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Presentations of groups

Definition
A finite presentation of a (discrete) group G is

G = 〈a1, . . . ,an | r1, . . . , rm〉.

a1, . . . ,an are the generators;
r1, . . . , rm are the relators;
elements of G are words (i.e., non-commutative! formal
products) of the a±1

i ’s, subject to the rules rj = 1.

Example

• Z = 〈a | −〉; a5 · a−3 = a2

• Z2 = 〈a,b | aba−1b−1〉 = 〈a,b | ab = ba〉; ba · ba−2 = a−1b2

• Z/5Z = 〈a | a5〉; a4 · a3 = a2
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Presentations of groups

Example

Which group is G = 〈a,b | a−1ba = b2, b−1ab = a2〉 ?

a−1ba = b2 ⇒ b−1a−1ba = b ⇒ (b−1ab)−1a = b
⇒ a−2a = b ⇒ a−1 = b.

But then

a−1ba = b2 ⇒ a−1 = b2 = a−2 ⇒ a = 1
b−1ab = a2 ⇒ b−1 = a2 = b−2 ⇒ b = 1.

Hence, G = 1 is the trivial group.

It is not easy, in general, to recognize G from a given presentation.
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Dehn’s problems

Word Problem, WP(G)

For any given presentation G = 〈a1, . . . ,an | r1, . . . , rm〉, find an
algorithmW with:

Input: a word w(a1, . . . ,an) on the a±1
i ’s;

Output: “yes" or “no" depending on whether w =G 1.

Conjugacy Problem, CP(G)

For any given presentation G = 〈a1, . . . ,an | r1, . . . , rm〉, find an
algorithm C with:

Input: two words u(a1, . . . ,an) and v(a1, . . . ,an) ;
Output: “yes" or “no" depending on whether u and v are
conjugate in G, u ∼G v (i.e., v =G g−1ug for some g ∈ G).
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Dehn’s problems

Isomorphism Problem

Find an algorithm I with:
Input: two presentations Gi = 〈a1, . . . ,ani | r1, . . . , rmi 〉, i = 1,2;
Output: “yes" or “no" depending on whether G1 ' G2 as groups.

Theorem (Novikov ’55; Boone ’58)

There exist finitely presented groups with unsolvable word problem.

Theorem (Adyan ’57; Rabin ’58)

The Isomorphism Problem is unsolvable.

Theorem (Miller ’71)

There exists a finitely presented group G with solvable word problem
but unsolvable conjugacy problem.
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but unsolvable conjugacy problem.
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Step 1:

Find a problem you like

(2004)
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Conjugacy problem for free-by-cyclic groups

Definition

Let Fn = 〈a1, . . . ,an | −〉 be a free group on {a1, . . . ,an} (n ≥ 2), and
let ϕ ∈ Aut (Fn). The free-by-cyclic group Fn oϕ Z is defined as

Fn oϕ Z = 〈a1, . . . ,an, t | t−1ai t = aiϕ〉.

Observation
The word problem in Mϕ = Fn oϕ Z is solvable.

Open problem since 2004

Solve the conjugacy problem in Mϕ = Fn oϕ Z.
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Conjugacy problem for free-by-cyclic groups

Let’s consider an example: Mϕ = 〈a,b, t | t−1at = aϕ, t−1bt = bϕ〉

ϕ : F2 → F2 ϕ−1 : F2 → F2
a 7→ ab a 7→ a−1b
b 7→ aba b 7→ b−1a2

wt = t(wϕ) wt−1 = t−1(wϕ−1)

tab−1t−1at2a = tab−1t−1t(ab)ta = tab−1abta
= tab−1at(aba)a = tab−1ataba2

= tab−1t(ab)aba2

= tat(a−1b−1a−1)ababa2 = tatba2

= tt(ab)ba2 = t2ab2a2.

Lemma
Every element from Mϕ = Fn oϕ Z has a unique normal form:

t r w for some r ∈ Z, w ∈ Fn.
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Step 2:

Push the problem into your

favorite territory

(2005)
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Converting it into a free group problem

Let t r u, tsv , tk g be arbitrary elements in Mϕ = Fn oϕ Z. Then,

(g−1t−k )(t r u)(tk g) = g−1t r (uϕk )g
= t r (gϕr )−1(uϕk )g.

t r u ∼Mϕ
tsv ⇐⇒ r = s & v ∼ϕr (uϕk ) for some k ∈ Z.

