1. Historical context	 CP for F_n-by-Z 	3. CP for Fn-by-Fm	4. Main result	

5. Applications

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

6. Negative results

The conjugacy problem and other algorithmically related questions

Enric Ventura

Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya

EMS-SCM joint meeting

Barcelona

May 28th, 2015.

1. Historical context	 CP for F_n-by-Z 	3. CP for Fn-by-Fm	Main result	5. Applications	Negative results

Mathematics Algebra **Group Theory**

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

1. Historical context	2. CP for <i>F</i> _{<i>n</i>} -by-ℤ 0000000000	3. CP for <i>Fn-</i> by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results

Mathematics Algebra

・ コット (雪) (小田) (コット 日)

1. Historical context	2. CP for <i>F</i> _{<i>n</i>} -by-ℤ 0000000000	3. CP for <i>Fn-</i> by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results

Mathematics Algebra **Group Theory**

・ コット (雪) (小田) (コット 日)

 Historical context 	 CP for F_n-by-Z 	3. CP for Fn-by-Fm	Main result	Applications	Negative results

Mathematics Algebra **Group Theory Discrete groups**

・ コット (雪) (小田) (コット 日)

1. Historical context	 CP for F_n-by-ℤ 	3. CP for Fn-by-Fm	Main result	Applications	Negative results

Mathematics Algebra **Group Theory Discrete groups** focus on algorithmic questions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

- - O. Bogopolski, A. Martino, O. Maslakova, E. Ventura, Freeby-cyclic groups have solvable conjugacy problem, Bulletin of the London Mathematical Society, 38(5) (2006), 787–794.
 - O. Bogopolski, A. Martino, E. Ventura, Orbit decidability and the conjugacy problem for extensions of groups, **Transactions of the American Mathematical Society** 362 (2010), 2003–2036.
 - V. Romanko'v, E. Ventura, Twisted conjugacy problem for endomorphisms of metabelian groups, **Algebra and Logic** 48(2) (2009), 89–98. Translation from **Algebra i Logika** 48(2) (2009), 157–173.
 - J. González-Meneses, E. Ventura, Twisted conjugacy in the braid group, **Israel Journal of Mathematics** 201 (2014), 455–476.
 - J. Burillo, F. Matucci, E. Ventura, The conjugacy problem for extensions of Thompson's group, to appear at **Israel Journal of Mathematics**.
 - Z. Sŭnic, E. Ventura, The conjugacy problem in automaton groups is not solvable, **Journal of Algebra** 364 (2012), 148–154.
 - E. Ventura, Group theoretic orbit decidability, **Groups, Complexity, Cryptology** 6(2) (2014), 133–148.

• • • •

- 1. Historical context
 2. CP for F_I-by-Z
 3. CP for F_I-by-F_I
 4. Main result
 5. Applications
 6. Negative result

 0000
 000000000
 000000
 00000000
 000000000
 000000000
 000000000
 - O. Bogopolski, A. Martino, O. Maslakova, E. Ventura, Freeby-cyclic groups have solvable conjugacy problem, Bulletin of the London Mathematical Society, 38(5) (2006), 787–794.
 - O. Bogopolski, A. Martino, E. Ventura, Orbit decidability and the conjugacy problem for extensions of groups, **Transactions of the American Mathematical Society** 362 (2010), 2003–2036.
 - V. Romanko'v, E. Ventura, Twisted conjugacy problem for endomorphisms of metabelian groups, **Algebra and Logic** 48(2) (2009), 89–98. Translation from **Algebra i Logika** 48(2) (2009), 157–173.
 - J. González-Meneses, E. Ventura, Twisted conjugacy in the braid group, **Israel Journal of Mathematics** 201 (2014), 455–476.
 - J. Burillo, F. Matucci, E. Ventura, The conjugacy problem for extensions of Thompson's group, to appear at **Israel Journal of Mathematics**.
 - Z. Sŭnic, E. Ventura, The conjugacy problem in automaton groups is not solvable, **Journal of Algebra** 364 (2012), 148–154.
 - E. Ventura, Group theoretic orbit decidability, **Groups, Complexity, Cryptology** 6(2) (2014), 133–148.

...

- - O. Bogopolski, A. Martino, O. Maslakova, E. Ventura, Freeby-cyclic groups have solvable conjugacy problem, **Bulletin of the London Mathematical Society**, 38(5) (2006), 787–794.
 - O. Bogopolski, A. Martino, E. Ventura, Orbit decidability and the conjugacy problem for extensions of groups, **Transactions of the American Mathematical Society** 362 (2010), 2003–2036.
 - V. Romanko'v, E. Ventura, Twisted conjugacy problem for endomorphisms of metabelian groups, **Algebra and Logic** 48(2) (2009), 89–98. Translation from **Algebra i Logika** 48(2) (2009), 157–173.
 - J. González-Meneses, E. Ventura, Twisted conjugacy in the braid group, Israel Journal of Mathematics 201 (2014), 455–476.
 - J. Burillo, F. Matucci, E. Ventura, The conjugacy problem for extensions of Thompson's group, to appear at **Israel Journal of Mathematics**.
 - Z. Sŭnic, E. Ventura, The conjugacy problem in automaton groups is not solvable, Journal of Algebra 364 (2012), 148–154.
 - E. Ventura, Group theoretic orbit decidability, **Groups, Complexity, Cryptology** 6(2) (2014), 133–148.

o ...

1. Historical context	2. CP for <i>F_n</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>F_n-by-F_m</i> 00000	4. Main result	5. Applications	6. Negative results
Outline					

- The historical context
- 2 The conjugacy problem for free-by-cyclic groups
- The conjugacy problem for free-by-free groups
- 4 The main result
- 5 Applications
- 6 Negative results

1. Historical context	2. CP for <i>F_n-by-</i> ℤ ○○○○○○○○○○	3. CP for <i>Fn-</i> by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results
Outline					

- 2 The conjugacy problem for free-by-cyclic groups
- The conjugacy problem for free-by-free groups
- 4 The main result
- 5 Applications
- 6 Negative results

•000		00000	0000000	000000000	00000000000						
Presenta	Presentations of groups										

A finite presentation of a (discrete) group G is

$$G = \langle a_1, \ldots, a_n \mid r_1, \ldots, r_m \rangle.$$

- a_1, \ldots, a_n are the generators;
- r_1, \ldots, r_m are the relators;
- elements of G are words (i.e., non-commutative! formal

• $\mathbb{Z} = \langle a | - \rangle$:

- $\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle = \langle a, b \mid ab = ba \rangle; \quad ba \cdot ba^{-2} = a^{-1}b^2$ $a^4 \cdot a^3 = a^2$
- $\mathbb{Z}/5\mathbb{Z} = \langle a \mid a^5 \rangle;$

 Historical context 0000 	2. CP for <i>F_n-by-</i> ℤ ○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results
Presenta	tions of gr	roups			

A finite presentation of a (discrete) group G is

$$G = \langle a_1, \ldots, a_n \mid r_1, \ldots, r_m \rangle.$$

• a_1, \ldots, a_n are the generators;

- r_1, \ldots, r_m are the relators;
- elements of G are words (i.e., non-commutative! formal

•
$$\mathbb{Z} = \langle a \mid - \rangle;$$

• $\mathbb{Z}^2 = \langle a \mid b \mid aba^{-1}b^{-1} \rangle = \langle a \mid b \mid ab = ba \rangle;$ $ba \cdot ba^{-2} = a^{-1}b^2$

•
$$\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle = \langle a, b \mid ab = ba \rangle;$$
 $ba \cdot ba^{-2} =$
• $\mathbb{Z}/5\mathbb{Z} = \langle a \mid a^5 \rangle;$ $a^4 \cdot a^3 = a^2$

•
$$\mathbb{Z}/5\mathbb{Z} = \langle a \mid a^5 \rangle;$$

 Historical context 0000 	2. CP for <i>F_n-by-</i> ℤ ○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results
Presenta	tions of gr	roups			

A finite presentation of a (discrete) group G is

$$G = \langle a_1, \ldots, a_n \mid r_1, \ldots, r_m \rangle.$$

• a_1, \ldots, a_n are the generators;

• r_1, \ldots, r_m are the relators;

• elements of G are words (i.e., non-commutative! formal

•
$$\mathbb{Z} = \langle a \mid - \rangle;$$

• $\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle = \langle a, b \mid ab = ba \rangle;$
 $ba \cdot ba^{-2} = a^{-1}b^2$

•
$$\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle = \langle a, b \mid ab = ba \rangle;$$
 $ba \cdot ba^{-2} = \mathbb{Z} / 5\mathbb{Z} = \langle a \mid a^5 \rangle;$ $a^4 \cdot a^3 = a^2$

•
$$\mathbb{Z}/5\mathbb{Z} = \langle a \mid a^{\mathsf{s}} \rangle;$$

 Historical context OOO 	2. CP for <i>F_Π-</i> by-ℤ 0000000000	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results					
Presentations of groups										

A finite presentation of a (discrete) group G is

$$G = \langle a_1, \ldots, a_n \mid r_1, \ldots, r_m \rangle.$$

- a_1, \ldots, a_n are the generators;
- r_1, \ldots, r_m are the relators;
- elements of G are words (i.e., non-commutative! formal products) of the $a_i^{\pm 1}$'s, subject to the rules $r_i = 1$.

•
$$\mathbb{Z} = \langle a \mid - \rangle;$$

• $\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle = \langle a, b \mid ab = ba \rangle;$
 $ba \cdot ba^{-2} = a^{-1}b^2$

•
$$\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle = \langle a, b \mid ab = ba \rangle;$$
 ba \cdot ba

•
$$\mathbb{Z}/5\mathbb{Z} = \langle a \mid a^5 \rangle;$$

•000		00000	0000000	000000000	00000000000
Presenta	ations of g	roups			

A finite presentation of a (discrete) group G is

$$G = \langle a_1, \ldots, a_n \mid r_1, \ldots, r_m \rangle.$$

- a_1, \ldots, a_n are the generators;
- r_1, \ldots, r_m are the relators;
- elements of *G* are words (i.e., non-commutative! formal products) of the $a_i^{\pm 1}$'s, subject to the rules $r_i = 1$.

Example

•
$$\mathbb{Z} = \langle a \mid - \rangle;$$

•
$$\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle = \langle a, b \mid ab = ba \rangle;$$

•
$$\mathbb{Z}/5\mathbb{Z} = \langle a \mid a^{t} \rangle$$

$$a^{5} \cdot a^{-3} = a^{2}$$

ba \cdot ba^{-2} = a^{-1}b^{2}
$$a^{4} \cdot a^{3} = a^{2}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

•000		00000	0000000	000000000	00000000000
Presenta	ations of g	roups			

A finite presentation of a (discrete) group G is

$$G = \langle a_1, \ldots, a_n \mid r_1, \ldots, r_m \rangle.$$

- a_1, \ldots, a_n are the generators;
- r_1, \ldots, r_m are the relators;
- elements of *G* are words (i.e., non-commutative! formal products) of the $a_i^{\pm 1}$'s, subject to the rules $r_i = 1$.

Example

•
$$\mathbb{Z} = \langle a | - \rangle;$$
 $a^5 \cdot a^-$

•
$$\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle = \langle a, b \mid ab = ba \rangle;$$

$$a^{5} \cdot a^{-3} = a^{2}$$

 $ba \cdot ba^{-2} = a^{-1}$

•000		00000	0000000	000000000	00000000000
Presenta	ations of g	roups			

A finite presentation of a (discrete) group G is

$$G = \langle a_1, \ldots, a_n \mid r_1, \ldots, r_m \rangle.$$

- a_1, \ldots, a_n are the generators;
- r_1, \ldots, r_m are the relators;

• $\mathbb{Z}/5\mathbb{Z} = \langle a \mid a^{\circ} \rangle;$

 elements of G are words (i.e., non-commutative! formal products) of the $a_i^{\pm 1}$'s, subject to the rules $r_i = 1$.

Example

•
$$\mathbb{Z} = \langle a \mid - \rangle;$$

• $\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle = \langle a, b \mid ab = ba \rangle;$
• $ba \cdot ba^{-2} = a^{-1}b^2$

•
$$\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle = \langle a, b \mid ab = ba \rangle; \quad ba \cdot ba^{-2} =$$

•000		00000	0000000	000000000	00000000000
Presenta	ations of g	roups			

A finite presentation of a (discrete) group G is

$$G = \langle a_1, \ldots, a_n \mid r_1, \ldots, r_m \rangle.$$

- a_1, \ldots, a_n are the generators;
- r_1, \ldots, r_m are the relators;
- elements of G are words (i.e., non-commutative! formal products) of the $a_i^{\pm 1}$'s, subject to the rules $r_i = 1$.

Example

•
$$\mathbb{Z} = \langle a \mid - \rangle;$$

• $\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle = \langle a, b \mid ab = ba \rangle;$
• $ba \cdot ba^{-2} = a^{-1}b^2$

•
$$\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle = \langle a, b \mid ab = ba \rangle; \quad ba \cdot ba^{-1}$$

•
$$\mathbb{Z}/5\mathbb{Z} = \langle a \mid a^5 \rangle$$

•000		00000	0000000	000000000	00000000000
Presenta	ations of g	roups			

A finite presentation of a (discrete) group G is

$$G = \langle a_1, \ldots, a_n \mid r_1, \ldots, r_m \rangle.$$

- a_1, \ldots, a_n are the generators;
- r_1, \ldots, r_m are the relators;
- elements of G are words (i.e., non-commutative! formal products) of the $a_i^{\pm 1}$'s, subject to the rules $r_i = 1$.

Example

•
$$\mathbb{Z} = \langle a \mid - \rangle;$$
 $a^5 \cdot a^{-3} = a^2$

$$\mathbb{Z} = \langle a \mid -\rangle, \qquad a \cdot a = a \\ \mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle = \langle a, b \mid ab = ba \rangle; \qquad ba \cdot ba^{-2} = a^{-1}b^2 \\ \mathbb{Z}/5\mathbb{Z} = \langle a \mid a^5 \rangle; \qquad a^4 \cdot a^3 = a^2$$

•
$$\mathbb{Z}/5\mathbb{Z} = \langle a \mid a^5 \rangle;$$

	tions of g		0000000	00000000	
0000	000000000	00000	0000000	000000000	00000000000
 Historical context 	 CP for F_n-by-ℤ 	 CP for F_n-by-F_m 	Main result	Applications	Negative results

Which group is $G = \langle a, b \mid a^{-1}ba = b^2, b^{-1}ab = a^2 \rangle$?

$$a^{-1}ba = b^2 \Rightarrow b^{-1}a^{-1}ba = b \Rightarrow (b^{-1}ab)^{-1}a = b$$

 $\Rightarrow a^{-2}a = b \Rightarrow a^{-1} = b.$

But then

$$a^{-1}ba = b^2 \quad \Rightarrow \ a^{-1} = b^2 = a^{-2} \quad \Rightarrow \ a = 1$$
$$b^{-1}ab = a^2 \quad \Rightarrow \ b^{-1} = a^2 = b^{-2} \quad \Rightarrow \ b = 1.$$

Hence, G = 1 is the trivial group.

It is not easy, in general, to recognize G from a given presentation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

	tions of g		0000000	00000000	
0000	000000000	00000	0000000	000000000	00000000000
 Historical context 	 CP for F_n-by-ℤ 	 CP for F_n-by-F_m 	Main result	Applications	Negative results

Which group is $G = \langle a, b \mid a^{-1}ba = b^2, b^{-1}ab = a^2 \rangle$?

$$a^{-1}ba = b^2 \quad \Rightarrow \ b^{-1}a^{-1}ba = b \quad \Rightarrow \ (b^{-1}ab)^{-1}a = b$$
$$\Rightarrow \ a^{-2}a = b \qquad \Rightarrow \ a^{-1} = b.$$

But then

$$a^{-1}ba = b^2 \quad \Rightarrow \ a^{-1} = b^2 = a^{-2} \quad \Rightarrow \ a = 1$$
$$b^{-1}ab = a^2 \quad \Rightarrow \ b^{-1} = a^2 = b^{-2} \quad \Rightarrow \ b = 1.$$

Hence, G = 1 is the trivial group.

It is not easy, in general, to recognize G from a given presentation.

	tions of g		0000000	00000000	
0000	000000000	00000	0000000	000000000	00000000000
 Historical context 	 CP for F_n-by-ℤ 	 CP for F_n-by-F_m 	Main result	Applications	Negative results

Which group is $G = \langle a, b \mid a^{-1}ba = b^2, b^{-1}ab = a^2 \rangle$?

$$a^{-1}ba = b^2 \quad \Rightarrow \ b^{-1}a^{-1}ba = b \quad \Rightarrow \ (b^{-1}ab)^{-1}a = b$$
$$\Rightarrow \ a^{-2}a = b \qquad \Rightarrow \ a^{-1} = b.$$

But then

$$a^{-1}ba = b^2 \quad \Rightarrow \ a^{-1} = b^2 = a^{-2} \quad \Rightarrow \ a = 1$$
$$b^{-1}ab = a^2 \quad \Rightarrow \ b^{-1} = a^2 = b^{-2} \quad \Rightarrow \ b = 1.$$

Hence, G = 1 is the trivial group.

It is not easy, in general, to recognize G from a given presentation.

	tions of g		0000000	00000000	
0000	000000000	00000	0000000	000000000	00000000000
 Historical context 	 CP for F_n-by-ℤ 	 CP for F_n-by-F_m 	Main result	Applications	Negative results

Which group is $G = \langle a, b \mid a^{-1}ba = b^2, b^{-1}ab = a^2 \rangle$?

$$a^{-1}ba = b^2 \Rightarrow b^{-1}a^{-1}ba = b \Rightarrow (b^{-1}ab)^{-1}a = b$$

 $\Rightarrow a^{-2}a = b \Rightarrow a^{-1} = b.$

But then

$$a^{-1}ba = b^2 \Rightarrow a^{-1} = b^2 = a^{-2} \Rightarrow a = 1$$

$$b^{-1}ab = a^2 \Rightarrow b^{-1} = a^2 = b^{-2} \Rightarrow b = 1.$$

Hence, G = 1 is the trivial group.

