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1Abstract

This work is based on the family of groups Zm × Fn, namely free-abelian times free

groups, direct products of finitely many copies of Z and a finitely generated free group

Fn. These are a special type of right-angled Artin groups (RAAGs). In this work we use

general combinatorics, one dimensional geometry and algebraic techniques to play with

elements of Zm × Fn and to solve some algorithmic problems concerning ranks of the

subgroups, automorphisms and its fixed point subgroups, subgroup intersection problem

heading towards a cryptography application using the group Zm × Fn.

The core methodology of this work involves the use of Stallings graph to work with

subgroups of Fn and to deal with the abelian part we use linear algebra, systems of

equations, Smith normal form of integral matrices, etc.

This thesis is to study algorithmic problems of Zm × Fn, a natural extension of free

groups and a first step towards further generalization into another two main directions:

semi-direct products, and partially commutative groups (PC-groups).

The three principal projects of this thesis are the following:

(1) “Degrees of compression and inertia for free-abelian times free groups”,[35]:

In the lattice of subgroups of a free group, the rank function is not monotone with respect

to inclusion (i.e., H 6 K does not imply r(H) 6 r(K)). This makes it interesting to

define and study relaxed versions for this monotonic property. Based on the classical

definitions of compressed and inert subgroups, we introduce the concepts of degree of

compression and degree of inertia of a finitely generated subgroup H of a given group G,

as an attempt to quantify how close (or far) is H from being compressed and inert and
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so, from satisfying the above mentioned monotonic property. In the case of Zm × Fn, we

show that the degree of compression is algorithmically computable, we give an upper

bound for the degree of inertia, and relate both degrees with those of the projection

Hπ to the free part. With some extra assumptions over the supremum involved in the

definition of degree of inertia, we define another notion called restricted degree of inertia.

In the case of Zm × Fn, beyond giving the upper bound, we are able to give an equality

formula for the restricted degree of inertia.

(2) “Fixed subgroups and computation of auto-fixed closures in free-abelian times

free groups”, [36]: The automorphisms of Zm are just matrices from GLm(Z), and so

their fixed elements are just the eigenspace of eigenvalue 1 of the corresponding matrix.

On the other hand, the study of the properties of fixed point subgroups by automorphisms

of free groups Fn is much more complicated but they are well studied in the literature.

The classical result by Dyer–Scott about fixed subgroups of finite order automorphisms

of Fn being free factors of Fn is no longer true in Zm × Fn (with the natural adaptation

of the concept of “factor” in our groups), gives us the feeling that fixed point subgroups

in Zm × Fn have more degenerated behaviour than in the free group. Within this more

general context, we prove a relaxed version in the spirit of Bestvina–Handel Theorem:

the rank of fixed subgroups of finite order automorphisms is uniformly bounded in terms

of n and m. We also study periodic points of endomorphisms of Zm × Fn. For any given

automorphism it is a very natural question to ask for the elements which are fixed by that

automorphism. The dual problem to this is, for a given finitely generated subgroup H,

to ask whether there exists a finite collection of automorphisms which fix exactly that

particular subgroup H point-wise. In this text we also solve this dual problem and give

an algorithm to compute auto-fixed closures (roughly speaking, for a given subgroup H

of G, the auto-fixed closure is the fixed subgroup of the point-wise stabilizer of H with

respect to the automorphisms of G) of finitely generated subgroups of Zm × Fn.
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(3) “Computing intersections of subgroups in free-abelian times free groups, and

an application to secret sharing”, [11]: In this project we develop a secret-sharing

scheme taking advantage of the fact that Zm × Fn does not satisfy the Howson property,

i.e., it contains finitely generated subgroups whose intersection is not finitely generated.

Concretely, the shares for the k players are going to be k finitely generated subgroups

H1, . . . ,Hk of Zm × Fn such that every intersection of shares is not finitely generated,

except for the total one ∩ki=1Hi, which is taken as the secret. This way we significantly

increase the difficulty for an illegal coalition of players to extract any practical additional

information about the secret (since the intersection of their shares illegitimately shared

is not finitely generated so they can only hope to compute a finite truncation of it). We

prove that, for any integer k, one can effectively built such a family of subgroups of

Zm × Fn, and to give an effective algorithm to compute the secret, i.e., the intersection⋂k
i=1Hi without having the computation of smaller intersections (which are not finitely

generated).
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“ Mathematics as an expression of the human mind reflects the active will,

the contemplative reason, and the desire for aesthetic perfection. Its basic

elements are logic and intuition, analysis and construction, generality and

individuality.

Richard Courant ”
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2Introduction

My dissertation deals with algorithmic problems in the field of “Combinatorial and

Geometric Group Theory”. Algorithmic problems regarding free groups are among the

most studied (over a century) results of combinatorial and geometric group theory.

A natural extension of this line of research is to solve problems of the same type in

more general contexts such as right-angled Artin groups (RAAGs), hyperbolic groups

or automatic groups. Among these classes of groups, to deal with hyperbolic groups,

topological and geometric tools are more needed. But there are two lines of research

within RAAGs, one is more geometric and another one is more combinatorial.

Many of the algorithmic problems (which are decidable in free groups) turn out to be

more complicated, or even undecidable in RAAGs, a family which tends to behave rather

perversely in many issues. Thus a good deal of attention has been devoted to particular

sub-classes of RAAGs such as Droms groups or direct products of free abelian and free

groups. Finitely generated direct products of free abelian and free groups, Zm × Fn is the

ambient group throughout my dissertation.

Algorithmic problems of Zm × Fn constitutes not only a natural and interesting starting

point by itself, but more importantly a fruitful source of ideas for further generalization

to, for example, semi-direct product of finitely many copies of Z and a finitely generated

free group, Zm o Fn and Droms groups. Our main focus will be on existence of such

algorithms (computability), rather than on their efficiency (complexity).

For a group G, we write r(G) to denote the rank of G, i.e., the minimum cardinal of a

generating set for G. The rank function plays an important role as in our most of the
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algorithms aimed to solve if a given subgroup is finitely generated. In the commutative

realm, the rank function is increasing in the sense that H 6 K 6 G implies r(H) 6 r(K).

This is far from true in general, and the main expression of this phenomena can be found

in the context of free groups Fn, where the free group of countably infinite rank easily

embeds into the free group of rank 2, Fℵ0 6 F2. However, when restricting ourselves to

certain families of groups and subgroups, the rank function tends to behave less wildly

and somehow closer to the commutative behaviour. An example of this situation is again

in finitely generated free groups, but restricting our attention to subgroups fixed by

automorphisms or endomorphisms: the story began in [16], where Dyer–Scott showed

that Fix(ϕ) is a free factor of Fn for every finite order automorphism ϕ ∈ Aut(Fn), and

conjectured that r(Fix(ϕ)) 6 n, in general. This was proved later by Bestvina–Handel [3],

and extended several times in subsequent papers, all of them pointing to the direction

that the rank function, when restricted to subgroups fixed by endomorphisms, tends

to behave similarly to the abelian case. In 1989, Imrich–Turner [19] improved the

result for the case of endomorphisms, i.e., if φ ∈ End(Fn), r(Fix φ) 6 n. Then Dicks–

Ventura [14] introduced the notions of inertia and compression. For monomorphisms

(injective endomorphisms), these notions were used from more general point of view

(see (i) of Theorem 2.2.4).

On the contrary when we try to investigate the properties of fixed point subgroups of

endomorphisms (and automorphisms) of finitely generated direct products of free-abelian

and free groups, Zm × Fn, the fixed point subgroups behave in a more degenerated way.

Because the lattice of subgroups of these groups is quite different from that of free groups,

since Zm × Fn is not Howson (i.e., the intersection of two finitely generated subgroups is

not necessarily finite generated) as soon as m > 1 and n > 2. This affects seriously the

behaviour of the rank function, forcing many situations to degenerate with respect to

what happens in free groups. However, there are still several surviving governing rules;

we concentrate on some of them, specially about those concerning subgroups fixed by
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automorphisms of Zm × Fn to compute periodic points (also for endomorphisms) and

finite presentation of the auto-fixed subgroups.

The fact that the groups Zm×Fn contain finitely generated subgroups whose intersection

is not finitely generated (i.e., Zm×Fn is not Howson) opens up the following new window

towards an application to cryptography. The classical secrete sharing scheme among k

players uses affine varieties and consists of choosing a point p ∈ Rk as a secret, and k

affine linearly independent hyperplanes in Rk whose intersection is precisely the point p;

then give an hyperplane to each player as a share. If all the players put in common their

shares they can compute the intersections of the k hyperplanes and get the secret p, while

any team of k′ < k players do not have access to the secrete because the intersection of

their k′ hyperplanes is an affine variety of dimension k − k′ > 0, giving them only the

information that the secret is one of the infinitely many points in there.

We propose a variation of this secrete sharing scheme where the shares are finitely

generated subgroups H1, . . . ,Hk of Zm × Fn and the secret is their intersection H1 ∩

· · · ∩Hk, being again finitely generated. We will organize the shares in such a way that

all the intersections of less than k of those subgroups are never finitely generated; this

introduces an extra difficulty for an illegitimate set of players (namely any set of less

than k) because they cannot even compute the intersection of their shares to get closer

to the secret (the best they can do is to compute a finite truncation of this not finitely

generated intersection, having then the uncertainty whether it contains the secret or not).

To achieve this goal we have to solve the following two technical problems: (1) for any

k > 3, find an effective way to construct such shares H1, . . . ,Hk all of them being finitely

generated, and such that for every subset I ⊆ {1, . . . , k}, ∩i∈IHi being finitely generated

if and only if I = {1, k}; and (2) find an algorithm to compute H1 ∩ · · · ∩Hk effectively

from the independent Hi’s. In [10], Delgado–Ventura developed an algorithm to decide

if the intersection of two finitely generated subgroups is finitely generated or not and,
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in case it is, compute it; but note this is not useful in our situation because we cannot

compute H1 ∩ · · · ∩Hk intersection them two by two since all the smaller intersections

are not finitely generated by construction.

2.1 Free-abelian times free groups

Throughout the document, we fix an alphabet Z = {z1, . . . , zn} of n letters, and consider

the free group on it, F (Z), also denoted by Fn. Any direct product of a free-abelian

group, Zm, m > 0, and a free group, Fn, n > 0, will be called, for short, a free-abelian

times free group, G = Zm × Fn. We will work in G with multiplicative notation (as it is a

non-abelian group as soon as n > 2) but want to refer to its subgroup Zm 6 G with the

standard additive notation (elements thought as row vectors with addition). To make

these compatible, consider the standard presentations Zm = 〈t1, . . . , tm | [ti, tj ], i, j =

1, . . . ,m〉 and Fn = 〈z1, . . . , zn | 〉, and the standard normal form for elements from G

with the ti’s on the left and in increasing order, namely ta1
1 · · · tamm w(z1, . . . , zn), where

a1, . . . , am ∈ Z and w ∈ Fn is a reduced word on the alphabet Z = {z1, . . . , zn}; then, let

us abbreviate this in the form

ta1
1 · · · t

am
m w(z1, . . . , zn) = t(a1,...,am)w(z1, . . . , zn) = taw(z1, . . . , zn),

where a = (a1, . . . , am) ∈ Zm is the row vector made with the integers ai’s, and t is a

meaningless symbol serving only as a pillar for holding the vector a = (a1, . . . , am) up

in the exponent. This way, the operation in G is given by (tau)(tbv) = tatbuv = ta+buv

in multiplicative notation, while the abelian part works additively, as usual, up in the

exponent. We denote by π the natural projection to the free part, π : Zm × Fn � Fn,

tau 7→ u.

2.1 Free-abelian times free groups 12



Structure of subgroups of Zm × Fn

The natural decomposition of Zm × Fn gives a short exact sequence, namely

1 −→ Zm ι−→ Zm × Fn
π−→ Fn −→ 1, (2.1)

where ι is the inclusion map, π is the natural projection tau 7→ u, and therefore Ker(π) =

Zm = Im(ι). Restricting this short exact sequence to any subgroup H 6 Zm × Fn we

get,

1 −→ Ker(π|H) ι−→ H
π|H−−→ Hπ −→ 1. (2.2)

where 1 6 Ker(π|H) = H ∩Ker(π) = H ∩ Zm = LH 6 Zm and 1 6 Hπ 6 Fn. Therefore,

LH is a free-abelian group and Hπ is a free group. Since Hπ is free, π|H has a splitting,

H
f←− Hπ (2.3)

sending back each element of a chosen free basis for Hπ to an arbitrary pre-image.

Hence, f is injective and Hπf 6 H is isomorphic to Hπ. Thus, H ' Ker(π|H)×Hπf is

free-abelian times free.

An easy observation is that H is finitely generated if and only if Hπ is also finitely gener-

ated. Furthermore, asH 6 Zm×Fn, n > 2, is again free-abelian times free,H ' Zm′×Fn′ ,

for some 0 6 m′ 6 m and some 0 6 n′ 6∞. According to Delgado–Ventura [10, Def. 1.3],

a basis of a finitely generated subgroup H 6fg G is a set of generators for H of the

form {ta1u1, . . . , t
arur, t

b1 , . . . , tbs}, where a1, . . . , ar ∈ Zm, {u1, . . . , ur} is a free-basis of

Hπ 6 Fn, and {b1, . . . , bs} is an abelian-basis of LH = H ∩ Zm 6 Zm. (Note that, to

avoid confusions, we reserve the word basis for G, in contrast with abelian-basis and

free-basis for the corresponding concepts in Zm and Fn, respectively.) It was showed

2.1 Free-abelian times free groups 13



in [10] that every such subgroup H 6fg G admits a basis, algorithmically computable

from any given set of generators.

2.2 Compression, inertia and parametrization of the

rank function

In the spirit of Bestvina–Handel [3] result, the following notions were first introduced by

Dicks–Ventura [14] and turned out to be quite relevant in the subsequent literature:

Definition 2.2.1. Let G be a group. A finitely generated subgroup H6fgG is said to be

compressed in G if r(H) 6 r(K), for every H 6 K 6 G. And H is said to be inert in G

if r(H ∩K) 6 r(K), for every K 6 G. (Note that, equivalently, in both definitions one

can restrict the attention to those subgroups K ’s being finitely generated, denoted by

K 6fg G.)

Inert subgroups are closed under finite intersections if our ambient group G satisfies

Howson property. Because, let H1, H2 are inert, then r(H1 ∩K), r(H2 ∩K) 6 r(K), for

every K 6 G. Hence we have r(H1 ∩H2 ∩K) 6 r(H2 ∩K) 6 r(K), for every K 6 G

(notice that first inequality holds as H1 is inert and the second inequality holds as H2

is inert), i.e., (H1 ∩ H2) is inert, and so using induction we can prove that any finite

intersection of inert subgroups is again inert.

If H6fgG is inert, r(H ∩K) 6 r(K), for every K 6 G and so r(H) 6 r(K), for every

H 6 K 6 G, in other words, H is compressed. Thus inert subgroups are compressed

while the other implication is not true in general; an example was given in [44] as an

application of the following result:

Theorem 2.2.2. (Wu–Ventura–Zhang, [44]) Let G = 〈a, b | bab−1a〉l × Zp, l > 1, p > 0.

For every φ ∈ End(G), Fix φ is compressed in G.

2.2 Compression, inertia and parametrization of the rank function 14



Example 2.2.3. Consider G = 〈a, b | bab−1a〉 × 〈c | 〉, the direct product of the Klein

bottle group with the group of integers. And let φ : G → G, a 7→ a, b 7→ ba, c 7→ c;

straightforward calculations show that it is a well-defined automorphism φ ∈ Aut(G),

and Fix(φ) = 〈a, b2, c〉 ' Z3. By aforementioned theorem [44], Fix(φ) is compressed

but not inert in G. Because Fix(φ) ∩ 〈ac, b〉 = 〈ac, a2, b2〉 ' Z3

Several important known results involving these concepts include the following:

Theorem 2.2.4. (i) (Dicks–Ventura, [14]): Arbitrary intersections of fixed subgroups of

injective endomorphisms of Fn are inert in Fn;

(ii) (Martino–Ventura, [28]): arbitrary intersections of fixed subgroups of endomorphisms

of Fn are compressed in Fn;

(iii) (Wu–Zhang, [45]): arbitrary intersections of fixed subgroups of automorphisms of

closed surface groups G with negative Euler characteristic are inert in G;

(iv) (Wu–Ventura–Zhang, [44]): arbitrary intersections of fixed subgroups of endomor-

phisms of surface groups G are compressed in G.

Also, in [44] and [46], Wu–Ventura–Zhang and Zhang–Ventura–Wu studied similar

questions within the family of finite direct products of free and surface groups, where

more interesting phenomena show up.

We introduce a quantification for these notions of compression and inertia and study

it within the families of free groups, and free-abelian times free groups. For technical

reasons it is better to work with the so-called reduced rank of a group G, defined as

r̃(G) = max{0, r(G)− 1}, i.e., one unit less than the rank except for the trivial group for

which we take zero (note that then, r̃(1) = r̃(Z) = 0 while 0 = r(1) 6= r(Z) = 1). Observe

that H 6 G is compressed in G if and only if r̃(H)/ r̃(K) 6 1 for every H 6 K 6fg G;

and that H 6 G is inert in G if and only if r̃(H ∩ K)/ r̃(K) 6 1 for every K 6fg G

2.2 Compression, inertia and parametrization of the rank function 15



(understanding in both cases that 0/0 = 1). This motivates the following quantitative

definitions:

Definition 2.2.5. Let G be a group and H 6fg G. The degree of compression of H

in G is dcG(H) = supK{r̃(H)/ r̃(K)}, where the supremum is taken over all subgroups

H 6 K6fgG. Similarly, the degree of inertia ofH inG is diG(H) = supK{r̃(H∩K)/ r̃(K)},

where the supremum is taken over all K6fgG satisfying H ∩K 6fg G (in both cases,

0/0 is understood to be 1).

Note that, taking K = H, we get dcG(H) > 1 and diG(H) > 1. So, the possibility of

K being cyclic (which leads in both cases to 0/0 = 1) is irrelevant in both definitions

and we can restrict the two supremums to non-cyclic K ’s without changing their final

values. Along Chapter 3, when working with these two concepts we will implicitly

assume, without explicit mentioning, that the working subgroups K are non-cyclic when

necessary.

Note also that the supremum in the definition of degree of compression is always a

maximum, since the numerator has a fixed value and the denominator takes only natural

values. Although we do not have any particular example, the supremum in the definition

of degree of inertia could (in principle) not be attained at any particular subgroup K. In

this sense, the following is an intriguing question for which, at the time of writing, we

have no idea how to answer:

Question 2.2.6. Is there a (finitely generated) group G and a subgroup H 6fg G such that

diG(H) is irrational? Or such that the supremum in diG(H) is not a maximum?

Observe that in the definition of degree of inertia, we take the supremum only over those

subgroups K 6fg G whose intersection with H is again finitely generated. In groups G

with the Howson property (the intersection of any two finitely generated subgroups is

again finitely generated), like free groups, this is no restriction at all and that supremum

2.2 Compression, inertia and parametrization of the rank function 16



is over all finitely generated K ’s. Otherwise, if G is not Howson, we are eliminating, on

purpose, those possible finitely generated K ’s having non-finitely generated intersection

with H (which would force diG(H) to be automatically infinite). However observe that,

even with the present definition, diG(H) may be infinite (see (ii) of Theorem 3.4.2).

We adapt the definition of inertia to the non-Howson environments by saying that a

subgroup H 6 G is finitary inert in G if r(H ∩K) 6 r(K) for every K 6fg G such that

H ∩K 6fg G. The following observation then follows directly from the definitions and

presents the values of dcG(H) and diG(H) as a quantification of how far is the subgroup

H 6fg G from being compressed and being finitary inert in G, respectively:

Observation 2.2.7. Let G be a group and H 6fg G.

(i) 1 6 dcG(H) 6 diG(H);

(ii) dcG(H) = 1 if and only if H is compressed in G;

(iii) diG(H) = 1 if and only if H is finitary inert in G.

The following intriguing question is open, as far as we know:

Question 2.2.8. Is there a (finitely generated) group G with a subgroup H 6fg G being

finitary inert but not inert? (i.e., satisfying r̃(H ∩ K) 6 r̃(K) for every K 6fg G with

H ∩K 6fg G, but simultaneously admitting some K0 6fg G with r̃(H ∩K0) =∞?).

We state now a couple of elementary properties of these concepts for later use. To work

with group morphisms, we use the convention of writing arguments on the left, i.e.,

φ : G1 → G2, g 7→ gφ; and so, compositions as written: gφψ = (gφ)ψ. Accordingly, we

write conjugations on the right, Hg = g−1Hg, and commutators in the form [a, b] =

a−1b−1ab.

Lemma 2.2.9. Let φ : G1 → G2 be an isomorphism of groups. For every H 6fg G1,

2.2 Compression, inertia and parametrization of the rank function 17



(i) dcG2(Hφ) = dcG1(H);

(ii) diG2(Hφ) = diG1(H).

Proof. For every K 6fg G1 with H 6 K, we have Kφ 6fg G2 and Hφ 6 Kφ so,

r̃(H) = r̃(Hφ) 6 dcG2(Hφ) · r̃(Kφ) = dcG2(Hφ) · r̃(K). Therefore, dcG1(H) 6 dcG2(Hφ).

By symmetry, we get (i).

Similarly, for every K 6fg G1 with H ∩K 6fg G1, we have Kφ 6fg G2 and Hφ ∩Kφ =

(H ∩ K)φ 6fg G2 so, r̃(H ∩ K) = r̃((H ∩ K)φ) = r̃(Hφ ∩ Kφ) 6 diG2(Hφ) · r̃(Kφ) =

diG2(Hφ) · r̃(K). Therefore, diG1(H) 6 diG2(Hφ). By symmetry, we deduce (ii).

Corollary 2.2.10. Let G be a group. For every H 6fg G and every g ∈ G, dcG(Hg) =

dcG(H) and diG(Hg) = diG(H).

We study these notions for the case of the free group and obtain the following result in

Section 3.2 of Chapter 3:

Theorem. ( 3.2.8) For any finitely generated free group G = Fn, the function dcFn is

computable; more precisely, there is an algorithm which, on input h1, . . . , hr ∈ Fn, it

computes the value of dcG(〈h1, . . . , hr〉) and outputs a free basis of a subgroup K 6fg Fn

where it is attained.

The question whether diFn is computable (related to the question whether the corre-

sponding supremum is a maximum or not) in free groups seems to be much more delicate.

In Section 3.2 we refer to a quite similar question, which was successfully solved recently

by S. Ivanov in [20]. However, at the time of writing, we do not know how to use this

result to eventually compute diFn .

Then, we concentrate in free-abelian times free groups, G = Zm×Fn, where the situation

is richer and trickier because, for m > 1, n > 2, G is known to be non-Howson. In
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Sections 3.3 and 3.4 we study the degree of compression and the degree of inertia for

these groups, respectively, and prove the main results of Chapter 3:

Theorem. (3.3.3) For any given H 6fg G = Zm × Fn, any basis for it

{ta1u1, . . . , t
arur, t

b1 , . . . , tbs}, and using the notation from Section 3.3, we have

dcG(H) = r̃(H)
/

min
J∈AEFn (Hπ)

{r̃(J) + d(A,B,UJ)}.

Moreover, dcG(H) is algorithmically computable.

Theorem. (3.4.2) Let H6fg G = Zm × Fn, and let LH = H ∩ Zm.

(i) If r(Hπ) 6 1 then diG(H) = 1;

(ii) if r(Hπ) > 2 and [Zm : LH ] =∞ then diG(H) =∞;

(iii) if r(Hπ) > 2 and [Zm : LH ] = l <∞ then diG(H) 6 l diFn(Hπ).

To have a proper equality formula, we modify the definition of degree of inertia with

some extra technical assumptions and define restricted degree of inertia.

Definition 2.2.11. Let G be a group, π : G→ G/Z(G) where Z(G) is the center of the

group G. Let H 6fg G such that Hπ is not virtually cyclic and Hπ 
 [Gπ,Gπ]. The

restricted degree of inertia of H in G is di′G(H) = supK{r̃(H ∩ K)/ r̃(K)}, where the

supremum is taken over all K 6fg G satisfying H ∩K 6fg G, [Hπ : Hπ ∩Kπ] =∞ and

Hπ ∩Kπ 
 [Gπ,Gπ] and here 0/0 is understood to be 1.

For restricted degree of inertia we prove that:

Theorem. (3.5.14) Let H6fgG = Zm × Fn, such that Hπ is not cyclic and Hπ 
 [Fn, Fn]

and let LH = H ∩ Zm;

(i) if [Zm : LH ] =∞ then di′G(H) =∞;

(ii) if [Zm : LH ] = l then di′G(H) = l di′Fn(Hπ).
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2.3 Endomorphisms and automorphisms of Zm × Fn

We shall use lowercase Greek letters for endomorphisms of free groups, φ : Fn 7→ Fn and

uppercase Greek letters for endomorphisms of free-abelian times free groups, Ψ: Zm ×

Fn 7→ Zm × Fn. In particular, Γtau = Γu ∈ Inn(G) is the right conjugation by tau (or,

equivalently, by u).

Delgado–Ventura [10, Props. 5.1] gave a classification of all endomorphisms of G =

Zm × Fn, n > 2, in two types,

(I) Ψφ,Q,P = tau 7→ taQ+uabP (uφ), where φ ∈ End(Fn), Q ∈Mm×m(Z), P ∈Mn×m(Z),

and uab ∈ Zn is the abelianization of u ∈ Fn.

(II) Ψz,l,h,Q,P = tau 7→ taQ+uabP zal
T+uabhT , where 1 6= z ∈ Fn is not a proper power,

Q ∈Mm×m(Z), P ∈Mn×m(Z), 0 6= l ∈ Zm, and h ∈ Zn.

In the same paper Delgado–Ventura [10, Props. 5.1, 5.2(iii)] also showed that every

automorphism Ψ of the group G = Zm × Fn, n > 2, is of type (I) with φ ∈ Aut(Fn) and

Q ∈ GLm(Z). Furthermore, the composition and inversion of automorphisms work like

this:

Ψφ,Q,PΨφ′,Q′,P ′ = Ψφφ′,QQ′,PQ′+AP ′ , (Ψφ,Q,P )−1 = Ψφ−1,Q−1,−A−1PQ−1 , (2.4)

where A ∈Mn(Z) is the matrix of the abelianization of φ; see [10, Lem. 5.4].

Fixed subgroups by morphisms in Zm × Fn

As we have the structure of the endomorphisms and automorphisms, we try to investigate

more relevant results (which are already done in free groups Fn and have a deep

impact in this line of research) about the fixed point subgroups by automorphisms (and

endomorphisms).
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Given a set S ⊆ End(G), let Fix(S) denote the subgroup of G consisting of those

g ∈ G which are fixed by every element of S, Fix(S) = {g ∈ G | gφ = g,∀φ ∈ S} =

∩φ∈S Fix(φ), called the fixed subgroup of S (read Fix(∅) = G). For simplicity, we write

Fix φ = Fix({φ}).

Definition 2.3.1. For any group G and an endomorphism φ ∈ End(G), define its periodic

subgroup as Perψ = ∪∞p=1 Fixψp

Note that this is always a subgroup since x ∈ Fixψp and y ∈ Fixψq imply xy ∈ Fixψpq.

And also observe that Perψ contains the lattice of subgroups given by Fixψp, p ∈ N,

with inclusions among them according to divisibility among the exponents: if r|s then

Fix φr 6 Fix φs; and also, if Fix φr 6 Fix φs and d = gcd(r, s) = αr + βs, α, β ∈ Z, then

Fix φr = Fix φd and d|s.

Restricting ourselves to the case of finite order automorphisms of Zm × Fn, we first

uniformly bound the order of automorphisms in terms of the ambient ranks n,m. Then

we prove that the rank of the fixed point subgroup is also bounded by some constant

(depending upon only n,m) which works for any arbitrary finite order automorphism.

Theorem. (4.3.1) Let G = Zm × Fn, m,n > 0.

(i) There exists a computable constant C1 = C1(m,n) such that, for every Ψ ∈ Aut(G) of

finite order, ord(Ψ) 6 C1.

(ii) There exists a computable constant C2 = C2(m,n) such that, for every Ψ ∈ Aut(G) of

finite order, r(Fix Ψ) 6 C2.

We deduce the periodicity formula for endomorphisms of Zm × Fn.

Theorem. (4.4.3) There exists a computable constant C3 = C3(m,n) such that Per Ψ =

Fix ΨC3 , for every Ψ ∈ End(Zm × Fn).

2.3 Endomorphisms and automorphisms of Zm × Fn 21



We also prove that the point-wise stabilizer (with respect to automorphisms), AutH(G)

(the set of automorphisms of G which fix H point-wise) of a finitely generated subgroup

H of Zm × Fn is finitely presented.

Theorem. (4.5.14) Let H 6fg G = Zm × Fn, given by a finite set of generators. Then the

stabilizer, AutH(G), of H is finitely presented, and a finite set of generators and relations is

algorithmically computable.

We also give an algorithmic computation for the auto-fixed closure (the set of elements

fixed by every automorphism fixing H point-wise) of a finitely generated subgroup H of

Zm × Fn, deciding whether H is auto-fixed or not.

Theorem. (4.5.18) Let G = Zm × Fn. There is an algorithm which, given a finite set of

generators for a subgroup H 6fg G, outputs a finite set of automorphisms Ψ1, . . . ,Ψk ∈

Aut(G) such that a-ClG(H) = Fix Ψ1∩· · ·∩Fix Ψk, decides whether this is finitely generated

or not and, in case it is, computes a basis for it.

Corollary. (4.5.19) One can algorithmically decide whether a given H 6fg G is auto-fixed

or not, and in case it is, compute a finite set of automorphisms Ψ1, . . . ,Ψk ∈ Aut(G) such

that H = Fix Ψ1 ∩ · · · ∩ Fix Ψk.

2.4 Finite intersection of subgroups in Zm × Fn

In [10] Delgado–Ventura gave an algorithm which decides if the intersection of two

finitely generated subgroups is finitely generated or not and in the affirmative case, they

also computed a set of generators of the intersection. In this document, we generalize this

result from two to any finite family. In other words, we decide if a finite intersection of

finitely generated subgroups is again finitely generated or not and in case it is, compute a

set of generators for this intersection.
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Theorem. (5.1.2) Let H1, . . . ,Hk 6fg Zm ×Fn, where k is finite and each Hi is given by a

finite set of generators. Then it is algorithmically decidable if
⋂k
i=1Hi is finitely generated or

not and in the affirmative case we can compute generators for
⋂k
i=1Hi.

At a first glance, the reader may think that this can be done just by induction procedure

of two-by-two intersections. But this is not true for Zm × Fn. In this context we have this

following theorem and based on this theorem we develop a secret sharing scheme.

Theorem. (5.2.2) For every k > 3 we can always build a family F = {H1, H2, . . . ,Hk} of

finitely generated subgroups of Zm × Fn such that for each nonempty subfamily S ⊆ F :

⋂
i∈S

Hi is finitely generated⇔ #S ∈ {1, k}. (2.5)

The main three projects of this dissertation are explained in chapters 3, 4, 5 and in the

following three paragraphs, I try to give a brief overview how the sections are organised

in each chapter.

