-by-cyclic groups
(2) The main theorem
(3) The conjugacy problem for free-by-free groups
(4) The conjugacy problem for (free abelian)-by-free groups
(5) The conjugacy problem for Braid-by-free groups
(-) The conjugacy problem for Thompson-by-free groups
(7) The conjugacy problem for automata

Notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$
- F_{n} is the free group on A.
- $\operatorname{Aut}\left(F_{n}\right) \subseteq \operatorname{End}\left(F_{n}\right)$.
- I let endomorphisms $\varphi: F_{n} \rightarrow F_{n}$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha \beta: F_{n} \xrightarrow{\alpha} F_{n} \xrightarrow{\beta} F_{n}, x \mapsto x \alpha \mapsto x \alpha \beta$.
- conjugations: $\gamma_{u}: F_{n} \rightarrow F_{n}, x \mapsto u^{-1} x u$.
- $\operatorname{Fix}(\phi)=\left\{x \in F_{n} \mid x \phi=x\right\} \leqslant F_{n}$.

Notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- F_{n} is the free group on A.
- $\operatorname{Aut}\left(F_{n}\right) \subseteq \operatorname{End}\left(F_{n}\right)$.
- I let endomorphisms $\varphi: F_{n} \rightarrow F_{n}$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha \beta: F_{n} \xrightarrow{\alpha} F_{n} \xrightarrow{\beta} F_{n}, x \mapsto x \alpha \mapsto x \alpha \beta$.
- conjugations:
- $\operatorname{Fix}(\phi)=\left\{x \in F_{n} \mid x \phi=x\right\} \leqslant F_{n}$.

Notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- F_{n} is the free group on A.
- Aut $\left(F_{n}\right) \subseteq$ End $\left(F_{n}\right)$.
- I let endomorphisms $\varphi: F_{n} \rightarrow F_{n}$ act on the right, $x \mapsto x \varphi$.
- So, comnositions are $\alpha \beta: F_{n} \xrightarrow{\alpha} F_{n} \xrightarrow{\beta} F_{\pi}, x \mapsto x \propto \mapsto x \propto \beta$.
- conjugations:
- $\operatorname{Fix}(\phi)=\left\{x \in F_{n} \mid x \phi=x\right\} \leqslant F_{n}$.

Notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- F_{n} is the free group on A.
- $\operatorname{Aut}\left(F_{n}\right) \subseteq \operatorname{End}\left(F_{n}\right)$.
- I let endomorphisms $\varphi: F_{n} \rightarrow F_{n}$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha \beta: F_{n} \xrightarrow{\alpha} F_{n} \xrightarrow{\beta} F_{n}, x \mapsto x \alpha \mapsto x \alpha \beta$.
- conjugations:
- $\operatorname{Fix}(\phi)=\left\{x \in F_{n} \mid x \phi=x\right\} \leqslant F_{n}$.

Notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- F_{n} is the free group on A.
- $\operatorname{Aut}\left(F_{n}\right) \subseteq \operatorname{End}\left(F_{n}\right)$.
- I let endomorphisms $\varphi: F_{n} \rightarrow F_{n}$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha \beta: F_{n} \rightarrow F_{n} \rightarrow F_{n}, x \mapsto x \alpha \mapsto x \alpha \beta$.
- conjugations:
- $\operatorname{Fix}(\phi)=\left\{x \in F_{n} \mid x \phi=x\right\} \leqslant F_{n}$.

Notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- F_{n} is the free group on A.
- $\operatorname{Aut}\left(F_{n}\right) \subseteq \operatorname{End}\left(F_{n}\right)$.
- I let endomorphisms $\varphi: F_{n} \rightarrow F_{n}$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha \beta: F_{n} \xrightarrow{\alpha} F_{n} \xrightarrow{\beta} F_{n}, x \mapsto x \alpha \mapsto x \alpha \beta$.
- conjugations:
- $\operatorname{Fix}(\phi)=\left\{x \in F_{n} \mid x \phi=x\right\} \leqslant F_{n}$.

Notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- F_{n} is the free group on A.
- $\operatorname{Aut}\left(F_{n}\right) \subseteq \operatorname{End}\left(F_{n}\right)$.
- I let endomorphisms $\varphi: F_{n} \rightarrow F_{n}$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha \beta: F_{n} \xrightarrow{\alpha} F_{n} \xrightarrow{\beta} F_{n}, x \mapsto x \alpha \mapsto x \alpha \beta$.
- conjugations: $\gamma_{u}: F_{n} \rightarrow F_{n}, x \mapsto u^{-1} x u$.

Notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- F_{n} is the free group on A.
- $\operatorname{Aut}\left(F_{n}\right) \subseteq \operatorname{End}\left(F_{n}\right)$.
- I let endomorphisms $\varphi: F_{n} \rightarrow F_{n}$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha \beta: F_{n} \xrightarrow{\alpha} F_{n} \xrightarrow{\beta} F_{n}, x \mapsto x \alpha \mapsto x \alpha \beta$.
- conjugations: $\gamma_{u}: F_{n} \rightarrow F_{n}, x \mapsto u^{-1} x u$.
- $\operatorname{Fix}(\phi)=\left\{x \in F_{n} \mid x \phi=x\right\} \leqslant F_{n}$.

Step 1:

Find a problem you like

Conjugacy problem for free-by-cyclic groups

Definition

Let $F_{n}=\left\langle x_{1}, \ldots, x_{n} \mid\right\rangle$ be a free group on $\left\{x_{1}, \ldots, x_{n}\right\}(n \geq 2)$, and let $\varphi \in \operatorname{Aut}\left(F_{n}\right)$. The free-by-cyclic group $F_{n} \rtimes_{\varphi} \mathbb{Z}$ is defined as

$$
F_{n} \rtimes_{\varphi} \mathbb{Z}=\left\langle x_{1}, \ldots, x_{n}, t \mid t^{-1} x_{i} t=x_{i} \varphi\right\rangle .
$$

With $x_{i} t=t\left(x_{i} \varphi\right)$ and $x_{i} t^{-1}=t^{-1}\left(x_{i} \varphi^{-1}\right)$, we can move all t^{\prime} s to the left and get the usual normal form for elements in $F_{n} \rtimes_{\varphi} \mathbb{Z}$:

Problem

Solve the conjugacy problem in F

Conjugacy problem for free-by-cyclic groups

Definition

Let $F_{n}=\left\langle x_{1}, \ldots, x_{n} \mid\right\rangle$ be a free group on $\left\{x_{1}, \ldots, x_{n}\right\}(n \geq 2)$, and let $\varphi \in \operatorname{Aut}\left(F_{n}\right)$. The free-by-cyclic group $F_{n} \rtimes_{\varphi} \mathbb{Z}$ is defined as

$$
F_{n} \rtimes_{\varphi} \mathbb{Z}=\left\langle x_{1}, \ldots, x_{n}, t \mid t^{-1} x_{i} t=x_{i} \varphi\right\rangle .
$$

With $x_{i} t=t\left(x_{i} \varphi\right)$ and $x_{i} t^{-1}=t^{-1}\left(x_{i} \varphi^{-1}\right)$, we can move all t's to the left and get the usual normal form for elements in $F_{n} \rtimes_{\varphi} \mathbb{Z}$:

$$
t^{r} w, \text { with } r \in \mathbb{Z}, w \in F_{n} \text {. }
$$

Problem

Solve the conjugacy problem in F_{n}

Conjugacy problem for free-by-cyclic groups

Definition

Let $F_{n}=\left\langle x_{1}, \ldots, x_{n} \mid\right\rangle$ be a free group on $\left\{x_{1}, \ldots, x_{n}\right\}(n \geq 2)$, and let $\varphi \in \operatorname{Aut}\left(F_{n}\right)$. The free-by-cyclic group $F_{n} \rtimes_{\varphi} \mathbb{Z}$ is defined as

$$
F_{n} \rtimes_{\varphi} \mathbb{Z}=\left\langle x_{1}, \ldots, x_{n}, t \mid t^{-1} x_{i} t=x_{i} \varphi\right\rangle .
$$

With $x_{i} t=t\left(x_{i} \varphi\right)$ and $x_{i} t^{-1}=t^{-1}\left(x_{i} \varphi^{-1}\right)$, we can move all t^{\prime} s to the left and get the usual normal form for elements in $F_{n} \rtimes_{\varphi} \mathbb{Z}$:

$$
t^{r} w, \text { with } r \in \mathbb{Z}, w \in F_{n} \text {. }
$$

Problem

Solve the conjugacy problem in $F_{n} \rtimes_{\varphi} \mathbb{Z}$.

