Whitehead minimization in polynomial time

Enric Ventura

Departament de Matemàtica Aplicada III

Universitat Politècnica de Catalunya

Technion, Haifa

Nov. 30th, 2009.

Outline

- The classical Whitehead algorithm
- Let's do it in polynomial time
- The bijection between subgroups and automata
- Whitehead minimization for subgroups
- An application

Outline

- The classical Whitehead algorithm
- Let's do it in polynomial time
- The bijection between subgroups and automata
- Whitehead minimization for subgroups
- 6 An application

- $A = \{a_1, \dots, a_k\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_k, a_k^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^*/\sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.
- $\|\cdot\|$ denotes the (shortest) length in the conjugacy class (i.e. cyclically): $\|abbb^{-1}a^{-1}\|=1$.

- $A = \{a_1, \dots, a_k\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_k, a_k^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.
- $\|\cdot\|$ denotes the (shortest) length in the conjugacy class (i.e. cyclically): $\|abbb^{-1}a^{-1}\|=1$.

- $A = \{a_1, \dots, a_k\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_k, a_k^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.
- $\|\cdot\|$ denotes the (shortest) length in the conjugacy class (i.e. cyclically): $\|abbb^{-1}a^{-1}\|=1$.

- $A = \{a_1, \dots, a_k\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_k, a_k^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^*/\sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.
- $\|\cdot\|$ denotes the (shortest) length in the conjugacy class (i.e. cyclically): $\|abbb^{-1}a^{-1}\|=1$.

- $A = \{a_1, \dots, a_k\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_k, a_k^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.
- $\|\cdot\|$ denotes the (shortest) length in the conjugacy class (i.e. cyclically): $\|abbb^{-1}a^{-1}\|=1$.

- $A = \{a_1, \dots, a_k\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_k, a_k^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.
- $\|\cdot\|$ denotes the (shortest) length in the conjugacy class (i.e. cyclically): $\|abbb^{-1}a^{-1}\|=1$.

- $A = \{a_1, \dots, a_k\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_k, a_k^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.
- $\|\cdot\|$ denotes the (shortest) length in the conjugacy class (i.e. cyclically): $\|abbb^{-1}a^{-1}\|=1$.

- $A = \{a_1, \dots, a_k\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_k, a_k^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.
- $\|\cdot\|$ denotes the (shortest) length in the conjugacy class (i.e. cyclically): $\|abbb^{-1}a^{-1}\|=1$.

Whitehead Problem

For a group G, find an algorithm s.t. given $u, v \in G$ decides whether there exists $\varphi \in Aut(G)$ such that $\varphi(u) = v$.

Theorem (Whitehead, 30's)

Whitehead problem is solvable in F_A .

"Proof":

First part: reduce ||u|| and ||v|| as much as possible by applying autos:

$$U \rightarrow U_1 \rightarrow U_2 \rightarrow \cdots \rightarrow U'$$

$$V \rightarrow V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V'.$$

Whitehead Problem

For a group G, find an algorithm s.t. given $u, v \in G$ decides whether there exists $\varphi \in Aut(G)$ such that $\varphi(u) = v$.

Theorem (Whitehead, 30's)

Whitehead problem is solvable in F_A .

"Proof":

First part: reduce ||u|| and ||v|| as much as possible by applying autos:

$$U \rightarrow U_1 \rightarrow U_2 \rightarrow \cdots \rightarrow U'$$

$$V \rightarrow V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V'$$
.

Whitehead Problem

For a group G, find an algorithm s.t. given $u, v \in G$ decides whether there exists $\varphi \in Aut(G)$ such that $\varphi(u) = v$.

Theorem (Whitehead, 30's)

Whitehead problem is solvable in F_A .

"Proof":

First part: reduce ||u|| and ||v|| as much as possible by applying autos:

$$u \rightarrow u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u'$$
,

$$v o v_1 o v_2 o \cdots o v'.$$

Whitehead Problem

For a group G, find an algorithm s.t. given $u, v \in G$ decides whether there exists $\varphi \in Aut(G)$ such that $\varphi(u) = v$.

Theorem (Whitehead, 30's)

Whitehead problem is solvable in F_A .

"Proof":

First part: reduce ||u|| and ||v|| as much as possible by applying autos:

$$u \rightarrow u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u'$$
,

$$v o v_1 o v_2 o \cdots o v'.$$

Whitehead minimization problem

Let us concentrate in the first part:

Whitehead Minimization Problem (WMP)

Given $u \in F_A$, find $\varphi \in Aut(F_A)$ such that $\|\varphi(u)\|$ is minimal.