Chapter 3. In Section 3.1, we give a very brief overview of Stallings graph which

is extremely used throughout this chapter. In Section 3.2, we connect our definition

of degree of inertia with the Walter Neumann coefficient of H 6fg Fn as σ(H) :=

supK6fgFn r̃(H,K)/ r̃(H) r̃(K), where r̃(H,K) =
∑
s∈H\Fn/K r̃(H ∩ Ks) defined by S.

Ivanov [20]. We give an effective computation of dcFn(H) and a free basis of a subgroup

K where the maximum is attained. In Section 3.3, we algorithmically compute the

degree of compression dcG(H), for any finitely generated subgroup H 6fg G, where

G = Zm × Fn and in the way of computation we proof some lemmas which reflect the

fact that solving problems in Zm × Fn are not always reducible to the corresponding

problems in Zm and Fn. In Section 3.4, we study the degree of inertia for subgroups H

of G = Zm × Fn and relate it to the corresponding degree of inertia of Hπ in Fn; it turns
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out that the index of H ∩ Zm in Zm (whether finite or infinite) is closely related to the

degree of inertia of H. Unfortunately, the situation here is more complicated and we can

only prove an upper bound for diG in terms of diFn and the previously mentioned index

of H ∩ Zm in Zm; the computability of this function remains open, as in the free case. In

Section 3.5, we add some extra technical conditions to define restricted degree of inertia,

di′G, analyze this new notion and succeed in the project of computing di′G(H) in terms of

di′Fn(Hπ) and the index [Zm : H ∩ Zm] to provide an equality formula for di′G.

Chapter 4. In Section 4.1, we collect several folklore facts about GLm(Z) for later use;

for completeness, we provide proofs highlighting several technical subtleties coming from

the fact that Z is not a field, but just an integral domain. In Section 4.2, we introduce

the notion of factor for Zm × Fn. This notion can be considered as an analogue to the

concepts of direct summand in Zm and free factor in Fn. We also prove Takahashi’s

theorem for Zm × Fn (see Theorem 4.2.5). In Section 4.3, we concentrate on finite

order automorphisms of Zm × Fn and show that their fixed subgroups are always finitely

generated, with rank globally bounded by a computable constant depending only on

the ambient ranks m,n (and not depending on the specific automorphism in use); see

Theorem 4.3.1. In Section 4.4, we turn to study periodic points and we manage to

extend to free-abelian times free groups, a result known to hold both in free-abelian

groups and in free groups: the periodic subgroup of an endomorphism equals the fixed

subgroup of a high enough power and, furthermore, this exponent can be taken uniform

for all endomorphisms, depending only on the ambient ranks m,n; see Theorem 4.4.3.

In Section 4.5, we consider the auto-fixed closure of a finitely generated subgroup H;

we prove that it always equals a finite intersection of fixed subgroups, we compute the

candidate automorphisms, we decide whether it is finitely generated or not, and in case

it is, we effectively compute a basis for it; see Theorem 4.5.18. As a consequence, we

obtain an algorithm to decide whether a given finitely generated subgroup H 6 Zm × Fn
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is auto-fixed or not; see Corollary 4.5.19. To achieve this goal, we make use of a recent

result by M. Day about stabilizers of tuples of conjugacy classes in right angled Artin

groups being finitely presented, and we prove the analogous version for tuples of exact

elements in Zm × Fn. In fact, we only need finite generation and computability of these

stabilizers; however, for completeness, we also prove its finite presentability.

Chapter 5. In Section 5.1, we give an algorithm to decide if any finite intersection of

finitely generated subgroups of Zm×Fn is finitely generated or not and in affirmative case,

this algorithm also computes a generating set for the finite intersection. In Section 5.2,

we develop a secret sharing scheme based on the existence of a finite family of finitely

generated subgroups of Zm × Fn, whose any intermediate intersection is not finitely

generated but the whole intersection is finitely generated.
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3Degrees of compression and inertia

for free-abelian times free groups

“Pure mathematics is, in its way, the poetry of

logical ideas.”

— Albert Einstein

In this chapter we introduce the concepts of degree of inertia, di(H), and degree of

compression, dc(H), of a finitely generated subgroup H of a given group G. For the case

of direct products of free-abelian and free groups, we compute the degree of compression

algorithmically and give an upper bound for the degree of inertia. Also with some

technical assumptions, we produce an equality formula for restricted degree of inertia

connecting it with Hπ, the projection of H into Fn.

In this aspect of research, the story began with Scott Conjecture [16], for every φ ∈

Aut(Fn), r(Fix(φ)) 6 n and they showed that Fix(φ) is a free factor of Fn for every finite

order automorphism φ ∈ Aut(Fn). In 1988, Bestvina and Handel proved this conjecture.

In their very influential paper [3] published in the Annals of Mathematics, Bestvina

and Handel proved that every irreducible automorphism of Fn has a train-track [3]

representative. In the same paper they introduced the notion of a relative train-track

and applied train-track methods to solve the Scott Conjecture; it is the main result in

this line of research. In 1989 Imrich-Turner [19] extended the result to endos, i.e.,

for φ ∈ End(Fn), r(Fix(φ)) 6 n. Then in the paper [14] Dicks–Ventura introduced the

concepts of compression and inertia (see the definition 2.2.1). In this context the most

important results are depicted together in Theorem 2.2.4.
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We quantify these concepts by introducing degree of compression and degree of inertia

(see the definition 2.2.5). Both in Fn and G = Zm × Fn, for given subgroup H with a

set of generators, we are able to compute dcFn(H) and dcG(H) algorithmically. And for

degree inertia, we deduce formulae for diG(H) and di′G(H) in terms of diFn(Hπ).

3.1 Stallings graph for free groups

In classical fashion, algebra was used for fruitful resolution of geometric problems. But

during second half of the past century, researchers like Artin, Gromov, Stallings, Tits and

Thurston, among others, created geometric methods and useful tools for the study of

algebraic objects. Stallings automata for free groups is one of these tools. In an influential

paper J. R. Stallings [37] gave a bijection between finitely generated subgroups of free

group and Stallings automata. In the subsequent literature this automaton became crucial

for the modern understanding of the lattice of subgroups of free group. A Stallings

automata is a finite Z-labeled oriented graph (ΓZ ,�) with a distinguished vertex � called

base point such that,

(1) ΓZ is connected,

(2) no vertex of degree 1 except possibly � (ΓZ is a core-graph),

(3) no two edges with the same label go out of (or in to) the same vertex.

To any given Stallings automaton ΓZ , we can associate its fundamental group:

π(ΓZ) = { labels of closed paths at �} 6 F (Z),

clearly, a subgroup of F (Z), the free group on the alphabet set Z, also denoted by Fn. In

any automaton if we have the situation like Fig 3.1, we can fold and identify vertices. This

operation is called Stallings folding. The fundamental group of the Stallings automaton
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Figure 3.1: Stallings folding

remains unchanged under this operation. The Stallings automata is a very useful tool to

solve membership problem, subgroup intersection problem and finite index problem for

free groups.

The first picture of Fig 3.2 depicts the flower automaton for H = 〈baba−1, aba−1, aba2〉.

After doing consecutive foldings, as a final picture, we get the Stallings automata for H.

From Stallings Lemma, π(Γ(H),�) = 〈b, aba−1, a3〉 which is the same as the subgroup

H = 〈baba−1, aba−1, aba2〉.

3.2 Degrees of compression and inertia for the free

group

In the present section we study the degrees of compression and inertia in the context of

the free group, i.e., the functions dcFn and diFn .

Hanna Neumann proved in [33] that r̃(H ∩K) 6 2 r̃(H) r̃(K), for every H,K 6fg Fn.

And the same assertion removing the factor “2” became soon known as the Hanna

Neumann conjecture. This has been a major problem in Geometric Group Theory,

with lots of partial results and improvements appearing in the literature since then.
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Figure 3.2: Stallings automata
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An interesting one was done by W. Neumann in [34], who proved the stronger fact∑
s∈S r̃(H ∩Ks) 6 2 r̃(H) r̃(K) (known as the strengthen Hanna Neumann inequality),

where S is any set of double coset representatives of Fn modulo H on the left and K

on the right (i.e., S ⊆ Fn contains one and only one element in each double coset

H\Fn/K); in particular, this implies that, for all H,K 6fg Fn, all except finitely many

of the intersections H ∩ Ks are trivial or cyclic. Few years ago the Hanna Neumann

conjecture, even in its strengthen version, has been completely resolved in the positive,

independently by J. Friedman [18] and by I. Mineyev [32] (see also W. Dicks [13]). This

can be interpreted as the following upper bound for dcFn(H) and diFn(H) in terms of

the subgroup H 6fg Fn:

Observation 3.2.1. For H 6fg Fn, we have 1 6 dcFn(H) 6 diFn(H) 6 r̃(H).

Friedman–Mineyev’s inequality is easily seen to be tight (consider, for example, the

subgroups H = 〈a, b−1ab〉 and K = 〈b, a2, aba〉 of F2, and its intersection H ∩ K =

〈a2, b−1a2b, b−1aba〉); therefore, it can be interpreted in the following way: “the smallest

possible multiplicative constant α ∈ R satisfying r̃(H ∩ K) 6 α r̃(H) r̃(K), for every

H,K 6fg Fn, is α = 1”. Now fix the subgroup H: by definition, the smallest possible

constant α ∈ R satisfying r̃(H ∩K) 6 α r̃(H) r̃(K), for every K 6fg Fn, is α = diFn (H)
r̃(H) .

S. Ivanov [20] already considered and studied the strengthened version of what we

call here the degree of inertia. He defined the Walter Neumann coefficient of H 6fg Fn

as σ(H) := supK6fgFn{r̃(H,K)/ r̃(H) r̃(K)}, where r̃(H,K) =
∑
s∈H\Fn/K r̃(H ∩ Ks)

(understanding 0/0 = 1). In other words, σ(H) is the smallest possible constant α ∈ R

such that r̃(H,K) 6 α r̃(H) r̃(K), for every K 6fg Fn. Using linear programming

techniques, Ivanov was able to prove the following remarkable result:

Theorem 3.2.2 (Ivanov, [20]). For any finitely generated free group Fn, the function σ is

computable and the supremum is a maximum; more precisely, there is an algorithm which,
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on input h1, . . . , hr ∈ Fn, it computes the value of σ(〈h1, . . . , hr〉) and outputs a free basis

of a subgroup K 6fg Fn where that supremum is attained.

Ivanov’s proof is involved and technical. Although it looks quite similar, we have been

unable to adapt Ivanov’s arguments to answer any of the following questions which, as

far as we know, remain open:

Question 3.2.3. Is the function diFn computable? Is that supremum always a maximum?

More precisely, is there and algorithm which, on input h1, . . . , hr ∈ Fn, it computes the

value of diFn(〈h1, . . . , hr〉)? Or even more, it outputs a free basis of a subgroup K 6fg Fn

where it is attained?

The corresponding questions for the degree of compression are much easier and can

be established with the use of Stallings graphs, algebraic extensions, and Takahasi’s

Theorem.

Definition 3.2.4. Let H 6fg K 6fg Fn. If H is a free factor of K we write H 6ff K.

On the other extreme, the extension H 6 K is said to be algebraic extension, denoted as

H 6alg K, if H is not contained in any proper free factor of K, i.e., if H 6 A 6ff K =

A ∗B implies B = 1; we denote by AEFn(H) the set of algebraic extensions of H in Fn.

It is known that any finitely generated subgroup H of Fn has finitely many algebraic

extensions, i.e., |AEFn(H)| <∞. This was proved long time ago by Takahasi, see [39],

and reproved independently by Ventura [40], Kapovich–Miasnikov [22] and Margolis–

Sapir–Weil [24] with later unification by Miasnikov–Ventura–Weil in [31]. We offer here

an sketch of this modern proof.

Given a finitely generated subgroup H 6fg Fn one can depict its Stallings graph Γ(H)

(which is finite) and start identifying its vertices in all possible ways, each followed by a

sequence of Stallings foldings until getting a genuine new Stallings automata. Clearly,
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each of these finitely many Stallings graph obtained in this way correspond to a new

finitely generated subgroup H ′ such that H 6fg H ′ 6fg Fn; we call it an overgroup of

H. Consider the finite set of overgroups of H, denoted O(H), and call it the fringe of

H; observe that H ∈ O(H) corresponding to the trivial identification of vertices (no

identification at all).

It is not difficult to see thatAEFn(H) ⊆ O(H). However, as seen in the following example,

O(H) could contain pairs of different subgroups H ′ and H ′′ one being a free factor of the

other, H ′ 6ff H ′′; in this case, H ′′ is obviously not an algebraic extension of H and can

be eliminated from the list. Following this cleaning process until there are no free factors

among the members of the reduced list, one gets the set of algebraic extension of H. It is

worth to mention that O(H) depends upon the se of generators of the ambient group but

AEFn(H) does not depend on the set of generators.

Example 3.2.5. Let H = 〈b2, ac−1ac−1, bac−1〉, and Fig. 3.3 represents the Stallings

graph Γ(H) for H as a subgroup of F3 with respect to the ambient free basis A = {a, b, c}.

Successively identifying pairs of vertices of Γ(H) and reducing the resulting A-labeled

graph in all possible ways, one concludes that Γ(H) has nine congruences, whose

corresponding quotient graphs are depicted in Figs. 3.3 and 3.4; this is the so-called

fringe of H, O(H).

Thus the A-fringe of H consists of O(H) = {H0, H1, H2, H3, H4, H5, H6, H7, H8}, where

H0 = H, H1 = 〈a, bc, b2, bac−1〉, H2 = 〈b, ac−1〉, H3 = 〈c, ba, b2, acb−1〉, H4 =

〈b2, ba−1, bca−1, ca−1b−1〉, H5 = 〈ac−1b−1, bab−1, b2, bc−1〉, H6 = 〈b2, a, bab−1, bc−1, bc〉,

H7 = 〈c, b2, ab−1, ba, bcb−1〉 and H8 = 〈a, b, c〉 = F3.

Let us clean now this set O(H). It is a well know fact that if N is obtained from M by

a single identification of two vertices followed by the necessary foldings (i.e., if N is

generated by M and a single extra generator) then M 6ff N whenever r(N) = r(M)+1,
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Figure 3.3: Stallings graph of H

and M 6alg N otherwise. With this fact we deduce that, H1, H3, H4, H5 6ff H, H6 6ff

H1, H5, H7 6ff H3, H4 and H8 6ff H2 and obtain AEFn(H) = {H, 〈b, ac−1〉}.

Theorem 3.2.6 (Takahasi, [39]; see also [22], [31], [24], [41]). Every H 6fg Fn has

finitely many algebraic extensions, say AEFn(H) = {H = H0, H1, . . . ,Hr} (r depending

on H), each Hi is finitely generated, and free bases for all of them are algorithmically

computable from a given set of generators for H. Furthermore, for every extension H 6

K 6 Fn, there exists a unique (and computable) 0 6 i 6 r such that H 6alg Hi 6ff K;

this Hi is called the K-algebraic closure of H.

Sketch of the proof. The original proof by M. Takahasi [39] was combinatorial, playing

with words and cancellation in the free group. We sketch the modern proof given in [31]

following ideas of Ventura [40], Kapovich–Miasnikov [22] and Margolis–Sapir–Weil [24].

We have the alphabet Z fixed as a free basis for the ambient free group, Fn = F (Z).

Now, given generators for H 6fg F (Z), one can compute the Stallings graph Γ(H) for

H (denote the basepoint by �). Attaching the necessary infinite hanging trees so that it

becomes a complete graph (i.e., with all vertices having an incoming and an outgoing

edge labelled a for every a ∈ Z), we obtain the Schreier graph χ(Fn, H, Z) (which is

finite if and only if H is of finite index in Fn). Of course, χ(Fn, H, Z) is a covering,

χ(Fn, H, Z)� R(Z), of the bouquet R(Z), the graph with a single vertex and one loop

labelled a for every a ∈ Z; more precisely, it is the covering of R(Z) corresponding to
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Figure 3.4: The eight non-trivial quotients of ΓA(H)
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the subgroup H 6fg π(R(Z)) = Fn. By standard covering theory, K ↔ χ(Fn,K, Z) is

a bijection between intermediate subgroups H 6 K 6 Fn and intermediate coverings,

χ(Fn, H, Z) � χ(Fn,K, Z) � R(Z) (mapping finitely generated subgroups to graphs

with finite core, and vice-versa).

Fix H 6fg K 6fg Fn, and consider their Stallings graphs Γ(H) = core(χ(Fn, H, Z)) and

Γ(K) = core(χ(Fn,K, Z)), both being finite graphs. The above bijection means that

χ(Fn,K, Z) is a quotient of χ(Fn, H, Z), i.e., the result of χ(Fn, H, Z) after identifying

vertices and edges in a compatible way (i.e., modulo a congruence, an equivalence relation

satisfying that if p ∼ q and e1 and e2 are edges with the same label and ιe1 = ιe2 = p,

then e1 ∼ e2). There are two cases: if no pair of vertices in Γ(H) 6 χ(Fn, H, Z) become

identified then Γ(H) is a subgraph of Γ(K) = core(χ(Fn,K, Z)) and so, H 6ff K;

otherwise, we loose H from the picture, but we can still say that some compatible

quotient of Γ(H) will be visible as a subgraph of Γ(K). Since Γ(H) is finite, it has finitely

many compatible quotients and, therefore, computing all of them and computing free

basis for their fundamental groups, we obtain a finite list of subgroups OFn(H) = {H =

H0, H1, . . . ,Hs} (s depending on H), called fringe of H in [31], all of them containing

H and satisfying the following property: for every H 6fg K 6fg Fn there exists (a non

necessarily unique) i = 0, . . . , s such that H 6 Hi 6ff K.

It only remains to clean this list by checking, for each pair of indices i, j, whether

Hi 6ff Hj and, in this case, delete Hj from the list. It is not difficult to see that the

resulting reduced list is precisely AEFn(H) ⊆ OFn(H). Uniqueness of the K-algebraic

closure follows directly from the definition of algebraic extension.

Takahasi Theorem ensures us that when we are computing dcFn(H), we can restrict

ourselves only into algebraic extensions of H. Hence we have the following easy Corollary

which leads us to prove one of our results, Theorem 3.2.8.
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Corollary 3.2.7. For any subgroup H 6fg Fn, we have dcFn(H) =

supH6K6fgFn{r̃(H)/ r̃(K)} = maxK∈AEFn (H){r̃(H)/ r̃(K)}; furthermore, we can effec-

tively compute dcFn(H) and a free basis of a subgroup K where the maximum is attained.

Proof. By Theorem 3.2.6, every H 6 K 6fg Fn uniquely determines the K-algebraic

closure of H, i.e., an H ′ ∈ AEFn(H) such that H 6alg H ′ 6ff K. Therefore, since

r̃(H ′) 6 r̃(K), we can restrict the supremum in the definition of dcFn(H) to those

subgroups in AEFn(H). Since |AEFn(H)| is finite and computable, this supremum is a

maximum and we can effectively compute both dcFn(H) and a free basis of a subgroup

K where the maximum is attained.

Theorem 3.2.8. For any finitely generated free group G = Fn, the function dcFn is com-

putable; more precisely, there is an algorithm which, on input h1, . . . , hr ∈ Fn, computes

the value of dcG(〈h1, . . . , hr〉) and outputs a free basis of a subgroup K 6fg Fn where it is

attained.

Proof. The proof is immediate from Corollary 3.2.7.

3.3 Degree of compression in free-abelian times free

groups

For the rest of the Chapter we work in free-abelian times free groups G = Zm × Fn,

investigating here the degrees of compression and inertia of subgroups. More precisely,

in this section we study the degree of compression of a given subgroup H 6fg G.

The following lemma says that it is enough to consider those overgroups K such that

Hπ 6 Kπ is an algebraic extension.
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Lemma 3.3.1. Let H6fgG = Zm × Fn. Then,

dcG(H) := sup
H6K6fgG

{ r̃(H)
r̃(K)

}
= max

H 6 K 6fg G

Hπ 6alg Kπ

{ r̃(H)
r̃(K)

}
.

Proof. We already observed above that the supremum defining the degree of compression

is always a maximum. The inequality > is clear.

Fix a basis for H, say {ta1u1, . . . , t
arur, t

b1 , . . . , tbs}. To see the other inequality, take a

subgroup H 6 K 6fg G and we shall construct H 6 K ′ 6fg G such that Hπ 6alg K ′π

and r̃(H)/ r̃(K) 6 r̃(H)/ r̃(K ′).

We have LH = H∩Zm = 〈tb1 , . . . , tbs〉 6 K∩Zm = LK and Hπ 6 Kπ so, r(LH) 6 r(LK)

and Hπ 6alg J 6ff Kπ, for some J ∈ AEFn(Hπ). Take a free basis {v1, . . . , vp} for J

and extend it to a free basis {v1, . . . , vp, vp+1, . . . , vq} for Kπ, p 6 q. Now, consider a

basis for K of the form {tc1v1, . . . , t
cpvp, t

cp+1vp+1, . . . , t
cqvq, t

d1 , . . . , td`}, where ci ∈ Zm,

i = 1, . . . , q, are certain vectors, and {td1 , . . . , td`} is a free-abelian basis for LK .

Let, K ′ = 〈tc1v1, . . . , t
cpvp, t

d1 , . . . , td`〉 6fg K 6 G and we claim that H 6 K ′. In fact,

we already know that tbi ∈ LH 6 LK = LK′ = 〈td1 , . . . , td`〉 6 K ′ for i = 1, . . . , s. Now,

for i = 1, . . . , r we see that taiui ∈ K ′: write ui as a word ui = wi(v1, . . . , vp) (unique

up to reduction) and compute wi(tc1v1, . . . , t
cpvp) = teiwi(v1, . . . , vp) = teiui ∈ K ′ 6 K,

where ei = |wi|v1c1 + · · ·+ |wi|vpcp. But taiui ∈ H 6 K so, tei−ai ∈ LK = LK′ 6 K ′ and

hence, taiui = (tei−ai)−1(teiui) ∈ K ′.

So, for every H 6 K 6fg G we have found a finitely generated subgroup in between,

H 6 K ′ 6 K, such that Hπ 6alg J = K ′π and

r̃(K ′) = r̃(K ′π) + r(LK′) = (p− 1) + r(LK′) 6 (q − 1) + r(LK) = r̃(K);
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therefore, r̃(H)/ r̃(K ′) > r̃(H)/ r̃(K) and the proof is completed.

Now we are in position to explain the term d(A,B,U) involved in Theorem 3.3.3. First

we fix H 6fg G, a basis for it {ta1u1, . . . , t
arur, t

b1 , . . . , tbs}, and consider the matrices

A =


a1
...

ar

 ∈Mr×m(Z) and B =


b1
...

bs

 ∈Ms×m(Z).

For every J ∈ AEFn(Hπ) given with a free basis, say J = 〈v1, . . . , vp〉, we can consider the

(unique reduced) word expressing each ui in terms of v1, . . . , vp, say ui = wi(v1, . . . , vp),

abelianize, and get the vector (|wi|v1
, . . . , |wi|vp) ∈ Z

p, i = 1, . . . , r; collecting all of them

into the rows of a matrix, we have the following matrix UJ :

UJ =


|w1|v1

· · · |w1|vp
...

|wr|v1
· · · |wr|vp

 ∈Mr×p(Z).

According to Lemma 3.3.1, to compute dcG(H) it is enough to consider the subgroups of

the form K = 〈tc1v1, . . . , t
cpvp, LK〉 6fg G (where LK = K ∩ Zm and assume the given

set of generators to be a basis of K) such that H 6 K 6 G, Hπ = 〈u1, . . . , ur〉 6alg

Kπ = 〈v1, . . . , vp〉, compute r̃(H)/ r̃(K), and take the maximum of these values. Observe

that, although |AEFn(Hπ)| <∞, there are, possibly, infinitely many such K ’s; however,

r̃(K) = p− 1 + r(LK) takes only finitely many values.
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So, fix such a K and consider the matrix

CK =


c1
...

cp

 ∈Mp×m(Z).

Observe that CK satisfies row(A − UKπCK) 6 LK: in fact, for every i = 1, . . . , r, we

have

K 3 wi(tc1v1, . . . , t
cpvp) = t|wi|v1c1+···+|wi|vpcpwi(v1, . . . , vp) = t(UKπ)iCKui,

where (UKπ)i is the i-th row of UKπ; therefore, H 6 K implies that ai− (UKπ)iCK ∈ LK ,

for i = 1, . . . , r. This motivates the following definition, which allows us to obtain the

main result in this section.

Definition 3.3.2. For given matrices A ∈ Mr×m(Z), B ∈ Ms×m(Z), and U ∈ Mr×p(Z),

define d(A,B,U) = minL6Zm{r(L) | ∃ C ∈ Mp×m(Z) such that row(A − UC) 6

L, and row(B) 6 L}.

Theorem 3.3.3. For any given subgroup H 6fg G = Zm × Fn, with basis

{ta1u1, . . . , t
arur, t

b1 , . . . , tbs}, and using the notation above, we have

dcG(H) = r̃(H)
/

min
J∈AEFn (Hπ)

{r̃(J) + d(A,B,UJ)}.

Moreover, dcG(H) is algorithmically computable.
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Proof. By Lemma 3.3.1, we know that the supremum in dcG(H) is attained in a certain

H 6 K 6fg G such that Kπ ∈ AEFn(Hπ). And, for every such K, r̃(K) = r̃(Kπ)+r(LK)

so,

dcG(H) = max
H 6 K 6fg G

Hπ 6alg Kπ

{ r̃(H)
r̃(K)

}
= max

J∈AEFn (Hπ)

{ r̃(H)
r̃(J) + d(A,B,UJ)

}
=

= r̃(H)
minJ∈AEFn (Hπ){r̃(J) + d(A,B,UJ)} (3.1)

since, by the argument above, every K with Kπ = J ∈ AEFn(Hπ) satisfies r(LK) >

d(A,B,UJ), one of them with equality.

In order to compute the value of dcG(H) we can do the following: first compute

AEFn(Hπ); for each member J = 〈v1, . . . , vp〉, write each ui in the free basis of Hπ

in terms of the free basis {v1, . . . , vp} of J , and obtain the matrix UJ ; then compute

d(A,B,UJ) + r̃(J) (which is effectively doable by the following Proposition 3.3.4). When

this procedure is done for each of the finitely many J ∈ AEFn(Hπ), take the minimum of

the values d(A,B,UJ) + r̃(J) and, by (3.1), we are done.

Proposition 3.3.4. For any given matrices A ∈ Mr×m(Z), B ∈ Ms×m(Z), and U ∈

Mr×p(Z), the value of d(A,B,U) is algorithmically computable, together with a free-abelian

basis of an L 6 Zm attaining the minimum, and the corresponding matrix C ∈Mp×m(Z).

Proof. Recall that d(A,B,U) is the minimum rank of those subgroups L 6 Zm satisfying

row(B) 6 L, and row(A−UC) 6 L for some C ∈Mp×m(Z). Observe first that, replacing

B by B′ with row(B) 6fi row(B′) 6⊕ Zm, we have d(A,B′, U) = d(A,B,U); in fact,

d(A,B′, U) > d(A,B,U) is clear from the definition, and for every L 6 Zm containing

row(B) and row(A−UC) for someC ∈Mp×m(Z), we have the subgroup L+row(B′) 6 Zm

which contains row(B′) and row(A− UC) for the same matrix C, and has the same rank,

r(L+ row(B′)) = r(L), since L 6fi L+ row(B′); this proves the equality.
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Let us do a few reductions to the problem. Compute matrices P ∈ GLr(Z), Q ∈ GLp(Z),

and positive integers d1, . . . , d` ∈ N, ` 6 min{r, p}, satisfying 1 6 d1|d2| · · · |d` 6= 0,

such that PUQ = U ′, where U ′ = diag(d1, . . . , d`) ∈ Mr×p(Z) (understanding the last

r − ` > 0 rows and the last p − ` > 0 columns full of zeros); this is the Smith normal

form of U , see [2] for details. Writing A′ = PA, B′ = B, and doing the change of

variable C = QC ′, we have row(A− UC) = row(PA− PUQC ′) = row(A′ − U ′C ′). So,

d(A,B,U) = d(A′, B′, U ′).

To compute d(A′, B′, U ′), we have to find a subgroup L 6 Zm of the minimum possible

rank, and vectors c′1, . . . , c
′
p ∈ Zm, such that row(B′) 6 L,

a′1 − d1c
′
1 ∈ L

· · ·

a′` − d`c′` ∈ L


, (3.2)

and

a′`+1 ∈ L

· · ·

a′r ∈ L


. (3.3)

Note that the last p− ` > 0 columns of U ′ are full of zeroes and so, no condition concerns

the vectors c′`+1, . . . , c
′
p and we can take them to be arbitrary (say zero, for example). That

is, taking c′`+1 = · · · = c′p = 0, denoting A′′ = A′ ∈Mr×m(Z), B′′ = B′ ∈Ms×m(Z), U ′′ ∈

Mr×`(Z) the matrix U ′ after deleting the last p− ` > 0 columns (and C ′′ ∈M`×m(Z) the

matrix C ′ after deleting the last p− ` > 0 rows), we have d(A′, B′, U ′) = d(A′′, B′′, U ′′).

Now, we can ignore conditions (3.3) by adding the vectors a′′`+1, . . . , a
′′
r as extra rows

at the bottom of B: let A′′′ ∈ M`×m(Z) be A′′ after deleting the last r − ` > 0 rows,

B′′′ ∈M(s+r−`)×m(Z) be B′′ enlarged with r − ` extra rows with the vectors a′′`+1, . . . , a
′′
r ,

(and C ′′′ = C ′′), and we have that d(A′′, B′′, U ′′) = d(A′′′, B′′′, U ′′′).
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Finally, if d1 = 1 we can take c′1 = a′1 and the first condition in (3.2) becomes trivial; so,

deleting the possible ones at the beginning of the list d1|d2| · · · |d` (and their rows and

columns from U ′′′), and deleting also the corresponding first rows of A and C, we can

assume d1 6= 1.

Altogether, and resetting the notation to the original one, we are reduced to com-

pute d(A,B,U) in the special situation where A ∈ Mr×m, B ∈ Ms×m, and U =

diag(d1, . . . , dr) ∈ Mr×r, with 1 6= d1|d2| · · · |dr 6= 0, and further, by the argument in

the first paragraph of the present proof, with row(B) being a direct summand of Zm. That

is, we have to compute a subgroup L 6 Zm of the minimum possible rank, and vectors

c1, . . . , cp ∈ Zm satisfying row(B) 6 L and

a1 − d1c1 ∈ L

· · ·

ar − drcr ∈ L


, (3.4)

where ai is the i-th row of A. Let us think the conditions in (3.4) as saying that ai ∈ L

modulo diZm, i = 1, . . . , r. To solve this, let us start with L0 = row(B) 6⊕ Zm and let us

increase it the minimum possible in order to fulfill conditions (3.4).

