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(Joint work with P. Silva and M. Ladra.)

Find a group G where - is “easy" but ()~ is “difficult".

Natural candidate: Aut (F,), where F, = {(ay,...,ar | ).
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(inverting)
Fs=(ab,c|).
(b: F3 — F3 ¢_1 F3 — F3
a — ab a — ablacb'a
b — ab’c b — a'bcla'b
c — bc? c — blac.
(inverting)
F5:<a,b,C, ) |>
Yn:Fs — Fs w,71: F, — F4
a — a a — a
b — a b — ab
c — bc c — (b'a""c
— " = (c~Y(a"b)")"
— n — ( —1((b—1an)nc)n)n .
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Motivation

In this talk...
o we formalize the situation.

e we see that inverting in Aut (F,) is not that bad (only
“polynomially hard").

e are there groups with inversion of automorphisms exponentially
hard ?
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Let G be a group with a finite set of generators A= {ay,...,ar}. We
have the word metric: for g € G,

lg| =min{n|g=a;"---a"}.

In

| A

Definition
For 6 € Aut(G), note 6 is determined by a9, . . ., a-6 and define

1011 = |a10] + - - - + |a0],

110]|0o = max{|af),...,|af|}.

\

Observation
For every 6 € Aut(F;), |10]lo < 10|11 < r]16]|0o
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Definition

Let G be a group with a finite set of generators A= {ay,...,a,}. We
define the function:

aa(n) = max{||o="|ls | 6 € Aut(G), [|6]]s < n}.

Clearly, aa(n) < aa(n+1).

The bigger is a4, the more “difficult” will be to invert automorphisms
of G (with respect to the given set of generators A).

Determine the asymptotic growth of the function og.
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Proof. Take |bj|a < M, |aj|lg < N and let C = MNrs.
16le = [b10l+ -+ |bsblB

< |b1O|aN + - - + |bsO|aN

N

N(|b1all0lla + - - - + |bs|allO]| )

N

NMs||6]ja < C||6]a.

By symmetry,  ||0]|a < C||0]|s-
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Independence from A

Corollary

) < aa(n) < C - ap(Cn).

Proof.

aa(n) = max{[|0="[|la |0 € Aut(G), [|0]la < n}

N

max{[|60~" |4 | 0 € Aut(G), [|0]ls < Cn}

/N

max{C[[6~"||s | 6 € Aut(G), ||t]ls < Cn}

C-max{||0~"||5 | 0 € Aut(G), ||0]|s < Cn}

C - as(Cn).
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Independence from A

Corollary

) < aa(n) < C - ap(Cn).

Proof.

aa(n) = max{[|0="[|la |0 € Aut(G), [|0]la < n}

N

max{[|60~" |4 | 0 € Aut(G), [|0]ls < Cn}

/N

max{C[[6~"||s | 6 € Aut(G), ||t]ls < Cn}

C-max{||0~"||5 | 0 € Aut(G), ||0]|s < Cn}
— C-ap(Cn).

By symmetry, ag(n) < C-aa(Cn),so & -ap(3) < aa(n).
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Independence from A

Hence, aa(n) is independent from A (up to a multiplicative constant in
the domain and in the range).

Denote it by ag(n).

Are there groups G with ag(n) linear ? quadratic? ... exponential?
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The same for outer autos

For © € Out(G), define

1811+ = min{[|0]|1 | 6 € ©},

1©lcc = min{||6]| | 6 € O},

<

For a finitely generated group G,

B(n) = max{||©~"|ls | © € Out(G), |IO] < n}.

We have the corresponding same properties.
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Free group case

For the rest of the talk, G= F, = (a1,...,ar | ).

For every w € F;, |w| is its free length.
lvw| < [v|+ |w],
(w”| < |n|w].

For 6 € Aut(F,) and © € Out(F,),

6]11 = |ai6] + -+ |ab), 10]]oc = max{|af], ..., |a0]}
l|©lls = min{||0]|1 | 6 € ©} |18][ec = min{||6]| | & € OF.
Forr > 2,

ar(n) = max{[|o=" ||y | 6 € AutF,, |61 < n},

Br(n) = max{||©~"|ls | © € OutF;, ||O]|1 < n}.
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(iiiy forn>=1, Ba(n) = n.
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Main results

For rank r = 2 we have
(i) forn> 4, an(n) < 52,

(i) forn>no, % < 042(”)
(i) forn>1, Bo(n) =

Theorem
For r > 3 there exist K = K(r), K' = K'(r), and M = M(r) such that,
forn>1,

(i) Kn" < ar(n),

| l
A\




3. Free groups
oe

Main results

For rank r = 2 we have

(i) forn>4, as(n) < M
(i) forn > ng, fe < az(n)
(iiiy forn>1, Ba(n) =

|
| \

Theorem
Forr > 3 there exist K = K(r), K' = K'(r), and M = M(r) such that,
forn>1,

(i) Kn" < ar(n),

(i) Kn"=' < B,(n) < K'nM.
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A lower bound for 5,

Forr>2,andn> ny, we have 5 - =1 < B(n).