Lemma (Whitehead)

Let $u \in F_A$. If $\exists \varphi \in Aut(F_A)$ such that $\|\varphi(u)\| < \|u\|$ then \exists a "Whitehead automorphism" α such that $\|\alpha(u)\| < \|u\|$.

Definition

Whitehead automorphisms are those of the form:

$$egin{array}{ccccc} F_A &
ightarrow & F_A \ a_i & \mapsto & a_i \ a_i
eq a_i & \mapsto & a_i^{\epsilon_j} a_i \, a_i^{\delta_j} \end{array}$$

where $\epsilon_j = 0, -1$ and $\delta_j = 0, 1$ (there are $\sim k \cdot 4^k$ many, where k = |A|).

Whitehead minimization problem

Let us concentrate in the first part:

Whitehead Minimization Problem (WMP)

Given $u \in F_A$, find $\varphi \in Aut(F_A)$ such that $\|\varphi(u)\|$ is minimal.

Lemma (Whitehead)

Let $u \in F_A$. If $\exists \varphi \in Aut(F_A)$ such that $\|\varphi(u)\| < \|u\|$ then \exists a "Whitehead automorphism" α such that $\|\alpha(u)\| < \|u\|$.

Definition

Whitehead automorphisms are those of the form:

$$egin{array}{cccc} F_A & o & F_A \ a_i & \mapsto & a_i & (ext{the multiplier}, \ a_i
eq a_i & \mapsto & a_i^{\epsilon_j} a_i \, a_i^{\delta_j} \end{array}$$

where $\epsilon_j = 0, -1$ and $\delta_j = 0, 1$ (there are $\sim k \cdot 4^k$ many, where k = |A|).

Whitehead minimization problem

Let us concentrate in the first part:

Whitehead Minimization Problem (WMP)

Given $u \in F_A$, find $\varphi \in Aut(F_A)$ such that $\|\varphi(u)\|$ is minimal.

Lemma (Whitehead)

Let $u \in F_A$. If $\exists \varphi \in Aut(F_A)$ such that $\|\varphi(u)\| < \|u\|$ then \exists a "Whitehead automorphism" α such that $\|\alpha(u)\| < \|u\|$.

Definition

Whitehead automorphisms are those of the form:

$$egin{array}{lll} F_A &
ightarrow & F_A \ a_i & \mapsto & a_i \ a_i
eq a_j & \mapsto & a_i^{\epsilon_j} a_j \ a_i^{\delta_j} \end{array}$$
 (the multiplier)

where $\epsilon_i = 0, -1$ and $\delta_i = 0, 1$ (there are $\sim k \cdot 4^k$ many, where k = |A|).

Classical whitehead algorithm is:

- Keep applying whitehead automorphisms to given u until finding one that decreases its cyclic length.
- Repeat until all whiteheads are non-decreasing.

This is polynomial on ||u||, but exponential on the ambient rank, k.

Classical whitehead algorithm is:

- Keep applying whitehead automorphisms to given u until finding one that decreases its cyclic length.
- Repeat until all whiteheads are non-decreasing.

This is polynomial on ||u||, but exponential on the ambient rank, k.

Classical whitehead algorithm is:

- Keep applying whitehead automorphisms to given u until finding one that decreases its cyclic length.
- Repeat until all whiteheads are non-decreasing.

This is polynomial on ||u||, but exponential on the ambient rank, k.

Classical whitehead algorithm is:

- Keep applying whitehead automorphisms to given u until finding one that decreases its cyclic length.
- Repeat until all whiteheads are non-decreasing.

This is polynomial on ||u||, but exponential on the ambient rank, k.

Outline

- The classical Whitehead algorithm
- Let's do it in polynomial time
- The bijection between subgroups and automata
- Whitehead minimization for subgroups
- 6 An application

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

main idea: given $u \in F_k$, we find in polynomial time one of the whiteheads that decreases ||u|| the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u?

- 1) Codify *u* as its Whitehead's graph (classic in Group Theory),
- 2) Codify α as a cut in this graph (\approx classic in Group Theory),
- 3) Use max-flow min-cut algorithm (classic in Computer Science),
- 4) ... put together and mix (new!).

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

main idea: given $u \in F_k$, we find in polynomial time one of the whiteheads that decreases ||u|| the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u?