Since d1|d2| · · · |dr, the natural projections πi : Zm � (Z/diZ)m factorize through the

chain of morphisms Zm � (Z/drZ)m � (Z/dr−1Z)m � · · ·� (Z/d1Z)m. Starting with

L > L0 and collecting the last condition in (3.4), we deduce that L must further satisfy

Lπr > L0πr+〈v0
rπr〉, where v0

r = ar ∈ Zm. Now the second condition from below in (3.4)

adds the requirement Lπr−1 3 ar−1πr−1. But ar−1πr−1 ∈ (Z/dr−1Z)m has finitely many

(more precisely, (dr/dr−1)m) pre-images in (Z/drZ)m; compute them all, take pre-images

vr−1 up in Zm, and we get that L must further satisfy Lπr > L0πr + 〈v0
rπr, vr−1πr〉,

where vr−1πr is one of these (dr/dr−1)m pre-images. Repeat this same argument with

all the conditions in (3.4), working from bottom to top: we deduce that L must further
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satisfy Lπr > L0πr + 〈v0
rπr, vr−1πr, . . . , v1πr〉, where vi ∈ Zm is a vector such that

viπr is one of the computed (dr/di)m pre-images of aiπi ∈ (Z/diZ)m up in (Z/drZ)m,

i = r − 1, . . . , 1, i.e., vi ≡ ai mod di. This makes a total of (dr/dr−1)m · · · (dr/d1)m

possible lower bounds for Lπr: compute them all, find one with minimal possible rank,

say Lπr > L0πr + 〈v0
rπr, v

0
r−1πr, . . . , v

0
1πr〉, and we deduce that d(A,U,B) > r(L1πr),

where L1 = L0 + 〈v0
r , v

0
r−1, . . . , v

0
1〉 6 Zm.

We claim that this lower bound is tight, i.e., d(A,B,U) = r(L1πr). To see this, we have to

construct a subgroup L 6 Zm of rank exactly r(L1πr), containing L0 and satisfying (3.4)

for some vectors c1, . . . , cr ∈ Zm (which must also be computed). Since L0 is a direct

summand of Zm, say with free-abelian basis {w1, . . . , wk}, we deduce that L0πr is a direct

summand of (Z/drZ)m with abelian basis {w1πr, . . . , wkπr}. So, L0πr is also a direct

summand of L1πr 6 (Z/drZ)m; compute a complement and get vectors v′1, . . . , v
′
l ∈ Zm,

l 6 r, such that {w1πr, . . . , wkπr, v
′
1πr, . . . , v

′
lπr} is an abelian basis of L1πr = L0πr ⊕ V ;

in particular, r(L1πr) = k + l.

Finally, take L = 〈w1, . . . , wk, v
′
1, . . . , v

′
l〉 6 Zm. This subgroup has the desired rank

r(L) = k + l = r(L1πr) (since the given generators are linearly independent because

their πr-projections are so), and satisfies the required conditions: on one hand, L0 =

〈w1, . . . , wk〉 6 L; on the other, for every i = 1, . . . , r, v0
i πr ∈ L1πr = 〈w1πr, . . . , wkπr〉 ⊕

〈v′1πr, . . . , v′lπr〉 so,

v0
i πr = λ1(w1πr) + · · ·+ λk(wkπr) + µ1(v′1πr) + · · ·+ µl(v′lπr)

= (λ1w1 + · · ·+ λkwk + µ1v
′
1 + · · ·+ µlv

′
l)πr,

for some integers λ1, . . . , λk, µ1, . . . , µl ∈ Z; thus, L contains the vector ci = λ1w1 + · · ·+

λkwk + µ1v
′
1 + · · · + µlv

′
l which satisfies ci ≡ v0

i mod dr and so, ci ≡ v0
i mod di too;

since v0
i ≡ ai mod di, we deduce ci ≡ ai mod di and we are done.
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It is natural to ask whether the minimum minJ∈AEFn (Hπ){r̃(J) + d(A,B,UJ)} in Theo-

rem 3.3.3 is attained at an algebraic extension J ∈ AEFn(Hπ) of minimal rank. Unfor-

tunately, this is not always the case, as shown in the following example. In order to

compute dcG(H), this forces us to run over all algebraic extensions J of Hπ, and compute

d(A,B,UJ) following the algorithm given in Proposition 3.3.4, for each one. We do not

see any shortcut to this procedure, for the general case.

Example 3.3.5. We exhibit an explicit example of a subgroup H 6fg G having two

J, J ′ ∈ AEFn(Hπ) with r̃(J) < r̃(J ′) but r̃(J) + d(A,B,UJ) > r̃(J ′) + d(A,B,UJ ′).

Let H = 〈t(−1,0)b2, t(1,0)ac−1ac−1, t(0,1)bac−1〉 6fg G = Z2 × F3. Projecting, we have

Hπ = 〈b2, ac−1ac−1, bac−1〉, and Fig. 3.3 represents the Stallings’ graph ΓA(Hπ) for Hπ

as a subgroup of F3 with respect to the ambient free basis A = {a, b, c}. The fringe of Hπ

is depicted in Figs. 3.3 and 3.4. Now from example 3.2.5, we get the set of algebraic

extensions for Hπ, namely AE(Hπ) = {Hπ, J}, where J = 〈b, ac−1〉}.

Following the notation above, we have

A =


−1 0

1 0

0 1

 , B = ∅, UHπ =


1 0 0

0 1 0

0 0 1

 , UJ =


2 0

0 2

1 1

 .

According to Theorem 3.3.3,

dcG(H) = r̃(H)/min{r̃(Hπ) + d(A,B,UHπ), r̃(J) + d(A,B,UJ)}. (3.5)

Since H 6 H, d(A,B,UHπ) = r(LH) = 0 and the first term on the minimum in (3.5) is

r̃(Hπ) + d(A,B,UHπ) = (3− 1) + 0 = 2.
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Following the algorithm given in Proposition 3.3.4, let us compute now d(A,B,UJ),

where J = 〈b, ac−1〉; we have r = 3, m = 2, s = 0, and p = 2. Computing the Smith

normal form for UJ , we get

P =


0 0 1

0 1 0

1 1 −2

 ∈ GL3(Z), Q =

 1 −1

0 1

 ∈ GL2(Z), U ′ =


1 0

0 2

0 0

 ,

with d1 = 1, d2 = 2, and ` = min{r, p} = 2. Diagonalyzing the problem, we obtain

A′ = PA =


0 1

1 0

0 −2

 , B′ = B = ∅, U ′ =


1 0

0 2

0 0

 ,

and d(A,B,UJ) = d(A′, B′, U ′) (under the change of variable C = QC ′). Since p = ` = 2

the next reduction is empty and A′′ = A′, B′′ = B′, and U ′′ = U ′. Applying the following

reduction to delete the last r − ` = 3− 2 = 1 zero rows in U ′′, we get

A′′′ =

 0 1

1 0

 , B′′′ =
(

0 −2
)
, U ′′′ =

 1 0

0 2

 .
Finally, in order to delete d1 = 1, we take c′′′1 = (0, 1) and get

A′′′′ =
(

1 0
)
, B′′′′ =

(
0 −2

)
, U ′′′′ =

(
2
)
.

Going up by finite index, we replace the matrix B′′′′ to (0, 1), and are reduced to compute

d(A′′′′, (0, 1), U ′′′′); this is the smallest rank of a subgroup L 6 Z2 such that 〈(0, 1)〉 6 L

and (1, 0) − 2c2 ∈ L for some c2 ∈ Z2. Clearly, d(A′′′′, (0, 1), U ′′′′) = 2, and one (non
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unique) solution is given by L = Z2 and c′′′′2 = (1, 0). Collecting the c1 computed before,

and undoing the change of variable, we get

C = QC ′ = QC ′′′′ =

 1 −1

0 1


 0 1

1 0

 =

 −1 1

1 0

 .
We conclude that d(A,B,UJ) = 2 and one of the subgroups K with the smallest possible

rank satisfying Kπ = J and H 6 K 6 Z2 × F3 is K = 〈t(−1,1)b2, t(1,0)ac−1, t(1,0), t(0,1)〉.

So, the second term on the minimum in (3.5) is r̃(J) + d(A,B,UJ) = (2 − 1) + 2 = 3.

Therefore,

dcG(H) = r̃(H)
min{r̃(Hπ) + d(A,B,UHπ), r̃(J) + d(A,B,UJ)}

= 3− 1
min{(3− 1) + 0, (2− 1) + 2)}

= 2
2 = 1.

In particular, H is compressed in G.

As seen in this example, the algebraic extension J looks better than the other one Hπ

because it contributes to the free rank in 2 units instead of 3. However, in order to match

the free abelian part, J forces us to take two more units of rank, while Hπ requires zero

units. Note that in this example, d(A,B,UJ) is as big as it could be since, in general,

d(A,B,UJ) 6 m = 2. The example can easily be extended to an arbitrary m.

3.4 Degree of inertia in free-abelian times free

groups

In this section, we study the degree of inertia for subgroups H of G = Zm × Fn and

relate it to the corresponding degree of inertia of Hπ in Fn; it turns out that the index of
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H ∩ Zm in Zm (whether finite or infinite) is closely related to the degree of inertia of H.

Unfortunately, the situation here is more complicated and we can only prove an upper

bound for diG in terms of diFn and the previously mentioned index; the computability of

this function remains open, as in the free case.

Lemma 3.4.1. For positive real numbers a, b, c, d > 0,

a

b
6
c

d
⇒ a

b
6
a+ c

b+ d
6
c

d
.

Theorem 3.4.2. Let H6fg G = Zm × Fn, and let LH = H ∩ Zm.

(i) If r(Hπ) 6 1 then diG(H) = 1, (i.e., H is inert in G);

(ii) if r(Hπ) > 2 and [Zm : LH ] =∞ then diG(H) =∞;

(iii) if r(Hπ) > 2 and [Zm : LH ] = l <∞ then diG(H) 6 l diFn(Hπ).

Proof. (i). The hypothesis r(Hπ) 6 1 implies that H = 〈tau, LH〉, for some a ∈ Zm and

u ∈ Fn (possibly trivial). Then, for every K 6fg G, we have (H ∩K)π 6 Hπ∩Kπ 6 〈u〉.

So, (H ∩K)π = 〈ur〉 for some r ∈ Z. Then, H ∩K = 〈tbur, LH ∩ LK〉 for some b ∈ Zm

and we get r(H ∩K) 6 r(K). Therefore, r̃(H ∩K)/ r̃(K) 6 1, which is valid for every

K 6fg G. Thus, diG(H) = 1.

(ii). Consider the subgroup L̃H satisfying LH6fiL̃H6⊕Zm, and take a free-abelian basis

{b1, . . . , bs} of L̃H , such that {λ1b1, . . . , λsbs} is a free-abelian basis of LH for appropriate

choices of λ1, . . . , λs ∈ Z (there is always a basis like this by standard linear algebra

arguments). By hypothesis, s = r(LH) < m and, completing to a free-abelian basis

{b1, . . . , bs, bs+1, . . . , bm} of the ambient Zm, we get at list one extra vector bs+1 (which,

of course, is primitive in Zm and so has relatively prime coordinates).
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Now fix a basis for H of the form {ta1u1, . . . , t
an1un1 , t

λ1b1 , . . . , tλsbs}, where a1, . . . , an1 ∈

Zm, and {u1, . . . , un1} is a free basis for Hπ; in particular, r(Hπ) = n1 > 2, r(LH) = s <

m, and r(H) = n1 + s.

For proving diG(H) = ∞, we shall construct a family of subgroups KN 6fg Zm × Fn,

indexed by N ∈ N, all of them with constant rank 3 (i.e., r̃(KN ) = 2), with all the

intersections H ∩ KN being finitely generated, but with r̃(H ∩ KN ) tending to ∞, as

N →∞.

LetKN = 〈ta′1u1, t
a′2u2, LKN 〉 6 Zm×Fn, where the vectors a′1, a

′
2 ∈ Zm and the subgroup

LKN 6 Zm are to be determined (note that for all choices r(KNπ) = 2, and here we are

already using the hypothesis n1 > 2).

Let us understand the intersectionH∩KN (see the figure 3.5). We have n2 = r(KNπ) = 2,

Hπ ∩KNπ = 〈u1, u2〉 and so n3 = r(Hπ ∩KNπ) = 2, and we consider the matrices

A =


a1
...

an1

 ∈Mn1×m(Z), A′ =

 a′1

a′2

 ∈M2×m(Z).

Let ρ1 : Hπ � Zn1 , ρ2 : KNπ � Z2 and ρ3 : Hπ ∩ KNπ � Z2 be the corresponding

abelianization maps. Clearly, the inclusion maps ιH : Hπ ∩KNπ ↪→ Hπ and ιK : Hπ ∩

KNπ ↪→ KNπ abelianize, respectively, to the morphisms Z2 → Zn1 and Z2 → Z2 given

by the matrices

P =

 1 0 0 · · · 0

0 1 0 · · · 0

 ∈M2×n1(Z), P ′ = I2 =

 1 0

0 1

 ∈M2×2(Z).
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6

(H ∩KN )π

Hπ ∩KNπHπ KNπ? _ιoo � � ι′ //

Z2Zn1 Z2

ρ3

����

ρ1

����

ρ2

����

/// ///

Poo P ′ //

Zm

A

""

A′

||

R

��

Figure 3.5: Intersection diagram of H and KN

Moreover, let

R = PA− P ′A′ =

 a1

a2

−
 a′1

a′2

 =

 a1 − a′1

a2 − a′2

 ∈M2×m(Z),

and let us put all these ingredients into the diagram 3.5.

According to the argument in [10, Thm. 4.5], the subgroup (H ∩KN )π 6 Hπ ∩KNπ is,

precisely, the full preimage by R and ρ3 of LH + LKN 6 Zm.

Let us choose now the vectors a′1 = a1 − bs+1 and a′2 = a2, so that the matrix R becomes

R =

 bs+1

0

 ,
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and let us choose the subgroup LKN = 〈Nbs+1〉. We have LH + LKN =

〈λ1b1, . . . , λsbs, Nbs+1〉 and then,

(LH + LKN )R−1 = {(x, y) ∈ Z2 | (x y)R ∈ LH + LKN }

= {(x, y) ∈ Z2 | xbs+1 ∈ LH + LKN }

= {(x, y) ∈ Z2 | xbs+1 ∈ 〈Nbs+1〉}

= NZ× Z 6N Z2

(the last equality being true because bs+1 has relatively prime coordinates). As ρ3 is onto,

taking ρ3-preimages preserves the index and we have

(H ∩KN )π = (LH + LKN )R−1ρ3
−1 6N Hπ ∩KNπ.

Thus, by the Schreier index formula, r̃((H ∩ KN )π) = N r̃(Hπ ∩ KNπ) = N and we

deduce that r̃(H ∩KN ) = N + r(LH ∩ LKN ) = N + 0 = N tends to∞, as N →∞. This

completes the proof that diG(H) =∞.

(iii). Fix a basis for H, say {ta1u1, . . . , t
an1un1 , t

b1 , . . . , tbm}, where a1, . . . , an1 ∈ Zm,

{u1, . . . , un1} is a free basis for Hπ, and {b1, . . . , bm} is a free-abelian basis for LH 6l Zm;

in particular, r(Hπ) = n1 > 2, r(LH) = m, and r(H) = n1 +m.

In order to prove the inequality diG(H) 6 l diFn(Hπ), let us take an arbitrary subgroup

K 6fg G, assume that H∩K is finitely generated, and let us prove that r̃(H∩K)/ r̃(K) 6

l diFn(Hπ). Fix a basis for K, say K = 〈ta′1v1, . . . , t
a′n2vn2 , LK〉 and we have

r̃(H ∩K)
r̃(K) = r̃((H ∩K)π) + r(LH ∩ LK)

r̃(Kπ) + r(LK) . (3.6)

As in the proof of part (ii), we consider the following diagram to understand H ∩K:
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6

(H ∩K)π

Hπ ∩KπHπ Kπ? _ιoo � � ι′ //

ρ3

����

ρ1

����

ρ2

����

/// ///

Zn3Zn1 Zn2Poo P ′ //

Zm

A

""

A′

||

R

��

Figure 3.6: Intersection diagram of H and K

where ρ1 : Hπ � Zn1 , ρ2 : Kπ � Zn2 , and ρ3 : Hπ ∩Kπ � Zn3 are the corresponding

abelianization maps (here, n3 = r(Hπ ∩ Kπ) < ∞), where ι and ι′ are the natural

inclusions and P ∈Mn3×n1(Z) and P ′ ∈Mn3×n2(Z) are the matrices of their respective

abelianizations (note that ι and ι′ being injective do not imply P and P ′ necessarily being

so), where A ∈Mn1×m(Z) and A′ ∈Mn2×m(Z) are the matrices with rows {a1, . . . , an1}

and {a′1, . . . , a′n2} respectively, and where R = PA − P ′A′ ∈ Mn3×m(Z). According to

the argument in [10, Thm. 4.5], the crucial property of diagram 3.6 is the fact that

(H ∩K)π = (LH + LK)R−1ρ−1
3 .

From the hypothesis, LH 6l Zm and so, LH +LK 6l′ Zm, where 1 6 l′ 6 l. As in general

R is not necessarily onto, (LH + LK)R−1 6l′′ Zn3 with 1 6 l′′ 6 l′. And, since ρ3 is onto,

(H ∩K)π = (LH + LK)R−1ρ−1
3 6l′′ Hπ ∩Kπ. Therefore, by the Schreier index formula,

r̃((H ∩K)π) = l′′ r̃(Hπ ∩Kπ) = l′′ r̃(Hπ∩Kπ)
r̃(Kπ) r̃(Kπ) 6 l′′ diFn(Hπ) r̃(Kπ).

(3.7)
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Now, using (3.6), we have

r̃(H ∩K)
r̃(K) 6

l′′ diFn(Hπ) r̃(Kπ) + r(LH ∩ LK)
r̃(Kπ) + r(LK) 6

l′′ diFn(Hπ) r̃(Kπ)
r̃(Kπ) = l′′ diFn(Hπ),

(3.8)

where the second inequality is an equality if LK = {0}, and follows from applying

Lemma 3.4.1 to r(LH∩LK)
r(LK) 6 1 6 l′′ diFn(Hπ) otherwise. Therefore,

r̃(H ∩K)
r̃(K) 6 l′′ diFn(Hπ) 6 l′ diFn(Hπ) 6 l diFn(Hπ), (3.9)

as we wanted.

3.5 Restricted degree of inertia for free-abelian times

free group

The present section is dedicated to develop several lemmas about intersections of sub-

groups of Fn, which will be used later. A well-known tool for understanding intersections

of finitely generated subgroups of Fn is the pull-back of graphs.

Definition 3.5.1. Let N,M 6fg Fn and consider its Stallings graphs Γ(N),Γ(M). Con-

sider the direct product Γ(N)×Γ(M), which is defined as the new graph having as set of

vertices V Γ(N)× V Γ(M), set of a-labelled edges EaΓ(N)×EaΓ(M) (here, EaΓ denotes

the set of edges in Γ labelled by the letter a), and with the natural incidence functions

ι(e, f) = (ιe, ιf) and τ(e, f) = (τe, τf).

It is well known (see, for example, [22] for details) that Γ(N) × Γ(M) is folded; but

neither connected nor free of degree one vertices, in general. After taking the connected

component of the basepoint (�,�) and trimming (i.e., repeatedly deleting vertices of

degree one different from the basepoint), one gets the Stallings graph for (N ∩M),i.e.,
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Γ(N ∩M) which is also denoted by Γ(N) ∧ Γ(M). In particular, N ∩M is always finitely

generated (proving the Howson property for Fn).

Definition 3.5.2. Let Γ(N) be the Stallings graph of N 6fg Fn. For every vertex

p ∈ V Γ(N) and every element w ∈ Fn, we define pw to be the terminal vertex of

the unique reduced path γ in Γ(N) starting at p and having label w, in case it exists;

otherwise, pw is undefined. Note that w ∈ N if and only if �w is defined and equals �.

Also, note that N has finite index in Fn if and only if Γ(N) is complete and if and only if

�w is defined in Γ(N), for every w ∈ Fn.

Lemma 3.5.3. For N,M 6fg Fn, N ∩M has infinite index in N if and only if there exists

w ∈ N such that �w is undefined in Γ(M).

Proof. The implication to the left is clear: if N ∩M has finite index in N then �w would

be defined in Γ(N ∩M), and hence in Γ(M), for every w ∈ N .

For the implication to the right, suppose the conclusion is not true, i.e., for every w ∈ N ,

�w ∈ {p0 = �, p1, . . . , pr} ⊆ V Γ(M). Choosing a maximal tree T in Γ(M) and defining

wi = `(T [�, pi]) ∈ Fn for i = 0, . . . , r (note that w0 = 1), we have N ⊆ M tMw1 t

· · · tMwr. Intersecting with N , we get N ⊆ (N ∩M) t (N ∩M)v1 t · · · t (N ∩M)vs

for some vi ∈ N and s 6 r (where we have deleted the possibly empty intersections).

Since the other inclusion is immediate, we deduce that N ∩M has finite index in N , a

contradiction.

Proposition 3.5.4. (p-Expansion). Let N,M 6fg Fn, and suppose that r(N) > 2, the

basepoint � has degree at least 3 in Γ(N), and N ∩M has infinite index in N . Then,

for every 1 6 p 6 ∞, there exist p freely independent elements w1, . . . , wp ∈ N such that

M 6ff M ′ = M ∗ 〈w1, . . . , wp〉 and N ∩M 6ff (N ∩M) ∗ 〈w1, . . . , wp〉 6ff N ∩M ′.

Furthermore, there exists w in N , such that �w is undefined in Γ(M ′).
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Γ(M)�
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γ0

γb

γa

γb

Figure 3.7: Expansion of Γ(M).

Proof. Let ea, eb, ec be three different edges going out from � in Γ(N), ιea = ιeb = ιec =

�, with pairwise different labels a, b, c ∈ X±1 , respectively. By Lemma 3.5.3, there is

u0 ∈ N such that �u0 is undefined in Γ(M). Realize u0 as a reduced closed path γ0 at �

in Γ(N) and, without lost of generality, we can assume it finishes with e−1
a . For α = a, b, c,

take a non-trivial reduced path ηα in the graph Γ(N) \ {eα} and closed at τeα (there

always exists such a path because r(N) > 2, even if eα is a bridge since Γ(N) has no

vertices of degree 1 except possibly �); now consider γα = eαηαe
−1
α , a reduced closed

path at � in Γ(N), beginning with eα and ending with e−1
α (so, its label uα = `(γα) ∈ N

is a reduced word on X±1 beginning with α and ending with α−1). Note that then the

paths γ0, γ1 = γ0γb, γ2 = γ0γbγa, γ3 = γ0γbγaγb, . . ., and also the paths γiγcγ−1
i , i > 0,

are reduced as written; furthermore, all of them are closed paths at � in Γ(N) so, the

elements wi = `(γiγcγ−1
i ) ∈ Fn belong to N , for all i > 1.

Now, let us extend the graph Γ(M) by adding the necessary vertices and edges so that we

can read all the paths γiγcγ−1
i from �, i = 1, . . . , p : since �u0 was undefined in Γ(M),

possibly an initial segment of γ0 is readable in Γ(M) but not the entire path, forcing us

to append at least a new edge sticking out of Γ(M); behind it, we add the rest of the

construction, see Fig 3.7 (this is infinitely many new vertices and edges, if p =∞). Since

the added paths were all reduced, the resulting graph presents no foldings and so it is a

(possibly infinite) Stallings graph, having Γ(M) as a subgraph. Hence, M is a free factor

of its fundamental group, M 6ff M ′ = M ∗ 〈w1, . . . , wp〉.
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Now we will look at the Stallings graph Γ(N ∩M ′) = Γ(N)∧Γ(M ′). Since wi ∈ N for all

i > 0, it is clear that Γ(N) ∧ Γ(M ′) contains, as a subgraph, Γ(N) ∧ Γ(M) with the same

additions as in Fig. 3.7 (and possibly more edges which we do not control). Therefore,

N ∩M 6ff (N ∩M) ∗ 〈w1, . . . , wp〉 6ff N ∩M ′.

Finally we can choose w = `(γ0γc). Clearly, w ∈ N and from the Fig. 3.7, �w is not

defined in Γ(M ′).

Observation 3.5.5. Let K Ed Fn, for any M 6 Fn, KM = 〈K,M〉.

Proof. It is obvious that KM 6 〈K,M〉. We will just proof the other inclusion. As

K Ed Fn, mkm−1 ∈ K for any m ∈M and k ∈ K. In other words, mk = k′m, for some

k′ ∈ K. Let x ∈ 〈K,M〉, then x is a word of the form x = k1m1 · · · krmr for ki ∈ K,

mi ∈ M . But in this word any sub-word of the form mk can be replaced by k′m as

K Ed Fn. Repeatedly doing this replacement operation, we can take all the letters from

K to left side together and the letters from M to the right side. And in this way we can

express x as an element in KM . Thus we have KM = 〈K,M〉.

Lemma 3.5.6. Let G be a group and N,M 6 G. Then, [N : N ∩M ] 6 [G : M ], with

equality if MN = G. (If additionally [N : N ∩M ] is finite, the equality holds if and only if

MN = G.)

Proof. Let G = ti∈IMxi be the coset decomposition of G modulo M, where |I| = [G :

M ] 6∞. Intersecting with N (and removing the possibly empty intersections), we have

N = ti∈I(N ∩Mxi) = ti′∈I′(N ∩M)yi, for some I ′ ⊆ I. So, [N : N ∩M ] = |I ′| 6 |I| =

[G : M ].

Furthermore, Mg intersects N non-trivially for g ∈ G if g ∈ MN . So, [N : N ∩M ] =

|I ′| = |I| = [G : M ] if G = MN (with converse also true when |I ′| <∞).
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z z

z

Figure 3.8: Stallings graph for Kz
d

Corollary 3.5.7. Let K Ed Fn, and M 6 Fn, then [M : M ∩ K] = d if and only if

〈K,M〉 = Fn.

Proof. The proof follows directly from Observation 3.5.5 and Lemma 3.5.6.

To proof our Theorem 3.5.14, first we will consider the “easy” normal subgroup Kz
d =

{w ∈ Fn | |w|z ∈ dZ}, where z is one of the letters in the alphabet defining Fn = F (Z).

The Stallings graph of Kz
d is depicted in the Fig. 3.8 (the loops at each vertex present the

other n − 1 generators (except z) of Fn). From the construction of Kz
d , it is very clear

that Kz
d Ed Fn.

Lemma 3.5.8. Let M 6fg Fn, d ∈ N. Then the following conditions are equivalent :

(i) Kz
dM = 〈Kz

d ,M〉 = Fn,

(ii) M ∩Kz
d 6d M ,

(iii) There exists a word m ∈M such that gcd(|m|z, d) = 1,

(iv) The pullback of Γ(M) and Γ(Kz
d) is connected.

Proof. (i)⇔ (ii) : True by observation 3.5.5 and corollary 3.5.7.

(i) ⇒ (iii) : From the hypothesis, z can be written as z = km, for some k ∈ Kz
d and

m ∈M and from the construction, |k|z = λd for some λ ∈ Z. Thus we have |m|z = 1−λd,

which in turn implies that gcd(|m|z, d) = 1.
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(iii) ⇒ (iv) : The pull-back of of Γ(M) and Γ(Kz
d) can be consider as a block-picture,

where there are d many blocks, with the i − th block corresponding to the subgraph

whose vertices are of the form (p, i) for p ∈ V Γ(M), i = 1, . . . , d and � is the base point

of Γ(M). Let m ∈ M such that gcd(|m|z, d) = 1. From Bezout’s inequality, there exist

α, β ∈ Z such that α|m|z + βd = 1, in other words, |mα|z = 1 − βd. Let γmα denotes

the path whose label is mα. Now γmα is a closed path at the base point of Γ(M). On

the other hand, γmα is readable in Γ(Kz
d), as Kz

d is finite index subgroup of Fn. But it

is not readable as a closed path because of |mα|z = 1− βd. Due to the construction of

Kz
d , if ι(γmα) = i-th vertex, then τ(γmα) = i + 1 ( mod d)-th vertex of Γ(Kz

d), where

i = 1, 2, . . . d (see Fig. 3.8). In this way mα will appear in the pull-back connecting each

block to the following one (mod d). It remains to prove that each block of the pull back

is connected.

Let p be any arbitrary vertex of Γ(M). As Γ(M) is connected, there will be a path, say γ,

from ι(γ) = � to τ(γ) = p. Let w0 = `(γ) ∈ Fn and consider w = m−sw0 ∈ Fn and the

path γw starting at � of Γ(M) and reading w (and ending at p of Γ(M) because m ∈M).

Since,

|m−sw0|z = −s|m|z + |w0|z = −s+ s (mod d) = 0 (mod d). (3.10)

γw is a closed path in Γ(Kz
d) because of (3.10). Hence γw is present in the pull back

connecting (�, i) to (p, i) at any block i. Therefore the pull back of Γ(M) and Γ(Kz
d) is

connected.

(iv) ⇒ (ii) : The number of edges labelled by each letter in Γ(Kz
d) is d and also

|V Γ(Kz
d)| = d (see Fig. 3.8). As the pull-back is connected, we have the following,

r̃(M ∩Kz
d) = d|EΓ(M)| − d|V Γ(M)|

= d r̃(M).

By Schreier Index formula we have, (M ∩Kz
d) 6d M .

3.5 Restricted degree of inertia for free-abelian times free group 58



Definition 3.5.9. Let G be a group, π : G → G/Z(G) where Z(G) is the center of the

group G. Let H 6fg G such that Hπ is not virtually cyclic and Hπ 
 [Gπ,Gπ]. The

restricted degree of inertia of H in G is di′G(H) = supK{r̃(H ∩ K)/ r̃(K)}, where the

supremum is taken over all K 6fg G satisfying H ∩K 6fg G, [Hπ : Hπ ∩Kπ] =∞ and

Hπ ∩Kπ 
 [Gπ,Gπ] and here 0/0 is understood to be 1.

Remark 3.5.10. If H is finitely generated, Hπ is not virtually cyclic and Hπ 
 [Gπ,Gπ],

then there always exist one such finitely generated K. In fact, let h ∈ Hπ such that

h /∈ [Gπ,Gπ] and take K = 〈h〉, which is finitely generated because it is cyclic. For the

same reason H ∩K is also finitely generated. Now, Hπ ∩Kπ = 〈h〉 6∞ Hπ (because

Hπ is not virtually cyclic). Also, Hπ ∩Kπ 
 [Gπ,Gπ] as h /∈ [Gπ,Gπ].

Observation 3.5.11. Let H6fgG, be such that Hπ is not virtually cyclic and Hπ 


[Gπ,Gπ]. Then, di′G(H) > 1.

Proof. The previous remark gives a subgroup K with the appropriate conditions and such

that r̃(H∩K)
r̃(K) = 0

0 = 1.

Lemma 3.5.12. Let φ : G1 → G2 be an isomorphism of groups and πi : Gi → Gi/Z(Gi)

be the natural projection map, where Z(Gi) is the center of the group Gi, for i = 1, 2. For

every H 6fg G1 such that Hπ1 is not virtually cyclic and Hπ1 
 [G1π1, G1π1], di′G2(Hφ) =

di′G1(H).

Proof. Let K 6fg G1 with H ∩ K 6fg G1, Hπ1 ∩ Kπ1 6∞ Hπ1 and Hπ1 ∩ Kπ1 


[G1π1, G1π1]. Since, φ is the isomorphism, Kφ 6fg G2 and Hφ∩Kφ = (H∩K)φ 6fg G2.