It is not easy, in general, to recognize G from a given presentation.

	tions of g		0000000	00000000	
0000	000000000	00000	0000000	000000000	00000000000
 Historical context 	 CP for F_n-by-ℤ 	 CP for F_n-by-F_m 	Main result	Applications	Negative results

Which group is $G = \langle a, b \mid a^{-1}ba = b^2, b^{-1}ab = a^2 \rangle$?

$$a^{-1}ba = b^2 \quad \Rightarrow b^{-1}a^{-1}ba = b \quad \Rightarrow (b^{-1}ab)^{-1}a = b$$

 $\Rightarrow a^{-2}a = b \qquad \Rightarrow a^{-1} = b.$

But then

$$a^{-1}ba = b^2 \Rightarrow a^{-1} = b^2 = a^{-2} \Rightarrow a = 1$$

$$b^{-1}ab = a^2 \Rightarrow b^{-1} = a^2 = b^{-2} \Rightarrow b = 1.$$

Hence, G = 1 is the trivial group.

It is not easy, in general, to recognize G from a given presentation.

	tions of g		0000000	00000000	
0000	000000000	00000	0000000	000000000	00000000000
 Historical context 	 CP for F_n-by-ℤ 	 CP for F_n-by-F_m 	Main result	Applications	Negative results

Which group is $G = \langle a, b \mid a^{-1}ba = b^2, b^{-1}ab = a^2 \rangle$?

$$a^{-1}ba = b^2 \quad \Rightarrow \ b^{-1}a^{-1}ba = b \quad \Rightarrow \ (b^{-1}ab)^{-1}a = b$$

 $\Rightarrow \ a^{-2}a = b \qquad \Rightarrow \ a^{-1} = b.$

But then

$$a^{-1}ba = b^2 \Rightarrow a^{-1} = b^2 = a^{-2} \Rightarrow a = 1$$

$$b^{-1}ab = a^2 \Rightarrow b^{-1} = a^2 = b^{-2} \Rightarrow b = 1.$$

Hence, G = 1 is the trivial group.

It is not easy, in general, to recognize G from a given presentation.

	tions of g		0000000	00000000	
0000	000000000	00000	0000000	000000000	00000000000
 Historical context 	 CP for F_n-by-ℤ 	 CP for F_n-by-F_m 	Main result	Applications	Negative results

Which group is $G = \langle a, b \mid a^{-1}ba = b^2, b^{-1}ab = a^2 \rangle$?

$$a^{-1}ba = b^2 \quad \Rightarrow \ b^{-1}a^{-1}ba = b \quad \Rightarrow \ (b^{-1}ab)^{-1}a = b$$

 $\Rightarrow \ a^{-2}a = b \qquad \Rightarrow \ a^{-1} = b.$

But then

$$a^{-1}ba = b^2 \Rightarrow a^{-1} = b^2 = a^{-2} \Rightarrow a = 1$$

$$b^{-1}ab = a^2 \Rightarrow b^{-1} = a^2 = b^{-2} \Rightarrow b = 1.$$

Hence, G = 1 is the trivial group.

It is not easy, in general, to recognize G from a given presentation.

0000	0000000000	00000	0000000	000000000	000000000000000000000000000000000000000
 Historical context O●OO 	0000000000	00000	0000000	000000000	000000000000000000000000000000000000000

Which group is $G = \langle a, b \mid a^{-1}ba = b^2, b^{-1}ab = a^2 \rangle$?

$$a^{-1}ba = b^2 \quad \Rightarrow \ b^{-1}a^{-1}ba = b \quad \Rightarrow \ (b^{-1}ab)^{-1}a = b$$
$$\Rightarrow \ a^{-2}a = b \qquad \Rightarrow \ a^{-1} = b.$$

But then

$$a^{-1}ba = b^2 \quad \Rightarrow \ a^{-1} = b^2 = a^{-2} \quad \Rightarrow \ a = 1$$
$$b^{-1}ab = a^2 \quad \Rightarrow \ b^{-1} = a^2 = b^{-2} \quad \Rightarrow \ b = 1.$$

Hence, G = 1 is the trivial group.

It is not easy, in general, to recognize G from a given presentation.

0000	0000000000	00000	0000000	000000000	000000000000000000000000000000000000000
 Historical context O●OO 	0000000000	00000	0000000	000000000	000000000000000000000000000000000000000

Which group is $G = \langle a, b \mid a^{-1}ba = b^2, b^{-1}ab = a^2 \rangle$?

$$a^{-1}ba = b^2 \quad \Rightarrow \ b^{-1}a^{-1}ba = b \quad \Rightarrow \ (b^{-1}ab)^{-1}a = b$$
$$\Rightarrow \ a^{-2}a = b \qquad \Rightarrow \ a^{-1} = b.$$

But then

$$a^{-1}ba = b^2 \quad \Rightarrow a^{-1} = b^2 = a^{-2} \quad \Rightarrow a = 1$$

$$b^{-1}ab = a^2 \quad \Rightarrow b^{-1} = a^2 = b^{-2} \quad \Rightarrow b = 1.$$

Hence, G = 1 is the trivial group.

It is not easy, in general, to recognize G from a given presentation.

0000	0000000000	00000	0000000	000000000	000000000000000000000000000000000000000
 Historical context O●OO 	0000000000	00000	0000000	000000000	000000000000000000000000000000000000000

Which group is $G = \langle a, b \mid a^{-1}ba = b^2, b^{-1}ab = a^2 \rangle$?

$$a^{-1}ba = b^2 \quad \Rightarrow \ b^{-1}a^{-1}ba = b \quad \Rightarrow \ (b^{-1}ab)^{-1}a = b$$

 $\Rightarrow \ a^{-2}a = b \qquad \Rightarrow \ a^{-1} = b.$

But then

$$a^{-1}ba = b^2 \Rightarrow a^{-1} = b^2 = a^{-2} \Rightarrow a = 1$$

$$b^{-1}ab = a^2 \Rightarrow b^{-1} = a^2 = b^{-2} \Rightarrow b = 1.$$

Hence, G = 1 is the trivial group.

It is not easy, in general, to recognize G from a given presentation.

0000	0000000000	00000	0000000	000000000	00000000000
 Historical context O●OO 	0000000000	00000	0000000	000000000	000000000000000000000000000000000000000

Which group is $G = \langle a, b \mid a^{-1}ba = b^2, b^{-1}ab = a^2 \rangle$?

$$a^{-1}ba = b^2 \quad \Rightarrow \ b^{-1}a^{-1}ba = b \quad \Rightarrow \ (b^{-1}ab)^{-1}a = b$$

 $\Rightarrow \ a^{-2}a = b \qquad \Rightarrow \ a^{-1} = b.$

But then

$$a^{-1}ba = b^2 \Rightarrow a^{-1} = b^2 = a^{-2} \Rightarrow a = 1$$

$$b^{-1}ab = a^2 \Rightarrow b^{-1} = a^2 = b^{-2} \Rightarrow b = 1.$$

Hence, G = 1 is the trivial group.

It is not easy, in general, to recognize G from a given presentation.

0000	0000000000	00000	0000000	000000000	00000000000
 Historical context O●OO 	0000000000	00000	0000000	000000000	000000000000000000000000000000000000000

Which group is $G = \langle a, b \mid a^{-1}ba = b^2, b^{-1}ab = a^2 \rangle$?

$$a^{-1}ba = b^2 \quad \Rightarrow \ b^{-1}a^{-1}ba = b \quad \Rightarrow \ (b^{-1}ab)^{-1}a = b$$

 $\Rightarrow \ a^{-2}a = b \qquad \Rightarrow \ a^{-1} = b.$

But then

$$a^{-1}ba = b^2 \quad \Rightarrow \ a^{-1} = b^2 = a^{-2} \quad \Rightarrow \ a = 1$$
$$b^{-1}ab = a^2 \quad \Rightarrow \ b^{-1} = a^2 = b^{-2} \quad \Rightarrow \ b = 1.$$

Hence, G = 1 is the trivial group.

It is not easy, in general, to recognize G from a given presentation.

1. Historical context O●OO	2. CP for <i>Fn</i> -by-ℤ 0000000000	3. CP for F _n -by-F _m 00000	4. Main result	5. Applications	6. Negative results
Presenta	tions of gr	roups			

Which group is $G = \langle a, b \mid a^{-1}ba = b^2, b^{-1}ab = a^2 \rangle$?

$$a^{-1}ba = b^2 \quad \Rightarrow \ b^{-1}a^{-1}ba = b \quad \Rightarrow \ (b^{-1}ab)^{-1}a = b$$

 $\Rightarrow \ a^{-2}a = b \qquad \Rightarrow \ a^{-1} = b.$

But then

$$a^{-1}ba = b^2 \quad \Rightarrow \ a^{-1} = b^2 = a^{-2} \quad \Rightarrow \ a = 1$$
$$b^{-1}ab = a^2 \quad \Rightarrow \ b^{-1} = a^2 = b^{-2} \quad \Rightarrow \ b = 1.$$

Hence, G = 1 is the trivial group.

It is not easy, in general, to recognize G from a given presentation.

0000	0000000000	00000	0000000	000000000	00000000000
 Historical context O●OO 	0000000000	00000	0000000	000000000	000000000000000000000000000000000000000

Which group is $G = \langle a, b \mid a^{-1}ba = b^2, b^{-1}ab = a^2 \rangle$?

$$a^{-1}ba = b^2 \quad \Rightarrow \ b^{-1}a^{-1}ba = b \quad \Rightarrow \ (b^{-1}ab)^{-1}a = b$$

 $\Rightarrow \ a^{-2}a = b \qquad \Rightarrow \ a^{-1} = b.$

But then

$$a^{-1}ba = b^2 \quad \Rightarrow \ a^{-1} = b^2 = a^{-2} \quad \Rightarrow \ a = 1$$
$$b^{-1}ab = a^2 \quad \Rightarrow \ b^{-1} = a^2 = b^{-2} \quad \Rightarrow \ b = 1.$$

Hence, G = 1 is the trivial group.

It is not easy, in general, to recognize *G* from a given presentation.

 Historical context OO●O 	2. CP for <i>F_n</i> -by-Z 0000000000	3. CP for <i>F_n</i> -by- <i>F_m</i> 00000	4. Main result	5. Applications	6. Negative results
Dehn's p	roblems				

Word Problem, WP(G)

For any given presentation $G = \langle a_1, \dots, a_n | r_1, \dots, r_m \rangle$, find an algorithm W with:

- Input: a word $w(a_1, \ldots, a_n)$ on the $a_i^{\pm 1}$'s;
- **Output:** "yes" or "no" depending on whether $w =_{G} 1$.

Conjugacy Problem, *CP*(*G*)

For any given presentation $G = \langle a_1, \dots, a_n \mid r_1, \dots, r_m \rangle$, find an algorithm C with:

- Input: two words $u(a_1, \ldots, a_n)$ and $v(a_1, \ldots, a_n)$;
- Output: "yes" or "no" depending on whether u and v are conjugate in G, u ∼_G v (i.e., v =_G g⁻¹ug for some g ∈ G).

 Historical context OO●O 	2. CP for <i>F_n</i> -by-Z 0000000000	3. CP for <i>F_n</i> -by- <i>F_m</i> 00000	4. Main result	5. Applications	6. Negative results
Dehn's p	roblems				

Word Problem, WP(G)

For any given presentation $G = \langle a_1, \dots, a_n | r_1, \dots, r_m \rangle$, find an algorithm W with:

- Input: a word $w(a_1, \ldots, a_n)$ on the $a_i^{\pm 1}$'s;
- **Output:** "yes" or "no" depending on whether $w =_{G} 1$.

Conjugacy Problem, CP(G)

For any given presentation $G = \langle a_1, \dots, a_n | r_1, \dots, r_m \rangle$, find an algorithm C with:

- Input: two words $u(a_1, \ldots, a_n)$ and $v(a_1, \ldots, a_n)$;
- Output: "yes" or "no" depending on whether u and v are conjugate in G, u ∼_G v (i.e., v =_G g⁻¹ug for some g ∈ G).

Dehn's p	roblems				
 Historical context OOOO 	2. CP for <i>F_n</i> -by-ℤ 0000000000	3. CP for <i>Fn</i> -by- <i>Fm</i>	4. Main result	5. Applications	6. Negative results

Find an algorithm \mathcal{I} with:

- **Input:** two presentations $G_i = \langle a_1, ..., a_{n_i} | r_1, ..., r_{m_i} \rangle$, i = 1, 2;
- **Output:** "yes" or "no" depending on whether $G_1 \simeq G_2$ as groups.

Theorem (Novikov '55; Boone '58)

There exist finitely presented groups with unsolvable word problem.

Theorem (Adyan '57; Rabin '58)

The Isomorphism Problem is unsolvable.

Theorem (Miller '71)

Dehn's p	roblems				
 Historical context OOOO 	2. CP for <i>F_n</i> -by-ℤ 0000000000	3. CP for <i>Fn</i> -by- <i>Fm</i>	4. Main result	5. Applications	6. Negative results

Find an algorithm \mathcal{I} with:

- **Input:** two presentations $G_i = \langle a_1, ..., a_{n_i} | r_1, ..., r_{m_i} \rangle$, i = 1, 2;
- **Output:** "yes" or "no" depending on whether $G_1 \simeq G_2$ as groups.

Theorem (Novikov '55; Boone '58)

There exist finitely presented groups with unsolvable word problem.

Theorem (Adyan '57; Rabin '58)

The Isomorphism Problem is unsolvable.

Theorem (Miller '71)

Dehn's p	roblems				
 Historical context OOOO 	2. CP for <i>F_n</i> -by-ℤ 0000000000	3. CP for <i>Fn</i> -by- <i>Fm</i>	4. Main result	5. Applications	6. Negative results

Find an algorithm \mathcal{I} with:

- **Input:** two presentations $G_i = \langle a_1, ..., a_{n_i} | r_1, ..., r_{m_i} \rangle$, i = 1, 2;
- **Output:** "yes" or "no" depending on whether $G_1 \simeq G_2$ as groups.

Theorem (Novikov '55; Boone '58)

There exist finitely presented groups with unsolvable word problem.

Theorem (Adyan '57; Rabin '58)

The Isomorphism Problem is unsolvable.

Theorem (Miller '71)

Dehn's p	roblems				
 Historical context OOOO 	2. CP for <i>F_n</i> -by-ℤ 0000000000	3. CP for <i>Fn</i> -by- <i>Fm</i>	4. Main result	5. Applications	6. Negative results

Find an algorithm \mathcal{I} with:

- **Input:** two presentations $G_i = \langle a_1, ..., a_{n_i} | r_1, ..., r_{m_i} \rangle$, i = 1, 2;
- **Output:** "yes" or "no" depending on whether $G_1 \simeq G_2$ as groups.

Theorem (Novikov '55; Boone '58)

There exist finitely presented groups with unsolvable word problem.

Theorem (Adyan '57; Rabin '58)

The Isomorphism Problem is unsolvable.

Theorem (Miller '71)

1. Historical context	2. CP for <i>Fn</i> -by-ℤ ○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results
Outline					

- The historical context
- 2 The conjugacy problem for free-by-cyclic groups
- The conjugacy problem for free-by-free groups
- 4 The main result
- 5 Applications
- 6 Negative results

1. Historical context	 CP for F_n-by-ℤ 	3. CP for Fn-by-Fm	4. Main result	5. Applications	6. Negative results
	•000000000				

Step 1:

Find a problem you like

(2004)

Conjuga	cy problen	n for free-b	y-cyclic	groups	
1. Historical context	2. CP for <i>F_n</i> -by-ℤ ○●○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results

Definition

Let $F_n = \langle a_1, \ldots, a_n | - \rangle$ be a free group on $\{a_1, \ldots, a_n\}$ $(n \ge 2)$, and let $\varphi \in Aut(F_n)$. The free-by-cyclic group $F_n \rtimes_{\varphi} \mathbb{Z}$ is defined as

$$F_n \rtimes_{\varphi} \mathbb{Z} = \langle a_1, \ldots, a_n, t \mid t^{-1}a_i t = a_i \varphi \rangle.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Observation

The word problem in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$ is solvable.

Open problem since 2004

Solve the conjugacy problem in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

Conjuga	cy problen	n for free-b	y-cyclic	groups	
1. Historical context	2. CP for <i>F_n</i> -by-ℤ ○●○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results

Definition

Let $F_n = \langle a_1, ..., a_n | - \rangle$ be a free group on $\{a_1, ..., a_n\}$ $(n \ge 2)$, and let $\varphi \in Aut(F_n)$. The free-by-cyclic group $F_n \rtimes_{\varphi} \mathbb{Z}$ is defined as

$$F_n \rtimes_{\varphi} \mathbb{Z} = \langle a_1, \ldots, a_n, t \mid t^{-1}a_i t = a_i \varphi \rangle.$$

Observation

The word problem in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$ is solvable.

Open problem since 2004

Solve the conjugacy problem in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

くりょう 小田 マイビット 日 うくの

Conjuga	cy problen	n for free-b	y-cyclic	groups	
1. Historical context	2. CP for <i>F_n</i> -by-ℤ ○●○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results

Definition

Let $F_n = \langle a_1, \dots, a_n | - \rangle$ be a free group on $\{a_1, \dots, a_n\}$ $(n \ge 2)$, and let $\varphi \in Aut(F_n)$. The free-by-cyclic group $F_n \rtimes_{\varphi} \mathbb{Z}$ is defined as

$$F_n \rtimes_{\varphi} \mathbb{Z} = \langle a_1, \ldots, a_n, t \mid t^{-1}a_i t = a_i \varphi \rangle.$$

Observation

The word problem in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$ is solvable.