Step 2:
 Push the problem into your favorite territory

Converting it into a free group problem

Let $t^{r} u, t^{s} v, t^{k} g$ be arbitrary elements in $M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$. Then,

Definition

For $\varphi \in$ Fnd (G), two elements $u, v \in G$ are said to be φ-twisted conjugated, denoted $u \sim_{\varphi} v$, if $v=(g \varphi)^{-1} u g$ for some $g \in G$.

Definition

The tinisted conjugacy problem for G, denoted TCP(G) "Given $\varphi \in \operatorname{Aut}(G)$ and $u, v \in G$ decide whether $u \sim_{\varphi} v$ ".

Converting it into a free group problem

Let $t^{r} u, t^{s} v, t^{k} g$ be arbitrary elements in $M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$. Then,

$$
\begin{aligned}
\left(g^{-1} t^{-k}\right)\left(t^{r} u\right)\left(t^{k} g\right) & =g^{-1} t^{r}\left(u \varphi^{k}\right) g \\
& =t^{r}\left(g \varphi^{r}\right)^{-1}\left(u \varphi^{k}\right) g .
\end{aligned}
$$

Definition

For $\varphi \in$ End (G), two elements $u, v \in G$ are said to be φ-twisted conjugated, denoted $u \sim_{\varphi} v$, if $v=(g \varphi)^{-1}$ ug for some $g \in G$.

Definition
The twisted conjugacy problem for G, denoted TCP(G) "Given $\varphi \in \operatorname{Aut}(G)$ and $u, v \in G$ decide whether u -

Converting it into a free group problem

Let $t^{r} u, t^{s} v, t^{k} g$ be arbitrary elements in $M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$. Then,

$$
\begin{aligned}
\left(g^{-1} t^{-k}\right)\left(t^{r} u\right)\left(t^{k} g\right) & =g^{-1} t^{r}\left(u \varphi^{k}\right) g \\
& =t^{r}\left(g \varphi^{r}\right)^{-1}\left(u \varphi^{k}\right) g .
\end{aligned}
$$

$t^{r} u$ and $t^{s} v$
$r=s$
conj. in M_{φ}
$v \sim_{\varphi^{r}}\left(u \varphi^{k}\right)$ for some $k \in \mathbb{Z}$.

Definition

For $\varphi \in \operatorname{End}(G)$, two elements $u, v \in G$ are said to be φ-twisted conjugated, denoted $u \sim_{\varphi} v$, if $v=(g \varphi)^{-1}$ ug for some $g \in G$.

Definition

The twisted conjugacy problem for G, denoted TCP(G)
\square

Converting it into a free group problem

Let $t^{r} u, t^{s} v, t^{k} g$ be arbitrary elements in $M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$. Then,

$$
\begin{aligned}
\left(g^{-1} t^{-k}\right)\left(t^{r} u\right)\left(t^{k} g\right) & =g^{-1} t^{r}\left(u \varphi^{k}\right) g \\
& =t^{r}\left(g \varphi^{r}\right)^{-1}\left(u \varphi^{k}\right) g .
\end{aligned}
$$

$$
\begin{aligned}
& t^{r} u \text { and } t^{s} v \\
& \text { conj. in } M_{\varphi}
\end{aligned} \Longleftrightarrow \quad \begin{aligned}
& r=s \\
& v \sim_{\varphi^{r}}\left(u \varphi^{k}\right) \text { for some } k \in \mathbb{Z} .
\end{aligned}
$$

Definition

For $\varphi \in \operatorname{End}(G)$, two elements $u, v \in G$ are said to be φ-twisted conjugated, denoted $u \sim_{\varphi} v$, if $v=(g \varphi)^{-1}$ ug for some $g \in G$.

Definition
The twisted conjugacy problem for G, denoted $\operatorname{TCP}(G)$ "Given $\varphi \in \operatorname{Aut}(G)$ and $u, v \in G$ decide whether u

Converting it into a free group problem

Let $t^{r} u, t^{s} v, t^{k} g$ be arbitrary elements in $M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$. Then,

$$
\begin{aligned}
\left(g^{-1} t^{-k}\right)\left(t^{r} u\right)\left(t^{k} g\right) & =g^{-1} t^{r}\left(u \varphi^{k}\right) g \\
& =t^{r}\left(g \varphi^{r}\right)^{-1}\left(u \varphi^{k}\right) g .
\end{aligned}
$$

$$
\begin{aligned}
& t^{r} u \text { and } t^{s} v \\
& \text { conj. in } M_{\varphi}
\end{aligned} \Longleftrightarrow \quad \begin{aligned}
& r=s \\
& v \sim_{\varphi^{r}}\left(u \varphi^{k}\right) \text { for some } k \in \mathbb{Z} .
\end{aligned}
$$

Definition

For $\varphi \in \operatorname{End}(G)$, two elements $u, v \in G$ are said to be φ-twisted conjugated, denoted $u \sim_{\varphi} v$, if $v=(g \varphi)^{-1}$ ug for some $g \in G$.

Definition

The twisted conjugacy problem for G, denoted $\operatorname{TCP}(G)$: "Given $\varphi \in \operatorname{Aut}(G)$ and $u, v \in G$ decide whether $u \sim_{\varphi} v$ ".

Step 3:
 We solved it

$T C P\left(F_{n}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)
$\operatorname{TCP}\left(F_{n}\right)$ for automorphisms is solvable.
Proof. Given $\varphi \in \operatorname{Aut}\left(F_{n}\right)$ and $u, v \in F_{n}$:
1 Extend to $F_{n} *\langle z\rangle$ and $\hat{\varphi}: F_{n} *\langle z\rangle \rightarrow F_{n} *\langle z\rangle$, sending z to $u z u^{-1}$

- Claim: for $g \in F_{n}, v=(g \varphi)^{-1} u g \Leftrightarrow g^{-1} z g \in \operatorname{Fix}\left(\hat{\varphi} \gamma_{v}\right)$.

2 Compute a basis for $\operatorname{Fix}\left(\hat{\varphi} \gamma_{v}\right)$.

3 Check whether Fix ($\hat{\varphi} \gamma_{v}$) contains $g^{-1} z g$ for some $g \in F_{n}$, using Stallings' automata. \square

Theorem (Maslakova)

Fixed subgroups of autornorphisms of free groups are computable.

$T C P\left(F_{n}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)
$\operatorname{TCP}\left(F_{n}\right)$ for automorphisms is solvable.
Proof. Given $\varphi \in \operatorname{Aut}\left(F_{n}\right)$ and $u, v \in F_{n}$:
1 Extend to $F_{n} *\langle z\rangle$ and $\hat{\varphi}: F_{n} *\langle z\rangle \rightarrow F_{n} *\langle z\rangle$, sending z to $u z u^{-1}$

- Claim: for $g \in F_{n}, v=(g \varphi)^{-1} u g \Leftrightarrow g^{-1} z g \in \operatorname{Fix}\left(\hat{\varphi} \gamma_{v}\right)$.

2 Compute a basis for $\operatorname{Fix}\left(\hat{\varphi} \gamma_{v}\right)$.

3 Check whether Fix ($\hat{\varphi} \gamma_{v}$) contains $g^{-1} z g$ for some $g \in F_{n}$, using Stallings' automata. \square

Theorem (Maslakova)

Fixed subgroups of autornorphisms of free groups are computable.