Definition

For φ ∈ Aut (G), two elements u, v ∈ G are said to be φ-twisted
conjugated, denoted u ∼φ v, if v = (gφ)−1ug for some g ∈ G.

Twisted Conjugacy Problem, TCP(G)

The twisted conjugacy problem for G, denoted TCP(G):
Given φ ∈ Aut (G) and u, v ∈ G decide whether u ∼φ v.
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Step 3:

Solve it

(2005)
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CP(Fn oϕ Z) is solvable

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

TCP(Fn) is solvable.

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

For every ϕ ∈ Aut (Fn), CP(Fn oϕ Z) is solvable.

Proof. Given t r u, tsv ∈ Mϕ = Fn oϕ Z.
t r u ∼Mϕ

tsv ⇐⇒ r = s & v ∼ϕr (uϕk ) for some k ∈ Z.
To reduce to finitely many k ’s, note that u ∼ϕ uϕ because

u = (uϕ)−1(uϕ)u
so uϕk ∼ϕr uϕk±λr and hence,
t r u ∼Mϕ

tsv ⇐⇒ r = s & v ∼ϕr (uϕk ) for k = 0, . . . r − 1.

Thus, CP(Mϕ) reduces to finitely many checks of TCP(Fn).
BUT. . .
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Step 4:

Ups . . . a technical problem!

(2005)
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CP(Fn oϕ Z) is solvable

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

For every ϕ ∈ Aut (Fn), CP(Fn oϕ Z) is solvable.

Proof. Given t r u, t r v ∈ Fn oϕ Z,
I Case 1: r 6= 0

t r u ∼Mϕ
t r v ⇐⇒ v ∼ϕr (uϕk ) for k = 0, . . . r − 1.

Thus, CP(Mϕ) reduces to finitely many checks of TCP(Fn).
I Case 2: r = 0

Still infinitely many k ’s to check:
u ∼Mϕ

v ⇐⇒ v ∼ uϕk for some k ∈ Z.
Fortunately, this is precisely Brinkmann’s result:

Theorem (Brinkmann, 2006)

Given an automorphism φ : Fn → Fn and u, v ∈ Fn, it is decidable
whether v ∼ uφk for some k ∈ Z.

Hence, CP(Fn oϕ Z) is solvable. �
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CP(Fn oϕ Z) is solvable

Our solution to TCP(Fn) uses a previous deep result by
Bogopolski–Maslakova about computability of fixed subgroups of
automorphisms of free groups.

In 2008 a problem was found in the proof of
Bogopolski–Maslakova; the authors claim to have fixed it, but no
correction has been published yet.

In 2014 Feighn–Handel give an alternative proof for
Bogopolski–Maslakova’s result.

• • •
Alternative solution to CP(Fn oφ Z) combining deep results by
Ol’shanskii–Sapir 2006, and Bridson–Groves 2010.
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Step 5:

Intuition always ahead

(2006)
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A crucial comment

Armando Martino: “The whole argument essentially works the same
way in presence of more stable letters, i.e., for free-by-free groups"

Definition

Let Fn = 〈x1, . . . , xn | 〉 be the free group on {x1, . . . , xn} (n ≥ 2), and
let ϕ1, . . . , ϕm ∈ Aut (Fn). The free-by-free group Fn oϕ1,...,ϕm Fm is

M
ϕ1,...,ϕm

= Fn oϕ1,...,ϕm Fm = 〈x1, . . . , xn, t1, . . . , tm | t−1
j xi tj = xiϕj〉.

But this must be wrong . . .

Theorem (Miller ’71)

There exist free-by-free groups with unsolvable conjugacy problem.

Surprise was that . . . . . . Armando was “essentially" right !!
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The comment was right...

In Case 1, the whole argument essentially works the same way;

But in Case 2, a much stronger problem arises:

u ∼Mϕ
v ⇐⇒ v ∼ uϕk for some k ∈ Z.

u ∼Mϕ
v ⇐⇒ v ∼ uφ for some φ ∈ 〈ϕ〉 6 Aut (Fn).

u ∼Mϕ1,...,ϕm
v ⇐⇒ v ∼ uφ for some φ ∈ 〈ϕ1, . . . , ϕm〉 6 Aut (Fn).

