The automorphism group

of a free-by-cyclic group

(joint work with A. Martino, O. Bogopolski)
Communications in Algebra 35 (5) 1675-1690, (2007)

E. Ventura
(Universitat Politècnica Catalunya)

Jul. 13, 2007

- $F_{n}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ the free group on $\left\{x_{1}, \ldots, x_{n}\right\}(n \geq 2)$.
- $F_{n}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ the free group on $\left\{x_{1}, \ldots, x_{n}\right\}(n \geq 2)$.
- $\phi \in \operatorname{Aut}\left(F_{n}\right)$ (acting on the right, $x \mapsto x \phi$).
- $F_{n}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ the free group on $\left\{x_{1}, \ldots, x_{n}\right\}(n \geq 2)$.
- $\phi \in \operatorname{Aut}\left(F_{n}\right) \quad$ (acting on the right, $x \mapsto x \phi$).
- $M_{\phi}=F_{n} \rtimes_{\phi} \mathbb{Z}=\left\langle x_{1}, \ldots, x_{n}, t \mid t^{-1} x_{i} t=x_{i} \phi\right\rangle$ the mapping torus of ϕ.
- $F_{n}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ the free group on $\left\{x_{1}, \ldots, x_{n}\right\}(n \geq 2)$.
- $\phi \in \operatorname{Aut}\left(F_{n}\right) \quad$ (acting on the right, $x \mapsto x \phi$).
- $M_{\phi}=F_{n} \rtimes_{\phi} \mathbb{Z}=\left\langle x_{1}, \ldots, x_{n}, t \mid t^{-1} x_{i} t=x_{i} \phi\right\rangle$ the mapping torus of ϕ.
- $\phi, \psi, \ldots \in \operatorname{Aut}\left(F_{n}\right)$ and $\Phi, \Psi, \ldots \in \operatorname{Aut}\left(M_{\phi}\right)$.
- $F_{n}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ the free group on $\left\{x_{1}, \ldots, x_{n}\right\}(n \geq 2)$.
- $\phi \in \operatorname{Aut}\left(F_{n}\right) \quad$ (acting on the right, $x \mapsto x \phi$).
- $M_{\phi}=F_{n} \rtimes_{\phi} \mathbb{Z}=\left\langle x_{1}, \ldots, x_{n}, t \mid t^{-1} x_{i} t=x_{i} \phi\right\rangle$ the mapping torus of ϕ.
- $\phi, \psi, \ldots \in \operatorname{Aut}\left(F_{n}\right)$ and $\Phi, \Psi, \ldots \in \operatorname{Aut}\left(M_{\phi}\right)$.
- $[\phi] \in \operatorname{Out}\left(F_{n}\right)=\operatorname{Aut}\left(F_{n}\right) / \operatorname{Inn}\left(F_{n}\right), \phi^{\mathrm{ab}} \in G L_{n}(\mathbb{Z})$.
- $F_{n}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ the free group on $\left\{x_{1}, \ldots, x_{n}\right\}(n \geq 2)$.
- $\phi \in \operatorname{Aut}\left(F_{n}\right) \quad$ (acting on the right, $x \mapsto x \phi$).
- $M_{\phi}=F_{n} \rtimes_{\phi} \mathbb{Z}=\left\langle x_{1}, \ldots, x_{n}, t \mid t^{-1} x_{i} t=x_{i} \phi\right\rangle$ the mapping torus of ϕ.
- $\phi, \psi, \ldots \in \operatorname{Aut}\left(F_{n}\right)$ and $\Phi, \Psi, \ldots \in \operatorname{Aut}\left(M_{\phi}\right)$.
- $[\phi] \in \operatorname{Out}\left(F_{n}\right)=\operatorname{Aut}\left(F_{n}\right) / \operatorname{Inn}\left(F_{n}\right), \phi^{\mathrm{ab}} \in G L_{n}(\mathbb{Z})$.
- $\gamma_{w}: F_{n} \rightarrow F_{n}$

$$
\Gamma_{g}: M_{\phi} \rightarrow M_{\phi} \quad w \in F_{n}, g \in M_{\phi}
$$

Although M_{ϕ} have received a great deal of attention in recent years, very few is known about $\operatorname{Aut}\left(M_{\phi}\right)$. Interesting questions:

- Are $\operatorname{Aut}\left(M_{\phi}\right)$ and $\operatorname{Out}\left(M_{\phi}\right)$ finitely generated ?

