On the difficulty of inverting automorphisms of free groups

Enric Ventura

Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya

Seminari Topologia, UAB

May 9th, 2014.

Outline

- Motivation
- 2 Main definition
- Free groups
- 4 Lower bounds: a good enough example
- 5 Upper bounds: outer space
- 6 The special case of rank 2

Outline

- Motivation
- 2 Main definition
- Free groups
- 4 Lower bounds: a good enough example
- Upper bounds: outer space
- 6 The special case of rank 2

(Joint work with P. Silva and M. Ladra.)

Find a group G where \cdot is "easy" but ()⁻¹ is "difficult".

Natural candidate: Aut (F_n) , where $F_r = \langle a_1, \dots, a_r \mid \rangle$.

(Joint work with P. Silva and M. Ladra.)

Find a group G where \cdot is "easy" but ()⁻¹ is "difficult".

Natural candidate: Aut (F_n) , where $F_r = \langle a_1, \dots, a_r \mid \rangle$

(Joint work with P. Silva and M. Ladra.)

Find a group G where \cdot is "easy" but ()⁻¹ is "difficult".

Natural candidate: Aut (F_n) , where $F_r = \langle a_1, \dots, a_r \mid \rangle$.

(composing)

$$F_3 = \langle a, b, c \mid \rangle.$$

$$\phi \colon F_3 \to F_3 \qquad \psi \colon F_3 \to F_3$$

$$a \mapsto ab \qquad a \mapsto bc^{-1}$$

$$b \mapsto ab^2c \qquad b \mapsto a^{-1}bc$$

$$c \mapsto bc^2 \qquad c \mapsto c^{-1}.$$

$$\phi \psi \colon F_3 \to F_3$$

$$a \mapsto bc^{-1}a^{-1}bc$$

$$b \mapsto bc^{-1}a^{-1}bca^{-1}b$$

(composing)

$$F_{3} = \langle a, b, c \mid \rangle.$$

$$\phi \colon F_{3} \to F_{3} \qquad \psi \colon F_{3} \to F_{3}$$

$$a \mapsto ab \qquad a \mapsto bc^{-1}$$

$$b \mapsto ab^{2}c \qquad b \mapsto a^{-1}bc$$

$$c \mapsto bc^{2} \qquad c \mapsto c^{-1}.$$

$$\phi \psi \colon F_{3} \to F_{3}$$

$$a \mapsto bc^{-1}a^{-1}bc$$

$$b \mapsto bc^{-1}a^{-1}bca^{-1}b$$

$$c \mapsto a^{-1}bc^{-1}.$$

(inverting)

 $F_3 = \langle a, b, c \mid \rangle$.

$$\phi \colon F_3 \to F_3 \qquad \phi^{-1} \colon F_3 \to F_3$$

$$a \mapsto ab \qquad a \mapsto ab^{-1}acb^{-1}a$$

$$b \mapsto ab^2c \qquad b \mapsto a^{-1}bc^{-1}a^{-1}b$$

$$c \mapsto bc^2 \qquad c \mapsto b^{-1}ac.$$

$$\psi_n \colon F_5 \to F_5 \qquad \psi_n^{-1} \colon F_4 \to F_4$$

$$\begin{array}{cccc} a \mapsto a & a \mapsto a \\ b \mapsto a^n b & b \mapsto a^{-n} b \\ c \mapsto b^n c & c \mapsto (b^{-1} a^n)^n c \\ d \mapsto c^n d & d \mapsto (c^{-1} (a^{-n} b)^n)^n d \end{array}$$

(inverting)

$$F_{3} = \langle a, b, c \mid \rangle.$$

$$\phi \colon F_{3} \to F_{3} \qquad \phi^{-1} \colon F_{3} \to F_{3}$$

$$a \mapsto ab \qquad a \mapsto ab^{-1}acb^{-1}a$$

$$b \mapsto ab^{2}c \qquad b \mapsto a^{-1}bc^{-1}a^{-1}b$$

$$c \mapsto bc^{2} \qquad c \mapsto b^{-1}ac.$$

(inverting)

 $F_5 = \langle a, b, c, d, e \mid \rangle$.

In this talk...

- we formalize the situation.
- we see that inverting in Aut (F_r) is not that bad (only "polynomially hard").
- are there groups with inversion of automorphisms exponentially hard?

In this talk...

- we formalize the situation.
- we see that inverting in $Aut(F_r)$ is not that bad (only "polynomially hard").
- are there groups with inversion of automorphisms exponentially hard?

In this talk...

- we formalize the situation.
- we see that inverting in $Aut(F_r)$ is not that bad (only "polynomially hard").
- are there groups with inversion of automorphisms exponentially hard?

Outline

- Motivation
- 2 Main definition
- Free groups
- 4 Lower bounds: a good enough example
- 5 Upper bounds: outer space
- The special case of rank 2

Definition

Let G be a group with a finite set of generators $A = \{a_1, \dots, a_r\}$. We have the word metric: for $g \in G$,

$$|g|=\min\{n\mid g=a_{i_1}^{\epsilon_1}\cdots a_{i_n}^{\epsilon_n}\}.$$

Definitior

For $\theta \in Aut(G)$, note θ is determined by $a_1\theta, \ldots, a_r\theta$ and define

$$||\theta||_1 = |a_1\theta| + \cdots + |a_r\theta|,$$

$$||\theta||_{\infty} = \max\{|a_1\theta|,\ldots,|a_r\theta|\}.$$

Observation

Definition

Let G be a group with a finite set of generators $A = \{a_1, \dots, a_r\}$. We have the word metric: for $g \in G$,

$$|g|=\min\{n\mid g=a_{i_1}^{\epsilon_1}\cdots a_{i_n}^{\epsilon_n}\}.$$

Definition

For $\theta \in Aut(G)$, note θ is determined by $a_1\theta, \ldots, a_r\theta$ and define

$$||\theta||_1=|a_1\theta|+\cdots+|a_r\theta|,$$

$$||\theta||_{\infty} = \max\{|a_1\theta|,\ldots,|a_r\theta|\}.$$

Observation

Definition

Let G be a group with a finite set of generators $A = \{a_1, \dots, a_r\}$. We have the word metric: for $g \in G$,

$$|g|=\min\{n\mid g=a_{i_1}^{\epsilon_1}\cdots a_{i_n}^{\epsilon_n}\}.$$

Definition

For $\theta \in Aut(G)$, note θ is determined by $a_1\theta, \ldots, a_r\theta$ and define

$$||\theta||_1=|a_1\theta|+\cdots+|a_r\theta|,$$

$$||\theta||_{\infty} = \max\{|a_1\theta|,\ldots,|a_r\theta|\}.$$

Observation

Definition

Let G be a group with a finite set of generators $A = \{a_1, \dots, a_r\}$. We have the word metric: for $g \in G$,

$$|g|=\min\{n\mid g=a_{i_1}^{\epsilon_1}\cdots a_{i_n}^{\epsilon_n}\}.$$

Definition

For $\theta \in Aut(G)$, note θ is determined by $a_1\theta, \ldots, a_r\theta$ and define

$$||\theta||_1=|a_1\theta|+\cdots+|a_r\theta|,$$

$$||\theta||_{\infty} = \max\{|a_1\theta|,\ldots,|a_r\theta|\}.$$

Observation

Definition

Let G be a group with a finite set of generators $A = \{a_1, \dots, a_r\}$. We define the function:

$$\alpha_{A}(n) = \max\{||\theta^{-1}||_{1} \mid \theta \in Aut(G), ||\theta||_{1} \leqslant n\}.$$

Clearly,
$$\alpha_A(n) \leqslant \alpha_A(n+1)$$
.

The bigger is α_A , the more "difficult" will be to invert automorphisms of G (with respect to the given set of generators A).

Question

Determine the asymptotic growth of the function $\alpha_{\rm G}$

Definition

Let G be a group with a finite set of generators $A = \{a_1, \dots, a_r\}$. We define the function:

$$\alpha_{\mathcal{A}}(n) = \max\{||\theta^{-1}||_1 \mid \theta \in Aut(G), ||\theta||_1 \leqslant n\}.$$

Clearly,
$$\alpha_A(n) \leqslant \alpha_A(n+1)$$
.

The bigger is α_A , the more "difficult" will be to invert automorphisms of G (with respect to the given set of generators A).

Question

Determine the asymptotic growth of the function α_G

Definition

Let G be a group with a finite set of generators $A = \{a_1, \dots, a_r\}$. We define the function:

$$\alpha_{\mathcal{A}}(n) = \max\{||\theta^{-1}||_1 \mid \theta \in Aut(G), ||\theta||_1 \leqslant n\}.$$

Clearly, $\alpha_A(n) \leqslant \alpha_A(n+1)$.

