The conjugacy problem and other algorithmically related questions

Enric Ventura

Departament de Matemàtica Aplicada III
Universitat Politècnica de Catalunya

EMS-SCM joint meeting

Barcelona

May 28th, 2015.

Mathematics

focus on algorithmic questions

Mathematics

\downarrow
Algebra

Group Theory

Discrete groups
focus on algorithmic questions

Mathematics

\downarrow
 Algebra

Group Theory

Discrete groups

Mathematics

Algebra

Group Theory

Discrete groups

Mathematics

Algebra

 Group TheoryDiscrete groups
focus on algorithmic questions

- O. Bogopolski, A. Martino, O. Maslakova, E. Ventura, Free-by-cyclic groups have solvable conjugacy problem, Bulletin of the London Mathematical Society, 38(5) (2006), 787-794.
- O. Bogopolski, A. Martino, E. Ventura, Orbit decidability and the conjugacy problem for extensions of groups, Transactions of the American Mathematical Society 362 (2010), 2003-2036.
- V. Romanko'v, E. Ventura, Twisted conjugacy problem for endomorphisms of metabelian groups, Algebra and Logic 48(2) (2009), 89-98 Translation from Algebra i Logika 48(2) (2009), 157-173.
- J. González-Meneses, E. Ventura, Twisted conjugacy in the braid group, Israel Journal of Mathematics 201 (2014), 455-476
- J. Burillo, F. Matucci, E. Ventura, The conjugacy problem for extensions of Thompson's group, to appear at Israel Journal of Mathematics.
- Z. Sŭnic, E. Ventura, The conjugacy problem in automaton groups is not solvable, Journal of Algebra 364 (2012), 148-154.
- E. Ventura, Group theoretic orbit decidability, Groups, Complexity, Cryptology 6(2) (2014), 133-148.
- O. Bogopolski, A. Martino, O. Maslakova, E. Ventura, Free-by-cyclic groups have solvable conjugacy problem, Bulletin of the London Mathematical Society, 38(5) (2006), 787-794.
- O. Bogopolski, A. Martino, E. Ventura, Orbit decidability and the conjugacy problem for extensions of groups, Transactions of the American Mathematical Society 362 (2010), 2003-2036.
- V. Romanko'v, E. Ventura, Twisted conjugacy problem for endomorphisms of metabelian groups, Algebra and Logic 48(2) (2009), 89-98 Translation from Algebra i Logika 48(2) (2009), 157-173.
- J. González-Meneses, E. Ventura, Twisted conjugacy in the braid group, Israel Journal of Mathematics 201 (2014), 455-476.
- J. Burillo, F. Matucci, E. Ventura, The conjugacy problem for extensions of Thompson's group, to appear at Israel Journal of Mathematics.
- Z. Sŭnic, E. Ventura, The conjugacy problem in automaton groups is not solvable, Journal of Algebra 364 (2012), 148-154
- E. Ventura, Group theoretic orbit decidability, Groups, Complexity, Cryptology 6(2) (2014), 133-148.
- O. Bogopolski, A. Martino, O. Maslakova, E. Ventura, Free-by-cyclic groups have solvable conjugacy problem, Bulletin of the London Mathematical Society, 38(5) (2006), 787-794.
- O. Bogopolski, A. Martino, E. Ventura, Orbit decidability and the conjugacy problem for extensions of groups, Transactions of the American Mathematical Society 362 (2010), 2003-2036.
- V. Romanko'v, E. Ventura, Twisted conjugacy problem for endomorphisms of metabelian groups, Algebra and Logic 48(2) (2009), 89-98. Translation from Algebra i Logika 48(2) (2009), 157-173.
- J. González-Meneses, E. Ventura, Twisted conjugacy in the braid group, Israel Journal of Mathematics 201 (2014), 455-476.
- J. Burillo, F. Matucci, E. Ventura, The conjugacy problem for extensions of Thompson's group, to appear at Israel Journal of Mathematics.
- Z. Sŭnic, E. Ventura, The conjugacy problem in automaton groups is not solvable, Journal of Algebra 364 (2012), 148-154.
- E. Ventura, Group theoretic orbit decidability, Groups, Complexity, Cryptology 6(2) (2014), 133-148.

Outline

(1) The historical context

2 The conjugacy problem for free-by-cyclic groups
(3) The conjugacy problem for free-by-free groups

4 The main result
(5) Applications

6 Negative results

Outline

2 The conjugacy problem for free-by-cyclic groups
(3) The conjugacy problem for free-by-free groups

4 The main result
(5) Applications

6 Negative results

Presentations of groups

Definition

A finite presentation of a (discrete) group G is

$$
G=\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{m}\right\rangle
$$

- a_{1}, \ldots, a_{n} are the generators;
- r_{1}, \ldots, r_{m} are the relators;
- elements of G are words (i.e., non-commutative! formal products) of the $a_{i}^{ \pm 1}$'s, subject to the rules $r_{j}=1$.

Example

$$
\begin{array}{ll}
\mathbb{Z}=\langle a \mid-\rangle ; & a^{5} \cdot a^{-3}=a^{2} \\
\bullet & \mathbb{Z}^{2}=\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle=\langle a, b \mid a b=b a\rangle ; \\
b a \cdot b a^{-2}=a^{-1} b^{2} \\
\bullet & \mathbb{Z} / 5 \mathbb{Z}=\left\langle a \mid a^{5}\right\rangle ;
\end{array}
$$

Presentations of groups

Definition

A finite presentation of a (discrete) group G is

$$
G=\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{m}\right\rangle .
$$

- a_{1}, \ldots, a_{n} are the generators;
- r_{1}, \ldots, r_{m} are the relators;
- elements of G are words (i.e., non-commutative! formal products) of the $a_{i}^{ \pm 1}$'s, subject to the rules $r_{j}=1$.

Example

$$
\begin{array}{ll}
-\mathbb{Z}=\mid a & a^{5} \cdot a^{-3}=a^{2} \\
\cdot & \mathbb{Z}^{2}=\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle=\langle a, b \mid a b=b a\rangle ; \\
\hline & b a \cdot b a^{-2}=a^{-1} b^{2} \\
& a^{4} \cdot a^{3}=a^{2}
\end{array}
$$

Presentations of groups

Definition

A finite presentation of a (discrete) group G is

$$
G=\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{m}\right\rangle .
$$

- a_{1}, \ldots, a_{n} are the generators;
- r_{1}, \ldots, r_{m} are the relators;
- elements of G are words (i.e., non-commutative! formal products) of the $a_{i}^{ \pm 1}$'s, subject to the rules $r_{j}=1$.

Example

$$
\begin{array}{ll}
\text { - } \mathbb{Z}^{2}=\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle=\langle a, b \mid a b=b a\rangle ; & b a \cdot b a^{-2}=a^{-1} b^{2} \\
\text { - } \mathbb{Z} / 5 \mathbb{Z}=\left\langle a \mid a^{5}\right\rangle ; & a^{4} \cdot a^{3}=a^{2}
\end{array}
$$

Presentations of groups

Definition

A finite presentation of a (discrete) group G is

$$
G=\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{m}\right\rangle
$$

- a_{1}, \ldots, a_{n} are the generators;
- r_{1}, \ldots, r_{m} are the relators;
- elements of G are words (i.e., non-commutative! formal products) of the $a_{i}^{ \pm 1}$'s, subject to the rules $r_{j}=1$.

Example

- $\mathbb{Z}^{2}=\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle=\langle a, b \mid a b=b a\rangle ;$
$b a \cdot b a^{-2}=a^{-1} b^{2}$
- $\mathbb{Z} / 5 \mathbb{Z}=\left\langle a \mid a^{5}\right\rangle ;$

Presentations of groups

Definition

A finite presentation of a (discrete) group G is

$$
G=\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{m}\right\rangle
$$

- a_{1}, \ldots, a_{n} are the generators;
- r_{1}, \ldots, r_{m} are the relators;
- elements of G are words (i.e., non-commutative! formal products) of the $a_{i}^{ \pm 1}$'s, subject to the rules $r_{j}=1$.

Example

- $\mathbb{Z}=\langle a \mid-\rangle ;$

$$
a^{5} \cdot a^{-3}=a^{2}
$$

Presentations of groups

Definition

A finite presentation of a (discrete) group G is

$$
G=\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{m}\right\rangle
$$

- a_{1}, \ldots, a_{n} are the generators;
- r_{1}, \ldots, r_{m} are the relators;
- elements of G are words (i.e., non-commutative! formal products) of the $a_{i}^{ \pm 1}$'s, subject to the rules $r_{j}=1$.

Example

- $\mathbb{Z}=\langle a \mid-\rangle ;$

$$
a^{5} \cdot a^{-3}=a^{2}
$$

- $\mathbb{Z}^{2}=\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle=\langle a, b \mid a b=b a\rangle ;$

Presentations of groups

Definition

A finite presentation of a (discrete) group G is

$$
G=\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{m}\right\rangle
$$

- a_{1}, \ldots, a_{n} are the generators;
- r_{1}, \ldots, r_{m} are the relators;
- elements of G are words (i.e., non-commutative! formal products) of the $a_{i}^{ \pm 1}$'s, subject to the rules $r_{j}=1$.

Example

- $\mathbb{Z}=\langle a \mid-\rangle ;$

$$
a^{5} \cdot a^{-3}=a^{2}
$$

- $\mathbb{Z}^{2}=\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle=\langle a, b \mid a b=b a\rangle ; \quad b a \cdot b a^{-2}=a^{-1} b^{2}$

Presentations of groups

Definition

A finite presentation of a (discrete) group G is

$$
G=\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{m}\right\rangle
$$

- a_{1}, \ldots, a_{n} are the generators;
- r_{1}, \ldots, r_{m} are the relators;
- elements of G are words (i.e., non-commutative! formal products) of the $a_{i}^{ \pm 1}$'s, subject to the rules $r_{j}=1$.

Example

- $\mathbb{Z}=\langle a \mid-\rangle ;$

$$
a^{5} \cdot a^{-3}=a^{2}
$$

- $\mathbb{Z}^{2}=\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle=\langle a, b \mid a b=b a\rangle ; \quad b a \cdot b a^{-2}=a^{-1} b^{2}$
- $\mathbb{Z} / 5 \mathbb{Z}=\left\langle a \mid a^{5}\right\rangle$;

Presentations of groups

Definition

A finite presentation of a (discrete) group G is

$$
G=\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{m}\right\rangle
$$

- a_{1}, \ldots, a_{n} are the generators;
- r_{1}, \ldots, r_{m} are the relators;
- elements of G are words (i.e., non-commutative! formal products) of the $a_{i}^{ \pm 1}$'s, subject to the rules $r_{j}=1$.

Example

- $\mathbb{Z}=\langle a \mid-\rangle ;$
$a^{5} \cdot a^{-3}=a^{2}$
- $\mathbb{Z}^{2}=\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle=\langle a, b \mid a b=b a\rangle ;$
$b a \cdot b a^{-2}=a^{-1} b^{2}$
- $\mathbb{Z} / 5 \mathbb{Z}=\left\langle a \mid a^{5}\right\rangle$;
$a^{4} \cdot a^{3}=a^{2}$

Presentations of groups

Example

Which group is $G=\left\langle a, b \mid a^{-1} b a=b^{2}, b^{-1} a b=a^{2}\right\rangle$?

$$
\begin{aligned}
a^{-1} b a=b^{2} & \Rightarrow b^{-1} a^{-1} b a=b \\
& \left.\Rightarrow b^{-1} a b\right)^{-1} a=b \\
& \Rightarrow a^{-2} a=b
\end{aligned}
$$

But then

$$
\begin{aligned}
& a^{-1} b a=b^{2} \quad \Rightarrow a^{-1}=b^{2}=a^{-2} \quad \Rightarrow a=1 \\
& b^{-1} a b=a^{2} \quad \Rightarrow b^{-1}=a^{2}=b^{-2} \quad \Rightarrow b=1 .
\end{aligned}
$$

Hence, $G=1$ is the trivial group.
It is not easy, in general, to recognize G from a given presentation.