Although M_{ϕ} have received a great deal of attention in recent years, very few is known about $\operatorname{Aut}\left(M_{\phi}\right)$. Interesting questions:

- Are $\operatorname{Aut}\left(M_{\phi}\right)$ and $\operatorname{Out}\left(M_{\phi}\right)$ finitely generated ?
- Are $\operatorname{Aut}\left(M_{\phi}\right)$ and $\operatorname{Out}\left(M_{\phi}\right)$ finitely presented ?

Although M_{ϕ} have received a great deal of attention in recent years, very few is known about $\operatorname{Aut}\left(M_{\phi}\right)$. Interesting questions:

- Are $\operatorname{Aut}\left(M_{\phi}\right)$ and $\operatorname{Out}\left(M_{\phi}\right)$ finitely generated ?
- Are $\operatorname{Aut}\left(M_{\phi}\right)$ and $\operatorname{Out}\left(M_{\phi}\right)$ finitely presented ?
- Find an explicit presentation for $\operatorname{Aut}\left(M_{\phi}\right)$ and $\operatorname{Out}\left(M_{\phi}\right)$.

Although M_{ϕ} have received a great deal of attention in recent years, very few is known about $\operatorname{Aut}\left(M_{\phi}\right)$. Interesting questions:

- Are $\operatorname{Aut}\left(M_{\phi}\right)$ and $\operatorname{Out}\left(M_{\phi}\right)$ finitely generated ?
- Are $\operatorname{Aut}\left(M_{\phi}\right)$ and $\operatorname{Out}\left(M_{\phi}\right)$ finitely presented ?
- Find an explicit presentation for $\operatorname{Aut}\left(M_{\phi}\right)$ and $\operatorname{Out}\left(M_{\phi}\right)$.
- Understand the structure of $\operatorname{Aut}\left(M_{\phi}\right)$ and $\operatorname{Out}\left(M_{\phi}\right)$.

By using relations $\quad w t=t(w \phi)$ and $\quad w t^{-1}=t^{-1}\left(w \phi^{-1}\right)$, M_{ϕ} has a left normal form:

$$
\forall g \in M_{\phi} \quad \exists!k \in \mathbb{Z} \quad \exists!w \in F_{n}, \quad g=t^{k} w .
$$

By using relations $\quad w t=t(w \phi) \quad$ and $\quad w t^{-1}=t^{-1}\left(w \phi^{-1}\right)$, M_{ϕ} has a left normal form:

$$
\forall g \in M_{\phi} \quad \exists!k \in \mathbb{Z} \quad \exists!w \in F_{n}, \quad g=t^{k} w
$$

Lemma. Let $n \geq 2, F_{n}, \phi \in A u t\left(F_{n}\right)$ and M_{ϕ} be as above. The group M_{ϕ} has non-trivial center if and only if $\phi^{k}=\gamma_{w}$ for some $k \neq 0$ and some $w \in F_{n}$ with $w \phi=w$.

The easiest autos of M_{ϕ} are those leaving F_{n} invariant (and so, $\left.t \mapsto t^{ \pm 1} w\right)$. They are called positive or negative.

The easiest autos of M_{ϕ} are those leaving F_{n} invariant (and so, $\left.t \mapsto t^{ \pm 1} w\right)$. They are called positive or negative.

Proposition. Let $n \geq 2, F_{n}, \phi \in A u t\left(F_{n}\right)$ and M_{ϕ} be as above. Let $\Psi \in \operatorname{Aut}\left(M_{\phi}\right)$ be such that $F_{n} \Psi \leqslant F_{n}$, and let $\psi: F_{n} \rightarrow F_{n}$ be its restriction to F_{n}. Then,
i) ψ is an automorphism of F_{n},
ii) writing $t \Psi=t^{\epsilon} w$, we have $\phi \psi=\psi \phi^{\epsilon} \gamma_{w}$.

Unfortunately, this is not the full story:

For every vector $\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{Z}^{n}$, the group $M=M_{I d}=F_{n} \times \mathbb{Z}$ admit the following automorphism:

$$
\begin{array}{rll}
M & \rightarrow & M \\
x_{1} & \mapsto & t^{r_{1}} x_{1} \\
& \cdots & \\
x_{n} & \mapsto & t^{r_{n}} x_{n} \\
t & \mapsto & t^{ \pm 1}
\end{array}
$$

where $F_{n}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is far from invariant.