$T C P\left(F_{n}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)
$\operatorname{TCP}\left(F_{n}\right)$ for automorphisms is solvable.
Proof. Given $\varphi \in \operatorname{Aut}\left(F_{n}\right)$ and $u, v \in F_{n}$:
1 Extend to $F_{n} *\langle z\rangle$ and $\hat{\varphi}: F_{n} *\langle z\rangle \rightarrow F_{n} *\langle z\rangle$, sending z to $u z u^{-1}$.

- Claim: for $g \in F_{n}, v=(g \varphi)^{-1} u g \Leftrightarrow g^{-1} z g \in \operatorname{Fix}\left(\hat{\varphi} \gamma_{v}\right)$.

2 Compute a basis for Fix $\left(\hat{\varphi} \gamma_{v}\right)$.

3 Check whether Fix $\left(\hat{\varphi} \gamma_{v}\right)$ contains $g^{-1} z g$ for some $g \in F_{n}$, using
Stallings' automata. \square

Theorem (Maslakova)

Fixed subgroups of autornorphisms of free groups are computable.

$T C P\left(F_{n}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)
$\operatorname{TCP}\left(F_{n}\right)$ for automorphisms is solvable.
Proof. Given $\varphi \in \operatorname{Aut}\left(F_{n}\right)$ and $u, v \in F_{n}$:
1 Extend to $F_{n} *\langle z\rangle$ and $\hat{\varphi}: F_{n} *\langle z\rangle \rightarrow F_{n} *\langle z\rangle$, sending z to $u z u^{-1}$.

- Claim: for $g \in F_{n}, v=(g \varphi)^{-1} u g \Leftrightarrow g^{-1} z g \in \operatorname{Fix}\left(\hat{\varphi} \gamma_{v}\right)$.

2 Compute a basis for $\operatorname{Fix}\left(\hat{\varphi} \gamma_{v}\right)$.

3 Check whether Fix ($\hat{\varphi} \gamma_{v}$) contains $g^{-1} z g$ for some $g \in F_{n}$, using Stallings' automata. \square

Theorem (Maslakova)

Fixed subaroups of autornorphisms of free groups are computable.

$T C P\left(F_{n}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)
$\operatorname{TCP}\left(F_{n}\right)$ for automorphisms is solvable.
Proof. Given $\varphi \in \operatorname{Aut}\left(F_{n}\right)$ and $u, v \in F_{n}$:
1 Extend to $F_{n} *\langle z\rangle$ and $\hat{\varphi}: F_{n} *\langle z\rangle \rightarrow F_{n} *\langle z\rangle$, sending z to $u z u^{-1}$.

- Claim: for $g \in F_{n}, v=(g \varphi)^{-1} u g \Leftrightarrow g^{-1} z g \in \operatorname{Fix}\left(\hat{\varphi} \gamma_{v}\right)$.

2 Compute a basis for Fix ($\hat{\varphi} \gamma_{v}$).

3 Check whether Fix $\left(\hat{\varphi} \gamma_{v}\right)$ contains $g^{-1} z g$ for some $g \in F_{n}$, using Stallings' automata. \square

$T C P\left(F_{n}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

$\operatorname{TCP}\left(F_{n}\right)$ for automorphisms is solvable.
Proof. Given $\varphi \in \operatorname{Aut}\left(F_{n}\right)$ and $u, v \in F_{n}$:
1 Extend to $F_{n} *\langle z\rangle$ and $\hat{\varphi}: F_{n} *\langle z\rangle \rightarrow F_{n} *\langle z\rangle$, sending z to $u z u^{-1}$.

- Claim: for $g \in F_{n}, v=(g \varphi)^{-1} u g \Leftrightarrow g^{-1} z g \in \operatorname{Fix}\left(\hat{\varphi} \gamma_{v}\right)$.

2 Compute a basis for Fix ($\hat{\varphi} \gamma_{v}$).

3 Check whether Fix ($\hat{\varphi} \gamma_{v}$) contains $g^{-1} z g$ for some $g \in F_{n}$, using Stallings' automata. \square

$T C P\left(F_{n}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

$\operatorname{TCP}\left(F_{n}\right)$ for automorphisms is solvable.
Proof. Given $\varphi \in \operatorname{Aut}\left(F_{n}\right)$ and $u, v \in F_{n}$:
1 Extend to $F_{n} *\langle z\rangle$ and $\hat{\varphi}: F_{n} *\langle z\rangle \rightarrow F_{n} *\langle z\rangle$, sending z to $u z u^{-1}$.

- Claim: for $g \in F_{n}, v=(g \varphi)^{-1} u g \Leftrightarrow g^{-1} z g \in \operatorname{Fix}\left(\hat{\varphi} \gamma_{v}\right)$.

2 Compute a basis for Fix $\left(\hat{\varphi} \gamma_{v}\right)$.

3 Check whether Fix $\left(\hat{\varphi} \gamma_{v}\right)$ contains $g^{-1} z g$ for some $g \in F_{n}$, using Stallings' automata. \square

Theorem (Maslakova)

Fixed subgroups of automorphisms of free groups are computable.

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)
For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), \operatorname{CP}\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.
Proof. Given $t^{r} u, t^{s} v \in M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$.

- Thus, $C P\left(M_{\varphi}\right)$ reduces to finitely many checks of $\operatorname{TCP}\left(F_{n}\right)$.

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)
For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.
Proof. Given $t^{r} u, t^{s} v \in M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$.

```
        tr}u\mathrm{ and t ts
        conj. in M
```

- To reduce to finitely many k 's, note that $u \sim_{\varphi} u \varphi$ (because
$\left.u=(u \varphi)^{-1}(u \varphi) u\right)$, so $u \varphi^{k} \sim_{\varphi^{r}} u \varphi^{k \pm \lambda r}$; hence,
$t^{r} u$ and $t^{s} v$
conj. in $M_{\varphi} \quad v \sim \varphi^{\prime}\left(u \varphi^{k}\right)$ for some $k=0, \ldots, r-1$
 - Thus, $C P\left(M_{\varphi}\right)$ reduces to finitely many checks of $\operatorname{TCP}\left(F_{n}\right)$.

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)
For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), \operatorname{CP}\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.
Proof. Given $t^{r} u, t^{s} v \in M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$.
$t^{r} u$ and $t^{s} v$ $r=s$ conj. in $M_{\varphi} \quad \Longleftrightarrow \quad v \sim_{\varphi^{r}}\left(u \varphi^{k}\right)$ for some $k \in \mathbb{Z}$.

- To reduce to finitely many k 's, note that $u \sim_{\varphi} u \varphi$ (because $\left.u=(u \varphi)^{-1}(u \varphi) u\right)$, so $u \varphi^{k} \sim_{\varphi^{r}} u \varphi^{k \pm \lambda r}$; hence,

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.
Proof. Given $t^{r} u, t^{s} v \in M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$.
$t^{r} u$ and $t^{s} v$
$\Longleftrightarrow \quad r=s$
conj. in $M_{\varphi} \Longleftrightarrow \quad \Longleftrightarrow \sim_{\varphi^{r}}\left(u \varphi^{k}\right)$ for some $k \in \mathbb{Z}$.

- To reduce to finitely many k 's, note that $u \sim_{\varphi} u \varphi$ (because $\left.u=(u \varphi)^{-1}(u \varphi) u\right)$, so $u \varphi^{k} \sim_{\varphi^{r}} u \varphi^{k \pm \lambda r}$; hence,

- Thus, $\operatorname{CP}\left(M_{\varphi}\right)$ reduces to finitely many checks of $\operatorname{TCP}\left(F_{n}\right)$.

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), \operatorname{CP}\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.
Proof. Given $t^{r} u, t^{s} v \in M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$.

- $t^{r} u$ and $t^{s} v$

$$
r=s
$$

conj. in $M_{\varphi} \quad \Longleftrightarrow \quad v \sim_{\varphi^{r}}\left(u \varphi^{k}\right)$ for some $k \in \mathbb{Z}$.