- Codify u as its Whitehead's graph (classic in Group Theory),
- 2) Codify α as a cut in this graph (\approx classic in Group Theory),
- 3) Use max-flow min-cut algorithm (classic in Computer Science).
- 4) ... put together and mix (new!).

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

main idea: given $u \in F_k$, we find in polynomial time one of the whiteheads that decreases ||u|| the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u?

- 1) Codify *u* as its Whitehead's graph (classic in Group Theory),
- 2) Codify α as a cut in this graph (\approx classic in Group Theory),
- 3) Use max-flow min-cut algorithm (classic in Computer Science)
- 4) ... put together and mix (new!).

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

main idea: given $u \in F_k$, we find in polynomial time one of the whiteheads that decreases ||u|| the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u?

- 1) Codify *u* as its Whitehead's graph (classic in Group Theory),
- 2) Codify α as a cut in this graph (\approx classic in Group Theory),
- 3) Use max-flow min-cut algorithm (classic in Computer Science),
- 4) ... put together and mix (new!).

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

main idea: given $u \in F_k$, we find in polynomial time one of the whiteheads that decreases ||u|| the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u?

- 1) Codify *u* as its Whitehead's graph (classic in Group Theory),
- 2) Codify α as a cut in this graph (\approx classic in Group Theory),
- 3) Use max-flow min-cut algorithm (classic in Computer Science).
- 4) ... put together and mix (new!).

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

main idea: given $u \in F_k$, we find in polynomial time one of the whiteheads that decreases ||u|| the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u?

- 1) Codify *u* as its Whitehead's graph (classic in Group Theory),
- 2) Codify α as a cut in this graph (\approx classic in Group Theory),
- 3) Use max-flow min-cut algorithm (classic in Computer Science),
- 4) ... put together and mix (new!).

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

main idea: given $u \in F_k$, we find in polynomial time one of the whiteheads that decreases ||u|| the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u?

- 1) Codify *u* as its Whitehead's graph (classic in Group Theory),
- 2) Codify α as a cut in this graph (\approx classic in Group Theory),
- 3) Use max-flow min-cut algorithm (classic in Computer Science),
- 4) ... put together and mix (new!).

Whitehead's graph

First ingredient: Whitehead's graph of a word.

Definition

Given $u \in F_k$ (cyclically reduced), its (unoriented) Whitehead graph, denoted Wh(u), is:

- vertices: $A^{\pm 1}$,
- edges: for every pair of (cycl.) consecutive letters $u = \cdots xy \cdots$ put an edge between x and y^{-1} .

Example

$$u = aba^{-1}c^{-1}bbabc^{-1}$$

Whitehead's graph

First ingredient: Whitehead's graph of a word.

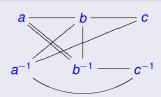
Definition

Given $u \in F_k$ (cyclically reduced), its (unoriented) Whitehead graph, denoted Wh(u), is:

- vertices: $A^{\pm 1}$,
- edges: for every pair of (cycl.) consecutive letters $u = \cdots xy \cdots$ put an edge between x and y^{-1} .

Example

$$u = aba^{-1}c^{-1}bbabc^{-1}$$
,



Cut in a graph

Second ingredient: Cut in a graph.

Definition

Given a Whitehead's automorphism α , we represent it as the (a, a^{-1}) -cut

 $(T = \{a\} \cup \{\text{letters that go multiplied on the right by } a\}, a)$

of the set $A^{\pm 1}$.

Example

$$lpha : \langle a, b, c \rangle = F_3 \rightarrow F_3$$
 a b c
 $a \mapsto ab$
 $b \mapsto b$
 $c \mapsto b^{-1}cb$ a^{-1}

Cut in a graph

Second ingredient: Cut in a graph.

Definition

Given a Whitehead's automorphism α , we represent it as the (a, a^{-1}) -cut

 $(T = \{a\} \cup \{\text{letters that go multiplied on the right by } a\}, a)$

of the set $A^{\pm 1}$.

Example

$$\alpha \colon \langle a, b, c \rangle = F_3 \quad \rightarrow \quad F_3$$

$$a \quad \mapsto \quad ab$$

$$b \quad \mapsto \quad b$$

$$c \quad \mapsto \quad b^{-1}cb$$

Rephrasement of Wh. Lemma

Lemma (Whitehead)

Given a word $u \in F_k$ and a Whitehead automorphism α , think α as a cut in Wh(u), say $\alpha = (T, a)$, and then

$$\|\alpha(u)\| - \|u\| = \operatorname{cap}(T) - \operatorname{deg}(a).$$

Proof: Analyzing combinatorial cases (see Lyndon-Schupp).

