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Motivation

(Joint work with P. Silva and M. Ladra.)

Find a group G where · is “easy" but ( )−1 is “difficult".

Natural candidate: Aut (Fn), where Fr = 〈a1, . . . ,ar | 〉.
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Motivation

(composing)

F3 = 〈a,b, c | 〉.

φ : F3 → F3 ψ : F3 → F3
a 7→ ab a 7→ bc−1

b 7→ ab2c b 7→ a−1bc
c 7→ bc2 c 7→ c−1.

φψ : F3 → F3
a 7→ bc−1a−1bc
b 7→ bc−1a−1bca−1b
c 7→ a−1bc−1.
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Motivation

(inverting)

F3 = 〈a,b, c | 〉.

φ : F3 → F3 φ−1 : F3 → F3
a 7→ ab a 7→ ab−1acb−1a
b 7→ ab2c b 7→ a−1bc−1a−1b
c 7→ bc2 c 7→ b−1ac.

(inverting)

F5 = 〈a,b, c,d ,e | 〉.

ψn : F5 → F5 ψ−1
n : F4 → F4

a 7→ a a 7→ a
b 7→ anb b 7→ a−nb
c 7→ bnc c 7→ (b−1an)nc
d 7→ cnd d 7→ (c−1(a−nb)n)nd
e 7→ dne e 7→ (d−1((b−1an)nc)n)ne.
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Motivation

In this talk...

• we formalize the situation.

• we see that inverting in Aut (Fr ) is not that bad (only
“polynomially hard").

• are there groups with inversion of automorphisms exponentially
hard ?
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Main definition

Definition

Let G be a group with a finite set of generators A = {a1, . . . ,ar}. We
have the word metric: for g ∈ G,

|g| = min{n | g = aε1
i1 · · · a

εn
in }.

Definition

For θ ∈ Aut (G), note θ is determined by a1θ, . . . , arθ and define

||θ||1 = |a1θ|+ · · ·+ |arθ|,

||θ||∞ = max{|a1θ|, . . . , |arθ|}.

Observation

For every θ ∈ Aut (Fr ), ||θ||∞ 6 ||θ||1 6 r ||θ||∞
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Main definition

Definition

Let G be a group with a finite set of generators A = {a1, . . . ,ar}. We
define the function:

αA(n) = max{||θ−1||1 | θ ∈ Aut (G), ||θ||1 6 n}.

Clearly, αA(n) 6 αA(n + 1).

The bigger is αA, the more “difficult" will be to invert automorphisms
of G (with respect to the given set of generators A).

Question
Determine the asymptotic growth of the function αG.
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Independence from A

Proposition

Let G be a group and A = {a1, . . . ,ar} and B = {b1, . . . ,bs} be two
finite sets of generators. Then, ∃ C > 0 s. t. ∀θ ∈ Aut (G)

1
C
‖θ‖B 6 ‖θ‖A 6 C‖θ‖B

Proof. Take |bi |A 6 M, |ai |B 6 N and let C = MNrs.

‖θ‖B = |b1θ|B + · · ·+ |bsθ|B

6 |b1θ|AN + · · ·+ |bsθ|AN

6 N
(
|b1|A‖θ‖A + · · ·+ |bs|A‖θ‖A

)
6 NMs‖θ‖A 6 C‖θ‖A.

By symmetry, ‖θ‖A 6 C‖θ‖B.
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Independence from A

Corollary

1
C
· αB(

n
C

) 6 αA(n) 6 C · αB(Cn).

Proof.

αA(n) = max{‖θ−1‖A | θ ∈ Aut (G), ‖θ‖A 6 n}

6 max{‖θ−1‖A | θ ∈ Aut (G), ‖θ‖B 6 Cn}

6 max{C‖θ−1‖B | θ ∈ Aut (G), ‖θ‖B 6 Cn}

= C ·max{‖θ−1‖B | θ ∈ Aut (G), ‖θ‖B 6 Cn}

= C · αB(Cn).

By symmetry, αB(n) 6 C · αA(Cn), so 1
C · αB( n

C ) 6 αA(n).
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Independence from A

Hence, αA(n) is independent from A (up to a multiplicative constant in
the domain and in the range).

Denote it by αG(n).