- To reduce to finitely many k 's, note that $u \sim_{\varphi} u \varphi$ (because $\left.u=(u \varphi)^{-1}(u \varphi) u\right)$, so $u \varphi^{k} \sim_{\varphi^{r}} u \varphi^{k \pm \lambda r}$; hence,

$$
\begin{aligned}
& t^{r} u \text { and } t^{s} v \\
& \text { conj. in } M_{\varphi}
\end{aligned} \Longleftrightarrow \quad \begin{aligned}
& r=s \\
& v \sim_{\varphi^{r}}\left(u \varphi^{k}\right) \text { for some } k=0, \ldots, r-1 .
\end{aligned}
$$

- Thus, $C P\left(M_{\varphi}\right)$ reduces to finitely many checks of $\operatorname{TCP}\left(F_{n}\right)$.

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.
Proof. Given $t^{r} u, t^{s} v \in M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$.

- $t^{r} u$ and $t^{s} v$
$\quad \begin{aligned} & r=s \\ & v \sim_{\varphi^{r}}\end{aligned}\left(u \varphi^{k}\right)$ for some $k \in \mathbb{Z}$.
- To reduce to finitely many k 's, note that $u \sim_{\varphi} u \varphi$ (because $\left.u=(u \varphi)^{-1}(u \varphi) u\right)$, so $u \varphi^{k} \sim_{\varphi^{r}} u \varphi^{k \pm \lambda r}$; hence,

$$
\begin{aligned}
& t^{r} u \text { and } t^{s} v \\
& \text { conj. in } M_{\varphi}
\end{aligned} \Longleftrightarrow \quad \begin{aligned}
& r=s \\
& v \sim_{\varphi^{r}}\left(u \varphi^{k}\right) \text { for some } k=0, \ldots, r-1 .
\end{aligned}
$$

- Thus, $C P\left(M_{\varphi}\right)$ reduces to finitely many checks of $\operatorname{TCP}\left(F_{n}\right)$.

Step 4:

A mistake was found

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.
Proof. Let $t^{r} u, t^{s} v, t^{k} g$ be arbitrary elements in $M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$.

- $\left(g^{-1} t^{-k}\right)\left(t^{r} u\right)\left(t^{k} g\right)=g^{-1} t^{r}\left(u \varphi^{k}\right) g=t^{r}\left(g \varphi^{r}\right)^{-1}\left(u \varphi^{k}\right) g$.
$t^{r} u$ and $t^{s} v$ $r=s$
conj. in M_{φ}
$v \sim_{\varphi^{r}}\left(u \varphi^{k}\right)$ for some $k \in \mathbb{Z}$.
- Case 1: $r \neq 0$
- To reduce to finitely many k 's, note that $u \sim_{\varphi} u \varphi$ (because $\left.u=(u \varphi)^{-1}(u \varphi) u\right)$, so $u \varphi^{k} \sim_{\varphi^{r}} u \varphi^{k \pm \lambda r}$; hence,
$t^{r} u$ and $t^{s} v$

$$
r=s
$$

$$
\text { conj. in } M_{\varphi} \quad \Longleftrightarrow \quad v \sim_{\varphi^{r}}\left(u \varphi^{k}\right) \text { for some } k=0, \ldots, r-1
$$

- Thus, $C P\left(M_{\varphi}\right)$ reduces to finitely many checks of $\operatorname{TCP}\left(F_{n}\right)$.

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

- Case 2: $r=0$
- Still infinitely many k's:

$$
\begin{aligned}
& u \text { and } v \\
& \text { conj. in } M_{\varphi}
\end{aligned} \Longleftrightarrow \quad \Longleftrightarrow \sim u \varphi^{k} \text { for some } k \in \mathbb{Z} .
$$

- This is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given an automorphism $\phi: F_{n} \rightarrow F_{n}$ and $u, v \in F_{n}$, it is decidable whether $v \sim u \phi^{k}$ for some $k \in \mathbb{Z}$.

- Hence, $C P\left(M_{\varphi}\right)$ is solvable. \square

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

- Case 2: $r=0$
- Still infinitely many k 's:

$$
\begin{gathered}
u \text { and } v \\
\text { conj. in } M_{\varphi}
\end{gathered} \quad \Longleftrightarrow \quad v \sim u \varphi^{k} \text { for some } k \in \mathbb{Z} \text {. }
$$

- This is precisely Brinkmann's result:

Theorem (Brinkmann, 2000)

Given an automorphism ϕ
$F_{n} \rightarrow F_{n}$ and $u, v \in F_{n}$, it is decidable whether $v \sim u \phi^{k}$ for some $k \in \mathbb{Z}$.

- Hence, $C P\left(M_{\varphi}\right)$ is solvable. \square

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

- Case 2: $r=0$
- Still infinitely many k 's:

- This is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given an automorphism $\phi: F_{n} \rightarrow F_{n}$ and $u, v \in F_{n}$, it is decidable whether $v \sim u \phi^{k}$ for some $k \in \mathbb{Z}$.

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

- Case 2: $r=0$
- Still infinitely many k's:

- This is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given an automorphism $\phi: F_{n} \rightarrow F_{n}$ and $u, v \in F_{n}$, it is decidable whether $v \sim u \phi^{k}$ for some $k \in \mathbb{Z}$.

- Hence, $C P\left(M_{\varphi}\right)$ is solvable.

Step 5:

Intuition always ahead

A crucial comment

A. Martino: "The whole argument essentially works the same way in presence of more stable letters, i.e. for free-by-free groups"

Definition

Let $F_{n}=\left\langle x_{1}, \ldots, x_{n} \mid\right\rangle$ be the free group on $\left\{x_{1}, \ldots, x_{n}\right\}$ ($n \geq 2$), and let $\varphi_{1}, \ldots, \varphi_{m} \in \operatorname{Aut}\left(F_{n}\right)$. The free-by-free group $F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}$ is

$$
F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}=\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid t_{j}^{-1} x_{i} t_{j}=x_{i} \varphi_{j}\right\rangle .
$$

A crucial comment

A. Martino: "The whole argument essentially works the same way in presence of more stable letters, i.e. for free-by-free groups"

Definition

Let $F_{n}=\left\langle x_{1}, \ldots, x_{n} \mid\right\rangle$ be the free group on $\left\{x_{1}, \ldots, x_{n}\right\}$ ($n \geq 2$), and let $\varphi_{1}, \ldots, \varphi_{m} \in \operatorname{Aut}\left(F_{n}\right)$. The free-by-free group $F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}$ is

$$
F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}=\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid t_{j}^{-1} x_{i} t_{j}=x_{i} \varphi_{j}\right\rangle .
$$

But this looks wrong, taking into account Miller's examples...

The comment was right...

He was right... the whole argument essentially works the same way except that in the second case, a much stronger problem arises:

\section*{u and vconj.

Theorem
\square decidable

> Definition
> A subgroup $A \leqslant A u t(F)$ is said to be orbit decidable (O.D.) if \exists an algorithm s.t., given $u, v \in F$ decides whether $v \sim u \alpha$ for some $\alpha \in A$.

The comment was right...

He was right... the whole argument essentially works the same way except that in the second case, a much stronger problem arises:

```
\(u\) and vconj.
in \(M_{\varphi_{1}, \ldots, \varphi_{m}}\)
\[
\Longleftrightarrow \quad v \sim u \varphi \text { for some } \varphi \in\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \leqslant \operatorname{Aut}\left(F_{n}\right) .
\]
```


Theorem

\square $\left.F_{m}\right)$ is solvable if and only if $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ is orbit
\square

Definition
A subgroup $A \leqslant \operatorname{Aut}(F)$ is said to be orbit decidable (O.D.) if \exists an algorithm s.t., given $u, v \in F$ decides whether $v \sim u \alpha$ for some $\alpha \in A$

The comment was right...

He was right... the whole argument essentially works the same way except that in the second case, a much stronger problem arises:

```
\(u\) and vconj.
in \(M_{\varphi_{1}, \ldots, \varphi_{m}}\)
\[
\Longleftrightarrow \quad v \sim u \varphi \text { for some } \varphi \in\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \leqslant \operatorname{Aut}\left(F_{n}\right) .
\]
```

Theorem
$C P\left(F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}\right)$ is solvable if and only if $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ is orbit decidable.

