The automorphism group

of a free-by-cyclic group

(joint work with A. Martino, O. Bogopolski)

Communications in Algebra **35 (5)** 1675–1690, (2007)

E. Ventura

(Universitat Politècnica Catalunya)

Jul. 13, 2007

• $F_n = \langle x_1, \dots, x_n \rangle$ the free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$.

- $F_n = \langle x_1, \dots, x_n \rangle$ the free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$.
- $\phi \in Aut(F_n)$ (acting on the right, $x \mapsto x\phi$).

- $F_n = \langle x_1, \dots, x_n \rangle$ the free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$.
- $\phi \in Aut(F_n)$ (acting on the right, $x \mapsto x\phi$).
- $M_{\phi} = F_n \rtimes_{\phi} \mathbb{Z} = \langle x_1, \dots, x_n, t \mid t^{-1}x_it = x_i\phi \rangle$ the mapping torus of ϕ .

- $F_n = \langle x_1, \dots, x_n \rangle$ the free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$.
- $\phi \in Aut(F_n)$ (acting on the right, $x \mapsto x\phi$).
- $M_{\phi} = F_n \rtimes_{\phi} \mathbb{Z} = \langle x_1, \dots, x_n, t \mid t^{-1}x_it = x_i\phi \rangle$ the mapping torus of ϕ .
- $\phi, \psi, \ldots \in Aut(F_n)$ and $\Phi, \Psi, \ldots \in Aut(M_{\phi})$.

- $F_n = \langle x_1, \dots, x_n \rangle$ the free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$.
- $\phi \in Aut(F_n)$ (acting on the right, $x \mapsto x\phi$).
- $M_{\phi} = F_n \rtimes_{\phi} \mathbb{Z} = \langle x_1, \dots, x_n, t \mid t^{-1}x_it = x_i\phi \rangle$ the mapping torus of ϕ .
- $\phi, \psi, \ldots \in Aut(F_n)$ and $\Phi, \Psi, \ldots \in Aut(M_{\phi})$.
- $[\phi] \in Out(F_n) = Aut(F_n)/Inn(F_n), \ \phi^{ab} \in GL_n(\mathbb{Z}).$

- $F_n = \langle x_1, \dots, x_n \rangle$ the free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$.
- $\phi \in Aut(F_n)$ (acting on the right, $x \mapsto x\phi$).
- $M_{\phi} = F_n \rtimes_{\phi} \mathbb{Z} = \langle x_1, \dots, x_n, t \mid t^{-1}x_it = x_i\phi \rangle$ the mapping torus of ϕ .
- $\phi, \psi, \ldots \in Aut(F_n)$ and $\Phi, \Psi, \ldots \in Aut(M_{\phi})$.
- $[\phi] \in Out(F_n) = Aut(F_n)/Inn(F_n), \ \phi^{ab} \in GL_n(\mathbb{Z}).$

• Are $Aut(M_{\phi})$ and $Out(M_{\phi})$ finitely generated ?

- Are $Aut(M_{\phi})$ and $Out(M_{\phi})$ finitely generated ?
- Are $Aut(M_{\phi})$ and $Out(M_{\phi})$ finitely presented ?

- Are $Aut(M_{\phi})$ and $Out(M_{\phi})$ finitely generated ?
- Are $Aut(M_{\phi})$ and $Out(M_{\phi})$ finitely presented ?
- Find an explicit presentation for $Aut(M_{\phi})$ and $Out(M_{\phi})$.

- Are $Aut(M_{\phi})$ and $Out(M_{\phi})$ finitely generated ?
- Are $Aut(M_{\phi})$ and $Out(M_{\phi})$ finitely presented ?
- Find an explicit presentation for $Aut(M_{\phi})$ and $Out(M_{\phi})$.
- Understand the structure of $Aut(M_{\phi})$ and $Out(M_{\phi})$.