Presentations of groups

Example

Which group is $G=\left\langle a, b \mid a^{-1} b a=b^{2}, b^{-1} a b=a^{2}\right\rangle$?

$$
\begin{aligned}
a^{-1} b \boldsymbol{a}=\boldsymbol{b}^{2} & \Rightarrow b^{-1} a^{-1} b a=b \\
& \Rightarrow\left(b^{-1} a b\right)^{-1} a=b \\
& \Rightarrow a^{-2} a=b
\end{aligned}
$$

But then

$$
\begin{aligned}
& a^{-1} b a=b^{2} \quad \Rightarrow a^{-1}=b^{2}=a^{-2} \quad \Rightarrow a=1 \\
& b^{-1} a b=a^{2} \quad \Rightarrow b^{-1}=a^{2}=b^{-2} \quad \Rightarrow b=1 .
\end{aligned}
$$

Hence, $G=1$ is the trivial group.
It is not easy, in general, to recognize G from a given presentation.

Presentations of groups

Example

Which group is $G=\left\langle a, b \mid a^{-1} b a=b^{2}, b^{-1} a b=a^{2}\right\rangle$?

$$
\begin{aligned}
a^{-1} b a=b^{2} & \Rightarrow b^{-1} a^{-1} b a=b \\
& \left.\Rightarrow b^{-1} a b\right)^{-1} a=b \\
& \Rightarrow a^{-1}=b
\end{aligned}
$$

But then

$$
\begin{aligned}
& a^{-1} b a=b^{2} \quad \Rightarrow a^{-1}=b^{2}=a^{-2} \quad \Rightarrow a=1 \\
& b^{-1} a b=a^{2} \quad \Rightarrow b^{-1}=a^{2}=b^{-2} \quad \Rightarrow b=1 .
\end{aligned}
$$

Hence, $G=1$ is the trivial group.
It is not easy, in general, to recognize G from a given presentation.

Presentations of groups

Example

Which group is $G=\left\langle a, b \mid a^{-1} b a=b^{2}, b^{-1} a b=a^{2}\right\rangle$?

$$
a^{-1} b a=b^{2} \quad \Rightarrow b^{-1} a^{-1} b a=b \quad \Rightarrow \quad\left(b^{-1} a b\right)^{-1} a=b
$$

But then

$$
\begin{aligned}
& a^{-1} b a=b^{2} \quad \Rightarrow a^{-1}=b^{2}=a^{-2} \quad \Rightarrow a=1 \\
& b^{-1} a b=a^{2} \quad \Rightarrow b^{-1}=a^{2}=b^{-2} \quad \Rightarrow b=1 .
\end{aligned}
$$

Hence, $G=1$ is the trivial group.
It is not easy, in general, to recognize G from a given presentation.

Presentations of groups

Example

Which group is $G=\left\langle a, b \mid a^{-1} b a=b^{2}, b^{-1} a b=a^{2}\right\rangle$?

$$
\begin{aligned}
a^{-1} b a=b^{2} & \Rightarrow b^{-1} a^{-1} b a=b
\end{aligned} \quad \Rightarrow\left(b^{-1} a b\right)^{-1} a=b .
$$

But then

$$
\begin{aligned}
& a^{-1} b a=b^{2} \quad \Rightarrow a^{-1}=b^{2}=a^{-2} \quad \Rightarrow a=1 \\
& b^{-1} a b=a^{2} \quad \Rightarrow b^{-1}=a^{2}=b^{-2} \quad \Rightarrow b=1 .
\end{aligned}
$$

Hence, $G=1$ is the trivial group.

It is not easy, in general, to recognize G from a given presentation.

Presentations of groups

Example

Which group is $G=\left\langle a, b \mid a^{-1} b a=b^{2}, b^{-1} a b=a^{2}\right\rangle$?

$$
\begin{aligned}
a^{-1} b a=b^{2} & \Rightarrow b^{-1} a^{-1} b a=b & \Rightarrow\left(b^{-1} a b\right)^{-1} a=b \\
& \Rightarrow a^{-2} a=b & \Rightarrow a^{-1}=b .
\end{aligned}
$$

But then

$$
\begin{aligned}
& a^{-1} b a=b^{2} \quad \Rightarrow a^{-1}=b^{2}=a^{-2} \quad \Rightarrow a=1 \\
& b^{-1} a b=a^{2} \quad \Rightarrow b^{-1}=a^{2}=b^{-2} \quad \Rightarrow b=1 .
\end{aligned}
$$

Hence, $G=1$ is the trivial group.

It is not easy, in general, to recognize G from a given presentation.

Presentations of groups

Example

Which group is $G=\left\langle a, b \mid a^{-1} b a=b^{2}, b^{-1} a b=a^{2}\right\rangle$?

$$
\begin{aligned}
a^{-1} b a=b^{2} & \Rightarrow b^{-1} a^{-1} b a=b & \Rightarrow\left(b^{-1} a b\right)^{-1} a=b \\
& \Rightarrow a^{-2} a=b & \Rightarrow a^{-1}=b .
\end{aligned}
$$

But then

$$
a^{-1} b a=b^{2}
$$

Hence, $G=1$ is the trivial group.

It is not easy, in general, to recognize G from a given presentation.

Presentations of groups

Example

Which group is $G=\left\langle a, b \mid a^{-1} b a=b^{2}, b^{-1} a b=a^{2}\right\rangle$?

$$
\begin{aligned}
a^{-1} b a=b^{2} & \Rightarrow b^{-1} a^{-1} b a=b & \Rightarrow\left(b^{-1} a b\right)^{-1} a=b \\
& \Rightarrow a^{-2} a=b & \Rightarrow a^{-1}=b .
\end{aligned}
$$

But then

$$
a^{-1} b a=b^{2} \quad \Rightarrow a^{-1}=b^{2}=a^{-2}
$$

Hence, $G=1$ is the trivial group.

It is not easy, in general, to recognize G from a given presentation.

Presentations of groups

Example

Which group is $G=\left\langle a, b \mid a^{-1} b a=b^{2}, b^{-1} a b=a^{2}\right\rangle$?

$$
\begin{aligned}
a^{-1} b a=b^{2} & \Rightarrow b^{-1} a^{-1} b a=b & \Rightarrow\left(b^{-1} a b\right)^{-1} a=b \\
& \Rightarrow a^{-2} a=b & \Rightarrow a^{-1}=b .
\end{aligned}
$$

But then

$$
a^{-1} b a=b^{2} \quad \Rightarrow a^{-1}=b^{2}=a^{-2} \quad \Rightarrow a=1
$$

Hence, $G=1$ is the trivial group.

It is not easy, in general, to recognize G from a given presentation.

Presentations of groups

Example

Which group is $G=\left\langle a, b \mid a^{-1} b a=b^{2}, b^{-1} a b=a^{2}\right\rangle$?

$$
\begin{aligned}
a^{-1} b a=b^{2} & \Rightarrow b^{-1} a^{-1} b a=b & \Rightarrow\left(b^{-1} a b\right)^{-1} a=b \\
& \Rightarrow a^{-2} a=b & \Rightarrow a^{-1}=b .
\end{aligned}
$$

But then

$$
\begin{aligned}
& a^{-1} b a=b^{2} \quad \Rightarrow a^{-1}=b^{2}=a^{-2} \quad \Rightarrow a=1 \\
& b^{-1} a b=a^{2} \quad \Rightarrow b^{-1}=a^{2}=b^{-2} \quad \Rightarrow b=1
\end{aligned}
$$

Hence, $G=1$ is the trivial group.

It is not easy, in general, to recognize G from a given presentation.

Presentations of groups

Example

Which group is $G=\left\langle a, b \mid a^{-1} b a=b^{2}, b^{-1} a b=a^{2}\right\rangle$?

$$
\begin{aligned}
a^{-1} b a=b^{2} & \Rightarrow b^{-1} a^{-1} b a=b & \Rightarrow\left(b^{-1} a b\right)^{-1} a=b \\
& \Rightarrow a^{-2} a=b & \Rightarrow a^{-1}=b .
\end{aligned}
$$

But then

$$
\begin{aligned}
& a^{-1} b a=b^{2} \quad \Rightarrow a^{-1}=b^{2}=a^{-2} \quad \Rightarrow a=1 \\
& b^{-1} a b=a^{2} \quad \Rightarrow b^{-1}=a^{2}=b^{-2} \quad \Rightarrow b=1
\end{aligned}
$$

Hence, $G=1$ is the trivial group.

It is not easy, in general, to recognize G from a given presentation.

Presentations of groups

Example

Which group is $G=\left\langle a, b \mid a^{-1} b a=b^{2}, b^{-1} a b=a^{2}\right\rangle$?

$$
\begin{aligned}
a^{-1} b a=b^{2} & \Rightarrow b^{-1} a^{-1} b a=b & \Rightarrow\left(b^{-1} a b\right)^{-1} a=b \\
& \Rightarrow a^{-2} a=b & \Rightarrow a^{-1}=b .
\end{aligned}
$$

But then

$$
\begin{aligned}
& a^{-1} b a=b^{2} \quad \Rightarrow a^{-1}=b^{2}=a^{-2} \quad \Rightarrow a=1 \\
& b^{-1} a b=a^{2} \quad \Rightarrow b^{-1}=a^{2}=b^{-2} \quad \Rightarrow b=1 .
\end{aligned}
$$

Hence, $G=1$ is the trivial group.

It is not easy, in general, to recognize G from a given presentation.

Presentations of groups

Example

Which group is $G=\left\langle a, b \mid a^{-1} b a=b^{2}, b^{-1} a b=a^{2}\right\rangle$?

$$
\begin{aligned}
a^{-1} b a=b^{2} & \Rightarrow b^{-1} a^{-1} b a=b & \Rightarrow\left(b^{-1} a b\right)^{-1} a=b \\
& \Rightarrow a^{-2} a=b & \Rightarrow a^{-1}=b .
\end{aligned}
$$

But then

$$
\begin{aligned}
& a^{-1} b a=b^{2} \quad \Rightarrow a^{-1}=b^{2}=a^{-2} \quad \Rightarrow a=1 \\
& b^{-1} a b=a^{2} \quad \Rightarrow b^{-1}=a^{2}=b^{-2} \quad \Rightarrow b=1 .
\end{aligned}
$$

Hence, $G=1$ is the trivial group.

Presentations of groups

Example

Which group is $G=\left\langle a, b \mid a^{-1} b a=b^{2}, b^{-1} a b=a^{2}\right\rangle$?

$$
\begin{aligned}
a^{-1} b a=b^{2} & \Rightarrow b^{-1} a^{-1} b a=b & \Rightarrow\left(b^{-1} a b\right)^{-1} a=b \\
& \Rightarrow a^{-2} a=b & \Rightarrow a^{-1}=b .
\end{aligned}
$$

But then

$$
\begin{aligned}
& a^{-1} b a=b^{2} \quad \Rightarrow a^{-1}=b^{2}=a^{-2} \quad \Rightarrow a=1 \\
& b^{-1} a b=a^{2} \quad \Rightarrow b^{-1}=a^{2}=b^{-2} \quad \Rightarrow b=1 .
\end{aligned}
$$

Hence, $G=1$ is the trivial group.

It is not easy, in general, to recognize G from a given presentation.

Dehn's problems

Word Problem, WP(G)

For any given presentation $G=\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$, find an algorithm \mathcal{W} with:

- Input: a word $w\left(a_{1}, \ldots, a_{n}\right)$ on the $a_{i}^{ \pm 1}$'s;
- Output: "yes" or "no" depending on whether $w={ }_{G} 1$.

Conjugacy Problem, CP(G)

For any given presentation $G=\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$, find an
algorithm \mathcal{C} with:

- Input: two words $u\left(a_{1}, \ldots, a_{n}\right)$ and $v\left(a_{1}, \ldots, a_{n}\right)$
- Output: "yes" or "no" depending on whether u and v are conjugate in $G, u \sim_{G} v$ (i.e., $v={ }_{G} g^{-1}$ ug for some $g \in G$).

Dehn's problems

Word Problem, WP(G)

For any given presentation $G=\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$, find an algorithm \mathcal{W} with:

- Input: a word $w\left(a_{1}, \ldots, a_{n}\right)$ on the $a_{i}^{ \pm 1}$'s;
- Output: "yes" or "no" depending on whether $w={ }_{G} 1$.

Conjugacy Problem, $\operatorname{CP}(G)$

For any given presentation $G=\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$, find an algorithm \mathcal{C} with:

- Input: two words $u\left(a_{1}, \ldots, a_{n}\right)$ and $v\left(a_{1}, \ldots, a_{n}\right)$;
- Output: "yes" or "no" depending on whether u and v are conjugate in $G, u \sim_{G} v$ (i.e., $v={ }_{G} g^{-1} u g$ for some $g \in G$).