The bigger is α_A , the more "difficult" will be to invert automorphisms of G (with respect to the given set of generators A).

Question

Determine the asymptotic growth of the function α_G .

Proposition

Let G be a group and $A = \{a_1, ..., a_r\}$ and $B = \{b_1, ..., b_s\}$ be two finite sets of generators. Then, $\exists C > 0$ s. t. $\forall \theta \in Aut(G)$

$$\frac{1}{C}\|\theta\|_{B} \leqslant \|\theta\|_{A} \leqslant C\|\theta\|_{B}$$

Proof. Take $|b_i|_A \leq M$, $|a_i|_B \leq N$ and let C = MNrs.

$$\begin{split} \|\theta\|_{B} &= |b_{1}\theta|_{B} + \dots + |b_{s}\theta|_{B} \\ &\leqslant |b_{1}\theta|_{A}N + \dots + |b_{s}\theta|_{A}N \\ &\leqslant N(|b_{1}|_{A}\|\theta\|_{A} + \dots + |b_{s}|_{A}\|\theta\|_{A}) \\ &\leqslant NMs\|\theta\|_{A} \leqslant C\|\theta\|_{A}. \end{split}$$

Proposition

Let G be a group and $A = \{a_1, ..., a_r\}$ and $B = \{b_1, ..., b_s\}$ be two finite sets of generators. Then, $\exists C > 0$ s. t. $\forall \theta \in Aut(G)$

$$\frac{1}{C}\|\theta\|_{B} \leqslant \|\theta\|_{A} \leqslant C\|\theta\|_{B}$$

Proof. Take $|b_i|_A \leqslant M$, $|a_i|_B \leqslant N$ and let C = MNrs.

$$\|\theta\|_{B} = |b_{1}\theta|_{B} + \dots + |b_{s}\theta|_{B}$$

$$\leq |b_{1}\theta|_{A}N + \dots + |b_{s}\theta|_{A}N$$

$$\leq N(|b_{1}|_{A}\|\theta\|_{A} + \dots + |b_{s}|_{A}\|\theta\|_{A})$$

$$\leq NMs\|\theta\|_{A} \leq C\|\theta\|_{A}.$$

Proposition

1. Motivation

Proposition

Let G be a group and $A = \{a_1, \ldots, a_r\}$ and $B = \{b_1, \ldots, b_s\}$ be two finite sets of generators. Then, $\exists \ C > 0 \ s. \ t. \ \forall \theta \in Aut(G)$

$$\frac{1}{C}\|\theta\|_{B} \leqslant \|\theta\|_{A} \leqslant C\|\theta\|_{B}$$

Proof. Take $|b_i|_A \leqslant M$, $|a_i|_B \leqslant N$ and let C = MNrs.

$$\begin{split} \|\theta\|_{B} &= |b_{1}\theta|_{B} + \dots + |b_{s}\theta|_{B} \\ &\leqslant |b_{1}\theta|_{A}N + \dots + |b_{s}\theta|_{A}N \\ &\leqslant N(|b_{1}|_{A}\|\theta\|_{A} + \dots + |b_{s}|_{A}\|\theta\|_{A}) \\ &\leqslant NMs\|\theta\|_{A} \leqslant C\|\theta\|_{A}. \end{split}$$

Proposition

1. Motivation

Let G be a group and $A = \{a_1, ..., a_r\}$ and $B = \{b_1, ..., b_s\}$ be two finite sets of generators. Then, $\exists C > 0$ s. t. $\forall \theta \in Aut(G)$

$$\frac{1}{C}\|\theta\|_{B} \leqslant \|\theta\|_{A} \leqslant C\|\theta\|_{B}$$

Proof. Take $|b_i|_A \leq M$, $|a_i|_B \leq N$ and let C = MNrs.

$$\begin{split} \|\theta\|_{B} &= |b_{1}\theta|_{B} + \dots + |b_{s}\theta|_{B} \\ &\leqslant |b_{1}\theta|_{A}N + \dots + |b_{s}\theta|_{A}N \\ &\leqslant N(|b_{1}|_{A}\|\theta\|_{A} + \dots + |b_{s}|_{A}\|\theta\|_{A}) \\ &\leqslant NMs\|\theta\|_{A} \leqslant C\|\theta\|_{A}. \end{split}$$

Corollary

1. Motivation

$$\frac{1}{C} \cdot \alpha_B(\frac{n}{C}) \leqslant \alpha_A(n) \leqslant C \cdot \alpha_B(Cn).$$

Proof

$$\alpha_{A}(n) = \max\{\|\theta^{-1}\|_{A} \mid \theta \in Aut(G), \|\theta\|_{A} \leq n\}$$

$$\leq \max\{\|\theta^{-1}\|_{A} \mid \theta \in Aut(G), \|\theta\|_{B} \leq Cn\}$$

$$\leq \max\{C\|\theta^{-1}\|_{B} \mid \theta \in Aut(G), \|\theta\|_{B} \leq Cn\}$$

$$= C \cdot \max\{\|\theta^{-1}\|_{B} \mid \theta \in Aut(G), \|\theta\|_{B} \leq Cn\}$$

$$= C \cdot \alpha_{B}(Cn).$$

By symmetry, $\alpha_B(n) \leqslant C \cdot \alpha_A(Cn)$, so $\frac{1}{C} \cdot \alpha_B(\frac{n}{C}) \leqslant \alpha_A(n)$.

Corollary

1. Motivation

$$\frac{1}{C} \cdot \alpha_B(\frac{n}{C}) \leqslant \alpha_A(n) \leqslant C \cdot \alpha_B(Cn).$$

Proof.

$$\alpha_{A}(n) = \max\{\|\theta^{-1}\|_{A} \mid \theta \in Aut(G), \|\theta\|_{A} \leq n\}$$

$$\leq \max\{\|\theta^{-1}\|_{A} \mid \theta \in Aut(G), \|\theta\|_{B} \leq Cn\}$$

$$\leq \max\{C\|\theta^{-1}\|_{B} \mid \theta \in Aut(G), \|\theta\|_{B} \leq Cn\}$$

$$= C \cdot \max\{\|\theta^{-1}\|_{B} \mid \theta \in Aut(G), \|\theta\|_{B} \leq Cn\}$$

$$= C \cdot \alpha_{B}(Cn).$$

By symmetry, $\alpha_B(n) \leqslant C \cdot \alpha_A(Cn)$, so $\frac{1}{C} \cdot \alpha_B(\frac{n}{C}) \leqslant \alpha_A(n)$.

Corollary

$$\frac{1}{C} \cdot \alpha_B(\frac{n}{C}) \leqslant \alpha_A(n) \leqslant C \cdot \alpha_B(Cn).$$

Proof.

$$\alpha_{A}(n) = \max\{\|\theta^{-1}\|_{A} \mid \theta \in Aut(G), \|\theta\|_{A} \leq n\}$$

$$\leq \max\{\|\theta^{-1}\|_{A} \mid \theta \in Aut(G), \|\theta\|_{B} \leq Cn\}$$

$$\leq \max\{C\|\theta^{-1}\|_{B} \mid \theta \in Aut(G), \|\theta\|_{B} \leq Cn\}$$

$$= C \cdot \max\{\|\theta^{-1}\|_{B} \mid \theta \in Aut(G), \|\theta\|_{B} \leq Cn\}$$

$$= C \cdot \alpha_{B}(Cn).$$

By symmetry, $\alpha_B(n) \leqslant C \cdot \alpha_A(Cn)$, so $\frac{1}{C} \cdot \alpha_B(\frac{n}{C}) \leqslant \alpha_A(n)$.

Hence, $\alpha_A(n)$ is independent from A (up to a multiplicative constant in the domain and in the range).

Denote it by $\alpha_G(n)$

Question

Are there groups G with $\alpha_G(n)$ linear? quadratic? ... exponential?

Hence, $\alpha_A(n)$ is independent from A (up to a multiplicative constant in the domain and in the range).

Denote it by $\alpha_G(n)$.

Question

Are there groups G with $\alpha_G(n)$ linear? quadratic? ... exponential?

Hence, $\alpha_A(n)$ is independent from A (up to a multiplicative constant in the domain and in the range).

Denote it by $\alpha_G(n)$.

Question

Are there groups G with $\alpha_G(n)$ linear? quadratic? ... exponential?