Rephrasement of Wh. Lemma

Lemma (Whitehead)

Given a word $u \in F_k$ and a Whitehead automorphism α , think α as a cut in Wh(u), say $\alpha = (T, a)$, and then

$$\|\alpha(u)\| - \|u\| = \operatorname{cap}(T) - \operatorname{deg}(a).$$

Proof: Analyzing combinatorial cases (see Lyndon-Schupp).

Example

Consider
$$u=aba^{-1}c^{-1}bbabc^{-1}$$
 and $\alpha\colon F_3\to F_3$ like before. We $a\mapsto ab$ $b\mapsto b$ $c\mapsto b^{-1}cb$

have $\alpha(u) = aba^{-1}b^{-1}c^{-1}bbbabc^{-1}b$. Furthermore,

and, in fact,

$$12 - 9 = \|\alpha(u)\| - \|u\| = \operatorname{cap}(T) - \operatorname{deg}(b) = 7 - 4.$$

Example

Consider
$$u=aba^{-1}c^{-1}bbabc^{-1}$$
 and $\alpha\colon F_3\to F_3$ like before. We
$$\begin{array}{ccc} a&\mapsto&ab\\ b&\mapsto&b\\ c&\mapsto&b^{-1}cb \end{array}$$

have $\alpha(u) = aba^{-1}b^{-1}c^{-1}bbbabc^{-1}b$. Furthermore,

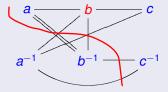
and, in fact,

$$|12-9| = ||\alpha(u)|| - ||u|| = \operatorname{cap}(T) - \operatorname{deg}(b) = 7 - 4.$$

Example

Consider
$$u=aba^{-1}c^{-1}bbabc^{-1}$$
 and $\alpha\colon F_3\to F_3$ like before. We
$$\begin{array}{ccc} a&\mapsto&ab\\ b&\mapsto&b\\ c&\mapsto&b^{-1}cb \end{array}$$

have $\alpha(u) = aba^{-1}b^{-1}c^{-1}bbbabc^{-1}b$. Furthermore,



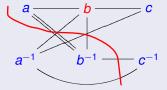
and, in fact,

 $12 - 9 = \|\alpha(u)\| - \|u\| = \operatorname{cap}(T) - \operatorname{deg}(b) = 7 - 4.$

Example

Consider
$$u=aba^{-1}c^{-1}bbabc^{-1}$$
 and $\alpha\colon F_3\to F_3$ like before. We
$$\begin{array}{ccc} a&\mapsto&ab\\ b&\mapsto&b\\ c&\mapsto&b^{-1}cb \end{array}$$

have $\alpha(u) = aba^{-1}b^{-1}c^{-1}bbbabc^{-1}b$. Furthermore,



and, in fact,

$$12 - 9 = \|\alpha(u)\| - \|u\| = \operatorname{cap}(T) - \operatorname{deg}(\mathbf{b}) = 7 - 4.$$

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead's Minimization Problem reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a^{-1}) -cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm ...

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead's Minimization Problem reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a^{-1}) -cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm ...

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead's Minimization Problem reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a^{-1}) -cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm ...

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead's Minimization Problem reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a^{-1}) -cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm ...

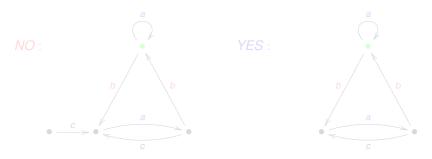
Outline

- The classical Whitehead algorithm
- Let's do it in polynomial time
- The bijection between subgroups and automata
- Whitehead minimization for subgroups
- 6 An application

Definition

A Stallings automaton is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:

- 1- X is connected.
- 2- no vertex of degree 1 except possibly v (X is a core-graph),
- 3- no two edges with the same label go out of (or in to) the same vertex.

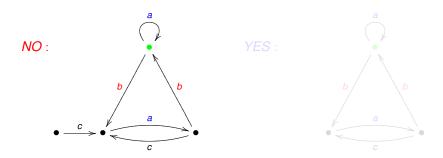


Nov. 30th, 2009

Definition

A Stallings automaton is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:

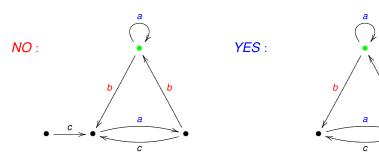
- 1- X is connected,
- 2- no vertex of degree 1 except possibly v (X is a core-graph),
- 3- no two edges with the same label go out of (or in to) the same vertex.



