The conjugacy problem for some extensions of F_n , \mathbb{Z}^m , B_n and F.

Enric Ventura

Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya

and

CRM-Montreal

Urbana Group Theory Seminar

October 28th, 2010.

- O. Bogopolski, A. Martino, O. Maslakova, E. Ventura,
 Free-by-cyclic groups have solvable conjugacy problem, *Bulletin of the London Mathematical Society*, 38(5) (2006), 787–794.
- O. Bogopolski, A. Martino, E. Ventura, Orbit decidability and the conjugacy problem for some extensions of groups, *Transactions* of the American Mathematical Society 362 (2010), 2003–2036.
- V. Romanko'v, E. Ventura, Twisted conjugacy problem for endomorphisms of metabelian groups, *Algebra and Logic* 48(2) (2009), 89–98.
- J. González-Meneses, E. Ventura, Twisted conjugacy in the braid group, preprint.
- J. Burillo, F. Matucci, E. Ventura, The conjugacy problem for extensions of Thompson's group, preprint.
- Z. Šunić, E. Ventura, The conjugacy problem in self-similar groups, preprint, arXiv:1010.1993v1, Oct. 2010.

Outline

- 1 The conjugacy problem for free-by-cyclic groups
- The main theorem
- The conjugacy problem for free-by-free groups
- 4 The conjugacy problem for (free abelian)-by-free groups
- 5 The conjugacy problem for Braid-by-free groups
- 6 The conjugacy problem for Thompson-by-free groups
- The conjugacy problem for automata

Outline

- 1 The conjugacy problem for free-by-cyclic groups
- 2 The main theorem
- The conjugacy problem for free-by-free groups
- The conjugacy problem for (free abelian)-by-free groups
- 5 The conjugacy problem for Braid-by-free groups
- 6 The conjugacy problem for Thompson-by-free groups
- The conjugacy problem for automata

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- I let endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha\beta \colon F_n \stackrel{\alpha}{\to} F_n \stackrel{\beta}{\to} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: $\gamma_u : F_n \to F_n, x \mapsto u^{-1}xu$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- I let endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha\beta \colon F_n \stackrel{\alpha}{\to} F_n \stackrel{\beta}{\to} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: $\gamma_u : F_n \to F_n, x \mapsto u^{-1}xu$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- I let endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha\beta \colon F_n \stackrel{\alpha}{\to} F_n \stackrel{\beta}{\to} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: $\gamma_u : F_n \to F_n, x \mapsto u^{-1}xu$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- I let endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha\beta \colon F_n \stackrel{\alpha}{\to} F_n \stackrel{\beta}{\to} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: $\gamma_u \colon F_n \to F_n, x \mapsto u^{-1}xu$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- I let endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha\beta \colon F_n \xrightarrow{\alpha} F_n \xrightarrow{\beta} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: $\gamma_u \colon F_n \to F_n, x \mapsto u^{-1}xu$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- I let endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha\beta \colon F_n \xrightarrow{\alpha} F_n \xrightarrow{\beta} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: $\gamma_u \colon F_n \to F_n, x \mapsto u^{-1}xu$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- I let endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha\beta \colon F_n \xrightarrow{\alpha} F_n \xrightarrow{\beta} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: γ_u : $F_n \to F_n$, $x \mapsto u^{-1}xu$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- I let endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha\beta \colon F_n \xrightarrow{\alpha} F_n \xrightarrow{\beta} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: γ_u : $F_n \to F_n$, $x \mapsto u^{-1}xu$.
- $\bullet \ \mathsf{Fix}\,(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n.$

Step 1:

Find a problem you like

Conjugacy problem for free-by-cyclic groups

Definition

Let $F_n = \langle x_1, \dots, x_n \mid \rangle$ be a free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$, and let $\varphi \in Aut(F_n)$. The free-by-cyclic group $F_n \rtimes_{\varphi} \mathbb{Z}$ is defined as

$$F_n \rtimes_{\varphi} \mathbb{Z} = \langle x_1, \ldots, x_n, t \mid t^{-1}x_it = x_i\varphi \rangle.$$

With $x_it=t(x_i\varphi)$ and $x_it^{-1}=t^{-1}(x_i\varphi^{-1})$, we can move all t's to the left and get the usual normal form for elements in $F_n\rtimes_{\varphi}\mathbb{Z}$:

$$t^r w$$
, with $r \in \mathbb{Z}$, $w \in F_n$.

Problem

Solve the conjugacy problem in $F_n \rtimes_{\omega} \mathbb{Z}$.

Conjugacy problem for free-by-cyclic groups

Definition

Let $F_n = \langle x_1, \dots, x_n \mid \rangle$ be a free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$, and let $\varphi \in Aut(F_n)$. The free-by-cyclic group $F_n \rtimes_{\varphi} \mathbb{Z}$ is defined as

$$F_n \rtimes_{\varphi} \mathbb{Z} = \langle x_1, \ldots, x_n, t \mid t^{-1}x_it = x_i\varphi \rangle.$$

With $x_i t = t(x_i \varphi)$ and $x_i t^{-1} = t^{-1}(x_i \varphi^{-1})$, we can move all t's to the left and get the usual normal form for elements in $F_n \rtimes_{\varphi} \mathbb{Z}$:

$$t^r w$$
, with $r \in \mathbb{Z}$, $w \in F_n$.

Problem

Solve the conjugacy problem in $\mathsf{F}_{\mathsf{n}}
times_{arphi}\mathbb{Z}.$

Conjugacy problem for free-by-cyclic groups

Definition

Let $F_n = \langle x_1, \dots, x_n \mid \rangle$ be a free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$, and let $\varphi \in Aut(F_n)$. The free-by-cyclic group $F_n \rtimes_{\varphi} \mathbb{Z}$ is defined as

$$F_n \rtimes_{\varphi} \mathbb{Z} = \langle x_1, \ldots, x_n, t \mid t^{-1}x_it = x_i\varphi \rangle.$$

With $x_i t = t(x_i \varphi)$ and $x_i t^{-1} = t^{-1}(x_i \varphi^{-1})$, we can move all t's to the left and get the usual normal form for elements in $F_n \rtimes_{\varphi} \mathbb{Z}$:

$$t^r w$$
, with $r \in \mathbb{Z}$, $w \in F_n$.

Problem

Solve the conjugacy problem in $F_n \rtimes_{\varphi} \mathbb{Z}$.

