Enric Ventura

Departament de Matemàtica Aplicada III

Universitat Politècnica de Catalunya

SAMS, Port Elizabeth, South Africa

December 1st, 2011.

Outline

1. Introduction

- Introduction
- Strategy of the proof
- Orbit decidability
- Automaton groups

Outline

- 1 Introduction
- Strategy of the proof
- Orbit decidability
- Automaton groups

Introduction

Theorem (Sunic-V.)

There exist automaton groups (i.e. self-similar groups generated by finite self-similar sets) with unsolvable conjugacy problem.

- Grigorchuk-Nekrashevych-Sushchanskii (00): Is CP solvable for
- WP is solvable for all such groups (straightforward, at most
- WP is solvable in polynomial time, for the subclass of f.g.

Introduction

Theorem (Sunic-V.)

There exist automaton groups (i.e. self-similar groups generated by finite self-similar sets) with unsolvable conjugacy problem.

- Grigorchuk-Nekrashevych-Sushchanskii (00): Is CP solvable for automaton groups?
- WP is solvable for all such groups (straightforward, at most exponential time).
- WP is solvable in polynomial time, for the subclass of f.g. contracting groups.

Main result

Theorem (Sunic-V.)

There exist automaton groups (i.e. self-similar groups generated by finite self-similar sets) with unsolvable conjugacy problem.

3. Orbit decidability

- Grigorchuk-Nekrashevych-Sushchanskii (00): Is CP solvable for automaton groups?
- WP is solvable for all such groups (straightforward, at most exponential time).
- WP is solvable in polynomial time, for the subclass of f.g. contracting groups.

Main result

Theorem (Sunic-V.)

There exist automaton groups (i.e. self-similar groups generated by finite self-similar sets) with unsolvable conjugacy problem.

3. Orbit decidability

- Grigorchuk-Nekrashevych-Sushchanskii (00): Is CP solvable for automaton groups ?
- WP is solvable for all such groups (straightforward, at most exponential time).
- WP is solvable in polynomial time, for the subclass of f.g. contracting groups.

- Leonov (98) and Rozhkov (98) indep.: CP for the first Grigorchuk group.
- Wilson-Zaleskii (97): CP for the Gupta-Sidki groups.
- Grigorchuk-Wilson (00): CP for all subgroups of finite index in the first Grigorchuk group.
- Bondarenko-Bondarenko-Sidki-Zapata (10): CP for groups generated by bounded automata (i.e. Pol(0) groups).
- Lysenok-Myasnikov-Ushakov (10): CP in polynomial time for the first Grigorchuk group.

- Leonov (98) and Rozhkov (98) indep.: CP for the first Grigorchuk group.
- Wilson-Zaleskii (97): CP for the Gupta-Sidki groups.
- Grigorchuk-Wilson (00): CP for all subgroups of finite index in the first Grigorchuk group.
- Bondarenko-Bondarenko-Sidki-Zapata (10): CP for groups generated by bounded automata (i.e. Pol(0) groups).
- Lysenok-Myasnikov-Ushakov (10): CP in polynomial time for the first Grigorchuk group.

- Leonov (98) and Rozhkov (98) indep.: CP for the first Grigorchuk group.
- Wilson-Zaleskii (97): CP for the Gupta-Sidki groups.
- Grigorchuk-Wilson (00): CP for all subgroups of finite index in the first Grigorchuk group.
- Bondarenko-Bondarenko-Sidki-Zapata (10): CP for groups generated by bounded automata (i.e. Pol(0) groups).
- Lysenok-Myasnikov-Ushakov (10): CP in polynomial time for the first Grigorchuk group.

- Leonov (98) and Rozhkov (98) indep.: CP for the first Grigorchuk group.
- Wilson-Zaleskii (97): CP for the Gupta-Sidki groups.
- Grigorchuk-Wilson (00): CP for all subgroups of finite index in the first Grigorchuk group.
- Bondarenko-Bondarenko-Sidki-Zapata (10): CP for groups generated by bounded automata (i.e. Pol(0) groups).
- Lysenok-Myasnikov-Ushakov (10): CP in polynomial time for the first Grigorchuk group.

- Leonov (98) and Rozhkov (98) indep.: CP for the first Grigorchuk group.
- Wilson-Zaleskii (97): CP for the Gupta-Sidki groups.
- Grigorchuk-Wilson (00): CP for all subgroups of finite index in the first Grigorchuk group.
- Bondarenko-Bondarenko-Sidki-Zapata (10): CP for groups generated by bounded automata (i.e. Pol(0) groups).
- Lysenok-Myasnikov-Ushakov (10): CP in polynomial time for the first Grigorchuk group.

A question

Our examples contain free nonabelian subgroups, so

Question

- Is the CP solvable for all f.g., contracting, self-similar groups?
- Is the CP solvable for automaton groups in Pol(n), for $n \ge 1$?

A question

Our examples contain free nonabelian subgroups, so

Question

- Is the CP solvable for all f.g., contracting, self-similar groups?
- Is the CP solvable for automaton groups in Pol(n), for $n \ge 1$?

Outline

- Strategy of the proof

Will use results from Bogopolski-Martino-Ventura:

Observation (B-M-V, 08)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit undecidable then $H \rtimes \Gamma$ has unsolvable CP.

and

Proposition (B-M-V, 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$.

and then show that

Theorem (Sunic-V.)