Now since φ maps Z(G1) onto Z(G2), there exists another isomorphism φ̄ : G1/Z(G1)→

G2/Z(G2) such that g1π1φ̄ = g1φπ2 for every g1 ∈ G1. As Hπ1 ∩Kπ1 6∞ Hπ1, we also

deduce that,Hφπ2∩Kφπ2 = Hπ1φ̄∩Kπ1φ̄ = (Hπ1∩Kπ1)φ̄ 6∞ Hπ1φ̄ = Hφπ2. And also

Hφπ2 ∩Kφπ2 = Hπ1φ̄ ∩Kπ1φ̄ = (Hπ1 ∩Kπ1)φ̄ 
 [G1π1, G1π1]φ̄ = [G1φπ2, G1φπ2] =

[G2π2, G2π2].
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Hence we have, r̃(H ∩ K) = r̃((H ∩ K)φ) = r̃(Hφ ∩ Kφ) 6 di′G2(Hφ) · r̃(Kφ) =

di′G2(Hφ) · r̃(K). Therefore, di′G1(H) 6 di′G2(Hφ). By symmetry, we deduce the other

inequality, di′G2(H) 6 di′G1(Hφ).

Corollary 3.5.13. Let G be a group. For every H 6fg G such that Hπ is not virtually cyclic

and Hπ 
 [Gπ,Gπ], and for every g ∈ G, di′G(Hg) = di′G(H).

In the case of our interest, where G = Zm × Fn, observe that Z(G) = Zm and so

π : G → G/Z(G) is the standard projection to the free part π : G 7→ Fn. Furthermore,

[Gπ,Gπ] = [Fn, Fn] and the hypothesis of Hπ not being virtually cyclic is equivalent to

say that Hπ not cyclic, i.e., r(Hπ) > 2.

With this definition of restricted degree of inertia, we can reprove Theorem 3.4.2 improving

the last statement into an equality, as desired. The proof goes along the same line but

it is much more technical and tricky: the extra technical conditions allow us to do the

arguments but, at the same time, we have to worry about their presentation through each

one of the manipulations done along the proof.

Theorem 3.5.14. Let H6fgG = Zm × Fn, such that Hπ is not cyclic and Hπ 
 [Fn, Fn]

and let LH = H ∩ Zm;

(i) if [Zm : LH ] =∞ then di′G(H) =∞;

(ii) if [Zm : LH ] = l then di′G(H) = l di′Fn(Hπ).

Proof. (i). Consider the subgroup L̃H satisfying LH6fiL̃H6⊕Zm, and take a free-abelian

basis {b1, . . . , bs} of L̃H , such that {λ1b1, . . . , λsbs} is a free-abelian basis of LH for

appropriate choices of λ1, . . . , λs ∈ Z (there is always a basis like this by standard linear

algebra arguments). By hypothesis, s = r(LH) < m and, completing to a free-abelian

basis {b1, . . . , bs, bs+1, . . . , bm} of the ambient Zm, we get at list one extra vector bs+1

(which, of course, is primitive in Zm and so has relatively prime coordinates).
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Now fix a basis for H of the form {ta1u1, . . . , t
an1un1 , t

λ1b1 , . . . , tλsbs}, where a1, . . . , an1 ∈

Zm, and {u1, . . . , un1} is a free basis for Hπ; in particular, r(Hπ) = n1 > 2, r(LH) =

s < m, and r(H) = n1 + s. Further, Hπ 
 [Fn, Fn], so without loss of generality we can

assume that u1 /∈ [Fn, Fn].

For proving di′G(H) = ∞, we shall construct a family of subgroups KN 6fg Zm × Fn,

indexed by N ∈ N, all of them having rank 3 (i.e., r̃(KN ) = 2), with all the intersections

H ∩ KN being finitely generated, all of them satisfying that [Hπ : Hπ ∩ KNπ] = ∞,

(Hπ ∩ KNπ) 
 [Fn, Fn] with r̃(H ∩ KN ) tending to ∞, as N → ∞. The construction

of these KN ’s will be similar to that in Theorem 3.4.2(ii), but with slight technical

modifications in order to get the extra conditions.

LetKN = 〈ta′1u2
1, t

a′2u2
2, LKN 〉 6 Zm×Fn, where the vectors a′1, a

′
2 ∈ Zm and the subgroup

LKN 6 Zm are to be determined (note that for all choices r(KNπ) = 2, and here we are

already using the hypothesis n1 > 2).

Hence we have Hπ ∩ KNπ = 〈u2
1, u

2
2〉 6∞ Hπ, and also Hπ ∩ KNπ 
 [Fn, Fn] as

u2
1 /∈ [Fn, Fn] (since u1 /∈ [Fn, Fn] and Fn/[Fn, Fn] = Zn is torsion-free).

Let us understand the intersectionH∩KN (see the figure 3.9). We have n2 = r(KNπ) = 2,

Hπ ∩KNπ = 〈u2
1, u

2
2〉 and so n3 = r(Hπ ∩KNπ) = 2, and we consider the matrices

A =


a1
...

an1

 ∈Mn1×m(Z), A′ =

 a′1

a′2

 ∈M2×m(Z).

Let ρ1 : Hπ � Zn1 , ρ2 : KNπ � Z2 and ρ3 : Hπ ∩ KNπ � Z2 be the corresponding

abelianization maps. From 3.9, clearly the inclusion maps ιH : Hπ ∩KNπ ↪→ Hπ and
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6

(H ∩KN )π

Hπ ∩KNπHπ KNπ? _ιoo � � ι′ //

Z2Zn1 Z2

ρ3

����

ρ1

����

ρ2

����

/// ///

Poo P ′ //

Zm

A

""

A′

||

R

��

Figure 3.9: Diagram for (H ∩KN )π

ιK : Hπ∩KNπ ↪→ KNπ abelianize, respectively, to the morphisms Z2 → Zn1 and Z2 → Z2

given by the matrices

P =

 2 0 0 · · · 0

0 2 0 · · · 0

 ∈M2×n1(Z), P ′ = I2 =

 1 0

0 1

 ∈M2×2(Z).

Moreover, let

R = PA− P ′A′ =

 2a1

2a2

−
 a′1

a′2

 =

 2a1 − a′1

2a2 − a′2

 ∈M2×m(Z),

and let us put all these ingredients into the diagram 3.9. According to the argument

in [10, Thm. 4.5], the subgroup (H ∩KN )π 6 Hπ ∩KNπ is, precisely, the full preimage

by R and ρ3 of LH + LKN 6 Zm.

Let us choose now the vectors a′1 = 2a1−bs+1 and a′2 = 2a2, so that the matrix R becomes

R =

 bs+1

0

 ,
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and let us choose the subgroup LKN = 〈Nbs+1〉 6 Zm. Therefore, we have LH + LKN =

〈λ1b1, . . . , λsbs, Nbs+1〉 and then,

(LH + LKN )R−1 = {(x, y) ∈ Z2 | (x y)R ∈ LH + LKN }

= {(x, y) ∈ Z2 | xbs+1 ∈ LH + LKN }

= {(x, y) ∈ Z2 | xbs+1 ∈ 〈Nbs+1〉}

= NZ× Z 6N Z2

(the last equality being true because bs+1 has relatively prime coordinates). As ρ3 is onto,

taking ρ3-preimages preserves the index and we have

(H ∩KN )π = (LH + LKN )R−1ρ3
−1 6N Hπ ∩KNπ.

Thus, by the Schreier index formula, r̃((H ∩ KN )π) = N r̃(Hπ ∩ KNπ) = N and we

deduce that r̃(H ∩KN ) = N + r(LH ∩LKN ) = N tends to∞, as N →∞. This completes

the proof that di′G(H) =∞.

Proof of (ii). The base point � of Γ(Hπ) may be of degree 1 or 2 but, without loss of

generality, we can assume that it has degree at least 3 because of the following:

From the hypothesis Hπ is not cyclic, i.e., r(Hπ) > 2. Thus, there exists at least one

vertex p of degree at least 3 in Γ(Hπ) and we can conjugate H and Hπ appropriately

so that the vertex p becomes the base point. With this consideration, we will compute

di′Fn(Hπw) and di′G(Hw) instead of di′Fn(Hπ) and di′G(H). But from Corollary 3.5.13, we

have di′Fn(Hπw) = di′Fn(Hπ) and di′G(Hw) = di′G(H).

So, assume the base point of Γ(Hπ) has degree at least 3. Fix a basis for H, say

{ta1u1, . . . , t
an1un1 , t

b1 , . . . , tbm}, where a1, . . . , an1 ∈ Zm, {u1, . . . , un1} is a free basis for

Hπ, and {b1, . . . , bm} is a free-abelian basis for LH 6l Zm; in particular, r(Hπ) = n1 > 2,

r(LH) = m, and r(H) = n1 +m.
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In order to prove the inequality di′G(H) 6 l di′Fn(Hπ), let us take an arbitrary subgroup

K 6fg G, assume thatH∩K is finitely generated, [Hπ : Hπ∩Kπ] =∞ and (Hπ∩Kπ) 


[Fn : Fn], and let us prove that r̃(H ∩ K)/ r̃(K) 6 l di′Fn(Hπ). Fix a basis for K, say

K = 〈ta′1v1, . . . , t
a′n2vn2 , LK〉 and we have

r̃(H ∩K)
r̃(K) = r̃((H ∩K)π) + r(LH ∩ LK)

r̃(Kπ) + r(LK) . (3.11)

We consider the same diagram (see Fig. 3.6) to understand H ∩K as in the proof of part

(iii) of Theoem 3.4.2. According to the argument in [10, Thm. 4.5], the crucial property

of diagram (3.6) is the fact that (H ∩K)π = (LH + LK)R−1ρ−1
3 .

From the hypothesis, LH 6l Zm and so, LH +LK 6l′ Zm, where 1 6 l′ 6 l. As in general

R is not necessarily onto, (LH + LK)R−1 6l′′ Zn3 with 1 6 l′′ 6 l′. And, since ρ3 is onto,

(H ∩K)π = (LH + LK)R−1ρ−1
3 6l′′ Hπ ∩Kπ. Therefore, by the Schreier index formula,

r̃((H ∩K)π) = l′′ r̃(Hπ ∩Kπ) = l′′ r̃(Hπ∩Kπ)
r̃(Kπ) r̃(Kπ) 6 l′′ di′Fn(Hπ) r̃(Kπ).

(3.12)

The last inequality of equation (3.12) holds because by construction Kπ 6fg Fn further

satisfying Hπ ∩Kπ 6∞ Hπ and Hπ ∩Kπ 
 [Fn, Fn]. Now, using (3.11), we have

r̃(H ∩K)
r̃(K) 6

l′′ di′Fn(Hπ) r̃(Kπ) + r(LH ∩ LK)
r̃(Kπ) + r(LK) 6

l′′ di′Fn(Hπ) r̃(Kπ)
r̃(Kπ) = l′′ di′Fn(Hπ),

(3.13)

where the second inequality is an equality if LK = {0}, and follows from applying

Lemma 3.4.1 to r(LH∩LK)
r(LK) 6 1 6 l′′ di′Fn(Hπ) otherwise. Therefore,

r̃(H ∩K)
r̃(K) 6 l′′ di′Fn(Hπ) 6 l′ di′Fn(Hπ) 6 l di′Fn(Hπ). (3.14)
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To prove the other inequality, di′G(H) > l di′Fn(Hπ), we fix ε > 0 and will construct a

subgroup Kε 6fg G such that H ∩Kε is again finitely generated, [Hπ : Hπ ∩Kεπ] =∞,

Hπ ∩ Kεπ 
 [Gπ,Gπ] and r̃(H ∩ Kε)/ r̃(Kε) > l di′Fn(Hπ) − ε. For any candidate K,

equations (3.12) and (3.14) above contain all the possible reasons why the quotient

r̃(H ∩K)/ r̃(K) may be less than l di′Fn(Hπ), namely:

(1) r̃(Hπ ∩Kπ)/ r̃(Kπ) 6 di′Fn(Hπ);

(2) r̃(H∩K)
r̃(K) 6 l

′′ di′Fn(Hπ);

(3) l′′ 6 l′;

(4) l′ 6 l.

To control these four possible losses and construct a subgroup Kε 6fg G making them

arbitrary small, we follow this strategy:

(1) choose M ′ 6fg Fn such that [Hπ : Hπ ∩ M ′] = ∞, Hπ ∩ M ′ 
 [Fn, Fn] and

r̃(Hπ∩M ′)/ r̃(M ′) > di′Fn(Hπ)− ε/l and construct Kε 6fg G with Kεπ = M ′ (and

with H ∩Kε finitely generated);

(2,4) take LKε = 0;

(3) choose the matrix A′ (i.e., the vectors {a′1, . . . , a′n2}) so that R = PA − P ′A′

is onto (note that, in particular, this requires to choose M ′ in such a way that

n3 = r(Hπ ∩M ′) > m).

Therefore if, for every ε > 0, we succeed constructing such a Kε 6 G we will be done:

r̃(H ∩Kε)
r̃(Kε)

= r̃((H ∩Kε)π) + r(LH ∩ LKε)
r̃(Kεπ) + r(LKε)

= r̃((H ∩Kε)π)
r̃(Kεπ) = l′′ r̃(Hπ ∩Kεπ)

r̃(Kεπ) =

= l′ r̃(Hπ ∩Kεπ)
r̃(Kεπ) = l r̃(Hπ ∩Kεπ)

r̃(Kεπ) > l(di′Fn(Hπ)− ε/l) = l di′Fn(Hπ)− ε
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Now we will consider two cases; namely di′Fn(Hπ) > 1 and di′Fn(Hπ) = 1.

Case-1 : di′Fn(Hπ) > 1.

For any small enough ε > 0, there always exists a subgroup M 6fg Fn such that

[Hπ : Hπ ∩M ] =∞, (N ∩M) 
 [Fn, Fn] and

r̃(Hπ ∩M)
r̃(M) > di′Fn(Hπ)− ε

2l > 1. (3.15)

Hence, both the reduced ranks are greater than 1 (from the definition, 0/0 is understood

to be 1),i.e., r̃(Hπ ∩M) > 1 and r̃(M) > 0. As (Hπ ∩M) 
 [Fn, Fn], this guarantees

us the existence of v ∈ Hπ ∩ M such that vab 6= (0, . . . , 0), where vab = vρ and ρ

is the abelianization map of Fn. Thus we can assume that |v|z = λ 6= 0 for some

letter z in the alphabet generating Fn. Let us write λ = pα1
1 . . . pαnn , where each pi is

a prime divisor of λ. Now we choose a prime d � 0, such that gcd (λ, d) = 1 and

d > 2lmdi′Fn(Hπ)/ε. The following computations (using repeatedly the fact r̃(M) > 0)

show that (d r̃(Hπ ∩M) +m)/(d r̃(M) +m) > r̃(Hπ ∩M)/ r̃(M)− ε/2l.

ε r̃(M)(d r̃(M) +m) > εd r̃(M) > 2lmdi′Fn(Hπ) r̃(M) > 2lm r̃(Hπ ∩M). (3.16)

In the above inequality, the second inequality holds because of the choice d >

2lmdi′Fn(Hπ)/ε and the third inequality holds from the definition of di′Fn(Hπ). So,

2l(d r̃(Hπ ∩M) +m) r̃(M) > 2ld r̃(Hπ ∩M) r̃(M)

> 2ld r̃(Hπ ∩M) r̃(M) + 2lm r̃(Hπ ∩M)− ε r̃(M)(d r̃(M) +m)

= 2l r̃(Hπ ∩M)(d r̃(M) +m)− ε r̃(M)(d r̃(M) +m)
(3.17)
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In (3.17) the second inequality holds as from (3.16) we have, 2lm r̃(Hπ ∩ M) −

ε r̃(M)(d r̃(M) +m) < 0. Dividing both sides by 2l(d r̃(M) +m) r̃(M) 6= 0 we get

(d r̃(Hπ ∩M) +m)
(d r̃(M) +m) >

r̃(Hπ ∩M)
r̃(M) − ε

2l . (3.18)

Now we consider Kz
d as in Lemma 3.5.8. As gcd (λ, d) = 1, applying Lemma 3.5.8 we

have,

M ∩Kz
d 6d M. (3.19)

As that particular v also belongs to Hπ ∩M , again from the Lemma 3.5.8 we have,

(Hπ ∩M) ∩Kz
d 6d (Hπ ∩M) (3.20)

Let us consider M0 = M ∩ Kz
d . By (3.19) and (3.20), we have M0 6d M and Hπ ∩

M0 6d Hπ ∩ M . From the hypothesis we have, Hπ ∩M 6∞ Hπ, which implies that

Hπ ∩M0 6∞ Hπ. Note that, the pull-back Γ(Hπ ∩M) × Γ(Kz
d) is connected and it is

Γ(Hπ∩M∩Kz
d) = Γ(Hπ∩M0). The pull-back Γ(Hπ)×Γ(M0) is not necessarily connected,

but we are interested in the connected component containing its base point (�,�), which

is Γ(Hπ ∩M0). Note that, r(Hπ) > 2, and the degree of the base point � of Γ(Hπ) is at

least 3. Hence we can apply Proposition 3.5.4 and do anm−expansion toM0, getting new

freely independent elements w1, . . . , wm ∈ Fn such that M0 6ff M ′ = M0 ∗ 〈w1, . . . , wm〉

and Hπ ∩M0 6ff (Hπ ∩M0) ∗ 〈w1, . . . , wm〉 6ff (Hπ ∩M ′). By construction, we have

r̃(M ′) = r̃(M0) +m and r̃(Hπ ∩M ′) > r̃(Hπ ∩M0) +m.

Now we have to vectorize this subgroup M ′ 6 Fn and construct the desired Kε. Take a

free basis {v1, . . . , vk} of M0 and the free basis {v1, . . . , vk, w1, . . . , wm} for M ′; we have

n1 = r(Hπ), k = r(M0) and n2 = r(M ′) = k+m. Similarly, as a free basis for Hπ∩M ′ let

us take a free basis for Hπ ∩M0 followed by possibly some more, say p, free generators,
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and finally by {w1, . . . , wm}; we have n3 := r(Hπ ∩M ′) = r(Hπ ∩M0) + p + m > m.

Then, let Q be the lower m×m block in the matrix PA, define

A′ =

 0

−Im +Q

 ∈Mn2×m(Z),

and consider the intersection diagram

6

(H ∩Kε)π

Hπ ∩M ′Hπ M ′? _ιoo � � ι′ //

Zn3Zn1 Zn2

ρ3

����

ρ1

����

ρ2

����

/// ///

Poo P ′ //

Zm

A

""

A′

||

R

��

Separating the n3 rows of PA,P ′, and P ′A′ into the first r(Hπ ∩M0), then the following

p, and finally the last m, and separating the n2 columns of P ′ into the first k and then the

last m, we deduce that

R = PA− P ′A′ =


∗

∗

Q

 −

∗ 0

∗ ∗

0 Im


 0

−Im +Q

 =

=


∗

∗

Q

 −


0

∗

−Im +Q

 =


∗

∗

Im
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is a surjective map from Zn3 onto Zm. Hence, taking LKε = {0}, we construct our desired

subgroup Kε = 〈ta′1v1, . . . , t
a′kvk, t

a′k+1w1, . . . , t
a′n2wm〉 6fg G where a′1, . . . , a

′
n2 ∈ Z

m are

the rows of A′ and Kεπ = M ′. From the construction of M ′ and from Proposition 3.5.4,

there exists w ∈ Hπ such that �w is not defined in Γ(M ′), hence by Lemma 3.5.3,

we have Hπ ∩ M ′ 6∞ Hπ, i.e., Hπ ∩ Kεπ 6∞ Hπ. Also, Hπ ∩ M 
 [Fn, Fn] and

Hπ ∩M0 6d Hπ ∩M , hence Hπ ∩M0 
 [Fn, Fn]. This implies that Hπ ∩M ′ 
 [Fn, Fn]

as Hπ ∩M0 6 Hπ ∩M ′. In other words, Hπ ∩Kεπ 
 [Fn, Fn].

Finally the subgroup Kε makes the job because of the following:

r̃(H ∩Kε)
r̃(Kε)

= r̃((H ∩Kε)π) + r(LH ∩ LKε)
r̃(Kεπ) + r(LKε)

= r̃((H ∩Kε)π)
r̃(Kεπ) =

= l r̃(Hπ ∩Kεπ)
r̃(M0) +m

= l
r̃(Hπ ∩M0) + p+m

r̃(M0) +m
= l

d r̃(Hπ ∩M) + p+m

d r̃(M) +m
.

For the chosen d > 0 and using (3.18), we have

l
d r̃(Hπ ∩M) + p+m

d r̃(M) +m
> l

d r̃(Hπ ∩M) +m

d r̃(M) +m
> l

( r̃(Hπ ∩M)
r̃(M) − ε

2l

)

Finally using (3.15), we have

r̃(H ∩Kε)
r̃(Kε)

> l
( r̃(Hπ ∩M)

r̃(M) − ε

2l

)
> l(di′Fn(Hπ)− ε

2l −
ε

2l ) = l di′Fn(Hπ)− ε,

and as this is true for any ε > 0, we can conclude that r̃(H∩Kε)
r̃(Kε) > l di′Fn(Hπ).

Case-2 : di′Fn(Hπ) = 1.

We already fixed a basis for H as {ta1u1, . . . , t
an1un1 , t

b1 , . . . , tbm}. As Hπ 


[Fn, Fn], again without loss of generality, we can assume that u1 /∈ [Fn, Fn].

Let M be any finitely generated subgroup of Hπ such that u1 ∈ M , M 6∞

Hπ and r(M) = m, e.g, M = 〈u1, u2
−1u1u2, . . . , u2

−(m−1)u1u2
m−1〉. Let K =
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〈ta′1u1, t
a′2u2

−1u1u2, . . . , t
a′mu2

−(m−1)u1u2
m−1〉, where a′1, . . . , a

′
m ∈ Zm will be deter-

mined later. Clearly, K is finitely generated, Hπ ∩ Kπ = Hπ ∩ M = M =

〈u1, u2
−1u1u2, . . . , u2

−(m−1)u1u2
m−1〉 6∞ Hπ and also Hπ ∩ Kπ 
 [Fn, Fn] as u1 /∈

[Fn, Fn].

Now if we consider Fig. 3.6, n3 = m and

P =



1 0 . . . 0

1 0 . . . 0
...

...
...

1 0 . . . 0


∈Mm×n1(Z), P ′ = Im ∈Mm×m(Z).

Moreover,

R = PA− P ′A′ =


a1
...

a1

−


a′1
...

a′m

 ∈Mm×m(Z),

Taking, a′i = a1 − (0, . . . , 0, 1, 0, . . . , 0) (1 is at the i − th position), we get R = Im ∈

Mm×m(Z). As, LK = {0}, LH+LK = LH 6l Zm. So, (H∩K)π = (LH+LK)R−1ρ3
−1 6l

Hπ ∩Kπ = Kπ = M . Hence, H ∩K is finitely generated and

r̃(H ∩K)
r̃(K) = r̃((H ∩K)π)

r̃(Kπ) = l r̃(M)
r̃(M) = l.

In fact, for this particular case we prove that di′G(H) is maximum and its value exactly

equal to l di′Fn(Hπ) = l · 1 = l.

In Theorem 3.4.2 we proved the inequality diG(H) 6 l diFn(Hπ), where r(Hπ) > 2 and

LH 6l Zm. And did not succeed in proving that this is in fact an equality. Our failed

attempts to do so worked well under the two extra technical assumptions about the

subgroup K satisfying Hπ ∩ Kπ 6∞ Hπ and Hπ ∩ Kπ 66 [Fn : Fn]. We crystallized
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this partial proof into Theorem 3.5.14, where we get the desired equality but with the

definition of degree of inertia conveniently modified (hence the notion of restricted

degree of inertia) so that we have at hand the two extra technical conditions needed.

However, we still hope it should be possible to arrange our arguments and prove the

equality with the genuine definition of degree of inertia. Intuitively, here are two possible

ideas to skip using these two extra assumptions:

(1) In the proof of Theorem 3.5.14(i) is essentially the same as that of Theorem 3.4.2(ii)

but playing with 〈u2
1, u

2
2〉 instead of 〈u1, u2〉; this allows us to get the extra condition

Hπ∩KNπ 6∞ Hπ for free. This trick does not work like this in the general situation

but maybe a more clever application of this idea could allow us to remove the extra

hypothesis Hπ ∩Kπ 6∞ Hπ in the definition of restricted degree of inertia.

(2) In the proof of Theorem 3.5.14(ii) we manipulated the original subgroup M into

another one M ′ in such a way that the rank of the intersection n3 = r(Hπ ∩M ′)

became bigger than or equal to m: this was a mandatory step to do because we

needed the linear map R : Zn3 → Zm to be onto in order not to loose index (from

l′ to l′′). However, this change from M to M ′ must at the same time be done in

such a way that the quotients of ranks r̃(Hπ ∩M)/ r̃(M) and r̃(Hπ ∩M ′)/ r̃(M ′)

remain close to each other. This goal was achieved by using an m-expansion (see

Proposition 3.5.4) which gives

r̃(Hπ ∩M ′)
r̃(M ′) = r̃(Hπ ∩M) + p+m

r̃(M) +m
.

But to get r̃(Hπ∩M ′)
r̃(M ′) arbitrarily close to r̃(Hπ∩M)

r̃(M) , since m is a fixed integer, it

is mandatory to assume both the numerator and denominator of the fraction

r̃(Hπ∩M)
r̃(M) big enough. We achieved this by previously replacing M (and Hπ ∩M)

by its intersection with the normal finite index subgroup Kz
d Ed Fn, where d is a

appropriate big enough integer. Appropriate here means satisfying the equivalent

3.5 Restricted degree of inertia for free-abelian times free group 71



conditions of Lemma 3.5.8 and, to this end, it is mandatory to have the condition

Hπ ∩M 66 [Fn : Fn] (otherwise, there is no such d available).

The idea to try to avoid this hypothesis is to look at the descending sequence of

iterated commutators in the free group, F ′n = [Fn, Fn], F ′′n = [F ′n : Fn], F ′′′n =

[F ′′n : Fn], . . .. It is well known that Fn > F ′n > F ′′n > · · · and the intersection is

1. Hence, our non-trivial subgroup Hπ will contain an element h ∈ Hπ outside

F
(r)
n for some r (without assuming necessarily r = 1). Now we need to locate

a normal subgroup of arbitrarily big index in Fn which could play a similar role

to Kz
d but now with respect to F

(r)
n instead of F ′n; of course this would require

an analogue to Lemma 3.5.8 understanding when the index gets preserved under

arbitrary intersections in terms of an explicit condition potentially satisfied by the

element h. It seems that a project like will require playing with finite nilpotent

groups (much in the same way that travelling around the graph Γ(Kz
d) is analogous

to playing in the finite abelian group Fn/Kz
d ' Z/dZ).

Conjecture 3.5.15. For any finitely generated subgroup H of G = Zm × Fn, diG(H) =

di′G(H).
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4Fixed subgroups and computation of

auto-fixed closures in free-abelian

times free groups

“Groups, as men, will be known by their actions.”

— Guillermo Moreno

The classical result by Dyer–Scott about fixed subgroups of finite order automorphisms

of Fn being free factors of Fn is no longer true in Zm × Fn. Within this more general

context, we prove a relaxed version in the spirit of Bestvina–Handel Theorem: the rank

of fixed subgroups of finite order automorphisms is uniformly bounded in terms of m,n.

We also study periodic points of endomorphisms of Zm × Fn, and give an algorithm to

compute auto-fixed closures of finitely generated subgroups of Zm × Fn. On the way, we

prove the analog of Day’s Theorem for real elements in Zm × Fn, contributing a modest

step into the project of doing so for any right angled Artin group (as McCool did with

respect to Whitehead’s Theorem in the free context).

The goal of this chapter is to investigate the structure of the fixed subgroups by endo-

morphisms (and automorphisms) of G. At a first glance, it may seem that the problems

concerning automorphisms will easily reduce to the corresponding problems for Zm and

Fn; and, in fact, this is the case when the problem considered is easy or rigid enough.

When one considers automorphisms; Aut(Zm×Fn) naturally contains GLm(Z)×Aut(Fn),

but there are many more automorphisms other than those preserving the factors Zm

and Fn. This causes potential complications when studying problems involving auto-
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morphisms: apart from understanding the problem in both the free-abelian and the free

parts, one has to be able to control how is it affected by the interaction between the two

parts.

4.1 Preliminaries on GLm(Z)

In this section we collect well known and folklore results about the general linear group

over the integers, GLm(Z). This group is very well studied in the literature, but we are

interested in highlighting several subtleties coming from the fact that Z is not a field, but

just an integral domain.

Lemma 4.1.1. Let Q ∈ GLm(Z) be a matrix such that Qk = Im. Then, we have the

decomposition Zm = ker(Q− Im)⊕ ker(Qk−1 + · · ·+Q+ Im).

Proof. Since gcd(xk−1 + · · ·+x+1, x−1) = 1, Bezout’s equality gives us two polynomials

α(x), β(x) ∈ Z[x] such that 1 = α(x)(xk−1 + · · ·+ x+ 1) + β(x)(x− 1). Plugging Q, we

obtain the matrix equality Im = α(Q)(Qk−1 + · · ·+Q+ Im) + β(Q)(Q− Im). Now, for

every vector v ∈ Zm, we have v = vα(Q)(Qk−1 + · · ·+Q+ Im) + vβ(Q)(Q− Im). And,

since (Q− Im)(Qk−1 + · · ·+Q+ Im) = (Qk−1 + · · ·+Q+ Im)(Q− Im) = Qk − Im = 0,

the first summand is in ker(Q − Im) and the second one in ker(Qk−1 + · · · + Q + Im);

hence, Zm = ker(Q− Im) + ker(Qk−1 + · · ·+Q+ Im).

Now let v ∈ ker(Q− Im)∩ ker(Qk−1 + · · ·+Q+ Im). This means that v(Q− Im) = 0 and

v(Qk−1+· · ·+Q+Im) = 0, which imply v = v(Qk−1+· · ·+Q+Im)α(Q)+v(Q−Im)β(Q) =

0. Thus, Zm = ker(Q− Im)⊕ ker(Qk−1 + · · ·+Q+ Im).

To proof our Propositions 4.1.3 and 4.1.4 we will use one result about Euler ϕ-function

from the literature.

Lemma 4.1.2. limn→∞ ϕ(n) =∞, where ϕ is the Euler ϕ-function.
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Proof. If p is a prime and k > 1, ϕ(pk) = pk−1(p − 1) = pk(1 − 1
p). The fundamental

theorem of arithmetic states that if n ∈ N and n > 1 there is a unique expression for n,

n = p1
k1 · · · prkr ,

where p1 < p2 < · · · < pr are prime numbers and each ki > 1. (The case n = 1

corresponds to the empty product.) Repeatedly using the multiplicative property of ϕ

and the formula for ϕ(pk) gives

ϕ(n) = ϕ(p1
k1) · · ·ϕ(prkr)

= p1
k1(1− 1

p1
)p2

k2(1− 1
p2

) · · · prkr(1− 1
pr

)

= p1
k1p2

k2 · · · prkr(1− 1
p1

)(1− 1
p2

) · · · (1− 1
pr

)

= n(1− 1
p1

)(1− 1
p2

) · · · (1− 1
pr

).

