Characterizing solvability of the conjugacy problem for free-by-free and [free abelian]-by-free groups

Enric Ventura

Departament de Matemàtica Aplicada III

Universitat Politècnica de Catalunya

Urbana

March 28th, 2009.

Outline

- 1 The conjugacy problem for free-by-cyclic groups
- The main theorem
- 3 The conjugacy problem for free-by-free groups
- 4 The conjugacy problem for (free abelian)-by-free groups

Outline

- 1 The conjugacy problem for free-by-cyclic groups
- 2 The main theorem
- The conjugacy problem for free-by-free groups
- 4 The conjugacy problem for (free abelian)-by-free groups

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (*n* letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- Het endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x \varphi$.

4. CP for free-by-free groups

- So, compositions are $\alpha\beta$: $F_n \xrightarrow{\alpha} F_n \xrightarrow{\beta} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: $\gamma_u : F_n \to F_n, x \mapsto u^{-1}xu$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leq F_n$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (*n* letters).
- \bullet $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- Het endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x \varphi$.

4. CP for free-by-free groups

- So, compositions are $\alpha\beta$: $F_n \xrightarrow{\alpha} F_n \xrightarrow{\beta} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: $\gamma_u : F_n \to F_n, x \mapsto u^{-1}xu$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leq F_n$.

1. CP for free-by-cyclic groups

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- I let endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha\beta \colon F_n \stackrel{\alpha}{\to} F_n \stackrel{\beta}{\to} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: $\gamma_u : F_n \to F_n, x \mapsto u^{-1}xu$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (*n* letters).
- \bullet $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- Het endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x\varphi$.

4. CP for free-by-free groups

- So, compositions are $\alpha\beta$: $F_n \xrightarrow{\alpha} F_n \xrightarrow{\beta} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: $\gamma_u: F_n \to F_n, x \mapsto u^{-1}xu$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leq F_n$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (*n* letters).
- \bullet $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- I let endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x \varphi$.

4. CP for free-by-free groups

- So, compositions are $\alpha\beta$: $F_n \stackrel{\alpha}{\to} F_n \stackrel{\beta}{\to} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: $\gamma_u: F_n \to F_n, x \mapsto u^{-1}xu$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leq F_n$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- I let endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha\beta \colon F_n \xrightarrow{\alpha} F_n \xrightarrow{\beta} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: $\gamma_u : F_n \to F_n, x \mapsto u^{-1}xu$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n$.

- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (*n* letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- I let endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x \varphi$.

4. CP for free-by-free groups

- So, compositions are $\alpha\beta \colon F_n \xrightarrow{\alpha} F_n \xrightarrow{\beta} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: $\gamma_u : F_n \to F_n, x \mapsto u^{-1}xu$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leq F_n$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- I let endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x \varphi$.

4. CP for free-by-free groups

- So, compositions are $\alpha\beta \colon F_n \xrightarrow{\alpha} F_n \xrightarrow{\beta} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: γ_u : $F_n \to F_n$, $x \mapsto u^{-1}xu$.
- $\bullet \ \mathsf{Fix}\,(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n.$

For $\varphi \in End(G)$, two elements $u, v \in G$ are said to be φ -twisted conjugated, denoted $u \sim_{\varphi} v$, if $v = (g\varphi)^{-1}ug$ for some $g \in G$.

For $\varphi \in End(G)$, two elements $u, v \in G$ are said to be φ -twisted conjugated, denoted $u \sim_{\varphi} v$, if $v = (g\varphi)^{-1}ug$ for some $g \in G$.

Definition

The twisted conjugacy problem for G, denoted TCP(G): "Given $\varphi \in Aut(G)$ and $u, v \in G$ decide whether $u \sim_{\omega} v$ ".

For $\varphi \in End(G)$, two elements $u, v \in G$ are said to be φ -twisted conjugated, denoted $u \sim_{\varphi} v$, if $v = (g\varphi)^{-1}ug$ for some $g \in G$.

Definition

The twisted conjugacy problem for G, denoted TCP(G): "Given $\varphi \in Aut(G)$ and $u, v \in G$ decide whether $u \sim_{\omega} v$ ".

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

 $TCP(F_n)$ for automorphisms is solvable.

 $TCP(F_n)$ for automorphisms is solvable.

Proof. Given $\varphi \in \text{Aut}(F_n)$ and $u, v \in F_n$:

- 1 Extend to $F_n * \langle z \rangle$ and $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- Claim: for $g \in F_n$, we have $v = (g\varphi)^{-1}ug \Leftrightarrow z\gamma_g \in \text{Fix}\,(\hat{\varphi}\gamma_v)$.
- 2 Compute a basis for Fix $(\hat{\varphi}\gamma_v)$.
- 3 Check whether Fix $(\hat{\varphi}\gamma_{\nu})$ contains $z\gamma_g$ for some $g\in F_n$, using Stallings' automata. \square

Theorem (Maslakova)

 $TCP(F_n)$ for automorphisms is solvable.

Proof. Given $\varphi \in \operatorname{Aut}(F_n)$ and $u, v \in F_n$:

- 1 Extend to $F_n * \langle z \rangle$ and $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- Claim: for $g \in F_n$, we have $v = (g\varphi)^{-1}ug \Leftrightarrow z\gamma_g \in \text{Fix}\,(\hat{\varphi}\gamma_v)$.
- 2 Compute a basis for Fix $(\hat{\varphi}\gamma_{\nu})$.
- 3 Check whether Fix $(\hat{\varphi}\gamma_{\nu})$ contains $z\gamma_g$ for some $g\in F_n$, using Stallings' automata. \square

Theorem (Maslakova)

 $TCP(F_n)$ for automorphisms is solvable.