Let $\Gamma \leq \operatorname{GL}_d(\mathbb{Z})$ be f.g. Then, $\mathbb{Z}^d \rtimes \Gamma$ is an automaton group.

Will use results from Bogopolski-Martino-Ventura:

Observation (B-M-V, 08)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit undecidable then $H \rtimes \Gamma$ has unsolvable CP.

and

Proposition (B-M-V, 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$.

and then show that

Theorem (Sunic-V.)

Let $\Gamma \leq \operatorname{GL}_d(\mathbb{Z})$ be f.g. Then, $\mathbb{Z}^d \rtimes \Gamma$ is an automaton group.

Will use results from Bogopolski-Martino-Ventura:

Observation (B-M-V, 08)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit undecidable then $H \rtimes \Gamma$ has unsolvable CP.

and

Proposition (B-M-V, 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant GL_d(\mathbb{Z})$.

and then show that

Theorem (Sunic-V.)

Let $\Gamma \leq \operatorname{GL}_d(\mathbb{Z})$ be f.g. Then, $\mathbb{Z}^d \rtimes \Gamma$ is an automaton group.

With an easy and nice idea due to Zoran, we get the improvement

Proposition (Sunic-V.)

For $d \ge 6$, $GL_d(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Hence, we deduce:

Theorem (Sunic-V.)

For $d \ge 6$, there exists a f.p. group G simultaneously satisfying the following three conditions:

- G is \mathbb{Z}^d -by-free,
- G is an automaton group,
- G has unsolvable conjugacy problem.

With an easy and nice idea due to Zoran, we get the improvement

Proposition (Sunic-V.)

For $d \ge 6$, $GL_d(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Hence, we deduce:

Theorem (Sunic-V.)

For $d \ge 6$, there exists a f.p. group G simultaneously satisfying the following three conditions:

- G is \mathbb{Z}^d -by-free,
- G is an automaton group,
- G has unsolvable conjugacy problem.

1. Introduction

- 1 Introduction
- Strategy of the proof
- Orbit decidability
- Automaton groups

(joint work with O. Bogopolski and A. Martino)

(joint work with O. Bogopolski and A. Martino)

Definition

Let H be f.g. A subgroup $\Gamma \leq \operatorname{Aut}(H)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $u, v \in H$, it decides whether v and $\alpha(u)$ are conjugate, for some $\alpha \in \Gamma$.

First examples: $H = \mathbb{Z}^{q}$

Observation (folklore

The full group $\operatorname{Aut}(\mathbb{Z}^d) = \operatorname{GL}_d(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^d$, there exists $A \in GL_d(\mathbb{Z})$ such that v = Au if and only if $gcd(u_1, \dots, u_d) = gcd(v_1, \dots, v_d)$.

(joint work with O. Bogopolski and A. Martino)

Definition

Let H be f.g. A subgroup $\Gamma \leq \operatorname{Aut}(H)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $u, v \in H$, it decides whether v and $\alpha(u)$ are conjugate, for some $\alpha \in \Gamma$.

First examples: $H = \mathbb{Z}^d$

Observation (folklore)

The full group $\operatorname{Aut}(\mathbb{Z}^d) = \operatorname{GL}_d(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^d$, there exists $A \in GL_d(\mathbb{Z})$ such that v = Au if and only if $gcd(u_1, \dots, u_d) = gcd(v_1, \dots, v_d)$.

(joint work with O. Bogopolski and A. Martino)

Definition

Let H be f.g. A subgroup $\Gamma \leqslant \operatorname{Aut}(H)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $u, v \in H$, it decides whether v and $\alpha(u)$ are conjugate, for some $\alpha \in \Gamma$.

First examples: $H = \mathbb{Z}^d$

Observation (folklore)

The full group $\operatorname{Aut}(\mathbb{Z}^d) = \operatorname{GL}_d(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^d$, there exists $A \in GL_d(\mathbb{Z})$ such that v = Au if and only if $gcd(u_1, \dots, u_d) = gcd(v_1, \dots, v_d)$.

OD subgroups in $GL_d(\mathbb{Z})$

Proposition (linear algebra)

For $A \in GL_d(\mathbb{Z})$, the subgroup $\langle A \rangle \leqslant GL_d(\mathbb{Z})$ is O.D.

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of $GL_d(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

OD subgroups in $GL_d(\mathbb{Z})$

Proposition (linear algebra)

For $A \in GL_d(\mathbb{Z})$, the subgroup $\langle A \rangle \leqslant GL_d(\mathbb{Z})$ is O.D.

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of $GL_d(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Proposition (linear algebra)

For $A \in GL_d(\mathbb{Z})$, the subgroup $\langle A \rangle \leqslant GL_d(\mathbb{Z})$ is O.D.

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of $GL_d(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Examples over the free group: $H = F_r$

Theorem (Whitehead'30)

The full group $\operatorname{Aut}(F_r)$ is orbit decidable. That is, given $u, v \in F_r$ one can decide whether $v = \alpha(u)$ for some $\alpha \in \operatorname{Aut}(F_r)$.

Proof. This is a classical and very influential result.