Step 2:

Push the problem into your favorite territory

Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$. Then,

$$(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^r(u\varphi^k)g$$

= $t^r(g\varphi^r)^{-1}(u\varphi^k)g$.

$$conj. in M_{\varphi} \qquad \Longleftrightarrow \qquad r = s \\ v \sim_{\varphi^r} (u\varphi^k) \text{ for some } k \in \mathbb{Z}$$

Definition

For $\varphi \in End(G)$, two elements $u, v \in G$ are said to be φ -twisted conjugated, denoted $u \sim_{\varphi} v$, if $v = (g\varphi)^{-1}ug$ for some $g \in G$.

Definition

The twisted conjugacy problem for G, denoted TCP(G): "Given $\varphi \in Aut(G)$ and $u, v \in G$ decide whether $u \sim_{\varphi} v$ "

Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$. Then,

$$(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^r(u\varphi^k)g$$

= $t^r(g\varphi^r)^{-1}(u\varphi^k)g$.

$$t^r u$$
 and $t^s v$ \iff $r = s$ $v \sim_{\varphi^r} (u \varphi^k)^{r}$

Definitior

For $\varphi \in End(G)$, two elements $u, v \in G$ are said to be φ -twisted conjugated, denoted $u \sim_{\varphi} v$, if $v = (g\varphi)^{-1}ug$ for some $g \in G$.

Definition

The twisted conjugacy problem for G, denoted TCP(G): "Given $\varphi \in Aut(G)$ and $u, v \in G$ decide whether $u \sim_{\varphi} v'$

Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$. Then,

$$(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^r(u\varphi^k)g$$

= $t^r(g\varphi^r)^{-1}(u\varphi^k)g$.

$$t^r u$$
 and $t^s v$ \iff $r = s$ $v \sim_{\varphi^r} (u \varphi^k)$ for some $k \in \mathbb{Z}$.

Definition

For $\varphi \in End(G)$, two elements $u, v \in G$ are said to be φ -twisted conjugated, denoted $u \sim_{\varphi} v$, if $v = (g\varphi)^{-1}ug$ for some $g \in G$.

Definition

The twisted conjugacy problem for G, denoted TCP(G): "Given $\varphi \in Aut(G)$ and $u, v \in G$ decide whether $u \sim_{\varphi} v$ "

Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$. Then,

$$(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^r(u\varphi^k)g$$

= $t^r(g\varphi^r)^{-1}(u\varphi^k)g$.

$$t^r u$$
 and $t^s v$ \Longleftrightarrow $r = s$ $v \sim_{\varphi^r} (u \varphi^k)$ for some $k \in \mathbb{Z}$.

Definition

For $\varphi \in End(G)$, two elements $u, v \in G$ are said to be φ -twisted conjugated, denoted $u \sim_{\varphi} v$, if $v = (g\varphi)^{-1}ug$ for some $g \in G$.

Definition

The twisted conjugacy problem for G, denoted TCP(G): "Given $\varphi \in Aut(G)$ and $u,v \in G$ decide whether $u \sim_{\varphi} v'$

Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$. Then,

$$(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^r(u\varphi^k)g$$

= $t^r(g\varphi^r)^{-1}(u\varphi^k)g$.

$$t^r u$$
 and $t^s v$ \iff $r = s$ $v \sim_{\varphi^r} (u \varphi^k)$ for some $k \in \mathbb{Z}$.

Definition

For $\varphi \in End(G)$, two elements $u, v \in G$ are said to be φ -twisted conjugated, denoted $u \sim_{\varphi} v$, if $v = (g\varphi)^{-1}ug$ for some $g \in G$.

Definition

The twisted conjugacy problem for G, denoted TCP(G): "Given $\varphi \in Aut(G)$ and $u, v \in G$ decide whether $u \sim_{\varphi} v$ ".

Step 3:

We solved it

3. Main theorem

1. CP for F_n -by- \mathbb{Z}

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

 $TCP(F_n)$ for automorphisms is solvable.

Proof. Given $\varphi \in \operatorname{Aut}(F_n)$ and $u, v \in F_n$:

- 1 Extend to $F_n * \langle z \rangle$ and $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- Claim: for $g \in F_n$, $v = (g\varphi)^{-1}ug \Leftrightarrow g^{-1}zg \in \text{Fix}\,(\hat{\varphi}\gamma_v)$.
- 2 Compute a basis for Fix $(\hat{\varphi}\gamma_v)$.
- 3 Check whether Fix $(\hat{\varphi}\gamma_{\nu})$ contains $g^{-1}zg$ for some $g \in F_n$, using Stallings' automata. □

Theorem (Maslakova)

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

 $TCP(F_n)$ for automorphisms is solvable.

Proof. Given $\varphi \in \operatorname{Aut}(F_n)$ and $u, v \in F_n$:

- 1 Extend to $F_n * \langle z \rangle$ and $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- Claim: for $g \in F_n$, $v = (g\varphi)^{-1}ug \Leftrightarrow g^{-1}zg \in \text{Fix}\,(\hat{\varphi}\gamma_v)$.
- 2 Compute a basis for Fix $(\hat{\varphi}\gamma_{\nu})$.
- 3 Check whether Fix $(\hat{\varphi}\gamma_{\nu})$ contains $g^{-1}zg$ for some $g \in F_n$, using Stallings' automata. □

Theorem (Maslakova)

1. CP for F_n -by- \mathbb{Z}

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

 $TCP(F_n)$ for automorphisms is solvable.

Proof. Given $\varphi \in \text{Aut}(F_n)$ and $u, v \in F_n$:

- 1 Extend to $F_n * \langle z \rangle$ and $\hat{\varphi} : F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- Claim: for $g \in F_n$, $v = (g\varphi)^{-1}ug \Leftrightarrow g^{-1}zg \in \text{Fix}\,(\hat{\varphi}\gamma_v)$.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

 $TCP(F_n)$ for automorphisms is solvable.

Proof. Given $\varphi \in \operatorname{Aut}(F_n)$ and $u, v \in F_n$:

- 1 Extend to $F_n * \langle z \rangle$ and $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- Claim: for $g \in F_n$, $v = (g\varphi)^{-1}ug \Leftrightarrow g^{-1}zg \in \text{Fix}\,(\hat{\varphi}\gamma_{\nu})$.
- 2 Compute a basis for Fix $(\hat{\varphi}\gamma_{\nu})$.
- 3 Check whether Fix $(\hat{\varphi}\gamma_{\nu})$ contains $g^{-1}zg$ for some $g \in F_n$, using Stallings' automata. □

Theorem (Maslakova

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

 $TCP(F_n)$ for automorphisms is solvable.