Open problem since 2004

Solve the conjugacy problem in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

 1. Historical context
 2. CP for Fn-by-Z
 3. CP for Fn-by-Fm
 4. Main result
 5. Applications
 6. Negative results

 0000
 00000000
 00000000
 00000000
 00000000
 000000000
 000000000

 Conjugacy problem for free-by-cyclic groups
 00000
 00000000
 000000000
 000000000

Let's consider an example: $M_{\varphi} = \langle a, b, t \mid t^{-1}at = a\varphi, t^{-1}bt = b\varphi \rangle$

 $\varphi: F_2 \rightarrow F_2 \qquad \varphi^{-1}: F_2 \rightarrow F_2$ $a \mapsto ab \qquad a \mapsto a^{-1}b$ $b \mapsto aba \qquad b \mapsto b^{-1}a^2$ $wt = t(w\varphi) \qquad wt^{-1} = t^{-1}(w\varphi^{-1})$ $tab^{-1}t^{-1}at^2a = tab^{-1}t^{-1}t(ab)ta = tab^{-1}abta$ $= tab^{-1}at(aba)a = tab^{-1}ataba^2$ $= tat(a^{-1}b^{-1}a^{-1})ababa^2 = tatba^2$ $= tt(ab)ba^2 = t^2ab^2a^2.$

_emma

Every element from $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$ has a unique normal form:

 t^rw for some $r\in\mathbb{Z},\;w\in F_n.$

 1. Historical context
 2. OP for Fn-by-Z
 3. OP for Fn-by-Em
 4. Main result
 5. Applications
 6. Negative results

 0000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000

 Conjugacy problem for free-by-cyclic groups
 000000000
 000000000
 0000000000
 0000000000

Let's consider an example: $M_{\varphi} = \langle a, b, t \mid t^{-1}at = a\varphi, t^{-1}bt = b\varphi \rangle$

 $\varphi: F_2 \rightarrow F_2 \qquad \varphi^{-1}: F_2 \rightarrow F_2$ $a \mapsto ab \qquad a \mapsto a^{-1}b$ $b \mapsto aba \qquad b \mapsto b^{-1}a^2$ $wt = t(w\varphi) \qquad wt^{-1} = t^{-1}(w\varphi^{-1})$ $tab^{-1}t^{-1}at^2a = tab^{-1}t^{-1}t(ab)ta = tab^{-1}abta$ $= tab^{-1}at(aba)a = tab^{-1}ataba^2$ $= tat(a^{-1}b^{-1}a^{-1})ababa^2 = tatba^2$ $= tt(ab)ba^2 = t^2ab^2a^2.$

Lemma

Every element from $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$ has a unique normal form:

 f^rw for some $r\in\mathbb{Z}, \,\,w\in F_n.$

 1. Historical context
 2. OP for Fn-by-Z
 3. OP for Fn-by-Fm
 4. Main result
 5. Applications
 6. Negative results

 0000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000

 Conjugacy problem for free-by-cyclic groups
 000000000
 000000000
 0000000000
 0000000000

Let's consider an example: $M_{\varphi} = \langle a, b, t \mid t^{-1}at = a\varphi, t^{-1}bt = b\varphi \rangle$

 $\varphi: F_2 \rightarrow F_2 \qquad \varphi^{-1}: F_2 \rightarrow F_2$ $a \mapsto ab \qquad a \mapsto a^{-1}b$ $b \mapsto aba \qquad b \mapsto b^{-1}a^2$ $wt = t(w\varphi) \qquad wt^{-1} = t^{-1}(w\varphi^{-1})$ $tab^{-1}t^{-1}at^2a = tab^{-1}t^{-1}t(ab)ta = tab^{-1}abta$ $= tab^{-1}at(aba)a = tab^{-1}ataba^2$ $= tat(a^{-1}b^{-1}a^{-1})ababa^2 = tatba^2$ $= tt(ab)ba^2 = t^2ab^2a^2.$

Lemma

Every element from $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$ has a unique normal form:

 $t^r w$ for some $r \in \mathbb{Z}, w \in F_n$.

 Historical context 	 CP for F_n-by-Z 	3. CP for Fn-by-Fm	Main result	Applications	Negative results
	000000000				

Step 2:

Push the problem into your

favorite territory

(2005)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

 1. Historical context
 2. CP for Fa-by-Z
 3. CP for Fa-by-Fm
 4. Main result
 5. Applications
 6. Negative results

 0000
 0000
 00000
 000000
 00000000
 000000000
 000000000

 Converting it into a free group problem

Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$. Then,

$$egin{array}{rcl} (g^{-1}t^{-k})(t^ru)(t^kg)&=&g^{-1}t^r(uarphi^k)g\ &=&t^r(garphi^r)^{-1}(uarphi^k)g \end{array}$$

$$t^r u \sim_{_{M_{\varphi}}} t^s v \quad \Longleftrightarrow \quad r = s \quad \& \quad v \sim_{\varphi^r} (u \varphi^k) \text{ for some } k \in \mathbb{Z}.$$

Definition

For $\phi \in Aut(G)$, two elements $u, v \in G$ are said to be ϕ -twisted conjugated, denoted $u \sim_{\phi} v$, if $v = (g\phi)^{-1}ug$ for some $g \in G$.

Twisted Conjugacy Problem, *TCP*(*G*)

 1. Historical context
 2. CP for Fa-by-Z
 3. CP for Fa-by-Fm
 4. Main result
 5. Applications
 6. Negative results

 0000
 0000
 00000
 000000
 0000000
 00000000
 000000000

 Converting it into a free group problem

Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$. Then,

$$\begin{array}{rcl} (g^{-1}t^{-k})(t^r u)(t^k g) &=& g^{-1}t^r(u\varphi^k)g\\ &=& t^r(g\varphi^r)^{-1}(u\varphi^k)g \end{array}$$

$$t^r u \sim_{_{M_{\varphi}}} t^s v \quad \Longleftrightarrow \quad r = s \quad \& \quad v \sim_{\varphi^r} (u \varphi^k) \text{ for some } k \in \mathbb{Z}.$$

イロト 不良 とくほ とくほう 二日

Definition

For $\phi \in Aut(G)$, two elements $u, v \in G$ are said to be ϕ -twisted conjugated, denoted $u \sim_{\phi} v$, if $v = (g\phi)^{-1}ug$ for some $g \in G$.

Twisted Conjugacy Problem, *TCP*(*G*)

 1. Historical context
 2. CP for Fa-by-Z
 3. CP for Fa-by-Fm
 4. Main result
 5. Applications
 6. Negative results

 0000
 0000
 00000
 000000
 0000000
 00000000
 000000000

 Converting it into a free group problem

Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$. Then,

$$\begin{array}{rcl} (g^{-1}t^{-k})(t^r u)(t^k g) &=& g^{-1}t^r(u\varphi^k)g\\ &=& t^r(g\varphi^r)^{-1}(u\varphi^k)g \end{array}$$

$$t^r u \sim_{_{M_{\varphi}}} t^s v \iff r = s \& v \sim_{\varphi^r} (u \varphi^k) \text{ for some } k \in \mathbb{Z}.$$

Definition

For $\phi \in Aut(G)$, two elements $u, v \in G$ are said to be ϕ -twisted conjugated, denoted $u \sim_{\phi} v$, if $v = (g\phi)^{-1}ug$ for some $g \in G$.

Twisted Conjugacy Problem, *TCP*(*G*)

 1. Historical context
 2. CP for Fn-by-Z
 3. CP for Fn-by-Fm
 4. Main result
 5. Applications
 6. Negative results

 0000
 0000
 0000
 00000
 000000
 00000000
 00000000

 Converting it into a free group problem

Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$. Then,

$$(g^{-1}t^{-k})(t^r u)(t^k g) = g^{-1}t^r(u\varphi^k)g$$

= $t^r(g\varphi^r)^{-1}(u\varphi^k)g$

$$t^r u \sim_{_{M_{\varphi}}} t^s v \iff r = s \& v \sim_{\varphi^r} (u \varphi^k) \text{ for some } k \in \mathbb{Z}.$$

Definition

For $\phi \in Aut(G)$, two elements $u, v \in G$ are said to be ϕ -twisted conjugated, denoted $u \sim_{\phi} v$, if $v = (g\phi)^{-1}ug$ for some $g \in G$.

Twisted Conjugacy Problem, TCP(G)

 1. Historical context
 2. CP for Fa-by-Z
 3. CP for Fa-by-Fm
 4. Main result
 5. Applications
 6. Negative results

 0000
 0000
 00000
 000000
 0000000
 00000000
 000000000

 Converting it into a free group problem

Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$. Then,

$$(g^{-1}t^{-k})(t^r u)(t^k g) = g^{-1}t^r(u\varphi^k)g$$

= $t^r(g\varphi^r)^{-1}(u\varphi^k)g$

$$t^r u \sim_{_{M_{\varphi}}} t^s v \iff r = s \& v \sim_{\varphi^r} (u \varphi^k) \text{ for some } k \in \mathbb{Z}.$$

Definition

For $\phi \in Aut(G)$, two elements $u, v \in G$ are said to be ϕ -twisted conjugated, denoted $u \sim_{\phi} v$, if $v = (g\phi)^{-1}ug$ for some $g \in G$.

Twisted Conjugacy Problem, TCP(G)

1. Historical context	 CP for F_n-by-ℤ 	3. CP for Fn-by-Fm	Main result	Applications	Negative results
	0000000000				

Step 3:

Solve it

(2005)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

 $TCP(F_n)$ is solvable.

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Given $t^r u$, $t^s v \in M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

• $t^r u \sim_{_{M_{\varphi}}} t^s v \iff r = s$ & $v \sim_{\varphi^r} (u\varphi^k)$ for some $k \in \mathbb{Z}$.

• To reduce to finitely many k's, note that $u \sim_{\varphi} u \varphi$ because

 $u = (u\varphi)^{-1}(u\varphi)u$

• so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm\lambda r}$ and hence,

 $t^r u \sim_{_{M_{\varphi}}} t^s v \iff r = s \& v \sim_{\varphi^r} (u\varphi^k) \text{ for } k = 0, \dots r - 1.$

Thus, CP(M_φ) reduces to finitely many checks of TCP(F_n).
BUT...

・ロト・日本・日本・日本・日本・日本

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

 $TCP(F_n)$ is solvable.

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Given $t^r u$, $t^s v \in M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

• $t^r u \sim_{_{M_{\varphi}}} t^s v \iff r = s$ & $v \sim_{\varphi^r} (u\varphi^k)$ for some $k \in \mathbb{Z}$.

• To reduce to finitely many *k*'s, note that $u \sim_{\varphi} u \varphi$ because

 $u = (u\varphi)^{-1}(u\varphi)u$

• so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm\lambda r}$ and hence,

 $t^r u \sim_{M_{\alpha}} t^s v \iff r = s \& v \sim_{\varphi^r} (u\varphi^k) \text{ for } k = 0, \dots r - 1.$

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

 $TCP(F_n)$ is solvable.

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Given $t^r u$, $t^s v \in M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

- $t^r u \sim_{M_{\varphi}} t^s v \iff r = s$ & $v \sim_{\varphi^r} (u\varphi^k)$ for some $k \in \mathbb{Z}$. • To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ because $u = (u\varphi)^{-1}(u\varphi)u$
- so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm\lambda r}$ and hence,

 $t^r u \sim_{_{M_{o}}} t^s v \quad \Longleftrightarrow \quad r = s \quad \& \quad v \sim_{\varphi^r} (u\varphi^k) \text{ for } k = 0, \dots r - 1.$

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

 $TCP(F_n)$ is solvable.

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Given $t^r u$, $t^s v \in M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

• $t^r u \sim_{_{M_{\varphi}}} t^s v \iff r = s$ & $v \sim_{\varphi^r} (u\varphi^k)$ for some $k \in \mathbb{Z}$.

• To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ because $u = (u\varphi)^{-1}(u\varphi)u$

• so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm\lambda r}$ and hence,

 $t^r u \sim_{_{M_{\omega}}} t^s v \iff r = s \& v \sim_{\varphi^r} (u\varphi^k) \text{ for } k = 0, \dots r - 1.$

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

 $TCP(F_n)$ is solvable.

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Given $t^r u$, $t^s v \in M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

- $t^r u \sim_{_{M_{\varphi}}} t^s v \iff r = s$ & $v \sim_{\varphi^r} (u\varphi^k)$ for some $k \in \mathbb{Z}$.
- To reduce to finitely many k's, note that $u\sim_{\varphi} u\varphi$ because $u=(u\varphi)^{-1}(u\varphi)u$
- so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm\lambda r}$ and hence,

 $t^r u \sim_{M_{\alpha}} t^s v \iff r = s \& v \sim_{\varphi^r} (u\varphi^k) \text{ for } k = 0, \dots r - 1.$

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

 $TCP(F_n)$ is solvable.

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Given $t^r u$, $t^s v \in M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

- $t^r u \sim_{_{M_{\varphi}}} t^s v \iff r = s$ & $v \sim_{\varphi^r} (u\varphi^k)$ for some $k \in \mathbb{Z}$.
- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ because

$$u = (u\varphi)^{-1}(u\varphi)u$$

• so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm\lambda r}$ and hence,

 $t^{r}u \sim_{M_{\varphi}} t^{s}v \iff r = s \& v \sim_{\varphi^{r}} (u\varphi^{k}) \text{ for } k = 0, \dots r - 1.$ • Thus, $CP(M_{\varphi})$ reduces to finitely many checks of $TCP(F_{n})$. • BUT...

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

 $TCP(F_n)$ is solvable.

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Given $t^r u$, $t^s v \in M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

- $t^r u \sim_{_{M_{\varphi}}} t^s v \iff r = s$ & $v \sim_{\varphi^r} (u\varphi^k)$ for some $k \in \mathbb{Z}$.
- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ because

$$u=(u\varphi)^{-1}(u\varphi)u$$

• so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm\lambda r}$ and hence,

 $t^r u \sim_{_{M_{\varphi}}} t^s v \iff r = s \& v \sim_{\varphi^r} (u\varphi^k) \text{ for } k = 0, \dots r - 1.$

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

 $TCP(F_n)$ is solvable.

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Given $t^r u$, $t^s v \in M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

- $t^r u \sim_{_{M_{\varphi}}} t^s v \iff r = s$ & $v \sim_{\varphi^r} (u\varphi^k)$ for some $k \in \mathbb{Z}$.
- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ because

$$u=(u\varphi)^{-1}(u\varphi)u$$

• so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm\lambda r}$ and hence,

 $t^r u \sim_{_{M_{\varphi}}} t^s v \iff r = s \& v \sim_{\varphi^r} (u\varphi^k) \text{ for } k = 0, \dots r - 1.$

 Historical context 	 CP for F_n-by-ℤ 	3. CP for Fn-by-Fm	Main result	Applications	Negative results
	00000000000				

Step 4:

Ups ... a technical problem!

(2005)

・ロト・日本・日本・日本・日本

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Given $t^r u$, $t^r v \in F_n \rtimes_{\varphi} \mathbb{Z}$,

- ► Case 1: r ≠ 0
- $t^r u \sim_{_{M_{\varphi}}} t^r v \iff v \sim_{\varphi^r} (u\varphi^k)$ for $k = 0, \ldots r 1$.
- Thus, $CP(M_{\varphi})$ reduces to finitely many checks of $TCP(F_n)$.
- ▶ <u>Case 2: *r* = 0</u>

• Still infinitely many k's to check:

 $u\sim_{_{M_{arphi}}}v\quad \Longleftrightarrow\quad v\sim uarphi^k$ for some $k\in\mathbb{Z}_{+}$

(日) (日) (日) (日) (日) (日) (日)

• Fortunately, this is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given an automorphism $\phi: F_n \to F_n$ and $u, v \in F_n$, it is decidable whether $v \sim u\phi^k$ for some $k \in \mathbb{Z}$.

1. Historical context2. CP for F_n -by-Z
oocooocooo3. CP for F_n -by- F_m 4. Main result5. Applications
oocooocooocooo6. Negative results
oocooocoocoo $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Given $t^r u$, $t^r v \in F_n \rtimes_{\varphi} \mathbb{Z}$,

- ► Case 1: r ≠ 0
- $t^r u \sim_{_{M_{\varphi}}} t^r v \iff v \sim_{\varphi^r} (u\varphi^k)$ for $k = 0, \ldots r 1$.
- Thus, $CP(M_{\varphi})$ reduces to finitely many checks of $TCP(F_n)$.

• Still infinitely many k's to check:

 $u\sim_{_{M_{arphi}}} v \quad \Longleftrightarrow \quad v\sim uarphi^k$ for some $k\in\mathbb{Z}.$

• Fortunately, this is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given an automorphism $\phi: F_n \to F_n$ and $u, v \in F_n$, it is decidable whether $v \sim u\phi^k$ for some $k \in \mathbb{Z}$.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Given $t^r u$, $t^r v \in F_n \rtimes_{\varphi} \mathbb{Z}$,

- ► Case 1: r ≠ 0
- $t^r u \sim_{_{M_{\varphi}}} t^r v \iff v \sim_{\varphi^r} (u\varphi^k)$ for $k = 0, \ldots r 1$.
- Thus, $CP(M_{\varphi})$ reduces to finitely many checks of $TCP(F_n)$.

• Still infinitely many k's to check:

 $u\sim_{_{M_{arphi}}}v\quad\Longleftrightarrow\quad v\sim uarphi^k$ for some $k\in\mathbb{Z}$

• Fortunately, this is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given an automorphism $\phi: F_n \to F_n$ and $u, v \in F_n$, it is decidable whether $v \sim u\phi^k$ for some $k \in \mathbb{Z}$.

1. Historical context2. CP for F_n -by-Z
oocooocooo3. CP for F_n -by- F_m 4. Main result5. Applications
oocooocooocooo6. Negative results
oocooocoocoo $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Given $t^r u$, $t^r v \in F_n \rtimes_{\varphi} \mathbb{Z}$,

- ► Case 1: r ≠ 0
- $t^r u \sim_{_{M_{\varphi}}} t^r v \iff v \sim_{\varphi^r} (u\varphi^k)$ for $k = 0, \ldots r 1$.
- Thus, $CP(M_{\varphi})$ reduces to finitely many checks of $TCP(F_n)$.

• Still infinitely many k's to check:

 $u\sim_{_{M_{\varphi}}} v \quad \Longleftrightarrow \quad v\sim u\varphi^k ext{ for some } k\in\mathbb{Z}.$

• Fortunately, this is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given an automorphism $\phi: F_n \to F_n$ and $u, v \in F_n$, it is decidable whether $v \sim u\phi^k$ for some $k \in \mathbb{Z}$.