As p1 > 2 and p1 < p2 < · · · < pr, n > 2r. Applying logarithm function, we have logn
log 2 > r.

Now we have the following inequality

ϕ(n) = n(1− 1
p1

)(1− 1
p2

) · · · (1− 1
pr

)

> n(1− 1
2)(1− 1

3)r−1

> n(1− 1
2)(1− 1

3)
logn
log 2−1

= n× 1
2 × (2

3)
logn
log 2−1

= n
2 ×

3
2 × (2

3)
logn
log 2

= 3
4n

1+1− log 3
log 2

= 3
4n

2− log 3
log 2 .

(4.1)

Hence, ϕ(n) > 3
4n

c where c > 0 and so limn→∞ ϕ(n) =∞.
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With the help of the Lemma 4.1.1, we are able to bound the order of any arbitrary matrix

Q ∈ GLm(Z).

Proposition 4.1.3. Consider the integral linear group GLm(Z), m > 1.

(i) There exists a computable constant L1 = L1(m) such that, for every matrix Q ∈

GLm(Z) of finite order, ord(Q) 6 L1.

(ii) There exists a computable constant L2 = L2(m) such that, for every matrix Q ∈

GLm(Z) of finite order, say k = ord(Q) 6 L1, we have thatM = Im(Q−Im) is a finite

index subgroup of ker(Qk−1 + · · ·+Q+Im) with [ker(Qk−1 + · · ·+Q+Im) : M ] 6 L2.

Proof. (i) is a well known fact about integral matrices; we offer here a self-contained

proof mixed with that of (ii).

Let Q ∈ GLm(Z) be a matrix of order k < ∞ (i.e., Qk = Im but Qi 6= Im for i =

1, . . . , k − 1).

Since (Q − Im)(Qk−1 + · · · + Q + Im) = Qk − Im = 0, we have M = Im(Q − Im) 6

ker(Qk−1 + · · ·+Q+ Im). But, by Lemma 4.1.1 and the Rank-Nullity Theorem, r(M) =

r(Im(Q − Im)) = m − r(ker(Q − Im)) = r(ker(Qk−1 + · · · + Q + Im)) and so, M 6fi

ker(Qk−1 + · · ·+Q+ Im). This is the index we have to bound globally in terms of m.

Let mQ(x) be the minimal polynomial of Q. Since Qk = Im, we have mQ(x) |xk − 1 and

so, mQ(x) = (x − α1) · · · (x − αr), where α1 . . . , αr are r 6 m pairwise different k-th

roots of unity (in particular, all roots of mQ(x) are simple and so Q diagonalizes over the

complex field C). Write di = ord(αi). Since cyclotomic polynomials Φdi(x) are irreducible

over Z, we deduce Φdi(x) |mQ(x) and so, ϕ(di) = deg(Φdi(x)) 6 deg(mQ(x)) 6 m,

where ϕ is the Euler ϕ-function. From Lemma 4.1.2, limn→∞ ϕ(n) = ∞ from where

we can compute a big enough constant C = C(m) such that d1, . . . , dr 6 C. Finally,
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k = ord(Q) = lcm(ord(α1) . . . , ord(αr)) = lcm(d1, . . . , dr) 6 d1 · · · dr 6 Cr 6 Cm; this

is the constant we are looking for in (i), L1 = C(m)m.

On the other hand, diagonalyzing Q, we get an invertible complex matrix P ∈ GLm(C)

such that P−1QP = D = diag(α1, s1. . ., α1, . . . , αr, sr. . ., αr), where s1, . . . , sr are the mul-

tiplicities in the characteristic polynomial, χQ(x) = (x − α1)s1 · · · (x − αr)sr . Since

αi is a primitive di-th root of unity, it can take ϕ(di) 6 m many values and, since

s1 + · · ·+ sr = m, the diagonal matrix D can take only finitely many values; we can make

a list of all of them (up to reordering of the αi’s) and, for each one, compute the index

[ker(Dk−1 + · · ·+D + Im) : Im(D − Im)]. The maximum of these indices is the constant

L2 = L2(m) we are looking for in (ii), because

[ker(Qk−1 + · · ·+Q+ Im) : M ] = [(ker(Qk−1 + · · ·+Q+ Im))P : (Im(Q− Im))P ]

= [ker(P−1(Qk−1 + · · ·+Q+ Im)P ) : Im(P−1(Q− Im)P )]

= [ker(Dk−1 + · · ·+D + Im) : Im(D − Im)]

6 L2(m).

This completes the proof.

Now we study the periodic subgroup of a matrix Q ∈ Mm×m(Z), namely PerQ = {v ∈

Zm | vQp = v, for some p > 1}. The next Proposition states that a uniform single

exponent depending only on m, L3 = L3(m), is enough to capture all the periodicity of

all m×m matrices Q.

Proposition 4.1.4. There exists a computable constant L3 = L3(m) such that PerQ =

FixQL3 , for every Q ∈ Mm×m(Z).

Proof. As we argued in the proof of Proposition 4.1.3(i), there is a computable constant

C = C(m) such that ϕ(d) > m for every d > C(m); in fact from (4.1) we can choose

C(m) = 8m3 and then ϕ(d) > 3
4(8m3)(2− log 3

log 2 ) = 1.78m1.26 > m. Let us prove that the

statement is true with the constant L3 = C(m)! = (8m3)!
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Fix a matrix Q ∈ Mm×m(Z), and consider its characteristic polynomial factorized over

the complex field C, χQ(x) = (x− α1)s1 · · · (x− αr)sr , where αi 6= αj , i 6= j. Standard

linear algebra tells us that Cm = Kα1 ⊕ · · · ⊕Kαr , where Kαi = ker(Q− αiIm)si 6 Cm

is the generalized eigenspace of Q with respect to αi, a Q-invariant C-subspace of Cm.

Distinguish now between those αi’s which are roots of unity, say α1, . . . , αr′ , and those

which are not, say αr′+1, . . . , αr, 0 6 r′ 6 r. Write di = ord(αi), for i = 1, . . . , r′, and

observe that d1, . . . , dr′ 6 C (since the cyclotomic polynomials Φdi(x) are Q-irreducible

and so must divide χQ(x) ∈ Z[X], which has degree m); in particular, αL3
i = 1, i =

1, . . . , r′.

Now, let v ∈ PerQ, i.e., vQp = v for some p > 1. Applying the above decomposition,

v = v1 + · · ·+ vr, where vi ∈ Kαi , and the Q-invariance of Kαi , we get the alternative

decomposition v = vQp = v1Q
p + · · · + vrQ

p. So, viQp = vi, i.e., vi(Qp − Im) = 0, for

i = 1, . . . , r. For a fixed i, distinguish the following two cases:

(i) if αpi 6= 1, then αi is not a root of xp − 1 and so, 1 = gcd
(
(x − αi)si , xp − 1

)
.

By Bezout’s equality, there are polynomials a(x), b(x) ∈ C[x] such that 1 = (x −

αi)sia(x) + (xp − 1)b(x). Plugging the matrix Q and multiplying by the vector vi on

the left, we obtain vi = vi(Q− αiIm)sia(Q) + vi(Qp − Im)b(Q) = 0.

(ii) if αpi = 1, then x − αi = gcd
(
(x − αi)si , xp − 1

)
. By Bezout’s equality, there are

polynomials a(x), b(x) ∈ C[x] such that x − αi = (x − αi)sia(x) + (xp − 1)b(x).

Now, plugging the matrix Q and multiplying by the vector vi on the left, we have

vi(Q − αiIm) = vi(Q − αiIm)sia(Q) + vi(Qp − Im)b(Q) = 0. That is, viQ = αivi

and so, viQL3 = αL3
i vi = vi.

Altogether we have, v = v1 + · · · + vr =
∑
i |αpi=1 vi and vQL3 =

(∑
i |αpi=1 vi

)
QL3 =∑

i |αpi=1 viQ
L3 =

∑
i |αpi=1 vi = v, and v ∈ FixQL3 . This completes the proof that

PerQ = FixQL3 .
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4.2 Concept of “factor” and Takahashi theorem for

Zm × Fn

In this section I introduce the notion of factor in Zm × Fn, which can be considered as

parallel notion of the concepts of direct summand in Zm and free factor in Fn.

Lemma 4.2.1. Let G = Zm × Fn. For given finitely generated subgroups H 6fg K 6fg G,

the following are equivalent:

(a) every basis of H extends to a basis of K;

(b) some basis of H extends to a basis of K;

(c) Hπ 6ff Kπ and LH 6⊕ LK .

In this case, we say that H is a factor of K, denoted H 6f K; this is the notion in G

corresponding to free factor in Fn (denoted 6ff), and direct summand in Zm (denoted

6⊕).

Proof. (a) ⇒ (b) is obvious.

Assuming (b), we have H = 〈ta1u1, . . . , t
arur, t

b1 , . . . , tbs〉 and K =

〈ta1u1, . . . , t
arur, t

ar+1ur+1, . . . , t
ar+pur+p, t

b1 , . . . , tbs , tbs+1 , . . . , tbs+q〉, where {u1, . . . , ur}

is a free-basis ofHπ, {b1, . . . , bs} is an abelian-basis of LH , {u1, . . . , ur+p} is a free-basis of

Kπ, and {b1, . . . , bs+q} is an abelian-basis of LK . Therefore, Hπ 6ff Kπ and LH 6⊕ LK .

This proves (b) ⇒ (c).

Finally, assume (c). Given any basis {ta1u1, . . . , t
arur, t

b1 , . . . , tbs} for H,

{u1, . . . , ur} is a free-basis of Hπ, which can be extended to a free-basis

{u1, . . . , ur, ur+1, . . . , ur+p} of Kπ since Hπ 6ff Kπ; and {b1, . . . , bs} is an abelian-

basis of LH , which can be extended to an abelian-basis {b1, . . . , bs, bs+1, . . . , bs+q}
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of LK since LH 6⊕ LK . Then, choose vectors ar+1, . . . , ar+p ∈ Zm such that

tar+1ur+1, . . . , t
ar+pur+p ∈ K (this is always possible because ur+1, . . . , ur+p ∈ Kπ),

and {ta1u1, . . . , t
arur, t

ar+1ur+1, . . . , t
ar+pur+p, t

b1 , . . . , tbs , tbs+1 , . . . , tbs+q} is a basis of K

(in fact, they generate K, and have the appropriate form). This proves (c) ⇒ (a).

Proposition 4.2.2. Let M,A,B 6 Zm × Fn and M 6f A, M 6f B. Then we have,

M 6f A ∩B.

Proof. From the definition, Mπ 6ff Aπ and Mπ 6ff Bπ. Intersection of free factors

is again a free factor in free group. As Mπ,Aπ,Bπ all are subgroups of Fn, we have

Mπ 6ff Aπ ∩ Bπ. Now, Mπ 6 (A ∩ B)π 6 Aπ ∩ Bπ, so we have Mπ 6ff (A ∩ B)π.

On the other hand, LM 6⊕ LA and also LM 6⊕ LB. Hence, LM 6⊕ (LA ∩ LB) = LA∩B.

Applying Lemma 4.2.1 we have, M 6f A ∩B.

Now we will extend the notion of fringe from free groups to free-abelian times free groups.

For a given H = 〈ta1u1, . . . , t
arur, LH〉, Hπ = 〈u1, . . . , ur〉 and {u1, . . . , ur} is the free

basis of Hπ 6 Fn. So we can compute AE(Hπ).

Let AE(Hπ) = {M0,M1, . . . ,Ms}, where M0 = Hπ. Let for any 0 6 i 6 s,

Mi = 〈v1, . . . , vp〉, and {v1, . . . , vp} is a free basis of Mi. And let M̃i(c1, . . . , cp) =

〈tc1v1, . . . , t
cpvp, L̃〉. Now we construct L̃ in such a way that M̃i(c1, . . . , cp) contains

H. Since, Hπ 6alg Mi, each ui can be written as a unique word in {v1, . . . , vp}. Let UMi
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be the abelianization matrix of Hπ with respect to the ambient basis {v1, . . . , vp} and let

L(c1, . . . , cp) = 〈LH , row(A− UMiC)〉, where

UMi =



|u1|v1
|u1|v2

. . . |u1|vp
...

...
...

|ui|v1
|ui|v2

. . . |ui|vp
...

...
...

|ur|v1
|ur|v2

. . . |ur|vp


C =



c1

c2
...

cp


and A =



a1

a2
...

ar


.

Now LH 6 L(c1, . . . , cp) 6 Zm. Therefore there exists L̃ such that L(c1, . . . , cp) 6fi L̃ 6⊕

Zm. Choosing L̃ in this way we confirm that H 6 M̃i(c1, . . . , cp). Since, H is given, we

can not choose LH and A. So, this L(c1, . . . , cp) depends on the choice of C; in other

words L depends on the choice of the vectors c1, . . . , cp.

Let S = {S | L(c1, . . . , cp) 6fi S 6fi L̃}. And now we are in position to define “fringe”

of H, O(H), for any subgroup H in Zm × Fn.

Definition 4.2.3. For a given subgroup H of Zm × Fn, the fringe of H, denoted O(H), is

defined as O(H) = {〈tc1v1, . . . , t
cpvp, S〉 | 〈v1, . . . , vp〉 ∈ AE(Hπ) and L(c1, . . . , cp) 6fi

S 6fi L̃}.

Remark 4.2.4. This is the natural way to translate the definition of fringe from free

groups to free-abelian times free groups. And the following result is the analog of

Takahasi’s theorem within this more general family of groups: for any given extension of

finitely generated subgroups H 6fg K 6fg Zm × Fn, maybe H is not a factor of K but

at least one of the members in the fringe of H, say M ∈ O(H), will be: H 6 M 6f K.

Takahasi’s theorem is quite useful in free groups because, for a given H, there are in

general infinitely many bigger subgroups K but only finitely many of them belong to

the fringe O(H). This fact allows arguments like this: in any situation where one has

a subgroup H and infinitely many extensions H 6 Ki, i > 1, infinitely many of them
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must be free multiples of a commond M ∈ O(H), namely H 6M 6ff Ki for infinitely

many indices i. Unfortunately, it seems we loose this potential in the free-abelian times

free version because fringes are, in general, infinitely big because the vector parameters

c1, . . . , cp can take arbitrary values in Zm (a fact, on the other hand, unavoidable if we

want to preserve Takahasi’s theorem). We observe that |O(H)| = ∞ but organized in

finitely many patterns each one with finitely many vector parameters running freely over

Zm; however, this seems not to be strong enough to make those kind of arguments work

in this more general context. Example 4.2.7 below illustrates this phenomena.

As an obvious consequence of the concept of fringe, we would like to extend Takahashi

theorem for our group, Zm × Fn.

Theorem 4.2.5. For every H 6fg Kfg 6 Zm × Fn, there exists M̃ ∈ O(H) such that

H 6 M̃ 6f K.

Proof. Let 〈ta1u1, . . . , t
arur, LH〉 be a basis for H; then {u1, . . . , ur} is the free-basis

of Hπ. As Hπ 6 Kπ 6 Fn, there exists M ∈ AE(Hπ) such that Hπ 6alg

M 6ff Kπ. Let {v1, . . . , vp} is a free basis of M , and this basis of M can be ex-

tended to a basis of Kπ. Let {v1, . . . , vp, vp+1, . . . , vq} be a free-basis of Kπ and

let K = 〈tc1v1, . . . , t
cpvp, t

cp+1vp+1, . . . , t
cqvq, LK〉. Since, Hπ 6alg M , each ui can

be written as a unique word in {v1, . . . , vp}, i.e., ui = wi(v1, . . . , vp). Therefore

wi(tc1v1, . . . , t
cpvp) = tc̃iwi(v1, . . . , vp) = tc̃iui, where c̃i = c1|ui|v1

+c2|ui|v2
+. . .+cp|ui|vp .
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Let L = 〈LH , row(A− UMC)〉, where

UM =



|u1|v1
|u1|v2

. . . |u1|vp
...

...
...

|ui|v1
|ui|v2

. . . |ui|vp
...

...
...

|ur|v1
|ur|v2

. . . |ur|vp


C =



c1

c2
...

cp


and A =



a1

a2
...

ar


.

Since H 6 K, LH 6 L 6 LK . Therefore there exists L̃ such that L 6fi L̃ 6⊕ LK .

Now take M̃ = 〈tc1v1, . . . , t
cpvp, L̃〉. From the construction M̃ ∈ O(H) and tc̃iui ∈ M̃

and tai−c̃i ∈ row(A − UMC) 6 L̃, hence we have taiui ∈ M̃, ∀i = 1, 2, . . . , r and it is

clear that LH 6 L̃. Then altogether we have H 6 M̃ . The only remaining thing is to

show that M̃ 6f K. But, M̃ ∩ Zm = L̃ 6⊕ LK and M̃π = M 6ff K. Hence Lemma

4.2.1 completes the proof.

Remark 4.2.6. Among many applications of Takahashi theorem for free groups, one

application which I want to mention in this context is, A. Martino and E. Ventura [26]

proved that, for two given automorphisms (or endomorphisms) f, g, there is a word on

them h = w(f, g) such that Fix(f) ∩ Fix(g) 6ff Fix(h). This is not true in Zm × Fn as

seen in the following example.

Example 4.2.7. This is the example of two automorphisms, f, g of Zm × Fn such that

Fix(f)∩Fix(g) is not a free factor of any word w(f, g). Let us define f, g in the following

way :

f : Z× F2 −→ Z× F2

a 7−→ ta

b 7−→ b

t 7−→ t

g : Z× F2 −→ Z× F2

a 7−→ a

b 7−→ tb

t 7−→ t
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Therefore Fix(f) = 〈t〉×〈〈b〉〉 and Fix(g) = 〈t〉×〈〈a〉〉. So Fix(f)∩Fix(g) = 〈t〉×[F2 : F2].

From an easy computation we have, fg = gf . Let h = w(f, g) be any word in f

and g and we can take h = fαgβ (say), as f and g commute, we can take all f ’s

in one side. Now Fix(fαgβ) = 〈t〉 × 〈w(a, b) | (|w|a |w|b)

 α

β

 = 0〉. Therefore if

(α, β) = (1, 0), Fix(fαgβ) = 〈t〉 × 〈〈b〉〉 and if (α, β) = (0, 1), Fix(fαgβ) = 〈t〉 × 〈〈a〉〉.

Let, Kαβ = 〈w(a, b) | (|w|a |w|b)

 α

β

 = 0〉. Now we consider two cases.

Case-1: (α, β) = (0, 0)

Fix(fαgβ) = Fix id = Z × F2. And Fix(f) ∩ Fix(g) = 〈t〉 × [F2 : F2] is not a factor of

Z× F2.

Case-2: (α, β) 6= (0, 0)

Let gcd (α, β) = λ, then there exists α′, β′ such that gcd (α′, β′) = 1 and α = λα′, β = λβ′.

Therefore, Kαβ = Kα′β′ . Hence without loss of generality we can assume that gcd

(α, β) = 1. Since gcd (α, β) = 1, there exists x, y ∈ Z such that αx + βy = 1. Let

M =

 y α

−x β

 ∈ GL2(Z), viewed as an automorphism on Z2 defined as:

M : Z2 −→ Z2

(1, 0) 7−→ (y, α)

(0, 1) 7−→ (−x, β)

Since, Ψ: Aut(F2)→ GL2(Z) is onto, there exists φ ∈ Aut(F2) such that φΨ = M , say

φ : F2 −→ F2

a 7−→ U

b 7−→ V
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such that Uab = (y, α) and V ab = (−x, β). Now we will proof that Kαβφ = K01. Let

w(a, b) ∈ Kαβ then |w|aα+ |w|bβ = 0 and

(
|wφ|a |wφ|b

) 0

1

 = |wφ|b

= |w(U, V )|b

= |w(U, V )|U × |U |b + |w(U, V )|V × |V |b

= |w|aα+ |w|bβ

= 0.

Therefore,

Kαβφ 6 K01. (4.2)

Let aφ−1 = U ′ and bφ−1 = V ′. Now φ−1Ψ = M−1 =

 β −α

x y

. Therefore, U ′ab =

(β,−α) and V ′ab = (x, y). Now K01 = 〈〈a〉〉 and Kαβ E F2 ⇒ Kαβφ E F2. Therefore to

show that Kαβφ > K01, we just have to show that a ∈ Kαβφ, i.e., aφ−1 ∈ Kαβ. But,

|aφ−1|aα+ |aφ−1|bβ

= |U ′|aα+ |U ′|bβ

= βα− αβ

= 0,

hence, aφ−1 ∈ Kαβ i.e.,

K01 6 Kαβφ. (4.3)

Therefore by (4.2) and (4.3) we have K01 = Kαβφ. And now we show that [F2 : F2] is

not a free-factor of K01 = 〈〈a〉〉 = 〈 . . . , b−2ab2, b−1ab; a; bab−1, b2ab−2, . . . 〉. Let ρ〈〈a〉〉

be the abelianization map from 〈〈a〉〉 to Z∞. Note that it is not the restriction of

the abelianization map ρ of F2. And take free-basis of [F2 : F2] as the one given by
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the elementary squares in the 2-dimensional integral grid Z2; two of them namely

bab−1a−1 = bab−1 · (a)−1 and a−1bab−1 = (a)−1 · bab−1 abelianize to the same vector

(. . . , 0, 0;−1; 1, 0, 0, . . .) ∈ Z∞ and so [F2 : F2] is not a free-factor of K01. On the other

hand, if Fix(f) ∩ Fix(g) 6ff Fix(fαgβ), we have the following consequence,

Fix(f) ∩ Fix(g) 6ff Fix(fαgβ)

⇒ [F2 : F2] 6ff Kαβ

⇒ [F2 : F2]φ 6ff Kαβφ

⇒ [F2 : F2] 6ff K01

Hence a contradiction!!!

4.3 Finite order automorphisms of Zm × Fn

A well-known (and deep) result by Bestvina–Handel [3] establishes a uniform bound (in

fact, the best possible) for the rank of the fixed subgroup of any automorphism of Fn: for

every φ ∈ Aut(Fn), r(Fix φ) 6 n. This result followed an interesting previously known

particular case due to Dyer–Scott [16]: if φ ∈ Aut(Fn) is of finite order then Fix φ is a

free factor of Fn.

When we move to a free-abelian times free group, G = Zm×Fn, the situation degenerates,

but still preserving some structure. In Delgado–Ventura [10], the authors gave an example

of an automorphism Ψ ∈ Aut(G) with Fix Ψ not being finitely generated; so, there is

no possible version of Bestvina–Handel result in G. Following the parallelism, we show

below an example of an automorphism Ψ ∈ Aut(G) of finite order (in fact, of order 2)

such that Fix Ψ is not a factor of G; see Example 4.3.2. However, as a positive result, in

Theorem 4.3.1(ii) below we prove that finite order automorphisms of G do have finitely

generated fixed subgroups, in fact with a computable uniform upper bound for its rank,

in terms of m and n.
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Restricting ourselves to the case of finite order automorphisms, through Theorem 4.3.1,

we simultaneously bound the order of the automorphism and the rank of its fixed point

subgroup. The constant L2(m) of Proposition 4.1.3 seems very technical, but this constant

helps us to catch the uniform constant C2(m,n) concerning the bound of the rank for

fixed subgroup of finite ordered automorphisms.

Theorem 4.3.1. Let G = Zm × Fn, m,n > 0.

(i) There exists a computable constant C1 = C1(m,n) such that, for every Ψ ∈ Aut(G) of

finite order, ord(Ψ) 6 C1.

(ii) There exists a computable constant C2 = C2(m,n) such that, for every Ψ ∈ Aut(G) of

finite order, r(Fix Ψ) 6 C2.

Proof. (i). By Proposition 4.1.3(i), the set {ord(Q) | Q ∈ GLm(Z) of finite order}

is bounded above by a computable constant L1(m). And by Lyndon–Schupp [23,

Cor. I.4.15], {ord(φ) | φ ∈ Aut(Fn) of finite order} ⊆ {ord(Q) | Q ∈

GLn(Z) of finite order}, which is bounded above by L1(n).

If n 6 1 then G = Zm+n is free-abelian and the constant C1 = L1(m+ n) makes the job;

if m = 0 then G = Fn is free and the constant C1 = L1(n) makes the job.

So, supposem > 1, n > 2, and take an automorphism Ψ = Ψφ,Q,P ∈ Aut(G). By Delgado–

Ventura [10, Lemma 5.4(ii)], Ψk
φ,Q,P = Ψφk,Qk,Pk

, where Pk =
∑k−1
i=0 A

iPQk−1−i and

A ∈ GLn(Z) is the abelianization of φ. In particular, if Ψ is of finite order then φ andQ are

so too; furthermore, ord(Ψ) = λr3, where r3 = lcm(r1, r2), r1 = ord(φ), and r2 = ord(Q).

But Ψr3 = Ψid,id,Pr3
and Ψλr3 = (Ψid,id,Pr3

)λ = Ψid,id,λPr3
. Hence, Ψ is either of or-

der r3 or of infinite order. In other words, {ord(Ψ) | Ψ ∈ Aut(G) of finite order} ⊆

{lcm(ord(φ), ord(Q)) | φ ∈ Aut(Fn), Q ∈ GLm(Z), both of finite order}, which is

bounded above by the constant C1(m,n) = L1(n)L1(m).
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(ii). If n 6 1 then C2 = m+ n makes the job, if m = 0 then C2 = n makes the job.

So, suppose m > 1, n > 2. Delgado–Ventura [10, §6] discusses the form of the fixed

subgroup of a general automorphism Ψφ,Q,P ∈ Aut(G), namely, LFix Ψ = Fix(Q) = E1(Q)

(the eigenspace of eigenvalue 1 for Q), and (Fix Ψ)π = NP ′−1ρ′−1, where ρ : Fn � Zn

is the abelianization map, ρ′ is its restriction to Fix φ, P ′ is the restriction of P to Im ρ′,

M = Im(Q − Im), N = M ∩ ImP ′, and (Fix Ψ)π = NP ′−1ρ′−1 E Fix φ 6 Fn, see the

following diagram,

>M = Im(Q− Im)

= M ∩ ImP ′.

6 E E

Fn Zn
ρ // // ZmP //

Fix φ Im ρ′
ρ′ // // ImP ′

P ′ // //

E E E

Q−Im

��

NNP ′−1 �ooNP ′−1ρ′−1 �oo(Fix Ψ)π =

(4.4)

If Fix φ is trivial or cyclic, then r(Fix Ψ) = r((Fix Ψ)π) + r(E1(Q)) 6 1 + m. So, taking

C2(m,n) > 1 +m, we are reduced to the case r(Fix φ) > 2.

With this assumption, (Fix Ψ)π 6= 1 (it always contains the commutator of Fix φ) and so,

Fix Ψ 6 G is finitely generated if and only if (Fix Ψ)π 6 Fn is so, which is if and only if

the index ` := [Fix φ : (Fix Ψ)π] = [Fix φ : NP ′−1ρ′−1] = [Im ρ′ : NP ′−1] = [ImP ′ : N ] is

finite. In this case, by the Schreier index formula, r̃(Fix Ψ) = r̃((Fix Ψ)π) + r(E1(Q)) 6

` r̃(Fix φ) +m 6 `(n− 1) +m. Therefore, we are reduced to bound the index ` in terms

of n and m.

First, let us prove that Ψ being of finite order implies ` = [ImP ′ : N ] <∞.

Put k = ord(Ψφ,Q,P ) so, φk = id, Qk = Im, and Pk =
∑k−1
i=0 A

iPQk−1−i = 0, where A ∈

GLn(Z) is the abelianization of φ. By Proposition 4.1.3(ii), the subgroup M = Im(Q−Im)
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is a finite index subgroup of ker(Qk−1 + · · ·+Q+ Im), with the index bounded above by

a computable constant depending only on m, [ker(Qk−1 + · · ·+Q+ Im) : M ] 6 L2(m).

We claim that ImP ′ 6 ker(Qk−1 + · · ·+Q+ Im). In fact, take u ∈ Fix φ, note that uφ = u

and so (uρ′)A = uφρ′ = uρ′, and split (uρ′)P ′ = v1 + v2, with v1 ∈ ker(Q − Im) and

v2 ∈ ker(Qk−1 + · · ·+Q+ Im); see Lemma 4.1.1. Multiplying by Qk−1 + · · ·+Q+ Im on

the right,

v1(Qk−1+· · ·+Q+Im) = (v1+v2)(Qk−1+· · ·+Q+Im) = (uρ′)P ′(Qk−1+· · ·+Q+Im) =

=
k−1∑
i=0

(uρ′)PQk−1−i =
k−1∑
i=0

(uρ′)AiPQk−1−i = (uρ′)
k−1∑
i=0

AiPQk−1−i = (uρ′)Pk = 0,

from which we deduce v1 ∈ ker(Q− Im)∩ ker(Qk−1 + · · ·+Q+ Im) = {0} so, (uρ′)P ′ =

v2 ∈ ker(Qk−1 + · · ·+Q+ Im). Therefore, ImP ′ 6 ker(Qk−1 + · · ·+Q+ Im).

Finally, intersecting the inclusion M 6fi ker(Qk−1 + · · · + Q + Im) with ImP ′, we get

N = M∩ImP ′ 6fi ImP ′, and ` = [ImP ′ : N ] 6 [ker(Qk−1 +· · ·+Q+Im) : M ] 6 L2(m).

Hence, taking C2(m,n) > L2(m)(n− 1) +m will suffice for the present case.

Therefore, C2(m,n) = L2(m)(n − 1) + m + 1 serves as the upper bound claimed in

(ii).

Example 4.3.2. Here is an example of an order 2 automorphism of G = Z2 × F3 whose

fixed subgroup is not a factor of G. Consider the automorphism Ψφ,Q,P determined by
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φ : F3 → F3, z1 7→ z−1
1 , z2 7→ z2, z3 7→ z3, Q =

( 1 0
0 −1

)
∈ GL2(Z), and P =

( 1 0
0 1
0 2

)
∈

M3×2(Z), i.e.,

Ψ: Z2 × F3 −→ Z2 × F3

z1 7−→ t(1,0)z−1
1

z2 7−→ t(0,1)z2

z3 7−→ t(0,2)z3

t(1,0) 7−→ t(1,0)

t(0,1) 7−→ t(0,−1).

An easy computation shows that Ψ2 = id, i.e., Ψ has order 2. To compute Fix Ψ, let us

follow diagram (4.4): first note that Fix φ = 〈z2, z3〉; so, Im ρ′ = 〈(0, 1, 0), (0, 0, 1)〉

and ImP ′ = 〈(0, 1), (0, 2)〉 = 〈(0, 1)〉. On the other hand, M = 〈(0, 2)〉, N =

〈(0, 2)〉, and NP ′−1 = 〈(0, 2, 0), (0, 0, 1)〉. Therefore, (Fix Ψ)π = NP ′−1ρ′−1 =

{w(z2, z3) | |w|z2 is even} = 〈z2
2 , z3, z

−1
2 z3z2〉. So, solving the systems of equations

to compute the vectors associated with each element of the free part, we obtain that

t(0,1)z2
2 , t

(0,1)z3, t
(0,1)z−1

2 z3z2 ∈ Fix Ψ. Finally, since (Fix Ψ) ∩ Z2 = E1(Q) = 〈(1, 0)〉, we

deduce that Fix Ψ = 〈t(0,1)z2
2 , t

(0,1)z3, t
(0,1)z−1

2 z3z2, t
(1,0)〉.