By using relations $wt=t(w\phi)$ and $wt^{-1}=t^{-1}(w\phi^{-1})$, M_ϕ has a left normal form:

 $\forall g \in M_{\phi} \quad \exists! k \in \mathbb{Z} \quad \exists! w \in F_n, \quad g = t^k w.$

By using relations $wt=t(w\phi)$ and $wt^{-1}=t^{-1}(w\phi^{-1})$, M_{ϕ} has a left normal form:

$$\forall g \in M_{\phi} \quad \exists! k \in \mathbb{Z} \quad \exists! w \in F_n, \quad g = t^k w.$$

Lemma. Let $n \ge 2$, F_n , $\phi \in Aut(F_n)$ and M_{ϕ} be as above. The group M_{ϕ} has non-trivial center if and only if $\phi^k = \gamma_w$ for some $k \ne 0$ and some $w \in F_n$ with $w\phi = w$.

The easiest autos of M_ϕ are those leaving F_n invariant (and so, $t\mapsto t^{\pm 1}w$). They are called positive or negative.

The easiest autos of M_{ϕ} are those leaving F_n invariant (and so, $t \mapsto t^{\pm 1}w$). They are called positive or negative.

Proposition. Let $n \geq 2$, F_n , $\phi \in Aut(F_n)$ and M_{ϕ} be as above. Let $\Psi \in Aut(M_{\phi})$ be such that $F_n\Psi \leqslant F_n$, and let $\psi \colon F_n \to F_n$ be its restriction to F_n . Then,

- i) ψ is an automorphism of F_n ,
- ii) writing $t\Psi = t^{\epsilon}w$, we have $\phi\psi = \psi\phi^{\epsilon}\gamma_w$.

Unfortunately, this is not the full story:

For every vector $(r_1, \ldots, r_n) \in \mathbb{Z}^n$, the group $M = M_{Id} = F_n \times \mathbb{Z}$ admit the following automorphism:

$$\begin{array}{cccc}
M & \to & M \\
x_1 & \mapsto & t^{r_1}x_1 \\
& \cdots & & \\
x_n & \mapsto & t^{r_n}x_n \\
t & \mapsto & t^{\pm 1}
\end{array}$$

where $F_n = \langle x_1, \dots, x_n \rangle$ is far from invariant.

Theorem. Let $n \geq 2$, F_n , $\phi \in Aut(F_n)$, M_{ϕ} , ϕ^{ab} and $[\phi]$ be as above. The following are equivalent:

- (a) $M_{\phi}^{\,\mathsf{ab}}$ is the direct sum of $\mathbb Z$ and a finite abelian group,
- (b) the matrix ϕ^{ab} does not have eigenvalue 1,
- (c) $F_n \leqslant M_{\phi}$ is the unique normal subgroup of M_{ϕ} with quotient isomorphic to \mathbb{Z} .

Theorem. Let $n \geq 2$, F_n , $\phi \in Aut(F_n)$, M_{ϕ} , ϕ^{ab} and $[\phi]$ be as above. The following are equivalent:

- (a) M_{ϕ}^{ab} is the direct sum of \mathbb{Z} and a finite abelian group,
- (b) the matrix ϕ^{ab} does not have eigenvalue 1,
- (c) $F_n \leqslant M_{\phi}$ is the unique normal subgroup of M_{ϕ} with quotient isomorphic to \mathbb{Z} .

Furthermore, if these conditions hold then every automorphism of M_{ϕ} leaves F_n invariant,

$$Aut^+(M_\phi) = \{ \Psi \in Aut(M_\phi) \mid \Psi \text{ is positive} \}$$

is a normal subgroup of $Aut(M_{\phi})$ of index at most 2, and its image $Out^+(M_{\phi})$ in $Out(M_{\phi})$ is also normal, of index at most two, and isomorphic to $C([\phi])/\langle [\phi] \rangle$, where $C([\phi])$ denotes the centralizer of $[\phi]$ in $Out(F_n)$.

In the extreme opposite case,

Theorem. Let
$$n \geqslant 2$$
 and let $M = M_{Id} = F_n \times \mathbb{Z}$. Then,
$$Aut(M) \cong (\mathbb{Z}^n \rtimes C_2) \rtimes Aut(F_n),$$

$$Out(M) \cong (\mathbb{Z}^n \rtimes C_2) \rtimes Out(F_n),$$

where C_2 acts on \mathbb{Z}^n by sending u to -u; and $Aut(F_n)$ (and also $Out(F_n)$) acts on $Z^n \rtimes C_2$ by the trivial action on C_2 , and the natural action after abelianization on \mathbb{Z}^n .