Theorem (Brinkmann, 06

Cyclic groups of $\operatorname{Aut}(F_r)$ are orbit decidable. That is, given $\varphi \in \operatorname{Aut}(F_r)$ and $u, v \in F_r$, one can decide whether $v = \varphi^n(u)$, up to conjugacy, for some $n \in \mathbb{Z}$.

Examples over the free group: $H = F_r$

Theorem (Whitehead'30)

The full group $\operatorname{Aut}(F_r)$ is orbit decidable. That is, given $u, v \in F_r$ one can decide whether $v = \alpha(u)$ for some $\alpha \in \operatorname{Aut}(F_r)$.

Proof. This is a classical and very influential result.

Theorem (Brinkmann, 06)

Cyclic groups of $\operatorname{Aut}(F_r)$ are orbit decidable. That is, given $\varphi \in \operatorname{Aut}(F_r)$ and $u, v \in F_r$, one can decide whether $v = \varphi^n(u)$, up to conjugacy, for some $n \in \mathbb{Z}$.

Examples over the free group: $H = F_r$

Theorem (Whitehead'30)

The full group $\operatorname{Aut}(F_r)$ is orbit decidable. That is, given $u, v \in F_r$ one can decide whether $v = \alpha(u)$ for some $\alpha \in \operatorname{Aut}(F_r)$.

Proof. This is a classical and very influential result.

Theorem (Brinkmann, 06)

Cyclic groups of $\operatorname{Aut}(F_r)$ are orbit decidable. That is, given $\varphi \in \operatorname{Aut}(F_r)$ and $u, v \in F_r$, one can decide whether $v = \varphi^n(u)$, up to conjugacy, for some $n \in \mathbb{Z}$.

Examples over the free group: $H = F_r$

Theorem (Whitehead'30)

The full group $\operatorname{Aut}(F_r)$ is orbit decidable. That is, given $u, v \in F_r$ one can decide whether $v = \alpha(u)$ for some $\alpha \in \operatorname{Aut}(F_r)$.

Proof. This is a classical and very influential result.

Theorem (Brinkmann, 06)

Cyclic groups of $\operatorname{Aut}(F_r)$ are orbit decidable. That is, given $\varphi \in \operatorname{Aut}(F_r)$ and $u, v \in F_r$, one can decide whether $v = \varphi^n(u)$, up to conjugacy, for some $n \in \mathbb{Z}$.

Examples over the free group: $H = F_r$

Theorem (Whitehead'30)

The full group $\operatorname{Aut}(F_r)$ is orbit decidable. That is, given $u, v \in F_r$ one can decide whether $v = \alpha(u)$ for some $\alpha \in \operatorname{Aut}(F_r)$.

Proof. This is a classical and very influential result.

Theorem (Brinkmann, 06)

Cyclic groups of $\operatorname{Aut}(F_r)$ are orbit decidable. That is, given $\varphi \in \operatorname{Aut}(F_r)$ and $u, v \in F_r$, one can decide whether $v = \varphi^n(u)$, up to conjugacy, for some $n \in \mathbb{Z}$.

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of $Aut(F_r)$ are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of $Aut(F_r)$ are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

Connection to semidirect products

Observation (B-M-V)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $G = H \times \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like

$$(h_1, \gamma_1) \cdot (h_2, \gamma_2) = (h_1 \gamma_1(h_2), \gamma_1 \gamma_2)$$

$$(h, \gamma)^{-1} = (\gamma^{-1}(h^{-1}), \gamma^{-1}).$$

For $h_1, h_2 \in H \leqslant G$, we have $h_1 \sim_G h_2 \Leftrightarrow \exists (h, \gamma) \in H \rtimes \Gamma$ s.t.

$$(h_2, Id) = (h, \gamma)^{-1} \cdot (h_1, Id) \cdot (h, \gamma) (\gamma^{-1}(h^{-1}), \gamma^{-1}) \cdot (h_1 h, \gamma) (\gamma^{-1}(h^{-1}h_1h), Id).$$

Hence, $h_1 \sim_G h_2 \Leftrightarrow \exists \gamma \in \Gamma$ and $h \in H$ s.t. $h_1 = h_{\gamma}(h_2)h^{-1}$. \square

Observation (B-M-V)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $G = H \rtimes \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like

$$(h_1, \gamma_1) \cdot (h_2, \gamma_2) = (h_1 \gamma_1(h_2), \gamma_1 \gamma_2)$$

$$(h, \gamma)^{-1} = (\gamma^{-1}(h^{-1}), \gamma^{-1}).$$

For $h_1, h_2 \in H \leqslant G$, we have $h_1 \sim_G h_2 \Leftrightarrow \exists (h, \gamma) \in H \rtimes \Gamma$ s.t.

$$(h_2, Id) = (h, \gamma)^{-1} \cdot (h_1, Id) \cdot (h, \gamma)$$

$$(\gamma^{-1}(h^{-1}), \gamma^{-1}) \cdot (h_1 h, \gamma)$$

$$(\gamma^{-1}(h^{-1} h_1 h), Id).$$

Hence, $h_1 \sim_G h_2 \Leftrightarrow \exists \gamma \in \Gamma$ and $h \in H$ s.t. $h_1 = h\gamma(h_2)h^{-1}$. \square

Observation (B-M-V)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $G = H \rtimes \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like

$$(h_1, \gamma_1) \cdot (h_2, \gamma_2) = (h_1 \gamma_1(h_2), \gamma_1 \gamma_2)$$