Definition

For $\Theta \in Out(G)$, define

$$\|\Theta\|_1 = \min\{\|\theta\|_1 \mid \theta \in \Theta\},\$$

$$\|\Theta\|_{\infty} = \min\{\|\theta\|_{\infty} \mid \theta \in \Theta\},\$$

Definition

For a finitely generated group G,

$$\beta(n) = \max\{||\Theta^{-1}||_1 \mid \Theta \in Out(G), ||\Theta||_1 \leqslant n\}.$$

We have the corresponding same properties

Definition

For $\Theta \in Out(G)$, define

$$\|\Theta\|_1 = \min\{\|\theta\|_1 \mid \theta \in \Theta\},\$$

$$\|\Theta\|_{\infty} = \min\{\|\theta\|_{\infty} \mid \theta \in \Theta\},\$$

Definition

For a finitely generated group G

$$\beta(n) = \max\{||\Theta^{-1}||_1 \mid \Theta \in Out(G), ||\Theta||_1 \le n\}.$$

We have the corresponding same properties.

Definition

For $\Theta \in Out(G)$, define

$$\|\Theta\|_1 = \min\{\|\theta\|_1 \mid \theta \in \Theta\},\$$

$$\|\Theta\|_{\infty} = \min\{\|\theta\|_{\infty} \mid \theta \in \Theta\},\$$

Definition

For a finitely generated group G,

$$\beta(n) = \max\{||\Theta^{-1}||_1 \mid \Theta \in Out(G), ||\Theta||_1 \leqslant n\}.$$

We have the corresponding same properties

Definition

For $\Theta \in Out(G)$, define

$$\|\Theta\|_1 = \min\{\|\theta\|_1 \mid \theta \in \Theta\},\$$

$$\|\Theta\|_{\infty} = \min\{\|\theta\|_{\infty} \mid \theta \in \Theta\},\$$

Definition

For a finitely generated group G,

$$\beta(n) = \max\{||\Theta^{-1}||_1 \mid \Theta \in Out(G), ||\Theta||_1 \leqslant n\}.$$

We have the corresponding same properties.

Outline

- Motivation
- 2 Main definition
- Free groups
- Lower bounds: a good enough example
- Upper bounds: outer space
- The special case of rank 2

For the rest of the talk, $G = F_r = \langle a_1, \dots, a_r \mid \rangle$.

```
For every w \in F_r, |w| is its free length.

|vw| \leq |v| + |w|,

|w^n| \leq |n||w|.
```

```
For \theta \in Aut(F_r) and \Theta \in Out(F_r),

||\theta||_1 = |a_1\theta| + \dots + |a_r\theta|, \qquad ||\theta||_{\infty} = \max\{|a_1\theta|, \dots, |a_r\theta|\}
||\Theta||_1 = \min\{||\theta||_1 \mid \theta \in \Theta\}
||\Theta||_{\infty} = \min\{||\theta||_{\infty} \mid \theta \in \Theta\}.
```

```
For r \ge 2, \alpha_r(n) = \max\{||\theta^{-1}||_1 \mid \theta \in Aut F_r, \ ||\theta||_1 \le n\}, \beta_r(n) = \max\{||\Theta^{-1}||_1 \mid \Theta \in Out F_r, \ ||\Theta||_1 \le n\}.
```

For the rest of the talk, $G = F_r = \langle a_1, \dots, a_r \mid \rangle$.

For every $w \in F_r$, |w| is its free length.

 $|vw| \leq |v| + |v|$ $|w^n| \leq |n||w|$.

For $\theta \in Aut(F_r)$ and $\Theta \in Out(F_r)$,

$$||\theta||_1 = |a_1\theta| + \dots + |a_r\theta|,$$

 $||\Theta||_1 = \min\{||\theta||_1 \mid \theta \in \Theta\}$

$$||\theta||_{\infty} = \max\{|a_1\theta|, \ldots, |a_r\theta|\}$$

$$||\Theta||_{\infty} = \min\{||\theta||_{\infty} | \theta \in \Theta\}.$$

$$\alpha_r(n) = \max\{||\theta^{-1}||_1 \mid \theta \in Aut F_r, ||\theta||_1 \le n\},\$$

$$\beta_r(n) = \max\{||\Theta^{-1}||_1 \mid \Theta \in Out F_r, ||\Theta||_1 \le n\}$$

For the rest of the talk, $G = F_r = \langle a_1, \dots, a_r \mid \rangle$.

For every $w \in F_r$, |w| is its free length.

 $|vw| \leqslant |v| + |w|,$

 $|w''| \leqslant |n||w|$.

For $\theta \in Aut(F_r)$ and $\Theta \in Out(F_r)$,

$$||\theta||_1 = |a_1\theta| + \dots + |a_r\theta|,$$

 $||\Theta||_1 = \min\{||\theta||_1 \mid \theta \in \Theta\}$

$$||\theta||_{\infty} = \max\{|a_1\theta|, \ldots, |a_r\theta|\}$$

$$||\Theta||_{\infty} = \min\{||\theta||_{\infty} | \theta \in \Theta\}.$$

$$\alpha_r(n) = \max\{||\theta^{-1}||_1 \mid \theta \in Aut F_r, ||\theta||_1 \le n\},\$$

$$\beta_r(n) = \max\{||\Theta^{-1}||_1 \mid \Theta \in OutF_r, ||\Theta||_1 \le n\}$$

For the rest of the talk, $G = F_r = \langle a_1, \dots, a_r \mid \rangle$.

For every $w \in F_r$, |w| is its free length.

$$|vw|\leqslant |v|+|w|,$$

$$|w^n|\leqslant |n||w|.$$

For $\theta \in Aut(F_r)$ and $\Theta \in Out(F_r)$,

$$||\theta||_1 = |a_1\theta| + \dots + |a_r\theta|,$$

$$||\Theta||_1 = \min\{||\theta||_1 \mid \theta \in \Theta\}$$

$$||\theta||_{\infty} = \max\{|a_1\theta|, \ldots, |a_r\theta|\}$$

$$||\Theta||_{\infty} = \min\{||\theta||_{\infty} \mid \theta \in \Theta\}.$$

$$\alpha_r(n) = \max\{||\theta^{-1}||_1 \mid \theta \in Aut F_r, ||\theta||_1 \le n\},\$$

$$\beta_r(n) = \max\{||\Theta^{-1}||_1 \mid \Theta \in Out F_r, ||\Theta||_1 \le n\}$$

For the rest of the talk, $G = F_r = \langle a_1, \dots, a_r \mid \rangle$.

For every $w \in F_r$, |w| is its free length.

$$|vw|\leqslant |v|+|w|,$$

$$|w^n|\leqslant |n||w|.$$

For $\theta \in Aut(F_r)$ and $\Theta \in Out(F_r)$,

$$||\theta||_1 = |a_1\theta| + \dots + |a_r\theta|,$$

$$||\Theta||_4 = \min\{||\theta||_4 \mid \theta \in \Theta\}$$

$$||\theta||_{\infty} = \max\{|a_1\theta|, \ldots, |a_r\theta|\}$$

$$||\Theta||_{\infty} = \min\{||\theta||_{\infty} \mid \theta \in \Theta\}.$$

$$\alpha_r(n) = \max\{||\theta^{-1}||_1 \mid \theta \in AutF_r, ||\theta||_1 \le n\}.$$

$$\beta_r(n) = \max\{||\Theta^{-1}||_1 \mid \Theta \in OutF_r, ||\Theta||_1 \le n\}$$

For the rest of the talk, $G = F_r = \langle a_1, \dots, a_r \mid \rangle$.

For every $w \in F_r$, |w| is its free length. $|vw| \le |v| + |w|$.

 $|w^n| \leqslant |n||w|$.

For $\theta \in Aut(F_r)$ and $\Theta \in Out(F_r)$,

$$||\theta||_1 = |a_1\theta| + \dots + |a_r\theta|,$$

$$||\Theta||_1 = \min\{||\theta||_1 \mid \theta \in \Theta\}$$

$$||\theta||_{\infty} = \max\{|a_1\theta|, \ldots, |a_r\theta|\}$$

 $||\Theta||_{\infty} = \min\{||\theta||_{\infty} | \theta \in \Theta\}.$

$$\alpha_r(n) = \max\{||\theta^{-1}||_1 \mid \theta \in Aut F_r, ||\theta||_1 \le n\},\$$

$$\beta_r(n) = \max\{||\Theta^{-1}||_1 \mid \Theta \in OutF_r, ||\Theta||_1 \le n\}$$

For the rest of the talk, $G = F_r = \langle a_1, \dots, a_r \mid \rangle$.