Theorem (Bogopolski–Martino–V., 2010)

CP(Fn oϕ1,...,ϕm Fm) is solvable if and only if 〈ϕ1, . . . , ϕm〉 6 Aut (Fn) is
orbit decidable.

Definition

A subgroup A 6 Aut (Fn) is orbit decidable (O.D.) if ∃ an algorithm A
s.t., given u, v ∈ Fn decides whether v ∼ uα for some α ∈ A.
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Reformulating . . .

Definition

A subgroup A 6 Aut (Fn) is orbit decidable (O.D.) if ∃ an algorithm A
s.t., given u, v ∈ Fn decides whether v ∼ uα for some α ∈ A.

Theorem (Brinkmann, 2006)

Cyclic subgroups of Aut (Fn) are orbit decidable.

Theorem (Bogopolski–Martino–V., 2010)

CP(Fn oϕ1,...,ϕm Fm) is solvable⇐⇒ 〈ϕ1, . . . , ϕm〉 6 Aut (Fn) is O.D.

Corollary (Bogopolski–Martino–Maslakova–V., 2005)

For every ϕ ∈ Aut (Fn), CP(Fn oϕ Z) is solvable.

And Miller’s examples must correspond to orbit undecidable
subgroups 〈ϕ1, . . . , ϕm〉 6 Aut (Fn).
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Step 6:

Extend as much as possible

(2007)
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Orbit decidability

Definition

Let X be a set. A collection of maps A ⊆ Map(X ,X ) is said to be orbit
decidable (O.D.) if there is an algorithm A with:

Input: two elements x , y ∈ X;
Output: “yes" or “no" depending on xα = y for some α ∈ A.

Definition

For X, A ⊆ Map(X ,X ), the A-orbit of x ∈ X is O(x) = {xα | α ∈ A}.

Observation
O.D. is membership in A-orbits.

Observation

The conjugacy problem for group G, CP(G), is just the O.D. for
A = Inn(G) = {γg : G→ G, x 7→ g−1xg | g ∈ G}E Aut (G).
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Short exact sequences

Observation

(i) For ϕ ∈ Aut (Fn), we have the natural short exact sequence:
1 → Fn → Fn oϕ Z → Z → 1

xi 7→ 1
t 7→ t

(ii) For ϕ1, . . . , ϕm ∈ Aut (Fn), we have the natural short exact
sequence:

1 → Fn → Fn oϕ1,...,ϕm Fm → Fm → 1
xi 7→ 1
tj 7→ tj

(iii) And their action subgroups are, respectively, 〈ϕ〉 6 Out (Fn) and
〈ϕ1, . . . , ϕm〉 6 Out (Fn).
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Short exact sequences

Definition
Consider an arbitrary short exact sequence of groups,

1→ F → G→ H → 1.

Given g ∈ G, consider γg : G→ G, which restricts to an
automorphism γg |F : F → F. Then, the action subgroup of the short
exact sequence is:

A = {γg |F | g ∈ G} 6 Aut (F )
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Short exact sequences

Idea: . . . our argument extends to arbitrary short exact sequences
(. . . satisfying the conditions needed).

To solve CP(Fn oϕ1,...,ϕm Fm) we have needed:

TCP(Fn),

orbit decidability of 〈ϕ1, . . . , ϕm〉 ∈ Aut (Fn),

computability up and down the short exact sequence.

These conditions (plus two more) will suffice . . .
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The main result

Theorem (Bogopolski-Martino-V., 2008)

Let
1 −→ F α−→ G β−→ H −→ 1

be an algorithmic short exact sequence of groups such that
(i) TCP(F ) is solvable,
(ii) CP(H) is solvable,
(iii) there is an algorithm which, given an input 1 6= h ∈ H, computes

a finite set of elements zh,1, . . . , zh,th ∈ H such that

CH(h) = 〈h〉zh,1 t · · · t 〈h〉zh,th .

Then,

CP(G) is solvable ⇐⇒
AG =

{
γg : F → F

x 7→ g−1xg

∣∣∣∣g ∈ G
}
6

6 Aut(F ) is orbit decidable.
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The main result

Proposition (Bogopolski–Martino–V., 2008)

Torsion-free hyperbolic groups (in particular, free groups) satisfy
hypothesis (ii) and (iii).