Since 〈z2
2 , z3, z

−1
2 z3z2〉 is not a free factor of F3, Fix Ψ is not a factor of Z2 × F3; see

Lemma 4.2.1.

Theorem 4.3.1 has the following easy corollary:

Corollary 4.3.3. Let Ψ ∈ End(Zm × Fn). If Fix Ψp is finitely generated then Fix Ψ is also

finitely generated; the converse is not true.

Proof. Clearly, Ψ restricts to an automorphism Ψ| ∈ Aut(Fix Ψp) such that Fix Ψ| = Fix Ψ

and (Ψ|)p = id. Since Fix Ψp is finitely generated, we have Fix Ψp ' Zm′ × Fn′ for some

m′ 6 m and n′ <∞ and, applying Theorem 4.3.1(ii), we get r(Fix Ψ) = r(Fix Ψ|) <∞

(in fact, bounded above by C2(m′, n′)).
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The converse is not true as the following example shows. Consider Ψ: Z× F2 → Z× F2,

z1 7→ tz−1
1 , z2 7→ z−1

2 , t 7→ t−1. It is straightforward to see that Fix Ψ = 1. But

Ψ2 : Z × F2 → Z × F2, z1 7→ t−2z1, z2 7→ z2, t 7→ t and so, Fix Ψ2 = 〈t〉 × {w(z1, z2) ∈

F2 | |w|z1 = 0} = 〈t〉 × 〈〈z2〉〉 is not finitely generated.

Corollary 4.3.3 states that, for Ψ ∈ Aut(G), the lattice of fixed subgroups of powers of Ψ

could simultaneously contain finitely and non-finitely generated subgroups but, as soon

as one of them is finitely generated, the smaller ones must be so.

4.4 Periodic points of endomorphisms of Zm × Fn

In the abelian case G = Zm, this lattice of fixed subgroups is always finite, and coming

from a set of exponents uniformly bounded by m; this is precisely the contents of

Proposition 4.1.4. In the free case, combining results from Bestvina–Handel, Culler,

Imrich–Turner, and Stallings, the exact analogous statement is true:

Proposition 4.4.1 (Bestvina–Handel–Culler–Imrich–Turner–Stallings [3, 8, 19, 38]; see

also [4, Prop. 3.1]). For every φ ∈ End(Fn), we have Perφ = Fix φ(6n−6)!.

Proof. Culler [8] proved that every finite order element in Out(Fn) has order dividing

(6n− 6)!; and the same is true in Aut(Fn) since the natural map Aut(Fn)� Out(Fn) has

torsion-free kernel. On the other hand Stallings [38] proved that, for every φ ∈ Aut(Fn),

there exists s > 0 such that Perφ = Fix φs. Also, Imrich–Turner [19] proved that the

so-called stable image of an endomorphism φ ∈ End(Fn), namely Fnφ∞ = ∩∞p=1Fnφ
p, has

rank at most n, it is φ-invariant, it contains Perφ, and the restriction φ| : Fnφ∞ → Fnφ
∞

is bijective. Finally, Bestvina–Handel Theorem (see [3]) states that r(Fix φ) 6 n, for any

φ ∈ Aut(Fn).
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Combining these four results we can easily deduce the statement: given an endomorphism

φ : Fn → Fn, consider its restrictions φ1 : Fnφ∞ → Fnφ
∞ and φ2 : Perφ1 → Perφ1, both

bijective; furthermore, Perφ2 = Perφ1 = Fix φs1 (assume s > 0 minimal possible),

r(Perφ1) 6 r(Fφ∞) 6 n, and φ2 has order s. Therefore, s divides (6 r(Perφ1)− 6)! and

so (6n− 6)! as well. We conclude that Perφ = Perφ1 = Fix φs1 = Fix φs 6 Fix φ(6n−6)! 6

Perφ and so, Perφ = Fix φ(6n−6)!.

Remark 4.4.2. Modulo missing details, this fact was implicitly contained in an older

result by M. Takahasi, who proved that an ascending chain of subgroups of a free group,

with rank uniformly bounded above by a fixed constant (like the Fixψp’s), must stabilize;

see [23, p. 114].

We close the present section by extending this result to the context of free-abelian times

free groups.

Theorem 4.4.3. There exists a computable constant C3 = C3(m,n) such that Per Ψ =

Fix ΨC3 , for every Ψ ∈ End(Zm × Fn).

Proof. Delgado–Ventura [10, Prop. 5.1] gave a classification of all endomorphisms of

G = Zm × Fn in two types. For those of the second type, say Ψz,l,h,Q,P (see [10]

for the notation), it is clear that the subgroup 〈z,Zm〉 6 Zm × Fn is invariant under

Ψ (denote Ψ| : 〈z,Zm〉 → 〈z,Zm〉 its restriction), and it contains Im Ψ. Therefore, by

Proposition 4.1.4, Per Ψ = Per Ψ| = Fix(Ψ|)L3(m+1) = Fix ΨL3(m+1), since 〈z,Zm〉 '

Zm+1 is abelian. Thus, the computable constant C3(n,m) = L3(m + 1) satisfies the

desired result for all endomorphisms of this second type.

Suppose now that Ψ is of the first type, i.e., Ψ = Ψφ,Q,P , where φ ∈ End(Fn), Q ∈

Mm×m(Z), and P ∈Mn×m(Z). By Propositions 4.1.4 and 4.4.1, we know that PerQ =

FixQL3 and Perφ = Fix φ(6n−6)! for some computable constant L3 = L3(m). Take

C3(m,n) = lcm
(
L3(m), (6n− 6)!

)
and let us prove that Per Ψ = Fix ΨC3 .
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By construction, we have both PerQ = FixQC3 and Perφ = Fix φC3 . It remains to see

that the matrix P does not affect negatively into the calculations. To prove Per Ψ =

Fix ΨC3 , it is enough to see that Fix Ψk 6 Fix ΨC3 for all k > 1, which reduces to see

that Fix ΨλC3 6 Fix ΨC3 for every λ ∈ N (in fact, if this is true then Fix Ψk 6 Fix ΨkC3 6

Fix ΨC3 , for an arbitrary k > 1).

By Delgado–Ventura [10, Lemma 5.4(ii)], powers work like this: (Ψφ,Q,P )k = Ψφk,Qk,Pk
,

where Pk =
∑k−1
i=0 A

iPQ(k−1)−i and A ∈ Mn×n(Z) is the abelianization matrix cor-

responding to φ ∈ End(Fn). In our situation, (Ψφ,Q,P )C3 = ΨφC3 ,QC3 ,PC3
, and

(Ψφ,Q,P )λC3 = ΨφλC3 ,QλC3 ,PλC3
, where

PλC3 =
∑λC3−1
i=0 AiPQ(λC3−1)−i

=
∑λ−1
j=0

∑C3−1
i=0 AjC3+iPQ(λC3−1)−(jC3+i)

=
∑λ−1
j=0

∑C3−1
i=0 AjC3+iPQ(λ−j)C3−1−i

=
∑λ−1
j=0 A

jC3
(∑C3−1

i=0 AiPQ(C3−1)−i )Q(λ−j−1)C3

=
∑λ−1
j=0 (AC3)jPC3(QC3)(λ−1)−j .

(4.5)

Take any element tau ∈ Fix ΨλC3 and let us prove that tau ∈ Fix ΨC3 . Our assumption

means that taQ
λC3+uabPλC3 (uφλC3) = tau and so,

(1) a(Im −QλC3) = uabPλC3 , and

(2) u ∈ Fix φλC3 6 Perφ = Fix φC3; in particular, uabAC3 = uab.
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Now from (4.5) and condition (1) we have,

a(Im −QC3)(I +QC3 + · · ·+Q(λ−1)C3) = uab∑λ−1
j=0 (AC3)jPC3(QC3)(λ−1)−j

= uab∑λ−1
j=0 PC3(QC3)(λ−1)−j

= uabPC3

∑λ−1
j=0 (QC3)(λ−1)−j

= uabPC3

(
I +QC3 + · · ·+Q(λ−1)C3

)
,

which means that a(Im −QC3)− uabPC3 ∈ ker
(
Im +QC3 + · · ·+Q(λ−1)C3

)
. But

ker
(
Im +QC3 + · · ·+Q(λ−1)C3

)
6 ker(Im −QλC3) =

= FixQλC3 6 PerQ = FixQC3 = ker(Im −QC3)

hence, we also have a(Im−QC3)−uabPC3 ∈ ker(Im−QC3). However, the two polynomials

1 + xC3 + · · · + x(λ−1)C3 and 1 − xC3 are relatively prime so, from Bezout’s equality

we deduce that ker
(
Im + QC3 + · · · + Q(λ−1)C3) ∩ ker(Im − QC3) = {0}. Therefore,

a(Im −QC3)− uabPC3 = 0 and so,

(tau)ΨC3 = taQ
C3+uabPC3 (uφC3) = tau.

This shows that Fix ΨλC3 = Fix ΨC3 for every λ ∈ N, from which we immediately deduce

Per Ψ = Fix ΨC3 . This means that the constant C3(n,m) = lcm
(
L3(m), (6n−6)!

)
satisfies

the desired result for all endomorphisms of the first type.

Hence, the computable constant C3(n,m) = lcm
(
L3(m), L3(m+ 1), (6n− 6)!

)
makes the

job.

Corollary 4.4.4. Let Ψ ∈ End(Zm × Fn). Then Per Ψ is finitely generated if and only if

Fix Ψp is finitely generated for all p > 1.
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Proof. This follows immediately from Theorem 4.4.3 and Corollary 4.3.3.

4.5 The auto-fixed closure of a subgroup of Zm × Fn

Given an endomorphism, it is natural to ask for the computability of (a basis of) its fixed

subgroup (or its periodic subgroup). In the abelian case, this can easily be done by just

solving a system of linear equations, because the fixed point subgroup of an endomor-

phism of Zm is nothing else but the eigenspace of eigenvalue 1 of the corresponding

matrix, FixQ = E1(Q).

In the free case, this is a hard problem solved for automorphisms by making strong use of

the train track techniques, see Bogopolski–Maslakova [5] (amending the previous wrong

version Maslakova [29]) and, alternatively, Feingh–Handel [17, Prop. 7.7].

Theorem 4.5.1 (Bogopolski–Maslakova, [5]; Feingh–Handel, [17]). Let φ : Fn → Fn be

an automorphism. Then, a free-basis for Fix φ is computable.

Finally, the free-abelian times free case was studied by Delgado–Ventura who solved the

problem (including the decision on whether the fixed subgroup is finitely generated or

not), modulo a solution for the free case. More precisely,

Theorem 4.5.2 (Delgado–Ventura, [10]). Let G = Zm × Fn. There is an algorithm which,

on input an automorphism Ψ: G→ G, decides whether Fix Ψ is finitely generated or not

and, if so, computes a basis for it.

We note that Theorems 4.5.1 and 4.5.2 work for automorphisms; as far as we know, the

computability of the fixed subgroup of an endomorphism, both in the free and in the

free-abelian times free cases, remains open.

In the present section, we are interested in the dual problem: given a subgroup, decide

whether it can be realized as the fixed subgroup of an endomorphism (resp., an automor-
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phism, a family of endomorphisms, a family of automorphisms) and in the affirmative

case, compute such an endomorphism (resp., automorphism, family of endomorphisms,

family of automorphisms).

Generalizing the terminology introduced in Martino–Ventura [26] to an arbitrary group

G, a subgroup H 6 G is called endo-fixed (resp., auto-fixed) if H = FixS for some set of

endomorphisms S ⊆ End(G) (resp., automorphisms S ⊆ Aut(G)). Simillarly, a subgroup

H 6 G is said to be 1-endo-fixed (resp., 1-auto-fixed) if H = Fix φ, for some φ ∈ End(G)

(resp., some φ ∈ Aut(G)). Notice that an auto-fixed (resp., endo-fixed) subgroup of G is

an intersection of 1-auto-fixed (resp., 1-endo-fixed) subgroups of G, and vice-versa.

Of course, it is straightforward to see that all these notions do coincide in the abelian

case: a subgroup H 6 Zm is endo-fixed if and only if it is auto-fixed, if and only if it is

1-endo-fixed, if and only if it is 1-auto-fixed, and if and only if it is a direct summand,

H 6⊕ Zm.

In the free case (and so, in the free-abelian times free as well) the situation is much more

delicate: in Martino–Ventura [26], the authors conjectured that the families of auto-fixed

and 1-auto-fixed subgroups of Fn do coincide; in other words, the family of 1-auto-fixed

subgroups of Fn is closed under arbitrary intersections. (A similar conjecture can be

stated for endomorphisms.) As far as we know, this still remains an open problem, with

no progress made since the paper [26] itself, where the authors showed that, for any

submonoid S 6 End(Fn), there exists φ ∈ S such that Fix(S) is a free factor of Fix φ;

however, they also gave an explicit example of a 1-auto-fixed subgroup of Fn admitting a

free factor which is not even endo-fixed. In this context it is worth mentioning the result

Martino–Ventura [28, Cor. 4.2] showing that we can always restrict ourselves to consider

finite intersections.

In this context, I want to mention that the conjecture is true if we consider maximum-

rank auto-fixed subgroups of Fn. Because of the fact that a 1-auto-fixed subgroup H

4.5 The auto-fixed closure of a subgroup of Zm × Fn 96



of Fn has rank at most n, by the Bestvina–Handel [3] theorem and on the other hand,

Martini–Ventura [26] proved that, for every autos (or endos) f, g there is another one h

such that Fix(f) ∩ Fix(g) is a free factor of Fix(h).

Definition 4.5.3. Let H be a 1-auto-fixed subgroup of Fn and H has rank exactly n, then

H is said to be a maximum-rank 1-auto-fixed subgroup of Fn and similar definition for

auto-fixed subgroups.

The typical example of a maximum-rank 1-auto-fixed subgroup is given by the following

automorphism of F2 = 〈a, b〉 : a 7→ a, b 7→ arb, where r 6= 0 is an integer. Its fixed

subgroup is H = 〈a, [a, b]〉 = 〈a, b−1ab〉.

Theorem 4.5.4 (Collins–Turner, [7].). Every automorphism of Fn with fixed subgroup of

rank n fixes a primitive element of Fn.

In fact in the maximum rank case all kinds of fixed point families coincide.

Theorem 4.5.5 (Martino–Ventura, [26].). Let H 6 Fn be a subgroup of Fn with r(H) = n.

The following are equivalent:

(a) H is a 1-auto-fixed subgroup of Fn,

(b) H is a 1-mono-fixed subgroup of Fn,

(c) H is a 1-endo-fixed subgroup of Fn,

(d) H is an auto-fixed subgroup of Fn,

(e) H is a mono-fixed subgroup of Fn,

(f) H is an endo-fixed subgroup of Fn.

Let H 6 G. We denote by AutH(G) the subgroup of Aut(G) consisting of all automor-

phisms of G which fix H pointwise, AutH(G) = {φ ∈ Aut(G) | H 6 Fix φ}, usually called
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the (pointwise) stabilizer of H. Analogously, we denote by EndH(G) the submonoid of

End(G) consisting of all endomorphisms of G which fix every element of H. Clearly,

AutH(G) 6 EndH(G).

Theorem 4.5.6 (Martino–Ventura, [26].). Let H be a maximum-rank auto-fixed subgroup

of Fn, and let m denote the rank of the (free abelian) image of H in F abn ' Zn. Then

EndH(Fn) = AutH(Fn) is a free abelian subgroup of Aut(Fn) of rank n−m.

In this realm, the following is a well-known result about stabilizers in the free group case,

which will be used later:

Theorem 4.5.7 (McCool, [30]; see also [23, Prop. I.5.7]). Let H 6fg Fn, given by a

finite set of generators. Then the stabilizer, AutH(Fn), of H is also finitely generated (in

fact, finitely presented), and a finite set of generators (and relations) is algorithmically

computable.

Following with the terminology from [26], the auto-fixed closure of H in G, denoted

a-ClG (H), is the subgroup

a-ClG (H) = Fix(AutH(G)) =
⋂

φ ∈ Aut(G)

H 6 Fixφ

Fix φ,

i.e., the smallest auto-fixed subgroup of G containing H. Similarly, the endo-fixed closure

of H in G, is e-ClG (H) = Fix(EndH(G)). Since AutH(G) 6 EndH(G), it is obvious that

e-ClG(H) 6 a-ClG(H). However, the equality does not hold in general (for example,

the free group Fn, n > 3 admits 1-endo-fixed subgroups which are not auto-fixed; see

Martino–Ventura [27]).

In Ventura [42], fixed closures in free groups are studied from the algorithmic point of

view. More precisely, the following results were proven:
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Theorem 4.5.8 (Ventura, [42]). Let H 6fg Fn, given by a finite set of generators. Then, a

free-basis for the auto-fixed closure a-ClFn(H) (resp., the endo-fixed closure e-ClFn(H)) of

H is algorithmically computable, together with a set of k 6 2n automorphisms φ1, . . . , φk ∈

Aut(Fn) (resp., endomorphisms φ1, . . . , φk ∈ End(Fn)), such that a-ClFn(H) = Fix φ1 ∩

· · · ∩ Fix φk (resp., e-ClFn(H) = Fix φ1 ∩ · · · ∩ Fix φk).

Corollary 4.5.9 (Ventura, [42]). It is algorithmically decidable whether a given H 6fg Fn

is auto-fixed (resp., endo-fixed) or not.

For example it is well known that, for every w ∈ Fn and r ∈ Z, the equation xr = wr has a

unique solution in Fn, which is the obvious one x = w; this means that any endomorphism

φ : Fn → Fn fixing wr must also fix w. Therefore, the auto-fixed and endo-fixed closures

of a cyclic subgroup of Fn are equal to the maximal cyclic subgroup where it is contained;

in other words, a cyclic subgroup of Fn is auto-fixed, if and only if it is endo-fixed, and if

and only if it is maximal cyclic.

In the present section, we prove the analog of Theorem 4.5.8 for free-abelian time free

groups, and only in the automorphism case. Our main results in the present section

are:

Theorem. (4.5.18) Let G = Zm × Fn. There is an algorithm which, given a finite set of

generators for a subgroup H 6fg G, outputs a finite set of automorphisms Ψ1, . . . ,Ψk ∈

Aut(G) such that a-ClG(H) = Fix Ψ1∩· · ·∩Fix Ψk, decides whether this is finitely generated

or not and, in case it is, computes a basis for it.

Corollary. (4.5.19) One can algorithmically decide whether a given H 6fg G is auto-fixed

or not, and in case it is, compute a finite set of automorphisms Ψ1, . . . ,Ψk ∈ Aut(G) such

that H = Fix Ψ1 ∩ · · · ∩ Fix Ψk.

We want to emphasize that we did not succeed in the task of constructing an example

of a finitely generated subgroup H 6fg G = Zm × Fn such that a-ClG(H) is not finitely
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generated; it could be that such examples do not exist so the following is an interesting

open question:

Question 4.5.10. Is it true that, for every H 6fg G = Zm × Fn, the auto-fixed closure

a-ClG(H) is again finitely generated ? What about the endo-fixed closure e-ClG(H) ?

To prove Theorem 4.5.18 and Corollary 4.5.19, we plan to follow the same strategy as

in the free case, which is conceptually quite easy: given H 6fg Fn, use Theorem 4.5.7

to compute a set of generators for the stabilizer, say AutH(Fn) = 〈φ1, . . . , φk〉, then use

Theorem 4.5.1 to compute Fix φi for each i = 1, . . . , k, and finally intersect them all in

order to get the auto-fixed closure, a-ClFn(H) = Fix φ1 ∩ · · · ∩ Fix φk (the bound k 6 2n

comes from free group arguments and will be lost in the more general free-abelian times

free context).

To make this strategy work in the free-abelian times free case, we have to overcome two

extra difficulties not present at the free case:

(1) We need an analog to McCool’s result for the group Zm × Fn; stabilizers are going

to be still finitely presented and computable, but more complicated than in the free

case. The natural approach to this problem, trying to analyze directly how does an

automorphism in AutH(G) look like, ends up with a tricky matrix equation with

which we were unable to solve the problem; instead, our approach will be indirect,

making use of another two more powerful results from the literature.

(2) When trying to compute Fix Ψ1 ∩ · · · ∩ Fix Ψk, it may very well happen that some

of the individual Fix Ψi’s are not finitely generated; in this case, Theorem 4.5.2

recognizes this fact and stops, giving us nothing else, while we still have to decide

whether the full intersection Fix Ψ1 ∩ · · · ∩ Fix Ψk is finitely generated or not (and

compute a basis for it in case it is so).
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We succeed overcoming these two difficulties in Theorem 4.5.14 and Proposition 4.5.16,

respectively.

The versions of Theorem 4.5.18 and Corollary 4.5.19 for endomorphisms seem to be

much more tricky and remain open (their versions for the free group, contained in

Theorem 4.5.8 and Corollary 4.5.9, are already much more complicated because the

monoid EndFn(H) is not necessarily finitely generated, even with H being so, and also

computability of fixed subgroups is not known for endomorphisms).

Question 4.5.11. Let G = Zm × Fn. Is there an algorithm which, given a finite set of

generators for a subgroup H 6fg G, decides whether

(i) the monoid EndH(G) is finitely generated or not and, in case it is, computes a set of

endomorphisms Ψ1, . . . ,Ψk ∈ End(G) such that EndH(G) = 〈Ψ1, . . . ,Ψk〉 ?

(ii) e-ClG(H) is finitely generated or not and, in case it is, computes a basis for it ?

(iii) H is endo-fixed or not ?

Let us begin by understanding stabilizers in G = Zm × Fn. For this, we need to remind a

couple of other results from the literature.

Given a tuple of conjugacy classes W = ([g1], . . . , [gk]) from a group G, the stabilizer of

W , denoted AutW (G), is the group of automorphisms fixing all the [gi]’s, i.e., sending

the elements gi to conjugates of themselves (with possibly different conjugators); more

precisely,

AutW (G) = {φ ∈ Aut(G) | g1φ ∼ g1, . . . , gkφ ∼ gk},

where ∼ stands for conjugation in G (g ∼ h if and only if g = x−1hx = hx for some

x ∈ G). Of course, if H = 〈h1, . . . , hk〉 6fg G, and W = ([h1], . . . , [hk]), then AutH(G) 6

AutW (G), without equality, in general.
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McCool’s Theorem 4.5.7 was a variation and an extension of a much earlier result: back in

the 1930’s, Whitehead already solved the orbit problem for conjugacy classes in the free

group: given two tuples of conjugacy classes V = ([v1], . . . , [vk]) and W = ([w1], . . . , [wk])

in Fn, one can algorithmically decide whether there is an automorphism φ ∈ Aut(Fn)

such that viφ ∼ wi, for every i = 1, . . . , k; see [23, Prop. 4.21] or [43]; this was based

on the so-called Whitehead automorphisms and the peak reduction technique. McCool’s

work 40 years later consisted of (1) deducing as a corollary that AutW (Fn) if finitely

presented and a finite presentation is computable from the given W ; and (2) extending

everything to real elements instead of conjugacy classes and so, getting a solution to the

orbit problem for tuples of elements, and the finite presentability (and computability) for

stabilizers of subgroups, stated in Theorem 4.5.7.

Much more recently, a new version of these peak reduction techniques has been developed

by M. Day [9] for right-angled Artin groups, extending McCool result (1) above to this

bigger class of groups; we are interested in the stabilizer part:

Theorem 4.5.12 (Day, [9, Thm. 1.2]). There is an algorithm that takes in a tuple W of

conjugacy classes from a right-angled Artin group A(Γ) and produces a finite presentation

for its stabilizer AutW (A(Γ)).

Of course, we can make good use of Day’s result in our case, because free-abelian times

free groups are (a very special kind of) right-angled Artin groups; namely, Zm × Fn =

A(Γm,n) where Γm,n is the complete graph on m vertices and the null graph on n vertices,

together with mn edges joining each pair of vertices one in each side. The problem in

doing this is that Day’s result works only for conjugacy classes and the corresponding

result for real elements is not known in general for right-angled Artin groups; while we

need the finite generation (and computability) of stabilizers of subgroups in Zm × Fn. We

overcome this difficulty by using a result from Bogopolski–Ventura [6] relating stabilizers

of subgroups and of tuples of conjugacy classes, in torsion-free hyperbolic groups:
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Theorem 4.5.13 (Bogopolski–Ventura [6, Thm. 1.2]). Let G be a torsion-free δ-hyperbolic

group with respect to a finite generating set S. Let g1, . . . , gr and g′1, . . . , g
′
r be elements of

G such that gi ∼ g′i for every i = 1, . . . , r. Then, there is a uniform conjugator for them if

and only if w(g1, . . . , gr) ∼ w(g′1, . . . , g′r) for every word w in r variables and length up to a

computable constant C = C(δ, |S|,
∑r
i=1 |gi|), depending only on δ, |S|, and

∑r
i=1 |gi|.

Using these results we can effectively compute generators for the stabilizer of a given

subgroup H 6fg Zm × Fn. For our purposes, we do not need at all any set of relations;

however, for completeness with respect to Day’s result, we further prove that these

stabilizers are also finitely presented and compute a full set of relations.

Theorem 4.5.14. Let H 6fg G = Zm × Fn, given by a finite set of generators. Then the

stabilizer, AutH(G), of H is finitely presented, and a finite set of generators and relations is

algorithmically computable.

Proof. From the given set of generators, compute a basis for H, say

{ta1u1, . . . , t
arur, t

b1 , . . . , tbs}; in particular, we have a free-basis {u1, . . . , ur} for Hπ,

and an abelian-basis {tb1 , . . . , tbs} for LH = H ∩ Zm.

If r = 0 then H = LH and, clearly, Ψφ,Q,P ∈ AutH(G) if and only if Q ∈ AutLH (Zm). So,

AutH(G) is generated by the following finite set of automorphisms of G: (1) Ψφ,Im,0, with

φ running over the Nielsen automorphisms of Fn; (2) Ψid,Q,0, with Q running over the

generators of AutLH (Zm) computed by Theorem 4.5.12 (note that, since Zm is abelian,

AutLH (Zm) = Aut([b1],...,[bs])(Zm)); and (3) Ψid,Im,1i,j , with 1i,j being the zero n × m

matrix with a single 1 at position (i, j), i = 1, . . . , n, j = 1, . . . ,m. Therefore, from [10,

Thm. 5.5], we deduce that AutH(G) ' Mn×m(Z) o
(

AutLH (Zm) × Aut(Fn)
)

with the

natural action. Hence, we can easily compute an explicit finite presentation for this

group by using the presentation for AutLH (Zm) we got from Day’s Theorem 4.5.12, any
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known presentation for Aut(Fn) (see, for example, [1]), and the standard presentation

for Mn×m(Z) ' Znm.

Assume that r = r(Hπ) > 1. Apply Theorem 4.5.13 to the free group Fn and words

u1, . . . , ur, and compute the constant C = C(0, n,
∑r
i=1 |ui|). Consider the tuple of ele-

ments from G given by W =
(
w1(ta1u1, . . . , t

arur), . . . , wM (ta1u1, . . . , t
arur), tb1 , . . . , tbs

)
,

where w1, . . . , wM is the sequence (in any order) of all reduced words on r variables and

of length up to C. We claim that

AutW (G) = AutH(G) · Inn(G). (4.6)

In fact, the inclusion > is obvious. To see 6 , take Ψ = Ψφ,Q,P ∈ AutW (G), that is, an

automorphism Ψ satisfying wi(ta1u1, . . . , t
arur)Ψ ∼ wi(ta1u1, . . . , t

arur) for i = 1, . . . ,M ,

and tbjΨ ∼ tbj for j = 1, . . . , s. We have tbjΨ = tbj (since these are central elements

from G), and wi(u1, . . . , ur)φ ∼ wi(u1, . . . , ur) so, by Theorem 4.5.13, wi(u1, . . . , ur)φ =

x−1wi(u1, . . . , ur)x for a common conjugator x ∈ Fn; in particular, uiφ = x−1uix for

i = 1, . . . , r and so, φ = (φγx−1)γx, with φγx−1 ∈ AutHπ(Fn). Therefore, Ψ = (ΨΓx−1)Γx,

with ΨΓx−1 ∈ AutH(G).

Now, by Theorem 4.5.12, this stabilizer is finitely presented and a finite presentation

AutW (G) = 〈Ψ1, . . . ,Ψ` | R1, . . . , Rd〉 (4.7)

can be computed, where the Ψi’s are explicit automorphisms of G, and the Rj ’s are words

on them satisfying Rj(Ψ1, . . . ,Ψ`) = idG, j = 1, . . . , d. From the previous paragraph,

we can algorithmically rewrite Ψi = Ψ′iΓxi for some Ψ′i ∈ AutH(G) and some xi ∈ Fn,

i = 1, . . . , ` (note that some Ψ′i could be the identity, corresponding to Ψi being possibly

a genuine conjugation of G). Finally, let us distinguish two cases.
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Suppose r = r(Hπ) > 2. We claim that AutH(G) = 〈Ψ′1, . . . ,Ψ′`〉: the inclusion> is trivial;

for the other, take Ψ ∈ AutH(G) 6 AutW (G) and, since Inn(G) is a normal subgroup

of Aut(G), we have Ψ = w(Ψ1, . . . ,Ψ`) = w(Ψ′1Γx1 , . . . ,Ψ′`Γx`) = w(Ψ′1, . . . ,Ψ′`)Γx for

some x ∈ Fn. But both Ψ and w(Ψ′1, . . . ,Ψ′`) fix ta1u1, . . . , t
arur and r > 2 so, x = 1 and

Ψ = w(Ψ′1, . . . ,Ψ′`) ∈ 〈Ψ′1, . . . ,Ψ′`〉.

Suppose now that r = r(Hπ) = 1. The argument in the previous paragraph tells us

that AutH(G) = 〈Ψ′1, . . . ,Ψ′`, Γû1〉, where û1 is the root of u1 in Fn, i.e., the unique

non-proper power in Fn such that u1 = ûα1 for α > 0 (since now, in the last part of the

argument, x only commutes with u1 6= 1).

Up to here we have proved that AutH(G) is finitely generated and a finite set of generators

is algorithmically computable. Now we complete it by computing a finite set of defining

relations for AutH(G).

To find the defining relations, we distinguish again the cases r > 2, and r = 1 (in

increasing order of difficulty):

• Case 1: r > 2. In this case, we already know that AutH(G) = 〈Ψ′1, . . . ,Ψ′`〉. Let us find

a complete set of defining relations for this set of generators.