 $(h, \gamma)^{-1} = (\gamma^{-1}(h^{-1}), \gamma^{-1}).$

For $h_1, h_2 \in H \leqslant G$, we have $h_1 \sim_G h_2 \Leftrightarrow \exists (h, \gamma) \in H \rtimes \Gamma$ s.t.

$$\begin{array}{rcl} (h_2, \, Id) & = & (h, \, \gamma)^{-1} \cdot (h_1, \, Id) \cdot (h, \, \gamma) \\ & & (\gamma^{-1}(h^{-1}), \, \gamma^{-1}) \cdot (h_1 h, \, \gamma) \\ & & (\gamma^{-1}(h^{-1}h_1 h), \, Id). \end{array}$$

Hence, $h_1 \sim_G h_2 \Leftrightarrow \exists \gamma \in \Gamma$ and $h \in H$ s.t. $h_1 = h\gamma(h_2)h^{-1}$. \square

Observation (B-M-V)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $G = H \rtimes \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like

$$(h_1, \gamma_1) \cdot (h_2, \gamma_2) = (h_1 \gamma_1 (h_2), \gamma_1 \gamma_2)$$

$$(h, \gamma)^{-1} = (\gamma^{-1}(h^{-1}), \gamma^{-1}).$$

For $h_1, h_2 \in H \leqslant G$, we have $h_1 \sim_G h_2 \Leftrightarrow \exists (h, \gamma) \in H \rtimes \Gamma$ s.t.

$$(h_2, Id) = (h, \gamma)^{-1} \cdot (h_1, Id) \cdot (h, \gamma) (\gamma^{-1}(h^{-1}), \gamma^{-1}) \cdot (h_1 h, \gamma) (\gamma^{-1}(h^{-1}h_1 h), Id).$$

Hence, $h_1 \sim_G h_2 \Leftrightarrow \exists \gamma \in \Gamma$ and $h \in H$ s.t. $h_1 = h\gamma(h_2)h^{-1}$. \square

In fact, for the free and free abelian cases (among others), the convers is also true, after "erasing the relations from Γ ":

3. Orbit decidability

Theorem (B-M-V, 08)

Let H be \mathbb{Z}^d or F_r , and $\Gamma \leq \operatorname{Aut}(H)$ generated by $\alpha_1, \ldots, \alpha_m$. Then, $H \rtimes_{\alpha_1,...,\alpha_m} F_m$ has solvable CP if and only if $\Gamma = \langle \alpha_1, \dots, \alpha_m \rangle \leqslant \operatorname{Aut}(H)$ is orbit decidable.

In fact, for the free and free abelian cases (among others), the convers is also true, after "erasing the relations from Γ ":

3. Orbit decidability

Theorem (B-M-V, 08)

Let H be \mathbb{Z}^d or F_r , and $\Gamma \leqslant \operatorname{Aut}(H)$ generated by $\alpha_1, \ldots, \alpha_m$. Then, $H \rtimes_{\alpha_1, \ldots, \alpha_m} F_m$ has solvable CP if and only if $\Gamma = \langle \alpha_1, \ldots, \alpha_m \rangle \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Corollary

 \mathbb{Z}^d -by- \mathbb{Z} groups have solvable conjugacy problem.

Corollary

If $\Gamma = \langle M_1, \dots, M_m \rangle$ is of finite index in $GL_d(\mathbb{Z})$ then $\mathbb{Z}^d \rtimes_{M_1, \dots, M_m} F_m$ has solvable conjugacy problem.

Corollary

Every \mathbb{Z}^2 -by-free group has solvable conjugacy problem.

In fact, for the free and free abelian cases (among others), the convers is also true, after "erasing the relations from Γ ":

Orbit decidability

Theorem (B-M-V, 08)

Let H be \mathbb{Z}^d or F_r , and $\Gamma \leq \operatorname{Aut}(H)$ generated by $\alpha_1, \ldots, \alpha_m$. Then, $H \rtimes_{\alpha_1,...,\alpha_m} F_m$ has solvable CP if and only if $\Gamma = \langle \alpha_1, \dots, \alpha_m \rangle \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Corollary

 \mathbb{Z}^d -by- \mathbb{Z} groups have solvable conjugacy problem.

Corollary

If $\Gamma = \langle M_1, \dots, M_m \rangle$ is of finite index in $GL_d(\mathbb{Z})$ then $\mathbb{Z}^d \rtimes_{M_1, \dots, M_m} F_m$ has solvable conjugacy problem.

In fact, for the free and free abelian cases (among others), the convers is also true, after "erasing the relations from Γ ":

Orbit decidability

Theorem (B-M-V, 08)

Let H be \mathbb{Z}^d or F_r , and $\Gamma \leq \operatorname{Aut}(H)$ generated by $\alpha_1, \ldots, \alpha_m$. Then, $H \rtimes_{\alpha_1,...,\alpha_m} F_m$ has solvable CP if and only if $\Gamma = \langle \alpha_1, \dots, \alpha_m \rangle \leqslant \text{Aut}(H)$ is orbit decidable.

Corollary

 \mathbb{Z}^d -by- \mathbb{Z} groups have solvable conjugacy problem.