Theorem. Let $n \geq 2, F_{n}, \phi \in \operatorname{Aut}\left(F_{n}\right), M_{\phi}, \phi^{\mathrm{ab}}$ and [ϕ] be as above. The following are equivalent:
(a) M_{ϕ}^{ab} is the direct sum of \mathbb{Z} and a finite abelian group,
(b) the matrix ϕ^{ab} does not have eigenvalue 1 ,
(c) $F_{n} \leqslant M_{\phi}$ is the unique normal subgroup of M_{ϕ} with quotient isomorphic to \mathbb{Z}.

Theorem. Let $n \geq 2, F_{n}, \phi \in \operatorname{Aut}\left(F_{n}\right), M_{\phi}, \phi^{\mathrm{ab}}$ and [ϕ] be as above. The following are equivalent:
(a) $M_{\phi}^{\text {ab }}$ is the direct sum of \mathbb{Z} and a finite abelian group,
(b) the matrix ϕ^{ab} does not have eigenvalue 1 ,
(c) $F_{n} \leqslant M_{\phi}$ is the unique normal subgroup of M_{ϕ} with quotient isomorphic to \mathbb{Z}.

Furthermore, if these conditions hold then every automorphism of M_{ϕ} leaves F_{n} invariant,

$$
\text { Aut }^{+}\left(M_{\phi}\right)=\left\{\Psi \in \operatorname{Aut}\left(M_{\phi}\right) \mid \Psi \text { is positive }\right\}
$$

is a normal subgroup of $\operatorname{Aut}\left(M_{\phi}\right)$ of index at most 2, and its image Out ${ }^{+}\left(M_{\phi}\right)$ in $\operatorname{Out}\left(M_{\phi}\right)$ is also normal, of index at most two, and isomorphic to $C([\phi]) /\langle[\phi]\rangle$, where $C([\phi])$ denotes the centralizer of $[\phi] \operatorname{in} \operatorname{Out}\left(F_{n}\right)$.

In the extreme opposite case,

Theorem. Let $n \geqslant 2$ and let $M=M_{I d}=F_{n} \times \mathbb{Z}$. Then,

$$
\begin{aligned}
\operatorname{Aut}(M) & \cong\left(\mathbb{Z}^{n} \rtimes C_{2}\right) \rtimes \operatorname{Aut}\left(F_{n}\right), \\
\operatorname{Out}(M) & \cong\left(\mathbb{Z}^{n} \rtimes C_{2}\right) \rtimes \operatorname{Out}\left(F_{n}\right),
\end{aligned}
$$

where C_{2} acts on \mathbb{Z}^{n} by sending u to $-u$; and $A u t\left(F_{n}\right)$ (and also $\operatorname{Out}\left(F_{n}\right)$) acts on $Z^{n} \rtimes C_{2}$ by the trivial action on C_{2}, and the natural action after abelianization on \mathbb{Z}^{n}.

We remark that $A u t^{+}(M) \cong A u t\left(F_{n}\right) \quad(t$ goes always to $t)$.

In the case of rank $n=2$, we give a complete description:

Theorem. Let $F_{2}=\langle a, b\rangle, \phi \in \operatorname{Aut}\left(F_{2}\right), M_{\phi}$ and $\phi^{\mathrm{ab}} \in G L_{2}(\mathbb{Z})$ be as above.
i) If $\phi^{\mathrm{ab}}=I_{2}$, then $\operatorname{Out}\left(M_{\phi}\right) \cong\left(\mathbb{Z}^{2} \rtimes C_{2}\right) \rtimes G L_{2}(\mathbb{Z})$.
ii) If $\phi^{\mathrm{ab}}=-I_{2}$, then $\operatorname{Out}\left(M_{\phi}\right) \cong P G L_{2}(\mathbb{Z}) \times C_{2}$.
iii) If $\phi^{\mathrm{ab}} \neq-I_{2}$ and does not have 1 as an eigenvalue, then Out $\left(M_{\phi}\right)$ is finite.
iv) If ϕ^{ab} is conjugate to $\left(\begin{array}{cc}1 & k \\ 0 & -1\end{array}\right)$, then $\operatorname{Out}\left(M_{\phi}\right)$ is virtually- \mathbb{Z}.
v) If ϕ^{ab} is conjugate to $\left(\begin{array}{cc}1 & k \\ 0 & 1\end{array}\right)$, then $\operatorname{Out}\left(M_{\phi}\right)$ is virtually- \mathbb{Z}

Furthermore, for every $\phi \in A u t\left(F_{2}\right), \phi^{\text {ab }}$ fits into exactly one of the above cases.