Dehn's problems

Isomorphism Problem

Find an algorithm \mathcal{I} with:

- Input: two presentations $G_{i}=\left\langle a_{1}, \ldots, a_{n_{i}} \mid r_{1}, \ldots, r_{m_{i}}\right\rangle, i=1,2$;
- Output: "yes" or "no" depending on whether $G_{1} \simeq G_{2}$ as groups.

Theorem (Novikov '55; Boone '58)

There exist finitely presented groups with unsolvable word problem.

Theorem (Adyan '57; Rabin '58)

The Isomorphism Problem is unsol vable.

Theorem (Miller '71)
There exists a finitely presented group G with solvable word problem but unsolvable conjugacy problem.

Dehn's problems

Isomorphism Problem

Find an algorithm \mathcal{I} with:

- Input: two presentations $G_{i}=\left\langle a_{1}, \ldots, a_{n_{i}} \mid r_{1}, \ldots, r_{m_{i}}\right\rangle, i=1,2$;
- Output: "yes" or "no" depending on whether $G_{1} \simeq G_{2}$ as groups.

Theorem (Novikov '55; Boone '58)

There exist finitely presented groups with unsolvable word problem.

Theorem (Adyan '57; Rabin '58)
The Isomorphism Problem is unsolvable.

Theorem (Miller '71)

There exists a finitely presented group G with solvable word problem but unsolvable conjugacy problem.

Dehn's problems

Isomorphism Problem

Find an algorithm \mathcal{I} with:

- Input: two presentations $G_{i}=\left\langle a_{1}, \ldots, a_{n_{i}} \mid r_{1}, \ldots, r_{m_{i}}\right\rangle, i=1,2$;
- Output: "yes" or "no" depending on whether $G_{1} \simeq G_{2}$ as groups.

Theorem (Novikov '55; Boone '58)
There exist finitely presented groups with unsolvable word problem.

Theorem (Adyan '57; Rabin '58)

The Isomorphism Problem is unsolvable.

Theorem (Miller '71)
There exists a finitely presented group G with solvable word problem but unsolvable conjugacy problem.

Dehn's problems

Isomorphism Problem

Find an algorithm \mathcal{I} with:

- Input: two presentations $G_{i}=\left\langle a_{1}, \ldots, a_{n_{i}} \mid r_{1}, \ldots, r_{m_{i}}\right\rangle, i=1,2$;
- Output: "yes" or "no" depending on whether $G_{1} \simeq G_{2}$ as groups.

Theorem (Novikov '55; Boone '58)

There exist finitely presented groups with unsolvable word problem.

Theorem (Adyan '57; Rabin '58)

The Isomorphism Problem is unsolvable.

Theorem (Miller '71)

There exists a finitely presented group G with solvable word problem but unsolvable conjugacy problem.

Outline

(1) The historical context

(2) The conjugacy problem for free-by-cyclic groups

3 The conjugacy problem for free-by-free groups
4 The main result
(5) Applications

6 Negative results

Step 1:

Find a problem you like

(2004)

Conjugacy problem for free-by-cyclic groups

Definition

Let $F_{n}=\left\langle a_{1}, \ldots, a_{n} \mid-\right\rangle$ be a free group on $\left\{a_{1}, \ldots, a_{n}\right\}(n \geq 2)$, and let $\varphi \in \operatorname{Aut}\left(F_{n}\right)$. The free-by-cyclic group $F_{n} \rtimes_{\varphi} \mathbb{Z}$ is defined as

$$
F_{n} \rtimes_{\varphi} \mathbb{Z}=\left\langle a_{1}, \ldots, a_{n}, t \mid t^{-1} a_{i} t=a_{i} \varphi\right\rangle .
$$

Observation

The word problem in $M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$ is solvable.

Open problem since 2004

Solve the conjugacy problem in M

Conjugacy problem for free-by-cyclic groups

Definition

Let $F_{n}=\left\langle a_{1}, \ldots, a_{n} \mid-\right\rangle$ be a free group on $\left\{a_{1}, \ldots, a_{n}\right\}(n \geq 2)$, and let $\varphi \in \operatorname{Aut}\left(F_{n}\right)$. The free-by-cyclic group $F_{n} \rtimes_{\varphi} \mathbb{Z}$ is defined as

$$
F_{n} \rtimes_{\varphi} \mathbb{Z}=\left\langle a_{1}, \ldots, a_{n}, t \mid t^{-1} a_{i} t=a_{i} \varphi\right\rangle .
$$

Observation

The word problem in $M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$ is solvable.

Conjugacy problem for free-by-cyclic groups

Definition

Let $F_{n}=\left\langle a_{1}, \ldots, a_{n} \mid-\right\rangle$ be a free group on $\left\{a_{1}, \ldots, a_{n}\right\}(n \geq 2)$, and let $\varphi \in \operatorname{Aut}\left(F_{n}\right)$. The free-by-cyclic group $F_{n} \rtimes_{\varphi} \mathbb{Z}$ is defined as

$$
F_{n} \rtimes_{\varphi} \mathbb{Z}=\left\langle a_{1}, \ldots, a_{n}, t \mid t^{-1} a_{i} t=a_{i} \varphi\right\rangle .
$$

Observation

The word problem in $M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$ is solvable.

Open problem since 2004

Solve the conjugacy problem in $M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$.

Conjugacy problem for free-by-cyclic groups

Let's consider an example: $M_{\varphi}=\left\langle a, b, t \mid t^{-1} a t=a \varphi, t^{-1} b t=b \varphi\right\rangle$

$$
\begin{aligned}
& \varphi: F_{2} \rightarrow F_{2} \\
& a \mapsto a b \\
& \varphi^{-1}: F_{2} \rightarrow F_{2} \\
& a \mapsto a^{-1} b \\
& b \mapsto a b a \\
& b \mapsto b^{-1} a^{2} \\
& w t=t(w \varphi) \\
& w t^{-1}=t^{-1}\left(w \varphi^{-1}\right)
\end{aligned}
$$

Lemma

Everv element from $M_{\rho}=F_{n} x_{\varphi} \mathbb{Z}$ has a unique normal form:

Conjugacy problem for free-by-cyclic groups

Let's consider an example: $M_{\varphi}=\left\langle a, b, t \mid t^{-1} a t=a \varphi, t^{-1} b t=b \varphi\right\rangle$

$$
\begin{aligned}
& \varphi: F_{2} \rightarrow F_{2} \\
& a \mapsto a b \\
& b \mapsto a b a \\
& \varphi^{-1}: F_{2} \rightarrow F_{2} \\
& a \mapsto a^{-1} b \\
& b \mapsto b^{-1} a^{2} \\
& w t=t(w \varphi) \\
& w t^{-1}=t^{-1}\left(w \varphi^{-1}\right) \\
& t a b^{-1} t^{-1} a t^{2} a=t a b^{-1} t^{-1} t(a b) t a=t a b^{-1} a b t a \\
& =t a b^{-1} a t(a b a) a=t a b^{-1} a t a b a^{2} \\
& =t a b^{-1} t(a b) a b a^{2} \\
& =\operatorname{tat}\left(a^{-1} b^{-1} a^{-1}\right) a b a b a^{2}=t a t b a^{2} \\
& =t t(a b) b a^{2}=t^{2} a b^{2} a^{2} \text {. }
\end{aligned}
$$

Lemma

Everv element from $M_{\rho}=F_{n} \times \mathbb{Z}_{0}$ has a unique normal form

Conjugacy problem for free-by-cyclic groups

Let's consider an example: $M_{\varphi}=\left\langle a, b, t \mid t^{-1} a t=a \varphi, t^{-1} b t=b \varphi\right\rangle$

$$
\begin{aligned}
& \varphi: F_{2} \rightarrow F_{2} \\
& a \mapsto a b \\
& b \mapsto a b a \\
& \varphi^{-1}: F_{2} \rightarrow F_{2} \\
& a \mapsto a^{-1} b \\
& b \mapsto b^{-1} a^{2} \\
& w t=t(w \varphi) \\
& w t^{-1}=t^{-1}\left(w \varphi^{-1}\right) \\
& t a b^{-1} t^{-1} a t^{2} a=t a b^{-1} t^{-1} t(a b) t a=t a b^{-1} a b t a \\
& =t a b^{-1} a t(a b a) a=t a b^{-1} a t a b a^{2} \\
& =\operatorname{tab}^{-1} t(a b) a b a^{2} \\
& =\operatorname{tat}\left(a^{-1} b^{-1} a^{-1}\right) a b a b a^{2}=t a t b a^{2} \\
& =t t(a b) b a^{2}=t^{2} a b^{2} a^{2} \text {. }
\end{aligned}
$$

Lemma

Every element from $M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$ has a unique normal form:
$t^{r} w \quad$ for some $r \in \mathbb{Z}, w \in F_{n}$.

Push the problem into your

favorite territory

(2005)

Converting it into a free group problem

Let $t^{r} u, t^{s} v, t^{k} g$ be arbitrary elements in $M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$. Then,

$$
\left(g^{-1} t^{-k}\right)\left(t^{r} u\right)\left(t^{k} g\right)=g^{-1} t^{r}\left(u \varphi^{k}\right) g
$$

Definition

For $\phi \in \operatorname{Aut}(G)$, two elements $u, v \in G$ are said to be ϕ-twisted conjugated, denoted $u \sim_{\phi} v$, if $v=(g \phi)^{-1}$ ug for some $g \in G$.

Twisted Conjugacy Problem, $T C P(G)$
The twisted conjugacy problem for G, denoted TCP(G):
Given $\phi \in \operatorname{Aut}(G)$ and $u, v \in G$ decide whether $u \sim_{\phi} v$.

Converting it into a free group problem

Let $t^{r} u, t^{s} v, t^{k} g$ be arbitrary elements in $M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$. Then,

$$
\begin{aligned}
\left(g^{-1} t^{-k}\right)\left(t^{r} u\right)\left(t^{k} g\right) & =g^{-1} t^{r}\left(u \varphi^{k}\right) g \\
& =t^{r}\left(g \varphi^{r}\right)^{-1}\left(u \varphi^{k}\right) g
\end{aligned}
$$

Definition

For $\phi \in \operatorname{Aut}(G)$, two elements $u, v \in G$ are said to be ϕ-twisted conjugated, denoted $u \sim_{\phi} v$, if $v=(g \phi)^{-1}$ ug for some $g \in G$.

Twisted Conjugacy Problem, TCP(G)
The twisted conjugacy problem for G, denoted TCP(G):
Given $\phi \in \operatorname{Aut}(G)$ and $u, v \in G$ decide whether $u \sim_{\phi} v$.

Converting it into a free group problem

Let $t^{r} u, t^{s} v, t^{k} g$ be arbitrary elements in $M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$. Then,

$$
\begin{aligned}
\left(g^{-1} t^{-k}\right)\left(t^{r} u\right)\left(t^{k} g\right) & =g^{-1} t^{r}\left(u \varphi^{k}\right) g \\
& =t^{r}\left(g \varphi^{r}\right)^{-1}\left(u \varphi^{k}\right) g .
\end{aligned}
$$

$t^{r} u \sim_{M_{\varphi}} t^{s} v \quad \Longleftrightarrow \quad r=s \quad \& \quad v \sim_{\varphi^{r}}\left(u \varphi^{k}\right)$ for some $k \in \mathbb{Z}$.

Definition

For $\phi \in \operatorname{Aut}(G)$, two elements $u, v \in G$ are said to be ϕ-twisted conjugated, denoted $u \sim_{\phi} v$, if $v=(g \phi)^{-1} u g$ for some $g \in G$.

Twisted Conjugacy Problem, TCP(G)
The twisted conjugacy problem for G, denoted TCP(G),
Given $\phi \in \operatorname{Aut}(G)$ and $u, v \in G$ decide whether $u \sim_{\phi} v$.