Question

Are there groups G with αG(n) linear ? quadratic? ... exponential?
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The same for outer autos

Definition

For Θ ∈ Out (G), define

‖Θ‖1 = min{‖θ‖1 | θ ∈ Θ},

‖Θ‖∞ = min{‖θ‖∞ | θ ∈ Θ},

Definition
For a finitely generated group G,

β(n) = max{||Θ−1||1 | Θ ∈ Out (G), ||Θ||1 6 n}.

We have the corresponding same properties.
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Free group case

For the rest of the talk, G = Fr = 〈a1, . . . ,ar | 〉.

For every w ∈ Fr , |w | is its free length.
|vw | 6 |v |+ |w |,
|wn| 6 |n||w |.

For θ ∈ Aut (Fr ) and Θ ∈ Out (Fr ),

||θ||1 = |a1θ|+ · · ·+ |arθ|, ||θ||∞ = max{|a1θ|, . . . , |arθ|}
||Θ||1 = min{||θ||1 | θ ∈ Θ} ||Θ||∞ = min{||θ||∞ | θ ∈ Θ}.

For r > 2,

αr (n) = max{||θ−1||1 | θ ∈ Aut Fr , ||θ||1 6 n},

βr (n) = max{||Θ−1||1 | Θ ∈ Out Fr , ||Θ||1 6 n}.



1. Motivation 2. Main definition 3. Free groups 3. Lower bounds 4. Upper bounds 5. The special case of rank 2

Free group case

For the rest of the talk, G = Fr = 〈a1, . . . ,ar | 〉.

For every w ∈ Fr , |w | is its free length.
|vw | 6 |v |+ |w |,
|wn| 6 |n||w |.

For θ ∈ Aut (Fr ) and Θ ∈ Out (Fr ),

||θ||1 = |a1θ|+ · · ·+ |arθ|, ||θ||∞ = max{|a1θ|, . . . , |arθ|}
||Θ||1 = min{||θ||1 | θ ∈ Θ} ||Θ||∞ = min{||θ||∞ | θ ∈ Θ}.

For r > 2,

αr (n) = max{||θ−1||1 | θ ∈ Aut Fr , ||θ||1 6 n},

βr (n) = max{||Θ−1||1 | Θ ∈ Out Fr , ||Θ||1 6 n}.



1. Motivation 2. Main definition 3. Free groups 3. Lower bounds 4. Upper bounds 5. The special case of rank 2

Free group case

For the rest of the talk, G = Fr = 〈a1, . . . ,ar | 〉.

For every w ∈ Fr , |w | is its free length.
|vw | 6 |v |+ |w |,
|wn| 6 |n||w |.

For θ ∈ Aut (Fr ) and Θ ∈ Out (Fr ),

||θ||1 = |a1θ|+ · · ·+ |arθ|, ||θ||∞ = max{|a1θ|, . . . , |arθ|}
||Θ||1 = min{||θ||1 | θ ∈ Θ} ||Θ||∞ = min{||θ||∞ | θ ∈ Θ}.

For r > 2,

αr (n) = max{||θ−1||1 | θ ∈ Aut Fr , ||θ||1 6 n},

βr (n) = max{||Θ−1||1 | Θ ∈ Out Fr , ||Θ||1 6 n}.



1. Motivation 2. Main definition 3. Free groups 3. Lower bounds 4. Upper bounds 5. The special case of rank 2

Free group case

For the rest of the talk, G = Fr = 〈a1, . . . ,ar | 〉.

For every w ∈ Fr , |w | is its free length.
|vw | 6 |v |+ |w |,
|wn| 6 |n||w |.

For θ ∈ Aut (Fr ) and Θ ∈ Out (Fr ),

||θ||1 = |a1θ|+ · · ·+ |arθ|, ||θ||∞ = max{|a1θ|, . . . , |arθ|}
||Θ||1 = min{||θ||1 | θ ∈ Θ} ||Θ||∞ = min{||θ||∞ | θ ∈ Θ}.

For r > 2,

αr (n) = max{||θ−1||1 | θ ∈ Aut Fr , ||θ||1 6 n},

βr (n) = max{||Θ−1||1 | Θ ∈ Out Fr , ||Θ||1 6 n}.