For every $w \in F_r$, |w| is its free length. $|vw| \leq |v| + |w|$.

$$|w^n| \leqslant |n||w|.$$

For $\theta \in Aut(F_r)$ and $\Theta \in Out(F_r)$,

$$||\theta||_1 = |a_1\theta| + \dots + |a_r\theta|,$$

$$||\Theta||_1 = \min\{||\theta||_1 \mid \theta \in \Theta\}$$

$$||\theta||_{\infty} = \max\{|a_1\theta|, \ldots, |a_r\theta|\}$$

 $||\Theta||_{\infty} = \min\{||\theta||_{\infty} | \theta \in \Theta\}.$

$$\alpha_r(n) = \max\{||\theta^{-1}||_1 \mid \theta \in Aut F_r, ||\theta||_1 \le n\},\$$

$$\beta_r(n) = \max\{||\Theta^{-1}||_1 \mid \Theta \in OutF_r, ||\Theta||_1 \le n\}$$

For the rest of the talk, $G = F_r = \langle a_1, \dots, a_r \mid \rangle$.

For every $w \in F_r$, |w| is its free length.

$$|VW| \leqslant |V| + |W|,$$

$$|w^n|\leqslant |n||w|.$$

For $\theta \in Aut(F_r)$ and $\Theta \in Out(F_r)$,

$$||\theta||_1 = |a_1\theta| + \dots + |a_r\theta|,$$

$$||\Theta||_1 = \min\{||\theta||_1 \mid \theta \in \Theta\}$$

$$||\theta||_{\infty} = \max\{|a_1\theta|, \ldots, |a_r\theta|\}$$

$$||\Theta||_{\infty} = \min\{||\theta||_{\infty} | \theta \in \Theta\}.$$

$$\alpha_r(n) = \max\{||\theta^{-1}||_1 \mid \theta \in Aut F_r, ||\theta||_1 \le n\},\$$

$$\beta_r(n) = \max\{||\Theta^{-1}||_1 \mid \Theta \in OutF_r, ||\Theta||_1 \leqslant n\}.$$

Theorem

For rank r = 2 we have

- (i) for $n \ge 4$, $\alpha_2(n) \le \frac{(n-1)^2}{2}$,
- (ii) for $n \geqslant n_0$, $\frac{n^2}{16} \leqslant \alpha_2(n)$,
- (iii) for $n \ge 1$, $\beta_2(n) = n$.

Theorem

For $r \geqslant 3$ there exist K = K(r), K' = K'(r), and M = M(r) such that for $n \geqslant 1$,

- (i) $Kn^r \leqslant \alpha_r(n)$,
- (ii) $Kn^{r-1} \leqslant \beta_r(n) \leqslant K'n^M$.

Theorem

For rank r = 2 we have

- (i) for $n \ge 4$, $\alpha_2(n) \le \frac{(n-1)^2}{2}$,
- (ii) for $n \geqslant n_0$, $\frac{n^2}{16} \leqslant \alpha_2(n)$,
- (iii) for $n \geqslant 1$, $\beta_2(n) = n$.

Theorem

For $r \geqslant 3$ there exist K = K(r), K' = K'(r), and M = M(r) such that for $n \geqslant 1$,

- (i) $Kn^r \leqslant \alpha_r(n)$,
- (ii) $Kn^{r-1} \leqslant \beta_r(n) \leqslant K'n^M$.

Theorem

For rank r = 2 we have

- (i) for $n \ge 4$, $\alpha_2(n) \le \frac{(n-1)^2}{2}$,
- (ii) for $n \geqslant n_0$, $\frac{n^2}{16} \leqslant \alpha_2(n)$,
- (iii) for $n \ge 1$, $\beta_2(n) = n$.

Theorem

For $r \geqslant 3$ there exist K = K(r), K' = K'(r), and M = M(r) such that for $n \geqslant 1$,

- (i) $Kn^r \leqslant \alpha_r(n)$,
- (ii) $Kn^{r-1} \leqslant \beta_r(n) \leqslant K'n^M$.

Theorem

For rank r = 2 we have

- (i) for $n \ge 4$, $\alpha_2(n) \le \frac{(n-1)^2}{2}$,
- (ii) for $n \geqslant n_0$, $\frac{n^2}{16} \leqslant \alpha_2(n)$,
- (iii) for $n \ge 1$, $\beta_2(n) = n$.

Theorem

For $r \geqslant 3$ there exist K = K(r), K' = K'(r), and M = M(r) such that, for $n \geqslant 1$,

- (i) $Kn^r \leqslant \alpha_r(n)$,
- (ii) $Kn^{r-1} \leqslant \beta_r(n) \leqslant K'n^M$

Theorem

For rank r = 2 we have

- (i) for $n \ge 4$, $\alpha_2(n) \le \frac{(n-1)^2}{2}$,
- (ii) for $n \geqslant n_0$, $\frac{n^2}{16} \leqslant \alpha_2(n)$,
- (iii) for $n \ge 1$, $\beta_2(n) = n$.

Theorem

For $r \geqslant 3$ there exist K = K(r), K' = K'(r), and M = M(r) such that, for $n \geqslant 1$,

- (i) $Kn^r \leqslant \alpha_r(n)$,
- (ii) $Kn^{r-1} \leqslant \beta_r(n) \leqslant K'n^M$.

Outline

- Motivation
- 2 Main definition
- Free groups
- 4 Lower bounds: a good enough example
- Upper bounds: outer space
- The special case of rank 2

Theorem

For
$$r \geqslant 2$$
, and $n \geqslant n_0$, we have $\frac{1}{2r^{r-1}}n^{r-1} \leqslant \beta_r(n)$.

Proof: For $r \ge 2$ and $n \ge 1$, consider

A straightforward calculation shows that $||\psi_{r,n}||_1 = (r-1)n + r$, and $||\psi_{r,n}^{-1}||_1 = n^{r-1} + 2n^{r-2} + \cdots + (r-1)n + r \ge n^{r-1}$.

An detailed argument shows that these are $||[\psi_{r,n}]||_1$ and $||[\psi_{r,n}^{-1}]||_1$

Theorem

For $r \geqslant 2$, and $n \geqslant n_0$, we have $\frac{1}{2r^{r-1}}n^{r-1} \leqslant \beta_r(n)$.

Proof: For $r \ge 2$ and $n \ge 1$, consider

A straightforward calculation shows that $||\psi_{r,n}||_1 = (r-1)n + r$, and $||\psi_{r,n}^{-1}||_1 = n^{r-1} + 2n^{r-2} + \cdots + (r-1)n + r \ge n^{r-1}$.

An detailed argument shows that these are $||[\psi_{r,n}]||_1$ and $||[\psi_{r,n}^{-1}]||_1$

Theorem

For $r \geqslant 2$, and $n \geqslant n_0$, we have $\frac{1}{2r^{r-1}}n^{r-1} \leqslant \beta_r(n)$.

Proof: For $r \ge 2$ and $n \ge 1$, consider

A straightforward calculation shows that $||\psi_{r,n}||_1 = (r-1)n + r$, and $||\psi_{r,n}^{-1}||_1 = n^{r-1} + 2n^{r-2} + \cdots + (r-1)n + r \geqslant n^{r-1}$.

An detailed argument shows that these are $||[\psi_{r,n}]||_1$ and $||[\psi_{r,n}^{-1}]||_1$

Theorem

For $r \geqslant 2$, and $n \geqslant n_0$, we have $\frac{1}{2r^{r-1}}n^{r-1} \leqslant \beta_r(n)$.

Proof: For $r \ge 2$ and $n \ge 1$, consider

A straightforward calculation shows that $||\psi_{r,n}||_1 = (r-1)n + r$, and $||\psi_{r,n}^{-1}||_1 = n^{r-1} + 2n^{r-2} + \cdots + (r-1)n + r \geqslant n^{r-1}$.

An detailed argument shows that these are $||[\psi_{r,n}]||_1$ and $||[\psi_{r,n}^{-1}]||_1$.

Hence, for $n \ge r$,

$$\beta_r(rn) \geqslant \beta_r((r-1)n+r) \geqslant n^{r-1}.$$

Now, for *n* big enough, take the closest multiple of *r* below,

$$n \geqslant rm > n - r$$
,

and

$$\beta_r(n) \geqslant \beta_r(rm) \geqslant m^{r-1} > \left(\frac{n-r}{r}\right)^{r-1} = \left(\frac{n}{r}-1\right)^{r-1} \geqslant \frac{1}{2r^{r-1}}n^{r-1}. \quad \Box$$

Finally, conjugating by an appropriate element, we shall win an extra unit in the exponent.