Definition
A subgroup $A \leqslant \operatorname{Aut}(F)$ is said to be orbit decidable (O.D.) if \exists an algorithm s.t., given $u, v \in F$ decides whether $v \sim u \alpha$ for some $\alpha \in A$

The comment was right...

He was right... the whole argument essentially works the same way except that in the second case, a much stronger problem arises:

$$
\begin{aligned}
& u \text { and vconj. } \\
& \text { in } M_{\varphi_{1}, \ldots, \varphi_{m}}
\end{aligned} \Longleftrightarrow \quad v \sim u \varphi \text { for some } \varphi \in\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \leqslant \operatorname{Aut}\left(F_{n}\right) \text {. }
$$

Theorem

$C P\left(F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}\right)$ is solvable if and only if $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ is orbit decidable.

Definition

A subgroup $A \leqslant \operatorname{Aut}(F)$ is said to be orbit decidable (O.D.) if \exists an algorithm s.t., given $u, v \in F$ decides whether $v \sim u \alpha$ for some $\alpha \in A$.

Step 6:

Extend as much as possible

Outline

(1) The conjugacy problem for free-by-cyclic groups
(2) The main theorem
(3) The conjugacy problem for free-by-free groups
4. The conjugacy problem for (free abelian)-by-free groups
(5) The conjugacy problem for Braid-by-free groups

6 The conjugacy problem for Thompson-by-free groups
(7) The conjugacy problem for automata

The main result

$$
\begin{aligned}
& \text { Theorem (Bogopolski-Martino-V., 2008) } \\
& \text { Let } \\
& \qquad 1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
\end{aligned}
$$

be an algorithmic short exact sequence of groups such that

```
(i) TCP(F) is solvable,
(ii) }\textrm{CP}(H)\mathrm{ is solvable,
(iii) there is an algorithm which, given an input 1 }\not=h\inH\mathrm{ , computes
    a finite set of elements }\mp@subsup{z}{h,1}{},\ldots,\mp@subsup{z}{h,\mp@subsup{t}{n}{}}{}\inH\mathrm{ such that
```

$C_{H}(h)=\langle h\rangle z_{h, 1} \sqcup \cdots \sqcup\langle h\rangle z_{h, t_{n}}$
Then,

The main result

$$
\begin{aligned}
& \text { Theorem (Bogopolski-Martino-V., 2008) } \\
& \text { Let } \\
& \qquad 1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
\end{aligned}
$$

be an algorithmic short exact sequence of groups such that
(i) $\operatorname{TCP}(F)$ is solvable,
(ii) $\mathrm{CP}(H)$ is solvable,
(iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h, 1}, \ldots, z_{h, t_{n}} \in H$ such that

$$
C_{H}(h)=\langle h\rangle z_{h, 1} \sqcup \cdots \sqcup\langle h\rangle z_{h, t_{n}}
$$

Then,

The main result

Theorem (Bogopolski-Martino-V., 2008)

Let

$$
1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
$$

be an algorithmic short exact sequence of groups such that
(i) $\operatorname{TCP}(F)$ is solvable,
(ii) $C P(H)$ is solvable,

(iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h, 1}, \ldots, z_{h, t_{h}} \in H$ such that

\square

Then,

The main result

Theorem (Bogopolski-Martino-V., 2008)

Let

$$
1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
$$

be an algorithmic short exact sequence of groups such that
(i) $\operatorname{TCP}(F)$ is solvable,
(ii) $C P(H)$ is solvable,
(iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h, 1}, \ldots, z_{h, t_{n}} \in H$ such that

$$
C_{H}(h)=\langle h\rangle z_{h, 1} \sqcup \cdots \sqcup\langle h\rangle z_{h, t_{h}} .
$$

Then,

The main result

Theorem (Bogopolski-Martino-V., 2008)

Let

$$
1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
$$

be an algorithmic short exact sequence of groups such that
(i) $\operatorname{TCP}(F)$ is solvable,
(ii) $C P(H)$ is solvable,
(iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h, 1}, \ldots, z_{h, t_{n}} \in H$ such that

$$
C_{H}(h)=\langle h\rangle z_{h, 1} \sqcup \cdots \sqcup\langle h\rangle z_{h, t_{h}} .
$$

Then,
$C P(G)$ is solvable $\Longleftrightarrow A_{G}=\left\{\left.\begin{array}{rll|}\gamma_{g}: F & \rightarrow & F \\ x & \mapsto & g^{-1} x g\end{array} \right\rvert\, g \in G\right\}$
$\leqslant \operatorname{Aut}(F)$ is orbit decidable.

The previous result

Previous result in this language:

Theorem (Brinkmann, 2006)
 Cyclic subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

And Miller's examples must correspond to orbit undecidable subgroups of $\operatorname{Aut}\left(F_{n}\right)$..

The previous result

Previous result in this language:

Theorem (Brinkmann, 2006)

Cyclic subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)
Free-by-cyclic groups have solvable conjugacy problem.

And Miller's examples must correspond to orbit undecidable
subgroups of Aut $\left(F_{n}\right)$..

The previous result

Previous result in this language:

Theorem (Brinkmann, 2006)

Cyclic subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)
Free-by-cyclic groups have solvable conjugacy problem.

And Miller's examples must correspond to orbit undecidable subgroups of Aut $\left(F_{n}\right)$...

Negative results

Proposition (Bogopolski-Martino-V., 2008)
Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $w \in F$ be such that $B \cap \operatorname{Stab}^{*}(w)=1$. Then,

$$
O D(A) \text { solvable } \Rightarrow M P(A, B) \text { solvable. }
$$

Corollary
Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $w \in F$ be such that $B \cap \operatorname{Stab}^{*}(w)=1$. If $B \simeq F_{2} \times F_{2}$ and A is the Mihailova subgroup corresponding to a group with unsolvable word problem then, $A \leqslant \operatorname{Aut}(F)$ is orbit undecidable.

Negative results

Proposition (Bogopolski-Martino-V., 2008)

Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $w \in F$ be such that $B \cap \operatorname{Stab}^{*}(w)=1$. Then,

$$
O D(A) \text { solvable } \Rightarrow M P(A, B) \text { solvable. }
$$

Corollary

Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $w \in F$ be such that $B \cap \operatorname{Stab}^{*}(w)=1$. If $B \simeq F_{2} \times F_{2}$ and A is the Mihailova subgroup corresponding to a group with unsolvable word problem then, $A \leqslant \operatorname{Aut}(F)$ is orbit undecidable.

Negative results

With the following embedding (and $w=q a q b q$)

$$
\begin{aligned}
& F_{2} \times F_{2} \longrightarrow \\
& \operatorname{Aut}\left(F_{3}\right) \\
&(u, v) \mapsto \\
& u \theta_{v}: F_{3} \rightarrow F_{3} \\
& q \mapsto u^{-1} q v \\
& a \mapsto a \\
& b \mapsto b
\end{aligned}
$$

we obtain an alternative proof for unsolvability of the conjugacy problem in Miller's examples.

And any other way of embedding $F_{2} \times F_{2}$ in Aut $\left(F_{3}\right)$ will provide new examples.

Negative results

With the following embedding (and $w=q a q b q$)

$$
\begin{aligned}
& F_{2} \times F_{2} \longrightarrow \\
& \operatorname{Aut}\left(F_{3}\right) \\
&(u, v) \mapsto \\
& u \theta_{v}: F_{3} \rightarrow F_{3} \\
& q \mapsto u^{-1} q v \\
& a \mapsto a \\
& b \mapsto b
\end{aligned}
$$

we obtain an alternative proof for unsolvability of the conjugacy problem in Miller's examples.

And any other way of embedding $F_{2} \times F_{2}$ in $\operatorname{Aut}\left(F_{3}\right)$ will provide new examples.

More generally ...

