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because G/Z(G) cannot be cyclic and so, |[Z(G)| < |G|/4. O

Observation
The quaternion group has dc(Q) = 5/8.

“There is no live between 5/8 and 1"

Is there a version of dc for infinite groups ?
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e [0,1],

where Bx(n) = {g € G| |9|x < n}.

Is this a real lim ? Does it depend on X ?

About limsup we have no idea:
@ No example where lim doesn't exist;
@ No proof it is always a real limit.
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Definition
A fg. group G = (X) is of

[Bx(n+1)| _ 1:
Bx(m| —

@ polynomial growth if Cn® < [Bx(n)| < Dn°.

@ subexponential growth iflim,_ .

Definition
Let G = (X). Amap f: G — N is an estimation of the X-metric if 3
K > 0 such thatVw € G

%f(w) < |wlx < Kf(w).

Example

It is well known that, for G = (X) = (Y), | - |x is an estimation of the
Y -metric, and | - |y is an estimation of the X-metric.
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Corollary

If G = (X) = (Y) is of polynomial growth, then

dex(G) =0 <= dcy(G)=0.
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Proposition

Let (Y) = H <y G = (X) be of polynomial growth. Then,
dex(G) > grpdev(H).

| A

Proposition (Gallagher, 1970)

Let G be a finite group and H < G. Then, dc(G) < dc(H) - dc(G/H).

Let(Y) = H < G = (X) be of polynomial growth. Then, dcx(G) > 0
if and only if dey(H) > 0.
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(l]Bx(n)%XB(xl?zln) NH| )2 - dex (G, n) < dex(Q, n) - dex(H, 2n).

Finally, taking limits, we get

A-dex(G) < deg(Q) - dex(H). O
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which is > 0 for all G, X and H as above. [J
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Proof. Assume G is not abelian and dcx(G) > 0 and let us find a
contradiction.

@ We have a uniform \ > 0 s.t., for every H <;; G,

X dex(G) < deg(G/H) - dex(H).

@ Choose ns.t. A dex(G) - (2)" > 1.
@ Take {p1,...,pn} be n pairwise different primes.
@ By Grumbergs’ classical result, G is residually-p;.

@ Hence, G has a non-abelian, finite p;-quotient w;: G — Qj; in
particular, dc(Q;) < 3.
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@ Now, the morphism x_,mj: G — Qi x --- x Qp is onto (because
9cd(py, P1 -+ Pj-1Pj41 -+ Pn) = 1).
@ Take H = ker x]_ m; <y; G; we have,

X+ dex(G) < dex(H) - deg(Qy x -+ x Q) < dex(H) - (2)"-

@ Hence,
1<\ dex(G) - (g)” < dex(H),

a contradiction. 0O
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A Gromov-like theorem

Let G be a polynomially growing group. Then,

G is virtually abelian <= dcx(G) > 0 for some (and hence all) X.

Proof. (=) Ok.

(<)

By Gromov result, 3 a nilpotent H <¢; G.
So, 3 a t.f. nilpotent K <¢; H <;; G.

By hypotesis, dcx(G) > 0.

Hence, dcy(K) > 0 for every (Y) = K.
Then, K is abelian.

So, G is virtually abelian. O
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A conjecture

Every f.g. group G with super-polinomial growth has dcx(G) = 0 for
every X.

For any f.g. group G = (X),

dex(G) >0 <« G is virtually abelian.
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Other results

Let G be non-elementary hyperbolic. Then dcx(G) = 0 for every X.

Let G = (X) be a f.g. residually finite group with sub-exponential
growth. If dex(G) > 5/8 for some X the G is abelian.




THANKS



	Motivation
	Main definition
	Finite index subgroups
	Short exact sequences
	A Gromov-like theorem
	Other results