1. Motivation 2. Main definition 3. Free groups 3. Lower bounds 4. Upper bounds 5. The special case of rank 2

Free group case

For the rest of the talk, G = Fr = 〈a1, . . . ,ar | 〉.

For every w ∈ Fr , |w | is its free length.
|vw | 6 |v |+ |w |,
|wn| 6 |n||w |.

For θ ∈ Aut (Fr ) and Θ ∈ Out (Fr ),

||θ||1 = |a1θ|+ · · ·+ |arθ|, ||θ||∞ = max{|a1θ|, . . . , |arθ|}
||Θ||1 = min{||θ||1 | θ ∈ Θ} ||Θ||∞ = min{||θ||∞ | θ ∈ Θ}.

For r > 2,

αr (n) = max{||θ−1||1 | θ ∈ Aut Fr , ||θ||1 6 n},

βr (n) = max{||Θ−1||1 | Θ ∈ Out Fr , ||Θ||1 6 n}.



1. Motivation 2. Main definition 3. Free groups 3. Lower bounds 4. Upper bounds 5. The special case of rank 2

Free group case

For the rest of the talk, G = Fr = 〈a1, . . . ,ar | 〉.

For every w ∈ Fr , |w | is its free length.
|vw | 6 |v |+ |w |,
|wn| 6 |n||w |.

For θ ∈ Aut (Fr ) and Θ ∈ Out (Fr ),

||θ||1 = |a1θ|+ · · ·+ |arθ|, ||θ||∞ = max{|a1θ|, . . . , |arθ|}
||Θ||1 = min{||θ||1 | θ ∈ Θ} ||Θ||∞ = min{||θ||∞ | θ ∈ Θ}.

For r > 2,

αr (n) = max{||θ−1||1 | θ ∈ Aut Fr , ||θ||1 6 n},

βr (n) = max{||Θ−1||1 | Θ ∈ Out Fr , ||Θ||1 6 n}.



1. Motivation 2. Main definition 3. Free groups 3. Lower bounds 4. Upper bounds 5. The special case of rank 2

Free group case

For the rest of the talk, G = Fr = 〈a1, . . . ,ar | 〉.

For every w ∈ Fr , |w | is its free length.
|vw | 6 |v |+ |w |,
|wn| 6 |n||w |.

For θ ∈ Aut (Fr ) and Θ ∈ Out (Fr ),

||θ||1 = |a1θ|+ · · ·+ |arθ|, ||θ||∞ = max{|a1θ|, . . . , |arθ|}
||Θ||1 = min{||θ||1 | θ ∈ Θ} ||Θ||∞ = min{||θ||∞ | θ ∈ Θ}.

For r > 2,

αr (n) = max{||θ−1||1 | θ ∈ Aut Fr , ||θ||1 6 n},

βr (n) = max{||Θ−1||1 | Θ ∈ Out Fr , ||Θ||1 6 n}.



1. Motivation 2. Main definition 3. Free groups 3. Lower bounds 4. Upper bounds 5. The special case of rank 2

Free group case

For the rest of the talk, G = Fr = 〈a1, . . . ,ar | 〉.

For every w ∈ Fr , |w | is its free length.
|vw | 6 |v |+ |w |,
|wn| 6 |n||w |.

For θ ∈ Aut (Fr ) and Θ ∈ Out (Fr ),

||θ||1 = |a1θ|+ · · ·+ |arθ|, ||θ||∞ = max{|a1θ|, . . . , |arθ|}
||Θ||1 = min{||θ||1 | θ ∈ Θ} ||Θ||∞ = min{||θ||∞ | θ ∈ Θ}.

For r > 2,

αr (n) = max{||θ−1||1 | θ ∈ Aut Fr , ||θ||1 6 n},

βr (n) = max{||Θ−1||1 | Θ ∈ Out Fr , ||Θ||1 6 n}.
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Main results

Theorem
For rank r = 2 we have

(i) for n > 4, α2(n) 6 (n−1)2

2 ,

(ii) for n > n0,
n2

16 6 α2(n),
(iii) for n > 1, β2(n) = n.

Theorem

For r > 3 there exist K = K (r), K ′ = K ′(r), and M = M(r) such that,
for n > 1,

(i) Knr 6 αr (n),
(ii) Knr−1 6 βr (n) 6 K ′nM .
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A lower bound for βr

Theorem

For r > 2, and n > n0, we have 1
2r r−1 nr−1 6 βr (n).