1. Historical context2. CP for F_n -by-Z
oocooocooo3. CP for F_n -by- F_m 4. Main result5. Applications
oocooocooocooo6. Negative results
oocooocoocoo $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Given $t^r u$, $t^r v \in F_n \rtimes_{\varphi} \mathbb{Z}$,

- ► Case 1: r ≠ 0
- $t^r u \sim_{_{M_{\varphi}}} t^r v \iff v \sim_{\varphi^r} (u\varphi^k)$ for $k = 0, \ldots r 1$.
- Thus, $CP(M_{\varphi})$ reduces to finitely many checks of $TCP(F_n)$.

• Still infinitely many k's to check:

 $u \sim_{_{M_{\omega}}} v \iff v \sim u \varphi^k$ for some $k \in \mathbb{Z}$.

(日) (日) (日) (日) (日) (日) (日)

• Fortunately, this is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given an automorphism $\phi \colon F_n \to F_n$ and $u, v \in F_n$, it is decidable whether $v \sim u\phi^k$ for some $k \in \mathbb{Z}$.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Given $t^r u$, $t^r v \in F_n \rtimes_{\varphi} \mathbb{Z}$,

- ► Case 1: r ≠ 0
- $t^r u \sim_{_{M_{\varphi}}} t^r v \iff v \sim_{\varphi^r} (u\varphi^k)$ for $k = 0, \ldots r 1$.
- Thus, $CP(M_{\varphi})$ reduces to finitely many checks of $TCP(F_n)$.

• Still infinitely many k's to check:

 $u \sim_{_{M_{\omega}}} v \iff v \sim u \varphi^k$ for some $k \in \mathbb{Z}$.

(日) (日) (日) (日) (日) (日) (日)

• Fortunately, this is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given an automorphism $\phi \colon F_n \to F_n$ and $u, v \in F_n$, it is decidable whether $v \sim u\phi^k$ for some $k \in \mathbb{Z}$.

- Our solution to *TCP*(*F_n*) uses a previous deep result by Bogopolski–Maslakova about computability of fixed subgroups of automorphisms of free groups.
- In 2008 a problem was found in the proof of Bogopolski–Maslakova; the authors claim to have fixed it, but no correction has been published yet.
- In 2014 Feighn–Handel give an alternative proof for Bogopolski–Maslakova's result.

• • •

• Alternative solution to $CP(F_n \rtimes_{\phi} \mathbb{Z})$ combining deep results by Ol'shanskii–Sapir 2006, and Bridson–Groves 2010.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Our solution to *TCP*(*F_n*) uses a previous deep result by Bogopolski–Maslakova about computability of fixed subgroups of automorphisms of free groups.
- In 2008 a problem was found in the proof of Bogopolski–Maslakova; the authors claim to have fixed it, but no correction has been published yet.
- In 2014 Feighn–Handel give an alternative proof for Bogopolski–Maslakova's result.

• • •

• Alternative solution to $CP(F_n \rtimes_{\phi} \mathbb{Z})$ combining deep results by Ol'shanskii–Sapir 2006, and Bridson–Groves 2010.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Our solution to *TCP*(*F_n*) uses a previous deep result by Bogopolski–Maslakova about computability of fixed subgroups of automorphisms of free groups.
- In 2008 a problem was found in the proof of Bogopolski–Maslakova; the authors claim to have fixed it, but no correction has been published yet.
- In 2014 Feighn–Handel give an alternative proof for Bogopolski–Maslakova's result.

• Alternative solution to $CP(F_n \rtimes_{\phi} \mathbb{Z})$ combining deep results by Ol'shanskii–Sapir 2006, and Bridson–Groves 2010.

(日) (日) (日) (日) (日) (日) (日)

- Our solution to *TCP*(*F_n*) uses a previous deep result by Bogopolski–Maslakova about computability of fixed subgroups of automorphisms of free groups.
- In 2008 a problem was found in the proof of Bogopolski–Maslakova; the authors claim to have fixed it, but no correction has been published yet.
- In 2014 Feighn–Handel give an alternative proof for Bogopolski–Maslakova's result.

• • •

• Alternative solution to $CP(F_n \rtimes_{\phi} \mathbb{Z})$ combining deep results by Ol'shanskii–Sapir 2006, and Bridson–Groves 2010.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Our solution to *TCP*(*F_n*) uses a previous deep result by Bogopolski–Maslakova about computability of fixed subgroups of automorphisms of free groups.
- In 2008 a problem was found in the proof of Bogopolski–Maslakova; the authors claim to have fixed it, but no correction has been published yet.
- In 2014 Feighn–Handel give an alternative proof for Bogopolski–Maslakova's result.

• • •

• Alternative solution to $CP(F_n \rtimes_{\phi} \mathbb{Z})$ combining deep results by Ol'shanskii–Sapir 2006, and Bridson–Groves 2010.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

1. Historical context	2. CP for <i>Fn</i> -by-ℤ 0000000000	3. CP for <i>Fn</i> -by- <i>Fm</i>	4. Main result	5. Applications	6. Negative results
Outline					

- The historical context
- 2 The conjugacy problem for free-by-cyclic groups
- The conjugacy problem for free-by-free groups
- 4 The main result
- 5 Applications
- 6 Negative results

 Historical context 	 CP for F_n-by-ℤ 	 CP for Fn-by-Fm 	Main result	5. Applications	Negative results
		●0000			

Step 5:

Intuition always ahead

(2006)

・ロト・日本・日本・日本・日本

0000	0000000000	00000	0000000	000000000	00000000000
A crucial	comment				

Armando Martino: "The whole argument essentially works the same way in presence of more stable letters, i.e., for free-by-free groups"

Definition

Let $F_n = \langle x_1, \ldots, x_n | \rangle$ be the free group on $\{x_1, \ldots, x_n\}$ $(n \ge 2)$, and let $\varphi_1, \ldots, \varphi_m \in Aut(F_n)$. The free-by-free group $F_n \rtimes_{\varphi_1, \ldots, \varphi_m} F_m$ is

 $M_{\varphi_1,\ldots,\varphi_m} = F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m = \langle x_1,\ldots,x_n, t_1,\ldots,t_m \mid t_j^{-1} x_i t_j = x_i \varphi_j \rangle.$

But this must be wrong ...

Theorem (Miller '71)

There exist free-by-free groups with unsolvable conjugacy problem.

Surprise was that ...

... Armando was "essentially" right !!

(日) (日) (日) (日) (日) (日) (日)

0000	0000000000	00000	0000000	000000000	00000000000
A crucial	comment				

Armando Martino: "The whole argument essentially works the same way in presence of more stable letters, i.e., for free-by-free groups"

Definition

Let $F_n = \langle x_1, \ldots, x_n | \rangle$ be the free group on $\{x_1, \ldots, x_n\}$ $(n \ge 2)$, and let $\varphi_1, \ldots, \varphi_m \in Aut(F_n)$. The free-by-free group $F_n \rtimes_{\varphi_1, \ldots, \varphi_m} F_m$ is

 $M_{\varphi_1,\ldots,\varphi_m} = F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m = \langle x_1,\ldots,x_n, t_1,\ldots,t_m \mid t_j^{-1} x_i t_j = x_i \varphi_j \rangle.$

But this must be wrong ...

Theorem (Miller '71)

There exist free-by-free groups with unsolvable conjugacy problem.

Surprise was that ...

... Armando was "essentially" right !!

(ロ) (同) (三) (三) (三) (○) (○)

0000	0000000000	00000	0000000	000000000	00000000000
A crucial	comment				

Armando Martino: "The whole argument essentially works the same way in presence of more stable letters, i.e., for free-by-free groups"

Definition

Let $F_n = \langle x_1, \ldots, x_n | \rangle$ be the free group on $\{x_1, \ldots, x_n\}$ $(n \ge 2)$, and let $\varphi_1, \ldots, \varphi_m \in Aut(F_n)$. The free-by-free group $F_n \rtimes_{\varphi_1, \ldots, \varphi_m} F_m$ is

 $M_{\varphi_1,\ldots,\varphi_m} = F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m = \langle x_1,\ldots,x_n, t_1,\ldots,t_m \mid t_j^{-1} x_i t_j = x_i \varphi_j \rangle.$

But this must be wrong ...

Theorem (Miller '71)

There exist free-by-free groups with unsolvable conjugacy problem.

Surprise was that ...

... Armando was "essentially" right !!

(ロ) (同) (三) (三) (三) (○) (○)

 1. Historical context
 2. CP for Fn-by-Z
 3. CP for Fn-by-Fm
 4. Main result
 5. Applications
 6. Negative results

 0000
 000000
 000000
 0000000
 0000000
 00000000
 00000000

The comment was right...

In Case 1, the whole argument essentially works the same way;

But in Case 2, a much stronger problem arises:

 $u\sim_{_{M_{\iota\sigma}}} v \quad \Longleftrightarrow \quad v\sim u\varphi^k \text{ for some } k\in\mathbb{Z}.$

 $u \sim_{_{M_{\varphi}}} v \iff v \sim u\phi$ for some $\phi \in \langle \varphi \rangle \leqslant Aut(F_n)$

 $u \sim_{M_{\varphi_1,\ldots,\varphi_m}} v \iff v \sim u\phi \text{ for some } \phi \in \langle \varphi_1,\ldots,\varphi_m \rangle \leqslant Aut(F_n).$

Theorem (Bogopolski–Martino–V., 2010)

 $CP(F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m)$ is solvable if and only if $\langle \varphi_1,\ldots,\varphi_m \rangle \leq Aut(F_n)$ is orbit decidable.

Definition

The comment was right...

In Case 1, the whole argument essentially works the same way;

But in Case 2, a much stronger problem arises:

 $u\sim_{_{M_{\omega}}} v \iff v\sim u\varphi^k$ for some $k\in\mathbb{Z}.$

 $u \sim_{_{M_{\varphi}}} v \iff v \sim u\phi$ for some $\phi \in \langle \varphi \rangle \leqslant Aut(F_n)$

 $u \sim_{_{M_{\varphi_1},\ldots,\varphi_m}} v \iff v \sim u\phi \text{ for some } \phi \in \langle \varphi_1,\ldots,\varphi_m \rangle \leqslant Aut(F_n).$

Theorem (Bogopolski–Martino–V., 2010)

 $CP(F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m)$ is solvable if and only if $\langle \varphi_1,\ldots,\varphi_m \rangle \leq Aut(F_n)$ is orbit decidable.

Definition

The comment was right...

In Case 1, the whole argument essentially works the same way;

But in Case 2, a much stronger problem arises:

 $u\sim_{_{M_{\iota \sigma}}} v \quad \Longleftrightarrow \quad v\sim u \varphi^k \text{ for some } k\in \mathbb{Z}.$

 $u \sim_{_{M_{\varphi}}} v \iff v \sim u\phi$ for some $\phi \in \langle \varphi \rangle \leqslant Aut(F_n)$.

 $u \sim_{M_{\varphi_1},\ldots,\varphi_m} v \iff v \sim u\phi \text{ for some } \phi \in \langle \varphi_1,\ldots,\varphi_m \rangle \leqslant Aut(F_n).$

Theorem (Bogopolski–Martino–V., 2010)

 $CP(F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m)$ is solvable if and only if $\langle \varphi_1,\ldots,\varphi_m \rangle \leq Aut(F_n)$ is orbit decidable.

Definition

The comment was right...

In Case 1, the whole argument essentially works the same way;

But in Case 2, a much stronger problem arises:

 $u\sim_{_{M_{\iota \sigma}}} v \quad \Longleftrightarrow \quad v\sim u \varphi^k \text{ for some } k\in \mathbb{Z}.$

 $u \sim_{_{M_{\varphi}}} v \iff v \sim u\phi$ for some $\phi \in \langle \varphi \rangle \leqslant Aut(F_n)$.

$$u \sim_{M_{\varphi_1,\ldots,\varphi_m}} v \iff v \sim u\phi \text{ for some } \phi \in \langle \varphi_1,\ldots,\varphi_m \rangle \leqslant Aut(F_n).$$

Theorem (Bogopolski–Martino–V., 2010)

 $CP(F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m)$ is solvable if and only if $\langle \varphi_1,\ldots,\varphi_m \rangle \leq Aut(F_n)$ is orbit decidable.

Definition

The comment was right...

In Case 1, the whole argument essentially works the same way;

But in Case 2, a much stronger problem arises:

 $u\sim_{_{M_{\iota \sigma}}} v \quad \Longleftrightarrow \quad v\sim u \varphi^k \text{ for some } k\in \mathbb{Z}.$

$$u \sim_{_{M_{\alpha}}} v \iff v \sim u\phi$$
 for some $\phi \in \langle \varphi \rangle \leqslant Aut(F_n)$

$$u \sim_{_{M_{\varphi_1},\ldots,\varphi_m}} v \iff v \sim u\phi \text{ for some } \phi \in \langle \varphi_1,\ldots,\varphi_m \rangle \leqslant Aut(F_n).$$

Theorem (Bogopolski–Martino–V., 2010)

 $CP(F_n \rtimes_{\varphi_1,...,\varphi_m} F_m)$ is solvable if and only if $\langle \varphi_1,...,\varphi_m \rangle \leq Aut(F_n)$ is orbit decidable.

Definition

The comment was right...

In Case 1, the whole argument essentially works the same way;

But in Case 2, a much stronger problem arises:

 $u\sim_{_{M_{\iota \sigma}}} v \quad \Longleftrightarrow \quad v\sim u \varphi^k \text{ for some } k\in \mathbb{Z}.$

$$u \sim_{_{M_{\alpha}}} v \iff v \sim u\phi$$
 for some $\phi \in \langle \varphi \rangle \leqslant Aut(F_n)$

$$u \sim_{M_{\varphi_1,\ldots,\varphi_m}} v \iff v \sim u\phi \text{ for some } \phi \in \langle \varphi_1,\ldots,\varphi_m \rangle \leqslant Aut(F_n).$$

Theorem (Bogopolski–Martino–V., 2010)

 $CP(F_n \rtimes_{\varphi_1,...,\varphi_m} F_m)$ is solvable if and only if $\langle \varphi_1,...,\varphi_m \rangle \leq Aut(F_n)$ is orbit decidable.

Definition

1. Historical context	2. CP for <i>Fn</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> ○○○●○	4. Main result	5. Applications	6. Negative results
Reformu	lating				

A subgroup $A \leq Aut(F_n)$ is orbit decidable (O.D.) if \exists an algorithm A s.t., given $u, v \in F_n$ decides whether $v \sim u\alpha$ for some $\alpha \in A$.

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are orbit decidable.

Theorem (Bogopolski–Martino–V., 2010)

 $CP(F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m)$ is solvable $\iff \langle \varphi_1,\ldots,\varphi_m \rangle \leqslant Aut(F_n)$ is O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

1. Historical context	2. CP for <i>Fn</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> ○○○●○	4. Main result	5. Applications	6. Negative results
Reformu	lating				

A subgroup $A \leq Aut(F_n)$ is orbit decidable (O.D.) if \exists an algorithm A s.t., given $u, v \in F_n$ decides whether $v \sim u\alpha$ for some $\alpha \in A$.

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are orbit decidable.

Theorem (Bogopolski–Martino–V., 2010)

 $CP(F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m)$ is solvable $\iff \langle \varphi_1,\ldots,\varphi_m \rangle \leqslant Aut(F_n)$ is O.D.

Corollary (Bogopolski–Martino–Maslakova–V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

1. Historical context	2. CP for <i>Fn</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> ○○○●○	4. Main result	5. Applications	6. Negative results
Reformu	lating				

A subgroup $A \leq Aut(F_n)$ is orbit decidable (O.D.) if \exists an algorithm A s.t., given $u, v \in F_n$ decides whether $v \sim u\alpha$ for some $\alpha \in A$.

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are orbit decidable.

Theorem (Bogopolski–Martino–V., 2010)

 $CP(F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m)$ is solvable $\iff \langle \varphi_1,\ldots,\varphi_m \rangle \leqslant Aut(F_n)$ is O.D.

Corollary (Bogopolski–Martino–Maslakova–V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

1. Historical context	2. CP for <i>Fn</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> ○○○●○	4. Main result	5. Applications	6. Negative results
Reformu	lating				

A subgroup $A \leq Aut(F_n)$ is orbit decidable (O.D.) if \exists an algorithm A s.t., given $u, v \in F_n$ decides whether $v \sim u\alpha$ for some $\alpha \in A$.

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are orbit decidable.

Theorem (Bogopolski–Martino–V., 2010)

 $CP(F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m)$ is solvable $\iff \langle \varphi_1,\ldots,\varphi_m \rangle \leqslant Aut(F_n)$ is O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

1. Historical context	2. CP for <i>Fn</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> ○○○●○	4. Main result	5. Applications	6. Negative results
Reformu	lating				

A subgroup $A \leq Aut(F_n)$ is orbit decidable (O.D.) if \exists an algorithm A s.t., given $u, v \in F_n$ decides whether $v \sim u\alpha$ for some $\alpha \in A$.

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are orbit decidable.

Theorem (Bogopolski–Martino–V., 2010)

 $CP(F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m)$ is solvable $\iff \langle \varphi_1,\ldots,\varphi_m \rangle \leqslant Aut(F_n)$ is O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

 And Miller's examples must correspond to orbit undecidable subgroups ⟨φ₁,...,φ_m⟩ ≤ Aut (F_n).

 Historical context 	 CP for <i>F_n</i>-by-ℤ 	 CP for F_n-by-F_m 	Main result	5. Applications	Negative results
		00000			

Step 6:

Extend as much as possible

(2007)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

1. Historical context	2. CP for <i>F⊓</i> -by-ℤ 0000000000	3. CP for <i>F_n-</i> by- <i>F_m</i>	4. Main result	5. Applications	6. Negative results
Outline					

- The historical context
- The conjugacy problem for free-by-cyclic groups
- The conjugacy problem for free-by-free groups
- 4 The main result
- 5 Applications
- 6 Negative results

1. Historical context	2. CP for <i>F_∩</i> -by-ℤ ○○○○○○○○○	3. CP for <i>Fn-</i> by- <i>Fm</i> 00000	4. Main result ●000000	5. Applications	6. Negative results
Orbit dec	cidability				

Let X be a set. A collection of maps $A \subseteq Map(X, X)$ is said to be orbit decidable (O.D.) if there is an algorithm A with:

- Input: two elements $x, y \in X$;
- **Output:** "yes" or "no" depending on $x\alpha = y$ for some $\alpha \in A$.