Proof. Given $\varphi \in \operatorname{Aut}(F_n)$ and $u, v \in F_n$:

- 1 Extend to $F_n * \langle z \rangle$ and $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- Claim: for $g \in F_n$, $v = (g\varphi)^{-1}ug \Leftrightarrow g^{-1}zg \in \text{Fix}\,(\hat{\varphi}\gamma_{\nu})$.
- 2 Compute a basis for Fix $(\hat{\varphi}\gamma_{\nu})$.
- 3 Check whether Fix $(\hat{\varphi}\gamma_{\nu})$ contains $g^{-1}zg$ for some $g \in F_n$, using Stallings' automata. □

Theorem (Maslakova

1. CP for F_n -by- \mathbb{Z}

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

 $TCP(F_n)$ for automorphisms is solvable.

Proof. Given $\varphi \in \operatorname{Aut}(F_n)$ and $u, v \in F_n$:

- 1 Extend to $F_n * \langle z \rangle$ and $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- Claim: for $g \in F_n$, $v = (g\varphi)^{-1}ug \Leftrightarrow g^{-1}zg \in \text{Fix}\,(\hat{\varphi}\gamma_{\nu})$.
- 2 Compute a basis for Fix $(\hat{\varphi}\gamma_{\nu})$.
- 3 Check whether Fix $(\hat{\varphi}\gamma_{\nu})$ contains $g^{-1}zg$ for some $g \in F_n$, using Stallings' automata. □

Theorem (Maslakova

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

 $TCP(F_n)$ for automorphisms is solvable.

Proof. Given $\varphi \in \operatorname{Aut}(F_n)$ and $u, v \in F_n$:

- 1 Extend to $F_n * \langle z \rangle$ and $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- Claim: for $g \in F_n$, $v = (g\varphi)^{-1}ug \Leftrightarrow g^{-1}zg \in \text{Fix}\,(\hat{\varphi}\gamma_{\nu})$.
- 2 Compute a basis for Fix $(\hat{\varphi}\gamma_{\nu})$.
- 3 Check whether Fix $(\hat{\varphi}\gamma_{\nu})$ contains $g^{-1}zg$ for some $g \in F_n$, using Stallings' automata. □

Theorem (Maslakova)

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Given $t^r u$, $t^s v \in M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ conj. in M_{φ} \iff $r = s$ $v \sim_{\varphi^r} (u\varphi^k)$ for some $k = 0, \dots, r-1$.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Given $t^r u$, $t^s v \in M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ conj. in M_{φ} \iff $r = s$ $v \sim_{\varphi^r} (u\varphi^k)$ for some $k = 0, \dots, r-1$.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Given $t^r u$, $t^s v \in M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ conj. in M_{φ} \iff $r = s$ $v \sim_{\varphi^r} (u\varphi^k)$ for some $k = 0, \dots, r-1$.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Given $t^r u$, $t^s v \in M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ conj. in M_{φ} \iff $r = s$ $v \sim_{\varphi^r} (u\varphi^k)$ for some $k = 0, \dots, r-1$.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Given $t^r u$, $t^s v \in M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ conj. in M_{φ} \iff $r = s$ $v \sim_{\varphi^r} (u \varphi^k)$ for some $k = 0, \ldots, r-1$.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Given $t^r u$, $t^s v \in M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ \iff $r = s$ $v \sim_{\varphi^r} (u \varphi^k)$ for some $k = 0, \dots, r-1$.

Step 4:

A mistake was found

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

- $(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^r(u\varphi^k)g = t^r(g\varphi^r)^{-1}(u\varphi^k)g$.
- **►** Case 1: $r \neq 0$
- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ conj. in M_{φ} \iff $r = s$ $v \sim_{\varphi^r} (u \varphi^k)$ for some $k = 0, \ldots, r - 1$.

• Thus, $CP(M_{\varphi})$ reduces to finitely many checks of $TCP(F_n)$.

Case 2: r = 0

Still infinitely many k's:

$$u$$
 and v conj. in M_{arphi} \iff $v \sim u arphi^k$ for some $k \in \mathbb{Z}$

• This is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given an automorphism $\phi \colon F_n \to F_n$ and $u, v \in F_n$, it is decidable whether $v \sim u\phi^k$ for some $k \in \mathbb{Z}$.

• Hence, $CP(M_{\varphi})$ is solvable. \square

- **Case 2:** r = 0
- Still infinitely many k's:

$$u$$
 and v conj. in M_{φ} \iff $v \sim u \varphi^k$ for some $k \in \mathbb{Z}$.

This is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given an automorphism $\phi \colon F_n \to F_n$ and $u, v \in F_n$, it is decidable whether $v \sim u\phi^k$ for some $k \in \mathbb{Z}$.

• Hence, $CP(M_{\varphi})$ is solvable. \square

- **Case 2:** r = 0
- Still infinitely many k's:

$$u$$
 and v conj. in M_{φ} \iff $v \sim u \varphi^k$ for some $k \in \mathbb{Z}$.

This is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given an automorphism $\phi \colon F_n \to F_n$ and $u, v \in F_n$, it is decidable whether $v \sim u\phi^k$ for some $k \in \mathbb{Z}$.

• Hence, $CP(M_{\varphi})$ is solvable. \square

- **Case 2:** r = 0
- Still infinitely many k's:

$$u$$
 and v conj. in M_{φ} \iff $v \sim u \varphi^k$ for some $k \in \mathbb{Z}$.

This is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given an automorphism $\phi \colon F_n \to F_n$ and $u, v \in F_n$, it is decidable whether $v \sim u\phi^k$ for some $k \in \mathbb{Z}$.

• Hence, $CP(M_{\omega})$ is solvable. \square

Step 5:

Intuition always ahead

A crucial comment

A. Martino: "The whole argument essentially works the same way in presence of more stable letters, i.e. for free-by-free groups"

Definition

Let $F_n = \langle x_1, \dots, x_n \mid \rangle$ be the free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$, and let $\varphi_1, \dots, \varphi_m \in Aut(F_n)$. The free-by-free group $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ is

$$F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m = \langle x_1,\ldots,x_n, t_1,\ldots,t_m \mid t_j^{-1} x_i t_j = x_i \varphi_j \rangle.$$

But this looks wrong, taking into account Miller's examples..