Converting it into a free group problem

Let $t^{r} u, t^{s} v, t^{k} g$ be arbitrary elements in $M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$. Then,

$$
\begin{aligned}
\left(g^{-1} t^{-k}\right)\left(t^{r} u\right)\left(t^{k} g\right) & =g^{-1} t^{r}\left(u \varphi^{k}\right) g \\
& =t^{r}\left(g \varphi^{r}\right)^{-1}\left(u \varphi^{k}\right) g
\end{aligned}
$$

$$
t^{r} u \sim_{M_{\varphi}} t^{s} v \quad \Longleftrightarrow \quad r=s \quad \& \quad v \sim_{\varphi^{r}}\left(u \varphi^{k}\right) \text { for some } k \in \mathbb{Z}
$$

Definition

For $\phi \in \operatorname{Aut}(G)$, two elements $u, v \in G$ are said to be ϕ-twisted conjugated, denoted $u \sim_{\phi} v$, if $v=(g \phi)^{-1} u g$ for some $g \in G$.

Twisted Conjugacy Problem, TCP(G)
The twisted conjugacy problem for G, denoted $\operatorname{TCP}(G)$:
Given $\phi \in \operatorname{Aut}(G)$ and $u, v \in G$ decide whether $u \sim_{\phi} v$.

Converting it into a free group problem

Let $t^{r} u, t^{s} v, t^{k} g$ be arbitrary elements in $M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$. Then,

$$
\begin{aligned}
\left(g^{-1} t^{-k}\right)\left(t^{r} u\right)\left(t^{k} g\right) & =g^{-1} t^{r}\left(u \varphi^{k}\right) g \\
& =t^{r}\left(g \varphi^{r}\right)^{-1}\left(u \varphi^{k}\right) g
\end{aligned}
$$

$$
t^{r} u \sim_{M_{\varphi}} t^{s} v \Longleftrightarrow r=s \quad \& \quad v \sim_{\varphi^{r}}\left(u \varphi^{k}\right) \text { for some } k \in \mathbb{Z}
$$

Definition

For $\phi \in \operatorname{Aut}(G)$, two elements $u, v \in G$ are said to be ϕ-twisted conjugated, denoted $u \sim_{\phi} v$, if $v=(g \phi)^{-1} u g$ for some $g \in G$.

Twisted Conjugacy Problem, TCP(G)

The twisted conjugacy problem for G, denoted $\operatorname{TCP}(G)$:
Given $\phi \in \operatorname{Aut}(G)$ and $u, v \in G$ decide whether $u \sim_{\phi} v$.

Step 3:

Solve it

(2005)

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)
$\operatorname{TCP}\left(F_{n}\right)$ is solvable.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), \operatorname{CP}\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.
Proof. Given $t^{r} u, t^{s} v \in M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$.

- $t^{r} u \sim t_{M_{\bullet}} t^{s} V \quad \Longleftrightarrow \quad r=s \quad \& \quad V \sim_{\varphi^{r}}\left(u \varphi^{k}\right)$ for some $k \in \mathbb{Z}$.
- To reduce to finitely many k 's, note that $u \sim_{\varphi} u \varphi$ because

$$
u=(u \varphi)^{-1}(u \varphi) u
$$

- so $u \varphi^{k} \sim_{\varphi^{r}} u \varphi^{k \pm \lambda r}$ and hence,
- Thus, $C P\left(M_{\varphi}\right)$ reduces to finitely many checks of $\operatorname{TCP}\left(F_{n}\right)$.
- BUT

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)
$\operatorname{TCP}\left(F_{n}\right)$ is solvable.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)
For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), \operatorname{CP}\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.
Proof. Given $t^{r} u, t^{s} v \in M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$.

- To reduce to finitely many k 's, note that $u \sim_{\varphi} u \varphi$ because

$$
u=(u \varphi)^{-1}(u \varphi) u
$$

- so $u \varphi^{k} \sim_{\varphi^{r}} u \varphi^{k \pm \lambda r}$ and hence,
- Thus, $C P\left(M_{\varphi}\right)$ reduces to finitely many checks of $\operatorname{TCP}\left(F_{n}\right)$.
- BUT

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)
$\operatorname{TCP}\left(F_{n}\right)$ is solvable.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)
For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.
Proof. Given $t^{r} u, t^{s} v \in M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$.

- To reduce to finitely many k 's, note that $u \sim_{\varphi} u \varphi$ because
- so $u \varphi^{k} \sim_{\varphi^{r}} u \varphi^{k \pm \lambda r}$ and hence,
- Thus, $C P\left(M_{\varphi}\right)$ reduces to finitely many checks of $\operatorname{TCP}\left(F_{n}\right)$.
- BUT

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)
$\operatorname{TCP}\left(F_{n}\right)$ is solvable.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)
For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.
Proof. Given $t^{r} u, t^{s} v \in M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$.

- $t^{r} u \sim_{M_{\varphi}} t^{s} v \Longleftrightarrow r=s \quad \& \quad v \sim_{\varphi^{r}}\left(u \varphi^{k}\right)$ for some $k \in \mathbb{Z}$.
- To reduce to finitely many k 's, note that $u \sim_{\varphi} u \varphi$ because
- so $u \varphi^{k} \sim_{\varphi^{r}} U \varphi^{k \pm \lambda r}$ and hence,
- Thus, $C P\left(M_{\varphi}\right)$ reduces to finitely many checks of $T C P\left(F_{n}\right)$.
- BUT

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

$\operatorname{TCP}\left(F_{n}\right)$ is solvable.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), \operatorname{CP}\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.
Proof. Given $t^{r} u, t^{s} v \in M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$.

- $t^{r} u \sim_{M_{\varphi}} t^{s} v \Longleftrightarrow r=s \quad \& \quad v \sim_{\varphi^{r}}\left(u \varphi^{k}\right)$ for some $k \in \mathbb{Z}$.
- To reduce to finitely many k 's, note that $u \sim_{\varphi} u \varphi$ because

$$
u=(u \varphi)^{-1}(u \varphi) u
$$

and hence,

- Thus, $C P\left(M_{\varphi}\right)$ reduces to finitely many checks of $\operatorname{TCP}\left(F_{n}\right)$.
- BUT

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

$\operatorname{TCP}\left(F_{n}\right)$ is solvable.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), \operatorname{CP}\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.
Proof. Given $t^{r} u, t^{s} v \in M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$.

- $t^{r} u \sim_{M_{\varphi}} t^{s} v \Longleftrightarrow r=s \quad \& \quad v \sim_{\varphi^{r}}\left(u \varphi^{k}\right)$ for some $k \in \mathbb{Z}$.
- To reduce to finitely many k 's, note that $u \sim_{\varphi} u \varphi$ because

$$
u=(u \varphi)^{-1}(u \varphi) u
$$

- so $u \varphi^{k} \sim_{\varphi^{r}} u \varphi^{k \pm \lambda r}$ and hence,

$$
t^{r} u \sim_{M_{\varphi}} t^{s} v \quad \Longleftrightarrow \quad r=s \quad \& \quad v \sim_{\varphi^{r}}\left(u \varphi^{k}\right) \text { for } k=0, \ldots r-1 .
$$

- Thus, $C P\left(M_{\varphi}\right)$ reduces to finitely many checks of $\operatorname{TCP}\left(F_{n}\right)$.
- BUT

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

$\operatorname{TCP}\left(F_{n}\right)$ is solvable.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.
Proof. Given $t^{r} u, t^{s} v \in M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$.

- $t^{r} u \sim_{M_{\varphi}} t^{s} v \Longleftrightarrow r=s \quad \& \quad v \sim_{\varphi^{r}}\left(u \varphi^{k}\right)$ for some $k \in \mathbb{Z}$.
- To reduce to finitely many k 's, note that $u \sim_{\varphi} u \varphi$ because

$$
u=(u \varphi)^{-1}(u \varphi) u
$$

- so $u \varphi^{k} \sim_{\varphi^{r}} u \varphi^{k \pm \lambda r}$ and hence,

$$
t^{r} u \sim_{M_{\varphi}} t^{s} v \quad \Longleftrightarrow \quad r=s \quad \& \quad v \sim_{\varphi^{r}}\left(u \varphi^{k}\right) \text { for } k=0, \ldots r-1 .
$$

- Thus, $\operatorname{CP}\left(M_{\varphi}\right)$ reduces to finitely many checks of $\operatorname{TCP}\left(F_{n}\right)$.
- BUT.

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

$\operatorname{TCP}\left(F_{n}\right)$ is solvable.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.
Proof. Given $t^{r} u, t^{s} v \in M_{\varphi}=F_{n} \rtimes_{\varphi} \mathbb{Z}$.

- $t^{r} u \sim_{M_{\varphi}} t^{s} v \Longleftrightarrow r=s \quad \& \quad v \sim_{\varphi^{r}}\left(u \varphi^{k}\right)$ for some $k \in \mathbb{Z}$.
- To reduce to finitely many k 's, note that $u \sim_{\varphi} u \varphi$ because

$$
u=(u \varphi)^{-1}(u \varphi) u
$$

- so $u \varphi^{k} \sim_{\varphi^{r}} u \varphi^{k \pm \lambda r}$ and hence,

$$
t^{r} u \sim_{M_{\varphi}} t^{s} v \quad \Longleftrightarrow \quad r=s \quad \& \quad v \sim_{\varphi^{r}}\left(u \varphi^{k}\right) \text { for } k=0, \ldots r-1 .
$$

- Thus, $C P\left(M_{\varphi}\right)$ reduces to finitely many checks of $\operatorname{TCP}\left(F_{n}\right)$.
- BUT...

```
Step 4:
```

Ups ... a technical problem!
(2005)

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)
For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.
Proof. Given $t^{r} u, t^{r} v \in F_{n} \rtimes_{\varphi} \mathbb{Z}$,

- Thus, $C P\left(M_{\varphi}\right)$ reduces to finitely many checks of $\operatorname{TCP}\left(F_{n}\right)$.
- Case 2: $r=0$
- Still infinitely many k's to check:
- Fortunately, this is precisely Brinkmann's result:

Theorem (Brinkmann 2006)

Given an automorphism $\phi: F_{n} \rightarrow F_{n}$ and $u, v \in F_{n}$, it is decidable whether $v \sim u \phi^{k}$ for some $k \in \mathbb{Z}$.

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)
For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.
Proof. Given $t^{r} u, t^{r} v \in F_{n} \rtimes_{\varphi} \mathbb{Z}$,

- Case 1: $r \neq 0$
- $t^{r} u \sim_{m_{\varphi}} t^{r} v \Longleftrightarrow v \sim_{\varphi^{r}}\left(u \varphi^{k}\right)$ for $k=0, \ldots r-1$.
- Thus, $C P\left(M_{\varphi}\right)$ reduces to finitely many checks of $\operatorname{TCP}\left(F_{n}\right)$.
- Case 2: $r=0$
- Still infinitely many k's to check:
- Fortunately, this is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given an automorphism $\phi: F_{n} \rightarrow F_{n}$ and $u, v \in F_{n}$, it is decidable whether $v \sim u \phi^{k}$ for some $k \in \mathbb{Z}$.

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)
For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.
Proof. Given $t^{r} u, t^{r} v \in F_{n} \rtimes_{\varphi} \mathbb{Z}$,

- Case 1: $r \neq 0$
- $t^{r} u \sim_{M_{\varphi}} t^{r} v \Longleftrightarrow v \sim_{\varphi^{r}}\left(u \varphi^{k}\right)$ for $k=0, \ldots r-1$.
- Thus, $C P\left(M_{\varphi}\right)$ reduces to finitely many checks of $\operatorname{TCP}\left(F_{n}\right)$.
- Case 2: $r=0$
- Still infinitely many k 's to check:
- Fortunately, this is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given an automorphism whether $v \sim u \phi^{k}$ for some $k \in \mathbb{Z}$.