Corollary

If $\Gamma = \langle M_1, \dots, M_m \rangle$ is of finite index in $GL_d(\mathbb{Z})$ then $\mathbb{Z}^d \rtimes_{M_1, \dots, M_m} F_m$ has solvable conjugacy problem.

Corollary

Every \mathbb{Z}^2 -by-free group has solvable conjugacy problem.

Corollary (Bogopolski-Martino-Maslakova-V., 06)

Free-by-cyclic groups have solvable conjugacy problem.

Corollary

If $\Gamma = \langle \varphi_1, ..., \varphi_m \rangle$ has finite index in $Aut(F_r)$ then $F_r \rtimes_{\varphi_1, ..., \varphi_m} F_m$ has solvable conjugacy problem.

Corollary

Every F₂-by-free group has solvable conjugacy problem.

What we shall use is

Observation (B-M-V, 08)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit undecidable then $H \rtimes \Gamma$ has unsolvable CP.

Corollary (Bogopolski-Martino-Maslakova-V., 06)

Free-by-cyclic groups have solvable conjugacy problem.

Corollary

If $\Gamma = \langle \varphi_1, \dots, \varphi_m \rangle$ has finite index in $\operatorname{Aut}(F_r)$ then $F_r \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Corollary

Every F_2 -by-free group has solvable conjugacy problem.

What we shall use is

Observation (B-M-V, 08)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit undecidable then $H \rtimes \Gamma$ has unsolvable CP.

Corollary (Bogopolski-Martino-Maslakova-V., 06)

Free-by-cyclic groups have solvable conjugacy problem.

Corollary

If $\Gamma = \langle \varphi_1, \dots, \varphi_m \rangle$ has finite index in $\operatorname{Aut}(F_r)$ then $F_r \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Corollary

Every F₂-by-free group has solvable conjugacy problem.

What we shall use is

Observation (B-M-V, 08)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit undecidable then $H \rtimes \Gamma$ has unsolvable CP

Corollary (Bogopolski-Martino-Maslakova-V., 06)

Free-by-cyclic groups have solvable conjugacy problem.

Corollary

If $\Gamma = \langle \varphi_1, \dots, \varphi_m \rangle$ has finite index in $\operatorname{Aut}(F_r)$ then $F_r \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Corollary

Every F₂-by-free group has solvable conjugacy problem.

What we shall use is:

Observation (B-M-V, 08)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit undecidable then $H \rtimes \Gamma$ has unsolvable CP.

But...

Theorem (Miller, 70's

There are free-by-free groups with unsolvable conjugacy problem.

So, there must be orbit undecidable subgroups in Aut (F_r) , for $r \ge 3$. Where are them ?

Proposition (Bogopolski-Martino-V., 08)

Let H be a group, and let $A \leq B \leq \operatorname{Aut}(H)$ and $v \in H$ be such that $B \cap \operatorname{Stab}^*(v) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable

But...

Theorem (Miller, 70's)

There are free-by-free groups with unsolvable conjugacy problem.

So, there must be orbit undecidable subgroups in Aut (F_r) , for $r \ge 3$. Where are them ?

Proposition (Bogopolski-Martino-V., 08)

Let H be a group, and let $A \leq B \leq \operatorname{Aut}(H)$ and $v \in H$ be such that $B \cap \operatorname{Stab}^*(v) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

But...

Theorem (Miller, 70's)

There are free-by-free groups with unsolvable conjugacy problem.

So, there must be orbit undecidable subgroups in Aut (F_r) , for $r \ge 3$. Where are them ?

Proposition (Bogopolski-Martino-V., 08)

Let H be a group, and let $A \leq B \leq \operatorname{Aut}(H)$ and $v \in H$ be such that $B \cap \operatorname{Stab}^*(v) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

But...

Theorem (Miller, 70's)

There are free-by-free groups with unsolvable conjugacy problem.

So, there must be orbit undecidable subgroups in Aut (F_r) , for $r \ge 3$. Where are them ?

Proposition (Bogopolski-Martino-V., 08)

Let H be a group, and let $A \le B \le \operatorname{Aut}(H)$ and $v \in H$ be such that $B \cap \operatorname{Stab}^*(v) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

Proposition (Bogopolski-Martino-V., 08)

Let H be a group, and let $A \leq B \leq \operatorname{Aut}(H)$ and $v \in H$ be such that $B \cap Stab^*(v) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

3. Orbit decidability

$$\{\phi \in B \mid v\phi = w\} = B \cap (Stab(v) \cdot \varphi) = (B \cap Stab(v)) \cdot \varphi = \{\varphi\}.$$

$$\{\phi \in B \mid v\phi \sim w\} = B \cap (Stab^*(v) \cdot \varphi) = (B \cap Stab^*(v)) \cdot \varphi = \{\varphi\}.$$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A.

$$OD(A) \Rightarrow MP(A, B).\Box$$

Proposition (Bogopolski-Martino-V., 08)

Let H be a group, and let $A \leq B \leq \operatorname{Aut}(H)$ and $v \in H$ be such that $B \cap Stab^*(v) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