So, they all fit well as H.



1. Historical context 2. CP for Fn -by-Z 3. CP for Fn -by-Fm 4. Main result 5. Applications 6. Negative results

O. Bogopolski, A. Martino, O. Maslakova, E. Ventura, Free-
by-cyclic groups have solvable conjugacy problem, Bulletin of
the London Mathematical Society, 38(5) (2006), 787–794.

O. Bogopolski, A. Martino, E. Ventura, Orbit decidability and the
conjugacy problem for extensions of groups, Transactions of
the American Mathematical Society 362 (2010), 2003–2036.

V. Romanko’v, E. Ventura, Twisted conjugacy problem for endomor-
phisms of metabelian groups, Algebra and Logic 48(2) (2009), 89–98.
Translation from Algebra i Logika 48(2) (2009), 157–173.
J. González-Meneses, E. Ventura, Twisted conjugacy in the braid group,
Israel Journal of Mathematics 201 (2014), 455–476.
J. Burillo, F. Matucci, E. Ventura, The conjugacy problem for extensions
of Thompson’s group, to appear at Israel Journal of Mathematics.
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Free-by-free groups

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

TCP(Fn) is solvable.

• • •

Theorem (Brinkmann, 2006)

Cyclic subgroups of Aut (Fn) are O.D.

Corollary (Bogopolski–Martino–Maslakova–V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead ’36)

The full Aut (Fn) is O.D.

Corollary (Bogopolski–Martino–V., 2008)

If 〈ϕ1, . . . , ϕm〉 = Aut (Fn) then CP(Fn oϕ1,...,ϕm Fm) is solvable.
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solvable.
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Every finitely generated subgroup of Aut(F2) is O.D.
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(Free abelian)-by-free groups

1 −→ Zn −→ Zn oM1,...,Mm Fm −→ Fm −→ 1

Observation (linear algebra)

TCP(Zn) is solvable.

So,

CP(Zn oM1,...,Mm Fm) is solvable ⇔ 〈M1, . . . ,Mm〉 6 GLn(Z) is O.D.

Observe that now Mi ∈ Aut (Zn) = GLn(Z) are just n × n invertible
matrices.

• • •
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(Free abelian)-by-free groups

Theorem (Kannan–Lipton ’86)

Cyclic subgroups of GLn(Z) are O.D.

Corollary (Remeslennikov ’69)

Zn-by-Z groups have solvable conjugacy problem.

Observation (elementary)

The full GLn(Z) is O.D.

Corollary (Bogopolski–Martino–V., 2008)

If 〈M1, . . . ,Mm〉 = GLn(Z) then Zn oM1,...,Mm Fm has solvable
conjugacy problem.
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Braid-by-free groups

Consider the braid group on n strands, given by the classical
presentation:

Bn =

〈
σ1, σ2, . . . , σn−1

∣∣∣∣ σiσj = σjσi (|i − j | > 2)
σiσi+1σi = σi+1σiσi+1 (1 6 i 6 n − 2)

〉
.

CP(Bn) is solvable.
And the automorphism group is easy:

Theorem (Dyer–Grossman ’81)

|Out(Bn)| = 2; more precisely, Aut(Bn) = Inn(Bn) t Inn(Bn) · ε, where
ε : Bn → Bn is the automorphism which inverts all generators,
σi 7→ σ−1

i .
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Braid-by-free groups

Theorem (González-Meneses–V. 2009)

TCP(Bn) is solvable.

• • •

Observation

Every subgroup A 6 Aut(Bn) is orbit decidable.

Corollary (González-Meneses–V. 2009)

Every extension of Bn by a torsion-free hyperbolic group has solvable
conjugacy problem.
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Thompson-by-free groups

Consider Thompson’s group F :

F =

f : [0,1]→ [0,1] | f
−increasing and piecewise linear,
−with finitely many dyadic breakpoints,
−slopes being powers of 2.


CP(F ) is solvable.
And the automorphism group is big, but easy:

Theorem (Brin ’97)

For every ϕ ∈ Aut(F ), there exists τ ∈ EP2 such that ϕ(g) = τ−1gτ ,
for every g ∈ F.

F E EP2 =

{
f : R→ R | f is p.l., dyadic bkp., slopes 2n

eventually periodic

}
.