Definition

A Stallings automaton is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:

- 1- X is connected,
- 2- no vertex of degree 1 except possibly v (X is a core-graph),
- 3- no two edges with the same label go out of (or in to) the same vertex.



In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565.

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

```
\{f.g. \text{ subgroups of } F_A\} \longleftrightarrow \{\text{Stallings automata}\},
```

which is crucial for the modern understanding of the lattice of subgroups of F_{A} .

In the influent paper

```
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565.
```

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

```
\{f.g. \text{ subgroups of } F_A\} \longleftrightarrow \{Stallings automata\},
```

which is crucial for the modern understanding of the lattice of subgroups of $F_{\!A}$.

In the influent paper

```
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,
```

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

```
\{f.g. \text{ subgroups of } F_A\} \longleftrightarrow \{Stallings automata\},
```

which is crucial for the modern understanding of the lattice of subgroups of F_A .

17 / 46

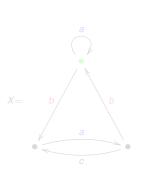
Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .



$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Membership problem in $\pi(X, \bullet)$ is solvable.

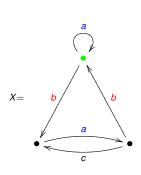
Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .



$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Membership problem in $\pi(X, \bullet)$ is solvable.

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|.

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|.

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|.

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

Proof:

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|.

19 / 46

Proposition

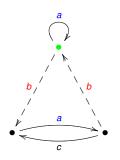
For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|.

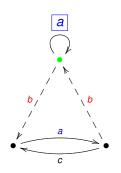
Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

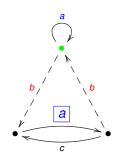
- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|. \square



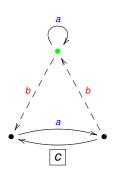
$$H = \langle \rangle$$



$$H = \langle a, \rangle$$

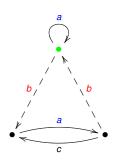


$$H = \langle \mathbf{a}, \mathbf{bab}, \rangle$$



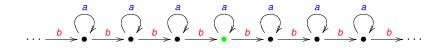
$$H = \langle a, bab, b^{-1}cb^{-1} \rangle$$

23 / 46



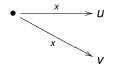
$$H = \langle a, bab, b^{-1}cb^{-1} \rangle$$

 $rk(H) = 1 - 3 + 5 = 3.$



$$F_{\aleph_0} \simeq H = \langle \dots, \, b^{-2}ab^2, \, b^{-1}ab, \, a, \, bab^{-1}, \, b^2ab^{-2}, \, \dots \rangle \leqslant F_2.$$

In any automaton containing the following situation, for $x \in A^{\pm 1}$,



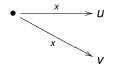
we can fold and identify vertices u and v to obtain

$$\bullet \xrightarrow{X} U = V.$$

This operation, $(X, v) \rightsquigarrow (X', v)$, is called a Stallings folding.

26 / 46

In any automaton containing the following situation, for $x \in A^{\pm 1}$,



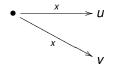
we can fold and identify vertices u and v to obtain

$$\bullet \xrightarrow{x} U = V$$
.

This operation, $(X, v) \rightsquigarrow (X', v)$, is called a Stallings folding.

26 / 46

In any automaton containing the following situation, for $x \in A^{\pm 1}$,



we can fold and identify vertices u and v to obtain

$$\bullet \xrightarrow{x} U = V$$
.

This operation, $(X, v) \rightsquigarrow (X', v)$, is called a Stallings folding.

Lemma (Stallings)

If $(X, v) \rightsquigarrow (X', v')$ is a Stallings folding then $\pi(X, v) = \pi(X', v')$.

Given a f.g. subgroup $H = \langle w_1, \dots w_m \rangle \leqslant F_A$ (we assume w_i are reduced words), do the following:

- 1- Draw the flower automaton,
- 2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

27 / 46

Lemma (Stallings)

If $(X, v) \rightsquigarrow (X', v')$ is a Stallings folding then $\pi(X, v) = \pi(X', v')$.