A similar programme can be done for every extension $F \rtimes H$

$$
1 \rightarrow F \rightarrow F \rtimes H \rightarrow H \rightarrow 1
$$

satisfying
(i) $\operatorname{TCP}(F)$ is solvable,
(ii) $C P(H)$ is solvable,
(iii) H has small and computable centralizers

For any group F where you can solve TCP (F), you are in a perfect
situation to study the conjugacy problem in the family of free (or
torsion-free hyperbolic) extensions of F

More generally ...

A similar programme can be done for every extension $F \rtimes H$

$$
1 \rightarrow F \rightarrow F \rtimes H \rightarrow H \rightarrow 1
$$

satisfying
(i) $\operatorname{TCP}(F)$ is solvable,
(ii) $C P(H)$ is solvable,
(iii) H has small and computable centralizers

So,
For any group F where you can solve $T C P(F)$, you are in a perfect situation to study the conjugacy problem in the family of free (or torsion-free hyperbolic) extensions of F.

Outline

(9)
The conjugacy problem for free-by-cyclic groups
(2) The main theorem
(3) The conjugacy problem for free-by-free groups
(4) The conjugacy problem for (free abelian)-by-free groups
(5) The conjugacy problem for Braid-by-free groups
(- The conjugacy problem for Thompson-by-free groups
(7) The conjugacy problem for automata

Free-by-free groups

Theorem (Brinkmann, 2006)
Cyclic subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)
Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead)

The full Aut $\left(F_{n}\right)$ is O.D.

Corollary

If $\left\langle\varphi_{1}, \ldots, \varphi_{r}\right\rangle=\operatorname{Aut}\left(F_{n}\right)$ then $F_{n} \times \varphi_{1} \ldots \varphi_{m} F_{m}$ has solvable conjugacy problem.

Free-by-free groups

Theorem (Brinkmann, 2006)
 Cyclic subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)
Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead)

The full Aut $\left(F_{n}\right)$ is O.D.

Corollary
If
$\operatorname{Aut}\left(F_{n}\right)$ then $F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}$ has solvable conjugacy
problem.

Free-by-free groups

Theorem (Brinkmann, 2006)

Cyclic subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.
Corollary (Bogopolski-Martino-Maslakova-V., 2005)
Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead)

The full Aut $\left(F_{n}\right)$ is O.D.

Corollary

Free-by-free groups

Theorem (Brinkmann, 2006)

Cyclic subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead)

The full $\operatorname{Aut}\left(F_{n}\right)$ is O.D.

Corollary
If $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle=\operatorname{Aut}\left(F_{n}\right)$ then $F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}$ has solvable conjugacy problem.

Free-by-free groups

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.

Corollary

If $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ is of finite index in $\operatorname{Aut}\left(F_{n}\right)$ then $F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Corollary
Every F_{2}-by-free group has solvable conjugacy problem.

Free-by-free groups

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.

Corollary
If $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ is of finite index in $\operatorname{Aut}\left(F_{n}\right)$ then $F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.
Corollary
Every F_{2}-by-free group has solvable conjugacy problem.

Free-by-free groups

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.

Corollary

If $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ is of finite index in $\operatorname{Aut}\left(F_{n}\right)$ then $F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Free-by-free groups

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.

Corollary

If $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ is of finite index in $\operatorname{Aut}\left(F_{n}\right)$ then $F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Corollary

Every F_{2}-by-free group has solvable conjugacy problem.

Free-by-free groups

But...
Theorem (Miler, 70's)
There are free-by-free groups with unsolvable conjugacy problem.

Corollary

There exist 14 automorphisms $\varphi_{1}, \ldots, \varphi_{14} \in \operatorname{Aut}\left(F_{3}\right)$ such that $\left\langle\varphi_{1}, \ldots, \varphi_{14}\right\rangle \leqslant \operatorname{Aut}\left(F_{3}\right)$ is orbit undecidable.

Free-by-free groups

But...
Theorem (Miller, 70's)
There are free-by-free groups with unsolvable conjugacy problem.

Corollary

There exist 14 automorphisms $\varphi_{1}, \ldots, \varphi_{14} \in \operatorname{Aut}\left(F_{3}\right)$ such that $\left\langle\varphi_{1}, \ldots, \varphi_{14}\right\rangle \leqslant \operatorname{Aut}\left(F_{3}\right)$ is orbit undecidable.

Free-by-free groups

But...
Theorem (Miller, 70's)
There are free-by-free groups with unsolvable conjugacy problem.

Corollary

There exist 14 automorphisms $\varphi_{1}, \ldots, \varphi_{14} \in \operatorname{Aut}\left(F_{3}\right)$ such that $\left\langle\varphi_{1}, \ldots, \varphi_{14}\right\rangle \leqslant \operatorname{Aut}\left(F_{3}\right)$ is orbit undecidable.

Outline

(1) The conjugacy problem for free-by-cyclic groups
(2) The main theorem
(3) The conjugacy problem for free-by-free groups
(4) The conjugacy problem for (free abelian)-by-free groups
(5) The conjugacy problem for Braid-by-free groups

6 The conjugacy problem for Thompson-by-free groups
(5) The conjugacy problem for automata

(Free abelian)-by-free groups

Definition

Let $\mathbb{Z}^{n}=\left\langle x_{1}, \ldots, x_{n} \mid\left[x_{i}, x_{j}\right]\right\rangle$ be the free abelian group of rank $n \geq 2$, and let $M_{1}, \ldots, M_{m} \in \operatorname{Aut}\left(\mathbb{Z}^{n}\right)=G L_{n}(\mathbb{Z})$. The (free abelian)-by-free group $\mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}$ is defined as

$$
F_{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}=\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid t_{j}^{-1} x_{i} t_{j}=x_{i} M_{j},\left[x_{i}, x_{j}\right]=1\right\rangle .
$$

The sequence

again satisfies (i), (ii) and (iii). So,

(Free abelian)-by-free groups

Definition

Let $\mathbb{Z}^{n}=\left\langle x_{1}, \ldots, x_{n} \mid\left[x_{i}, x_{j}\right]\right\rangle$ be the free abelian group of rank $n \geq 2$, and let $M_{1}, \ldots, M_{m} \in \operatorname{Aut}\left(\mathbb{Z}^{n}\right)=G L_{n}(\mathbb{Z})$. The (free abelian)-by-free group $\mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}$ is defined as

$$
F_{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}=\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid t_{j}^{-1} x_{i} t_{j}=x_{i} M_{j},\left[x_{i}, x_{j}\right]=1\right\rangle .
$$

The sequence

$$
1 \longrightarrow \mathbb{Z}^{n} \longrightarrow \mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m} \longrightarrow F_{m} \longrightarrow 1
$$

again satisfies (i), (ii) and (iii).

(Free abelian)-by-free groups

Definition

Let $\mathbb{Z}^{n}=\left\langle x_{1}, \ldots, x_{n} \mid\left[x_{i}, x_{j}\right]\right\rangle$ be the free abelian group of rank $n \geq 2$, and let $M_{1}, \ldots, M_{m} \in \operatorname{Aut}\left(\mathbb{Z}^{n}\right)=G L_{n}(\mathbb{Z})$. The (free abelian)-by-free group $\mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}$ is defined as

$$
F_{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}=\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid t_{j}^{-1} x_{i} t_{j}=x_{i} M_{j},\left[x_{i}, x_{j}\right]=1\right\rangle .
$$

The sequence

$$
1 \longrightarrow \mathbb{Z}^{n} \longrightarrow \mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m} \longrightarrow F_{m} \longrightarrow 1
$$

again satisfies (i), (ii) and (iii). So,

$$
C P\left(\mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}\right) \text { is solvable } \Leftrightarrow\left\langle M_{1}, \ldots, M_{m}\right\rangle \leqslant G L_{n}(\mathbb{Z}) \text { is O.D. }
$$

(Free abelian)-by-free groups

Theorem (linear algebra)
Cyclic subgroups of $G L_{n}(\mathbb{Z})$ are O.D.

Corollary

\mathbb{Z}^{n}-by- \mathbb{Z} groups have solvable conjugacy problem.