A crucial comment

A. Martino: "The whole argument essentially works the same way in presence of more stable letters, i.e. for free-by-free groups"

Definition

Let $F_n = \langle x_1, \dots, x_n | \rangle$ be the free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$, and let $\varphi_1, \dots, \varphi_m \in Aut(F_n)$. The free-by-free group $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ is

$$F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m = \langle x_1,\ldots,x_n, t_1,\ldots,t_m \mid t_j^{-1} x_i t_j = x_i \varphi_j \rangle.$$

But this looks wrong, taking into account Miller's examples...

He was right... the whole argument essentially works the same way except that in the second case, a much stronger problem arises:

$$u ext{ and } v ext{conj.}$$
 $in M_{\varphi_1, \dots, \varphi_m} \iff v \sim u \varphi ext{ for some } \varphi \in \langle \varphi_1, \dots, \varphi_m \rangle \leqslant Aut(F_n).$

Theorem

 $CP(F_n \rtimes_{\varphi_1,...,\varphi_m} F_m)$ is solvable if and only if $\langle \varphi_1,...,\varphi_m \rangle$ is orbit decidable.

Definition

A subgroup $A \leq \operatorname{Aut}(F)$ is said to be orbit decidable (O.D.) if \exists an algorithm s.t., given $u, v \in F$ decides whether $v \sim u\alpha$ for some $\alpha \in A$.

He was right... the whole argument essentially works the same way except that in the second case, a much stronger problem arises:

$$\begin{array}{ll} \textit{u and v conj.} \\ \textit{in } \textit{M}_{\varphi_1,\,\ldots,\varphi_m} \end{array} \iff \textit{v} \sim \textit{u}\varphi \textit{ for some } \varphi \in \langle \varphi_1,\,\ldots,\varphi_m \rangle \leqslant \textit{Aut}(\textit{F}_n). \end{array}$$

Theorem

 $CP(F_n \rtimes_{\varphi_1,...,\varphi_m} F_m)$ is solvable if and only if $\langle \varphi_1,...,\varphi_m \rangle$ is orbit decidable.

Definition

A subgroup $A \leq Aut(F)$ is said to be orbit decidable (O.D.) if \exists an algorithm s.t., given $u, v \in F$ decides whether $v \sim u\alpha$ for some $\alpha \in A$.

He was right... the whole argument essentially works the same way except that in the second case, a much stronger problem arises:

$$\begin{array}{ll} \textit{u and vconj.} \\ \textit{in } \textit{M}_{\varphi_1,\,\ldots,\varphi_m} \end{array} \iff \textit{v} \sim \textit{u}\varphi \textit{ for some } \varphi \in \langle \varphi_1,\,\ldots,\varphi_m \rangle \leqslant \textit{Aut}(\textit{F}_n). \end{array}$$

Theorem

 $CP(F_n \rtimes_{\varphi_1,...,\varphi_m} F_m)$ is solvable if and only if $\langle \varphi_1,...,\varphi_m \rangle$ is orbit decidable.

Definition

A subgroup $A \leq Aut(F)$ is said to be orbit decidable (O.D.) if \exists an algorithm s.t., given $u, v \in F$ decides whether $v \sim u\alpha$ for some $\alpha \in A$.

He was right... the whole argument essentially works the same way except that in the second case, a much stronger problem arises:

$$\text{u and vconj.} \\ \text{in } M_{\varphi_1, \, \dots, \varphi_m} \qquad \Longleftrightarrow \qquad v \sim u \varphi \text{ for some } \varphi \in \langle \varphi_1, \, \dots, \varphi_m \rangle \leqslant \textit{Aut}(F_n).$$

Theorem

 $CP(F_n \rtimes_{\varphi_1,...,\varphi_m} F_m)$ is solvable if and only if $\langle \varphi_1,...,\varphi_m \rangle$ is orbit decidable.

Definition

A subgroup $A \leq Aut(F)$ is said to be orbit decidable (O.D.) if \exists an algorithm s.t., given $u, v \in F$ decides whether $v \sim u\alpha$ for some $\alpha \in A$.

Step 6:

Extend as much as possible

Outline

- 1 The conjugacy problem for free-by-cyclic groups
- The main theorem
- The conjugacy problem for free-by-free groups
- The conjugacy problem for (free abelian)-by-free groups
- 5 The conjugacy problem for Braid-by-free groups
- The conjugacy problem for Thompson-by-free groups
- The conjugacy problem for automata

The main result

Theorem (Bogopolski-Martino-V., 2008)

Let

1. CP for F_n -by- \mathbb{Z}

$$1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1$$

be an algorithmic short exact sequence of groups such that

(i) TCP(F) is solvable

3. Main theorem

- (ii) CP(H) is solvable,
- (iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h,1}, \ldots, z_{h,t_h} \in H$ such that

$$C_H(h) = \langle h \rangle Z_{h,1} \sqcup \cdots \sqcup \langle h \rangle Z_{h,t_h}.$$

Then,

$$A_G = \left\{egin{array}{ll} \gamma_g\colon F & o & F \ x & \mapsto & g^{-1}xg \end{array} \middle| g \in G
ight]$$

 \leq Aut(F) is orbit decidable.

1. CP for F_n -by- \mathbb{Z}

Theorem (Bogopolski-Martino-V., 2008)

Let

3. Main theorem

$$1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1$$

be an algorithmic short exact sequence of groups such that

- (i) TCP(F) is solvable,
- (ii) CP(H) is solvable,
- (iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h,1}, \ldots, z_{h,t_h} \in H$ such that

$$C_H(h) = \langle h \rangle Z_{h,1} \sqcup \cdots \sqcup \langle h \rangle Z_{h,t_h}.$$

Then.

$$A_G = \left\{egin{array}{ll} \gamma_g \colon F &
ightarrow & F \ x & \mapsto & g^{-1}xg \end{array} \middle| g \in G
ight\}$$

 \leq Aut(F) is orbit decidable.