3. Orbit decidability

Proof. Given $\varphi \in B \leq \operatorname{Aut}(H)$, let $w = v\varphi$ and

$$\{\phi \in B \mid v\phi = w\} = B \cap (Stab(v) \cdot \varphi) = (B \cap Stab(v)) \cdot \varphi = \{\varphi\}.$$

$$\{\phi \in B \mid v\phi \sim w\} = B \cap (Stab^*(v) \cdot \varphi) = (B \cap Stab^*(v)) \cdot \varphi = \{\varphi\}.$$

$$OD(A) \Rightarrow MP(A, B).\Box$$

Proposition (Bogopolski-Martino-V., 08)

Let H be a group, and let $A \leq B \leq \operatorname{Aut}(H)$ and $v \in H$ be such that $B \cap Stab^*(v) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

3. Orbit decidability

Proof. Given $\varphi \in B \leq \operatorname{Aut}(H)$, let $w = v\varphi$ and

$$\{\phi \in B \mid v\phi = w\} = B \cap (Stab(v) \cdot \varphi) = (B \cap Stab(v)) \cdot \varphi = \{\varphi\}.$$

$$\{\phi \in B \mid v\phi \sim w\} = B \cap (Stab^*(v) \cdot \varphi) = (B \cap Stab^*(v)) \cdot \varphi = \{\varphi\}.$$

$$OD(A) \Rightarrow MP(A, B).\Box$$

Proposition (Bogopolski-Martino-V., 08)

Let H be a group, and let $A \leq B \leq \operatorname{Aut}(H)$ and $v \in H$ be such that $B \cap Stab^*(v) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

3. Orbit decidability

Proof. Given $\varphi \in B \leq \operatorname{Aut}(H)$, let $w = v\varphi$ and

$$\{\phi \in B \mid v\phi = w\} = B \cap (Stab(v) \cdot \varphi) = (B \cap Stab(v)) \cdot \varphi = \{\varphi\}.$$

$$\{\phi \in B \mid v\phi \sim w\} = B \cap (Stab^*(v) \cdot \varphi) = (B \cap Stab^*(v)) \cdot \varphi = \{\varphi\}.$$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A. Hence.

$$OD(A) \Rightarrow MP(A, B).\Box$$

So,...

Taking the copy B of $F_2 \times F_2$ in Aut(F_3) via the embedding

$$\begin{array}{ccccccc} F_2 \times F_2 & \hookrightarrow & & \textit{Aut}(F_3), \\ (u,v) & \mapsto & _u\theta_v \colon F_3 & \to & F_3 \\ & q & \mapsto & u^{-1}qv \\ & a & \mapsto & a \\ & b & \mapsto & b \end{array}$$

and a Mihailova subgroup in there $A \le B \le \text{Aut}(F_3)$ (taking v = qaqbq) one obtains precisely the orbit undecidable subgroups corresponding to Miller's examples.

So,...

Taking the copy B of $F_2 \times F_2$ in $Aut(F_3)$ via the embedding

and a Mihailova subgroup in there $A \le B \le \operatorname{Aut}(F_3)$ (taking v = qaqbq) one obtains precisely the orbit undecidable subgroups corresponding to Miller's examples.

Proposition (B-M-V, 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$.

3. Orbit decidability

Proof. Consider
$$F_2\simeq \langle P=\left(\begin{array}{cc}1&1\\1&2\end{array}\right),\ Q=\left(\begin{array}{cc}2&1\\1&1\end{array}\right)
angle \leq_{24} GL_2(\mathbb{Z}).$$

- $Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & +1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$
- $\langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle$.
- Choose a free subgroup $F_2 \simeq \langle P', Q' \rangle < \langle P, Q \rangle$ such that $\langle P', Q' \rangle \cap Stab(1,0) = \{I\}$ and consider

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

Proposition (B-M-V, 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$.

$$\textit{Proof. Consider } F_2 \simeq \langle P = \left(\begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array} \right), \; Q = \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right) \rangle \leq_{24} GL_2(\mathbb{Z}).$$

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$$

$$\bullet \ \langle P, Q \rangle \cap \textit{Stab}(1,0) = \langle \left(\begin{array}{cc} 1 & 0 \\ 12 & 1 \end{array} \right) \rangle.$$

• Choose a free subgroup $F_2 \simeq \langle P', Q' \rangle < \langle P, Q \rangle$ such that

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

Proposition (B-M-V, 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$.

3. Orbit decidability

Proof. Consider
$$F_2\simeq \langle P=\left(\begin{array}{cc}1&1\\1&2\end{array}\right),\ Q=\left(\begin{array}{cc}2&1\\1&1\end{array}\right)
angle \leq_{24} GL_2(\mathbb{Z}).$$

- $Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$
- $\bullet \ \langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle.$
- Choose a free subgroup $F_2 \simeq \langle P', Q' \rangle < \langle P, Q \rangle$ such that

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

Proposition (B-M-V, 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$.

3. Orbit decidability

Proof. Consider
$$F_2 \simeq \langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$
, $Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \rangle \leq_{24} GL_2(\mathbb{Z})$.

- $Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$
- $\langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle$.

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

Proposition (B-M-V, 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$.

Orbit decidability

Proof. Consider
$$F_2 \simeq \langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \ Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \rangle \leq_{24} GL_2(\mathbb{Z}).$$

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$$

•
$$\langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle$$
.

• Choose a free subgroup $F_2 \simeq \langle P', Q' \rangle \leq \langle P, Q \rangle$ such that $\langle P', Q' \rangle \cap Stab(1,0) = \{I\}$ and consider

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

Proposition (B-M-V, 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$.