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)
For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.
Proof. Given $t^{r} u, t^{r} v \in F_{n} \rtimes_{\varphi} \mathbb{Z}$,

- Case 1: $r \neq 0$
- $t^{r} u \sim_{M_{\varphi}} t^{r} v \Longleftrightarrow v \sim_{\varphi^{r}}\left(u \varphi^{k}\right)$ for $k=0, \ldots r-1$.
- Thus, $C P\left(M_{\varphi}\right)$ reduces to finitely many checks of $\operatorname{TCP}\left(F_{n}\right)$.
- Case 2: $r=0$
- Still infinitely many k 's to check:

$$
u \sim_{M_{\varphi}} v \Longleftrightarrow v \sim u \varphi^{k} \text { for some } k \in \mathbb{Z}
$$

- Fortunately, this is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given an automorphism whether $v \sim u \phi^{k}$ for some $k \in \mathbb{Z}$. - Hence, $\operatorname{CP}\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable. \square

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.
Proof. Given $t^{r} u, t^{r} v \in F_{n} \rtimes_{\varphi} \mathbb{Z}$,

- Case 1: $r \neq 0$
- $t^{r} u \sim_{M_{\varphi}} t^{r} v \Longleftrightarrow v \sim_{\varphi^{r}}\left(u \varphi^{k}\right)$ for $k=0, \ldots r-1$.
- Thus, $C P\left(M_{\varphi}\right)$ reduces to finitely many checks of $\operatorname{TCP}\left(F_{n}\right)$.
- Case 2: $r=0$
- Still infinitely many k 's to check:

$$
u \sim_{M_{\varphi}} v \quad \Longleftrightarrow \quad v \sim u \varphi^{k} \text { for some } k \in \mathbb{Z}
$$

- Fortunately, this is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given an automorphism $\phi: F_{n} \rightarrow F_{n}$ and $u, v \in F_{n}$, it is decidable whether $v \sim u \phi^{k}$ for some $k \in \mathbb{Z}$.

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), \operatorname{CP}\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.
Proof. Given $t^{r} u, t^{r} v \in F_{n} \rtimes_{\varphi} \mathbb{Z}$,

- Case 1: $r \neq 0$
- $t^{r} u \sim_{M_{\varphi}} t^{r} v \Longleftrightarrow v \sim_{\varphi^{r}}\left(u \varphi^{k}\right)$ for $k=0, \ldots r-1$.
- Thus, $C P\left(M_{\varphi}\right)$ reduces to finitely many checks of $\operatorname{TCP}\left(F_{n}\right)$.
- Case 2: $r=0$
- Still infinitely many k 's to check:

$$
u \sim_{M_{\varphi}} v \quad \Longleftrightarrow \quad v \sim u \varphi^{k} \text { for some } k \in \mathbb{Z}
$$

- Fortunately, this is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given an automorphism $\phi: F_{n} \rightarrow F_{n}$ and $u, v \in F_{n}$, it is decidable whether $v \sim u \phi^{k}$ for some $k \in \mathbb{Z}$.

- Hence, $\operatorname{CP}\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

- Our solution to $\operatorname{TCP}\left(F_{n}\right)$ uses a previous deep result by Bogopolski-Maslakova about computability of fixed subgroups of automorphisms of free groups.
- In 2008 a problem was found in the proof of Bogopolski-Maslakova; the authors claim to have fixed it, but no correction has been publitished yet.
- In 2014 Feighn-Handel give an alternative proof for Bogopolski-Maslakova's result.
- Alternative solution to $C P\left(F_{n} \rtimes_{\phi} \mathbb{Z}\right)$ combining deep results by Ol'shanskii-Sapir 2006, and Bridson-Groves 2010.

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

- Our solution to $\operatorname{TCP}\left(F_{n}\right)$ uses a previous deep result by Bogopolski-Maslakova about computability of fixed subgroups of automorphisms of free groups.
- In 2008 a problem was found in the proof of Bogopolski-Maslakova; the authors claim to have fixed it, but no correction has been published yet.
- In 2014 Feighn-Handel give an alternative proof for Bogopolski-Maslakova's result.
- Alternative solution to $C P\left(F_{n} \rtimes_{\phi} \mathbb{Z}\right)$ combining deep results by Ol'shanskii-Sapir 2006, and Bridson-Groves 2010.

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

- Our solution to $\operatorname{TCP}\left(F_{n}\right)$ uses a previous deep result by Bogopolski-Maslakova about computability of fixed subgroups of automorphisms of free groups.
- In 2008 a problem was found in the proof of Bogopolski-Maslakova; the authors claim to have fixed it, but no correction has been published yet.
- In 2014 Feighn-Handel give an alternative proof for Bogopolski-Maslakova's result.
- Alternative solution to $C P\left(F_{n} \rtimes_{\phi} \mathbb{Z}\right)$ combining deep results by Ol'shanskii-Sapir 2006, and Bridson-Groves 2010.

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

- Our solution to $\operatorname{TCP}\left(F_{n}\right)$ uses a previous deep result by Bogopolski-Maslakova about computability of fixed subgroups of automorphisms of free groups.
- In 2008 a problem was found in the proof of Bogopolski-Maslakova; the authors claim to have fixed it, but no correction has been published yet.
- In 2014 Feighn-Handel give an alternative proof for Bogopolski-Maslakova's result.
- Alternative solution to $\operatorname{CP}\left(F_{n} \rtimes_{\phi} \mathbb{Z}\right)$ combining deep results by Ol'shanskii-Sapir 2006, and Bridson-Groves 2010.

$C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable

- Our solution to $\operatorname{TCP}\left(F_{n}\right)$ uses a previous deep result by Bogopolski-Maslakova about computability of fixed subgroups of automorphisms of free groups.
- In 2008 a problem was found in the proof of Bogopolski-Maslakova; the authors claim to have fixed it, but no correction has been published yet.
- In 2014 Feighn-Handel give an alternative proof for Bogopolski-Maslakova's result.
- Alternative solution to $\operatorname{CP}\left(F_{n} \rtimes_{\phi} \mathbb{Z}\right)$ combining deep results by Ol'shanskii-Sapir 2006, and Bridson-Groves 2010.

Outline

The historical context(2) The conjugacy problem for free-by-cyclic groups
(3) The conjugacy problem for free-by-free groups

4 The main result
(5) Applications

6 Negative results

Step 5:

Intuition always ahead

(2006)

A crucial comment

Armando Martino: "The whole argument essentially works the same way in presence of more stable letters, i.e., for free-by-free groups"

Definition

Let $F_{n}=\left\langle x_{1}, \ldots, x_{n} \mid\right\rangle$ be the free group on $\left\{x_{1}, \ldots, x_{n}\right\}(n \geq 2)$, and let $\varphi_{1}, \ldots, \varphi_{m} \in \operatorname{Aut}\left(F_{n}\right)$. The free-by-free group $F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}$ is

$$
M_{\varphi_{1}, \ldots, \varphi_{m}}=F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}=\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid t_{j}^{-1} x_{i} t_{j}=x_{i} \varphi_{j}\right\rangle .
$$

But this must be wrong

Theorem (Miller 71)

There exist free-by-free groups with unsolvable conjugacy problem.

Surprise was that

Armando was "essentially" right !!

A crucial comment

Armando Martino: "The whole argument essentially works the same way in presence of more stable letters, i.e., for free-by-free groups"

Definition

Let $F_{n}=\left\langle x_{1}, \ldots, x_{n} \mid\right\rangle$ be the free group on $\left\{x_{1}, \ldots, x_{n}\right\}$ ($n \geq 2$), and let $\varphi_{1}, \ldots, \varphi_{m} \in \operatorname{Aut}\left(F_{n}\right)$. The free-by-free group $F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}$ is

$$
M_{\varphi_{1}, \ldots, \varphi_{m}}=F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}=\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid t_{j}^{-1} x_{i} t_{j}=x_{i} \varphi_{j}\right\rangle .
$$

But this must be wrong ...

Theorem (Miller '71)

There exist free-by-free groups with unsolvable conjugacy problem.

A crucial comment

Armando Martino: "The whole argument essentially works the same way in presence of more stable letters, i.e., for free-by-free groups"

Definition

Let $F_{n}=\left\langle x_{1}, \ldots, x_{n} \mid\right\rangle$ be the free group on $\left\{x_{1}, \ldots, x_{n}\right\}(n \geq 2)$, and let $\varphi_{1}, \ldots, \varphi_{m} \in \operatorname{Aut}\left(F_{n}\right)$. The free-by-free group $F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}$ is

$$
M_{\varphi_{1}, \ldots, \varphi_{m}}=F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}=\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid t_{j}^{-1} x_{i} t_{j}=x_{i} \varphi_{j}\right\rangle .
$$

But this must be wrong ...

Theorem (Miller '71)

There exist free-by-free groups with unsolvable conjugacy problem.
Surprise was that ...
.. Armando was "essentially" right !!

The comment was right...

In Case 1, the whole argument essentially works the same way;
But in Case 2, a much stronger problem arises:

Theorem (Bogopolski-Martino-V., 2010)
$C P\left(F_{n} \rtimes_{\varphi_{1} \ldots \ldots \omega_{m}} F_{m}\right)$ is solvable if and only if $\left(\varphi_{1}, \ldots \varphi_{m}\right) \leqslant \operatorname{Aut}\left(F_{n}\right)$ is
orbit decidable.

Definition

A subaroup A \leqslant Aut $\left(F_{n}\right)$ is orbit decidable (O.D.) if \exists an algorithm A
s.t., given $u, v \in F_{n}$ decides whether $v \sim u \alpha$ for some $\alpha \in A$.

The comment was right...

In Case 1, the whole argument essentially works the same way; But in Case 2, a much stronger problem arises:

$$
u \sim_{M_{\varphi}} v \Longleftrightarrow v \sim u \varphi^{k} \text { for some } k \in \mathbb{Z}
$$

The comment was right...

In Case 1, the whole argument essentially works the same way;
But in Case 2, a much stronger problem arises:

$$
u \sim_{M_{\varphi}} v \Longleftrightarrow v \sim u \varphi^{k} \text { for some } k \in \mathbb{Z}
$$

$$
u \sim_{M_{\varphi}} v \quad \Longleftrightarrow \quad v \sim u \phi \text { for some } \phi \in\langle\varphi\rangle \leqslant \operatorname{Aut}\left(F_{n}\right) .
$$

Theorem (Bogopolski-Martino-V., 2010)

$$
\left.F_{m}\right) \text { is solvable if and onlv if }
$$

orbit decidable.

Definition

A subaroup $A \leqslant \operatorname{Aut}\left(F_{n}\right)$ is orbit decidable (O.D.) if \exists an algorithm \mathcal{A}
s.t., given $u, v \in F_{n}$ decides whether $v \sim u \alpha$ for some $\alpha \in A$.

The comment was right...

In Case 1, the whole argument essentially works the same way;
But in Case 2, a much stronger problem arises:

$$
u \sim_{M_{\varphi}} v \quad \Longleftrightarrow \quad v \sim u \varphi^{k} \text { for some } k \in \mathbb{Z}
$$

$$
u \sim_{M_{\varphi}} v \quad \Longleftrightarrow \quad v \sim u \phi \text { for some } \phi \in\langle\varphi\rangle \leqslant \operatorname{Aut}\left(F_{n}\right) .
$$

$$
u \sim_{M_{\varphi_{1}, \ldots, \varphi_{m}}} v \Longleftrightarrow v \sim u \phi \text { for some } \phi \in\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \leqslant \operatorname{Aut}\left(F_{n}\right) .
$$

Theorem (Bogopolski-Martino-V., 2010)

Definition

A subgroup $A \leqslant \operatorname{Aut}\left(F_{n}\right)$ is orbit decidable (O.D.) if \exists an algorithm \mathcal{A} s.t., given $u, v \in F_{n}$ decides whether $v \sim u \alpha$ for some $\alpha \in A$.

The comment was right...

In Case 1, the whole argument essentially works the same way;
But in Case 2, a much stronger problem arises:

$$
u \sim_{M_{\varphi}} v \Longleftrightarrow v \sim u \varphi^{k} \text { for some } k \in \mathbb{Z}
$$

$$
u \sim_{M_{\varphi}} v \quad \Longleftrightarrow \quad v \sim u \phi \text { for some } \phi \in\langle\varphi\rangle \leqslant \operatorname{Aut}\left(F_{n}\right) .
$$

$$
u \sim_{M_{\varphi_{1}, \ldots, \varphi_{m}}} v \Longleftrightarrow v \sim u \phi \text { for some } \phi \in\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \leqslant \operatorname{Aut}\left(F_{n}\right) .
$$

Theorem (Bogopolski-Martino-V., 2010)

$\operatorname{CP}\left(F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}\right)$ is solvable if and only if $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \leqslant \operatorname{Aut}\left(F_{n}\right)$ is orbit decidable.

Definition

A subgroup $A \leqslant \operatorname{Aut}\left(F_{n}\right)$ is orbit decidable (O.D.) if \exists an algorithm \mathcal{A} s.t., given $u, v \in F_{n}$ decides whether $v \sim u \alpha$ for some $\alpha \in A$.

The comment was right...