Definition

For X, $A \subseteq Map(X, X)$, the A-orbit of $x \in X$ is $\mathcal{O}(x) = \{x \alpha \mid \alpha \in A\}$.

Observation

O.D. is membership in A-orbits.

Observation

The conjugacy problem for group G, CP(G), is just the O.D. for $A = \text{lnn}(G) = \{\gamma_g \colon G \to G, x \mapsto g^{-1}xg \mid g \in G\} \trianglelefteq Aut(G).$

1. Historical context	2. CP for <i>F_n</i> -by-ℤ 0000000000	3. CP for <i>F_n-</i> by- <i>F_m</i> 00000	4. Main result ●000000	5. Applications	6. Negative results
Orbit dec	dability				

Let X be a set. A collection of maps $A \subseteq Map(X, X)$ is said to be orbit decidable (O.D.) if there is an algorithm A with:

- Input: two elements $x, y \in X$;
- **Output:** "yes" or "no" depending on $x\alpha = y$ for some $\alpha \in A$.

Definition

For X, $A \subseteq Map(X, X)$, the A-orbit of $x \in X$ is $\mathcal{O}(x) = \{x\alpha \mid \alpha \in A\}$.

Observation

O.D. is membership in A-orbits.

Observation

The conjugacy problem for group G, CP(G), is just the O.D. for $A = \text{lnn}(G) = \{\gamma_g \colon G \to G, x \mapsto g^{-1}xg \mid g \in G\} \trianglelefteq Aut(G).$

1. Historical context	2. CP for <i>F_n</i> -by-ℤ 0000000000	3. CP for <i>F_n-</i> by- <i>F_m</i> 00000	4. Main result ●000000	5. Applications	6. Negative results
Orbit dec	dability				

Let X be a set. A collection of maps $A \subseteq Map(X, X)$ is said to be orbit decidable (O.D.) if there is an algorithm A with:

- Input: two elements $x, y \in X$;
- **Output:** "yes" or "no" depending on $x\alpha = y$ for some $\alpha \in A$.

Definition

For X, $A \subseteq Map(X, X)$, the A-orbit of $x \in X$ is $\mathcal{O}(x) = \{x\alpha \mid \alpha \in A\}$.

Observation

O.D. is membership in A-orbits.

Observation

The conjugacy problem for group G, CP(G), is just the O.D. for $A = \text{lnn}(G) = \{\gamma_g \colon G \to G, x \mapsto g^{-1}xg \mid g \in G\} \trianglelefteq Aut(G).$

1. Historical context	2. CP for <i>F_n</i> -by-ℤ 0000000000	3. CP for <i>F_n-</i> by- <i>F_m</i> 00000	4. Main result ●000000	5. Applications	6. Negative results
Orbit dec	dability				

Let X be a set. A collection of maps $A \subseteq Map(X, X)$ is said to be orbit decidable (O.D.) if there is an algorithm A with:

- Input: two elements $x, y \in X$;
- **Output:** "yes" or "no" depending on $x\alpha = y$ for some $\alpha \in A$.

Definition

For X, $A \subseteq Map(X, X)$, the A-orbit of $x \in X$ is $\mathcal{O}(x) = \{x \alpha \mid \alpha \in A\}$.

Observation

O.D. is membership in A-orbits.

Observation

The conjugacy problem for group G, CP(G), is just the O.D. for $A = Inn(G) = \{\gamma_g : G \to G, x \mapsto g^{-1}xg \mid g \in G\} \trianglelefteq Aut(G).$

0000	0000000000	00000	000000	000000000	00000000000			
Short exact sequences								

Observation

(i) For $\varphi \in Aut(F_n)$, we have the natural short exact sequence:

(ii) For φ₁,..., φ_m ∈ Aut(F_n), we have the natural short exact sequence:

(iii) And their action subgroups are, respectively, $\langle \varphi \rangle \leq Out(F_n)$ and $\langle \varphi_1, \ldots, \varphi_m \rangle \leq Out(F_n)$.

	0000000000	00000	000000	000000000	00000000000				
Short exact sequences									

Observation

(i) For $\varphi \in Aut(F_n)$, we have the natural short exact sequence:

(ii) For $\varphi_1, \ldots, \varphi_m \in Aut(F_n)$, we have the natural short exact sequence:

(iii) And their action subgroups are, respectively, $\langle \varphi \rangle \leq Out(F_n)$ and $\langle \varphi_1, \ldots, \varphi_m \rangle \leq Out(F_n)$.

Chart avaat aaguanaaa							
			000000				
 Historical context 	 CP for F_n-by-Z 	 CP for F_n-by-F_m 	Main result	Applications	Negative results		

Short exact sequences

Observation

(i) For $\varphi \in Aut(F_n)$, we have the natural short exact sequence:

(ii) For $\varphi_1, \ldots, \varphi_m \in Aut(F_n)$, we have the natural short exact sequence:

(iii) And their action subgroups are, respectively, $\langle \varphi \rangle \leq Out(F_n)$ and $\langle \varphi_1, \ldots, \varphi_m \rangle \leq Out(F_n)$.

Short exact sequences

Definition

Consider an arbitrary short exact sequence of groups,

 $1 \rightarrow F \rightarrow G \rightarrow H \rightarrow 1$.

Given $g \in G$, consider $\gamma_g \colon G \to G$, which restricts to an automorphism $\gamma_g|_F \colon F \to F$. Then, the action subgroup of the short exact sequence is:

 $A = \{\gamma_g|_F \mid g \in G\} \leqslant Aut(F)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

To solve $CP(F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m)$ we have needed:

- $TCP(F_n)$,
- orbit decidability of $\langle \varphi_1, \ldots, \varphi_m \rangle \in \operatorname{Aut}(F_n)$,
- computability up and down the short exact sequence.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

These conditions (plus two more) will suffice ...

Chart av		00000	0000000	000000000	00000000000				
Short exact sequences									

To solve $CP(F_n \rtimes_{\varphi_1,...,\varphi_m} F_m)$ we have needed:

• $TCP(F_n)$,

• orbit decidability of $\langle \varphi_1, \ldots, \varphi_m \rangle \in \operatorname{Aut}(F_n)$,

• computability up and down the short exact sequence.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

These conditions (plus two more) will suffice ...

Short ov		00000	0000000	000000000	00000000000				
Short exact sequences									

To solve $CP(F_n \rtimes_{\varphi_1,...,\varphi_m} F_m)$ we have needed:

• $TCP(F_n)$,

• orbit decidability of $\langle \varphi_1, \ldots, \varphi_m \rangle \in Aut(F_n)$,

• computability up and down the short exact sequence.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

These conditions (plus two more) will suffice ...

Short ov		00000	0000000	000000000	00000000000				
Short exact sequences									

To solve $CP(F_n \rtimes_{\varphi_1,...,\varphi_m} F_m)$ we have needed:

- $TCP(F_n)$,
- orbit decidability of $\langle \varphi_1, \ldots, \varphi_m \rangle \in Aut(F_n)$,
- computability up and down the short exact sequence.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

These conditions (plus two more) will suffice

1. Historical context	2. CP for <i>F⊓</i> -by-ℤ 000000000	3. CP for <i>F_n-</i> by- <i>F_m</i>	4. Main result 000€000	5. Applications	6. Negative results			
Short exact sequences								

To solve $CP(F_n \rtimes_{\varphi_1,...,\varphi_m} F_m)$ we have needed:

- $TCP(F_n)$,
- orbit decidability of $\langle \varphi_1, \ldots, \varphi_m \rangle \in Aut(F_n)$,
- computability up and down the short exact sequence.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

These conditions (plus two more) will suffice

1. Historio		2. CP for <i>F⊓</i> -by-ℤ 0000000000	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result 0000●00	5. Applications	6. Negative results					
The main result											
6	Theorem	(Boaopolski-	Martino-V., 200)8)							
	Let										
	$1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1$ be an algorithmic short exact sequence of groups such that										
		P(F) is solvab									
		H) is solvable e is an algorit	e, hm which, give	n an innut 1	\neq h \in H con	nnutes					
			nents $z_{h,1}, \ldots,$			ipates					
			$C_H(h) = \langle h \rangle z_{h,1}$	$\Box \cdots \sqcup \langle h \rangle z$							
	Then,										
				$a : F \rightarrow I$)					

CP(G) is solvable \iff

 $A_G = \left\{ egin{array}{ccc} \gamma_g \colon F & o & F \ x & \mapsto & g^{-1}xg \end{array} \middle| g \in G
ight\} lpha$

 \leq Aut(F) is orbit decidable.

1. Histori 0000		2. CP for <i>F_n</i> -by-ℤ 0000000000	3. CP for <i>Fn-</i> by- <i>Fm</i> 00000	4. Main result 0000●00	5. Applications	6. Negative results					
The main result											
	Thoorom	(Bogopolski-l	Martino-V., 200	18)		_					
			Martino-v., 200	00)							
	Let	1	$\longrightarrow F \stackrel{lpha}{\longrightarrow} G$ -	$\xrightarrow{\beta} H \longrightarrow 1$							
	be an algorithmic short exact sequence of groups such that										
	(i) <i>TCF</i>	P(F) is solvabl	<i>e</i> ,								
		H) is solvable									
			hm which, give hents z _{h,1} ,,			nputes					
			$C_H(h) = \langle h \rangle Z_{h,1}$	$\sqcup \cdots \sqcup \langle h \rangle z$							
	Then,										
			()	$a: F \rightarrow h$							

CP(G) is solvable \Leftarrow

 $\mathbf{h}_{G} = \left\{ egin{array}{ccc} \gamma_{g} \colon \mathbf{r} &
ightarrow \mathbf{r} \ \mathbf{x} & \mapsto & g^{-1} \mathbf{x} g \end{array} \middle| egin{array}{ccc} g \in G \ \end{array}
ight\}$

 \leq Aut(F) is orbit decidable.

1. Histor 0000		2. CP for <i>Fn</i> -by-ℤ ○○○○○○○○○	3. CP for F _n -by-F _m	4. Main result 0000●00	5. Applications	6. Negative results
Th	e mai	n result				
	Theore	m (Bogopolski-I	Martino-V., 200)8)		
	Let					
		1	$\longrightarrow F \xrightarrow{\alpha} G$ -	$\xrightarrow{r} H \longrightarrow 1$		
		algorithmic shor		ce of groups	such that	
		CP(F) is solvabl				
		P(H) is solvable				
		ere is an algorith inite set of elem				putes
			$C_H(h) = \langle h \rangle Z_{h,1}$	$\Box \cdots \Box \langle h \rangle z$		
	Then,					

$$A_G = \left\{ egin{array}{ccc} \gamma_g \colon F & o & F \ x & \mapsto & g^{-1}xg \end{array} \middle| g \in G
ight\} \leqslant$$

CP(G) is solvable \iff

 \leq Aut(F) is orbit decidable.

1. Historical context	2. CP for <i>Fn</i> -by-ℤ 0000000000	3. CP for <i>Fn-</i> by- <i>Fm</i> 00000	4. Main result 0000●00	5. Applications	6. Negative results
The main	result				

Theorem (Bogopolski-Martino-V., 2008)

Let

$$1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1$$

be an algorithmic short exact sequence of groups such that

- (i) TCP(F) is solvable,
- (ii) CP(H) is solvable,
- (iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h,1}, \ldots, z_{h,t_h} \in H$ such that

$$C_H(h) = \langle h \rangle z_{h,1} \sqcup \cdots \sqcup \langle h \rangle z_{h,t_h}.$$

Then,

$$A_G = \left\{ egin{array}{ccc} \gamma_g \colon F & o & F \ x & \mapsto & g^{-1}xg \end{array} \middle| g \in G
ight\} \leqslant$$

CP(G) is solvable \iff

 \leq Aut(F) is orbit decidable.

1. Historical context	2. CP for <i>F_n-by-</i> Z	3. CP for <i>Fn-</i> by- <i>Fm</i> 00000	4. Main result 0000●00	5. Applications	6. Negative results
The mair	n result				
Theorem	n (Rogonolski-	Martino-V 200	18)		

Let

$$1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1$$

be an algorithmic short exact sequence of groups such that

- (i) TCP(F) is solvable,
- (ii) CP(H) is solvable,
- (iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h,1}, \ldots, z_{h,t_h} \in H$ such that

$$C_H(h) = \langle h \rangle z_{h,1} \sqcup \cdots \sqcup \langle h \rangle z_{h,t_h}.$$

Then.

$$A_{G} = \left\{ \begin{array}{ccc} \gamma_{g} \colon F & \to & F \\ x & \mapsto & g^{-1}xg \end{array} \middle| g \in G \right\} \leqslant$$

CP(G) is solvable \iff

 \leq Aut(F) is orbit decidable.

1. Historical context	2. CP for <i>Fn</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>F_n-by-F_m</i> 00000	4. Main result 00000●0	5. Applications	6. Negative results
The mair	n result				

Proposition (Bogopolski-Martino-V., 2008)

Torsion-free hyperbolic groups (in particular, free groups) satisfy hypothesis (ii) and (iii).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

So, they all fit well as *H*.

- 1. Historical context
 2. CP for Fn-by-Z
 3. CP for Fn-by-Fm
 4. Main result
 5. Applications
 6. Negative results

 0000
 00000000
 0000000
 00000000
 00000000
 00000000
 000000000
 - O. Bogopolski, A. Martino, O. Maslakova, E. Ventura, Freeby-cyclic groups have solvable conjugacy problem, **Bulletin of the London Mathematical Society**, 38(5) (2006), 787–794.
 - O. Bogopolski, A. Martino, E. Ventura, Orbit decidability and the conjugacy problem for extensions of groups, **Transactions of the American Mathematical Society** 362 (2010), 2003–2036.
 - V. Romanko'v, E. Ventura, Twisted conjugacy problem for endomorphisms of metabelian groups, **Algebra and Logic** 48(2) (2009), 89–98. Translation from **Algebra i Logika** 48(2) (2009), 157–173.
 - J. González-Meneses, E. Ventura, Twisted conjugacy in the braid group, Israel Journal of Mathematics 201 (2014), 455–476.
 - J. Burillo, F. Matucci, E. Ventura, The conjugacy problem for extensions of Thompson's group, to appear at **Israel Journal of Mathematics**.
 - Z. Sŭnic, E. Ventura, The conjugacy problem in automaton groups is not solvable, Journal of Algebra 364 (2012), 148–154.
 - E. Ventura, Group theoretic orbit decidability, **Groups, Complexity, Cryptology** 6(2) (2014), 133–148.

o ...

1. Historical context	2. CP for <i>F⊓</i> -by-ℤ 0000000000	3. CP for <i>F_n-</i> by- <i>F_m</i>	4. Main result	5. Applications	6. Negative results
Outline					

- The historical context
- The conjugacy problem for free-by-cyclic groups
- The conjugacy problem for free-by-free groups
- 4 The main result
- 5 Applications
- 6 Negative results

 1. Historical context
 2. CP for Fn-by-Z
 3. CP for Fn-by-Fm
 4. Main result
 5. Applications
 6. Negative results

 0000
 000000000
 00000000
 00000000
 000000000
 000000000

 Free-by-free groups

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

 $TCP(F_n)$ is solvable.

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski–Martino–Maslakova–V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead '36)

The full $Aut(F_n)$ is O.D.

Corollary (Bogopolski–Martino–V., 2008)

 1. Historical context
 2. CP for Fn-by-Z
 3. CP for Fn-by-Fm
 4. Main result
 5. Applications
 6. Negative results

 0000
 00000000
 00000000
 00000000
 00000000
 000000000

 Free-by-free groups

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

 $TCP(F_n)$ is solvable.

• • •

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski–Martino–Maslakova–V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead '36)

The full $Aut(F_n)$ is O.D.

Corollary (Bogopolski–Martino–V., 2008)

 1. Historical context
 2. CP for Fn-by-Z
 3. CP for Fn-by-Fm
 4. Main result
 5. Applications
 6. Negative results

 0000
 000000000
 00000000
 00000000
 000000000
 000000000

 Free-by-free groups

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

 $TCP(F_n)$ is solvable.

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead '36)

The full $Aut(F_n)$ is O.D.

Corollary (Bogopolski–Martino–V., 2008)

 1. Historical context
 2. CP for Fn-by-Z
 3. CP for Fn-by-Fm
 4. Main result
 5. Applications
 6. Negative results

 0000
 000000000
 00000000
 00000000
 00000000
 000000000

 Free-by-free groups

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

 $TCP(F_n)$ is solvable.

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead '36)

The full $Aut(F_n)$ is O.D.

Corollary (Bogopolski–Martino–V., 2008)

 1. Historical context
 2. CP for Fn-by-Z
 3. CP for Fn-by-Fm
 4. Main result
 5. Applications
 6. Negative results

 0000
 000000000
 00000000
 00000000
 00000000
 000000000

 Free-by-free groups

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

 $TCP(F_n)$ is solvable.

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead '36)

The full $Aut(F_n)$ is O.D.

Corollary (Bogopolski-Martino-V., 2008)

1. Historical context	2. CP for <i>F_n</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications ○●○○○○○○○	6. Negative results
Free-by-t	free group	S			

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski–Martino–V., 2008)

If $\langle \varphi_1, \ldots, \varphi_m \rangle$ is of finite index in $Aut(F_n)$ then $CP(F_n \rtimes_{\varphi_1, \ldots, \varphi_m} F_m)$ is solvable.