Orbit decidability

Proof. Consider
$$F_2 \simeq \langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \ Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \rangle \leq_{24} GL_2(\mathbb{Z}).$$

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$$

•
$$\langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle$$
.

• Choose a free subgroup $F_2 \simeq \langle P', Q' \rangle \leq \langle P, Q \rangle$ such that $\langle P', Q' \rangle \cap Stab(1,0) = \{I\}$ and consider

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

- Write v = (1, 0, 1, 0). By construction, $B \cap Stab(v) = \{I\}$.
- ullet Take $A \leq B \simeq F_2 imes F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \operatorname{GL}_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq \operatorname{GL}_d(\mathbb{Z}), d \geq 4$. \square

Corollary

For $d \geqslant 4$, there exist \mathbb{Z}^d -by-free groups with unsolvable conjugacy problem.

Question

- Write v = (1, 0, 1, 0). By construction, $B \cap Stab(v) = \{I\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \operatorname{GL}_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq \operatorname{GL}_d(\mathbb{Z}), d \geq 4$. \square

Corollary

For $d \geqslant 4$, there exist \mathbb{Z}^d -by-free groups with unsolvable conjugacy problem.

Question

- Write v = (1, 0, 1, 0). By construction, $B \cap Stab(v) = \{I\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq \operatorname{GL}_d(\mathbb{Z}), d \geq 4$. \square

Corollary

For $d \geqslant 4$, there exist \mathbb{Z}^d -by-free groups with unsolvable conjugacy problem.

Question

- Write v = (1, 0, 1, 0). By construction, $B \cap Stab(v) = \{I\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \operatorname{GL}_d(\mathbb{Z}), d \geqslant 4$. \square

Corollary

For $d \geqslant 4$, there exist \mathbb{Z}^d -by-free groups with unsolvable conjugacy problem.

Question

- Write v = (1, 0, 1, 0). By construction, $B \cap Stab(v) = \{I\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq \operatorname{GL}_d(\mathbb{Z}), d \geq 4$. \square

Corollary

For $d \geqslant 4$, there exist \mathbb{Z}^d -by-free groups with unsolvable conjugacy problem.

Question

- Write v = (1, 0, 1, 0). By construction, $B \cap Stab(v) = \{I\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq \operatorname{GL}_d(\mathbb{Z}), d \geq 4$. \square

Corollary

For $d \geqslant 4$, there exist \mathbb{Z}^d -by-free groups with unsolvable conjugacy problem.

Question

- Write v = (1, 0, 1, 0). By construction, $B \cap Stab(v) = \{I\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq \operatorname{GL}_d(\mathbb{Z}), d \geq 4$. \square

Corollary

For $d \geqslant 4$, there exist \mathbb{Z}^d -by-free groups with unsolvable conjugacy problem.

Question

Playing with 2 extra dimensions...

These orbit undecidable examples $\Gamma \leqslant GL_4(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.

For $d \ge 6$, $GL_d(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups

Proof. Let $d \ge 6$

- Since $d-2\geqslant 4$, there exists $\langle g_1,\ldots,g_m\rangle=\Gamma\leqslant \operatorname{GL}_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_m = \langle f_1, \dots, f_m \rangle$, and choose matrices $s_1, \dots, s_m \in GL_2(\mathbb{Z})$ such that $\langle s_1, \dots, s_m \rangle \simeq F_m$.
- Consider the homomorphism given by

$$\phi: F_m \to \operatorname{GL}_d(\mathbb{Z})
f_i \mapsto \begin{pmatrix} g_i & 0 \\ 0 & s_i \end{pmatrix}$$

Playing with 2 extra dimensions...

These orbit undecidable examples $\Gamma \leqslant GL_4(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \ge 6$, $GL_d(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Proof. Let $d \ge 6$.

- Since $d-2\geqslant 4$, there exists $\langle g_1,\ldots,g_m\rangle=\Gamma\leqslant \operatorname{GL}_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_m = \langle f_1, \dots, f_m \rangle$, and choose matrices $s_1, \dots, s_m \in GL_2(\mathbb{Z})$ such that $\langle s_1, \dots, s_m \rangle \simeq F_m$.
- Consider the homomorphism given by

$$\begin{array}{ccc} \phi : F_m & \to & \operatorname{GL}_d(\mathbb{Z}) \\ f_i & \mapsto & \left(\begin{array}{cc} g_i & 0 \\ 0 & s_i \end{array} \right) \end{array}$$

These orbit undecidable examples $\Gamma \leqslant GL_4(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \ge 6$, $GL_d(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

- Since $d-2\geqslant 4$, there exists $\langle g_1,\ldots,g_m\rangle=\Gamma\leqslant \operatorname{GL}_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_m = \langle f_1, \dots, f_m \rangle$, and choose matrices $s_1, \dots, s_m \in GL_2(\mathbb{Z})$ such that $\langle s_1, \dots, s_m \rangle \simeq F_m$.
- Consider the homomorphism given by

$$\phi: F_m \to \operatorname{GL}_d(\mathbb{Z})
f_i \mapsto \begin{pmatrix} g_i & 0 \\ 0 & s_i \end{pmatrix}$$

These orbit undecidable examples $\Gamma \leqslant GL_4(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \ge 6$, $GL_d(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