Theorem (elementary)

The full $G L_{n}(\mathbb{Z})$ is O.D.

Corollary

If $\left\langle M_{1}, \ldots, M_{m}\right\rangle=G L_{n}(\mathbb{Z})$ then $\mathbb{Z}^{n} \times M_{1} \ldots M_{m} F_{m}$ has solvable
conjugacy problem.

(Free abelian)-by-free groups

Theorem (linear algebra)
Cyclic subgroups of $G L_{n}(\mathbb{Z})$ are O.D.
Corollary
\mathbb{Z}^{n}-by- \mathbb{Z} groups have solvable conjugacy problem.

Theorem (elementary)

The full $G L_{n}(\mathbb{Z})$ is O.D.

Corollary
If $\left\langle M_{1}\right.$
$G L_{n}(\mathbb{Z})$ then $\mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}$ has solvable
conjugacy problem.

(Free abelian)-by-free groups

Theorem (linear algebra)
Cyclic subgroups of $G L_{n}(\mathbb{Z})$ are O.D.

Corollary

\mathbb{Z}^{n}-by- \mathbb{Z} groups have solvable conjugacy problem.

Theorem (elementary)
The full $G L_{n}(\mathbb{Z})$ is O.D.

Corollary
If $\left\langle M_{1}\right.$
$\left.M_{m}\right\rangle=G L_{n}(\mathbb{Z})$ then $\mathbb{Z}^{n} \rtimes_{M_{1}} \ldots . M_{m} F_{m}$ has solvable
conjugacy problem.

(Free abelian)-by-free groups

Theorem (linear algebra)
Cyclic subgroups of $G L_{n}(\mathbb{Z})$ are O.D.

Corollary

\mathbb{Z}^{n}-by- \mathbb{Z} groups have solvable conjugacy problem.

Theorem (elementary)
The full $G L_{n}(\mathbb{Z})$ is O.D.

Corollary
If $\left\langle M_{1}, \ldots, M_{m}\right\rangle=G L_{n}(\mathbb{Z})$ then $\mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}$ has solvable conjugacy problem.

(Free abelian)-by-free groups

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $G L_{n}(\mathbb{Z})$ are O.D.

Corollary
 If $\left\langle M_{1}, \ldots, M_{m}\right\rangle$ is of finite index in $G L_{n}(\mathbb{Z})$ then $\mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

\square

Corollary

Everv \mathbb{T}^{2}-bv-free group has solvable conjugacy problem.

(Free abelian)-by-free groups

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $G L_{n}(\mathbb{Z})$ are O.D.

Corollary

If $\left\langle M_{1}, \ldots, M_{m}\right\rangle$ is of finite index in $G L_{n}(\mathbb{Z})$ then $\mathbb{Z}^{n} \rtimes M_{1}, \ldots, M_{m} F_{m}$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely qenerated subaroup of $G L_{2}(\mathbb{Z})$ is O.D.

Corollary

Fverv π^{2}-hv.free group has solvable conjugacy problem.

(Free abelian)-by-free groups

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $G L_{n}(\mathbb{Z})$ are O.D.

Corollary

If $\left\langle M_{1}, \ldots, M_{m}\right\rangle$ is of finite index in $G L_{n}(\mathbb{Z})$ then $\mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

(Free abelian)-by-free groups

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $G L_{n}(\mathbb{Z})$ are O.D.

Corollary

If $\left\langle M_{1}, \ldots, M_{m}\right\rangle$ is of finite index in $G L_{n}(\mathbb{Z})$ then $\mathbb{Z}^{n} \rtimes M_{1}, \ldots, M_{m} F_{m}$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

Corollary

Every \mathbb{Z}^{2}-by-free group has solvable conjugacy problem.

(Free abelian)-by-free groups

$F_{2} \times F_{2} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z})$. So...
Theorem (Bogopolski-Martino-V., 2008)
There exist 14 matrices $M_{1}, \ldots, M_{14} \in G L_{n}(\mathbb{Z})$, for $n \geqslant 4$, such that $\left\langle M_{1}, \ldots, M_{14}\right\rangle \leqslant G L_{n}(\mathbb{Z})$ is orbit undecidable.

Corollary

There exists $a \mathbb{Z}^{4}-b y-F_{14}$ group with unsolvable conjugacy problem.

Question

Does $G L_{3}(\mathbb{Z})$ contain orbit undecidable subgroups

Question

Does there ϵ xist \mathbb{Z}^{3}-by-free groups with unsolvable conjugacy problem?

(Free abelian)-by-free groups

$F_{2} \times F_{2} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z})$. So...
Theorem (Bogopolski-Martino-V., 2008)
There exist 14 matrices $M_{1}, \ldots, M_{14} \in G L_{n}(\mathbb{Z})$, for $n \geqslant 4$, such that $\left\langle M_{1}, \ldots, M_{14}\right\rangle \leqslant G L_{n}(\mathbb{Z})$ is orbit undecidable.

Corollary

There exists a $\mathbb{Z}^{4}-b y-F_{14}$ group with unsolvable conjugacy problem.

Question

Does $G L_{3}(\mathbb{Z})$ contain orbit undecidable subgroups

Question

Does there exist \mathbb{Z}^{3}-by-free groups with unsolvable conjugacy
problem

(Free abelian)-by-free groups

$F_{2} \times F_{2} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z})$. So...
Theorem (Bogopolski-Martino-V., 2008)
There exist 14 matrices $M_{1}, \ldots, M_{14} \in G L_{n}(\mathbb{Z})$, for $n \geqslant 4$, such that $\left\langle M_{1}, \ldots, M_{14}\right\rangle \leqslant G L_{n}(\mathbb{Z})$ is orbit undecidable.

Corollary
There exists a \mathbb{Z}^{4}-by- F_{14} group with unsolvable conjugacy problem.

Question

Does $G L_{3}(\mathbb{Z})$ contain orbit undecidable subgroups?

Question
Does there ϵ xist \mathbb{Z}^{3}-by-free groups with unsolvable conjugacy
problem

(Free abelian)-by-free groups

$F_{2} \times F_{2} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z})$. So...
Theorem (Bogopolski-Martino-V., 2008)
There exist 14 matrices $M_{1}, \ldots, M_{14} \in G L_{n}(\mathbb{Z})$, for $n \geqslant 4$, such that $\left\langle M_{1}, \ldots, M_{14}\right\rangle \leqslant G L_{n}(\mathbb{Z})$ is orbit undecidable.

Corollary

There exists a \mathbb{Z}^{4}-by- F_{14} group with unsolvable conjugacy problem.

Question

Does $\mathrm{GL}_{3}(\mathbb{Z})$ contain orbit undecidable subgroups ?

Question

Does there exist \mathbb{Z}^{3}-by-free groups with unsolvable conjugacy
problem

(Free abelian)-by-free groups

$$
F_{2} \times F_{2} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z}) . \text { So... }
$$

Theorem (Bogopolski-Martino-V., 2008)

There exist 14 matrices $M_{1}, \ldots, M_{14} \in G L_{n}(\mathbb{Z})$, for $n \geqslant 4$, such that $\left\langle M_{1}, \ldots, M_{14}\right\rangle \leqslant G L_{n}(\mathbb{Z})$ is orbit undecidable.

Corollary

There exists a $\mathbb{Z}^{4}-$ by- F_{14} group with unsolvable conjugacy problem.

Question

Does $\mathrm{GL}_{3}(\mathbb{Z})$ contain orbit undecidable subgroups ?

Question

Does there exist \mathbb{Z}^{3}-by-free groups with unsolvable conjugacy problem?