In Case 1, the whole argument essentially works the same way; But in Case 2, a much stronger problem arises:

$$
u \sim_{M_{\varphi}} v \Longleftrightarrow v \sim u \varphi^{k} \text { for some } k \in \mathbb{Z}
$$

$$
u \sim_{M_{\varphi}} v \Longleftrightarrow v \sim u \phi \text { for some } \phi \in\langle\varphi\rangle \leqslant \operatorname{Aut}\left(F_{n}\right) .
$$

$u \sim_{M_{\varphi_{1}, \ldots, \varphi_{m}}} v \Longleftrightarrow v \sim u \phi$ for some $\phi \in\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \leqslant \operatorname{Aut}\left(F_{n}\right)$.

Theorem (Bogopolski-Martino-V., 2010)

$\operatorname{CP}\left(F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}\right)$ is solvable if and only if $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \leqslant \operatorname{Aut}\left(F_{n}\right)$ is orbit decidable.

Definition

A subgroup $A \leqslant \operatorname{Aut}\left(F_{n}\right)$ is orbit decidable (O.D.) if \exists an algorithm \mathcal{A} s.t., given $u, v \in F_{n}$ decides whether $v \sim u \alpha$ for some $\alpha \in A$.

Reformulating ...

Definition

A subgroup $A \leqslant \operatorname{Aut}\left(F_{n}\right)$ is orbit decidable (O.D.) if \exists an algorithm \mathcal{A} s.t., given $u, v \in F_{n}$ decides whether $v \sim u \alpha$ for some $\alpha \in A$.

Theorem (Brinkmann, 2006)

Cyclic subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are orbit decidable.

Theorem (Bogopolski-Martino-V., 2010)

\square is solvable

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.

- And Miller's examples must correspond to orbit undecidable subgroups $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \leqslant \operatorname{Aut}\left(F_{n}\right)$.

Reformulating ...

Definition

A subgroup $A \leqslant \operatorname{Aut}\left(F_{n}\right)$ is orbit decidable (O.D.) if \exists an algorithm \mathcal{A} s.t., given $u, v \in F_{n}$ decides whether $v \sim u \alpha$ for some $\alpha \in A$.

Theorem (Brinkmann, 2006)

Cyclic subgroups of Aut $\left(F_{n}\right)$ are orbit decidable.
Theorem (Bogopolski-Martino-V., 2010)
\square

Corollary (Bogopolski-Martino-Maslakova-V., 2005)
For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.

- And Miller's examples must correspond to orbit undecidable subgroups \square

Reformulating ...

Definition

A subgroup $A \leqslant \operatorname{Aut}\left(F_{n}\right)$ is orbit decidable (O.D.) if \exists an algorithm \mathcal{A} s.t., given $u, v \in F_{n}$ decides whether $v \sim u \alpha$ for some $\alpha \in A$.

Theorem (Brinkmann, 2006)

Cyclic subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are orbit decidable.

Theorem (Bogopolski-Martino-V., 2010)

$C P\left(F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}\right)$ is solvable $\Longleftrightarrow\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \leqslant \operatorname{Aut}\left(F_{n}\right)$ is O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), C P\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.

- And Miller's examples must correspond to orbit undecidable subgroups $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \leqslant \operatorname{Aut}\left(F_{n}\right)$.

Reformulating . . .

Definition

A subgroup $A \leqslant \operatorname{Aut}\left(F_{n}\right)$ is orbit decidable (O.D.) if \exists an algorithm \mathcal{A} s.t., given $u, v \in F_{n}$ decides whether $v \sim u \alpha$ for some $\alpha \in A$.

Theorem (Brinkmann, 2006)

Cyclic subgroups of Aut $\left(F_{n}\right)$ are orbit decidable.

Theorem (Bogopolski-Martino-V., 2010)

$C P\left(F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}\right)$ is solvable $\Longleftrightarrow\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \leqslant \operatorname{Aut}\left(F_{n}\right)$ is O.D.
Corollary (Bogopolski-Martino-Maslakova-V., 2005)
For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), \operatorname{CP}\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.

- And Miller's examples must correspond to orbit undecidable subgroups $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \leqslant \operatorname{Aut}\left(F_{n}\right)$.

Reformulating ...

Definition

A subgroup $A \leqslant \operatorname{Aut}\left(F_{n}\right)$ is orbit decidable (O.D.) if \exists an algorithm \mathcal{A} s.t., given $u, v \in F_{n}$ decides whether $v \sim u \alpha$ for some $\alpha \in A$.

Theorem (Brinkmann, 2006)

Cyclic subgroups of Aut $\left(F_{n}\right)$ are orbit decidable.

Theorem (Bogopolski-Martino-V., 2010)

$C P\left(F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}\right)$ is solvable $\Longleftrightarrow\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \leqslant \operatorname{Aut}\left(F_{n}\right)$ is O.D.
Corollary (Bogopolski-Martino-Maslakova-V., 2005)
For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), \operatorname{CP}\left(F_{n} \rtimes_{\varphi} \mathbb{Z}\right)$ is solvable.

- And Miller's examples must correspond to orbit undecidable subgroups $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \leqslant \operatorname{Aut}\left(F_{n}\right)$.

Step 6:

Extend as much as possible

(2007)

Outline

The historical context(2) The conjugacy problem for free-by-cyclic groups
(3) The conjugacy problem for free-by-free groups
(4) The main result
(5) Applications

6 Negative results

Orbit decidability

Definition

Let X be a set. A collection of maps $A \subseteq \operatorname{Map}(X, X)$ is said to be orbit decidable (O.D.) if there is an algorithm \mathcal{A} with:

- Input: two elements $x, y \in X$;
- Output: "yes" or "no" depending on $x \alpha=y$ for some $\alpha \in A$.

Definition

For $X, A \subseteq \operatorname{Map}(X, X)$, the A-orbit of $x \in X$ is $\mathcal{O}(x)=\{x \alpha \mid \alpha \in A\}$

Observation

O.D. is membership in A-orbits.

Observation

The coniuaacy problem for group $G, C P(G)$, is just the O.D. for

Orbit decidability

Definition

Let X be a set. A collection of maps $A \subseteq \operatorname{Map}(X, X)$ is said to be orbit decidable (O.D.) if there is an algorithm \mathcal{A} with:

- Input: two elements $x, y \in X$;
- Output: "yes" or "no" depending on $x \alpha=y$ for some $\alpha \in A$.

Definition

For $X, A \subseteq \operatorname{Map}(X, X)$, the A-orbit of $x \in X$ is $\mathcal{O}(x)=\{x \alpha \mid \alpha \in A\}$.

Observation

O.D. is membership in A-orbits.

Observation

The coniugacy problem for group $G, C P(G)$, is just the O.D. for

Orbit decidability

Definition

Let X be a set. A collection of maps $A \subseteq \operatorname{Map}(X, X)$ is said to be orbit decidable (O.D.) if there is an algorithm \mathcal{A} with:

- Input: two elements $x, y \in X$;
- Output: "yes" or "no" depending on $x \alpha=y$ for some $\alpha \in A$.

Definition

For $X, A \subseteq \operatorname{Map}(X, X)$, the A-orbit of $x \in X$ is $\mathcal{O}(x)=\{x \alpha \mid \alpha \in A\}$.

Observation

O.D. is membership in A-orbits.

Orbit decidability

Definition

Let X be a set. A collection of maps $A \subseteq \operatorname{Map}(X, X)$ is said to be orbit decidable (O.D.) if there is an algorithm \mathcal{A} with:

- Input: two elements $x, y \in X$;
- Output: "yes" or "no" depending on $x \alpha=y$ for some $\alpha \in A$.

Definition

For $X, A \subseteq \operatorname{Map}(X, X)$, the A-orbit of $x \in X$ is $\mathcal{O}(x)=\{x \alpha \mid \alpha \in A\}$.

Observation

O.D. is membership in A-orbits.

Observation

The conjugacy problem for group $G, C P(G)$, is just the O.D. for $A=\operatorname{Inn}(G)=\left\{\gamma_{g}: G \rightarrow G, x \mapsto g^{-1} x g \mid g \in G\right\} \unlhd \operatorname{Aut}(G)$.

Short exact sequences

Observation

(i) For $\varphi \in \operatorname{Aut}\left(F_{n}\right)$, we have the natural short exact sequence:

$$
\begin{aligned}
1 \rightarrow F_{n} \rightarrow F_{n} x_{\varphi} \mathbb{Z} & \rightarrow \mathbb{Z} \rightarrow 1 \\
x_{i} & \mapsto 1 \\
t & \mapsto t
\end{aligned}
$$

(ii) For $\varphi_{1}, \ldots, \varphi_{m} \in \operatorname{Aut}\left(F_{n}\right)$, we have the natural short exact sequence:
(iii) And their action subgroups are, respectively, $\langle\varphi\rangle \leqslant \operatorname{Out}\left(F_{n}\right)$ and Out $\left(F_{n}\right)$.

Short exact sequences

Observation

(i) For $\varphi \in \operatorname{Aut}\left(F_{n}\right)$, we have the natural short exact sequence:

$$
\begin{aligned}
1 \rightarrow F_{n} \rightarrow F_{n} x_{\varphi} \mathbb{Z} & \rightarrow \mathbb{Z} \rightarrow 1 \\
x_{i} & \mapsto 1 \\
t & \mapsto t
\end{aligned}
$$

(ii) For $\varphi_{1}, \ldots, \varphi_{m} \in \operatorname{Aut}\left(F_{n}\right)$, we have the natural short exact sequence:

$$
\begin{aligned}
1 \rightarrow F_{n} \rightarrow F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m} & \rightarrow F_{m} \rightarrow 1 \\
x_{i} & \mapsto \\
t_{j} & \mapsto t_{j}
\end{aligned}
$$

(iii) And their action subgroups are, respectively, $\langle\varphi\rangle \leqslant \operatorname{Out}\left(F_{n}\right)$ and

Short exact sequences

Observation

(i) For $\varphi \in \operatorname{Aut}\left(F_{n}\right)$, we have the natural short exact sequence:

$$
\begin{aligned}
1 \rightarrow F_{n} \rightarrow F_{n} x_{\varphi} \mathbb{Z} & \rightarrow \mathbb{Z} \rightarrow 1 \\
x_{i} & \mapsto 1 \\
t & \mapsto t
\end{aligned}
$$

(ii) For $\varphi_{1}, \ldots, \varphi_{m} \in \operatorname{Aut}\left(F_{n}\right)$, we have the natural short exact sequence:

$$
\begin{aligned}
1 \rightarrow F_{n} \rightarrow F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m} & \rightarrow F_{m} \rightarrow 1 \\
x_{i} & \mapsto \\
t_{j} & \mapsto
\end{aligned}
$$

(iii) And their action subgroups are, respectively, $\langle\varphi\rangle \leqslant \operatorname{Out}\left(F_{n}\right)$ and $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \leqslant \operatorname{Out}\left(F_{n}\right)$.

Short exact sequences

Definition

Consider an arbitrary short exact sequence of groups,

$$
1 \rightarrow F \rightarrow G \rightarrow H \rightarrow 1
$$

Given $g \in G$, consider $\gamma_{g}: G \rightarrow G$, which restricts to an automorphism $\left.\gamma_{g}\right|_{F}: F \rightarrow F$. Then, the action subgroup of the short exact sequence is:

$$
A=\left\{\gamma_{g}|F| g \in G\right\} \leqslant \operatorname{Aut}(F)
$$

Short exact sequences

Idea: ... our argument extends to arbitrary short exact sequences (... satisfying the conditions needed).

To solve $C P\left(F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}\right)$ we have needed:

- $\operatorname{TCP}\left(F_{n}\right)$,
- orbit decidability of $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \in \operatorname{Aut}\left(F_{n}\right)$,
- computability up and down the short exact sequence.

These conditions (plus two more) will suffice

Short exact sequences

Idea: ... our argument extends to arbitrary short exact sequences (... satisfying the conditions needed).

To solve $\operatorname{CP}\left(F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}\right)$ we have needed:

- $\operatorname{TCP}\left(F_{n}\right)$,
- orbit decidability of $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \in \operatorname{Aut}\left(F_{n}\right)$,
- computability up and down the short exact sequence.

These conditions (plus two more) will suffice

Short exact sequences

Idea: ... our argument extends to arbitrary short exact sequences (... satisfying the conditions needed).