Proof. Given $\varphi \in \text{Aut}(F_n)$ and $u, v \in F_n$:

- 1 Extend to $F_n * \langle z \rangle$ and $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- Claim: for $g \in F_n$, we have $v = (g\varphi)^{-1}ug \Leftrightarrow z\gamma_g \in \text{Fix}\,(\hat{\varphi}\gamma_v)$.
- 2 Compute a basis for Fix $(\hat{\varphi}\gamma_{\nu})$.
- 3 Check whether Fix $(\hat{\varphi}\gamma_v)$ contains $z\gamma_g$ for some $g \in F_n$, using Stallings' automata. □

Theorem (Maslakova)

 $TCP(F_n)$ for automorphisms is solvable.

Proof. Given $\varphi \in \operatorname{Aut}(F_n)$ and $u, v \in F_n$:

- 1 Extend to $F_n * \langle z \rangle$ and $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- Claim: for $g \in F_n$, we have $v = (g\varphi)^{-1}ug \Leftrightarrow z\gamma_g \in \text{Fix}\,(\hat{\varphi}\gamma_v)$.
- 2 Compute a basis for Fix $(\hat{\varphi}\gamma_{\nu})$.
- 3 Check whether Fix $(\hat{\varphi}\gamma_v)$ contains $z\gamma_g$ for some $g \in F_n$, using Stallings' automata. □

Theorem (Maslakova

 $TCP(F_n)$ for automorphisms is solvable.

Proof. Given $\varphi \in \operatorname{Aut}(F_n)$ and $u, v \in F_n$:

- 1 Extend to $F_n * \langle z \rangle$ and $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- Claim: for $g \in F_n$, we have $v = (g\varphi)^{-1}ug \Leftrightarrow z\gamma_g \in \text{Fix}\,(\hat{\varphi}\gamma_v)$.
- 2 Compute a basis for Fix $(\hat{\varphi}\gamma_{\nu})$.
- 3 Check whether Fix $(\hat{\varphi}\gamma_{\nu})$ contains $z\gamma_g$ for some $g\in F_n$, using Stallings' automata. \square

Theorem (Maslakova

 $TCP(F_n)$ for automorphisms is solvable.

Proof. Given $\varphi \in \text{Aut}(F_n)$ and $u, v \in F_n$:

- 1 Extend to $F_n * \langle z \rangle$ and $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- Claim: for $g \in F_n$, we have $v = (g\varphi)^{-1}ug \Leftrightarrow z\gamma_q \in \operatorname{Fix}(\hat{\varphi}\gamma_v)$.
- 2 Compute a basis for Fix $(\hat{\varphi}\gamma_{\nu})$.
- 3 Check whether Fix $(\hat{\varphi}\gamma_{\nu})$ contains $z\gamma_{q}$ for some $g \in F_{n}$, using Stallings' automata.

 $TCP(F_n)$ for automorphisms is solvable.

Proof. Given $\varphi \in \text{Aut}(F_n)$ and $u, v \in F_n$:

- 1 Extend to $F_n * \langle z \rangle$ and $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- Claim: for $g \in F_n$, we have $v = (g\varphi)^{-1}ug \Leftrightarrow z\gamma_q \in \operatorname{Fix}(\hat{\varphi}\gamma_v)$.
- 2 Compute a basis for Fix $(\hat{\varphi}\gamma_{\nu})$.
- 3 Check whether Fix $(\hat{\varphi}\gamma_{\nu})$ contains $z\gamma_{a}$ for some $g \in F_{n}$, using Stallings' automata.

Theorem (Maslakova)

Let $F_n = \langle x_1, \dots, x_n \mid \rangle$ be a free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$, and let $\varphi \in Aut(F_n)$. The free-by-cyclic group $F_n \rtimes_{\varphi} \mathbb{Z}$ is defined as

$$F_n \rtimes_{\varphi} \mathbb{Z} = \langle x_1, \ldots, x_n, t \mid t^{-1}x_it = x_i\varphi \rangle.$$

With $x_i t = t(x_i \varphi)$ and $x_i t^{-1} = t^{-1}(x_i \varphi^{-1})$, we can move all t's to the left and get the usual normal form for elements in $F_n \rtimes_{\varphi} \mathbb{Z}$:

$$t^r w$$
, with $r \in \mathbb{Z}$, $w \in F_n$

Let $F_n = \langle x_1, \dots, x_n \mid \rangle$ be a free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$, and let $\varphi \in Aut(F_n)$. The free-by-cyclic group $F_n \rtimes_{\varphi} \mathbb{Z}$ is defined as

$$F_n \rtimes_{\varphi} \mathbb{Z} = \langle x_1, \ldots, x_n, t \mid t^{-1}x_it = x_i\varphi \rangle.$$

With $x_i t = t(x_i \varphi)$ and $x_i t^{-1} = t^{-1}(x_i \varphi^{-1})$, we can move all t's to the left and get the usual normal form for elements in $F_n \rtimes_{\varphi} \mathbb{Z}$:

$$t^r w$$
, with $r \in \mathbb{Z}$, $w \in F_n$.