Hence, for $n \ge r$,

$$\beta_r(rn) \geqslant \beta_r((r-1)n+r) \geqslant n^{r-1}.$$

Now, for *n* big enough, take the closest multiple of *r* below,

$$n \geqslant rm > n - r$$
,

and

$$\beta_r(n) \geqslant \beta_r(rm) \geqslant m^{r-1} > \left(\frac{n-r}{r}\right)^{r-1} = \left(\frac{n}{r}-1\right)^{r-1} \geqslant \frac{1}{2r^{r-1}}n^{r-1}. \quad \Box$$

Finally, conjugating by an appropriate element, we shall win an extra unit in the exponent.

Hence, for $n \ge r$,

$$\beta_r(rn) \geqslant \beta_r((r-1)n+r) \geqslant n^{r-1}.$$

Now, for *n* big enough, take the closest multiple of *r* below,

$$n \geqslant rm > n - r$$
,

and

$$\beta_r(n) \geqslant \beta_r(rm) \geqslant m^{r-1} > \left(\frac{n-r}{r}\right)^{r-1} = \left(\frac{n}{r}-1\right)^{r-1} \geqslant \frac{1}{2r^{r-1}}n^{r-1}. \quad \Box$$

Finally, conjugating by an appropriate element, we shall win an extra unit in the exponent.

A lower bound for α_r

Theorem

For
$$r \geqslant 2$$
, and $n \geqslant n_0$, we have $\frac{(r-1)^{r-1}}{2r^{2r-1}}n^r \leqslant \alpha_r(n)$.

Proof: For $r\geqslant 2$ and $n\geqslant 1$, consider $\psi_{r,n}\gamma_{a_r^{-m}a_1^{-1}}$, where $m=\lceil\frac{n}{2r-2}\rceil$. Writing $N=||\psi_{r,n}\gamma_{a_r^{-m}a_1^{-1}}||_1$, straightforward calculations show that, for $n\geqslant n_0$,

$$||\gamma_{a_1a_r^m}\psi_{r,n}^{-1}||_1 = ||\psi_{r,n}^{-1}\gamma_{(a_1a_r^m)\psi_{r,n}^{-1}}||_1 \geqslant \frac{(r-1)^{r-1}}{2r^{2r-1}}N^r.$$

Hence, $\frac{(r-1)^{r-1}}{2r^{2r-1}}n^r \leqslant \alpha_r(n)$.

A lower bound for α_r

Theorem

For
$$r \geqslant 2$$
, and $n \geqslant n_0$, we have $\frac{(r-1)^{r-1}}{2r^{2r-1}}n^r \leqslant \alpha_r(n)$.

Proof: For $r\geqslant 2$ and $n\geqslant 1$, consider $\psi_{r,n}\gamma_{a_r^{-m}a_1^{-1}}$, where $m=\lceil\frac{n}{2r-2}\rceil$. Writing $N=||\psi_{r,n}\gamma_{a_r^{-m}a_1^{-1}}||_1$, straightforward calculations show that, for $n\geqslant n_0$,

$$||\gamma_{a_1a_r^m}\psi_{r,n}^{-1}||_1 = ||\psi_{r,n}^{-1}\gamma_{(a_1a_r^m)\psi_{r,n}^{-1}}||_1 \geqslant \frac{(r-1)^{r-1}}{2r^{2r-1}}N^r.$$

Hence,
$$\frac{(r-1)^{r-1}}{2r^{2r-1}}n^r\leqslant \alpha_r(n)$$
.

A lower bound for α_r

Theorem

For
$$r \geqslant 2$$
, and $n \geqslant n_0$, we have $\frac{(r-1)^{r-1}}{2r^{2r-1}}n^r \leqslant \alpha_r(n)$.

Proof: For $r\geqslant 2$ and $n\geqslant 1$, consider $\psi_{r,n}\gamma_{a_r^{-m}a_1^{-1}}$, where $m=\lceil\frac{n}{2r-2}\rceil$. Writing $N=||\psi_{r,n}\gamma_{a_r^{-m}a_1^{-1}}||_1$, straightforward calculations show that, for $n\geqslant n_0$,

$$||\gamma_{a_1a_r^m}\psi_{r,n}^{-1}||_1 = ||\psi_{r,n}^{-1}\gamma_{(a_1a_r^m)\psi_{r,n}^{-1}}||_1 \geqslant \frac{(r-1)^{r-1}}{2r^{2r-1}}N^r.$$

Hence, $\frac{(r-1)^{r-1}}{2r^{2r-1}}n^r \leqslant \alpha_r(n)$.

Outline

- Motivation
- 2 Main definition
- Free groups
- 4 Lower bounds: a good enough example
- Upper bounds: outer space
- 6 The special case of rank 2

To prove the upper bound

(ii)
$$\beta_r(n) \leqslant Kn^M$$
,

we'll need to use the recently discovered metric in the outer space \mathcal{X}_r .

- By graf \(\text{we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell \colon E\Gamma \to [0,1]$ such that $\sum_{e \in E\Gamma} \ell(e) = 1$, and $\{e \in E\Gamma \mid \ell(e) = 0\}$ is a forest.
- For a graph Γ , $\Sigma_{\Gamma} = \{ metrics \ on \ \Gamma \} = a \ simplex \ with \ missing faces.$
- If $\Gamma' = \Gamma/$ forest, then we identify points in $\Sigma_{\Gamma'}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_r \to \Gamma$.

To prove the upper bound

(ii)
$$\beta_r(n) \leqslant Kn^M$$
,

we'll need to use the recently discovered metric in the outer space \mathcal{X}_r .

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell \colon E\Gamma \to [0,1]$ such that $\sum_{e \in E\Gamma} \ell(e) = 1$, and $\{e \in E\Gamma \mid \ell(e) = 0\}$ is a forest.
- For a graph Γ , $\Sigma_{\Gamma} = \{metrics \ on \ \Gamma\} = a \ simplex \ with \ missing faces.$
- If $\Gamma' = \Gamma/$ forest, then we identify points in $\Sigma_{\Gamma'}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_r \to \Gamma$.

To prove the upper bound

(ii)
$$\beta_r(n) \leqslant Kn^M$$
,

we'll need to use the recently discovered metric in the outer space \mathcal{X}_r .

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell \colon E\Gamma \to [0,1]$ such that $\sum_{e \in E\Gamma} \ell(e) = 1$, and $\{e \in E\Gamma \mid \ell(e) = 0\}$ is a forest.
- For a graph Γ, Σ_Γ = {metrics on Γ} = a simplex with missing faces.
- If $\Gamma' = \Gamma/$ forest, then we identify points in $\Sigma_{\Gamma'}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_r \to \Gamma$.

To prove the upper bound

(ii)
$$\beta_r(n) \leqslant Kn^M$$
,

we'll need to use the recently discovered metric in the outer space \mathcal{X}_r .

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell \colon E\Gamma \to [0,1]$ such that $\sum_{e \in E\Gamma} \ell(e) = 1$, and $\{e \in E\Gamma \mid \ell(e) = 0\}$ is a forest.
- For a graph Γ, Σ_Γ = {metrics on Γ} = a simplex with missing faces.
- If $\Gamma' = \Gamma/$ forest, then we identify points in $\Sigma_{\Gamma'}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_r \to \Gamma$.

To prove the upper bound

(ii)
$$\beta_r(n) \leqslant Kn^M$$
,

we'll need to use the recently discovered metric in the outer space \mathcal{X}_r .

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell \colon E\Gamma \to [0,1]$ such that $\sum_{e \in E\Gamma} \ell(e) = 1$, and $\{e \in E\Gamma \mid \ell(e) = 0\}$ is a forest.
- For a graph Γ , $\Sigma_{\Gamma} = \{metrics \ on \ \Gamma\} = a \ simplex \ with \ missing faces.$
- If $\Gamma' = \Gamma/$ forest, then we identify points in $\Sigma_{\Gamma'}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_r \to \Gamma$.

To prove the upper bound

(ii)
$$\beta_r(n) \leqslant Kn^M$$
,

we'll need to use the recently discovered metric in the outer space \mathcal{X}_r .

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell \colon E\Gamma \to [0,1]$ such that $\sum_{e \in E\Gamma} \ell(e) = 1$, and $\{e \in E\Gamma \mid \ell(e) = 0\}$ is a forest.
- For a graph Γ, Σ_Γ = {metrics on Γ} = a simplex with missing faces.
- If $\Gamma' = \Gamma/$ forest, then we identify points in $\Sigma_{\Gamma'}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_r \to \Gamma$.

