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• φ ∈ Aut(Fn) (acting on the right, x 7→ xφ).

• Mφ = Fn oφ Z = 〈x1, . . . , xn, t | t−1xit = xiφ〉 the mapping torus

of φ.

• φ, ψ, . . . ∈ Aut(Fn) and Φ,Ψ, . . . ∈ Aut(Mφ).

• [φ] ∈ Out(Fn) = Aut(Fn)/Inn(Fn), φab ∈ GLn(Z).

• γw : Fn → Fn Γg : Mφ → Mφ w ∈ Fn, g ∈Mφ

x 7→ w−1xw x 7→ g−1xg

.
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Although Mφ have received a great deal of attention in recent

years, very few is known about Aut(Mφ). Interesting questions:

• Are Aut(Mφ) and Out(Mφ) finitely generated ?

• Are Aut(Mφ) and Out(Mφ) finitely presented ?

• Find an explicit presentation for Aut(Mφ) and Out(Mφ).

• Understand the structure of Aut(Mφ) and Out(Mφ).
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By using relations wt = t(wφ) and wt−1 = t−1(wφ−1),

Mφ has a left normal form:

∀g ∈Mφ ∃!k ∈ Z ∃!w ∈ Fn, g = tkw.

Lemma. Let n ≥ 2, Fn, φ ∈ Aut(Fn) and Mφ be as above. The

group Mφ has non-trivial center if and only if φk = γw for some

k 6= 0 and some w ∈ Fn with wφ = w.
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Proposition. Let n ≥ 2, Fn, φ ∈ Aut(Fn) and Mφ be as above.

Let Ψ ∈ Aut(Mφ) be such that FnΨ 6 Fn, and let ψ : Fn → Fn be

its restriction to Fn. Then,

i) ψ is an automorphism of Fn,

ii) writing tΨ = tεw, we have φψ = ψφεγw.



Unfortunately, this is not the full story:

For every vector (r1, . . . , rn) ∈ Zn, the group M = MId = Fn × Z
admit the following automorphism:

M → M
x1 7→ tr1x1

· · ·
xn 7→ trnxn
t 7→ t±1

where Fn = 〈x1, . . . , xn〉 is far from invariant.
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(a) M ab
φ is the direct sum of Z and a finite abelian group,

(b) the matrix φab does not have eigenvalue 1,
(c) Fn 6 Mφ is the unique normal subgroup of Mφ with quotient
isomorphic to Z.

Furthermore, if these conditions hold then every automorphism
of Mφ leaves Fn invariant,

Aut+(Mφ) = {Ψ ∈ Aut(Mφ) | Ψ is positive}

is a normal subgroup of Aut(Mφ) of index at most 2, and its
image Out+(Mφ) in Out(Mφ) is also normal, of index at most
two, and isomorphic to C([φ])/〈[φ]〉, where C([φ]) denotes the
centralizer of [φ] in Out(Fn).



In the extreme opposite case,

Theorem. Let n > 2 and let M = MId = Fn × Z. Then,

Aut(M) ∼= (Zn o C2) oAut(Fn),

Out(M) ∼= (Zn o C2) oOut(Fn),

where C2 acts on Zn by sending u to −u; and Aut(Fn) (and also

Out(Fn)) acts on Zn o C2 by the trivial action on C2, and the

natural action after abelianization on Zn.

We remark that Aut+(M) ∼= Aut(Fn) (t goes always to t).



In the case of rank n = 2, we give a complete description:

Theorem. Let F2 = 〈a, b〉, φ ∈ Aut(F2), Mφ and φab ∈ GL2(Z)

be as above.

i) If φab = I2, then Out(Mφ)
∼= (Z2 o C2) oGL2(Z).

ii) If φab = −I2, then Out(Mφ)
∼= PGL2(Z)× C2.

iii) If φab 6= −I2 and does not have 1 as an eigenvalue, then

Out(Mφ) is finite.

iv) If φab is conjugate to
(

1 k
0 −1

)
, then Out(Mφ) is virtually-Z.

v) If φab is conjugate to
(

1 k
0 1

)
, then Out(Mφ) is virtually-Z

Furthermore, for every φ ∈ Aut(F2), φ
ab fits into exactly one of

the above cases.
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Corollary. Let F2 = 〈a, b〉 be a free group of rank 2 and let

φ, ψ ∈ Aut(F2). The groups Mφ and Mψ are isomorphic if and

only if [φ] and [ψ]±1 are conjugate in Out(F2).

“If”: This is a straightforward exercise (for arbitrary n).

“Only if”: Mφ
∼= Mψ implies Out(Mφ)

∼= Out(Mψ), so φ and ψ

fit simultaneously into one of cases (i)-(v). Then, [φ] and [ψ]±1

are conjugate in Out(F2) = GL2(Z).
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∼= 〈 s0, s1, s2, t | t−1s0t = s1, t
−1s1t = s2, t

−1s2t = s−1
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−1
1 〉

∼= Mφ,

where φ : F3 → F3
s0 7→ s1
s1 7→ s2
s2 7→ s−1

0 s21s2s
−1
1

(note that |φab| =

∣∣∣∣∣∣∣
0 0 −1
1 0 1
0 1 1

∣∣∣∣∣∣∣ = −1).
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where ψ : F3 → F3
t−2 7→ t−1
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Thus, Mφ
∼= Mψ

∼= G, while [φ], [ψ]±1 ∈ Out(F3) are not conju-

gate to each other.
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