Observe first that, for every Ψ ∈ AutW (G), the decomposition Ψ = Ψ′Γx mentioned

in (4.6) is unique: if Ψ′Γx = Ψ′′Γy, with Ψ′,Ψ′′ ∈ AutH(G) and x, y ∈ Fn, then

x−1u1x = y−1u1y and x−1u2x = y−1u2y, which implies that xy−1 commutes with the

freely independent elements u1, u2 and so, xy−1 = 1; hence, Γx = Γy and Ψ′ = Ψ′′. In

other words, AutH(G) ∩ Inn(G) = {idG} and so,

AutW (G)/ Inn(G) = AutH(G) Inn(G)/ Inn(G) '

' AutH(G)/
(

AutH(G) ∩ Inn(G)
)

= AutH(G).
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We have the following two sources of natural relations among the Ψ′i’s. From (4.7),

for each i = 1, . . . , d we have idG = Ri(Ψ1, . . . ,Ψ`) = Ri(Ψ′1Γx1 , . . . ,Ψ′`Γx`) =

Ri(Ψ′1, . . . ,Ψ′`)Γyi = Ri(Ψ′1, . . . ,Ψ′`), where yi ∈ Fn must be 1, again, because r > 2. On

the other hand, for each one of the n generating letters of Fn, say z1, . . . , zn, compute

an expression for the conjugation Γzj ∈ Inn(G) 6 AutW (G) in terms of Ψ1, . . . ,Ψ`, say

Γzj = Sj(Ψ1, . . . ,Ψ`), and we have Γzj = Sj(Ψ1, . . . ,Ψ`) = Sj(Ψ′1Γx1 , . . . ,Ψ′`Γx`) =

Sj(Ψ′1, . . . ,Ψ′`)Γyj for some yj ∈ Fn; but then idG = Sj(Ψ′1, . . . ,Ψ′`)Γyjz−1
j

=

Sj(Ψ′1, . . . ,Ψ′`), j = 1, . . . , n, gives us a second set of relations for AutH(G) (here, again,

yjz
−1
j = 1 since r > 2). Therefore,

AutH(G) = AutW (G)/ Inn(G)

= 〈Ψ1, . . . ,Ψ` | R1, . . . , Rd〉/ Inn(G)

= 〈Ψ′1, . . . ,Ψ′` | R1, . . . , Rd, S1, . . . , Sn〉.

(Note that w(Ψ1, . . . ,Ψ`) 7→ w(Ψ′1, . . . ,Ψ′`) or, equivalently, Ψ 7→ Ψ′ = ΨΓx−1 for

the unique possible x ∈ Fn, is the canonical projection AutW (G) � AutH(G) '

AutW (G)/ Inn(G).)

• Case 2: r = 1. Here, H = 〈tau, tb1 , . . . , tbs〉 6 G with 1 6= u ∈ Fn (for notational

simplicity, we have deleted the subindex 1 from u and a). This case is a bit more

complicated than Case 1 because the decomposition Ψ = Ψ′Γx from (4.6) is not unique

now; additionally, AutH(G) contains some non-trivial conjugation, namely Γû, and so we

cannot mod out Inn(G) from AutW (G) because this would kill part of AutH(G).

In the present case, we know that AutH(G) = 〈Ψ′1, . . . ,Ψ′`,Γû〉. Let us adapt the two

previous sources of natural relations among them, and discover a third one. From (4.7),

for each i = 1, . . . , d we have idG = Ri(Ψ1, . . . ,Ψ`) = Ri(Ψ′1Γx1 , . . . ,Ψ′`Γx`) =

Ri(Ψ′1, . . . ,Ψ′`)Γyi , for some yi ∈ Fn. But both idG and Ri(Ψ′1, . . . ,Ψ′`) fix tau so, yi
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must equal ûαi for some αi ∈ Z. Therefore, idG = Ri(Ψ′1, . . . ,Ψ′`)Γ
αi
û , i = 1, . . . , d, is a

first set of relations for AutH(G).

On the other hand, for each generating letter, zj , of Fn, j = 1, . . . , n, we have the

equality Γzj = Sj(Ψ1, . . . ,Ψ`) = Sj(Ψ′1Γx1 , . . . ,Ψ′`Γx`) = Sj(Ψ′1, . . . ,Ψ′`)Γyj , for some

yj ∈ Fn. But then idG = Sj(Ψ′1, . . . ,Ψ′`)Γyjz−1
j

, which implies yjz−1
j = ûβj for some

βj ∈ Z. Therefore, idG = Sj(Ψ′1, . . . ,Ψ′`)Γ
βj
û , j = 1, . . . , n, is a second set of relations for

AutH(G).

Finally, observe that for k = 1, . . . , `, ûΨ′k = tck û for some ck ∈ Zm and thus, Γû

commutes with Ψ′k. Therefore, Ψ′kΓû = ΓûΨ′k, k = 1, . . . , `, is a third set of relations for

AutH(G).

We are going to prove that

AutH(G) '
〈

Ψ′1, . . . ,Ψ′`,Γû
∣∣∣ Ri(Ψ′1, . . . ,Ψ′`)Γαiû , Sj(Ψ′1, . . . ,Ψ′`)Γ

βj
û , Ψ′kΓû = ΓûΨ′k

i=1,...,d j=1,...,n k=1,...,`

〉
.

(4.8)

To this goal, denote by G the group presented by the presentation on the right hand

side, where elements are formal words on the ‘symbols’ {Ψ′1, . . . ,Ψ′`,Γû} subject to the

relations indicated (we abuse notation, denoting by Ψ′1, . . . ,Ψ′`,Γû both the corresponding

symbols in G, and the corresponding automorphisms in AutH(G), the real meaning being

always clear from the context). Let us construct a map f : AutH(G)→ G, and a group

homomorphism G ← G : g such that fg = idAutH(G) and gf = idG . This will suffice to

prove (4.8) and finish the argument.

Define g by sending the symbol Ψ′k to the automorphism Ψ′k, k = 1, . . . , `, and the

symbol Γû to the automorphism Γû; since, as we have proved in the three previous

paragraphs, the relations from G are really satisfied in AutH(G), g determines a well

defined homomorphism from G to AutH(G). (For later use, we emphasize the meaning
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of this: every equality holding symbolically in G holds also genuinely in AutH(G).) On

the other hand, for Ψ ∈ AutH(G), define Ψf ∈ G as follows: write Ψ ∈ AutH(G) 6

AutW (G) as a word on Ψ1, . . . ,Ψ`, say Ψ = v(Ψ1, . . . ,Ψ`), compute Ψ = v(Ψ1, . . . ,Ψ`) =

v(Ψ′1Γx1 , . . . ,Ψ`Γx`) = v(Ψ′1, . . . ,Ψ′`)Γy = v(Ψ′1, . . . ,Ψ′`)Γ
ρ
û (in AutH(G) !), where y =

ûρ for some ρ ∈ Z since both Ψ and v(Ψ′1, . . . ,Ψ′`) fix tau; and, finally, define Ψf to be

the formal word v(Ψ′1, . . . ,Ψ′`)Γ
ρ
û ∈ G.

First, we have to see that f is well defined. That is, take Ψ = w(Ψ1, . . . ,Ψ`) an-

other expression for Ψ, write Ψ = w(Ψ1, . . . ,Ψ`) = w(Ψ′1, . . . ,Ψ′`)Γτû (in AutH(G)

!) for the appropriate integer τ ∈ Z, and we have to prove that the equal-

ity v(Ψ′1, . . . ,Ψ′`)Γ
ρ
û = w(Ψ′1, . . . ,Ψ′`)Γτû holds, abstractly, in G. From the fact

v(Ψ1, . . . ,Ψ`) = Ψ = w(Ψ1, . . . ,Ψ`) (equalities happening in the group (4.7)), we de-

duce that the word v(Ψ1, . . . ,Ψ`)−1w(Ψ1, . . . ,Ψ`) is formally a product of conjugates of

R1(Ψ1, . . . ,Ψ`), . . . , Rd(Ψ1, . . . ,Ψ`), say

v(Ψ1, . . . ,Ψ`)−1w(Ψ1, . . . ,Ψ`) =
N∏
k=1

(
Rεkik (Ψ1, . . . ,Ψ`)

)ck(Ψ1,...,Ψ`).

Particularizing this identity on Ψ′1, . . . ,Ψ′` ∈ G, and working in G (i.e., only using symboli-

cally the defining relations for G), we have that

v(Ψ′1, . . . ,Ψ′`)−1w(Ψ′1, . . . ,Ψ′`) =
N∏
k=1

(
Rεkik (Ψ′1, . . . ,Ψ′`)

)ck(Ψ′1,...,Ψ′`) =

=
N∏
k=1

(
Γ−εkαikû

)ck(Ψ′1,...,Ψ′`) =
N∏
k=1

Γ−εkαikû = Γ−
∑N

k=1 εkαik
û .

But, applying g (i.e., reading the above equality in AutH(G)), we have

idG = v(Ψ1, . . . ,Ψ`)−1w(Ψ1, . . . ,Ψ`) =

= Γ−ρû v(Ψ′1, . . . ,Ψ′`)−1w(Ψ′1, . . . ,Ψ′`)Γτû = Γτ−ρ−
∑N

k=1 εkαik
û
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and so, the exponent must be zero, τ − ρ−
∑N
k=1 εkαik = 0, because N > 2. Going again

to G, we conclude that Γ−ρû v(Ψ′1, . . . ,Ψ′`)−1w(Ψ′1, . . . ,Ψ′`)Γτû = Γτ−ρ−
∑N

k=1 εkαik
û = 1,

showing that the map f is well defined.

Now consider the composition fg : AutH(G)→ G → AutH(G): for every Ψ ∈ AutH(G),

write (in AutH(G) !) Ψ = v(Ψ1, . . . ,Ψ`) = v(Ψ′1, . . . ,Ψ′`)Γ
ρ
û, ρ ∈ Z, and we have Ψf =

v(Ψ′1, . . . ,Ψ′`)Γ
ρ
û ∈ G. But then, Ψfg =

(
v(Ψ′1, . . . ,Ψ′`)Γ

ρ
û

)
g = v(Ψ′1, . . . ,Ψ′`)Γ

ρ
û = Ψ (in

AutH(G) !). Hence, fg = idAutH(G).

Finally, consider the composition gf : G → AutH(G) → G. Take k = 1, . . . , ` and,

in order to compute Ψ′kgf = Ψ′kf , we have to express Ψ′k ∈ AutH(G) as a word on

Ψ1, . . . ,Ψ`; take, for example, Ψ′k = ΨkΓ−1
xk

= ΨkΓ−1
xk(z1,...,zn) = Ψkxk(Γz1 , . . . ,Γzn)−1 =

Ψkxk(S1(Ψ1, . . . ,Ψ`), . . . , Sn(Ψ1, . . . ,Ψ`))−1; then, rewrite in terms of Ψ′1, . . . ,Ψ′`,

Ψ′k=Ψkxk(S1(Ψ1, . . . ,Ψ`), . . . ,Sn(Ψ1, . . . ,Ψ`))−1 =

=Ψ′kxk(S1(Ψ′1, . . . ,Ψ′`), . . . ,Sn(Ψ′1, . . . ,Ψ′`))−1Γρû,

for the appropriate integer ρ ∈ Z; and we have, in G,

Ψ′kgf = Ψ′kf = Ψ′kxk(S1(Ψ′1, . . . ,Ψ′`), . . . , Sn(Ψ′1, . . . ,Ψ′`))−1Γρû
= Ψ′kxk(Γ

−β1
û , . . . ,Γ−βnû )−1Γρû

= Ψ′kΓ
xab
k βT

û Γρû
= Ψ′kΓ

xab
k βT+ρ

û ,

where β = (β1, . . . , βn) ∈ Zn. But, applying g, using fg = idAutH(G), and cancelling

Ψ′i from the left, we obtain idG = Γxab
k βT+ρ

û and so, xab
k β

T + ρ = 0. Hence, back in G,

Ψ′kgf = Ψ′k, for k = 1, . . . , `.
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Similarly,

Γûgf = Γûf =
(
û(Γz1 , . . . ,Γzn)

)
f

=
(
û(S1(Ψ1, . . . ,Ψ`), . . . , Sn(Ψ1, . . . ,Ψ`))

)
f

= û(S1(Ψ′1, . . . ,Ψ′`), . . . , Sn(Ψ′1, . . . ,Ψ′`))Γ
ρ
û

= û(Γ−β1
û , . . . ,Γ−βnû )Γρû

= Γ−û
abβT+ρ

û ,

for the appropriate integer ρ ∈ Z. But, applying g, we obtain Γû = Γ−û
abβT+ρ

û (in

AutH(G) !) and so, −ûabβT + ρ = 1. Hence, back in G, Γûgf = Γû, finishing the proof

that gf = idG .

This completes the proof of the isomorphism (4.8) and so, the proof of the Theorem.

The above proof that stabilizers of subgroups of G = Zm × Fn are finitely presented (and

a finite presentation is computable) makes a strong use of the fact that the center of G is

Zm, i.e., the elements of the form ta commute with everybody in G. For this reason, this

proof is far from generalizing to arbitrary right angled Artin groups, providing an analog

of Day’s Theorem 4.5.12 for real elements instead of conjugacy classes. This suggests the

following question, which is open as far as we know.

Question 4.5.15. Is it true that, for every finitely generated subgroup of a right angled

Artin group, H 6fg A(Γ), the stabilizer AutH(A(Γ)) is finitely generated ? and finitely

presented ? and a presentation is algorithmically computable from the given generators for

H ?

Now we turn to the computability of fixed points by a given collection of automor-

phisms.
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Proposition 4.5.16. Let G = Zm × Fn. There is an algorithm which, given Ψ1, . . . ,Ψk ∈

Aut(G), decides whether Fix Ψ1 ∩ · · · ∩ Fix Ψk is finitely generated or not and, in the

affirmative case, computes a basis for it.

Remark 4.5.17. Two related results are Theorem 4.5.2 above, and Theorem [10,

Thm. 4.8]. With the first one we can decide whether each Fix Ψi is finitely gener-

ated and, in this case, compute a basis; and with the second, assuming Fix Ψi and Fix Ψj

finitely generated, we can decide whether Fix Ψi ∩ Fix Ψj is finitely generated again

and, in this case, compute a basis for it. However, these two results combined in an

induction argument are not enough to prove Proposition 4.5.16 because it could very

well happen that some of the individual Fix Ψi’s (even a partial intersection of some of

them) is not finitely generated while Fix Ψ1 ∩ · · · ∩ Fix Ψk is so. Thus, we are going to

adapt the proof of Theorem 4.5.2 to compute directly the fixed subgroup of a finite tuple

of automorphisms, without making reference to the fixed subgroup of each individual

one.

Proof of Proposition 4.5.16. Write Ψi = Ψφi,Qi,Pi : G→ G, tau 7→ taQi+uρPiuφi, for some

φi ∈ Aut(Fn), Qi ∈ GLm(Z), and Pi ∈ Mn×m(Z), i = 1, 2, . . . , k, where ρ : Fn � Zn is

the abelianization map. We have

Fix Ψ1 ∩ · · · ∩ Fix Ψk =
{
tau ∈ G | u ∈ ∩ki=1 Fix φi, a(Im −Qi) = uρPi, i = 1, . . . , k

}
=

= {tau ∈ G | u ∈ ∩ki=1 Fix φi, a(Im −Q1| · · · |Im −Qk) = uρ(P1| · · · |Pk)},

where (Im − Q1| · · · |Im − Qk) ∈ Mm×km(Z) and (P1| · · · |Pk) ∈ Mn×km(Z) are the

indicated concatenated matrices, corresponding to linear maps Q̃ : Zm → Zkm and

P̃ : Zn → Zkm, respectively.

Let ρ′ be the restriction of ρ to Fix φ1∩· · ·∩Fix φk (not to be confused with the abelianiza-

tion map of the subgroup Fix φ1∩· · ·∩Fix φk itself), let P̃ ′ be the restriction of P̃ to Im ρ′;
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>M = Im Q̃

= M ∩ Im P̃ ′.

6 E E

Fn Zn
ρ // // Zkm

P̃ //

Fix φ1 ∩ · · · ∩ Fix φk Im ρ′
ρ′// // Im P̃ ′

P̃ ′ // //

E E E

NNP̃ ′−1 �ooNP̃ ′−1ρ′−1 �oo

Figure 4.1: Finite intersection of fixed point subgroups

let M = Im Q̃ 6 Zkm, let N = M ∩Im P̃ ′, and consider the preimages of N first by P̃ ′ and

then by ρ′, see the Fig. 4.1. We claim that (Fix Ψ1 ∩ · · · ∩ Fix Ψk)π = NP̃ ′−1ρ′−1. In fact,

for u ∈ (Fix Ψ1∩ · · ·∩Fix Ψk)π, there exists a ∈ Zm such that tau ∈ Fix Ψ1∩ · · ·∩Fix Ψk,

i.e., u ∈ Fix φi and a(Im − Qi) = uρPi, i = 1, . . . , k. So, u ∈ Fix φ1 ∩ · · · ∩ Fix φk

and uρ′P̃ ′ = aQ̃ ∈ M ∩ Im P̃ ′ and hence, u ∈ NP̃ ′−1ρ′−1. On the other hand, for

u ∈ NP̃ ′
−1
ρ′−1, we have u ∈ Fix φ1 ∩ · · · ∩ Fix φk and uρ′P̃ ′ ∈ N 6 M = Im Q̃ so,

uρP̃ ′ = aQ̃ for some a ∈ Zm; this means that tau ∈ Fix Ψ1 ∩ · · · ∩ Fix Ψk and hence

u ∈ (Fix Ψ1 ∩ · · · ∩ Fix Ψk)π. This proves the claim.

Now Fix Ψ1∩· · ·∩Fix Ψk 6 G is finitely generated if and only if (Fix Ψ1∩· · ·∩Fix Ψk)π =

NP̃ ′−1ρ′−1 is finitely generated, which (since it is a normal subgroup) happens if and

only if NP̃ ′−1ρ′−1 is trivial (i.e., Fix φ1 ∩ · · · ∩ Fix φk = 〈u〉 with uρ 6= 0 and N = {0}) or

of finite index in Fix φ1 ∩ · · · ∩ Fix φk. That is, Fix Ψ1 ∩ · · · ∩ Fix Ψk is finitely generated

if and only if

(i) Fix φ1 ∩ · · · ∩ Fix φk = 〈u〉 with uρ 6= 0 and N = {0}, or

(ii) [Im P̃ ′ : N ] = [Im ρ′ : NP̃ ′−1] = [Fix φ1 ∩ · · · ∩ Fix φk : NP̃ ′−1ρ′−1] < ∞ or,

equivalently, r(N) = r(Im P̃ ′).

These conditions can effectively be checked by computing a free-basis for Fix φ1 ∩ · · · ∩

Fix φk with Theorem 4.5.1 and pull-backs of graphs, and then computing the ranks
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r(Im P̃ ′) and r(N) with basic linear algebra techniques. So, we can effectively decide

whether Fix Ψ1 ∩ · · · ∩ Fix Ψk is finitely generated or not.

Finally, let us assume it is so, and let us compute a basis for Fix Ψ1 ∩ · · · ∩ Fix Ψk.

If we are in the situation (i) then Fix φ1 ∩ · · · ∩ Fix φk = 〈u〉, uρ 6= 0, and M ∩ Im P̃ ′ =

N = {0} so, the only elements in Fix Ψ1 ∩ · · · ∩ Fix Ψk are those of the form taur

with a(Im − Q̃) = r · uρP̃ = 0. That is, Fix Ψ1 ∩ · · · ∩ Fix Ψk = 〈u, td1 , . . . , tds〉 where

〈d1, . . . , ds〉 = E1(Q1) ∩ · · · ∩ E1(Qk) 6 Zm.

If we are in situation (ii), then we can compute a set {c1, . . . , cq} ⊂ Zn of coset rep-

resentatives of NP̃ ′−1 in Im ρ′, namely Im ρ′ = (NP̃ ′−1)c1 t · · · t (NP̃ ′−1)cq. Having

computed a free-basis {v1, . . . , vp} for Fix φ1 ∩ · · · ∩ Fix φk, we can choose arbitrary

preimages y1, . . . , yq of c1, . . . , cq up in Fix φ1 ∩ · · · ∩ Fix φk, and we get a set of right

coset representatives of (Fix Ψ1 ∩ · · · ∩ Fix Ψk)π = NP̃ ′−1ρ′−1 in Fix φ1 ∩ · · · ∩ Fix φk,

Fix φ1 ∩ · · · ∩ Fix φk = (NP̃ ′−1ρ′−1)y1 t · · · t (NP̃ ′−1ρ′−1)yq. (4.9)

Now, we build the Schreier graph for NP̃ ′−1ρ′−1 6fi Fix φ1 ∩ · · · ∩ Fix φk with respect

to {v1, . . . , vp} in the following way: (1) take the cosets from (4.9) as vertices, and with

no edge; (2) for every vertex (NP̃ ′−1ρ′−1)yi and every letter vj , add an edge labeled vj

from (NP̃ ′−1ρ′−1)yi to (NP̃ ′−1ρ′−1)yivj , algorithmically identified among the available

vertices by repeatedly solving the membership problem for NP̃ ′−1ρ′−1 (note that we can

easily do this by abelianizing the candidate and checking whether it belongs to NP̃ ′−1).

Once we have run over all i = 1, . . . , q and all j = 1, . . . , p, we have computed the full

(and finite!) Schreier graph, from which we can select a maximal tree and obtain a

free-basis {u1, . . . , ur} for the subgroup corresponding to closed paths at the basepoint,

i.e., for NP̃ ′−1ρ′−1 = (Fix Ψ1∩· · ·∩Fix Ψk)π. Finally, solving linear systems of equations

(which must be mandatorily compatible), we obtain vectors e1, . . . , er ∈ Zm such that
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te1u1, . . . , t
erur ∈ Fix Ψ1 ∩ · · · ∩ Fix Ψk. We conclude that {te1u1, . . . , t

erur, t
d1 , . . . , tds}

is a basis for Fix Ψ1 ∩ · · · ∩ Fix Ψk.

Theorem 4.5.18. Let G = Zm × Fn. There is an algorithm which, given a finite set of

generators for a subgroup H 6fg G, outputs a finite set of automorphisms Ψ1, . . . ,Ψk ∈

Aut(G) such that a-ClG(H) = Fix Ψ1∩· · ·∩Fix Ψk, decides whether this is finitely generated

or not and, in case it is, computes a basis for it.

Proof. From the given generators, compute a basis for H, say {ta1u1, . . . , t
arur,

tb1 , . . . , tbs}. Now, using Theorem 4.5.14, we can compute finitely many automor-

phisms Ψ1, . . . ,Ψk ∈ Aut(G) such that AutH(G) = 〈Ψ1, . . . ,Ψk〉. So, we have that

a-ClG(H) = Fix Ψ1 ∩ · · · ∩ Fix Ψk. Finally, using Proposition 4.5.16, we can decide

whether this intersection is finitely generated or not and, in the affirmative case, compute

a basis for it.

Corollary 4.5.19. One can algorithmically decide whether a given H 6fg G is auto-fixed

or not, and in case it is, compute a finite set of automorphisms Ψ1, . . . ,Ψk ∈ Aut(G) such

that H = Fix Ψ1 ∩ · · · ∩ Fix Ψk.

Proof. Given generators for H 6fg G, apply Theorem 4.5.18. If a-ClG(H) is not finitely

generated then conclude that H is not auto-fixed. Otherwise, we get a finite set of

automorphisms Ψ1, . . . ,Ψk ∈ Aut(G) such that a-ClG(H) = Fix Ψ1 ∩ · · · ∩ Fix Ψk, and

a basis for a-ClG(H) > H. Now H is auto-fixed if and only if this last inclusion is an

equality, which can be algorithmically checked by using a solution to the membership

problem in G; see [10, Prop. 1.11]; and in this case, Ψ1, . . . ,Ψk are the automorphisms

such that H = Fix Ψ1 ∩ · · · ∩ Fix Ψk.
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5Intersection and application to

cryptography

“Cryptography shifts the balance of power from

those with monopoly on violence to those who

comprehend mathematics and security design.”

— Jacob Appelbaum

We develop a secret-sharing scheme based on the fact that Zm × Fn does not sat-

isfy Howson property. In our scheme, the shares are k finitely generated subgroups

H1, . . . ,Hk 6 Zm × Fn such that every intersection of shares is not finitely generated,

except the total one
⋂k
i=1Hi which is taken as the secret. In the present chapter we claim

that for any integer k ≥ 3 we can always build such a family F = {H1, H2, . . . ,Hk}. As

any finite intersection (except the total one) of the shares is not finitely generated, in this

way we protect the scheme from any illegal coalition of players to extract any practical

additional information about the secret.

5.1 Algorithm to compute finite intersection of

subgroups of Zm × Fn

In [10] Delgado–Ventura gave an algorithm to decide if the intersection of two finitely

generated subgroups H1, H2 of Zm × Fn is again finitely generated or not and in the

affirmative case, the generators of H1∩H2 is computable; but for our scheme, we need to
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compute any finite (not only two) intersection of finitely generated subgroups of Zm×Fn

without computing the smaller ones.

Lemma 5.1.1. Let p1, . . . , pk ∈ Zm, and L1, . . . , Lk 6 Zm. Then,

k⋂
i=1

(pi + Li) 6= ∅ ⇔ (p2 − p1 | p3 − p2 | . . . | pk − pk−1) ∈ ImL (5.1)

where

L =



L1

−L2 L2

−L3 L3
. . . . . .

−Lk−2 Lk−1

−Lk


and for each i ∈ [1, k], Li is a di ×m integer matrix with row space Li.

Proof. It is enough to check that the following statements are equivalent:

(a)
⋂k
i=1(pi + Li) 6= ∅.

(b) ∃q ∈ Zm such that



q = p1 + l1, where l1 ∈ L1

q = p2 + l2, where l2 ∈ L2

· · ·

q = pk + lk, where lk ∈ Lk

(c) ∀i ∈ [1, k] ∃li ∈ Li such that



p2 − p1 = l1 − l2

p3 − p2 = l2 − l3

· · ·

pk − pk−1 = lk−1 − lk
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(d) ∀i ∈ [1, r] ∃ai ∈ Zdi such that



p2 − p1 = a1L1 − a2L2 = [a1 | a2]
[

L1
−L2

]
p3 − p2 = a2L2 − a3L3 = [a2 | a3]

[
L2
−L3

]
· · ·

pk − pk−1 = ak−1Lk−1 − akLk = [ak−1 | ak]
[
Lk−1
−Lk

]
(e) ∃a ∈ Z

∑k

i=1 di such that [p2 − p1 | p3 − p2 | . . . | pk − pk−1] = aL.

Theorem 5.1.2. Let H1, . . . ,Hk 6fg Zm × Fn, where k is finite and each Hi is given by a

finite set of generators. Then it is algorithmically decidable if
⋂k
i=1Hi is finitely generated or

not and in the affirmative case we can compute generators for
⋂k
i=1Hi.

Proof. Let each Hi = 〈tai1ui1, . . . , t
ainiuini , t

bi1 , . . . , t
bidi 〉 where {ui1, . . . , uini} is a free-basis

of Hiπ and {bi1, . . . , bidi} is an abelian-basis of Li = Hi ∩ Zm. An easy observation is

(H1 ∩ · · · ∩Hk)π E H1π ∩ · · ·Hkπ. So we can deduce that
⋂k
i=1Hi is finitely generated if

and only if the index of (H1 ∩ · · · ∩Hk)π is finite in H1π ∩ · · · ∩Hkπ. Let,

Ai =



ai1

ai2
...
...

aini


∈ Mni×m(Z), L =



L1

−L2 L2

−L3 L3
. . . . . .

−Lk−1 Lk−1

−Lk


where for each i ∈ [k], Li is a di ×m integer matrix with row space Hi ∩ Zm. Consider ρ

as the abelianization map of
⋂k
i=1Hiπ abelianizing

⋂k
i=1Hiπ onto Zq and P i is describing

the abelianization of the inclusion map ιi :
⋂k
i=1Hiπ −→ Hiπ, i.e., P i ∈ Mq×ni(Z)

(see Fig. 5.1). Let R = (P 2A2 − P 1A1 | · · · | P kAk − P k−1Ak−1) ∈ Mq×(k−1)m(Z) be a

concatenated matrix.
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H1π ∩ · · · ∩Hkπ Hiπ
� � ι //

Zq Zni

ρ

����

ρi

����

///

P i //

Zm

Ai

zz

Figure 5.1: Diagram of finite intersection

Now,

(H1 ∩ · · · ∩Hk)π =

= {w ∈
⋂k
i=1Hiπ | w has a common completion }

= {w ∈
⋂k
i=1Hiπ | (wρP 1A1 + L1) ∩ · · · ∩ (wρP kAk + Lk) 6= ∅}

= {w ∈
⋂k
i=1Hiπ | wρ(P 2A2 − P 1A1 | · · · | P kAk − P k−1Ak−1) ∈ ImL}

= {w ∈
⋂k
i=1Hiπ | wρR ∈ ImL}

= (ImL)R−1ρ−1.

As ρ is onto, using the above mentioned argument, we can reduce the algorithm which

decides if
⋂k
i=1Hi is finitely generated into just deciding the fact [Zq : (ImL)R−1] <∞.

Finally, let us assume
⋂k
i=1Hi is finitely generated, and let us compute a basis for

⋂k
i=1Hi.

We can compute a set {c1, . . . , cr} ⊂ Zq of coset representatives of (ImL)R−1 in Zq,

namely Zq = ((ImL)R−1) + c1 t · · · t ((ImL)R−1) + cr. By Stalling’s graph technique

having computed a free basis {v1, . . . , vq} for
⋂k
i=1Hiπ we can choose arbitrary preimages
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z1, . . . , zr of c1, . . . , cr up in H1π∩· · ·∩Hkπ, and we get a set of right coset representatives

of (H1 ∩ · · · ∩Hk)π = (ImL)R−1ρ−1 in H1π ∩ · · · ∩Hkπ:

k⋂
i=1

Hiπ = ((ImL)R−1ρ−1)z1 t · · · t ((ImL)R−1ρ−1)zr. (5.2)

Now, we build the Schreier graph for (ImL)R−1ρ−1 6
⋂k
i=1Hiπ with respect to

{v1, . . . , vq} in the following way:

1. take the cosets from (5.2) as vertices, and with no edge;

2. for every vertex ((ImL)R−1ρ−1)zi and every letter vj , add an edge labeled vj from

((ImL)R−1ρ−1)zi to ((ImL)R−1ρ−1)zivj , algorithmically identified among the

available vertices by repeatedly solving the membership problem for (ImL)R−1ρ−1

(note that we can easily do this by abelianizing the candidate and checking whether

it belongs to (ImL)R−1).

Once we have run over all i = 1, . . . , r and all j = 1, . . . , q, we have computed the

full Schreier graph, from which we can select a maximal tree and obtain a free-basis

{w1, . . . , ws} for (ImL)R−1ρ−1 = (H1 ∩ · · · ∩Hk)π. Finally, solving (compatible) linear

systems of equations, we obtain vectors d1, . . . , ds ∈ Zm such that td1w1, . . . , t
dsws ∈

H1∩· · ·∩Hk and
⋂k
i=1 Li = 〈ty1 , . . . tyl〉. We conclude that {td1w1, . . . , t

dsws, t
y1 , . . . , tyl}

is a basis for H1 ∩ · · · ∩Hk.

5.2 Secret sharing scheme

In our scheme the shares for the k players are going to be k finitely generated subgroups

H1, . . . ,Hk of Zm×Fn such that every finite intersection of shares is not finitely generated,

except for the total one
⋂k
i=1Hi, which is taken as the secret. This way we significantly

increase the difficulty for an illegal coalition of players to extract any practical additional
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information about the secret (since the intersection of their shares illegitimately shared is

not finitely generated so they can only hope to compute a finite truncation of it). In this

section we will prove our main theorem (5.2.2); in other words we want to prove that,

for any integer k, one can effectively built such a family of subgroups of Zm × Fn.