Definition

The outer space \mathcal{X}_r is

$$\mathcal{X}_r = \{ (\Gamma, f, \ell) \} / \sim$$

(where \sim is an equivalence relation).

Definition

There is a natural action of $Aut(F_r)$ on \mathcal{X}_r , given by

$$\phi \cdot (\Gamma, f, \ell) = (\Gamma, \phi f, \ell),$$

(thinking $\phi \colon R_r \to R_r$). In fact, this is an action of $Out(F_r)$.

Definition

The outer space \mathcal{X}_r is

$$\mathcal{X}_r = \{ (\Gamma, f, \ell) \} / \sim$$

(where \sim is an equivalence relation).

Definition

There is a natural action of $Aut(F_r)$ on \mathcal{X}_r , given by

$$\phi \cdot (\Gamma, f, \ell) = (\Gamma, \phi f, \ell),$$

(thinking $\phi \colon R_r \to R_r$). In fact, this is an action of $Out(F_r)$.

Metric on \mathcal{X}_r

Definition

Let $x, x' \in \mathcal{X}_r$, $x = (\Gamma, f, \ell)$, $x' = (\Gamma', f', \ell')$. A difference of markings is a map $\alpha \colon \Gamma \to \Gamma'$, which is linear over edges and $f\alpha \simeq f'$.

For such an α , define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

 \mathcal{X}_r admits the following "metric":

$$d(x, x') = \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings }\}.$$

This minimum is achieved by Arzela-Ascoli's theorem

This is Bestvina-AlgomKfir version of Martino-Francaviglia's original metric.

Metric on \mathcal{X}_r

Definition

Let $x, x' \in \mathcal{X}_r$, $x = (\Gamma, f, \ell)$, $x' = (\Gamma', f', \ell')$. A difference of markings is a map $\alpha \colon \Gamma \to \Gamma'$, which is linear over edges and $f\alpha \simeq f'$. For such an α , define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

 \mathcal{X}_r admits the following "metric":

$$d(x, x') = \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings }\}$$

This minimum is achieved by Arzela-Ascoli's theorem

This is Bestvina-AlgomKfir version of Martino-Francaviglia's original metric.

Metric on \mathcal{X}_r

Definition

Let $x, x' \in \mathcal{X}_r$, $x = (\Gamma, f, \ell)$, $x' = (\Gamma', f', \ell')$. A difference of markings is a map $\alpha \colon \Gamma \to \Gamma'$, which is linear over edges and $f\alpha \simeq f'$. For such an α , define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

 \mathcal{X}_r admits the following "metric":

$$d(x, x') = \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings }\}.$$

This minimum is achieved by Arzela-Ascoli's theorem.

This is Bestvina-AlgomKfir version of Martino-Francaviglia's original metric.

Definition

Let $x, x' \in \mathcal{X}_r$, $x = (\Gamma, f, \ell)$, $x' = (\Gamma', f', \ell')$. A difference of markings is a map $\alpha \colon \Gamma \to \Gamma'$, which is linear over edges and $f\alpha \simeq f'$. For such an α , define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

 \mathcal{X}_r admits the following "metric":

$$d(x, x') = \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings }\}.$$

This minimum is achieved by Arzela-Ascoli's theorem.

This is Bestvina-AlgomKfir version of Martino-Francaviglia's original metric.

Proposition

- (i) $d(x, y) \geqslant 0$, and $= 0 \Leftrightarrow x = y$.
- (ii) $d(x,z) \leqslant d(x,y) + d(y,z)$.
- (iii) Out(F_r) acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y) = d(x, y)$.
- (iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

$$\mathcal{X}_r(\epsilon) = \{(\Gamma, f, \ell) \in \mathcal{X}_r \mid \ell(p) \geqslant \epsilon \ \forall \ \textit{closed path } p \neq 1 \}$$

Proposition

- (i) $d(x, y) \ge 0$, and $= 0 \Leftrightarrow x = y$.
- (ii) $d(x,z) \leqslant d(x,y) + d(y,z)$.
- (iii) Out(F_r) acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y) = d(x, y)$.
- (iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

$$\mathcal{X}_r(\epsilon) = \{(\Gamma, f, \ell) \in \mathcal{X}_r \mid \ell(p) \geqslant \epsilon \ \forall \ \textit{closed path } p \neq 1 \}$$

Proposition

(i)
$$d(x, y) \geqslant 0$$
, and $= 0 \Leftrightarrow x = y$.

(ii)
$$d(x,z) \leqslant d(x,y) + d(y,z)$$
.

(iii) Out(
$$F_r$$
) acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y) = d(x, y)$.

(iv) But... $d(x,y) \neq d(y,x)$ in general.

Definition

$$\mathcal{X}_r(\epsilon) = \{(\Gamma, f, \ell) \in \mathcal{X}_r \mid \ell(p) \geqslant \epsilon \ \forall \ \textit{closed path } p \neq 1 \}$$

Proposition

- (i) $d(x, y) \ge 0$, and $= 0 \Leftrightarrow x = y$.
- (ii) $d(x,z) \leqslant d(x,y) + d(y,z)$.
- (iii) Out(F_r) acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y) = d(x, y)$.
- (iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

$$\mathcal{X}_r(\epsilon) = \{(\Gamma, f, \ell) \in \mathcal{X}_r \mid \ell(p) \geqslant \epsilon \ \forall \ \textit{closed path } p \neq 1 \}$$

Proposition

- (i) $d(x, y) \geqslant 0$, and $= 0 \Leftrightarrow x = y$.
- (ii) $d(x,z) \leqslant d(x,y) + d(y,z)$.
- (iii) Out(F_r) acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y) = d(x, y)$.
- (iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

$$\mathcal{X}_r(\epsilon) = \{ (\Gamma, f, \ell) \in \mathcal{X}_r \mid \ell(p) \geqslant \epsilon \ \forall \ \textit{closed path } p \neq 1 \}$$

Bestvina-AlgomKfir theorem

Theorem (Bestvina-AlgomKfir)

For any $\epsilon > 0$ there is constant $M = M(r, \epsilon)$ such that for all $x, y \in \mathcal{X}_r(\epsilon)$,

$$d(x,y) \leqslant M \cdot d(y,x).$$

Corollary

For $r \geqslant 2$, there exists M = M(r) such that

$$\beta_r(n) \leqslant r n^M$$

Bestvina-AlgomKfir theorem

Theorem (Bestvina-AlgomKfir)

For any $\epsilon > 0$ there is constant $M = M(r, \epsilon)$ such that for all $x, y \in \mathcal{X}_r(\epsilon)$,

$$d(x,y) \leqslant M \cdot d(y,x).$$

Corollary

For $r \geqslant 2$, there exists M = M(r) such that

$$\beta_r(n) \leqslant r n^M$$
.

Remind
$$\beta_r(n) = \max\{||\Theta^{-1}||_1 \mid \theta \in Aut F_r, ||\Theta||_1 \leqslant n\}.$$

Proof. Given $\theta \in \Theta \in \text{Out}(F_r)$, consider $x = (R_r, id, \ell_0) \in \mathcal{X}_r$, and $\theta \cdot x = (R_r, \theta, \ell_0) \in \mathcal{X}_r$, where ℓ_0 is the uniform metric.

$$\begin{array}{ll} d(x,\,\theta\cdot x) &=& \min\{\log(\sigma(\alpha))\mid\alpha\; \text{diff. markings}\}\\ &=& \log\big(\min\{\sigma(\theta\gamma_w\gamma_p)\mid w\in F_r,\, p=\;\text{``half petal''}\}\big)\\ &\sim& \log\big(\min\{\sigma(\theta\gamma_w)\mid w\in F_r\}\big)\\ &=& \log\big(\min\{||\theta\gamma_w||_\infty\mid w\in F_r\}\big)\\ &=& \log(||\Theta||_\infty)\\ &\sim& \log(||\Theta||_1). \end{array}$$

Now, using Bestvina-AlgomKfir theorem,

$$\log(||\Theta^{-1}||_1) \sim d(x, \theta^{-1} \cdot x) = d(\theta \cdot x, x) \leqslant Md(x, \theta \cdot x) \sim M\log(||\Theta||_1).$$

Remind
$$\beta_r(n) = \max\{||\Theta^{-1}||_1 \mid \theta \in Aut F_r, ||\Theta||_1 \leqslant n\}.$$