Proof: For r > 2 and n > 1, consider

1
Yrn: Fr = F wr,n:Fr — Fr
a = a a — a
a — ala a — a;"a
a — ajas
—ny,,—1
: a = (&)rn-ai
a — a _ia (2<i<r)

A straightforward calculation shows that ||¢r n||1 = (r —1)n+r, and
brallt =" 4202 4. (r—=1)n+r=n".
An detailed argument shows that these are ||[¢, »]||1 and ||[1/z,f,‘,]||1.
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A lower bound for 5,

Hence, forn > r,
Br(rn) = B((r—1n+r)>n""
Now, for n big enough, take the closest multiple of r below,
nrm>n-r,
and

1
2rr—1

n

r—1 r_
il = ormy = > (20— (Be) T

n'. O
r r

Finally, conjugating by an appropriate element, we shall win an extra
unit in the exponent.
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A lower bound for «,

__ =1
Forr > 2, and n > ny, we have %n’ < ar(n).

Proof: For r > 2 and n > 1, consider ¢,n7,-n, L where m = [ 555 ].
Writing N = |17,y ,—m -1 ||1, straightforward calculatlons show that,
r 1

for n > ng,

yaapit s = 67 s U=
TYaia"Vrnllt = HWr,nVa amyy; 1111 2 op2r—1 )

Hence, %n’< a(n). O
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Outer space

To prove the upper bound

(ii) Br(n) < Kn", J

we’ll need to use the recently discovered metric in the outer space ;.

e By graf I we mean a finite, connected graph of rank r, with no
vertices of degree 1 or 2.

e AmetriconT isamap(: ET — [0,1] such that ) ((e) =1,
and{e € ET | /(e) = 0} is a forest.

e Foragraph', X = {metrics onT} = a simplex with missing
faces.

e [f[" =T /forest, then we identify points in X with the
corresponding points in ¥ by assigning length 0 to the collapsed
edges.

e A marking onT is a homotopy equivalence f: R, —T.
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Outer space

Definition
The outer space X is

Xr={(,£,0)} ~

(where ~ is an equivalence relation).

Definition
There is a natural action of Aut(F,) on X, given by

d)' (ra fvé) = (r7¢fa€)a
(thinking ¢: R- — Ry). In fact, this is an action of Out(F;).
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For such an «, define o(«) to be its maximum slope over edges.

Definition

| \

X, admits the following “metric":
d(x, x") = min{log(c()) |  diff. markings }.

This minimum is achieved by Arzela-Ascoli’s theorem.
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Metric on X,

Definition

Letx,x' € X, x = (I, f,0), x' = (", f,¢'). A difference of markings is
amap «: I — ', which is linear over edges and fa. ~ f'.

For such an «, define o(«) to be its maximum slope over edges.

Definition

| \

X, admits the following “metric":

d(x, x") = min{log(c()) |  diff. markings }.

This minimum is achieved by Arzela-Ascoli’s theorem.

A\

This is Bestvina-AlgomKfir version of Martino-Francaviglia’s original
metric.
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Metric on X,

(i) d(x,y)=>0,and=0 < x =y.
(i) d(x,2) < d(x,y)+d(y,2).

(iii) Out(F,) acts by isometries, i.e. d(¢ - x,¢-y) = d(X,y).
(iv) But... d(x,y) # d(y, x) in general.

Definition
For e > 0, the e-thick part of X, is

| \

Xr(e) ={(I,f,£) € X | {(p) > € V closed pathp # 1}
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Bestvina-AlgomKfir theorem

Theorem (Bestvina-AlgomKfir)

For any ¢ > 0 there is constant M = M(r, ¢) such that for all
X,y € Xi(e),
d(x,y) < M- d(y,x).
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Bestvina-AlgomKfir theorem

Theorem (Bestvina-AlgomKfir)
For any ¢ > 0 there is constant M = M(r, ¢) such that for all
X,y € Xi(e),

d(x,y) < M- d(y,x).

Forr > 2, there exists M = M(r) such that

Br(n) < roM.
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Proof. Given 0 € © € Out(F;), consider x = (R,, id, ) € X,, and
0-x=(R,0,4) € X, where { is the uniform metric.
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Remind j3.(n) = max{||©~"||1 | 6 € AutF,, ||©]|; < n}.

Proof. Given 0 € © € Out(F;), consider x = (R,, id, ) € X,, and
0-x=(R,0,4) € X, where { is the uniform metric.

d(x, 0 - x)

2

min{log(c(«)) | « diff. markings}

log (min{o(0vwp) | W € Fr, p= “half petal“})
log (min{o(6w) | w € F})

log (min{[|6ywl[e | W € F})

log(||©]]oc)

log([|©][+)-
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Proof

Remind j3.(n) = max{||©~"||1 | 6 € AutF,, ||©]|; < n}.