Corollary. Let $F_{2}=\langle a, b\rangle$ be a free group of rank 2 and let $\phi, \psi \in \operatorname{Aut}\left(F_{2}\right)$. The groups M_{ϕ} and M_{ψ} are isomorphic if and only if $[\phi]$ and $[\psi]^{ \pm 1}$ are conjugate in $\operatorname{Out}\left(F_{2}\right)$.

Corollary. Let $F_{2}=\langle a, b\rangle$ be a free group of rank 2 and let $\phi, \psi \in \operatorname{Aut}\left(F_{2}\right)$. The groups M_{ϕ} and M_{ψ} are isomorphic if and only if $[\phi]$ and $[\psi]^{ \pm 1}$ are conjugate in $\operatorname{Out}\left(F_{2}\right)$.
"If": This is a straightforward exercise (for arbitrary n).

Corollary. Let $F_{2}=\langle a, b\rangle$ be a free group of rank 2 and let $\phi, \psi \in \operatorname{Aut}\left(F_{2}\right)$. The groups M_{ϕ} and M_{ψ} are isomorphic if and only if $[\phi]$ and $[\psi]^{ \pm 1}$ are conjugate in $\operatorname{Out}\left(F_{2}\right)$.
"If": This is a straightforward exercise (for arbitrary n).
"Only if": $M_{\phi} \cong M_{\psi}$ implies $\operatorname{Out}\left(M_{\phi}\right) \cong \operatorname{Out}\left(M_{\psi}\right)$, so ϕ and ψ fit simultaneously into one of cases (i)-(v). Then, $[\phi]$ and $[\psi]^{ \pm 1}$ are conjugate in $\operatorname{Out}\left(F_{2}\right)=G L_{2}(\mathbb{Z})$.

The "Only if" part is not true for higher rank. We thank J. Porti and W . Dicks for help in finding this example:

$$
G=\left\langle s, t \mid t^{-3} s t^{2} s t^{-1} s^{-1} t s^{-2} t s\right\rangle
$$

The "Only if" part is not true for higher rank. We thank J. Porti and W . Dicks for help in finding this example:

$$
G=\left\langle s, t \mid t^{-3} s t^{2} s t^{-1} s^{-1} t s^{-2} t s\right\rangle
$$

On one hand we have

$$
\begin{gathered}
G \cong\left\langle s_{0}, s_{1}, s_{2}, s_{3}, t\right| s_{1}=t^{-1} s_{0} t, s_{2}=t^{-1} s_{1} t, s_{3}=t^{-1} s_{2} t \\
\left.s_{3} s_{1} s_{2}^{-1} s_{1}^{-2} s_{0}=1\right\rangle
\end{gathered}
$$

The "Only if" part is not true for higher rank. We thank J. Porti and W . Dicks for help in finding this example:

$$
G=\left\langle s, t \mid t^{-3} s t^{2} s t^{-1} s^{-1} t s^{-2} t s\right\rangle
$$

On one hand we have

$$
\begin{aligned}
& G \cong\left\langle s_{0}, s_{1}, s_{2}, s_{3}, t\right| \\
& s_{1}=t^{-1} s_{0} t, s_{2}=t^{-1} s_{1} t, s_{3}=t^{-1} s_{2} t \\
&\left.s_{3} s_{1} s_{2}^{-1} s_{1}^{-2} s_{0}=1\right\rangle
\end{aligned}
$$

The "Only if" part is not true for higher rank. We thank J. Porti and W . Dicks for help in finding this example:

$$
G=\left\langle s, t \mid t^{-3} s t^{2} s t^{-1} s^{-1} t s^{-2} t s\right\rangle
$$

On one hand we have

$$
\begin{aligned}
G & \cong\left\langle s_{0}, s_{1}, s_{2}, s_{3}, t\right| \begin{array}{l}
s_{1}=t^{-1} s_{0} t, s_{2}=t^{-1} s_{1} t, s_{3}=t^{-1} s_{2} t \\
\\
\\
\left.s_{3} s_{1} s_{2}^{-1} s_{1}^{-2} s_{0}=1\right\rangle
\end{array} \\
& \cong\left\langle s_{0}, s_{1}, s_{2}, t \mid t^{-1} s_{0} t=s_{1}, t^{-1} s_{1} t=s_{2}, t^{-1} s_{2} t=s_{0}^{-1} s_{1}^{2} s_{2} s_{1}^{-1}\right\rangle \\
& \cong M_{\phi}
\end{aligned}
$$

where $\begin{aligned} & \phi: F_{3} \rightarrow \\ & s_{3} \\ & s_{0} \mapsto\end{aligned} s_{1} \quad \quad$ (note that $\left|\phi^{\mathrm{ab}}\right|=\left|\begin{array}{ccc}0 & 0 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right|=-1$).
$s_{1} \longmapsto s_{2}$
$s_{2} \mapsto s_{0}^{-1} s_{1}^{2} s_{2} s_{1}^{-1}$