Proof. Given $\theta \in \Theta \in \text{Out}(F_r)$, consider $x = (R_r, id, \ell_0) \in \mathcal{X}_r$, and $\theta \cdot x = (R_r, \theta, \ell_0) \in \mathcal{X}_r$, where ℓ_0 is the uniform metric.

$$\begin{array}{ll} \textit{d}(\textit{x},\,\theta\cdot\textit{x}) &=& \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings}\}\\ &=& \log\big(\min\{\sigma(\theta\gamma_{\textit{w}}\gamma_{\textit{p}}) \mid \textit{w} \in \textit{F}_{\textit{r}},\,\textit{p} = \text{ "half petal"}\}\big)\\ &\sim& \log\big(\min\{\sigma(\theta\gamma_{\textit{w}}) \mid \textit{w} \in \textit{F}_{\textit{r}}\}\big)\\ &=& \log\big(\min\{|\theta\gamma_{\textit{w}}||_{\infty} \mid \textit{w} \in \textit{F}_{\textit{r}}\}\big)\\ &=& \log(||\Theta||_{\infty})\\ &\sim& \log(||\Theta||_{1}). \end{array}$$

Now, using Bestvina-AlgomKfir theorem,

$$\log(||\Theta^{-1}||_1) \sim d(x, \theta^{-1} \cdot x) = d(\theta \cdot x, x) \leqslant Md(x, \theta \cdot x) \sim M\log(||\Theta||_1).$$

Remind
$$\beta_r(n) = \max\{||\Theta^{-1}||_1 \mid \theta \in Aut F_r, ||\Theta||_1 \leqslant n\}.$$

Proof. Given $\theta \in \Theta \in \text{Out}(F_r)$, consider $x = (R_r, id, \ell_0) \in \mathcal{X}_r$, and $\theta \cdot x = (R_r, \theta, \ell_0) \in \mathcal{X}_r$, where ℓ_0 is the uniform metric.

$$\begin{array}{ll} \textit{d}(\textit{x},\,\theta\cdot\textit{x}) &=& \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings}\}\\ &=& \log\big(\min\{\sigma(\theta\gamma_{\textit{w}}\gamma_{\textit{p}}) \mid \textit{w} \in \textit{F}_{\textit{r}},\,\textit{p} = \text{ "half petal"}\}\big)\\ &\sim& \log\big(\min\{\sigma(\theta\gamma_{\textit{w}}) \mid \textit{w} \in \textit{F}_{\textit{r}}\}\big)\\ &=& \log\big(\min\{|\theta\gamma_{\textit{w}}||_{\infty} \mid \textit{w} \in \textit{F}_{\textit{r}}\}\big)\\ &=& \log(||\Theta||_{\infty})\\ &\sim& \log(||\Theta||_{1}). \end{array}$$

Now, using Bestvina-AlgomKfir theorem,

$$\log(||\Theta^{-1}||_1) \sim d(x, \theta^{-1} \cdot x) = d(\theta \cdot x, x) \leqslant Md(x, \theta \cdot x) \sim M\log(||\Theta||_1).$$

Remind
$$\beta_r(n) = \max\{||\Theta^{-1}||_1 \mid \theta \in Aut F_r, ||\Theta||_1 \leqslant n\}.$$

Proof. Given $\theta \in \Theta \in \text{Out}(F_r)$, consider $x = (R_r, id, \ell_0) \in \mathcal{X}_r$, and $\theta \cdot x = (R_r, \theta, \ell_0) \in \mathcal{X}_r$, where ℓ_0 is the uniform metric.

$$\begin{array}{ll} \textit{d}(\textit{x},\,\theta\cdot\textit{x}) &=& \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings}\}\\ &=& \log\big(\min\{\sigma(\theta\gamma_{\textit{w}}\gamma_{\textit{p}}) \mid \textit{w} \in \textit{F}_{\textit{r}},\,\textit{p} = \text{ "half petal"}\}\big)\\ &\sim& \log\big(\min\{\sigma(\theta\gamma_{\textit{w}}) \mid \textit{w} \in \textit{F}_{\textit{r}}\}\big)\\ &=& \log\big(\min\{|\theta\gamma_{\textit{w}}||_{\infty} \mid \textit{w} \in \textit{F}_{\textit{r}}\}\big)\\ &=& \log(||\Theta||_{\infty})\\ &\sim& \log(||\Theta||_{1}). \end{array}$$

Now, using Bestvina-AlgomKfir theorem,

$$\log(||\Theta^{-1}||_1) \sim d(x, \theta^{-1} \cdot x) = d(\theta \cdot x, x) \leqslant Md(x, \theta \cdot x) \sim M\log(||\Theta||_1).$$

Outline

- Motivation
- Main definition
- Free groups
- Lower bounds: a good enough example
- Upper bounds: outer space
- 6 The special case of rank 2

The rank 2 case

These functions for $Aut(F_2)$ are much easier to understand due to the following technical lemmas.

Lemma

Let $\varphi \in Aut(F_2)$ be positive. Then φ^{-1} is cyclically reduced and $||\varphi^{-1}||_1 = ||\varphi||_1$.

Lemma

For every $\theta \in Aut(F_2)$, there exist two letter permuting autos $\psi_1, \ \psi_2 \in Aut(F_2)$, a positive one $\varphi \in Aut^+(F_2)$, and an element $g \in F_2$, such that $\theta = \psi_1 \varphi \psi_2 \lambda_g$ and $||\varphi||_1 + 2|g| \le ||\theta||_1$.

The rank 2 case

These functions for $Aut(F_2)$ are much easier to understand due to the following technical lemmas.

Lemma

Let $\varphi \in Aut(F_2)$ be positive. Then φ^{-1} is cyclically reduced and $||\varphi^{-1}||_1 = ||\varphi||_1$.

Lemma

For every $\theta \in Aut(F_2)$, there exist two letter permuting autos $\psi_1, \ \psi_2 \in Aut(F_2)$, a positive one $\varphi \in Aut^+(F_2)$, and an element $g \in F_2$, such that $\theta = \psi_1 \varphi \psi_2 \lambda_q$ and $||\varphi||_1 + 2|g| \leq ||\theta||_1$.

The rank 2 case

These functions for $Aut(F_2)$ are much easier to understand due to the following technical lemmas.

Lemma

Let $\varphi \in Aut(F_2)$ be positive. Then φ^{-1} is cyclically reduced and $||\varphi^{-1}||_1 = ||\varphi||_1$.

Lemma

For every $\theta \in Aut(F_2)$, there exist two letter permuting autos ψ_1 , $\psi_2 \in Aut(F_2)$, a positive one $\varphi \in Aut^+(F_2)$, and an element $g \in F_2$, such that $\theta = \psi_1 \varphi \psi_2 \lambda_g$ and $||\varphi||_1 + 2|g| \leq ||\theta||_1$.

Theorem

For every $\theta \in Aut(F_2)$, $||[\theta^{-1}]||_1 = ||[\theta]||_1$. Hence, $\beta_2(n) = n$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then

$$||[\theta]||_1 = ||[\psi_1 \varphi \psi_2 \lambda_g]||_1 = ||[\psi_1 \varphi \psi_2]||_1 = ||\varphi||_1.$$

On the other hand

$$\begin{split} ||[\theta^{-1}]||_1 &= ||[\lambda_{g^{-1}}\psi_2^{-1}\varphi^{-1}\psi_1^{-1}]||_1 = ||[\psi_2^{-1}\varphi^{-1}\psi_1^{-1}]||_1 = \\ &= ||[\varphi^{-1}]||_1 = ||[\varphi]||_1. \quad \Box \end{split}$$

Theorem

For every
$$\theta \in Aut(F_2)$$
, $||[\theta^{-1}]||_1 = ||[\theta]||_1$. Hence, $\beta_2(n) = n$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then,

$$||[\theta]||_1 = ||[\psi_1 \varphi \psi_2 \lambda_g]||_1 = ||[\psi_1 \varphi \psi_2]||_1 = ||\varphi||_1$$

On the other hand

$$\begin{split} ||[\theta^{-1}]||_1 &= ||[\lambda_{g^{-1}}\psi_2^{-1}\varphi^{-1}\psi_1^{-1}]||_1 = ||[\psi_2^{-1}\varphi^{-1}\psi_1^{-1}]||_1 = \\ &= ||[\varphi^{-1}]||_1 = ||[\varphi]||_1. \quad \Box \end{split}$$

Theorem

For every
$$\theta \in Aut(F_2)$$
, $||[\theta^{-1}]||_1 = ||[\theta]||_1$. Hence, $\beta_2(n) = n$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then,

$$||[\theta]||_1 = ||[\psi_1 \varphi \psi_2 \lambda_g]||_1 = ||[\psi_1 \varphi \psi_2]||_1 = ||\varphi||_1.$$