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

•
$$(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^r(u\varphi^k)g = t^r(g\varphi^r)^{-1}(u\varphi^k)g.$$

• To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ \iff $r = s$ $v \sim_{\varphi^r} (u \varphi^k)$ for some $k = 0, \ldots, r-1$.

• Thus, $CP(M_{\varphi})$ reduces to finitely many checks of $TCP(F_n)$.

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

- $(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^r(u\varphi^k)g = t^r(g\varphi^r)^{-1}(u\varphi^k)g.$

 - To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ \iff $r = s$ conj. in M_{φ} \longleftrightarrow $v \sim_{\varphi^r} (u\varphi^k)$ for some $k = 0, \ldots, r-1$.

• Thus, $CP(M_{\varphi})$ reduces to finitely many checks of $TCP(F_n)$.

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

- $(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^r(u\varphi^k)g = t^r(g\varphi^r)^{-1}(u\varphi^k)g$.
- $\begin{array}{ccc} & t^r u \text{ and } t^s v & \Longleftrightarrow & r = s \\ & \text{conj. in } M_{\varphi} & \Longleftrightarrow & v \sim_{\varphi^r} (u\varphi^k) \text{ for some } k \in \mathbb{Z}. \end{array}$
- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ \iff $r = s$ conj. in M_{φ} \longleftrightarrow $v \sim_{\varphi^r} (u\varphi^k)$ for some $k = 0, \dots, r-1$.

• Thus, $CP(M_{\infty})$ reduces to finitely many checks of $TCP(F_n)$.

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

- $(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^r(u\varphi^k)g = t^r(g\varphi^r)^{-1}(u\varphi^k)g$.
- $t^r u$ and $t^s v$ \iff r = s $v \sim_{\varphi^r} (u\varphi^k)$ for some $k \in \mathbb{Z}$.
- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ \iff $r = s$ $v \sim_{\varphi^r} (u \varphi^k)$ for some $k = 0, \dots, r - 1$.

• Thus, $CP(M_{\phi})$ reduces to finitely many checks of $TCP(F_n)$.

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\omega} \mathbb{Z})$ is solvable.

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\omega} = F_n \rtimes_{\omega} \mathbb{Z}$.

- $(q^{-1}t^{-k})(t^ru)(t^kq) = q^{-1}t^r(u\varphi^k)q = t^r(q\varphi^r)^{-1}(u\varphi^k)q$.
- $t^r u$ and $t^s v$ \iff r = s $v \sim_{\varphi^r} (u\varphi^k)$ for some $k \in \mathbb{Z}$.
- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ \iff $r = s$ conj. in M_{φ} \longleftrightarrow $v \sim_{\varphi^r} (u\varphi^k)$ for some $k = 0, \dots, r-1$.

• Thus, $CP(M_{\odot})$ reduces to finitely many checks of $TCP(F_n)$.

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\omega} \mathbb{Z})$ is solvable.

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\omega} = F_n \rtimes_{\omega} \mathbb{Z}$.

- $(q^{-1}t^{-k})(t^ru)(t^kq) = q^{-1}t^r(u\varphi^k)q = t^r(q\varphi^r)^{-1}(u\varphi^k)q$.
- $t^r u$ and $t^s v$ \iff r = s $v \sim_{\varphi^r} (u\varphi^k)$ for some $k \in \mathbb{Z}$.
- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ \iff $r = s$ $v \sim_{\varphi^r} (u \varphi^k)$ for some $k = 0, \dots, r-1$.

• Thus, $CP(M_{\odot})$ reduces to finitely many checks of $TCP(F_n)$.

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\omega} \mathbb{Z})$ is solvable.

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\omega} = F_n \rtimes_{\omega} \mathbb{Z}$.

- $(q^{-1}t^{-k})(t^ru)(t^kq) = q^{-1}t^r(u\varphi^k)q = t^r(q\varphi^r)^{-1}(u\varphi^k)q$.
- $t^r u$ and $t^s v$ \iff r = s $v \sim_{\varphi^r} (u\varphi^k)$ for some $k \in \mathbb{Z}$.
- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ \iff $r = s$ $v \sim_{\varphi^r} (u \varphi^k)$ for some $k = 0, \dots, r-1$.

• Thus, $CP(M_{\odot})$ reduces to finitely many checks of $TCP(F_n)$.

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\omega} \mathbb{Z})$ is solvable.

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

- $(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^r(u\varphi^k)g = t^r(g\varphi^r)^{-1}(u\varphi^k)g$.
- $t^r u$ and $t^s v$ \iff r = s $v \sim_{\varphi^r} (u\varphi^k)$ for some $k \in \mathbb{Z}$.
- **Case 1:** r ≠ 0
- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ conj. in M_{φ} \iff $r = s$ $v \sim_{\varphi^r} (u\varphi^k)$ for some $k = 0, \dots, r - 1$.

• Thus, $CP(M_{\omega})$ reduces to finitely many checks of $TCP(F_n)$.

Still infinitely many k's

$$u$$
 and v conj. in M_{co} \iff $v \sim u \varphi^k$ for some $k \in \mathbb{Z}$

• This is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given an automorphism $\phi \colon F_n \to F_n$ and $u, v \in F_n$, it is decidable whether $v \sim u\phi^k$ for some $k \in \mathbb{Z}$.