Given a f.g. subgroup $H = \langle w_1, \dots w_m \rangle \leqslant F_A$ (we assume w_i are reduced words), do the following:

- 1- Draw the flower automaton,
- 2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

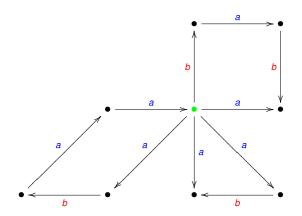
Lemma (Stallings)

If $(X, v) \rightsquigarrow (X', v')$ is a Stallings folding then $\pi(X, v) = \pi(X', v')$.

Given a f.g. subgroup $H = \langle w_1, \dots w_m \rangle \leqslant F_A$ (we assume w_i are reduced words), do the following:

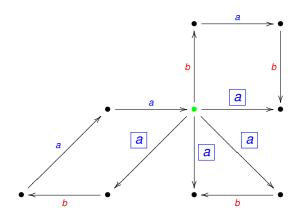
- 1- Draw the flower automaton,
- 2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$



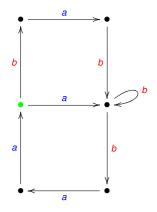
Flower(H)

28 / 46

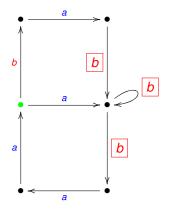


Flower(H)

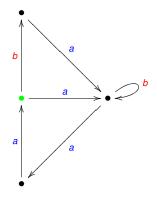
29 / 46



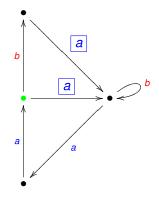
Folding #1



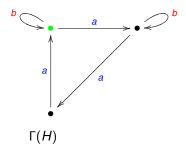
Folding #1.



Folding #2.

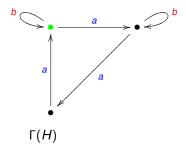


Folding #2.



Folding #3.

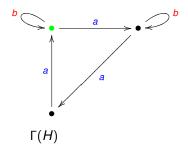
By Stallings Lemma, $\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^{-2} \rangle$



Folding #3.

By Stallings Lemma,
$$\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^{2} \rangle$$

34 / 46



By Stallings Lemma,
$$\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^{-1}, aba^2 \rangle = \langle b, aba^{-1}, a^3 \rangle$$

Local confluence

It can be shown that

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection:

```
\{f.g. \ subgroups \ of \ F_A\} \longleftrightarrow \{Stallings \ automata\} \ H \to \Gamma(H) \ \pi(X,v) \leftarrow (X,v)
```

Local confluence

It can be shown that

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection:

```
\{f.g. \ subgroups \ of \ F_A\} \longleftrightarrow \{Stallings \ automata\} \ H \to \Gamma(H) \ \pi(X,v) \leftarrow (X,v)
```

Local confluence

It can be shown that

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection:

```
 \begin{array}{cccc} \{\textit{f.g. subgroups of F}_A\} & \longleftrightarrow & \{\textit{Stallings automata}\} \\ & & H & \to & \Gamma(H) \\ & & \pi(X,v) & \leftarrow & (X,v) \end{array}
```

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of F_A is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of F_A is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of F_A is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.

Outline

- The classical Whitehead algorithm
- Let's do it in polynomial time
- The bijection between subgroups and automata
- Whitehead minimization for subgroups
- 6 An application

A cyclically reduced word can be thought as a circular graph; and then, its Whitehead graph $\mathit{Wh}(u)$ just describes the in-links of the vertices.

Definition

Let $H \leq F_k$ be a f.g. subgroup, and let $\Gamma(H)$ be its core graph. We define the Whitehead hyper-graph of H, denoted Wh(H), as:

- vertices: A^{±1},
- hyper-edges: for every vertex v in $\Gamma(H)$, put a hyper-edge consisting on the in-link of v.

Lemma (Roig, V., Weil, 2007)

Given a f.g. subgroup $H \leq F_k$ and a Whitehead automorphism α , think α as a cut in Wh(H), say $\alpha = (T, a)$, and then

$$\|\alpha(H)\| - \|H\| = \operatorname{cap}(T) - \operatorname{deg}(a),$$

where ||H|| is the number of vertices in $\Gamma(H)$

A cyclically reduced word can be thought as a circular graph; and then, its Whitehead graph Wh(u) just describes the in-links of the vertices.

Definition

Let $H \leq F_k$ be a f.g. subgroup, and let $\Gamma(H)$ be its core graph. We define the Whitehead hyper-graph of H, denoted Wh(H), as:

- vertices: A^{±1},
- hyper-edges: for every vertex v in Γ(H), put a hyper-edge consisting on the in-link of v.