The main result

Theorem (Bogopolski-Martino-V., 2008)

Let

$$1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1$$

be an algorithmic short exact sequence of groups such that

- (i) TCP(F) is solvable,
- (ii) *CP(H)* is solvable,
- (iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h,1}, \ldots, z_{h,t_h} \in H$ such that

$$C_H(h) = \langle h \rangle Z_{h,1} \sqcup \cdots \sqcup \langle h \rangle Z_{h,t_h}.$$

Then.

$$A_G = \left\{ \begin{array}{ccc} \gamma_g \colon F & \to & F \\ x & \mapsto & g^{-1}xg \end{array} \middle| g \in G \right\}$$

CP(G) is solvable \iff

 \leq Aut(F) is orbit decidable.

The main result

Theorem (Bogopolski-Martino-V., 2008)

Let

$$1 \longrightarrow F \stackrel{\alpha}{\longrightarrow} G \stackrel{\beta}{\longrightarrow} H \longrightarrow 1$$

be an algorithmic short exact sequence of groups such that

- (i) TCP(F) is solvable,
- (ii) *CP(H)* is solvable,
- (iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h,1}, \ldots, z_{h,t_h} \in H$ such that

$$C_H(h) = \langle h \rangle Z_{h,1} \sqcup \cdots \sqcup \langle h \rangle Z_{h,t_h}.$$

Then

$$A_G = \left\{ \begin{array}{ccc} \gamma_g \colon F & \to & F \\ x & \mapsto & g^{-1}xg \end{array} \middle| g \in G \right\}$$

CP(G) is solvable \iff

≪ Aut(F) is orbit decidable

ne main result

Theorem (Bogopolski-Martino-V., 2008)

Let

1. CP for F_n -bv- \mathbb{Z}

$$1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1$$

be an algorithmic short exact sequence of groups such that

(i) TCP(F) is solvable,

3. Main theorem

- (ii) CP(H) is solvable,
- (iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h,1}, \ldots, z_{h,t_h} \in H$ such that

$$C_H(h) = \langle h \rangle z_{h,1} \sqcup \cdots \sqcup \langle h \rangle z_{h,t_h}.$$

 $\leq Aut(F)$ is orbit decidable.

Then,

The previous result

Previous result in this language:

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

And Miller's examples must correspond to orbit undecidable subgroups of $Aut(F_n)...$

The previous result

Previous result in this language:

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

And Miller's examples must correspond to orbit undecidable subgroups of $Aut(F_n)$...

The previous result

Previous result in this language:

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

And Miller's examples must correspond to orbit undecidable subgroups of $Aut(F_n)$...

Proposition (Bogopolski-Martino-V., 2008)

Let F be a group, and let $A \leq B \leq Aut(F)$ and $w \in F$ be such that $B \cap Stab^*(w) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

Corollary

Let F be a group, and let $A \leq B \leq Aut(F)$ and $w \in F$ be such that $B \cap Stab^*(w) = 1$. If $B \simeq F_2 \times F_2$ and A is the Mihailova subgroup corresponding to a group with unsolvable word problem then, $A \leq Aut(F)$ is orbit undecidable.

Proposition (Bogopolski-Martino-V., 2008)

Let F be a group, and let $A \leq B \leq Aut(F)$ and $w \in F$ be such that $B \cap Stab^*(w) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

Corollary

Let F be a group, and let $A \leq B \leq \operatorname{Aut}(F)$ and $w \in F$ be such that $B \cap \operatorname{Stab}^*(w) = 1$. If $B \simeq F_2 \times F_2$ and A is the Mihailova subgroup corresponding to a group with unsolvable word problem then, $A \leq \operatorname{Aut}(F)$ is orbit undecidable.

With the following embedding (and w = qaqbq)

$$\begin{array}{ccccc} F_2 \times F_2 & \longrightarrow & \operatorname{Aut}(F_3) \\ (u,v) & \mapsto & {}_{u}\theta_v \colon F_3 & \to & F_3 \\ & q & \mapsto & u^{-1}qv \\ & a & \mapsto & a \\ & b & \mapsto & b \end{array}$$

we obtain an alternative proof for unsolvability of the conjugacy problem in Miller's examples.

And any other way of embedding $F_2 \times F_2$ in Aut (F_3) will provide new examples.

With the following embedding (and w = qaqbq)

$$\begin{array}{ccccc} F_2 \times F_2 & \longrightarrow & \operatorname{Aut}(F_3) \\ (u,v) & \mapsto & {}_{u}\theta_v \colon F_3 & \to & F_3 \\ & q & \mapsto & u^{-1}qv \\ & a & \mapsto & a \\ & b & \mapsto & b \end{array}$$

we obtain an alternative proof for unsolvability of the conjugacy problem in Miller's examples.

And any other way of embedding $F_2 \times F_2$ in Aut (F_3) will provide new examples.

More generally ...

A similar programme can be done for every extension $F \times H$

$$1 \to F \to F \rtimes H \to H \to 1$$

satisfying

- (i) TCP(F) is solvable,
- (ii) CP(H) is solvable,
- (iii) H has small and computable centralizers

So

For any group F where you can solve TCP(F), you are in a perfect situation to study the conjugacy problem in the family of free (or torsion-free hyperbolic) extensions of F.

More generally ...

A similar programme can be done for every extension $F \times H$

$$1 \to F \to F \rtimes H \to H \to 1$$

satisfying

- (i) TCP(F) is solvable,
- (ii) CP(H) is solvable,
- (iii) H has small and computable centralizers

So,

For any group F where you can solve TCP(F), you are in a perfect situation to study the conjugacy problem in the family of free (or torsion-free hyperbolic) extensions of F.

Outline

- 1 The conjugacy problem for free-by-cyclic groups
- The main theorem
- The conjugacy problem for free-by-free groups
- The conjugacy problem for (free abelian)-by-free groups
- The conjugacy problem for Braid-by-free groups
- The conjugacy problem for Thompson-by-free groups
- The conjugacy problem for automata

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead)

The full $Aut(F_n)$ is O.D.

Corollary

If $\langle \varphi_1, \dots, \varphi_m \rangle = Aut(F_n)$ then $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead)

The full $Aut(F_n)$ is O.D.

Corollary

If $\langle \varphi_1, \dots, \varphi_m \rangle = Aut(F_n)$ then $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead)

The full $Aut(F_n)$ is O.D.

Corollary

If $\langle \varphi_1, \dots, \varphi_m \rangle = Aut(F_n)$ then $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead)

The full $Aut(F_n)$ is O.D.