We remark that $Aut^+(M) \cong Aut(F_n)$ (t goes always to t).

In the case of rank n = 2, we give a complete description:

Theorem. Let $F_2 = \langle a, b \rangle$, $\phi \in Aut(F_2)$, M_{ϕ} and $\phi^{ab} \in GL_2(\mathbb{Z})$ be as above.

- i) If $\phi^{ab} = I_2$, then $Out(M_{\phi}) \cong (\mathbb{Z}^2 \rtimes C_2) \rtimes GL_2(\mathbb{Z})$.
- ii) If $\phi^{ab} = -I_2$, then $Out(M_{\phi}) \cong PGL_2(\mathbb{Z}) \times C_2$.
- iii) If $\phi^{ab} \neq -I_2$ and does not have 1 as an eigenvalue, then $Out(M_\phi)$ is finite.
- iv) If ϕ^{ab} is conjugate to $\begin{pmatrix} 1 & k \\ 0 & -1 \end{pmatrix}$, then $Out(M_{\phi})$ is virtually- \mathbb{Z} .
- v) If ϕ^{ab} is conjugate to $\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$, then $Out(M_\phi)$ is virtually- $\mathbb Z$

Furthermore, for every $\phi \in Aut(F_2)$, ϕ^{ab} fits into exactly one of the above cases.

Corollary. Let $F_2 = \langle a, b \rangle$ be a free group of rank 2 and let $\phi, \psi \in Aut(F_2)$. The groups M_{ϕ} and M_{ψ} are isomorphic if and only if $[\phi]$ and $[\psi]^{\pm 1}$ are conjugate in $Out(F_2)$.

Corollary. Let $F_2 = \langle a, b \rangle$ be a free group of rank 2 and let $\phi, \psi \in Aut(F_2)$. The groups M_{ϕ} and M_{ψ} are isomorphic if and only if $[\phi]$ and $[\psi]^{\pm 1}$ are conjugate in $Out(F_2)$.

"If": This is a straightforward exercise (for arbitrary n).

Corollary. Let $F_2 = \langle a, b \rangle$ be a free group of rank 2 and let $\phi, \psi \in Aut(F_2)$. The groups M_{ϕ} and M_{ψ} are isomorphic if and only if $[\phi]$ and $[\psi]^{\pm 1}$ are conjugate in $Out(F_2)$.

"If": This is a straightforward exercise (for arbitrary n).

"Only if": $M_{\phi} \cong M_{\psi}$ implies $Out(M_{\phi}) \cong Out(M_{\psi})$, so ϕ and ψ fit simultaneously into one of cases (i)-(v). Then, $[\phi]$ and $[\psi]^{\pm 1}$ are conjugate in $Out(F_2) = GL_2(\mathbb{Z})$.

$$G = \langle s, t \mid t^{-3}st^2st^{-1}s^{-1}ts^{-2}ts \rangle$$

$$G = \langle s, t \mid t^{-3}st^2st^{-1}s^{-1}ts^{-2}ts \rangle$$

On one hand we have

$$G \cong \langle s_0, s_1, s_2, s_3, t \mid s_1 = t^{-1}s_0t, s_2 = t^{-1}s_1t, s_3 = t^{-1}s_2t s_3s_1s_2^{-1}s_1^{-2}s_0 = 1 \rangle$$

$$G = \langle s, t \mid t^{-3}st^2st^{-1}s^{-1}ts^{-2}ts \rangle$$

On one hand we have

$$G \cong \langle s_0, s_1, s_2, s_3, t \mid s_1 = t^{-1}s_0t, s_2 = t^{-1}s_1t, s_3 = t^{-1}s_2t$$
$$s_3s_1s_2^{-1}s_1^{-2}s_0 = 1 \rangle$$

$$\cong \langle s_0, s_1, s_2, t \mid t^{-1}s_0t = s_1, t^{-1}s_1t = s_2, t^{-1}s_2t = s_0^{-1}s_1^2s_2s_1^{-1} \rangle$$

$$G = \langle s, t \mid t^{-3}st^2st^{-1}s^{-1}ts^{-2}ts \rangle$$

On one hand we have

$$G \cong \langle s_0, s_1, s_2, s_3, t \mid s_1 = t^{-1}s_0t, s_2 = t^{-1}s_1t, s_3 = t^{-1}s_2t$$