Proof. Given 0 € © € Out(F;), consider x = (R,, id, ) € X,, and
0-x=(R,0,4) € X, where { is the uniform metric.

dix,0-x) =

2

~

min{log(c(«)) | « diff. markings}
log (min{o(0vwp) | W € Fr, p= “half petal“})

log (min{o(6w) | w € F})
log ( min{|(6yw|| | W € Fr})
log(|(©])

log(/|©[[+)-

Now, using Bestvina-AlgomKfir theorem,

log([|©~"[[1) ~ d(x,67"-x) = d(9-x,x) < Md(x,6-x) ~ Mlog(||©]|1).
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Proof

Remind j3.(n) = max{||©~"||1 | 6 € AutF,, ||©]|; < n}.

Proof. Given 0 € © € Out(F;), consider x = (R,, id, ) € X,, and
0-x=(R,0,4) € X, where { is the uniform metric.

dix,0-x) =

2

~

min{log(c(«)) | « diff. markings}

log (min{o(0vwp) | W € Fr, p= “half petal“})
log (min{o(6w) | w € F})

log (min{[|6ywl[e | W € F})

log(||©]]oc)

log([|©][+)-

Now, using Bestvina-AlgomKfir theorem,

log([|©~"[[1) ~ d(x,67"-x) = d(9-x,x) < Md(x,6-x) ~ Mlog(||©]|1).

Hence, for every © € Out(F;), |[|[©~ ||y < r||©||M. O
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Outline

e The special case of rank 2
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These functions for Aut (F,) are much easier to understand due to the
following technical lemmas.
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The rank 2 case

These functions for Aut (F,) are much easier to understand due to the
following technical lemmas.

Let ¢ € Aut(F,) be positive. Then o~ is cyclically reduced and
e~ 111 = llells

For every 6 € Aut(F,), there exist two letter permuting autos
V1, Yo € Aut(F2), a positive one ¢ € Aut™(F2), and an element
g € Fa, such that 6 = dpyedg and [|¢lls + 2/g] < 116]]1-
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For every 0 € Aut(F), [|[0~"]ll1 = ||[0]||1- Hence, B2(n) = n.
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Proof. Let 6 € Aut(F2), decomposed as above, 6 = ¢ pisAg.
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The rank 2 case: (-

For every 0 € Aut(F2), [|[[0~"]|11 = ||[0]]]1- Hence, B2(n) = n.

Proof. Let 6 € Aut(F2), decomposed as above, 6 = ¢ pin)g. Then,

0111 = [1912 )11 = [I[o1ee]ll1 = Il
On the other hand,

16~ = [1g-14b5 "o~ ey Nl = 11[wy "oy Ml =

= llle="Nh =llellk- O



5. The special case of rank 2
00000

The rank 2 case: as

For n > 4 we have ax(n) < "5
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The rank 2 case: as

For n > 4 we have ax(n) < "5

Proof. Let 0 € Aut(Fz), decomposed as above, 0 = ¢ piaAg.
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The rank 2 case: as

For n > 4 we have ax(n) < "5

Proof. Let 0 € Aut(F2), decomposed as above, 6 = ¥ pia)g. Then,
0=1 = Ng-1b, "¢~y " and

161111 < 41gl - 119 "o~ "5 Ml = 4191 - [l lloe <

<4gl(lle~ Ml = 1) = 4lglllell = 1)
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The rank 2 case: as

For n > 4 we have ax(n) < "5

Proof. Let 0 € Aut(F2), decomposed as above, 6 = ¥ pia)g. Then,
0=1 = Ng-1b, "¢~y " and

161111 < 41gl - 119 "o~ "5 Ml = 4191 - [l lloe <

<4gl(lle~ Ml = 1) = 4lglllell = 1)

Now from [|o||1 +2|g| < ||8]]1 = n, we deduce |g| < “='2ll and so,
1611+ < 2(n = [lella)(llells = 1)-
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The rank 2 case: as

(n-1)?

Forn > 4 we have az(n) < .

Proof. Let 0 € Aut(F2), decomposed as above, 6 = ¥ pia)g. Then,
0=1 = Ng-1b, "¢~y " and

107111 < 4lgl- 1193 e "¢5 oo = 419l - o™ oo <
< A4gl(lle It = 1) = 4lgl(llells = 1).
Now from [|o||1 +2|g| < ||8]]1 = n, we deduce |g| < “='2ll and so,

10~ < 2(n = liel)(lell = 1)-

Finally, the parabola f(x) = 2(n — x)(x — 1) takes its maximum at
x = 1 and so,

_ n+1y\/n+1 n—1)?
167"l < 201l ) (llell~1) < 2(n- 251 (T ) = 2 g
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Summarizing

For rank r = 2 we have

(i) forn> 4, as(n) < 5L,
(iiy forn > ng, % < ap(n),
(iiiy forn>=1, Ba(n) = n.
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Summarizing

For rank r = 2 we have

(i) forn>4, ax(n) < @
(iiy forn > ng, % < ap(n),
(iiiy forn>=1, Ba(n)

|
S
A\

Theorem
Forr > 3 there exist K = K(r), K' = K’(r), and M = M(r) such that,
forn>1,

(i) Kn" < ar(n),

(i) Kn"' < B,(n) < K'nM.

A\
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THANKS
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