- Since $d-2\geqslant 4$, there exists $\langle g_1,\ldots,g_m\rangle=\Gamma\leqslant \operatorname{GL}_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_m = \langle f_1, \dots, f_m \rangle$, and choose matrices $s_1, \dots, s_m \in GL_2(\mathbb{Z})$ such that $\langle s_1, \dots, s_m \rangle \simeq F_m$.
- Consider the homomorphism given by

$$\phi: F_m \to \operatorname{GL}_d(\mathbb{Z})
f_i \mapsto \begin{pmatrix} g_i & 0 \\ 0 & s_i \end{pmatrix}$$

These orbit undecidable examples $\Gamma \leqslant GL_4(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \ge 6$, $GL_d(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

- Since $d-2\geqslant 4$, there exists $\langle g_1,\ldots,g_m\rangle=\Gamma\leqslant \operatorname{GL}_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_m = \langle f_1, \dots, f_m \rangle$, and choose matrices $s_1, \dots, s_m \in GL_2(\mathbb{Z})$ such that $\langle s_1, \dots, s_m \rangle \simeq F_m$.
- Consider the homomorphism given by

$$\phi: F_m \to \operatorname{GL}_d(\mathbb{Z})
f_i \mapsto \begin{pmatrix} g_i & 0 \\ 0 & s_i \end{pmatrix}$$

These orbit undecidable examples $\Gamma \leqslant GL_4(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \ge 6$, $GL_d(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

- Since $d-2 \ge 4$, there exists $\langle g_1, \ldots, g_m \rangle = \Gamma \le GL_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_m = \langle f_1, \dots, f_m \rangle$, and choose matrices $s_1, \dots, s_m \in GL_2(\mathbb{Z})$ such that $\langle s_1, \ldots, s_m \rangle \simeq F_m$.
- Consider the homomorphism given by

$$\phi: F_m \to \operatorname{GL}_d(\mathbb{Z})
f_i \mapsto \begin{pmatrix} g_i & 0 \\ 0 & s_i \end{pmatrix}$$

- Since $\langle s_1, \ldots, s_m \rangle \leqslant GL_2(\mathbb{Z})$ is free with basis $\{s_1, \ldots, s_m\}$, then ϕ must be one-to-one, and its image F is a free subgroup of $GL_d(\mathbb{Z})$ or rank m.
- Easy to see that $F \leqslant \operatorname{GL}_d(\mathbb{Z})$ is orbit undecidable (using the orbit undecidability of $\langle g_1, \ldots, g_m \rangle = \Gamma \leqslant \operatorname{GL}_{d-2}(\mathbb{Z})$). \square

In summary

For $d \geqslant 6$, there exists a free $\Gamma \leqslant GL_d(\mathbb{Z})$ such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable CP.

- Since $\langle s_1, \ldots, s_m \rangle \leqslant GL_2(\mathbb{Z})$ is free with basis $\{s_1, \ldots, s_m\}$, then ϕ must be one-to-one, and its image F is a free subgroup of $GL_d(\mathbb{Z})$ or rank m.
- Easy to see that $F \leqslant \operatorname{GL}_d(\mathbb{Z})$ is orbit undecidable (using the orbit undecidability of $\langle g_1, \dots, g_m \rangle = \Gamma \leqslant \operatorname{GL}_{d-2}(\mathbb{Z})$). \square

In summary,

For $d \geqslant 6$, there exists a free $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$ such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable CP.

- Since $\langle s_1, \ldots, s_m \rangle \leqslant GL_2(\mathbb{Z})$ is free with basis $\{s_1, \ldots, s_m\}$, then ϕ must be one-to-one, and its image F is a free subgroup of $GL_d(\mathbb{Z})$ or rank m.
- Easy to see that $F \leqslant \operatorname{GL}_d(\mathbb{Z})$ is orbit undecidable (using the orbit undecidability of $\langle g_1, \dots, g_m \rangle = \Gamma \leqslant \operatorname{GL}_{d-2}(\mathbb{Z})$). \square

In summary,

For $d \geqslant 6$, there exists a free $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$ such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable CP.

Outline

- 1 Introduction
- Strategy of the proof
- Orbit decidability
- 4 Automaton groups

Tree automorphisms

(joint work with Z. Sunic)

Let X be an alphabet on k letters, and let X^* be the free monoid on X, thought as a rooted k-ary tree:

Tree automorphisms

(joint work with Z. Sunic)

Let X be an alphabet on k letters, and let X^* be the free monoid on X, thought as a rooted k-ary tree:

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group G(A) of tree automorphisms generated by an automaton A is called an automaton group.

Theorem (Sunic-V.)

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group G(A) of tree automorphisms generated by an automaton A is called an automaton group.

Theorem (Sunic-V.)

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group G(A) of tree automorphisms generated by an automaton A is called an automaton group.

Theorem (Sunic-V.)

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group G(A) of tree automorphisms generated by an automaton A is called an automaton group.

Theorem (Sunic-V.)

Conclusion

So, we have proved that

Theorem

For $d \geqslant 6$, there exists $\Gamma \leqslant GL_d(\mathbb{Z})$ free and orbit undecidable. Hence, the group $\mathbb{Z}^d \rtimes \Gamma$

- is an automaton group,
- is free abelian-by-free,
- has unsolvable conjugacy problem.

THANKS