Outline

(9)
The conjugacy problem for free-by-cyclic groups
(2) The main theorem
(3) The conjugacy problem for free-by-free groups
(4) The conjugacy problem for (free abelian)-by-free groups
(5) The conjugacy problem for Braid-by-free groups
(6) The conjugacy problem for Thompson-by-free groups
(7) The conjugacy problem for automata

Braid-by-free groups

Consider the braid group on n strands, given by the classical presentation

$$
B_{n}=\left\langle\begin{array}{l|ll}
\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1} & \begin{array}{l}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \\
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}
\end{array} & (|i-j| \geqslant 2) \\
(1 \leqslant i \leqslant n-2)
\end{array}\right\rangle .
$$

Theorem

The coniugacy problem is solvable in B_{n}

And the automorphism group is easy:

Theorem (Dyer, Groseman)

\square

Braid-by-free groups

Consider the braid group on n strands, given by the classical presentation

$$
B_{n}=\left\langle\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1} \left\lvert\, \begin{array}{ll}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & (|i-j| \geqslant 2) \\
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} & (1 \leqslant i \leqslant n-2)
\end{array}\right.\right\rangle .
$$

Theorem

The conjugacy problem is solvable in B_{n}.

And the automorphism group is easy:

Braid-by-free groups

Consider the braid group on n strands, given by the classical presentation

$$
B_{n}=\left\langle\begin{array}{l|ll}
\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1} & \begin{array}{l}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \\
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}
\end{array} & (|i-j| \geqslant 2) \\
(1 \leqslant i \leqslant n-2)
\end{array}\right\rangle .
$$

Theorem

The conjugacy problem is solvable in B_{n}.

And the automorphism group is easy:

Theorem (Dyer, Grossman)

$\left|\operatorname{Out}\left(B_{n}\right)\right|=2$. More precisely, Aut $\left(B_{n}\right)=\operatorname{Inn}\left(B_{n}\right) \sqcup \operatorname{Inn}\left(B_{n}\right) \cdot \varepsilon$, where $\varepsilon: B_{n} \rightarrow B_{n}$ is the automorphism which inverts all generators, $\sigma_{i} \mapsto \sigma_{i}^{-1}$.

Braid-by-free groups

Theorem (González-Meneses, V. 2009)

$\operatorname{TCP}\left(B_{n}\right)$ is solvable.

Observation

Every subaroup $A \leqslant \operatorname{Aut}\left(B_{n}\right)$ is orbit decidable.

Corollary (González-Meneses, V. 2009)
Every extension of B_{n} by a free group (or torsion-free hyperbolic) has solvable conjugacy problem.

Braid-by-free groups

Theorem (González-Meneses, V. 2009)

$\operatorname{TCP}\left(B_{n}\right)$ is solvable.

Observation

Every subgroup $A \leqslant \operatorname{Aut}\left(B_{n}\right)$ is orbit decidable.

Corollary (González-Meneses, V. 2009)

Every extension of B_{n} by a free group (or torsion-free hyperbolic) has solvable conjugacy problem.

Outline

(1) The conjugacy problem for free-by-cyclic groups
(3) The main theorem
(3) The conjugacy problem for free-by-free groups
(4) The conjugacy problem for (free abelian)-by-free groups
(5) The conjugacy problem for Braid-by-free groups
(6) The conjugacy problem for Thompson-by-free groups
(7) The conjugacy problem for automata

Thompson-by-free groups

Consider Thompson's group F (piecewise linear increasing maps $[0,1] \rightarrow[0,1]$ with diadic breakpoints, and slopes being powers of 2).

Theorem

The conjugacy problem is solvable in B_{n}

And the automorphism group is big, but easy:

Theorem (Brin)

For every $\varphi \in \operatorname{Aut}(F)$, there exists $\tau \in E P_{2}$ such that $\varphi(g)=\tau^{-1} g \tau$
for every $g \in F$

Thompson-by-free groups

Consider Thompson's group F (piecewise linear increasing maps $[0,1] \rightarrow[0,1]$ with diadic breakpoints, and slopes being powers of 2).

Theorem

The conjugacy problem is solvable in B_{n}.

And the automorphism group is big, but easy:

Theorem (Brin)

For every \square there exists τ for every $g \in F$

Thompson-by-free groups

Consider Thompson's group F (piecewise linear increasing maps $[0,1] \rightarrow[0,1]$ with diadic breakpoints, and slopes being powers of 2).

Theorem

The conjugacy problem is solvable in B_{n}.

And the automorphism group is big, but easy:

Theorem (Brin)

For every $\varphi \in \operatorname{Aut}(F)$, there exists $\tau \in E P_{2}$ such that $\varphi(g)=\tau^{-1} g \tau$, for every $g \in F$.

Thompson-by-free groups

Theorem (Burillo-Matucci-V. 2010)

$T C P(F)$ is solvable.

But...

Observation

$F_{2} \times F_{2}$ embeds in $\operatorname{Aut}(F)$.

Corollary (Burillo-Matucci-V. 2010)

There are extensions of Thompson's yroup F by a free group. $F \rtimes F_{m}$, with unsolvable conjugacy problem.

Thompson-by-free groups

Theorem (Burillo-Matucci-V. 2010)

$T C P(F)$ is solvable.

But...
Observation
$F_{2} \times F_{2}$ embeds in $\operatorname{Aut}(F)$.

Corollary (Burillo-Matucci-V. 2010)
There are extensions of Thompson's group F by a free group, $F \rtimes F_{m}$, with unsolvable conjugacy problem.

Outline

(9)
The conjugacy problem for free-by-cyclic groups
(2) The main theorem
(3) The conjugacy problem for free-by-free groups
(4) The conjugacy problem for (free abelian)-by-free groups
(5) The conjugacy problem for Braid-by-free groups
(-) The conjugacy problem for Thompson-by-free groups
(7) The conjugacy problem for automata

Automata groups

Proposition (S̆unić-V., 2010)
For $d \geqslant 6$, the group $G L_{d}(\mathbb{Z})$ contains orbit undecidable, free subgroups.

So, for $d \geqslant 6$, there exists a group of the form

with unsolvable conjugacy problem.

Theorem (Šuntc-V., 2010)

Such a group $\Gamma=\mathbb{Z}^{d} \rtimes F_{m}$ can be realized as an automaton group.

Corollary
There exists automaton groups with unsolvable conjugacy problem.

Automata groups

Proposition (Šunić-V., 2010)

For $d \geqslant 6$, the group $G L_{d}(\mathbb{Z})$ contains orbit undecidable, free subgroups.

So, for $d \geqslant 6$, there exists a group of the form

$$
\Gamma=\mathbb{Z}^{d} \rtimes F_{m} \leqslant \mathbb{Z}^{d} \rtimes G L_{d}(\mathbb{Z})
$$

with unsolvable conjugacy problem.

Theorem (Sunic-V., 2010)

Such a group $\Gamma=\mathbb{Z}^{d} \rtimes F_{m}$ can be realized as an automaton group.

Corollary
There exists automaton groups with unsolvable conjugacy problem.

Automata groups

Proposition (Šunić-V., 2010)

For $d \geqslant 6$, the group $G L_{d}(\mathbb{Z})$ contains orbit undecidable, free subgroups.

So, for $d \geqslant 6$, there exists a group of the form

$$
\Gamma=\mathbb{Z}^{d} \rtimes F_{m} \leqslant \mathbb{Z}^{d} \rtimes G L_{d}(\mathbb{Z})
$$

with unsolvable conjugacy problem.

Theorem (Šunić-V., 2010)

Such a group $\Gamma=\mathbb{Z}^{d} \rtimes F_{m}$ can be realized as an automaton group.

Corollary

There exists automaton groups with unsolvable conjugacy problem.

Automata groups

Proposition (Šunić-V., 2010)

For $d \geqslant 6$, the group $G L_{d}(\mathbb{Z})$ contains orbit undecidable, free subgroups.

So, for $d \geqslant 6$, there exists a group of the form

$$
\Gamma=\mathbb{Z}^{d} \rtimes F_{m} \leqslant \mathbb{Z}^{d} \rtimes G L_{d}(\mathbb{Z})
$$

with unsolvable conjugacy problem.

Theorem (Šunić-V., 2010)

Such a group $\Gamma=\mathbb{Z}^{d} \rtimes F_{m}$ can be realized as an automaton group.

Corollary

There exists automaton groups with unsolvable conjugacy problem.

THANKS