• Hence, $CP(M_{\varphi})$ is solvable. \square

- **Case 2:** r = 0
- Still infinitely many k's:

$$u$$
 and v conj. in M_{φ} \iff $v \sim u \varphi^k$ for some $k \in \mathbb{Z}$.

• This is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given an automorphism $\phi \colon F_n \to F_n$ and $u, v \in F_n$, it is decidable whether $v \sim u\phi^k$ for some $k \in \mathbb{Z}$.

• Hence, $CP(M_{\odot})$ is solvable. \square

- **Case 2:** r = 0
- Still infinitely many k's:

$$u$$
 and v conj. in M_{φ} \iff $v \sim u \varphi^k$ for some $k \in \mathbb{Z}$.

This is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given an automorphism $\phi \colon F_n \to F_n$ and $u, v \in F_n$, it is decidable whether $v \sim u\phi^k$ for some $k \in \mathbb{Z}$.

• Hence, $CP(M_{\odot})$ is solvable. \square

- **Case 2:** r = 0
- Still infinitely many k's:

$$u$$
 and v conj. in M_{φ} \iff $v \sim u \varphi^k$ for some $k \in \mathbb{Z}$.

This is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given an automorphism $\phi \colon F_n \to F_n$ and $u, v \in F_n$, it is decidable whether $v \sim u\phi^k$ for some $k \in \mathbb{Z}$.

• Hence, $CP(M_{\odot})$ is solvable. \square

0000000

Let $F_n = \langle x_1, \dots, x_n | \rangle$ be the free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$, and let $\varphi_1, \ldots, \varphi_m \in Aut(F_n)$. The free-by-free group $F_n \rtimes_{\varphi_1, \ldots, \varphi_m} F_m$ is

$$F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m = \langle x_1,\ldots,x_n, t_1,\ldots,t_m \mid t_i^{-1} x_i t_j = x_i \varphi_j \rangle.$$

Outline

- 1 The conjugacy problem for free-by-cyclic groups
- 2 The main theorem
- 3 The conjugacy problem for free-by-free groups
- 4 The conjugacy problem for (free abelian)-by-free groups

Let

$$1 \longrightarrow F \stackrel{\alpha}{\longrightarrow} G \stackrel{\beta}{\longrightarrow} H \longrightarrow 1$$

be an algorithmic short exact sequence of groups such that

- (i) TCP(F) is solvable
- (ii) CP(H) is solvable,
- (iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h,1}, \ldots, z_{h,t_h} \in H$ such that

$$C_H(h) = \langle h \rangle z_{h,1} \sqcup \cdots \sqcup \langle h \rangle z_{h,t_h}.$$

Let

$$1 \longrightarrow F \stackrel{\alpha}{\longrightarrow} G \stackrel{\beta}{\longrightarrow} H \longrightarrow 1$$

be an algorithmic short exact sequence of groups such that

- (i) TCP(F) is solvable,
- (ii) CP(H) is solvable
- (iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h,1}, \ldots, z_{h,t_h} \in H$ such that

$$C_H(h) = \langle h \rangle z_{h,1} \sqcup \cdots \sqcup \langle h \rangle z_{h,t_h}.$$

Let

$$1 \longrightarrow F \stackrel{\alpha}{\longrightarrow} G \stackrel{\beta}{\longrightarrow} H \longrightarrow 1$$

be an algorithmic short exact sequence of groups such that

- (i) TCP(F) is solvable,
- (ii) CP(H) is solvable,
- (iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h,1}, \ldots, z_{h,t_h} \in H$ such that

$$C_H(h) = \langle h \rangle Z_{h,1} \sqcup \cdots \sqcup \langle h \rangle Z_{h,t_h}.$$

$$extit{CP(G) is solvable} \iff egin{array}{ccccc} A_G = \left\{ egin{array}{cccc} \gamma_g \colon F &
ightarrow & F \ x & \mapsto & g^{-1}xg \end{array} \middle| g \in G
ight\} \end{array}$$

Let

$$1 \longrightarrow F \stackrel{\alpha}{\longrightarrow} G \stackrel{\beta}{\longrightarrow} H \longrightarrow 1$$

be an algorithmic short exact sequence of groups such that

- (i) TCP(F) is solvable,
- (ii) CP(H) is solvable,
- (iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h,1}, \ldots, z_{h,t_h} \in H$ such that

$$C_H(h) = \langle h \rangle z_{h,1} \sqcup \cdots \sqcup \langle h \rangle z_{h,t_h}.$$

Then,

$$extit{CP(G) is solvable} \iff egin{array}{ccccc} A_G = \left\{egin{array}{cccc} \gamma_g \colon F &
ightarrow & F \ x &
ightarrow & g^{-1}xg \end{array} \middle| g \in G
ight\}$$

 \leq Aut(F) is orbit decidable.

Let

$$1 \longrightarrow F \stackrel{\alpha}{\longrightarrow} G \stackrel{\beta}{\longrightarrow} H \longrightarrow 1$$

be an algorithmic short exact sequence of groups such that

- (i) TCP(F) is solvable,
- (ii) CP(H) is solvable,
- (iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h,1}, \ldots, z_{h,t_h} \in H$ such that

$$C_H(h) = \langle h \rangle z_{h,1} \sqcup \cdots \sqcup \langle h \rangle z_{h,t_h}.$$

$$CP(G) ext{ is solvable} \iff egin{array}{cccc} A_G = \left\{ egin{array}{cccc} \gamma_g \colon F &
ightarrow & F \ x &
ightarrow & g^{-1}xg \end{array} \middle| g \in G
ight\} \ \leqslant Aut(F) ext{ is orbit decidable}. \end{array}$$

A subgroup $A \leq \operatorname{Aut}(F)$ is said to be orbit decidable (O.D.) if \exists an algorithm s.t., given $u, v \in F$ decides whether $v \sim u\alpha$ for some $\alpha \in A$.