1. Historical context 2. CP for Fn -by-Z 3. CP for Fn -by-Fm 4. Main result 5. Applications 6. Negative results

Thompson-by-free groups

Consider Thompson’s group F :

F =

f : [0,1]→ [0,1] | f
−increasing and piecewise linear,
−with finitely many dyadic breakpoints,
−slopes being powers of 2.


CP(F ) is solvable.
And the automorphism group is big, but easy:

Theorem (Brin ’97)

For every ϕ ∈ Aut(F ), there exists τ ∈ EP2 such that ϕ(g) = τ−1gτ ,
for every g ∈ F.

F E EP2 =

{
f : R→ R | f is p.l., dyadic bkp., slopes 2n

eventually periodic

}
.



1. Historical context 2. CP for Fn -by-Z 3. CP for Fn -by-Fm 4. Main result 5. Applications 6. Negative results

Thompson-by-free groups

Theorem (Burillo–Matucci–V. 2010)

TCP(F ) is solvable.

• • •

Conjecture

k − CP(F ) (i.e., conjugacy problem for k-tuples) is solvable.

Proposition (Burillo–Matucci–V. 2010)

If conjecture is true then Aut (F ) and Aut +(F ) are orbit decidable.

Corollary (Burillo–Matucci–V. 2010)

If conjecture is true and ϕ1, . . . , ϕm ∈ Aut (F ) generate either Aut (F )
or Aut +(F ), then CP(F oϕ1,...,ϕm Fm) is solvable.
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Corollary (Burillo–Matucci–V. 2010)

If conjecture is true and ϕ1, . . . , ϕm ∈ Aut (F ) generate either Aut (F )
or Aut +(F ), then CP(F oϕ1,...,ϕm Fm) is solvable.
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Free-by-free negative results

Theorem (Miller ’71)

There exist free-by-free groups with unsolvable conjugacy problem.

Corollary

There exist 14 automorphisms ϕ1, . . . , ϕ14 ∈ Aut (F3) such that
〈ϕ1, . . . , ϕ14〉 6 Aut (F3) is orbit undecidable.

Moreover, we were able to find the reason and generalize it to Aut (F )
for many more grups F .
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Finding orbit undecidable subgroups

Observation (Bogopolski–Martino–V., 2008)

Let F be a group, and let A 6 B 6 Aut (F ) and u ∈ F be such that
B ∩ Stab∗(u) = 1. Then, A is O.D. ⇒ MP(A,B) solvable.

Proof. Given ϕ ∈ B ≤ Aut (F ), let w = uϕ and

{φ ∈ B | uφ ∼ w} = (B ∩ Stab∗(u)) · ϕ = {ϕ}.

So, u can be mapped to a conjugate of w
by some automorphism in A ⇔ ϕ ∈ A. �

MP(A,B) is unsolvable ⇒ A 6 Aut (F ) is orbit undecidable.
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Finding orbit undecidable subgroups

Corollary (Bogopolski–Martino–V., 2008)

Let F be a group, and let F2 × F2 ' B 6 Aut (F ) and u ∈ F be such
that B ∩ Stab∗(u) = 1. Then, there exists f.g. A 6 Aut (F ) which is
orbit undecidable.

Proof. By Mihailova’s construction:
Take a group U = 〈a1, a2 | r1, . . . , rm〉 with unsolvable
word problem;
Consider A = {(v ,w) | v =U w} 6 F2 × F2;
Easy to see that A = 〈(a1,a1), (a2,a2), (r1,1), . . . , (rm,1)〉
so, A is finitely generated;
MP(A,F2 × F2) is unsolvable;
Hence, A 6 Aut (F ) is orbit undecidable. �
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Finding orbit undecidable subgroups

For free groups

Corollary (Bogopolski–Martino–V., 2008)

Aut (Fr ) contains f.g. orbit undecidable subgroups, for r > 3.

Proof. Take the copy B of F2 × F2 in Aut (F3) via the embedding

F2 × F2 ↪→ Aut (F3),
(u, v) 7→ uθv : F3 → F3

a 7→ a
b 7→ b
q 7→ u−1qv ;

(u = qaqbq satisfies B ∩ Stab∗(u) = 1). Now, take any Mihailova
subgroup in there, A 6 B 6 Aut (F3), and A will be orbit undecidable.