Corollary

If $\langle \varphi_1, \dots, \varphi_m \rangle = \operatorname{Aut}(F_n)$ then $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $Aut(F_n)$ are O.D.

Corollary

If $\langle \varphi_1, \dots, \varphi_m \rangle$ is of finite index in $Aut(F_n)$ then $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

Corollary

Every F₂-by-free group has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $Aut(F_n)$ are O.D.

Corollary

If $\langle \varphi_1, \dots, \varphi_m \rangle$ is of finite index in $Aut(F_n)$ then $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

Corollary

Every F₂-by-free group has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $Aut(F_n)$ are O.D.

Corollary

If $\langle \varphi_1, \dots, \varphi_m \rangle$ is of finite index in $Aut(F_n)$ then $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

Corollary

Every F₂-by-free group has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $Aut(F_n)$ are O.D.

Corollary

If $\langle \varphi_1, \dots, \varphi_m \rangle$ is of finite index in $Aut(F_n)$ then $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

Corollary

Every F₂-by-free group has solvable conjugacy problem.

But...

Theorem (Miller, 70's

There are free-by-free groups with unsolvable conjugacy problem.

Corollary

There exist 14 automorphisms $\varphi_1, \ldots, \varphi_{14} \in Aut(F_3)$ such that $\langle \varphi_1, \ldots, \varphi_{14} \rangle \leqslant Aut(F_3)$ is orbit undecidable.

But...

Theorem (Miller, 70's)

There are free-by-free groups with unsolvable conjugacy problem.

Corollary

There exist 14 automorphisms $\varphi_1, \ldots, \varphi_{14} \in Aut(F_3)$ such that $\langle \varphi_1, \ldots, \varphi_{14} \rangle \leqslant Aut(F_3)$ is orbit undecidable.

But...

Theorem (Miller, 70's)

There are free-by-free groups with unsolvable conjugacy problem.

Corollary

There exist 14 automorphisms $\varphi_1, \ldots, \varphi_{14} \in Aut(F_3)$ such that $\langle \varphi_1, \ldots, \varphi_{14} \rangle \leqslant Aut(F_3)$ is orbit undecidable.

Outline

- The conjugacy problem for free-by-cyclic groups
- 2 The main theorem
- The conjugacy problem for free-by-free groups
- 4 The conjugacy problem for (free abelian)-by-free groups
- 5 The conjugacy problem for Braid-by-free groups
- 6 The conjugacy problem for Thompson-by-free groups
- The conjugacy problem for automata

Definition

Let $\mathbb{Z}^n = \langle x_1, \dots, x_n \mid [x_i, x_j] \rangle$ be the free abelian group of rank $n \geq 2$, and let $M_1, \dots, M_m \in Aut(\mathbb{Z}^n) = GL_n(\mathbb{Z})$. The (free abelian)-by-free group $\mathbb{Z}^n \rtimes_{M_1, \dots, M_m} F_m$ is defined as

$$F_n \rtimes_{M_1,\ldots,M_m} F_m = \langle x_1,\ldots,x_n, t_1,\ldots,t_m \mid t_j^{-1} x_i t_j = x_i M_j, [x_i,x_j] = 1 \rangle.$$

The sequence

$$1 \longrightarrow \mathbb{Z}^n \longrightarrow \mathbb{Z}^n \rtimes_{M_1, \dots, M_m} F_m \longrightarrow F_m \longrightarrow 1$$

again satisfies (i), (ii) and (iii). So,

$$CP(\mathbb{Z}^n \rtimes_{M_1,\ldots,M_m} F_m)$$
 is solvable $\Leftrightarrow \langle M_1,\ldots,M_m \rangle \leqslant GL_n(\mathbb{Z})$ is O.D.

Definition

Let $\mathbb{Z}^n = \langle x_1, \dots, x_n \mid [x_i, x_j] \rangle$ be the free abelian group of rank $n \geq 2$, and let $M_1, \dots, M_m \in Aut(\mathbb{Z}^n) = GL_n(\mathbb{Z})$. The (free abelian)-by-free group $\mathbb{Z}^n \rtimes_{M_1, \dots, M_m} F_m$ is defined as

$$F_n \rtimes_{M_1,\ldots,M_m} F_m = \langle x_1,\ldots,x_n, t_1,\ldots,t_m \mid t_j^{-1} x_i t_j = x_i M_j, [x_i,x_j] = 1 \rangle.$$

The sequence

$$1 \longrightarrow \mathbb{Z}^n \longrightarrow \mathbb{Z}^n \rtimes_{M_1, \dots, M_m} F_m \longrightarrow F_m \longrightarrow 1$$

again satisfies (i), (ii) and (iii). So,

 $CP(\mathbb{Z}^n \rtimes_{M_1,\ldots,M_m} F_m)$ is solvable $\Leftrightarrow \langle M_1,\ldots,M_m \rangle \leqslant GL_n(\mathbb{Z})$ is O.D.

Definition

Let $\mathbb{Z}^n = \langle x_1, \dots, x_n \mid [x_i, x_j] \rangle$ be the free abelian group of rank $n \geq 2$, and let $M_1, \dots, M_m \in Aut(\mathbb{Z}^n) = GL_n(\mathbb{Z})$. The (free abelian)-by-free group $\mathbb{Z}^n \rtimes_{M_1, \dots, M_m} F_m$ is defined as

$$F_n \rtimes_{M_1,\ldots,M_m} F_m = \langle x_1,\ldots,x_n, t_1,\ldots,t_m \mid t_j^{-1} x_i t_j = x_i M_j, [x_i,x_j] = 1 \rangle.$$

The sequence

$$1 \longrightarrow \mathbb{Z}^n \longrightarrow \mathbb{Z}^n \rtimes_{M_1, \dots, M_m} F_m \longrightarrow F_m \longrightarrow 1$$

again satisfies (i), (ii) and (iii). So,

$$CP(\mathbb{Z}^n \times_{M_1,\ldots,M_m} F_m)$$
 is solvable $\Leftrightarrow \langle M_1,\ldots,M_m \rangle \leqslant GL_n(\mathbb{Z})$ is O.D.

Theorem (linear algebra)

Cyclic subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

 \mathbb{Z}^n -by- \mathbb{Z} groups have solvable conjugacy problem.