$$s_3s_1s_2^{-1}s_1^{-2}s_0 = 1 \rangle$$

$$\cong \langle s_0, s_1, s_2, t \mid t^{-1}s_0t = s_1, t^{-1}s_1t = s_2, t^{-1}s_2t = s_0^{-1}s_1^2s_2s_1^{-1} \rangle$$

$$\cong M_{\phi},$$

where
$$\phi\colon F_3\to F_3$$
 (note that $|\phi^{ab}|=\begin{vmatrix} 0 & 0 & -1 \\ 1 & 0 & 1\\ 0 & 1 & 1 \end{vmatrix}=-1$). $s_0\mapsto s_1$ $s_1\mapsto s_2$ $s_2\mapsto s_0^{-1}s_1^2s_2s_1^{-1}$

$$G \cong \langle t_{-2}, t_{-1}, t_0, t_1, s \mid t_{-1} = s^{-1}t_{-2}s, t_0 = s^{-1}t_{-1}s, t_1 = s^{-1}t_0s, t_0 = t_0^{-3}t_{-1}^2t_{-1}^{-1}t_1 = 1 \rangle$$

$$G \cong \langle t_{-2}, t_{-1}, t_0, t_1, s \mid t_{-1} = s^{-1}t_{-2}s, t_0 = s^{-1}t_{-1}s, t_1 = s^{-1}t_0s, t_0^{-3}t_{-1}^2t_{-1}^{-1}t_{-1}t_1 = 1 \rangle$$

$$\cong \langle t_{-2}, t_{-1}, t_0, s \mid s^{-1}t_{-2}s = t_{-1}, s^{-1}t_{-1}s = t_0$$

$$s^{-1}t_0s = t_{-1}^{-1}t_{-2}t_{-1}^{-2}t_0^3 \rangle$$

 $t_{-1} \mapsto t_0$

 $t_0 \mapsto t^{-1}t_{-2}t^{-2}t_0^3$

$$G \cong \langle t_{-2}, t_{-1}, t_0, t_1, s \mid t_{-1} = s^{-1}t_{-2}s, t_0 = s^{-1}t_{-1}s, t_1 = s^{-1}t_{0}s, t_0^{-3}t_{-1}^2t_{-1}^{-1}t_{-1} = 1 \rangle$$

$$\cong \langle t_{-2}, t_{-1}, t_0, s \mid s^{-1}t_{-2}s = t_{-1}, s^{-1}t_{-1}s = t_0$$

$$s^{-1}t_0s = t_{-1}^{-1}t_{-2}t_{-1}^{-2}t_0^3 \rangle$$

$$\cong M_{\psi}$$
where $\psi \colon F_3 \to F_3$ (note that $|\phi^{ab}| = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & -3 \\ 0 & 1 & 3 \end{vmatrix} = 1$).

$$G \cong \langle t_{-2}, t_{-1}, t_0, t_1, s \mid t_{-1} = s^{-1}t_{-2}s, t_0 = s^{-1}t_{-1}s, t_1 = s^{-1}t_{0}s, t_0^{-3}t_{-1}^2t_{-1}^2t_{-1}t_1 = 1 \rangle$$

$$\cong \langle t_{-2}, t_{-1}, t_0, s \mid s^{-1}t_{-2}s = t_{-1}, s^{-1}t_{-1}s = t_0$$

$$s^{-1}t_0s = t_{-1}^{-1}t_{-2}t_{-1}^{-2}t_0^3 \rangle$$

$$\cong M_{\psi}$$
where $\psi \colon F_3 \to F_3$ (note that $|\phi^{ab}| = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & -3 \\ 0 & 1 & 3 \end{vmatrix} = 1$).
$$t_{-2} \mapsto t_{-1}$$

$$t_{-1} \mapsto t_0$$

$$t_0 \mapsto t_{-1}^{-1}t_{-2}t_{-1}^{-2}t_0^3$$

Thus, $M_{\phi} \cong M_{\psi} \cong G$, while $[\phi]$, $[\psi]^{\pm 1} \in Out(F_3)$ are not conjugate to each other.

THANKS