Lemma (Roig, V., Weil, 2007)

Given a f.g. subgroup $H \leq F_k$ and a Whitehead automorphism α , think α as a cut in Wh(H), say $\alpha = (T, a)$, and then

$$\|\alpha(H)\| - \|H\| = \operatorname{cap}(T) - \operatorname{deg}(a),$$

where ||H|| is the number of vertices in $\Gamma(H)$.

A cyclically reduced word can be thought as a circular graph; and then, its Whitehead graph Wh(u) just describes the in-links of the vertices.

Definition

Let $H \leq F_k$ be a f.g. subgroup, and let $\Gamma(H)$ be its core graph. We define the Whitehead hyper-graph of H, denoted Wh(H), as:

- vertices: A^{±1},
- hyper-edges: for every vertex v in Γ(H), put a hyper-edge consisting on the in-link of v.

Lemma (Roig, V., Weil, 2007)

Given a f.g. subgroup $H \leq F_k$ and a Whitehead automorphism α , think α as a cut in Wh(H), say $\alpha = (T, a)$, and then

$$\|\alpha(H)\| - \|H\| = \operatorname{cap}(T) - \operatorname{deg}(a),$$

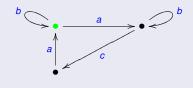
where ||H|| is the number of vertices in $\Gamma(H)$.

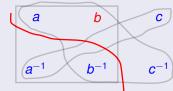
Consider $H = \langle b, aba^{-1}, aca \rangle \leqslant F_3$. Its core graph $\Gamma(H)$, and Whitehead hyper-graph Wh(H) are:

In fact, $\alpha(H) = \langle b, aba^{-1}, acbab \rangle$ and then

and so, $4-3 = \|\alpha(H)\| - \|H\| = 3-2$.

Consider $H = \langle b, aba^{-1}, aca \rangle \leqslant F_3$. Its core graph $\Gamma(H)$, and Whitehead hyper-graph Wh(H) are:





In fact, $\alpha(H) = \langle b, aba^{-1}, acbab \rangle$ and then

and so, $4-3 = \|\alpha(H)\| - \|H\| = 3-2$.

So, Whitehead's Minimization Problem for subgroups reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a⁻¹)-cut with minimal possible capacity in the given hyper-graph.

Unfortunately, there is no analog of max-flow min-cut algorithm for hyper-graphs ...

...but it is still possible to find minimal cuts in polynomial time because of sub-modularity:

Observation

So, Whitehead's Minimization Problem for subgroups reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a⁻¹)-cut with minimal possible capacity in the given hyper-graph.

Unfortunately, there is no analog of max-flow min-cut algorithm for hyper-graphs ...

...but it is still possible to find minimal cuts in polynomial time because of sub-modularity:

Observation

So, Whitehead's Minimization Problem for subgroups reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a⁻¹)-cut with minimal possible capacity in the given hyper-graph.

Unfortunately, there is no analog of max-flow min-cut algorithm for hyper-graphs ...

...but it is still possible to find minimal cuts in polynomial time because of sub-modularity:

Observation

So, Whitehead's Minimization Problem for subgroups reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a⁻¹)-cut with minimal possible capacity in the given hyper-graph.

Unfortunately, there is no analog of max-flow min-cut algorithm for hyper-graphs ...

...but it is still possible to find minimal cuts in polynomial time because of sub-modularity:

Observation

So, Whitehead's Minimization Problem for subgroups reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a⁻¹)-cut with minimal possible capacity in the given hyper-graph.

Unfortunately, there is no analog of max-flow min-cut algorithm for hyper-graphs ...

...but it is still possible to find minimal cuts in polynomial time because of sub-modularity:

Observation

Definition

A map $f: \mathcal{P}(V) \to \mathbb{N}$ is called sub-modular if, for every $A, B \subseteq V$, $f(A \cup B) + f(A \cap B) \leqslant f(A) + f(B)$.

Efficient minimization of sub-modular functions is an active research topic in computer science. One of the classical results is the following

Proposition

There exists a algorithm which, given a sub-modular function $f: \mathcal{P}(V) \to \mathbb{N}$ computes its minimum with a number of queries to evaluate f bounded above by a polynomial on |V|.

Corollary

Definition

A map $f: \mathcal{P}(V) \to \mathbb{N}$ is called sub-modular if, for every $A, B \subseteq V$, $f(A \cup B) + f(A \cap B) \leqslant f(A) + f(B)$.