Previous results in this language

Theorem (Brinkmann, 2006

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005

Free-by-cyclic groups have solvable conjugacy problem

A subgroup $A \leq Aut(F)$ is said to be orbit decidable (O.D.) if \exists an algorithm s.t., given $u, v \in F$ decides whether $v \sim u\alpha$ for some $\alpha \in A$.

Previous results in this language:

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005

Free-by-cyclic groups have solvable conjugacy problem

A subgroup $A \leq Aut(F)$ is said to be orbit decidable (O.D.) if \exists an algorithm s.t., given $u, v \in F$ decides whether $v \sim u\alpha$ for some $\alpha \in A$.

Previous results in this language:

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Every finitely generated, virtually

- (i) abelian, or
- (ii) free, or
- (iii) surface, or
- (iv) polycyclic

Theorem (work in progress)

- (w. J.Burillo & F.Matucci) Thomson's group has solvable TCP,
- (w. J.González-Meneses) Braid group has solvable TCP,
- (with V. Romankov) Nilpotent and metabelian groups have solvable TCP.

Every finitely generated, virtually

- (i) abelian, or
- (ii) free, or
- (iii) surface, or
- (iv) polycyclic

group has solvable twisted conjugacy problem

Theorem (work in progress)

- (w. J.Burillo & F.Matucci) Thomson's group has solvable TCP,
- (w. J.González-Meneses) Braid group has solvable TCP,
- (with V. Romankov) Nilpotent and metabelian groups have solvable TCP.

Every finitely generated, virtually

- (i) abelian, or
- (ii) free, or
- (iii) surface, or
- (iv) polycyclic

Theorem (work in progress)

- (w. J.Burillo & F.Matucci) Thomson's group has solvable TCP,
- (w. J.González-Meneses) Braid group has solvable TCP,
- (with V. Romankov) Nilpotent and metabelian groups have solvable TCP.

F can be taken to be...

Theorem

Every finitely generated, virtually

- (i) abelian, or
- (ii) free, or
- (iii) surface, or
- (iv) polycyclic

group has solvable twisted conjugacy problem.

Theorem (work in progress)

- (w. J.Burillo & F.Matucci) Thomson's group has solvable TCP,
- (w. J.González-Meneses) Braid group has solvable TCP,
- (with V. Romankov) Nilpotent and metabelian groups have solvable TCP.

Every finitely generated, virtually

- (i) abelian, or
- (ii) free, or
- (iii) surface, or
- (iv) polycyclic

group has solvable twisted conjugacy problem.

Theorem (work in progress)

- (w. J.Burillo & F.Matucci) Thomson's group has solvable TCP,
- (w. J.González-Meneses) Braid group has solvable TCP,
- (with V. Romankov) Nilpotent and metabelian groups have solvable TCP.

Every finitely generated, virtually

- (i) abelian, or
- (ii) free, or
- (iii) surface, or
- (iv) polycyclic group has solvable twisted conjugacy problem.

Theorem (work in progress)

- (w. J.Burillo & F.Matucci) Thomson's group has solvable TCP,
- (w. J.González-Meneses) Braid group has solvable TCP,
- (with V. Romankov) Nilpotent and metabelian groups have solvable TCP.

Every finitely generated, virtually

- (i) abelian, or
- (ii) free, or
- (iii) surface, or
- (iv) polycyclic group has solvable twisted conjugacy problem.

Theorem (work in progress)

- (w. J.Burillo & F.Matucci) Thomson's group has solvable TCP,
- (w. J.González-Meneses) Braid group has solvable TCP,
- (with V. Romankov) Nilpotent and metabelian groups have solvable TCP.

F can be taken to be...

Theorem

Every finitely generated, virtually

- (i) abelian, or
- (ii) free, or
- (iii) surface, or
- (iv) polycyclic group has solvable twisted conjugacy problem.

Theorem (work in progress)

- (w. J.Burillo & F.Matucci) Thomson's group has solvable TCP,
- (w. J.González-Meneses) Braid group has solvable TCP,
- (with V. Romankov) Nilpotent and metabelian groups have solvable TCP.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

Let G be a group (given as a finite presentation) and $K \leq G$ a finite index subgroup (given by generators). Then,

- if K is characteristic and TCP(K) is solvable, then TCP(G) is solvable,
- if K is normal and TCP(K) is solvable, then CP(G) is solvable.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

There exists a group G with CP(G) solvable but TCP(G) unsolvable.

Let G be a group (given as a finite presentation) and $K \leq G$ a finite index subgroup (given by generators). Then,

- if K is characteristic and TCP(K) is solvable, then TCP(G) is solvable,
- if K is normal and TCP(K) is solvable, then CP(G) is solvable.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

There exists a group G with CP(G) solvable but TCP(G) unsolvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

Let G be a group (given as a finite presentation) and $K \leq G$ a finite index subgroup (given by generators). Then,

- if K is characteristic and TCP(K) is solvable, then TCP(G) is solvable,
- if K is normal and TCP(K) is solvable, then CP(G) is solvable.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

There exists a group G with CP(G) solvable but TCP(G) unsolvable.