Proof: For r > 2 and n > 1, consider

ψr ,n : Fr → Fr ψ−1
r ,n : Fr → Fr

a1 7→ a1 a1 7→ a1
a2 7→ an

1a2 a2 7→ a−n
1 a2

a3 7→ an
2a3

...
... ai 7→ (a−n

i−1)ψ−1
r ,n · ai

ar 7→ an
r−1ar (26i6r)

A straightforward calculation shows that ||ψr ,n||1 = (r − 1)n + r , and
||ψ−1

r ,n ||1 = nr−1 + 2nr−2 + · · ·+ (r − 1)n + r > nr−1.
An detailed argument shows that these are ||[ψr ,n]||1 and ||[ψ−1

r ,n ]||1.
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A lower bound for βr

Hence, for n > r ,

βr (rn) > βr ((r − 1)n + r) > nr−1.

Now, for n big enough, take the closest multiple of r below,

n > rm > n − r ,

and

βr (n) > βr (rm) > mr−1 >

(
n − r

r

)r−1

=
(n

r
− 1
)r−1

>
1

2r r−1 nr−1. �

Finally, conjugating by an appropriate element, we shall win an extra
unit in the exponent.
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A lower bound for αr

Theorem

For r > 2, and n > n0, we have (r−1)r−1

2r2r−1 nr 6 αr (n).

Proof: For r > 2 and n > 1, consider ψr ,nγa−m
r a−1

1
, where m = d n

2r−2e.
Writing N = ||ψr ,nγa−m

r a−1
1
||1, straightforward calculations show that,

for n > n0,

||γa1am
r
ψ−1

r ,n ||1 = ||ψ−1
r ,n γ(a1am

r )ψ−1
r,n
||1 >

(r − 1)r−1

2r2r−1 N r .

Hence, (r−1)r−1

2r2r−1 nr 6 αr (n). �
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Outer space

To prove the upper bound

(ii) βr (n) 6 KnM ,

we’ll need to use the recently discovered metric in the outer space Xr .

Definition
• By graf Γ we mean a finite, connected graph of rank r , with no

vertices of degree 1 or 2.
• A metric on Γ is a map ` : EΓ→ [0,1] such that

∑
e∈EΓ `(e) = 1,

and {e ∈ EΓ | `(e) = 0} is a forest.
• For a graph Γ, ΣΓ = {metrics on Γ} = a simplex with missing

faces.
• If Γ′ = Γ/forest, then we identify points in ΣΓ′ with the

corresponding points in ΣΓ by assigning length 0 to the collapsed
edges.

• A marking on Γ is a homotopy equivalence f : Rr → Γ.
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Outer space

Definition
The outer space Xr is

Xr = { (Γ, f , `) }/ ∼

(where ∼ is an equivalence relation).

Definition

There is a natural action of Aut (Fr ) on Xr , given by

φ · (Γ, f , `) = (Γ, φf , `),

(thinking φ : Rr → Rr ). In fact, this is an action of Out (Fr ).
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Metric on Xr

Definition

Let x , x ′ ∈ Xr , x = (Γ, f , `), x ′ = (Γ′, f ′, `′). A difference of markings is
a map α : Γ→ Γ′, which is linear over edges and fα ' f ′.
For such an α, define σ(α) to be its maximum slope over edges.

Definition
Xr admits the following “metric":

d(x , x ′) = min{log(σ(α)) | α diff. markings }.

This minimum is achieved by Arzela-Ascoli’s theorem.

This is Bestvina-AlgomKfir version of Martino-Francaviglia’s original
metric.
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Metric on Xr

Proposition

(i) d(x , y) > 0, and = 0 ⇔ x = y.
(ii) d(x , z) 6 d(x , y) + d(y , z).
(iii) Out(Fr ) acts by isometries, i.e. d(φ · x , φ · y) = d(x , y).
(iv) But... d(x , y) 6= d(y , x) in general.

Definition
For ε > 0, the ε-thick part of Xr is

Xr (ε) = {(Γ, f , `) ∈ Xr | `(p) > ε ∀ closed path p 6= 1}
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Bestvina-AlgomKfir theorem

Theorem (Bestvina-AlgomKfir)

For any ε > 0 there is constant M = M(r , ε) such that for all
x , y ∈ Xr (ε),

d(x , y) 6 M · d(y , x).