Theorem (elementary)

The full $GL_n(\mathbb{Z})$ is O.D

Corollary

Theorem (linear algebra)

Cyclic subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

 \mathbb{Z}^n -by- \mathbb{Z} groups have solvable conjugacy problem.

Theorem (elementary)

The full $GL_n(\mathbb{Z})$ is O.D.

Corollary

Theorem (linear algebra)

Cyclic subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

 \mathbb{Z}^n -by- \mathbb{Z} groups have solvable conjugacy problem.

Theorem (elementary)

The full $GL_n(\mathbb{Z})$ is O.D.

Corollary

Theorem (linear algebra)

Cyclic subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

 \mathbb{Z}^n -by- \mathbb{Z} groups have solvable conjugacy problem.

Theorem (elementary)

The full $GL_n(\mathbb{Z})$ is O.D.

Corollary

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

If $\langle M_1, \ldots, M_m \rangle$ is of finite index in $GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Corollary

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

If $\langle M_1,\ldots,M_m\rangle$ is of finite index in $GL_n(\mathbb{Z})$ then $\mathbb{Z}^n\rtimes_{M_1,\ldots,M_m}F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Corollary

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

If $\langle M_1, \ldots, M_m \rangle$ is of finite index in $GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Corollary

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

If $\langle M_1, \ldots, M_m \rangle$ is of finite index in $GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Corollary

$$F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z}).$$
 So...

Theorem (Bogopolski-Martino-V., 2008)

There exist 14 matrices $M_1, \ldots, M_{14} \in GL_n(\mathbb{Z})$, for $n \geqslant 4$, such that $\langle M_1, \ldots, M_{14} \rangle \leqslant GL_n(\mathbb{Z})$ is orbit undecidable.

Corollary

There exists a \mathbb{Z}^4 -by- F_{14} group with unsolvable conjugacy problem.

Question

Does $GL_3(\mathbb{Z})$ contain orbit undecidable subgroups ?

Question

$$F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z})$$
. So...

Theorem (Bogopolski-Martino-V., 2008)

There exist 14 matrices $M_1, \ldots, M_{14} \in GL_n(\mathbb{Z})$, for $n \geqslant 4$, such that $\langle M_1, \ldots, M_{14} \rangle \leqslant GL_n(\mathbb{Z})$ is orbit undecidable.

Corollary

There exists a \mathbb{Z}^4 -by- F_{14} group with unsolvable conjugacy problem.

Question

Does $GL_3(\mathbb{Z})$ contain orbit undecidable subgroups ?

Question

$$F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z})$$
. So...

Theorem (Bogopolski-Martino-V., 2008)

There exist 14 matrices $M_1, \ldots, M_{14} \in GL_n(\mathbb{Z})$, for $n \geqslant 4$, such that $\langle M_1, \ldots, M_{14} \rangle \leqslant GL_n(\mathbb{Z})$ is orbit undecidable.

Corollary

There exists a \mathbb{Z}^4 -by- F_{14} group with unsolvable conjugacy problem.

Question

Does $GL_3(\mathbb{Z})$ contain orbit undecidable subgroups ?

Question

$$F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z})$$
. So...

Theorem (Bogopolski-Martino-V., 2008)

There exist 14 matrices $M_1, \ldots, M_{14} \in GL_n(\mathbb{Z})$, for $n \geqslant 4$, such that $\langle M_1, \ldots, M_{14} \rangle \leqslant GL_n(\mathbb{Z})$ is orbit undecidable.

Corollary

There exists a \mathbb{Z}^4 -by- F_{14} group with unsolvable conjugacy problem.

Question

Does $GL_3(\mathbb{Z})$ contain orbit undecidable subgroups ?

Question

$$F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z})$$
. So...

Theorem (Bogopolski-Martino-V., 2008)

There exist 14 matrices $M_1, \ldots, M_{14} \in GL_n(\mathbb{Z})$, for $n \geqslant 4$, such that $\langle M_1, \ldots, M_{14} \rangle \leqslant GL_n(\mathbb{Z})$ is orbit undecidable.

Corollary

There exists a \mathbb{Z}^4 -by- F_{14} group with unsolvable conjugacy problem.

Question

Does $GL_3(\mathbb{Z})$ contain orbit undecidable subgroups ?

Question

Outline

- 1 The conjugacy problem for free-by-cyclic groups
- The main theorem
- The conjugacy problem for free-by-free groups
- The conjugacy problem for (free abelian)-by-free groups
- 5 The conjugacy problem for Braid-by-free groups
- The conjugacy problem for Thompson-by-free groups
- The conjugacy problem for automata

Consider the braid group on n strands, given by the classical presentation

$$B_n = \left\langle \sigma_1, \sigma_2, \dots, \sigma_{n-1} \middle| \begin{array}{l} \sigma_i \sigma_j = \sigma_j \sigma_i & (|i-j| \geqslant 2) \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} & (1 \leqslant i \leqslant n-2) \end{array} \right\rangle.$$

Theorem

The conjugacy problem is solvable in B_n .

And the automorphism group is easy:

Theorem (Dyer, Grossman)

 $|Out(B_n)| = 2$. More precisely, $Aut(B_n) = Inn(B_n) \sqcup Inn(B_n) \cdot \varepsilon$, where $\varepsilon \colon B_n \to B_n$ is the automorphism which inverts all generators, $\sigma_i \mapsto \sigma_i^{-1}$.

Consider the braid group on *n* strands, given by the classical presentation

$$B_n = \left\langle \sigma_1, \sigma_2, \dots, \sigma_{n-1} \middle| \begin{array}{l} \sigma_i \sigma_j = \sigma_j \sigma_i & (|i-j| \geqslant 2) \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} & (1 \leqslant i \leqslant n-2) \end{array} \right\rangle.$$

Theorem

The conjugacy problem is solvable in B_n .

And the automorphism group is easy:

Theorem (Dyer, Grossman)

 $|Out(B_n)| = 2$. More precisely, $Aut(B_n) = Inn(B_n) \sqcup Inn(B_n) \cdot \varepsilon$, where $\varepsilon \colon B_n \to B_n$ is the automorphism which inverts all generators, $\sigma_i \mapsto \sigma_i^{-1}$.

Consider the braid group on n strands, given by the classical presentation

$$B_n = \left\langle \sigma_1, \sigma_2, \dots, \sigma_{n-1} \middle| \begin{array}{l} \sigma_i \sigma_j = \sigma_j \sigma_i & (|i-j| \geqslant 2) \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} & (1 \leqslant i \leqslant n-2) \end{array} \right\rangle.$$

Theorem

The conjugacy problem is solvable in B_n .