- The conjugacy problem for free-by-free groups

Definition

Let $F_n = \langle x_1, \dots, x_n \mid \rangle$ be the free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$, and let $\varphi_1, \dots, \varphi_m \in Aut(F_n)$. The free-by-free group $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ is

$$F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m = \langle x_1,\ldots,x_n,\ t_1,\ldots,t_m \mid t_j^{-1} x_i t_j = x_i \varphi_j \rangle.$$

The sequence

$$1 \longrightarrow F_n \longrightarrow F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m \longrightarrow F_m \longrightarrow 1$$

satisfies (i), (ii) and (iii). So

$$CP(F_n \rtimes_{\varphi_1,...,\varphi_m} F_m)$$
 is solvable $\Leftrightarrow \langle \varphi_1, \ldots, \varphi_m \rangle \leqslant Aut(F_n)$ is O.D.

Definition

Let $F_n = \langle x_1, \dots, x_n | \rangle$ be the free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$, and let $\varphi_1, \ldots, \varphi_m \in Aut(F_n)$. The free-by-free group $F_n \rtimes_{\varphi_1, \ldots, \varphi_m} F_m$ is

$$F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m = \langle x_1,\ldots,x_n, t_1,\ldots,t_m \mid t_j^{-1} x_i t_j = x_i \varphi_j \rangle.$$

The sequence

$$1 \longrightarrow F_n \longrightarrow F_n \rtimes_{\varphi_1,...,\varphi_m} F_m \longrightarrow F_m \longrightarrow 1$$

satisfies (i), (ii) and (iii). So,

Let $F_n = \langle x_1, \dots, x_n | \rangle$ be the free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$, and let $\varphi_1, \ldots, \varphi_m \in Aut(F_n)$. The free-by-free group $F_n \rtimes_{\varphi_1, \ldots, \varphi_m} F_m$ is

$$F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m = \langle x_1,\ldots,x_n, t_1,\ldots,t_m \mid t_j^{-1} x_i t_j = x_i \varphi_j \rangle.$$

The sequence

$$1 \longrightarrow F_n \longrightarrow F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m \longrightarrow F_m \longrightarrow 1$$

satisfies (i), (ii) and (iii). So,

$$CP(F_n \rtimes_{\varphi_1,...,\varphi_m} F_m)$$
 is solvable $\Leftrightarrow \langle \varphi_1,...,\varphi_m \rangle \leqslant Aut(F_n)$ is O.D.

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are O.D.

1. CP for free-by-cyclic groups

4. CP for free-by-free groups

0000

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

4. CP for free-by-free groups

0000

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead)

The full $Aut(F_n)$ is O.D.

Corollary

If $\langle \varphi_1, \dots, \varphi_m \rangle = Aut(F_n)$ then $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead)

The full $Aut(F_n)$ is O.D.

Corollary

If $\langle \varphi_1, \dots, \varphi_m \rangle = \operatorname{Aut}(F_n)$ then $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

4. CP for free-by-free groups

0000

Finite index subgroups of $Aut(F_n)$ are O.D.

Corollary

If $\langle \varphi_1, \dots, \varphi_m \rangle$ is of finite index in $Aut(F_n)$ then $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

Corollary

Every F₂-by-free group has solvable conjugacy problem.

Finite index subgroups of $Aut(F_n)$ are O.D.

Corollary

If $\langle \varphi_1, \dots, \varphi_m \rangle$ is of finite index in Aut (F_n) then $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

Corollary

Every F₂-by-free group has solvable conjugacy problem.

Finite index subgroups of $Aut(F_n)$ are O.D.

Corollary

If $\langle \varphi_1, \dots, \varphi_m \rangle$ is of finite index in $Aut(F_n)$ then $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

Corollary

Every F2-by-free group has solvable conjugacy problem.

Finite index subgroups of $Aut(F_n)$ are O.D.

Corollary

If $\langle \varphi_1, \dots, \varphi_m \rangle$ is of finite index in $Aut(F_n)$ then $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

Corollary

Every F₂-by-free group has solvable conjugacy problem.

1. CP for free-by-cyclic groups

4. CP for free-by-free groups

0000

But...

Theorem (Miller, 70's)

There are free-by-free groups with unsolvable conjugacy problem.

But...

Theorem (Miller, 70's)

There are free-by-free groups with unsolvable conjugacy problem.

Corollary

There exist 14 automorphisms $\varphi_1, \ldots, \varphi_{14} \in Aut(F_3)$ such that $\langle \varphi_1, \ldots, \varphi_{14} \rangle \leqslant Aut(F_3)$ is orbit undecidable.