Theorem (Bogopolski–Martino–V., 2008)

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

Corollary (Bogopolski–Martino–V., 2008) Every E. by free group has solvable conjugacy n

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆ ○

1. Historical context	2. CP for <i>F_n</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>F_n-by-F_m</i> 00000	4. Main result	5. Applications	6. Negative results
Free-by-	free group	S			

Theorem (Bogopolski–Martino–V., 2008)

Finite index subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski–Martino–V., 2008)

If $\langle \varphi_1, \ldots, \varphi_m \rangle$ is of finite index in $Aut(F_n)$ then $CP(F_n \rtimes_{\varphi_1, \ldots, \varphi_m} F_m)$ is solvable.

・ コット (雪) (小田) (コット 日)

Theorem (Bogopolski–Martino–V., 2008)

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

Corollary (Bogopolski–Martino–V., 2008)

Every F₂-by-free group has solvable conjugacy problem.

1. Historical context	2. CP for <i>F_n-by-</i> ℤ ○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications ○●○○○○○○○	6. Negative results
Free-by-1	free group	S			

Theorem (Bogopolski–Martino–V., 2008)

Finite index subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski–Martino–V., 2008)

If $\langle \varphi_1, \ldots, \varphi_m \rangle$ is of finite index in $Aut(F_n)$ then $CP(F_n \rtimes_{\varphi_1, \ldots, \varphi_m} F_m)$ is solvable.

Theorem (Bogopolski–Martino–V., 2008)

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

Corollary (Bogopolski–Martino–V., 2008) *Every F₂-by-free group has solvable conjugacy proble*

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

1. Historical context	2. CP for <i>F∩</i> -by-ℤ ○○○○○○○○○	3. CP for <i>F_n-by-F_m</i> 00000	4. Main result	5. Applications	6. Negative results
Free-by-	free group	S			

Theorem (Bogopolski–Martino–V., 2008)

Finite index subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski–Martino–V., 2008)

If $\langle \varphi_1, \ldots, \varphi_m \rangle$ is of finite index in $Aut(F_n)$ then $CP(F_n \rtimes_{\varphi_1, \ldots, \varphi_m} F_m)$ is solvable.

Theorem (Bogopolski–Martino–V., 2008)

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

Corollary (Bogopolski–Martino–V., 2008)

Every F_2 -by-free group has solvable conjugacy problem.

$$1 \longrightarrow \mathbb{Z}^n \longrightarrow \mathbb{Z}^n \rtimes_{M_1, \dots, M_m} F_m \longrightarrow F_m \longrightarrow 1$$

Observation (linear algebra) $TCP(\mathbb{Z}^n)$ is solvable.

So,

 $CP(\mathbb{Z}^n \rtimes_{M_1,...,M_m} F_m)$ is solvable $\Leftrightarrow \langle M_1,...,M_m \rangle \leqslant GL_n(\mathbb{Z})$ is O.D.

Observe that now $M_i \in Aut(\mathbb{Z}^n) = GL_n(\mathbb{Z})$ are just $n \times n$ invertible matrices.

• • •

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$1 \longrightarrow \mathbb{Z}^n \longrightarrow \mathbb{Z}^n \rtimes_{M_1, \dots, M_m} F_m \longrightarrow F_m \longrightarrow 1$$

So

 $CP(\mathbb{Z}^n \rtimes_{M_1,...,M_m} F_m)$ is solvable $\Leftrightarrow \langle M_1,...,M_m \rangle \leqslant GL_n(\mathbb{Z})$ is O.D.

Observe that now $M_i \in Aut(\mathbb{Z}^n) = GL_n(\mathbb{Z})$ are just $n \times n$ invertible matrices.

• • •

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$1 \longrightarrow \mathbb{Z}^n \longrightarrow \mathbb{Z}^n \rtimes_{M_1, \dots, M_m} F_m \longrightarrow F_m \longrightarrow 1$$

Observation (linear algebra) $TCP(\mathbb{Z}^n)$ is solvable.

So,

 $CP(\mathbb{Z}^n \rtimes_{M_1,...,M_m} F_m)$ is solvable $\Leftrightarrow \langle M_1,...,M_m \rangle \leqslant GL_n(\mathbb{Z})$ is O.D.

Observe that now $M_i \in Aut(\mathbb{Z}^n) = GL_n(\mathbb{Z})$ are just $n \times n$ invertible matrices.

• • •

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$1 \longrightarrow \mathbb{Z}^n \longrightarrow \mathbb{Z}^n \rtimes_{M_1, \dots, M_m} F_m \longrightarrow F_m \longrightarrow 1$$

Observation (linear algebra) $TCP(\mathbb{Z}^n)$ is solvable.

So,

 $CP(\mathbb{Z}^n \rtimes_{M_1,...,M_m} F_m)$ is solvable $\Leftrightarrow \langle M_1,...,M_m \rangle \leqslant GL_n(\mathbb{Z})$ is O.D.

Observe that now $M_i \in Aut(\mathbb{Z}^n) = GL_n(\mathbb{Z})$ are just $n \times n$ invertible matrices.

• • •

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$1 \longrightarrow \mathbb{Z}^n \longrightarrow \mathbb{Z}^n \rtimes_{M_1, \dots, M_m} F_m \longrightarrow F_m \longrightarrow 1$$

Observation (linear algebra) $TCP(\mathbb{Z}^n)$ is solvable.

So,

 $CP(\mathbb{Z}^n \rtimes_{M_1,...,M_m} F_m)$ is solvable $\Leftrightarrow \langle M_1,...,M_m \rangle \leqslant GL_n(\mathbb{Z})$ is O.D.

Observe that now $M_i \in Aut(\mathbb{Z}^n) = GL_n(\mathbb{Z})$ are just $n \times n$ invertible matrices.

• • •

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1. Historical context	2. CP for <i>F_n</i> -by-ℤ 0000000000	3. CP for <i>Fn</i> -by- <i>Fm</i>	4. Main result	5. Applications	6. Negative results

(Free abelian)-by-free groups

Theorem (Kannan–Lipton '86)

Cyclic subgroups of $GL_n(\mathbb{Z})$ *are O.D.*

Corollary (Remeslennikov '69

 \mathbb{Z}^n -by- \mathbb{Z} groups have solvable conjugacy problem.

Observation (elementary)

The full $GL_n(\mathbb{Z})$ is O.D.

Corollary (Bogopolski-Martino-V., 2008)

If $\langle M_1, \ldots, M_m \rangle = GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

1. Historical context	2. CP for <i>Fn</i> -by-ℤ ○○○○○○○○○	3. CP for <i>Fn-</i> by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results
(Free ab	elian)-by-f	ree groups	;		

Theorem (Kannan–Lipton '86)

Cyclic subgroups of $GL_n(\mathbb{Z})$ *are O.D.*

Corollary (Remeslennikov '69)

 \mathbb{Z}^n -by- \mathbb{Z} groups have solvable conjugacy problem.

Observation (elementary)

The full $GL_n(\mathbb{Z})$ is O.D.

Corollary (Bogopolski–Martino–V., 2008)

If $\langle M_1, \ldots, M_m \rangle = GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

・ロト・日本・日本・日本・日本・日本

1. Historical context	2. CP for <i>F_n</i> -by-ℤ 0000000000	3. CP for <i>Fn</i> -by- <i>Fm</i>	4. Main result	5. Applications	6. Negative results

(Free abelian)-by-free groups

Theorem (Kannan–Lipton '86)

Cyclic subgroups of $GL_n(\mathbb{Z})$ *are O.D.*

Corollary (Remeslennikov '69)

 \mathbb{Z}^n -by- \mathbb{Z} groups have solvable conjugacy problem.

Observation (elementary)

The full $GL_n(\mathbb{Z})$ is O.D.

Corollary (Bogopolski–Martino–V., 2008)

If $\langle M_1, \ldots, M_m \rangle = GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

1. Historical context	2. CP for <i>F_n</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>F_n-</i> by- <i>F_m</i> 00000	4. Main result	5. Applications 000●00000	6. Negative results
(Free ab	elian)-by-f	ree groups	;		

Theorem (Kannan–Lipton '86)

Cyclic subgroups of $GL_n(\mathbb{Z})$ *are O.D.*

Corollary (Remeslennikov '69)

 \mathbb{Z}^n -by- \mathbb{Z} groups have solvable conjugacy problem.

Observation (elementary)

The full $GL_n(\mathbb{Z})$ is O.D.

Corollary (Bogopolski-Martino-V., 2008)

If $\langle M_1, \ldots, M_m \rangle = GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

(Free abelian)-by-free groups

Theorem (Bogopolski–Martino–V., 2008)

Finite index subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary (Bogopolski–Martino–V., 2008)

If $\langle M_1, \ldots, M_m \rangle$ is of finite index in $GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Theorem (Bogopolski–Martino–V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Corollary (Bogopolski–Martino–V., 2008)

(Free abelian)-by-free groups

Theorem (Bogopolski–Martino–V., 2008)

Finite index subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary (Bogopolski–Martino–V., 2008)

If $\langle M_1, \ldots, M_m \rangle$ is of finite index in $GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

・ コット (雪) (小田) (コット 日)

Theorem (Bogopolski–Martino–V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Corollary (Bogopolski–Martino–V., 2008)

(Free abelian)-by-free groups

Theorem (Bogopolski–Martino–V., 2008)

Finite index subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary (Bogopolski–Martino–V., 2008)

If $\langle M_1, \ldots, M_m \rangle$ is of finite index in $GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (Bogopolski–Martino–V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Corollary (Bogopolski–Martino–V., 2008)

 1. Historical context
 2. CP for Fn-by-Z
 3. CP for Fn-by-Fm
 4. Main result
 5. Applications
 6. Negative results

 0000
 000000000
 00000
 00000
 00000
 00000
 0000000000

 (Free abelian)-by-free groups
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Theorem (Bogopolski–Martino–V., 2008)

Finite index subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary (Bogopolski–Martino–V., 2008)

If $\langle M_1, \ldots, M_m \rangle$ is of finite index in $GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski–Martino–V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Corollary (Bogopolski-Martino-V., 2008)

 1. Historical context
 2. CP for Fn-by-Z
 3. CP for Fn-by-Fm
 4. Main result
 5. Applications
 6. Negative results

 0000
 000000000
 00000
 000000000
 0000000000
 0000000000

 Braid-by-free groups
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Consider the braid group on *n* strands, given by the classical presentation:

$$B_n = \left\langle \sigma_1, \sigma_2, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & (|i-j| \ge 2) \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} & (1 \le i \le n-2) \end{array} \right\rangle.$$

- $CP(B_n)$ is solvable.
- And the automorphism group is easy:

Theorem (Dyer–Grossman '81)

 $|Out(B_n)| = 2$; more precisely, $Aut(B_n) = Inn(B_n) \sqcup Inn(B_n) \cdot \varepsilon$, where $\varepsilon \colon B_n \to B_n$ is the automorphism which inverts all generators, $\sigma_i \mapsto \sigma_i^{-1}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 1. Historical context
 2. CP for Fn-by-Z
 3. CP for Fn-by-Fm
 4. Main result
 5. Applications
 6. Negative results

 0000
 000000000
 00000
 000000000
 0000000000
 0000000000

 Braid-by-free groups
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Consider the braid group on *n* strands, given by the classical presentation:

$$B_n = \left\langle \sigma_1, \sigma_2, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & (|i-j| \ge 2) \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} & (1 \le i \le n-2) \end{array} \right\rangle.$$

• $CP(B_n)$ is solvable.

• And the automorphism group is easy:

Theorem (Dyer–Grossman '81)

 $|Out(B_n)| = 2$; more precisely, $Aut(B_n) = Inn(B_n) \sqcup Inn(B_n) \cdot \varepsilon$, where $\varepsilon \colon B_n \to B_n$ is the automorphism which inverts all generators, $\sigma_i \mapsto \sigma_i^{-1}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 1. Historical context
 2. CP for F_n-by-Z
 3. CP for F_n-by-F_m
 4. Main result
 5. Applications
 6. Negative results

 0000
 000000000
 00000
 000000
 000000
 000000000

 Braid-by-free groups
 6. Negative results
 000000
 0000000000
 0000000000

Consider the braid group on *n* strands, given by the classical presentation:

$$B_n = \left\langle \sigma_1, \sigma_2, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & (|i-j| \ge 2) \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} & (1 \le i \le n-2) \end{array} \right\rangle.$$

- $CP(B_n)$ is solvable.
- And the automorphism group is easy:

Theorem (Dyer–Grossman '81)

 $|Out(B_n)| = 2$; more precisely, $Aut(B_n) = Inn(B_n) \sqcup Inn(B_n) \cdot \varepsilon$, where $\varepsilon \colon B_n \to B_n$ is the automorphism which inverts all generators, $\sigma_i \mapsto \sigma_i^{-1}$.

1. Historical context	2. CP for <i>F_n</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results		
Braid-by-free groups							

Theorem (González-Meneses–V. 2009)

 $TCP(B_n)$ is solvable.

• • •

Observation

Every subgroup $A \leq Aut(B_n)$ is orbit decidable.

Corollary (González-Meneses–V. 2009)

Every extension of B_n by a torsion-free hyperbolic group has solvable conjugacy problem.

(日) (日) (日) (日) (日) (日) (日)

1. Historical context	2. CP for <i>F_n</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results		
Braid-by-free groups							

Theorem (González-Meneses–V. 2009)

 $TCP(B_n)$ is solvable.

• • •

Observation

Every subgroup $A \leq Aut(B_n)$ is orbit decidable.

Corollary (González-Meneses–V. 2009)

Every extension of B_n by a torsion-free hyperbolic group has solvable conjugacy problem.

(日) (日) (日) (日) (日) (日) (日)

1. Historical context	2. CP for <i>F_n</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results		
Braid-by-free groups							

Theorem (González-Meneses–V. 2009)

 $TCP(B_n)$ is solvable.

• • •

Observation

Every subgroup $A \leq Aut(B_n)$ is orbit decidable.

Corollary (González-Meneses-V. 2009)

Every extension of B_n by a torsion-free hyperbolic group has solvable conjugacy problem.

T L	he has free				
 Historical context 0000 	2. CP for <i>F_Π-</i> by-ℤ 0000000000	3. CP for <i>Fn-</i> by- <i>Fm</i> 00000	4. Main result	 Applications 0000000●0 	6. Negative results 00000000000

Thompson-by-free groups

Consider Thompson's group F:

$$F = \begin{cases} -\text{increasing and piecewise linear,} \\ f: [0,1] \to [0,1] \mid f \text{ -with finitely many dyadic breakpoints,} \\ -\text{slopes being powers of 2.} \end{cases}$$

• CP(F) is solvable.

• And the automorphism group is big, but easy:

Theorem (Brin '97)

For every $\varphi \in Aut(F)$, there exists $\tau \in EP_2$ such that $\varphi(g) = \tau^{-1}g\tau$, for every $g \in F$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

$$F \trianglelefteq EP_2 = igg\{ f \colon \mathbb{R} o \mathbb{R} \mid igg| egin{array}{c} f ext{ is p.l., dyadic bkp., slopes } 2^n \ eventually periodic \end{array} igg]$$

1. Historical context	2. CP for <i>F_n-by-</i> Z	3. CP for F _n -by-F _m	4. Main result	5. Applications 0000000000	6. Negative results	
Thompson by free groups						

I hompson-by-free groups

Consider Thompson's group F:

$$F = \begin{cases} -\text{increasing and piecewise linear,} \\ f: [0,1] \to [0,1] \mid f \text{ -with finitely many dyadic breakpoints,} \\ -\text{slopes being powers of 2.} \end{cases}$$

- CP(F) is solvable.
- And the automorphism group is big, but easy:

Theorem (Brin '97)

For every $\varphi \in Aut(F)$, there exists $\tau \in EP_2$ such that $\varphi(g) = \tau^{-1}g\tau$, for every $g \in F$.

 $F \trianglelefteq EP_2 = \left\{ f \colon \mathbb{R} \to \mathbb{R} \mid \begin{array}{c} f \text{ is p.l., dyadic bkp., slopes } 2^n \\ eventually periodic \end{array} \right\}.$

1. Historical context	2. CP for <i>Fn</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>Fn-</i> by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results
Thompso	on-by-free	groups			

Theorem (Burillo-Matucci-V. 2010)

TCP(F) is solvable.

• • •

Conjecture

k - CP(F) (i.e., conjugacy problem for k-tuples) is solvable.

Proposition (Burillo–Matucci–V. 2010)

If conjecture is true then Aut(F) and $Aut^+(F)$ are orbit decidable.

Corollary (Burillo–Matucci–V. 2010)

If conjecture is true and $\varphi_1, \ldots, \varphi_m \in Aut(F)$ generate either Aut(F) or $Aut^+(F)$, then $CP(F \rtimes_{\varphi_1, \ldots, \varphi_m} F_m)$ is solvable.

1. Historical context	2. CP for <i>F_n</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications 00000000●	6. Negative results
Thompso	on-by-free	groups			

Theorem (Burillo-Matucci-V. 2010)

TCP(F) is solvable.

Conjecture

k - CP(F) (i.e., conjugacy problem for k-tuples) is solvable.

Proposition (Burillo–Matucci–V. 2010)

If conjecture is true then Aut(F) and $Aut^+(F)$ are orbit decidable.

Corollary (Burillo-Matucci-V. 2010)

If conjecture is true and $\varphi_1, \ldots, \varphi_m \in Aut(F)$ generate either Aut(F) or $Aut^+(F)$, then $CP(F \rtimes_{\varphi_1, \ldots, \varphi_m} F_m)$ is solvable.

1. Historical context	2. CP for <i>F_n</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>Fn-</i> by- <i>Fm</i> 00000	4. Main result	5. Applications 00000000●	6. Negative results
Thompso	on-by-free	groups			

Theorem (Burillo-Matucci-V. 2010)

TCP(F) is solvable.

Conjecture

k - CP(F) (i.e., conjugacy problem for k-tuples) is solvable.

Proposition (Burillo–Matucci–V. 2010)

If conjecture is true then Aut(F) and $Aut^+(F)$ are orbit decidable.

Corollary (Burillo-Matucci-V. 2010)

If conjecture is true and $\varphi_1, \ldots, \varphi_m \in Aut(F)$ generate either Aut(F) or $Aut^+(F)$, then $CP(F \rtimes_{\varphi_1, \ldots, \varphi_m} F_m)$ is solvable.