To solve $\operatorname{CP}\left(F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}\right)$ we have needed:

- $\operatorname{TCP}\left(F_{n}\right)$,
- orbit decidability of $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \in \operatorname{Aut}\left(F_{n}\right)$,
- computability up and down the short exact sequence.

These conditions (plus two more) will suffice

Short exact sequences

Idea: ... our argument extends to arbitrary short exact sequences (... satisfying the conditions needed).

To solve $\operatorname{CP}\left(F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}\right)$ we have needed:

- $\operatorname{TCP}\left(F_{n}\right)$,
- orbit decidability of $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \in \operatorname{Aut}\left(F_{n}\right)$,
- computability up and down the short exact sequence.

These conditions (plus two more) will suffice

Short exact sequences

Idea: ... our argument extends to arbitrary short exact sequences (... satisfying the conditions needed).

To solve $\operatorname{CP}\left(F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}\right)$ we have needed:

- $\operatorname{TCP}\left(F_{n}\right)$,
- orbit decidability of $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \in \operatorname{Aut}\left(F_{n}\right)$,
- computability up and down the short exact sequence.

These conditions (plus two more) will suffice ...

The main result

$$
\begin{aligned}
& \text { Theorem (Bogopolski-Martino-V., 2008) } \\
& \qquad \text { Let } \\
& \qquad 1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
\end{aligned}
$$

be an algorithmic short exact sequence of groups such that

```
(i) TCP(F) is solvable,
(ii) }CP(H)\mathrm{ is solvable,
there is an algorithm which, given an input 1 }\not=h\inH\mathrm{ , computes
    a finite set of elements }\mp@subsup{z}{h,1}{},\ldots,\mp@subsup{z}{h,\mp@subsup{t}{n}{}}{}\inH\mathrm{ such that
```

$C_{H}(h)=\langle h\rangle z_{h, 1} \sqcup \cdots \sqcup\langle h\rangle z_{h, t_{n}}$
Then,

The main result

$$
\begin{aligned}
& \text { Theorem (Bogopolski-Martino-V., 2008) } \\
& \text { Let } \\
& \qquad 1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
\end{aligned}
$$

be an algorithmic short exact sequence of groups such that
(i) $\operatorname{TCP}(F)$ is solvable,
(ii) $C P(H)$ is solvable,
(iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h, 1}, \ldots, z_{h, t_{n}} \in H$ such that

$$
C_{H}(h)=\langle h\rangle z_{h, 1} \sqcup \cdots \sqcup\langle h\rangle z_{h, t_{n}} .
$$

Then,

The main result

Theorem (Bogopolski-Martino-V., 2008)

Let

$$
1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
$$

be an algorithmic short exact sequence of groups such that
(i) $\operatorname{TCP}(F)$ is solvable,
(ii) $C P(H)$ is solvable,

(iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h, 1}, \ldots, z_{h, t_{h}} \in H$ such that

$$
C_{H}(h)=\langle h\rangle z_{h, 1} L \cdots \square\langle h\rangle z_{h, t_{n}} .
$$

Then,

The main result

Theorem (Bogopolski-Martino-V., 2008)

Let

$$
1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
$$

be an algorithmic short exact sequence of groups such that
(i) $\operatorname{TCP}(F)$ is solvable,
(ii) $C P(H)$ is solvable,
(iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h, 1}, \ldots, z_{h, t_{h}} \in H$ such that

$$
C_{H}(h)=\langle h\rangle z_{h, 1} \sqcup \cdots \sqcup\langle h\rangle z_{h, t_{h}} .
$$

Then,

The main result

Theorem (Bogopolski-Martino-V., 2008)

Let

$$
1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
$$

be an algorithmic short exact sequence of groups such that
(i) $\operatorname{TCP}(F)$ is solvable,
(ii) $C P(H)$ is solvable,
(iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h, 1}, \ldots, z_{h, t_{h}} \in H$ such that

$$
C_{H}(h)=\langle h\rangle z_{h, 1} \sqcup \cdots \sqcup\langle h\rangle z_{h, t_{h}} .
$$

Then,
$C P(G)$ is solvable $\Longleftrightarrow \quad A_{G}=\left\{\left.\begin{array}{rll}\gamma_{g}: F & \rightarrow & F \\ x & \mapsto & g^{-1} x g\end{array} \right\rvert\, g \in G\right\} \leqslant$
$\leqslant \operatorname{Aut}(F)$ is orbit decidable.

The main result

Proposition (Bogopolski-Martino-V., 2008)

Torsion-free hyperbolic groups (in particular, free groups) satisfy hypothesis (ii) and (iii).

So, they all fit well as H.

- O. Bogopolski, A. Martino, O. Maslakova, E. Ventura, Free-by-cyclic groups have solvable conjugacy problem, Bulletin of the London Mathematical Society, 38(5) (2006), 787-794.
- O. Bogopolski, A. Martino, E. Ventura, Orbit decidability and the conjugacy problem for extensions of groups, Transactions of the American Mathematical Society 362 (2010), 2003-2036.
- V. Romanko'v, E. Ventura, Twisted conjugacy problem for endomorphisms of metabelian groups, Algebra and Logic 48(2) (2009), 89-98. Translation from Algebra i Logika 48(2) (2009), 157-173.
- J. González-Meneses, E. Ventura, Twisted conjugacy in the braid group, Israel Journal of Mathematics 201 (2014), 455-476.
- J. Burillo, F. Matucci, E. Ventura, The conjugacy problem for extensions of Thompson's group, to appear at Israel Journal of Mathematics.
- Z. Sŭnic, E. Ventura, The conjugacy problem in automaton groups is not solvable, Journal of Algebra 364 (2012), 148-154.
- E. Ventura, Group theoretic orbit decidability, Groups, Complexity, Cryptology 6(2) (2014), 133-148.

Outline

The historical context2 The conjugacy problem for free-by-cyclic groups
(3) The conjugacy problem for free-by-free groups

4 The main result
(5) Applications

6 Negative results

Free-by-free groups

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

$\operatorname{TCP}\left(F_{n}\right)$ is solvable.

Theorem (Brinkmann, 2006)

Cyclic subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead 36)

The full Aut $\left(F_{n}\right)$ is O.D.

Corollary (Bogopolski-Martino-V., 2008)

If $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle=\operatorname{Aut}\left(F_{n}\right)$ then $\operatorname{CP}\left(F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}\right)$ is solvable.

Free-by-free groups

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

$\operatorname{TCP}\left(F_{n}\right)$ is solvable.

Theorem (Brinkmann, 2006)
Cyclic subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead '36)

\square

Corollary (Bogopolski-Martino-V., 2008)

\square

Free-by-free groups

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

$\operatorname{TCP}\left(F_{n}\right)$ is solvable.

Theorem (Brinkmann, 2006)

Cyclic subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead '36)

The full $\operatorname{Aut}\left(F_{n}\right)$ is O.D.

Corollary (Bogopolski-Martino-V., 2008)

Free-by-free groups

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

$T C P\left(F_{n}\right)$ is solvable.

Theorem (Brinkmann, 2006)

Cyclic subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead '36)

The full $\operatorname{Aut}\left(F_{n}\right)$ is O.D.

\square

Free-by-free groups

Theorem (Bogopolski-Martino-Maslakova-V., 2005)
$\operatorname{TCP}\left(F_{n}\right)$ is solvable.

Theorem (Brinkmann, 2006)

Cyclic subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead '36)

The full $\operatorname{Aut}\left(F_{n}\right)$ is O.D.
Corollary (Bogopolski-Martino-V., 2008) If $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle=\operatorname{Aut}\left(F_{n}\right)$ then $\operatorname{CP}\left(F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}\right)$ is solvable.

Free-by-free groups

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.
Corollary (Bogopolski-Martino-V., 2008)
If $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ is of finite index in $\operatorname{Aut}\left(F_{n}\right)$ then $C P\left(F_{n}\right.$ is
solvable.
Theorem (Bogopolski-Martino-V., 2008)
Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.
Corollary (Bogopolski-Martino-V., 2008)
Every F_{2}-by-free group has solvable coniugacy problem.

Free-by-free groups

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.

Corollary (Bogopolski-Martino-V., 2008)

If $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ is of finite index in $\operatorname{Aut}\left(F_{n}\right)$ then $\operatorname{CP}\left(F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}\right)$ is solvable.

Theorem (Bogopolski-Martino-V., 2008)
Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.
Corollary (Bogopolski-Martino-V., 2008)
Every F_{2}-by-free group has solvable conjugacy problem.

Free-by-free groups

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.

Corollary (Bogopolski-Martino-V., 2008)

If $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ is of finite index in $\operatorname{Aut}\left(F_{n}\right)$ then $\operatorname{CP}\left(F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}\right)$ is solvable.

Theorem (Bogopolski-Martino-V., 2008)
Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Corollary (Bogopolski-Martino-V., 2008)
Every F_{2}-by-free group has solvable conjugacy problem.

Free-by-free groups

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.

Corollary (Bogopolski-Martino-V., 2008)

If $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ is of finite index in $\operatorname{Aut}\left(F_{n}\right)$ then $\operatorname{CP}\left(F_{n} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}\right)$ is solvable.

Theorem (Bogopolski-Martino-V., 2008)
Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.
Corollary (Bogopolski-Martino-V., 2008)
Every F_{2}-by-free group has solvable conjugacy problem.

(Free abelian)-by-free groups

$$
1 \longrightarrow \mathbb{Z}^{n} \longrightarrow \mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m} \longrightarrow F_{m} \longrightarrow 1
$$

Observation (linear algebra)

TCP $\left(\mathbb{T}^{n}\right)$ is solvable

Observe that now $M_{i} \in \operatorname{Aut}\left(\mathbb{Z}^{n}\right)=G L_{n}(\mathbb{Z})$ are just $n \times n$ invertible matrices.

(Free abelian)-by-free groups

$$
1 \longrightarrow \mathbb{Z}^{n} \longrightarrow \mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m} \longrightarrow F_{m} \longrightarrow 1
$$

Observation (linear algebra)

$T C P\left(\mathbb{Z}^{n}\right)$ is solvable.
So,

Observe that now $M_{i} \in \operatorname{Aut}\left(\mathbb{Z}^{n}\right)=G L_{n}(\mathbb{Z})$ are just $n \times n$ invertible matrices.

(Free abelian)-by-firee groups

$$
1 \longrightarrow \mathbb{Z}^{n} \longrightarrow \mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m} \longrightarrow F_{m} \longrightarrow 1
$$

Observation (linear algebra)

$T C P\left(\mathbb{Z}^{n}\right)$ is solvable.
So,
$C P\left(\mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}\right)$ is solvable $\Leftrightarrow\left\langle M_{1}, \ldots, M_{m}\right\rangle \leqslant G L_{n}(\mathbb{Z})$ is O.D.

Observe that now $M_{i} \in \operatorname{Aut}\left(\mathbb{Z}^{n}\right)=G L_{n}(\mathbb{Z})$ are just $n \times n$ invertible matrices.

(Free abelian)-by-firee groups

$$
1 \longrightarrow \mathbb{Z}^{n} \longrightarrow \mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m} \longrightarrow F_{m} \longrightarrow 1
$$

Observation (linear algebra)

$T C P\left(\mathbb{Z}^{n}\right)$ is solvable.
So,
$C P\left(\mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}\right)$ is solvable $\Leftrightarrow\left\langle M_{1}, \ldots, M_{m}\right\rangle \leqslant G L_{n}(\mathbb{Z})$ is O.D.

Observe that now $M_{i} \in \operatorname{Aut}\left(\mathbb{Z}^{n}\right)=G \mathrm{~L}_{n}(\mathbb{Z})$ are just $n \times n$ invertible matrices.

(Free abelian)-by-firee groups

$$
1 \longrightarrow \mathbb{Z}^{n} \longrightarrow \mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m} \longrightarrow F_{m} \longrightarrow 1
$$

Observation (linear algebra)

$T C P\left(\mathbb{Z}^{n}\right)$ is solvable.
So,
$C P\left(\mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}\right)$ is solvable $\Leftrightarrow\left\langle M_{1}, \ldots, M_{m}\right\rangle \leqslant G L_{n}(\mathbb{Z})$ is O.D.