Efficient minimization of sub-modular functions is an active research topic in computer science. One of the classical results is the following

Proposition

There exists a algorithm which, given a sub-modular function $f: \mathcal{P}(V) \to \mathbb{N}$ computes its minimum with a number of queries to evaluate f bounded above by a polynomial on |V|.

Corollary

Definition

A map $f: \mathcal{P}(V) \to \mathbb{N}$ is called sub-modular if, for every $A, B \subseteq V$, $f(A \cup B) + f(A \cap B) \leqslant f(A) + f(B)$.

Efficient minimization of sub-modular functions is an active research topic in computer science. One of the classical results is the following

Proposition

There exists a algorithm which, given a sub-modular function $f \colon \mathcal{P}(V) \to \mathbb{N}$ computes its minimum with a number of queries to evaluate f bounded above by a polynomial on |V|.

Corollary

Definition

A map $f: \mathcal{P}(V) \to \mathbb{N}$ is called sub-modular if, for every $A, B \subseteq V$, $f(A \cup B) + f(A \cap B) \leqslant f(A) + f(B)$.

Efficient minimization of sub-modular functions is an active research topic in computer science. One of the classical results is the following

Proposition

There exists a algorithm which, given a sub-modular function $f \colon \mathcal{P}(V) \to \mathbb{N}$ computes its minimum with a number of queries to evaluate f bounded above by a polynomial on |V|.

Corollary

Outline

- The classical Whitehead algorithm
- Let's do it in polynomial time
- The bijection between subgroups and automata
- Whitehead minimization for subgroups
- An application

Primitivity

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

Observation

u is primitive ⇔ the orbit of u contains a

Corollary (Roig, V., Weil, 2007)

Given a word $u \in F_k$, one can check whether u is primitive in F_k in time $O(n^2k^3)$, where n = ||u||.

Primitivity

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

Observation

u is primitive \Leftrightarrow the orbit of u contains a.

Corollary (Roig, V., Weil, 2007)

Given a word $u \in F_k$, one can check whether u is primitive in F_k in time $O(n^2k^3)$, where n = ||u||.

Primitivity

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

Observation

u is primitive \Leftrightarrow the orbit of u contains a.

Corollary (Roig, V., Weil, 2007)

Given a word $u \in F_k$, one can check whether u is primitive in F_k in time $O(n^2k^3)$, where n = ||u||.

Deciding free-factorness

Observation

A given subgroup $H \leqslant F_k$ of rank $r(H) = r \leqslant k$ is a free factor of F_k if and only if $\exists \varphi \in Aut(F_k)$ such that $\|\varphi(H)\| = 1$.

Corollary (Roig, V., Weil, 2007)

Given a f.g. subgroup $H \leq F_k$, one can check whether H is a free factor of F_k in time $O((n^2k^4 + n^3k^2)\log(nk))$, where n = ||H||.

Corollary (Roig, V., Weil, 2007)

Given f.g. subgroups $H \leq K \leq F_k$, one can check whether H is a free factor of K in polynomial time w.r.t. the given generators of H and K.

Deciding free-factorness

Observation

A given subgroup $H \leqslant F_k$ of rank $r(H) = r \leqslant k$ is a free factor of F_k if and only if $\exists \varphi \in Aut(F_k)$ such that $\|\varphi(H)\| = 1$.

Corollary (Roig, V., Weil, 2007)

Given a f.g. subgroup $H \leq F_k$, one can check whether H is a free factor of F_k in time $O((n^2k^4 + n^3k^2)\log(nk))$, where n = ||H||.

Corollary (Roig, V., Weil, 2007)

Given f.g. subgroups $H \leq K \leq F_k$, one can check whether H is a free factor of K in polynomial time w.r.t. the given generators of H and K.

Deciding free-factorness

Observation

A given subgroup $H \leqslant F_k$ of rank $r(H) = r \leqslant k$ is a free factor of F_k if and only if $\exists \varphi \in Aut(F_k)$ such that $\|\varphi(H)\| = 1$.

Corollary (Roig, V., Weil, 2007)

Given a f.g. subgroup $H \leq F_k$, one can check whether H is a free factor of F_k in time $O((n^2k^4 + n^3k^2)\log(nk))$, where n = ||H||.

Corollary (Roig, V., Weil, 2007)

Given f.g. subgroups $H \leqslant K \leqslant F_k$, one can check whether H is a free factor of K in polynomial time w.r.t. the given generators of H and K.

THANKS

46 / 46