1. Historical context	2. CP for <i>Fn</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>F_n-by-F_m</i> 00000	4. Main result	5. Applications	6. Negative results
Outline					

- The historical context
- The conjugacy problem for free-by-cyclic groups
- The conjugacy problem for free-by-free groups
- 4 The main result
- 5 Applications
- 6 Negative results

1. Historical context	2. CP for <i>F_n</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>Fn-</i> by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results ●0000000000
Free-by-1	free negat	ive results			

Theorem (Miller '71)

There exist free-by-free groups with unsolvable conjugacy problem.

Corollary

There exist 14 automorphisms $\varphi_1, \ldots, \varphi_{14} \in Aut(F_3)$ such that $\langle \varphi_1, \ldots, \varphi_{14} \rangle \leq Aut(F_3)$ is orbit undecidable.

Moreover, we were able to find the reason and generalize it to Aut(F) for many more grups F.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 1. Historical context
 2. CP for F_n-by-Z
 3. CP for F_n-by-F_m
 4. Main result
 5. Applications
 6. Negative results

 0000
 000000000
 00000000
 00000000
 000000000
 000000000

 Ereco
 by/
 froe
 pococitive
 recoults
 00000000
 000000000

Free-by-free negative results

Theorem (Miller '71)

There exist free-by-free groups with unsolvable conjugacy problem.

Corollary

There exist 14 automorphisms $\varphi_1, \ldots, \varphi_{14} \in Aut(F_3)$ such that $\langle \varphi_1, \ldots, \varphi_{14} \rangle \leq Aut(F_3)$ is orbit undecidable.

Moreover, we were able to find the reason and generalize it to Aut (*F*) for many more grups *F*.

 1. Historical context
 2. CP for Fn-by-Z
 3. CP for Fn-by-Fm
 4. Main result
 5. Applications
 6. Negative results

 0000
 000000000
 00000
 000000000
 000000000
 000000000

 Free-by-free negative results

Theorem (Miller '71)

There exist free-by-free groups with unsolvable conjugacy problem.

Corollary

There exist 14 automorphisms $\varphi_1, \ldots, \varphi_{14} \in Aut(F_3)$ such that $\langle \varphi_1, \ldots, \varphi_{14} \rangle \leq Aut(F_3)$ is orbit undecidable.

Moreover, we were able to find the reason and generalize it to Aut(F) for many more grups F.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

1. Historical context	2. CP for <i>F_n</i> -by-Z	3. CP for <i>F_n</i> -by- <i>F_m</i> 00000	4. Main result	5. Applications	6. Negative results
Finding of	orbit undeo	cidable sub	ogroups		

Let *F* be a group, and let $A \leq B \leq Aut(F)$ and $u \in F$ be such that $B \cap Stab^*(u) = 1$. Then, *A* is *O*.*D*. \Rightarrow *MP*(*A*, *B*) solvable.

Proof. Given $\varphi \in B \leq Aut(F)$, let $w = u\varphi$ and

 $\{\phi \in B \mid u\phi \sim w\} = (B \cap Stab^*(u)) \cdot \varphi = \{\varphi\}.$

So, u can be mapped to a conjugate of w by some automorphism in A

 $\Leftrightarrow \quad \varphi \in A. \quad \Box$

MP(A, B) is unsolvable $\Rightarrow A \leq Aut(F)$ is orbit undecidable.

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

		cidable sub		00000000	
1. Historical context	2. CP for <i>F_n</i> -by-ℤ 0000000000	3. CP for <i>F_n-</i> by- <i>F_m</i>	4. Main result	5. Applications	 Negative results 000000000000000000000000000000000000

Let *F* be a group, and let $A \leq B \leq Aut(F)$ and $u \in F$ be such that $B \cap Stab^*(u) = 1$. Then, *A* is *O*.*D*. \Rightarrow *MP*(*A*, *B*) solvable.

Proof. Given $\varphi \in B \leq Aut(F)$, let $w = u\varphi$ and

 $\{\phi \in B \mid u\phi \sim w\} = (B \cap Stab^*(u)) \cdot \varphi = \{\varphi\}.$

So, u can be mapped to a conjugate of w by some automorphism in A

MP(A, B) is unsolvable $\Rightarrow A \leq Aut(F)$ is orbit undecidable.

		cidable sub		00000000	
1. Historical context	2. CP for <i>F_n</i> -by-ℤ 0000000000	3. CP for <i>F_n-</i> by- <i>F_m</i>	4. Main result	5. Applications	 Negative results 000000000000000000000000000000000000

Let *F* be a group, and let $A \leq B \leq Aut(F)$ and $u \in F$ be such that $B \cap Stab^*(u) = 1$. Then, *A* is *O*.*D*. \Rightarrow *MP*(*A*, *B*) solvable.

Proof. Given $\varphi \in B \leq Aut(F)$, let $w = u\varphi$ and

 $\{\phi \in \boldsymbol{B} \mid \boldsymbol{u}\phi \sim \boldsymbol{w}\} = (\boldsymbol{B} \cap Stab^*(\boldsymbol{u})) \cdot \varphi = \{\varphi\}.$

So, u can be mapped to a conjugate of w by some automorphism in A

MP(A, B) is unsolvable $\Rightarrow A \leq Aut(F)$ is orbit undecidable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

		cidable sub		00000000	
1. Historical context	2. CP for <i>F_n</i> -by-ℤ 0000000000	3. CP for <i>F_n-</i> by- <i>F_m</i>	4. Main result	5. Applications	 Negative results 000000000000000000000000000000000000

Let F be a group, and let $A \leq B \leq Aut(F)$ and $u \in F$ be such that $B \cap Stab^*(u) = 1$. Then, A is O.D. \Rightarrow MP(A, B) solvable.

Proof. Given $\varphi \in B \leq Aut(F)$, let $w = u\varphi$ and

 $\{\phi \in \boldsymbol{B} \mid \boldsymbol{u}\phi \sim \boldsymbol{w}\} = (\boldsymbol{B} \cap \boldsymbol{Stab}^*(\boldsymbol{u})) \cdot \varphi = \{\varphi\}.$

So, u can be mapped to a conjugate of w by some automorphism in A $\Leftrightarrow \varphi \in$

MP(A, B) is unsolvable $\Rightarrow A \leq Aut(F)$ is orbit undecidable.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Finding	orbit under	cidable sub	aroune		
1. Historical context	2. CP for <i>Fn</i> -by-ℤ 0000000000	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results ○●○○○○○○○○○

Let F be a group, and let $A \leq B \leq Aut(F)$ and $u \in F$ be such that $B \cap Stab^*(u) = 1$. Then, A is O.D. \Rightarrow MP(A, B) solvable.

Proof. Given $\varphi \in B \leq Aut(F)$, let $w = u\varphi$ and

 $\{\phi \in B \mid u\phi \sim w\} = (B \cap Stab^*(u)) \cdot \varphi = \{\varphi\}.$

So, u can be mapped to a conjugate of w by some automorphism in A $\Leftrightarrow \varphi \in A$. \Box

MP(A, B) is unsolvable $\Rightarrow A \leq Aut(F)$ is orbit undecidable.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

Finding	orbit under	cidable sub	aroune		
1. Historical context	2. CP for <i>Fn</i> -by-ℤ 0000000000	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results ○●○○○○○○○○○

Let F be a group, and let $A \leq B \leq Aut(F)$ and $u \in F$ be such that $B \cap Stab^*(u) = 1$. Then, A is O.D. \Rightarrow MP(A, B) solvable.

Proof. Given $\varphi \in B \leq Aut(F)$, let $w = u\varphi$ and

 $\{\phi \in B \mid u\phi \sim w\} = (B \cap Stab^*(u)) \cdot \varphi = \{\varphi\}.$

So, u can be mapped to a conjugate of w by some automorphism in A $\Leftrightarrow \varphi \in A$. \Box

MP(A, B) is unsolvable $\Rightarrow A \leq Aut(F)$ is orbit undecidable.

1. Historical context	2. CP for <i>F_n</i> -by-Z 0000000000	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results 000000000000000000000000000000000000
Finding of	orbit unde	cidable sub	ogroups		

Let F be a group, and let $F_2 \times F_2 \simeq B \leq Aut(F)$ and $u \in F$ be such that $B \cap Stab^*(u) = 1$. Then, there exists f.g. $A \leq Aut(F)$ which is orbit undecidable.

- Take a group U = (a₁, a₂ | r₁,..., r_m) with unsolvable word problem;
- Consider $A = \{(v, w) \mid v =_U w\} \leqslant F_2 \times F_2;$
- Easy to see that A = ⟨(a₁, a₁), (a₂, a₂), (r₁, 1), ..., (r_m, 1)⟩ so, A is finitely generated;
- $MP(A, F_2 \times F_2)$ is unsolvable;
- Hence, $A \leq Aut(F)$ is orbit undecidable.

Einding	arbit undo	cidable sub	aroupe		
 Historical context 0000 	2. CP for <i>Fn</i> -by-ℤ 0000000000	3. CP for <i>Fn-</i> by- <i>Fm</i> 00000	4. Main result	5. Applications	 6. Negative results ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

Let F be a group, and let $F_2 \times F_2 \simeq B \leq Aut(F)$ and $u \in F$ be such that $B \cap Stab^*(u) = 1$. Then, there exists f.g. $A \leq Aut(F)$ which is orbit undecidable.

- Take a group U = (a₁, a₂ | r₁,..., r_m) with unsolvable word problem;
- Consider $A = \{(v, w) \mid v =_U w\} \leq F_2 \times F_2;$
- Easy to see that A = ⟨(a₁, a₁), (a₂, a₂), (r₁, 1), ..., (r_m, 1)⟩ so, A is finitely generated;
- $MP(A, F_2 \times F_2)$ is unsolvable;
- Hence, $A \leq Aut(F)$ is orbit undecidable.

0000	000000000	cidable sub	0000000	000000000	0000000000
1. Historical context	2. CP for <i>F</i> _Π -by-ℤ	3. CP for Fn-by-Fm	4. Main result	5. Applications	6. Negative results

Let F be a group, and let $F_2 \times F_2 \simeq B \leq Aut(F)$ and $u \in F$ be such that $B \cap Stab^*(u) = 1$. Then, there exists f.g. $A \leq Aut(F)$ which is orbit undecidable.

- Take a group U = (a₁, a₂ | r₁,..., r_m) with unsolvable word problem;
- Consider $A = \{(v, w) \mid v =_U w\} \leq F_2 \times F_2;$
- Easy to see that A = ⟨(a₁, a₁), (a₂, a₂), (r₁, 1), ..., (r_m, 1)⟩ so, A is finitely generated;
- $MP(A, F_2 \times F_2)$ is unsolvable;
- Hence, $A \leq Aut(F)$ is orbit undecidable.

Finding	orbit under	cidable sub	aroune		
1. Historical context	2. CP for <i>Fn</i> -by-ℤ 0000000000	3. CP for <i>F_n-</i> by- <i>F_m</i>	4. Main result	5. Applications	6. Negative results 00●000000000

Let F be a group, and let $F_2 \times F_2 \simeq B \leq Aut(F)$ and $u \in F$ be such that $B \cap Stab^*(u) = 1$. Then, there exists f.g. $A \leq Aut(F)$ which is orbit undecidable.

- Take a group U = (a₁, a₂ | r₁,..., r_m) with unsolvable word problem;
- Consider $A = \{(v, w) \mid v =_U w\} \leq F_2 \times F_2;$
- Easy to see that A = ⟨(a₁, a₁), (a₂, a₂), (r₁, 1), ..., (r_m, 1)⟩ so, A is finitely generated;
- $MP(A, F_2 \times F_2)$ is unsolvable;
- Hence, $A \leq Aut(F)$ is orbit undecidable.

Finding	orbit under	cidable sub	aroune		
1. Historical context	2. CP for <i>Fn</i> -by-ℤ 0000000000	3. CP for <i>F_n-</i> by- <i>F_m</i>	4. Main result	5. Applications	6. Negative results 00●000000000

Let F be a group, and let $F_2 \times F_2 \simeq B \leq Aut(F)$ and $u \in F$ be such that $B \cap Stab^*(u) = 1$. Then, there exists f.g. $A \leq Aut(F)$ which is orbit undecidable.

- Take a group U = (a₁, a₂ | r₁,..., r_m) with unsolvable word problem;
- Consider $A = \{(v, w) \mid v =_U w\} \leq F_2 \times F_2;$
- Easy to see that A = ⟨(a₁, a₁), (a₂, a₂), (r₁, 1), ..., (r_m, 1)⟩ so, A is finitely generated;
- $MP(A, F_2 \times F_2)$ is unsolvable;
- Hence, $A \leq Aut(F)$ is orbit undecidable.

0000	000000000	cidable sub	0000000	000000000	0000000000
1. Historical context	2. CP for <i>F</i> _Π -by-ℤ	3. CP for Fn-by-Fm	4. Main result	5. Applications	6. Negative results

Let F be a group, and let $F_2 \times F_2 \simeq B \leq Aut(F)$ and $u \in F$ be such that $B \cap Stab^*(u) = 1$. Then, there exists f.g. $A \leq Aut(F)$ which is orbit undecidable.

- Take a group U = (a₁, a₂ | r₁,..., r_m) with unsolvable word problem;
- Consider $A = \{(v, w) \mid v =_U w\} \leq F_2 \times F_2;$
- Easy to see that A = ⟨(a₁, a₁), (a₂, a₂), (r₁, 1), ..., (r_m, 1)⟩ so, A is finitely generated;
- $MP(A, F_2 \times F_2)$ is unsolvable;
- Hence, $A \leq Aut(F)$ is orbit undecidable. \Box

1. Historical context	2. CP for <i>F⊓</i> -by-ℤ 0000000000	3. CP for <i>F_n-by-F_m</i> 00000	4. Main result	5. Applications	6. Negative results 000●0000000
Finding c	orbit undeo	cidable sub	ogroups		

Corollary (Bogopolski–Martino–V., 2008)

Aut(F_r) contains f.g. orbit undecidable subgroups, for $r \ge 3$.

Proof. Take the copy B of $F_2 \times F_2$ in Aut(F_3) via the embedding

 $egin{array}{rccccc} F_2 imes F_2 & \leftrightarrow & Aut(F_3), \ (u,v) & \mapsto & _u heta_v \colon F_3 & \rightarrow & F_3 \ & a & \mapsto & a \ & b & \mapsto & b \ & q & \mapsto & u^{-1}qv; \end{array}$

(u = qaqbq satisfies $B \cap Stab^*(u) = 1$). Now, take any Mihailova subgroup in there, $A \leq B \leq Aut(F_3)$, and A will be orbit undecidable.

Proposition (Bogopolski–Martino–V., 2008)

1. Historical context	2. CP for <i>F_n</i> -by-Z	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results 000●0000000
Finding o	orbit undeo	cidable sub	ogroups		

Corollary (Bogopolski-Martino-V., 2008)

Aut(F_r) contains f.g. orbit undecidable subgroups, for $r \ge 3$.

Proof. Take the copy B of $F_2 \times F_2$ in Aut (F_3) via the embedding

$$egin{array}{rcccccc} F_2 imes F_2 & \hookrightarrow & Aut(F_3), \ (u,v) & \mapsto & _u heta_v \colon F_3 & o & F_3 \ & a & \mapsto & a \ & b & \mapsto & b \ & q & \mapsto & u^{-1}qv; \end{array}$$

 $(u = qaqbq \text{ satisfies } B \cap Stab^*(u) = 1)$. Now, take any Mihailova subgroup in there, $A \leq B \leq Aut(F_3)$, and A will be orbit undecidable.

Proposition (Bogopolski–Martino–V., 2008)

1. Historical context	2. CP for <i>F_n</i> -by-Z	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results 000●0000000
Finding o	orbit undeo	cidable sub	ogroups		

Corollary (Bogopolski-Martino-V., 2008)

Aut(F_r) contains f.g. orbit undecidable subgroups, for $r \ge 3$.

Proof. Take the copy B of $F_2 \times F_2$ in Aut (F_3) via the embedding

$$egin{array}{rcccccc} F_2 imes F_2 & \hookrightarrow & Aut(F_3), \ (u,v) & \mapsto & _u heta_v \colon F_3 & \to & F_3 \ & a & \mapsto & a \ & b & \mapsto & b \ & q & \mapsto & u^{-1}qv; \end{array}$$

($u = qaqbq \text{ satisfies } B \cap Stab^*(u) = 1$). Now, take any Mihailova subgroup in there, $A \leq B \leq Aut(F_3)$, and A will be orbit undecidable.

Proposition (Bogopolski–Martino–V., 2008)

1. Historical context	2. CP for <i>F_n-by-</i> ℤ ○○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results 000●0000000
Finding c	orbit unde	cidable sub	ogroups		

Corollary (Bogopolski-Martino-V., 2008)

Aut(F_r) contains f.g. orbit undecidable subgroups, for $r \ge 3$.

Proof. Take the copy B of $F_2 \times F_2$ in Aut (F_3) via the embedding

 $(u = qaqbq \text{ satisfies } B \cap Stab^*(u) = 1)$. Now, take any Mihailova subgroup in there, $A \leq B \leq Aut(F_3)$, and A will be orbit undecidable.

Proposition (Bogopolski–Martino–V., 2008)

1. Historical context	2. CP for <i>F_n-by-</i> ℤ ○○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results 000●0000000
Finding c	orbit unde	cidable sub	ogroups		

Corollary (Bogopolski–Martino–V., 2008)

Aut(F_r) contains f.g. orbit undecidable subgroups, for $r \ge 3$.

Proof. Take the copy B of $F_2 \times F_2$ in Aut (F_3) via the embedding

 $(u = qaqbq \text{ satisfies } B \cap Stab^*(u) = 1)$. Now, take any Mihailova subgroup in there, $A \leq B \leq Aut(F_3)$, and A will be orbit undecidable.

Proposition (Bogopolski–Martino–V., 2008)

1. Historical context	2. CP for <i>Fn</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results
Thompso	on-by-free	negative r	esults		

For the braid group

- Aut (B_n) does not contain $F_2 \times F_2$;
- we proved that every extension of *B_n* (by torsion-free hyperbolic) has solvable conjugacy problem.