First we want to give overview of the notations which will be used repeatedly throughout

the proof of the theorem.

Notation: We have k players and 2k − 1 tokens to distribute among them. By convention,

[2k − 1] = {n ∈ N | 1 6 n 6 2k − 1}. As, there are k many players, we will do

the binary decomposition of each n ∈ [2k − 1] into k many positions; in other words

[2k − 1] = {n ∈ N | 1 6 n 6 2k − 1} = {nk . . . ni . . . n1 | ni ∈ {0, 1}} \ {0, . . . , 0}. For

i ∈ [k], we denote Si = {n ∈ [2k − 1] | ni = 1}, where ni is the i-th position of the binary

decomposition of n. And we denote, SN =
⋂
i∈N Si for N ⊆ [k].

Observation 5.2.1. These sets SN satisfy:

(i) #Si = 2k−1;

(ii) #S{i, j} = 2k−2; and so

(iii) N ⊆ [k], #SN = 2k−#N .

Theorem 5.2.2. For every k ≥ 3 we can always build a family F = {H1, H2, . . . ,Hk} of

finitely generated subgroups of Zm × Fn such that, for each nonempty subfamily S ⊆ F ,

⋂
i∈S

Hi is finitely generated⇔ #S ∈ {1, k}. (5.3)

Proof. We choose 2k − 1 freely independent elements {v1, . . . , v2k−1} ∈ Fn and use them

as tokens to distribute among players. And we will choose k × (2k − 1) many vectors

aij ∈ Zm, ∀i ∈ [k], j ∈ [2k − 1] with the following conditions:
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• for j = 2k − 1, and ∀i1, i2 ∈ [k],

ai1j = ai2j , (5.4)

• for j1, j2 6= 2k − 1, and ∀i1, i2 ∈ [k],

ai1j1 = ai2j2 ⇔ i1 = i2 and j1 = j2. (5.5)

Choosing the vectors aij , with the above mentioned conditions, the k shares are defined

as follows:

H1 = 〈ta
1
j vj | j ∈ S1〉

...

Hi = 〈ta
i
jvj | j ∈ Si〉

...

Hk = 〈ta
k
j vj | j ∈ Sk〉.

Note that, some of the chosen vectors do not show up and are never used. Note also

that, for every i ∈ [k], Li = {0}. From the construction and considering the fact that

v1, . . . , v2k−1 are freely independent, it is easy to observe that HNπ =
⋂
i∈N Hiπ =

〈vj | j ∈ SN 〉. We define the matrix Ai in the following way:

Ai =



ai1

ai2
...
...

ai2k−1


∈ M(2k−1)×m(Z),

and let Ai↓ be the matrix Ai after deleting all rows corresponding to indices j not in Si;

in other words, Ai is a linear mapping Ai : Z2k−1 → Zm while Ai↓ is its restriction to the

subspace generated by coordinates in Si, say Ai↓ : Z2k−1 → Zm.
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Let N = {i1, i2, . . . , i`} be a set of two or more indices, with i1 < i2 < · · · < i` and

2 6 ` 6 k. We have to prove that HN is finitely generated if and only if #N = ` = k. In

fact, choose i ∈ {i1, . . . , i`} and consider the diagram

Hi1π ∩ · · · ∩Hi`π Hiπ
� � ι //

Z2k−` Z2k−1

ρ

����

ρi

����

///

PN→i //

Zm

Ai↓

zz

(5.6)

where PN→i is describing the abelianization of the inclusion map and so PN→i ∈

M(2k−`)×(2k−1)(Z). As vj ’s are freely independent for all j ∈ [2k − 1] and v2k−1 ∈ Hiπ

for all i ∈ [k], the matrix PN→i contains only 0 and 1 as entries. Also note that every

row of the matrix PN→i has one and only one 1 and the last row of the matrix PN→i is

(0, . . . , 0, 1). Now we have two cases,

1. ` < k;

2. ` = k.

If we consider the first case,

RN = (PN→2A
2 ↓ − PN→1A

1 ↓ | · · · | PN→lA` ↓ − PN→(`−1)A
`−1 ↓), (5.7)

i.e., RN ∈ M2k−`×(`−1)m(Z) is the concatenated matrix, corresponding to the linear map

RN : Z2(k−`) → Z(`−1)m and

(
⋂
i∈N

Hi)π = ({0}RN−1)ρ−1 = (KerRN )ρ−1. (5.8)
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From assumptions (5.5) about the vectors aij ∈ Zm, i ∈ [k] and j ∈ [2k − 2] and from the

construction of the matrices PN→i, it is clear that at least one row of the matrix RN is

non-zero, i.e., r(ImRN ) > 1 so, r(KerRN ) 6 2(k−`) − 1 hence [Z2k−` : (KerRN )] = ∞.

As ρ is onto, [
⋂
i∈N Hiπ : (KerRN )ρ−1] = [

⋂
i∈N Hiπ : (

⋂
i∈N Hi)π] = ∞ which in

turn implies that (
⋂
i∈N Hi)π is not finitely generated as (

⋂
i∈N Hi)π E

⋂
i∈N Hiπ 6 Fn.

Hence,
⋂
i∈N Hi is not finitely generated when #N = ` < k.

If we consider the second case, all the matrices PN→i have a single row; more concretely

PN→i = (0, . . . , 0, 1) ∈ M1×2k−1(Z). From the construction of the H ′is and condition (5.4)

of the vectors aij , we will have,

RN = (a2
2k−1 − a

1
2k−1 | · · · | a

k
2k−1 − a

k−1
2k−1) = (0 | · · · | 0) = 0

Thus we have KerRN = (
⋂
i∈N Hiπ)ρ and again using the fact that ρ is onto,

⋂
i∈N Hiπ =

(
⋂
i∈N Hi)π. With our assumption that all Hiπs are finitely generated and the Howson

property of the subgroups of Fn, we have
⋂
i∈N Hiπ is finitely generated when #N =

` = k. In fact, in this case, (
⋂
i∈N Hi)π = 〈v2k−1〉. Hence, we come to the conclusion that⋂

i∈N Hi is finitely generated when #N = k.

Remark 5.2.3. The obvious two disadvantages of this secret sharing scheme as it is

written are:

(1) the secret is cyclic,

(2) the secret is the very last element of the generating set of every group Hi.

To overcome the first disadvantage we will consider another one or finitely many free

words w1, . . . , wp ∈ Fn, such that the whole set of elements {v1, . . . , v2k−1, w1, . . . , wp} is

freely independent. Then, add tb`w` for ` = 1, . . . , p to the set of generators for each Hi

and the secret will be
⋂k
i=1Hi = 〈ta2k−1v2k−1, t

b1w1, . . . , t
bpwp〉.
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To overcome the second disadvantage, we can consider k different automorphisms, Ψi ∈

Aut(Hi), for each i ∈ [k]. HiΨ = 〈(ta
i
jvj)Ψi | j ∈ Si〉 and as the Ψi’s are automorphisms,

it is obvious that 〈(ta
i
jvj)Ψi | j ∈ Si〉 = 〈ta

i
jvj | j ∈ Si〉. This way the k shares remain the

same, H1Ψ1 = H1, . . . ,HkΨk = Hk, but the secret is no longer visible as the last positions

of the generators given to each player; instead, it is hidden as a subgroup of each Hi.

5.2 Secret sharing scheme 124



6Future work

This final chapter is intended to summarize and discuss briefly some possible contin-

uations, extensions, and possible future applications arising from the work which is

comprehended in this dissertation.

6.1 Rationality, computability of diFn and diG vs. di′G

The supremum in the definition of degree of compression is always a maximum, since the

numerator has a fixed value and the denominator takes only natural values. Although

we do not have any particular example, the supremum in the definition of degree of

inertia could (in principle) not be attained at any particular subgroup K. In this sense,

the following is an intriguing question for which, at the time of writing, we have no idea

how to answer. I would like to investigate more in this direction in the future, either in

the free group or in any other context:

Project 6.1.1. To answer the question: is there a (finitely generated) group G and a

subgroup H 6fg G such that diG(H) is irrational? Or such that the supremum in diG(H)

is not a maximum? What about the free group G = Fn ?

For free groups, we also do not know if the supremum in the definition of diFn is an

actual maximum or not; in fact, we were not able to compute diFn . In this aspect, it is

worth to mention that S. Ivanov [20] already considered and studied the strengthened

version of this notion of degree of inertia for free groups. He defined the Walter Neumann

coefficient of H 6fg Fn as σ(H) := supK6fgFn{r̃(H,K)/ r̃(H) r̃(K)}, where r̃(H,K) =∑
s∈H\Fn/K r̃(H ∩Ks) (understanding 0/0 = 1). In other words, σ(H) is the smallest
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possible constant α ∈ R such that r̃(H,K) 6 α r̃(H) r̃(K), for every K 6fg Fn. Using

linear programming techniques, Ivanov was able to prove the following remarkable

result:

Theorem 6.1.2 (Ivanov, [20]). For any finitely generated free group Fn, the function σ is

computable and the supremum is a maximum; more precisely, there is an algorithm which,

on input h1, . . . , hr ∈ Fn, it computes the value of σ(〈h1, . . . , hr〉) and outputs a free basis

of a subgroup K 6fg Fn where that supremum is attained.

Ivanov’s proof is involved and technical. And a crucial point is that his arguments are

global about the entire pullback, even if it is disconnected; this is why he gets his result

Walter Neumann coefficient, the disconnected analog of our degree of inertia. As Ivanov

himself recognizes in his paper, it seems hard to adapt this arguments to the connected

component containing the basepoint and get information about the degree of inertia.

Although they look quite similar goals, we also have been unable to adapt Ivanov’s

arguments to answer any of the following problems which, as far as we know, remain

open. They can also be considered as suitable projects for the near future:

Project 6.1.3. To compute the function diFn . And to answer: Is that supremum always

a maximum? is there and algorithm which, on input h1, . . . , hr ∈ Fn, it computes the

value of diFn(〈h1, . . . , hr〉)? or even more, it outputs a free basis of a subgroup K 6fg Fn

where it is attained?

As we discussed before, an arbitrary group G may not be Howson and in that case we are

interested only in finitary inert subroups of G. But we do not know if there really exists a

group G which posses a finitely generated finitary inert subgroup H such that H is not

inert. Hence the following problem is open, as far as we know:

Project 6.1.4. To prove or disprove the existence of a (finitely generated) group G with

a subgroup H 6fg G being finitary inert but not inert (i.e., satisfying r̃(H ∩K) 6 r̃(K)
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for every K 6fg G with H ∩K 6fg G, but simultaneously admitting some K0 6fg G

with r̃(H ∩K0) =∞).

Restricting our attention to free-abelian times free groups, and going down to more

technical questions, there is a natural continuation of the work done in Chapter 3: in

Theorem 3.4.2(iii) we proved that, for any subgroup H 6 Zm × Fn with r(Hπ) > 2 and

[Zm : H ∩ Zm] = ` <∞, we have that diG(H) 6 `diFn(Hπ). We conjecture that this is,

in reality, an equality. We did not succeed proving completely the other inequality, but

our effort was partially successful in the sense that we could prove Theorem 3.5.14: the

equality holds under a couple of extra assumptions on the subgroups K intersecting the

given H. Formally, we introduced these conditions into the definition of degree of inertia,

getting this way the so-called restricted degree of inertia, where the supremum is restricted

to those subgroups K satisfying that Hπ ∩ Kπ is not contained in the commutator

[Fn, Fn] and has infinite index in Hπ; and with this restricted definition, we proved that

di′G(H) = `di′Fn(Hπ). In pages 74 and 75 we gave an intuitive idea about a possible way

to sort out the use of these technical conditions and get the equality in full. At the time of

writing this did not crystallized into a solid argument yet, but we hope it can be done in

the near future (probably, developing several other technical Lemmas and Proposition

like 3.5.3, 3.5.4 and 3.5.8). This is a reasonable plan to follow in the immediate future:

Project 6.1.5. To proof that, for any finitely generated subgroup H of G = Zm × Fn,

diG(H) = di′G(H). Or, at least, to show that, for any H 6 Zm × Fn with r(Hπ) > 2 and

[Zm : H ∩ Zm] = ` <∞, the equality diG(H) = `diFn(Hπ) holds.

6.2 Computability of endo-fixed closures

Before discussing about the endo-fixed closure of a finitely generated subgroup H in

Zm × Fn, we want to emphasize that we did not succeed in the task of constructing an

example of a finitely generated subgroup H 6fg G = Zm × Fn such that a-ClG(H) is
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not finitely generated; it could be that such examples do not exist so the following is an

interesting open problem:

Project 6.2.1. To decide if for everyH 6fg G = Zm×Fn, the auto-fixed closure a-ClG(H)

is again finitely generated or not. What about the endo-fixed closure e-ClG(H) ?

The versions of Theorem 4.5.18 and Corollary 4.5.19 for endomorphisms seem to be

much more tricky and remain open: their versions for the free group, contained in

Theorem 4.5.8 and Corollary 4.5.9, are already much more complicated because the

monoid EndFn(H) is not necessarily finitely generated (even with H being so) and also

because computability of fixed subgroups is not known for endomorphisms. In the free

context these two obstacles were overcome using algebraic extensions and the Takahasi

theorem, where the finiteness of the set of algebraic extensions of a finitely generated

subgroup plays a crucial role. We got a first version of Takahasi’s theorem in the context of

free-abelian times free groups (see Theorem 4.2.5), but relaxing that finiteness condition

to an infinity of subgroups following finitely many patterns, with vectorial parameters.

This is by the moment not enough to translate here the arguments from free group

endo-closures, but constitutes a first building block to do so in the future: if we manage

to work with this parametric finiteness there is hope to extend the known results about

endo-closures from the free to the free-abelian times free context.

Project 6.2.2. To answer: Let G = Zm × Fn. Is there an algorithm which, given a finite

set of generators for a subgroup H 6fg G, decides whether

(i) the monoid EndH(G) is finitely generated or not and, in case it is, computes a set

of endomorphisms Ψ1, . . . ,Ψk ∈ End(G) such that EndH(G) = 〈Ψ1, . . . ,Ψk〉 ?

(ii) e-ClG(H) is finitely generated or not and, in case it is, computes a basis for it ?

(iii) H is endo-fixed or not ?
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6.3 Takahasi theorem for Zm × Fn and its possible

applications

One of the particular interests to our discussion is the result given by Takahasi [39] in 1951

for free groups. The original proof, due to M. Takahasi was combinatorial, using words

and their lengths with respect to different sets of generators. And the more geometrical

proof was done later independently by Kapovich–Miasnikov in [22], by Ventura in [41],

and by Margolis–Sapir–Weil in [24], with a later unification by Miasnikov–Ventura–Weil

in [31]. Takahasi theorem is an important tool in free groups as there has been several

research works where it played a crucial role in proving of them. Here are some of these

applications:

• Computation of the endo- fixed closure of a subgroup H 6fg Fn, namely,

e-ClG(H) =
⋂

ϕ ∈ End(Fn)

H 6 Fix(ϕ)

Fix(ϕ)

This was done by E. Ventura in [42] where, additionally, an algorithm is given to

decide if a given subgroup is the fixed subgroup of a finite family of endos (or autos)

or not, and in the affirmative case, computing such a family of endos (or autos).

• A. Martino and E. Ventura [26] also proved that, for every autos (or endos) f, g

there is another one being a word on them, say h = w(f, g), such that Fix(f)∩Fix(g)

is a free factor of Fix(h). And in the same paper [26] the authors conjectured that

the family of fixed subgroups is closed by intersections (i.e., one can always avoid

the free complement). In other words, is Fix(f)∩Fix(g) always equal to Fix(h) for

some h? This is still an open problem even in free groups.
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• Computation of pro-V closures (like pro-p, pro-solvable, pro-nilpotent, etc) of

finitely generated subgroups of a free group Fn. Consider a variety V of finite

groups, i.e., a family of finite groups closed under taking subgroups, quotients, and

direct products). Given such a variety V and an arbitrary group G, one can put the

pro-V topology in G defined (metrically) in the following way: given two elements

g, g′ ∈ G define the distance between them as d(g, g′) = 2−v(g,g′), where v(g, g′)

is the smallest cardinal of a group H ∈ V for which there is a homomorphism

ϕ : G → H separating g and g′, i.e., such that gϕ 6= g′ϕ (take d(g, g′) = 0 if

v(g, g′) =∞ meaning that there is no such finite group H ∈ V). This is a pseudo-

metric in G which induces a topology called the pro-V topology (in case the group

G is residually-V it is then a real metric and the topology becomes Hausdorff).

Typical examples are the pro-finite topology (take V to be all finite groups), the

pro-p topology (take V to be all finite p-groups), the pro-nilpotent topology (take V

to be all finite nilpotent groups), the pro-solvable topology (take V to be all finite

solvable groups), etc.

Let us particularize the situation to the free group, G = Fn. In [24], Margolis–Sapir–

Weil proved among other results that, when the variety V is extension-closed (i.e.,

for any short exact sequence 1 → A → B → C → 1 of finite groups, if A,C ∈ V

then B ∈ V) then free factors of closed subgroups of Fn are again closed subgroups.

This automatically connects with Takahasi theorem because it implies that, for

any subgroup H 6fg Fn, its pro-V closure H must be one of the finitely many

algebraic extensions of H, H ∈ AE(H). Using this idea the authors of [24] gave

algorithms to compute the pro-finite, pro-p, and pro-nilpotent closures of finitely

generated subgroups of Fn (the computation of the pro-solvable closure is still an

open problem).
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As mentioned above, we adapted appropriately the notions of “free factor” and “algebraic

extension” from free groups to Zm × Fn, and we gave a version of Takahasi’s theorem

for free-abelian times free groups in Theorem 4.2.5, paying the price that the finiteness

of algebraic extensions in the classical context gets replaced here with a parametric

finiteness (finiteness modulo finitely many vectorial parameters). This is yet not enough,

but a first step towards the generalization of the above applications of Takahasi theorem

for free groups to the context of free-abelian times free groups:

Project 6.3.1. Is the family of fixed subgroups Zm × Fn in some sense closed under

intersections ? Maybe up to “factors”? Can such an intersection be not finitely generated?

(remind that Zm × Fn is not Howson and so, all questions related to intersections tend in

general to be more tricky).

Project 6.3.2. Consider the pro-V topology in Zm × Fn, given by an extension closed

variety V. Reprove here the fact that, in the extension closed case, “factors” of closed

subgroups are closed again, and then extend the algorithms for computing finite, p-, and

nilpotent closures, from the free group to Zm × Fn.

6.4 Finite presentation of AutH(A(Γ))

McCool’s Theorem 4.5.7 was a variation and an extension of a much earlier result: back in

the 1930’s, Whitehead already solved the orbit problem for conjugacy classes in the free

group: given two tuples of conjugacy classes V = ([v1], . . . , [vk]) and W = ([w1], . . . , [wk])

in Fn, one can algorithmically decide whether there is an automorphism φ ∈ Aut(Fn)

such that viφ ∼ wi, for every i = 1, . . . , k; see [23, Prop. 4.21] or [43]; this was based

on the so-called Whitehead automorphisms and the peak reduction technique. McCool’s

work 40 years later consisted of (1) deducing as a corollary that AutW (Fn) if finitely

presented and a finite presentation is computable from the given W ; and (2) extending

everything to real elements instead of conjugacy classes and so, getting a solution to the
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orbit problem for tuples of elements, and the finite presentability (and computability) for

stabilizers of subgroups, stated in Theorem 4.5.7.

Much more recently, a new version of these peak reduction techniques has been developed

by M. Day [9] for right-angled Artin groups, extending McCool result (1) above to this

bigger class of groups.

And in our Theorem 4.5.14 we generalized Day’s theorem from conjugacy classes to real

elements, in the case of Zm×Fn, a very particular subclass of right-angled Artin groups. A

natural project here is to try to export this generalization to all right-angled Artin groups.

We have to say that our arguments worked in Zm×Fn thanks to the very special fact that

all the commutativity of the group is concentrated in its center, a fact that is far from true

in general for arbitrary right-angled Artin groups. This makes us think that the general

situation could be much more complicated than just the free-abelian times free case.

Project 6.4.1. Extending Day’s theorem (see 4.5.12) to real elements instead of conjugacy

classes for any arbitrary right-angled Artin group A(Γ). Or at least for a less wild subclass

of such groups containing free-abelian times free groups, like for example Droms groups.

6.5 Semidirect products of the form Zm oA1,...,An Fn

Definition 6.5.1. Let A1, . . . , An ∈ GLm(Z) be n invertible integral m × m matrices

(acting on the right of vectors, Ai : Zm → Zm, a 7→ aAi), and consider the semidirect

product

G = Zm oA1,...,An Fn = 〈z1, . . . , zn, t1, . . . , tm | [ti, tj ] = 1, z−1
i tazi = taAi〉.

Of course, the particular case corresponding to the identity matrices, A1 = · · · = An = Id,

gives our standard free-abelian times free group, ZmoId,...,IdFn = Zm×Fn. Furthermore,
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the following are easy observations for these semidirect products, generalizing precisely

the same results for free-abelian times free groups:

Observation 6.5.2. We have the natural split short exact sequence

1→ Zm → Zm oA1,...,An Fn → Fn → 1,

and computable normal forms taw(~z) for the elements of Zm oA1,...,An Fn, where a ∈ Zm

and w ∈ Fn = F ({z1, . . . , zn}).

Proposition 6.5.3. For every subgroup H 6 G = Zm oA1,...,An Fn, the sub-short exact

sequence

1 → Zm → G
π→ Fn → 1

∨ ∨ ∨

1 → LH = H ∩ Zm → H
π→ Hπ → 1

also splits and so, H ' LH oA Hπ, where A is the restriction of the defining action

Fn → Aut(Zm) to A : Hπ → Aut(LH).

In particular, every H 6 ZmoA1,...,AnFn, n > 2, is again of the form H ' Zm′oA′1,...,A′n′ Fn′ ,

for some n′ ∈ N ∪ {∞} and m′ 6 m.

The first reasonable step in this family is to study the degree of compression. The

arguments involved in the study and computability of the degree of compression for a

subgroup of Zm × Fn are purely about the free group (Stallings graphs, fringe, algebraic

extensions, etc) or about linear algebra (PAQ-reduction of integral matrices, linear

systems of equations, manipulation of direct summands, etc). It seems reasonable to

think that these arguments will extend and work in a semidirect product Zm oA1,...,An Fn,

just with the matrices A1, . . . , An twisting the calculations and making the arguments

more involved. An interesting point here is the fact that, while the rank of Zm × Fn

(i.e., the minimal number of generators) is m + n, the rank of Zm oA1,...,An Fn could
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easily be less than this because of the effect of the action matrices. I do not see yet

a clear way to compute/understand ranks of (free-abelian)-by-free groups; maybe the

notion of degree of compression will have to be considered with respect to the invariant

dim(Zm oA1,...,An Fn) = m+ n instead of the usual rank. In whatever sense it needs to

be considered, the project here is the following:

Project 6.5.4. Find formulas and algorithms to compute the degree of compression of

finitely generated subgroups of Zm oA1,...,An Fn.

Other possibilities for future investigation are the search of a Takahasi theorem for

semidirect products (subject to finding a good enough notion of “factor”, which is not

clear at the moment, and needs more detailed thinking), and the study of particular

properties of fixed subgroups of automorphisms (subject to being able to obtain a more

or less explicit description of all automorphisms of Zm oA1,...,An Fn, similar to what we

have in the free-abelian times free case):

Project 6.5.5. Find a good enough notion of “factor” for subgroups of Zm oA1,...,An Fn

and prove a Takahasi-like theorem for this family of groups. Obtain similar applications

as those done for the free case (see above).

Project 6.5.6. Find a good enough description of the automorphisms of Zm oA1,...,An Fn

and, from it, analyze special properties of fixed point subgroups of automorphisms in this

family of groups (bounding the rank, compression, inertia, etc, following again the guide

of what happens in free groups).

About degree of inertia we are much more skeptical: our understanding of the degree

of inertia for subgroups of Zm × Fn strongly relies on the diagram (3.6), invented by

Delgado–Ventura in [10], to understand arbitrary intersections of finitely generated

subgroups. As far as we know, these arguments do not extend to semidirect products,

where the control of intersections seems to be much more involved, and unknown at the
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present time. Without a way of understanding intersections, it does not seem plausible to

try to understand the degree of inertia in semidirect products.

Delgado-Ventura [12] have built an adaptation of the Stallings’ automata theory to work

with subgroups of ZmoA1,...,AnFn; they are essentially classical Stallings graphs decorated

with vectors in a clever enough way to keep all the information of the subgroup in a

finite geometric object. It is very possible that this nice construction helps us in our goals

within this family of groups.

6.6 Direct products involving surface groups

Free-abelian times free groups are direct products of one (or non) free group Fn with

several copies of Z. Another possibility to extend our scope to a more general class

of groups is to allow several factors being free groups, and to allow other building

blocks apart from Fn and Z. Surface groups have similar properties to free groups, and

have interesting connections to them, so they seem good candidates to be new building

blocks.

Let us consider then as building blocks all surface groups, i.e., fundamental groups of

connected compact surfaces, both orientable and non orientable, and with and without

finitely many punctures (note that this already includes Z and all the free groups).

Definition 6.6.1. A surface group is the fundamental group, G = π1(X), of a connected

compact (possibly non-orientable) surface X. To fix the notation, we shall denote by Σg

the closed orientable surface of genus g > 0, and by

Sg = π1(Σg) = 〈a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg]〉
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its fundamental group (by convention, S0 = 〈 | 〉 stands for the trivial group, the fun-

damental group of the sphere Σ0). And for the non-orientable case, we shall denote by

NΣk the connected sum of k > 1 projective planes, and by

NSk = π(NΣk) = 〈a1, a2 . . . , ak, | a1
2 · · · ak2〉

its fundamental group. Note that, among surface groups, the only abelian ones are S0 = 1

(for the sphere), S1 = Z2 (for the torus), and NS1 = Z/2Z (for the projective plane).

It is well known that the Euler characteristic of an orientable surface is χ(Σg) = 2− 2g,

and of the non-orientable ones is χ(Σk) = 2− k. Hence, all surfaces have negative Euler

characteristic (these are said to be of hyperbolic type) except for the sphere Σ0, the torus

Σ1, the projective plain NΣ1, and the Klein bottle NΣ2, homeomorphic to the connected

sum of two projective plains (these exceptional ones are said to be of Euclidean type).

These surface groups have some interesting properties making them very similar to what

happens in free groups:

• Any subgroup H of a surface group G either has finite index in G or it is free; and

if H has index d in G, then it is again a surface group with χ(H) = d · χ(G).

• The fundamental group of a compact surface with punctures is free.

• For a surface group G with negative Euler characteristic, χ(G) < 0, its center is

trivial, Z(G) = 1, and the centralizer of any non-trivial element 1 6= g ∈ G is infinite

cyclic, CenG(g) ' Z.

Moreover, some results about automorphisms and endomorphisms for free groups (spe-

cially those concerning compression or inertia) will work in a similar way for surface

groups with negative Euler characteristic; S0, S1, NS1, and NS2 will usually present spe-

cial and exceptional behaviour (in part, due to the structure of the center and centralizers
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in these cases). In this direction the first results were given by Jiang-Wang-Zhang [21] in

2011.

Theorem 6.6.2 (Jiang-Wang-Zhang, [21]). Let G be a surface group with χ(G) < 0. Then

r(Fix(φ)) 6 r(G), ∀φ ∈ End(G).

And this result was later extended to the following results:

Theorem 6.6.3 (Wu-Zhang, [45]). Let G be a surface group with χ(G) < 0, and B ⊆

End(G). Then,

(i) r(FixB) 6 r(G), with equality if and only if B = {id};

(ii) r(FixB) 6 1
2 r(G), if B contains a non-epimorphic endomorphism;

(iii) if B ⊆ Aut(G), then FixB is inert in G.

And then, recent results are also given in the inertia direction:

Theorem 6.6.4 (Zhang–Ventura–Wu, [46]). (i) Let Fn be a finitely generated free

group, let B ⊂ End(Fn) and let β0 ∈ 〈B〉 6 End(Fn) be with r(β0(Fn)) mini-

mal. Then, Fix(B) is inert in β0(Fn). Moreover, if β0(Fn) is inert in Fn then Fix(B)

is inert in Fn.

(ii) Let G be a surface group, let B ⊆ End(G) be an arbitrary family of endomorphisms,

let 〈B〉 6 End(G) be the submonoid generated by B, and let β0 ∈ 〈B〉 6 End(G) with

image of minimal rank. Then, for every subgroup K 6 G such that β0(K)∩Fix(B) 6

K, we have that r(K ∩ Fix(B)) 6 r(K).

In the paper [46], Zhang–Ventura–Wu introduced the family of groups P consisting in

direct products of finitely many surface groups in this broad sense, i.e., groups of the

form G = G1 ×G2 × · · · ×Gn, where n > 1 and each Gi is either Z, or Fn with n > 2, or

Sg with g > 2, or NSk with k > 1. Such a group G was called of hyperbolic type if all its
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factors are hyperbolic, of Euclidean type if all its factors are Euclidean, and of mixed type

otherwise.

Zhang–Ventura–Wu already studied automorphism ϕ of such a group G = G1 × G2 ×

· · · × Gn ∈ P of hyperbolic type and proved it is always equal to the direct product

of automorphisms of each component, ϕ = ϕ1,× · · · × ϕn, ϕi ∈ Aut(Gi), just modulo

permutations of the possibly repeated factors (Gi = Gj), if any; see Proposition 4.4

from [46] for the exact statement. This result allowed them to connect properties of

the automorphisms of G with the corresponding properties about automorphisms of the

factors Gi’s. In this sense, [46] contains the following nice characterization:

Theorem 6.6.5 (Zhang–Ventura–Wu, [46]). Let G = G1 × G2 × · · · × Gn ∈ P. Then,

r(Fix(ϕ)) 6 r(G) for every ϕ ∈ Aut(G), if and only if G is either of hyperbolic or of

Euclidean type.

In fact, in the case of mixed type, and copying the idea from Z × F2, one can easily

construct an automorphism ϕ ∈ Aut(G) whose fixed subgroup is even not finitely

generated. Additionally, [46] also contains partial results in the direction of characterizing

which G ∈ P satisfy that Fix(ϕ) is compressed, or Fix(ϕ) is inert, for every ϕ ∈ Aut(G).

Would be nice to complete this characterization in the spirit of the above theorem:

Project 6.6.6. Give an explicit characterization of those G ∈ P which satisfy: (i) Fix(ϕ)

is compressed for every ϕ ∈ Aut(G); or (ii) Fix(ϕ) is inert for every ϕ ∈ Aut(G). Study

the similar questions about endomorphisms.

Finally, going into the direction of the degrees of compression/inertia, an interesting

project would be to study the degree of compression of subgroups in this family of

groups; for similar reasons as those given in the case of semidirect products, the study

of the degree of inertia seems to be much more tricky and out of reach, at least before

understanding intersections in this more general class of groups:
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Project 6.6.7. Find formulas and algorithms to compute the degree of compression of

finitely generated subgroups of a group G in P (maybe under technical restrictions, if

necessary, on the subgroup and/or on the factors of G).
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