Proposition (Bogopolski–Martino–V., 2008)

Every finitely generated subgroup of Aut (F2) is O.D.
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Thompson-by-free negative results

For the braid group

Aut (Bn) does not contain F2 × F2;
we proved that every extension of Bn (by torsion-free hyperbolic)
has solvable conjugacy problem.

For Thompson’s group

Proposition (Burillo–Matucci–V. 2010)

F2 × F2 embeds in Aut(F ).

Corollary (Burillo–Matucci–V. 2010)

There exist Thompson-by-free groups, F o Fm, with unsolvable
conjugacy problem.
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(Free abelian)-by-free negative results

For free abelian groups

Corollary (Bogopolski–Martino–V., 2008)

GLd (Z) contains f.g. orbit undecidable subgroups, for d > 4.

Proof.

F2 '
〈

P =

(
1 1
1 2

)
, Q =

(
2 1
1 1

)〉
≤24 GL2(Z).

Stab(1,0) = {M | (1,0)M = (1,0)} =

{(
1 0
n ±1

)
| n ∈ Z

}
.

〈P,Q〉 ∩ Stab(1,0) =

〈(
1 0
12 1

)〉
.

Choose a free subgroup F2 ' 〈P ′,Q′〉 ≤ 〈P,Q〉 such that
〈P ′,Q′〉 ∩ Stab(1,0) = {I} and consider

B =

〈(
P ′ 0
0 I

)
,

(
Q′ 0
0 I

)
,

(
I 0
0 P ′

)
,

(
I 0
0 Q′

)〉
≤ GL4(Z).
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)〉
.

Choose a free subgroup F2 ' 〈P ′,Q′〉 ≤ 〈P,Q〉 such that
〈P ′,Q′〉 ∩ Stab(1,0) = {I} and consider

B =

〈(
P ′ 0
0 I

)
,

(
Q′ 0
0 I

)
,

(
I 0
0 P ′

)
,

(
I 0
0 Q′

)〉
≤ GL4(Z).
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(Free abelian)-by-free negative results

Note that B ' F2 × F2.
Write u = (1,0,1,0). By construction, B ∩ Stab∗(u) = {Id}.
Take A ≤ B ' F2 × F2 with unsolvable membership problem.
By previous result, A 6 GL4(Z) is orbit undecidable.
Similarly for A 6 GLd (Z), with 4 6 d. �

Proposition (Bogopolski–Martino–V., 2008)

Every finitely generated subgroup of GL2(Z) is O.D.

Definition

A f.g. subgroup A 6 GLd (Z) is orbit decidable is there exists an
algorithm A which, given two vectors u, v ∈ Zn decides whether
v = uM by some matrix M ∈ A.
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(Free abelian)-by-free negative results

Theorem (Bogopolski–Martino–V., 2008)

There exist 14 matrices M1, . . . ,M14 ∈ GLd (Z), for d > 4, such that
〈M1, . . . ,M14〉 6 GLd (Z) is orbit undecidable.

Corollary (Bogopolski–Martino–V., 2008)

There exists a Z4-by-F14 group with unsolvable conjugacy problem.

Question

Does GL3(Z) contain orbit undecidable subgroups ?

Question

Does there exist Z3-by-free groups with unsolvable conjugacy
problem ?
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Automata groups

Proposition (S̆unić–V., 2010)

For d > 6, the group GLd (Z) contains orbit undecidable, free
subgroups.

So, for d > 6, there exists a group of the form

Γ = Zd o Fm 6 Zd o GLd (Z)

with unsolvable conjugacy problem.

Theorem (S̆unić–V., 2010)

All such groups Γ = Zd o Fm can be realized as automaton groups.

Corollary (S̆unić–V., 2010)

There exists automaton groups with unsolvable conjugacy problem.
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There exists automaton groups with unsolvable conjugacy problem.



1. Historical context 2. CP for Fn -by-Z 3. CP for Fn -by-Fm 4. Main result 5. Applications 6. Negative results

Automata groups

Proposition (S̆unić–V., 2010)

For d > 6, the group GLd (Z) contains orbit undecidable, free
subgroups.

So, for d > 6, there exists a group of the form

Γ = Zd o Fm 6 Zd o GLd (Z)

with unsolvable conjugacy problem.

Theorem (S̆unić–V., 2010)
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Next step:

What about TCP in

your favorite group ?
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THANKS
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