For Thompson's group

Proposition (Burillo–Matucci–V. 2010)

 $F_2 \times F_2$ embeds in Aut(F).

Corollary (Burillo–Matucci–V. 2010)

There exist Thompson-by-free groups, $F \rtimes F_m$, with unsolvable conjugacy problem.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

		no a still in a	ملابيهم		
					00000000000
 Historical context 	 CP for F_n-by-Z 	 CP for F_n-by-F_m 	Main result	Applications	Negative results

I nompson-by-free negative results

For the braid group

- Aut (B_n) does not contain $F_2 \times F_2$;
- we proved that every extension of B_n (by torsion-free hyperbolic) has solvable conjugacy problem.

For Thompson's group

Proposition (Burillo–Matucci–V. 2010)

 $F_2 \times F_2$ embeds in Aut(F).

Corollary (Burillo–Matucci–V. 2010)

There exist Thompson-by-free groups, $F \rtimes F_m$, with unsolvable conjugacy problem.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

	a la fue a	no a a tiu a r	ملليهم		
 Historical context 0000 	2. CP for <i>F_n-by-</i> ℤ ○○○○○○○○○	3. CP for <i>Fn-</i> by- <i>Fm</i> 00000	4. Main result	5. Applications	 Negative results 0000●0000000

i nompson-by-free negative results

For the braid group

- Aut (B_n) does not contain $F_2 \times F_2$;
- we proved that every extension of *B_n* (by torsion-free hyperbolic) has solvable conjugacy problem.

For Thompson's group

Proposition (Burillo–Matucci–V. 2010)

 $F_2 \times F_2$ embeds in Aut(F).

Corollary (Burillo–Matucci–V. 2010)

There exist Thompson-by-free groups, $F \rtimes F_m$, with unsolvable conjugacy problem.

(日) (日) (日) (日) (日) (日) (日)

	a la fue a	no a a tiu a r	ملليهم		
 Historical context 0000 	2. CP for <i>F_n-by-</i> ℤ ○○○○○○○○○	3. CP for <i>Fn-</i> by- <i>Fm</i> 00000	4. Main result	5. Applications	 Negative results 0000●0000000

i nompson-by-free negative results

For the braid group

- Aut (B_n) does not contain $F_2 \times F_2$;
- we proved that every extension of B_n (by torsion-free hyperbolic) has solvable conjugacy problem.

For Thompson's group

Proposition (Burillo–Matucci–V. 2010)

 $F_2 \times F_2$ embeds in Aut(F).

Corollary (Burillo-Matucci-V. 2010)

There exist Thompson-by-free groups, $F \rtimes F_m$, with unsolvable conjugacy problem.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1. Historical context	2. CP for <i>F_n-</i> by-ℤ ○○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results 00000●00000
(Free ab	elian)-bv-f	ree negativ	ve results	S	

Corollary (Bogopolski-Martino-V., 2008)

 $\operatorname{GL}_d(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \ge 4$.

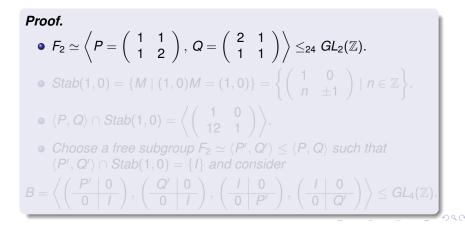
•
$$F_2 \simeq \left\langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \right\rangle \leq_{24} GL_2(\mathbb{Z}).$$

• $Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \left\{ \begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z} \right\}.$
• $\langle P, Q \rangle \cap Stab(1,0) = \left\langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \right\rangle.$
• Choose a free subgroup $F_2 \simeq \langle P', Q' \rangle \leq \langle P, Q \rangle$ such that $\langle P', Q' \rangle \cap Stab(1,0) = \{I\}$ and consider
 $B = \left\langle \left(\frac{P' \mid 0}{0 \mid I} \right), \left(\frac{Q' \mid 0}{0 \mid I} \right), \left(\frac{I \mid 0}{0 \mid P'} \right), \left(\frac{I \mid 0}{0 \mid Q'} \right) \right\rangle \leq GL_4(\mathbb{Z})$

1. Historical context	2. CP for <i>F_n</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>F_n-by-F_m</i> 00000	4. Main result	5. Applications	6. Negative results 00000€00000		
(Free abelian)-by-free negative results							

Corollary (Bogopolski-Martino-V., 2008)

 $\operatorname{GL}_d(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \ge 4$.



1. Historical context	2. CP for <i>F_Π-by-</i> ℤ ○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results 00000€00000			
(Free abelian)-by-free negative results								

Corollary (Bogopolski-Martino-V., 2008)

 $\operatorname{GL}_d(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \ge 4$.

Proof.

•
$$F_2 \simeq \left\langle P = \left(\begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array} \right), \ Q = \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right) \right\rangle \leq_{24} GL_2(\mathbb{Z}).$$

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \left\{ \begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z} \right\}$$

•
$$\langle P, Q \rangle \cap Stab(1,0) = \left\langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \right\rangle$$

• Choose a free subgroup $F_2 \simeq \langle P', Q' \rangle \leq \langle P, Q \rangle$ such that $\langle P', Q' \rangle \cap Stab(1,0) = \{I\}$ and consider

$$B = \left\langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \right\rangle \le GL_4(\mathbb{Z}).$$

 1. Historical context
 2. CP for Fn-by-Z
 3. CP for Fn-by-Fm
 4. Main result
 5. Applications
 6. Negative results

 0000
 000000000
 00000
 00000000
 00000000
 00000000
 000000000

 (Free abelian)_by_free pegative results
 00000000
 results
 00000000
 000000000

(Free abelian)-by-free negative results

For free abelian groups

Corollary (Bogopolski-Martino-V., 2008)

 $\operatorname{GL}_d(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \ge 4$.

Proof.

•
$$F_2 \simeq \left\langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \right\rangle \leq_{24} GL_2(\mathbb{Z}).$$

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \left\{ \begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z} \right\}.$$

•
$$\langle P, Q \rangle \cap Stab(1,0) = \left\langle \left(\begin{array}{cc} 1 & 0 \\ 12 & 1 \end{array} \right) \right\rangle$$

• Choose a free subgroup $F_2 \simeq \langle P', Q' \rangle \leq \langle P, Q \rangle$ such that $\langle P', Q' \rangle \cap Stab(1,0) = \{I\}$ and consider

$$B = \left\langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \right\rangle \leq GL_4(\mathbb{Z}).$$

1

1. Historical context	2. CP for <i>Fn</i> -by-ℤ 0000000000	3. CP for <i>F_n</i> -by- <i>F_m</i> 00000	4. Main result	5. Applications	6. Negative results 00000€00000			
(Free abelian)-by-free negative results								

Corollary (Bogopolski-Martino-V., 2008)

 $\operatorname{GL}_d(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \ge 4$.

Proof.

•
$$F_2 \simeq \left\langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \right\rangle \leq_{24} GL_2(\mathbb{Z}).$$

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \left\{ \begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z} \right\}$$

•
$$\langle P, Q \rangle \cap Stab(1,0) = \left\langle \left(\begin{array}{cc} 1 & 0 \\ 12 & 1 \end{array} \right) \right\rangle$$

• Choose a free subgroup $F_2 \simeq \langle P', Q' \rangle \leq \langle P, Q \rangle$ such that $\langle P', Q' \rangle \cap Stab(1,0) = \{I\}$ and consider

 1. Historical context
 2. CP for Fn-by-Z
 3. CP for Fn-by-Fm
 4. Main result
 5. Applications
 6. Negative results

 (Free abelian)-by-free negative results

For free abelian groups

Corollary (Bogopolski-Martino-V., 2008)

 $\operatorname{GL}_d(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \ge 4$.

Proof.

•
$$F_2 \simeq \left\langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \right\rangle \leq_{24} GL_2(\mathbb{Z}).$$

• $Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \left\{ \begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z} \right\}.$
• $\langle P, Q \rangle \cap Stab(1,0) = \left\langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \right\rangle.$
• Choose a free subgroup $F_2 \simeq \langle P', Q' \rangle \leq \langle P, Q \rangle$ such that

$$\langle P', Q' \rangle \cap Stab(1, 0) = \{I\} \text{ and consider} \\ \mathsf{B} = \left\langle \left(\frac{P' \mid 0}{0 \mid I} \right), \left(\frac{Q' \mid 0}{0 \mid I} \right), \left(\frac{I \mid 0}{0 \mid P'} \right), \left(\frac{I \mid 0}{0 \mid Q'} \right) \right\rangle \leq GL_4(\mathbb{Z}).$$

• Note that $B \simeq F_2 \times F_2$.

- Write *u* = (1,0,1,0). By construction, *B* ∩ Stab^{*}(*u*) = {*Id*}.
- Take $A \le B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous result, A ≤ GL₄(ℤ) is orbit undecidable.
- Similarly for $A \leq GL_d(\mathbb{Z})$, with $4 \leq d$. \Box

Proposition (Bogopolski–Martino–V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Definition

A f.g. subgroup $A \leq GL_d(\mathbb{Z})$ is orbit decidable is there exists an algorithm \mathcal{A} which, given two vectors $u, v \in \mathbb{Z}^n$ decides whether v = uM by some matrix $M \in A$.

• Note that $B \simeq F_2 \times F_2$.

Write u = (1,0,1,0). By construction, B ∩ Stab*(u) = {Id}.

- Take A ≤ B ≃ F₂ × F₂ with unsolvable membership problem.
- By previous result, $\mathsf{A} \leqslant \mathsf{GL}_4(\mathbb{Z})$ is orbit undecidable
- Similarly for $A \leq GL_d(\mathbb{Z})$, with $4 \leq d$. \Box

Proposition (Bogopolski–Martino–V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Definition

A f.g. subgroup $A \leq GL_d(\mathbb{Z})$ is orbit decidable is there exists an algorithm \mathcal{A} which, given two vectors $u, v \in \mathbb{Z}^n$ decides whether v = uM by some matrix $M \in A$.

- Note that $B \simeq F_2 \times F_2$.
- Write u = (1, 0, 1, 0). By construction, $B \cap Stab^*(u) = \{Id\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous result, A ≤ GL₄(ℤ) is orbit undecidable.
- Similarly for $A \leq GL_d(\mathbb{Z})$, with $4 \leq d$. \Box

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Definition

- Note that $B \simeq F_2 \times F_2$.
- Write u = (1, 0, 1, 0). By construction, $B \cap Stab^*(u) = \{Id\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous result, $A \leq GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq GL_d(\mathbb{Z})$, with $4 \leq d$. \Box

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Definition

- Note that $B \simeq F_2 \times F_2$.
- Write u = (1, 0, 1, 0). By construction, $B \cap Stab^*(u) = \{Id\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous result, $A \leq GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq GL_d(\mathbb{Z})$, with $4 \leq d$. \Box

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Definition

- Note that $B \simeq F_2 \times F_2$.
- Write u = (1, 0, 1, 0). By construction, $B \cap Stab^*(u) = \{Id\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous result, $A \leq GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq GL_d(\mathbb{Z})$, with $4 \leq d$. \Box

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Definition

- Note that $B \simeq F_2 \times F_2$.
- Write u = (1, 0, 1, 0). By construction, $B \cap Stab^*(u) = \{Id\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous result, $A \leq GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq GL_d(\mathbb{Z})$, with $4 \leq d$. \Box

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Definition

1. Historical context	2. CP for <i>Fn</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results 000000000000000000000000000000000000
(Free ab	elian)-by-f	ree negativ	ve results	S	

There exist 14 matrices $M_1, \ldots, M_{14} \in GL_d(\mathbb{Z})$, for $d \ge 4$, such that $\langle M_1, \ldots, M_{14} \rangle \leq GL_d(\mathbb{Z})$ is orbit undecidable.

Corollary (Bogopolski–Martino–V., 2008)

There exists a \mathbb{Z}^4 -by- F_{14} group with unsolvable conjugacy problem.

Question

Does $GL_3(\mathbb{Z})$ contain orbit undecidable subgroups ?

Question

Does there exist \mathbb{Z}^3 -by-free groups with unsolvable conjugacy problem ?

・ コット (雪) (小田) (コット 日)

1. Historical context	2. CP for <i>Fn</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results 000000000000000000000000000000000000
(Free ab	elian)-by-f	ree negativ	ve results	S	

There exist 14 matrices $M_1, \ldots, M_{14} \in GL_d(\mathbb{Z})$, for $d \ge 4$, such that $\langle M_1, \ldots, M_{14} \rangle \leq GL_d(\mathbb{Z})$ is orbit undecidable.

Corollary (Bogopolski-Martino-V., 2008)

There exists a \mathbb{Z}^4 -by- F_{14} group with unsolvable conjugacy problem.

Question

Does $GL_3(\mathbb{Z})$ contain orbit undecidable subgroups ?

Question

Does there exist \mathbb{Z}^3 -by-free groups with unsolvable conjugacy problem ?

・ コット (雪) (小田) (コット 日)

1. Historical context	2. CP for <i>Fn</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results 000000000000000000000000000000000000
(Free ab	elian)-by-f	ree negativ	ve results	S	

There exist 14 matrices $M_1, \ldots, M_{14} \in GL_d(\mathbb{Z})$, for $d \ge 4$, such that $\langle M_1, \ldots, M_{14} \rangle \leq GL_d(\mathbb{Z})$ is orbit undecidable.

Corollary (Bogopolski-Martino-V., 2008)

There exists a \mathbb{Z}^4 -by- F_{14} group with unsolvable conjugacy problem.

Question

Does $GL_3(\mathbb{Z})$ contain orbit undecidable subgroups ?

Question

Does there exist \mathbb{Z}^3 -by-free groups with unsolvable conjugacy problem ?

・ロット (雪) (日) (日) (日)

1. Historical context	2. CP for <i>Fn</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>Fn</i> -by- <i>Fm</i> 00000	4. Main result	5. Applications	6. Negative results 000000000000000000000000000000000000
(Free ab	elian)-by-f	ree negativ	ve results	S	

There exist 14 matrices $M_1, \ldots, M_{14} \in GL_d(\mathbb{Z})$, for $d \ge 4$, such that $\langle M_1, \ldots, M_{14} \rangle \leq GL_d(\mathbb{Z})$ is orbit undecidable.

Corollary (Bogopolski-Martino-V., 2008)

There exists a \mathbb{Z}^4 -by- F_{14} group with unsolvable conjugacy problem.

Question

Does $GL_3(\mathbb{Z})$ contain orbit undecidable subgroups ?

Question

Does there exist \mathbb{Z}^3 -by-free groups with unsolvable conjugacy problem ?

Automata		00000	0000000	000000000	000000000000000000000000000000000000000
Automata	adrouns				

For $d \ge 6$, the group $GL_d(\mathbb{Z})$ contains orbit undecidable, free subgroups.

So, for $d \ge 6$, there exists a group of the form

$$\Gamma = \mathbb{Z}^d \rtimes F_m \leqslant \mathbb{Z}^d \rtimes GL_d(\mathbb{Z})$$

with unsolvable conjugacy problem.

Theorem (Šunić–V., 2010)

All such groups $\Gamma = \mathbb{Z}^d \rtimes F_m$ can be realized as automaton groups.

Corollary (Šunić–V., 2010)

There exists automaton groups with unsolvable conjugacy problem.

ヘロマ ヘロマ ヘロマ

Automata		00000	0000000	000000000	000000000000000000000000000000000000000
Automata	adrouns				

For $d \ge 6$, the group $GL_d(\mathbb{Z})$ contains orbit undecidable, free subgroups.

So, for $d \ge 6$, there exists a group of the form

$$\Gamma = \mathbb{Z}^d \rtimes F_m \leqslant \mathbb{Z}^d \rtimes GL_d(\mathbb{Z})$$

with unsolvable conjugacy problem.

Theorem (Šunić–V., 2010)

All such groups $\Gamma = \mathbb{Z}^d \rtimes F_m$ can be realized as automaton groups.

Corollary (Šunić–V., 2010)

There exists automaton groups with unsolvable conjugacy problem.

Automata		00000	0000000	000000000	000000000000000000000000000000000000000
Automata	adrouns				

For $d \ge 6$, the group $GL_d(\mathbb{Z})$ contains orbit undecidable, free subgroups.

So, for $d \ge 6$, there exists a group of the form

$$\Gamma = \mathbb{Z}^d \rtimes F_m \leqslant \mathbb{Z}^d \rtimes GL_d(\mathbb{Z})$$

with unsolvable conjugacy problem.

Theorem (Šunić–V., 2010)

All such groups $\Gamma = \mathbb{Z}^d \rtimes F_m$ can be realized as automaton groups.

Corollary (Šunić–V., 2010)

There exists automaton groups with unsolvable conjugacy problem.

(日) (型) (モ) (モ) =

1. Historical context	2. CP for <i>F_n</i> -by-ℤ ○○○○○○○○○○	3. CP for <i>F_n-by-F_m</i> 00000	4. Main result	5. Applications	6. Negative results 000000000000000000000000000000000000
Automata	a groups				

For $d \ge 6$, the group $GL_d(\mathbb{Z})$ contains orbit undecidable, free subgroups.

So, for $d \ge 6$, there exists a group of the form

$$\Gamma = \mathbb{Z}^d \rtimes F_m \leqslant \mathbb{Z}^d \rtimes GL_d(\mathbb{Z})$$

with unsolvable conjugacy problem.

Theorem (Šunić–V., 2010)

All such groups $\Gamma = \mathbb{Z}^d \rtimes F_m$ can be realized as automaton groups.

Corollary (Šunić–V., 2010)

There exists automaton groups with unsolvable conjugacy problem.

 Historical context 	 CP for F_n-by-ℤ 	3. CP for Fn-by-Fm	Main result	Applications	Negative results
					0000000000000

Next step:

What about TCP in

your favorite group ?

 Historical context 	 CP for F_n-by-ℤ 	3. CP for Fn-by-Fm	Main result	Applications	Negative results
					0000000000

THANKS