Outline

- 1 The conjugacy problem for free-by-cyclic groups
- 2 The main theorem
- 3 The conjugacy problem for free-by-free groups
- 4 The conjugacy problem for (free abelian)-by-free groups

Definition

Let $\mathbb{Z}^n = \langle x_1, \dots, x_n \mid [x_i, x_j] \rangle$ be the free abelian group of rank $n \geq 2$, and let $M_1, \dots, M_m \in Aut(\mathbb{Z}^n) = GL_n(\mathbb{Z})$. The (free abelian)-by-free group $\mathbb{Z}^n \rtimes_{M_1, \dots, M_m} F_m$ is defined as

$$F_n \rtimes_{M_1, \dots, M_m} F_m = \langle x_1, \dots, x_n, \ t_1, \dots, t_m \mid t_j^{-1} x_i t_j = x_i M_j, \ [x_i, x_j] = 1 \rangle.$$

The sequence

$$1 \longrightarrow \mathbb{Z}^n \longrightarrow \mathbb{Z}^n \rtimes_{M_1,\dots,M_m} F_m \longrightarrow F_m \longrightarrow 1$$

again satisfies (i), (ii) and (iii). So

$$CP(\mathbb{Z}^n \rtimes_{M_1,\ldots,M_m} F_m)$$
 is solvable $\Leftrightarrow \langle M_1,\ldots,M_m \rangle \leqslant GL_n(\mathbb{Z})$ is O.D.

Definition

Let $\mathbb{Z}^n = \langle x_1, \dots, x_n \mid [x_i, x_i] \rangle$ be the free abelian group of rank $n \geq 2$, and let $M_1, \ldots, M_m \in Aut(\mathbb{Z}^n) = GL_n(\mathbb{Z})$. The (free abelian)-by-free group $\mathbb{Z}^n \times_{M_1,\ldots,M_m} F_m$ is defined as

$$F_n \rtimes_{M_1, \dots, M_m} F_m = \langle x_1, \dots, x_n, \; t_1, \dots, t_m \mid t_j^{-1} x_i t_j = x_i M_j, \; [x_i, x_j] = 1 \rangle.$$

The sequence

$$1 \longrightarrow \mathbb{Z}^n \longrightarrow \mathbb{Z}^n \rtimes_{M_1, \dots, M_m} F_m \longrightarrow F_m \longrightarrow 1$$

again satisfies (i), (ii) and (iii). So,

$$CP(\mathbb{Z}^n \rtimes_{M_1,\ldots,M_m} F_m)$$
 is solvable $\Leftrightarrow \langle M_1,\ldots,M_m \rangle \leqslant GL_n(\mathbb{Z})$ is O.D.

Let $\mathbb{Z}^n = \langle x_1, \dots, x_n \mid [x_i, x_j] \rangle$ be the free abelian group of rank $n \geq 2$, and let $M_1, \dots, M_m \in Aut(\mathbb{Z}^n) = GL_n(\mathbb{Z})$. The (free abelian)-by-free group $\mathbb{Z}^n \rtimes_{M_1, \dots, M_m} F_m$ is defined as

$$F_n \rtimes_{M_1, \dots, M_m} F_m = \langle x_1, \dots, x_n, \ t_1, \dots, t_m \mid t_j^{-1} x_i t_j = x_i M_j, \ [x_i, x_j] = 1 \rangle.$$

The sequence

$$1 \longrightarrow \mathbb{Z}^n \longrightarrow \mathbb{Z}^n \rtimes_{M_1,\ldots,M_m} F_m \longrightarrow F_m \longrightarrow 1$$

again satisfies (i), (ii) and (iii). So,

$$CP(\mathbb{Z}^n \rtimes_{M_1,...,M_m} F_m)$$
 is solvable $\Leftrightarrow \langle M_1,...,M_m \rangle \leqslant GL_n(\mathbb{Z})$ is O.D.

Theorem (linear algebra)

Cyclic subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

 \mathbb{Z}^n -by- \mathbb{Z} groups have solvable conjugacy problem.

Theorem (elementary)

The full $GL_n(\mathbb{Z})$ is O.D.

Corollary

If $\langle M_1, \ldots, M_m \rangle = GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

Theorem (linear algebra)

Cyclic subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

 \mathbb{Z}^n -by- \mathbb{Z} groups have solvable conjugacy problem.

Theorem (elementary)

The full $GL_n(\mathbb{Z})$ is O.D.

Corollary

If $\langle M_1, \ldots, M_m \rangle = GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

Theorem (linear algebra)

Cyclic subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

 \mathbb{Z}^n -by- \mathbb{Z} groups have solvable conjugacy problem.

Theorem (elementary)

The full $GL_n(\mathbb{Z})$ is O.D.

Corollary

If $\langle M_1, \ldots, M_m \rangle = GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

Cyclic subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

 \mathbb{Z}^n -by- \mathbb{Z} groups have solvable conjugacy problem.

Theorem (elementary)

The full $GL_n(\mathbb{Z})$ is O.D.

Corollary

If $\langle M_1, \ldots, M_m \rangle = GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

Finite index subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

If $\langle M_1, \ldots, M_m \rangle$ is of finite index in $GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Corollary

Every \mathbb{Z}^2 -by-free group has solvable conjugacy problem.

Finite index subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

If $\langle M_1, \ldots, M_m \rangle$ is of finite index in $GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Corollary

Every \mathbb{Z}^2 -by-free group has solvable conjugacy problem.

Finite index subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

If $\langle M_1, \ldots, M_m \rangle$ is of finite index in $GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Corollary

Every \mathbb{Z}^2 -by-free group has solvable conjugacy problem

Finite index subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

If $\langle M_1, \ldots, M_m \rangle$ is of finite index in $GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Corollary

Every \mathbb{Z}^2 -by-free group has solvable conjugacy problem.

What about negative results in the [free abelian]-by-free case?