Corollary

For r > 2, there exists M = M(r) such that

βr (n) 6 r nM .
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Proof

Remind βr (n) = max{||Θ−1||1 | θ ∈ Aut Fr , ||Θ||1 6 n}.

Proof. Given θ ∈ Θ ∈ Out (Fr ), consider x = (Rr , id , `0) ∈ Xr , and
θ · x = (Rr , θ, `0) ∈ Xr , where `0 is the uniform metric.

d(x , θ · x) = min{log(σ(α)) | α diff. markings}
= log

(
min{σ(θγwγp) | w ∈ Fr , p = “half petal“}

)
∼ log

(
min{σ(θγw ) | w ∈ Fr}

)
= log

(
min{||θγw ||∞ | w ∈ Fr}

)
= log(||Θ||∞)
∼ log(||Θ||1).

Now, using Bestvina-AlgomKfir theorem,

log(||Θ−1||1) ∼ d(x , θ−1 ·x) = d(θ ·x , x) 6 Md(x , θ ·x) ∼ M log(||Θ||1).

Hence, for every Θ ∈ Out (Fr ), ||Θ−1||1 6 r ||Θ||M1 . �
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The rank 2 case

These functions for Aut (F2) are much easier to understand due to the
following technical lemmas.

Lemma

Let ϕ ∈ Aut (F2) be positive. Then ϕ−1 is cyclically reduced and
||ϕ−1||1 = ||ϕ||1.

Lemma

For every θ ∈ Aut (F2), there exist two letter permuting autos
ψ1, ψ2 ∈ Aut (F2), a positive one ϕ ∈ Aut +(F2), and an element
g ∈ F2, such that θ = ψ1ϕψ2λg and ||ϕ||1 + 2|g| 6 ||θ||1.
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The rank 2 case: β2

Theorem

For every θ ∈ Aut (F2), ||[θ−1]||1 = ||[θ]||1. Hence, β2(n) = n.

Proof. Let θ ∈ Aut (F2), decomposed as above, θ = ψ1ϕψ2λg . Then,

||[θ]||1 = ||[ψ1ϕψ2λg ]||1 = ||[ψ1ϕψ2]||1 = ||ϕ||1.

On the other hand,

||[θ−1]||1 = ||[λg−1ψ−1
2 ϕ−1ψ−1

1 ]||1 = ||[ψ−1
2 ϕ−1ψ−1

1 ]||1 =

= ||[ϕ−1]||1 = ||[ϕ]||1. �
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The rank 2 case: α2

Theorem

For n > 4 we have α2(n) 6 (n−1)2

2 .

Proof. Let θ ∈ Aut (F2), decomposed as above, θ = ψ1ϕψ2λg . Then,
θ−1 = λg−1ψ−1

2 ϕ−1ψ−1
1 and

||θ−1||1 6 4|g| · ||ψ−1
2 ϕ−1ψ−1

1 ||∞ = 4|g| · ||ϕ−1||∞ 6

6 4|g|(||ϕ−1||1 − 1) = 4|g|(||ϕ||1 − 1).

Now from ||ϕ||1 + 2|g| 6 ||θ||1 = n, we deduce |g| 6 n−||ϕ||1
2 and so,

‖θ−1‖1 6 2(n − ‖ϕ‖1)(‖ϕ‖1 − 1).

Finally, the parabola f (x) = 2(n − x)(x − 1) takes its maximum at
x = n+1

2 and so,

||θ−1||1 6 2(n−||ϕ||1)(||ϕ||1−1) 6 2
(

n−n + 1
2

)(n + 1
2
−1
)

=
(n − 1)2

2
. �
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Summarizing

Theorem
For rank r = 2 we have

(i) for n > 4, α2(n) 6 (n−1)2

2 ,

(ii) for n > n0,
n2

16 6 α2(n),
(iii) for n > 1, β2(n) = n.

Theorem

For r > 3 there exist K = K (r), K ′ = K ′(r), and M = M(r) such that,
for n > 1,

(i) Knr 6 αr (n),
(ii) Knr−1 6 βr (n) 6 K ′nM .
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