On the other hand,

$$
\begin{gathered}
G \cong\left\langle t_{-2}, t_{-1}, t_{0}, t_{1}, s\right| t_{-1}=s^{-1} t_{-2} s, t_{0}=s^{-1} t_{-1} s, t_{1}=s^{-1} t_{0} s \\
\left.t_{0}^{-3} t_{-1}^{2} t_{-2}^{-1} t_{-1} t_{1}=1\right\rangle
\end{gathered}
$$

On the other hand,

$$
\begin{gathered}
G \cong\left\langle t_{-2}, t_{-1}, t_{0}, t_{1}, s\right| t_{-1}=s^{-1} t_{-2} s, t_{0}=s^{-1} t_{-1} s, t_{1}=s^{-1} t_{0} s \\
\left.t_{0}^{-3} t_{-1}^{2} t_{-2}^{-1} t_{-1} t_{1}=1\right\rangle \\
\cong\left\langle t_{-2}, t_{-1}, t_{0}, s\right| s^{-1} t_{-2} s=t_{-1}, s^{-1} t_{-1} s=t_{0} \\
\left.s^{-1} t_{0} s=t_{-1}^{-1} t_{-2} t_{-1}^{-2} t_{0}^{3}\right\rangle
\end{gathered}
$$

On the other hand,

$$
\begin{aligned}
& G \cong\left\langle t_{-2}, t_{-1}, t_{0}, t_{1}, s\right| t_{-1}=s^{-1} t_{-2} s, t_{0}=s^{-1} t_{-1} s, t_{1}=s^{-1} t_{0} s, \\
&\left.t_{0}^{-3} t_{-1}^{2} t_{-2}^{-1} t_{-1} t_{1}=1\right\rangle \\
& \cong\left\langle t_{-2}, t_{-1}, t_{0}, s\right| s^{-1} t_{-2} s=t_{-1}, s^{-1} t_{-1} s=t_{0} \\
&\left.s^{-1} t_{0} s=t_{-1}^{-1} t_{-2} t_{-1}^{-2} t_{0}^{3}\right\rangle \\
& \cong M_{\psi}
\end{aligned}
$$

where $\begin{aligned} & \psi: F_{3} \rightarrow \\ & F_{3} \\ & t_{-2} \mapsto\end{aligned} t_{-1} \quad \quad$ (note that $\left|\phi^{\mathrm{ab}}\right|=\left|\begin{array}{ccc}0 & 0 & 1 \\ 1 & 0 & -3 \\ 0 & 1 & 3\end{array}\right|=1$).

On the other hand,

$$
\begin{gathered}
G \cong\left\langle t_{-2}, t_{-1}, t_{0}, t_{1}, s\right| t_{-1}=s^{-1} t_{-2} s, t_{0}=s^{-1} t_{-1} s, t_{1}=s^{-1} t_{0} s \\
\left.t_{0}^{-3} t_{-1}^{2} t_{-2}^{-1} t_{-1} t_{1}=1\right\rangle \\
\cong\left\langle t_{-2}, t_{-1}, t_{0}, s\right| s^{-1} t_{-2} s=t_{-1}, s^{-1} t_{-1} s=t_{0} \\
\left.s^{-1} t_{0} s=t_{-1}^{-1} t_{-2} t_{-1}^{-2} t_{0}^{3}\right\rangle
\end{gathered}
$$

$$
\cong M_{\psi}
$$

where $\psi: F_{3} \rightarrow F_{3}$

$$
\begin{aligned}
t_{-2} & \mapsto t_{-1} \\
t_{-1} & \mapsto t_{0} \\
t_{0} & \mapsto t_{-1}^{-1} t_{-2} t_{-1}^{-2} t_{0}^{3}
\end{aligned}
$$

Thus, $M_{\phi} \cong M_{\psi} \cong G$, while $[\phi],[\psi]^{ \pm 1} \in \operatorname{Out}\left(F_{3}\right)$ are not conjugate to each other.

THANKS