And the automorphism group is easy:

Theorem (Dyer, Grossman)

 $|Out(B_n)| = 2$. More precisely, $Aut(B_n) = Inn(B_n) \sqcup Inn(B_n) \cdot \varepsilon$, where $\varepsilon \colon B_n \to B_n$ is the automorphism which inverts all generators, $\sigma_i \mapsto \sigma_i^{-1}$.

Theorem (González-Meneses, V. 2009)

 $TCP(B_n)$ is solvable.

Observation

Every subgroup $A \leqslant Aut(B_n)$ is orbit decidable.

Corollary (González-Meneses, V. 2009

Every extension of B_n by a free group (or torsion-free hyperbolic) has solvable conjugacy problem.

Theorem (González-Meneses, V. 2009)

 $TCP(B_n)$ is solvable.

Observation

Every subgroup $A \leq Aut(B_n)$ is orbit decidable.

Corollary (González-Meneses, V. 2009)

Every extension of B_n by a free group (or torsion-free hyperbolic) has solvable conjugacy problem.

Outline

- 1 The conjugacy problem for free-by-cyclic groups
- The main theorem
- The conjugacy problem for free-by-free groups
- The conjugacy problem for (free abelian)-by-free groups
- 5 The conjugacy problem for Braid-by-free groups
- 6 The conjugacy problem for Thompson-by-free groups
- The conjugacy problem for automata

Consider Thompson's group F (piecewise linear increasing maps $[0,1] \rightarrow [0,1]$ with diadic breakpoints, and slopes being powers of 2).

Theorem

The conjugacy problem is solvable in B_n .

And the automorphism group is big, but easy

Theorem (Brin)

For every $\varphi \in Aut(F)$, there exists $\tau \in EP_2$ such that $\varphi(g) = \tau^{-1}g\tau$, for every $g \in F$.

Consider Thompson's group F (piecewise linear increasing maps $[0,1] \rightarrow [0,1]$ with diadic breakpoints, and slopes being powers of 2).

Theorem

The conjugacy problem is solvable in B_n .

And the automorphism group is big, but easy

Theorem (Brin)

For every $\varphi \in Aut(F)$, there exists $\tau \in EP_2$ such that $\varphi(g) = \tau^{-1}g\tau$ for every $g \in F$.

Consider Thompson's group F (piecewise linear increasing maps $[0,1] \rightarrow [0,1]$ with diadic breakpoints, and slopes being powers of 2).

Theorem

The conjugacy problem is solvable in B_n .

And the automorphism group is big, but easy:

Theorem (Brin)

For every $\varphi \in Aut(F)$, there exists $\tau \in EP_2$ such that $\varphi(g) = \tau^{-1}g\tau$, for every $g \in F$.

Theorem (Burillo-Matucci-V. 2010)

TCP(F) is solvable.

But..

Observation

 $F_2 \times F_2$ embeds in Aut(F)

Corollary (Burillo-Matucci-V. 2010)

There are extensions of Thompson's group F by a free group $F \times F_m$, with unsolvable conjugacy problem.

Theorem (Burillo-Matucci-V. 2010)

TCP(F) is solvable.

But...

Observation

 $F_2 \times F_2$ embeds in Aut(F).

Corollary (Burillo-Matucci-V. 2010)

There are extensions of Thompson's group F by a free group, $F \rtimes F_m$, with unsolvable conjugacy problem.

Outline

- The conjugacy problem for free-by-cyclic groups
- The main theorem
- The conjugacy problem for free-by-free groups
- The conjugacy problem for (free abelian)-by-free groups
- 5 The conjugacy problem for Braid-by-free groups
- The conjugacy problem for Thompson-by-free groups
- The conjugacy problem for automata

Proposition (Šunić-V., 2010)

For $d \geqslant 6$, the group $GL_d(\mathbb{Z})$ contains orbit undecidable, free subgroups.

So, for $d \ge 6$, there exists a group of the form

$$\Gamma = \mathbb{Z}^d \rtimes F_m \leqslant \mathbb{Z}^d \rtimes GL_d(\mathbb{Z})$$

with unsolvable conjugacy problem

Theorem (Sunić-V., 2010)

Such a group $\Gamma=\mathbb{Z}^d
times F_m$ can be realized as an automaton group

Corollary

There exists automaton groups with unsolvable conjugacy problem.

Proposition (Šunić-V., 2010)

For $d \geqslant 6$, the group $GL_d(\mathbb{Z})$ contains orbit undecidable, free subgroups.

So, for $d \ge 6$, there exists a group of the form

$$\Gamma = \mathbb{Z}^d \rtimes F_m \leqslant \mathbb{Z}^d \rtimes GL_d(\mathbb{Z})$$

with unsolvable conjugacy problem.

Theorem (Sunić-V., 2010

Such a group $\Gamma = \mathbb{Z}^d \rtimes F_m$ can be realized as an automaton group

Corollary

There exists automaton groups with unsolvable conjugacy problem

Proposition (Šunić-V., 2010)

For $d \geqslant 6$, the group $GL_d(\mathbb{Z})$ contains orbit undecidable, free subgroups.

So, for $d \ge 6$, there exists a group of the form

$$\Gamma = \mathbb{Z}^d \rtimes F_m \leqslant \mathbb{Z}^d \rtimes GL_d(\mathbb{Z})$$

with unsolvable conjugacy problem.

Theorem (Šunić-V., 2010)

Such a group $\Gamma = \mathbb{Z}^d \rtimes F_m$ can be realized as an automaton group.

Corollary

There exists automaton groups with unsolvable conjugacy problem

Proposition (Šunić-V., 2010)

For $d \geqslant 6$, the group $GL_d(\mathbb{Z})$ contains orbit undecidable, free subgroups.

So, for $d \ge 6$, there exists a group of the form

$$\Gamma = \mathbb{Z}^d \rtimes F_m \leqslant \mathbb{Z}^d \rtimes GL_d(\mathbb{Z})$$

with unsolvable conjugacy problem.

Theorem (Šunić-V., 2010)

Such a group $\Gamma = \mathbb{Z}^d \rtimes F_m$ can be realized as an automaton group.

Corollary

There exists automaton groups with unsolvable conjugacy problem.

THANKS