Proposition (Bogopolski-Martino-V., 2008

Let F be a group, and let $A \leq B \leq Aut(F)$ and $w \in F$ be such that $B \cap Stab^*(w) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

Corollary

Let F be a group, and let $A \leq B \leq \operatorname{Aut}(F)$ and $w \in F$ be such that $B \cap \operatorname{Stab}^*(w) = 1$. If $B \simeq F_2 \times F_2$ and A is the Mihailova subgroup corresponding to a group with unsolvable word problem then, $A \leq \operatorname{Aut}(F)$ is orbit undecidable.

Proposition (Bogopolski-Martino-V., 2008)

Let F be a group, and let $A \leqslant B \leqslant Aut(F)$ and $w \in F$ be such that $B \cap Stab^*(w) = 1$. Then,

$$OD(A)$$
 solvable \Rightarrow $MP(A, B)$ solvable.

Corollary

Let F be a group, and let $A \le B \le \operatorname{Aut}(F)$ and $w \in F$ be such that $B \cap \operatorname{Stab}^*(w) = 1$. If $B \simeq F_2 \times F_2$ and A is the Mihailova subgroup corresponding to a group with unsolvable word problem then, $A \le \operatorname{Aut}(F)$ is orbit undecidable.

What about negative results in the [free abelian]-by-free case?

Proposition (Bogopolski-Martino-V., 2008)

Let F be a group, and let $A \leq B \leq Aut(F)$ and $w \in F$ be such that $B \cap Stab^*(w) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

Corollary

Let F be a group, and let $A \leq B \leq \operatorname{Aut}(F)$ and $w \in F$ be such that $B \cap \operatorname{Stab}^*(w) = 1$. If $B \simeq F_2 \times F_2$ and A is the Mihailova subgroup corresponding to a group with unsolvable word problem then, $A \leq \operatorname{Aut}(F)$ is orbit undecidable.

With the following embedding (and w = qaqbq)

$$\begin{array}{ccccc} F_2 \times F_2 & \longrightarrow & \operatorname{Aut}(F_3) \\ (u,v) & \mapsto & {}_{u}\theta_{v} \colon F_3 & \to & F_3 \\ & q & \mapsto & u^{-1}qv \\ & a & \mapsto & a \\ & b & \mapsto & b \end{array}$$

we obtain an alternative proof for unsolvability of the conjugacy problem in Miller's examples.

With the following embedding (and w = qaqbq)

$$\begin{array}{ccccc} F_2 \times F_2 & \longrightarrow & \operatorname{Aut}(F_3) \\ (u,v) & \mapsto & {}_{u}\theta_v \colon F_3 & \to & F_3 \\ & q & \mapsto & u^{-1}qv \\ & a & \mapsto & a \\ & b & \mapsto & b \end{array}$$

we obtain an alternative proof for unsolvability of the conjugacy problem in Miller's examples.

And any other way of embedding $F_2 \times F_2$ in Aut (F_3) will provide new examples.

And
$$F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z})$$
. So...

There exist 14 matrices $M_1, \ldots, M_{14} \in GL_n(\mathbb{Z})$, for $n \geqslant 4$, such that $\langle M_1, \ldots, M_{14} \rangle \leqslant GL_n(\mathbb{Z})$ is orbit undecidable.

Corollary

There exists a \mathbb{Z}^4 -by- F_{14} group with unsolvable conjugacy problem.

Question

Does $GL_3(\mathbb{Z})$ contain orbit undecidable subgroups ?

Question

Does there exist \mathbb{Z}^3 -by-free groups with unsolvable conjugacy problem ?

And $F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z})$. So...

Theorem (Bogopolski-Martino-V., 2008)

There exist 14 matrices $M_1, \ldots, M_{14} \in GL_n(\mathbb{Z})$, for $n \ge 4$, such that $\langle M_1, \ldots, M_{14} \rangle \leqslant GL_n(\mathbb{Z})$ is orbit undecidable.

There exist 14 matrices $M_1, \ldots, M_{14} \in GL_n(\mathbb{Z})$, for $n \ge 4$, such that $\langle M_1, \ldots, M_{14} \rangle \leqslant GL_n(\mathbb{Z})$ is orbit undecidable.

Corollary

There exists a \mathbb{Z}^4 -by- F_{14} group with unsolvable conjugacy problem.

And
$$F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z})$$
. So...

There exist 14 matrices $M_1, \ldots, M_{14} \in GL_n(\mathbb{Z})$, for $n \ge 4$, such that $\langle M_1, \ldots, M_{14} \rangle \leqslant GL_n(\mathbb{Z})$ is orbit undecidable.

Corollary

There exists a \mathbb{Z}^4 -by- F_{14} group with unsolvable conjugacy problem.

Question

Does $GL_3(\mathbb{Z})$ contain orbit undecidable subgroups?

And
$$F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z})$$
. So...

There exist 14 matrices $M_1, \ldots, M_{14} \in GL_n(\mathbb{Z})$, for $n \geqslant 4$, such that $\langle M_1, \ldots, M_{14} \rangle \leqslant GL_n(\mathbb{Z})$ is orbit undecidable.

Corollary

There exists a \mathbb{Z}^4 -by- F_{14} group with unsolvable conjugacy problem.

Question

Does $GL_3(\mathbb{Z})$ contain orbit undecidable subgroups?

Question

Does there exist \mathbb{Z}^3 -by-free groups with unsolvable conjugacy problem ?

THANKS