On the other hand

$$\begin{split} ||[\theta^{-1}]||_1 &= ||[\lambda_{g^{-1}}\psi_2^{-1}\varphi^{-1}\psi_1^{-1}]||_1 = ||[\psi_2^{-1}\varphi^{-1}\psi_1^{-1}]||_1 = \\ &= ||[\varphi^{-1}]||_1 = ||[\varphi]||_1. \quad \Box \end{split}$$

Theorem

For every $\theta \in Aut(F_2)$, $||[\theta^{-1}]||_1 = ||[\theta]||_1$. Hence, $\beta_2(n) = n$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then,

$$||[\theta]||_1 = ||[\psi_1 \varphi \psi_2 \lambda_g]||_1 = ||[\psi_1 \varphi \psi_2]||_1 = ||\varphi||_1.$$

On the other hand,

$$\begin{split} ||[\theta^{-1}]||_1 &= ||[\lambda_{g^{-1}}\psi_2^{-1}\varphi^{-1}\psi_1^{-1}]||_1 = ||[\psi_2^{-1}\varphi^{-1}\psi_1^{-1}]||_1 = \\ &= ||[\varphi^{-1}]||_1 = ||[\varphi]||_1. \quad \Box \end{split}$$

Theorem

For $n \geqslant 4$ we have $\alpha_2(n) \leqslant \frac{(n-1)^2}{2}$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then, $\theta^{-1} = \lambda_{\sigma^{-1}} \psi_2^{-1} \varphi^{-1} \psi_1^{-1}$ and

$$||\theta^{-1}||_1 \leqslant 4|g| \cdot ||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}||_{\infty} = 4|g| \cdot ||\varphi^{-1}||_{\infty} \leqslant$$

$$\leq 4|g|(||\varphi^{-1}||_1-1)=4|g|(||\varphi||_1-1).$$

Now from $||\varphi||_1 + 2|g| \leqslant ||\theta||_1 = n$, we deduce $|g| \leqslant \frac{n - ||\varphi||_1}{2}$ and so,

$$\|\theta^{-1}\|_1 \le 2(n - \|\varphi\|_1)(\|\varphi\|_1 - 1)$$

$$||\theta^{-1}||_1 \leqslant 2(n-||\varphi||_1)(||\varphi||_1-1) \leqslant 2(n-\frac{n+1}{2})(\frac{n+1}{2}-1) = \frac{(n-1)^2}{2}$$

Theorem

For
$$n \geqslant 4$$
 we have $\alpha_2(n) \leqslant \frac{(n-1)^2}{2}$.

Proof. Let $\theta \in \operatorname{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then, $\theta^{-1} = \lambda_{g^{-1}} \psi_2^{-1} \varphi^{-1} \psi_1^{-1}$ and

$$||\theta^{-1}||_1 \leqslant 4|g| \cdot ||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}||_{\infty} = 4|g| \cdot ||\varphi^{-1}||_{\infty} \leqslant$$

$$\leq 4|g|(||\varphi^{-1}||_1-1)=4|g|(||\varphi||_1-1).$$

Now from $||\varphi||_1 + 2|g| \leqslant ||\theta||_1 = n$, we deduce $|g| \leqslant \frac{n - ||\varphi||_1}{2}$ and so,

$$\|\theta^{-1}\|_1 \leq 2(n-\|\varphi\|_1)(\|\varphi\|_1-1)$$

$$||\theta^{-1}||_1 \leqslant 2(n-||\varphi||_1)(||\varphi||_1-1) \leqslant 2(n-\frac{n+1}{2})(\frac{n+1}{2}-1) = \frac{(n-1)^2}{2}.$$

Theorem

For
$$n \geqslant 4$$
 we have $\alpha_2(n) \leqslant \frac{(n-1)^2}{2}$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then, $\theta^{-1} = \lambda_{g^{-1}} \psi_2^{-1} \varphi^{-1} \psi_1^{-1}$ and

$$||\theta^{-1}||_1 \leqslant 4|g| \cdot ||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}||_{\infty} = 4|g| \cdot ||\varphi^{-1}||_{\infty} \leqslant$$

$$\leq 4|g|(||\varphi^{-1}||_1-1)=4|g|(||\varphi||_1-1).$$

Now from $||arphi||_1+2|g|\leqslant || heta||_1=n$, we deduce $|g|\leqslant rac{n-||arphi||_1}{2}$ and so,

$$\|\theta^{-1}\|_1 \le 2(n - \|\varphi\|_1)(\|\varphi\|_1 - 1)$$

$$||\theta^{-1}||_1 \leqslant 2(n-||\varphi||_1)(||\varphi||_1-1) \leqslant 2(n-\frac{n+1}{2})(\frac{n+1}{2}-1) = \frac{(n-1)^2}{2}.$$

Theorem

For
$$n \geqslant 4$$
 we have $\alpha_2(n) \leqslant \frac{(n-1)^2}{2}$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then, $\theta^{-1} = \lambda_{g^{-1}} \psi_2^{-1} \varphi^{-1} \psi_1^{-1}$ and

$$||\theta^{-1}||_1 \leqslant 4|g| \cdot ||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}||_{\infty} = 4|g| \cdot ||\varphi^{-1}||_{\infty} \leqslant$$

$$\leq 4|g|(||\varphi^{-1}||_1-1)=4|g|(||\varphi||_1-1).$$

Now from $||\varphi||_1 + 2|g| \leqslant ||\theta||_1 = n$, we deduce $|g| \leqslant \frac{n-||\varphi||_1}{2}$ and so,

$$\|\theta^{-1}\|_1 \leq 2(n-\|\varphi\|_1)(\|\varphi\|_1-1).$$

$$||\theta^{-1}||_1 \leq 2(n-||\varphi||_1)(||\varphi||_1-1) \leq 2(n-\frac{n+1}{2})(\frac{n+1}{2}-1) = \frac{(n-1)^2}{2}.$$

Theorem

For
$$n \geqslant 4$$
 we have $\alpha_2(n) \leqslant \frac{(n-1)^2}{2}$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then, $\theta^{-1} = \lambda_{g^{-1}} \psi_2^{-1} \varphi^{-1} \psi_1^{-1}$ and

$$||\theta^{-1}||_1 \leqslant 4|g| \cdot ||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}||_{\infty} = 4|g| \cdot ||\varphi^{-1}||_{\infty} \leqslant$$

$$\leq 4|g|(||\varphi^{-1}||_1-1)=4|g|(||\varphi||_1-1).$$

Now from $||\varphi||_1 + 2|g| \leqslant ||\theta||_1 = n$, we deduce $|g| \leqslant \frac{n - ||\varphi||_1}{2}$ and so,

$$\|\theta^{-1}\|_1 \leqslant 2(n-\|\varphi\|_1)(\|\varphi\|_1-1).$$

$$||\theta^{-1}||_1 \leqslant 2(n-||\varphi||_1)(||\varphi||_1-1) \leqslant 2(n-\frac{n+1}{2})(\frac{n+1}{2}-1) = \frac{(n-1)^2}{2}.$$

Summarizing

Theorem

For rank r = 2 we have

- (i) for $n \ge 4$, $\alpha_2(n) \le \frac{(n-1)^2}{2}$,
- (ii) for $n \geqslant n_0$, $\frac{n^2}{16} \leqslant \alpha_2(n)$,
- (iii) for $n \ge 1$, $\beta_2(n) = n$.

Theorem

For $r \geqslant 3$ there exist K = K(r), K' = K'(r), and M = M(r) such that for $n \geqslant 1$,

- (i) $Kn^r \leqslant \alpha_r(n)$,
- (ii) $Kn^{r-1} \leqslant \beta_r(n) \leqslant K'n^M$

Summarizing

Theorem

For rank r = 2 we have

- (i) for $n \ge 4$, $\alpha_2(n) \le \frac{(n-1)^2}{2}$,
- (ii) for $n \geqslant n_0$, $\frac{n^2}{16} \leqslant \alpha_2(n)$,
- (iii) for $n \ge 1$, $\beta_2(n) = n$.

Theorem

For $r \geqslant 3$ there exist K = K(r), K' = K'(r), and M = M(r) such that, for $n \geqslant 1$,

- (i) $Kn^r \leqslant \alpha_r(n)$,
- (ii) $Kn^{r-1} \leqslant \beta_r(n) \leqslant K'n^M$.

THANKS