Observe that now $M_{i} \in \operatorname{Aut}\left(\mathbb{Z}^{n}\right)=G \mathrm{~L}_{n}(\mathbb{Z})$ are just $n \times n$ invertible matrices.

(Free abelian)-by-free groups

Theorem (Kannan-Lipton '86)
 Cyclic subgroups of $G L_{n}(\mathbb{Z})$ are O.D.

Corollary (Remeslennikov '69)

\mathbb{Z}^{n}-by- \mathbb{Z} groups have solvable conjugacy problem.

Observation (elementary)

The full $G L_{n}(\mathbb{Z})$ is O.D.

Corollary (Bogopolski-Martino-V., 2008)
If $\left\langle M_{1}, \ldots, M_{m}\right\rangle=G L_{n}(\mathbb{Z})$ then $\mathbb{Z}^{n} \rtimes_{M_{1} \ldots . . M_{m}} F_{m}$ has solvable
conjugacy problem.

(Free abelian)-by-free groups

Theorem (Kannan-Lipton '86)
 Cyclic subgroups of $G L_{n}(\mathbb{Z})$ are O.D.

Corollary (Remeslennikov '69)
\mathbb{Z}^{n}-by- \mathbb{Z} groups have solvable conjugacy problem.

Observation (elementary)
The full $G L_{n}(\mathbb{Z})$ is O.D.

Corollary (Bogopolski-Martino-V., 2008)
If $\left\langle M_{1}, \ldots, M_{m}\right\rangle=G L_{n}(\mathbb{Z})$ then $\mathbb{Z}^{n} \rtimes_{M_{1} \ldots . . M_{m}} F_{m}$ has solvable
conjugacy problem.

(Free abelian)-by-free groups

Theorem (Kannan-Lipton '86)
 Cyclic subgroups of $G L_{n}(\mathbb{Z})$ are O.D.

Corollary (Remeslennikov '69)
\mathbb{Z}^{n}-by- \mathbb{Z} groups have solvable conjugacy problem.

Observation (elementary)
The full $G L_{n}(\mathbb{Z})$ is O.D.

Corollary (Bogopolski-Martino-V., 2008)
If $\left\langle M_{1}, \ldots, M_{m}\right\rangle=G L_{n}(\mathbb{Z})$ then $\mathbb{Z}^{n} \rtimes_{M_{1} \ldots . . M_{m}} F_{m}$ has solvable
conjugacy problem.

(Free abelian)-by-free groups

Theorem (Kannan-Lipton '86)

Cyclic subgroups of $G L_{n}(\mathbb{Z})$ are O.D.

Corollary (Remeslennikov '69)

\mathbb{Z}^{n}-by- \mathbb{Z} groups have solvable conjugacy problem.

Observation (elementary)
The full $G L_{n}(\mathbb{Z})$ is O.D.

Corollary (Bogopolski-Martino-V., 2008)
If $\left\langle M_{1}, \ldots, M_{m}\right\rangle=G L_{n}(\mathbb{Z})$ then $\mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}$ has solvable conjugacy problem.

(Free abelian)-by-free groups

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $G L_{n}(\mathbb{Z})$ are O.D.

Corollary (Bogopolski-Martino-V., 2008)
 If $\left\langle M_{1}, \ldots, M_{m}\right\rangle$ is of finite index in $G L_{n}(\mathbb{Z})$ then $\mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

\square

Corollary (Bogopolski-Martino-V., 2008)
Everv \mathbb{Z}^{2}-bv-free aroup has solvable coniugacy problem.

(Free abelian)-by-free groups

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $G L_{n}(\mathbb{Z})$ are O.D.

Corollary (Bogopolski-Martino-V., 2008)

If $\left\langle M_{1}, \ldots, M_{m}\right\rangle$ is of finite index in $G L_{n}(\mathbb{Z})$ then $\mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely qenerated subaroup of $G L_{2}(\mathbb{Z})$ is O.D.

Corollary (Bogopolski-Martino-V., 2008)

Everv \mathbb{Z}^{2}-bv-free aroup has solvable coniuaiacy problem.

(Free abelian)-by-free groups

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $G L_{n}(\mathbb{Z})$ are O.D.

Corollary (Bogopolski-Martino-V., 2008)
If $\left\langle M_{1}, \ldots, M_{m}\right\rangle$ is of finite index in $G L_{n}(\mathbb{Z})$ then $\mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

Corollary (Bogopolski-Martino-V., 2008)

Every \mathbb{Z}^{2}-by-free group has solvable conjugacy problem.

(Free abelian)-by-free groups

Theorem (Bogopolski-Martino-V., 2008)

Finite index subgroups of $G L_{n}(\mathbb{Z})$ are O.D.

Corollary (Bogopolski-Martino-V., 2008)
If $\left\langle M_{1}, \ldots, M_{m}\right\rangle$ is of finite index in $G L_{n}(\mathbb{Z})$ then $\mathbb{Z}^{n} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

Corollary (Bogopolski-Martino-V., 2008)
Every \mathbb{Z}^{2}-by-free group has solvable conjugacy problem.

Braid-by-free groups

Consider the braid group on n strands, given by the classical presentation:

$$
B_{n}=\left\langle\begin{array}{l|ll}
\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1} & \left.\begin{array}{ll}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & (|i-j| \geqslant 2) \\
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} & (1 \leqslant i \leqslant n-2)
\end{array}\right\rangle . . . ~
\end{array}\right.
$$

- $C P\left(B_{n}\right)$ is solvable.
- And the automorphism group is easy:

Theorem (Dyer-Grossman '81)

$\left|\operatorname{Out}\left(B_{n}\right)\right|=2$; more precisely, Aut $\left(B_{n}\right)=\operatorname{Inn}\left(B_{n}\right) \sqcup \operatorname{Inn}\left(B_{n}\right) \cdot \varepsilon$, where
$B_{n} \rightarrow B_{n}$ is the automorphism which inverts all generators,

Braid-by-free groups

Consider the braid group on n strands, given by the classical presentation:

$$
B_{n}=\left\langle\begin{array}{l|ll}
\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1} & \left.\begin{array}{ll}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & (|i-j| \geqslant 2) \\
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} & (1 \leqslant i \leqslant n-2)
\end{array}\right\rangle . . . ~
\end{array}\right.
$$

- $C P\left(B_{n}\right)$ is solvable.
- And the automorphism group is easy:

Theorem (Dyer-Grossman '81)
 $\operatorname{Out}\left(B_{n}\right) \mid=2$; more precisely, Aut $\left(B_{n}\right)=\operatorname{Inn}\left(B_{n}\right) \sqcup \operatorname{Inn}\left(B_{n}\right) \cdot \varepsilon$, where
 $B_{n} \rightarrow B_{n}$ is the automorohism which inverts all generators,

Braid-by-free groups

Consider the braid group on n strands, given by the classical presentation:

$$
B_{n}=\left\langle\begin{array}{l|ll}
\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1} & \begin{array}{ll}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & (|i-j| \geqslant 2) \\
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} & (1 \leqslant i \leqslant n-2)
\end{array}
\end{array}\right\rangle
$$

- $C P\left(B_{n}\right)$ is solvable.
- And the automorphism group is easy:

Theorem (Dyer-Grossman '81)

\mid Out $\left(B_{n}\right) \mid=2$; more precisely, $\operatorname{Aut}\left(B_{n}\right)=\operatorname{Inn}\left(B_{n}\right) \sqcup \operatorname{Inn}\left(B_{n}\right) \cdot \varepsilon$, where $\varepsilon: B_{n} \rightarrow B_{n}$ is the automorphism which inverts all generators, $\sigma_{i} \mapsto \sigma_{i}^{-1}$.

Braid-by-free groups

Theorem (González-Meneses-V. 2009)
 $\operatorname{TCP}\left(B_{n}\right)$ is solvable.

Observation

Every subarour $A \leqslant \operatorname{Aut}\left(B_{n}\right)$ is orbit decidable.

Corollary (González-Meneses-V. 2009)

Every extension of B_{n} by a torsion-free hyperbolic group has solvable conjugacy problem.

Braid-by-free groups

Theorem (González-Meneses-V. 2009)

$\operatorname{TCP}\left(B_{n}\right)$ is solvable.

Observation

Every subgroup $A \leqslant \operatorname{Aut}\left(B_{n}\right)$ is orbit decidable.

Corollary (González-Meneses-V. 2009)

Every extension of B_{n} by a torsion-free hyperbolic group has solvable conjugacy problem.

Braid-by-free groups

Theorem (González-Meneses-V. 2009)

$\operatorname{TCP}\left(B_{n}\right)$ is solvable.

Observation

Every subgroup $A \leqslant \operatorname{Aut}\left(B_{n}\right)$ is orbit decidable.

Corollary (González-Meneses-V. 2009)
Every extension of B_{n} by a torsion-free hyperbolic group has solvable conjugacy problem.

Thompson-by-free groups

Consider Thompson's group F:
$F=\left\{f:[0,1] \rightarrow[0,1] \left\lvert\, \begin{array}{l}\text {-increasing and piecewise linear, } \\ \text { - with finitely many dyadic breakpoints, } \\ \\ \text {-slopes being powers of } 2 .\end{array}\right.\right\}$

- $C P(F)$ is solvable.
- And the automorphism group is big, but easy:

Thompson-by-free groups

Consider Thompson's group F:
$F=\left\{f:[0,1] \rightarrow[0,1] \left\lvert\, \begin{array}{l}\text {-increasing and piecewise linear, } \\ \\ \text { - with finitely many dyadic breakpoints, } \\ \\ \text {-slopes being powers of } 2 .\end{array}\right.\right\}$

- $C P(F)$ is solvable.
- And the automorphism group is big, but easy:

Theorem (Brin '97)

For every $\varphi \in \operatorname{Aut}(F)$, there exists $\tau \in E P_{2}$ such that $\varphi(g)=\tau^{-1} g \tau$, for every $g \in F$.
$F \unlhd E P_{2}=\left\{f: \mathbb{R} \rightarrow \mathbb{R} \left\lvert\, \begin{array}{l}f \text { is p.l., dyadic bkp., slopes } 2^{n} \\ \text { eventually periodic }\end{array}\right.\right\}$.

Thompson-by-free groups

Theorem (Burillo-Matucci-V. 2010)

$T C P(F)$ is solvable.

Conjecture

$k-C P(F)$ (i.e. conjugacy problem for k-tuples) is solvable.

Proposition (Burillo-Matucci-V. 2010)

If coniecture is true then Aut (F) and Aut (F) are orbit decidable.

Corollary (Burillo-Matucci-V. 2010)

If conjecture is true and $\varphi_{1}, \ldots, \varphi_{m} \in$ Aut (F) generate either Aut (F) or Aut ${ }^{+}(F)$, then CP(F F_{m}) is solvable.

Thompson-by-free groups

Theorem (Burillo-Matucci-V. 2010)

$T C P(F)$ is solvable.

Conjecture

$k-C P(F)$ (i.e., conjugacy problem for k-tuples) is solvable.
Proposition (Burillo-Matucci-V. 2010)
If conjecture is true then Aut (F) and Aut $^{+}(F)$ are orbit decidable.

Corollary (Burillo-Matucci-V. 2010)
If conjecture is true and $\varphi_{1}, \ldots, \varphi_{m} \in \operatorname{Aut}(F)$ generate either Aut (F) or Aut $^{+}(F)$, then $\operatorname{CP}\left(F \rtimes_{\varphi_{1} \ldots \ldots \varphi_{m}} F_{m}\right)$ is solvable.

Thompson-by-free groups

Theorem (Burillo-Matucci-V. 2010)

$T C P(F)$ is solvable.

Conjecture

$k-C P(F)$ (i.e., conjugacy problem for k-tuples) is solvable.
Proposition (Burillo-Matucci-V. 2010)
If conjecture is true then Aut (F) and Aut $^{+}(F)$ are orbit decidable.
Corollary (Burillo-Matucci-V. 2010)
If conjecture is true and $\varphi_{1}, \ldots, \varphi_{m} \in \operatorname{Aut}(F)$ generate either Aut (F) or Aut ${ }^{+}(F)$, then $\operatorname{CP}\left(F \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}\right)$ is solvable.

Outline

The historical context2 The conjugacy problem for free-by-cyclic groups
(3) The conjugacy problem for free-by-free groups

4 The main result
(5) Applications

6 Negative results

Free-by-free negative results

Theorem (Miller '71)

There exist free-by-free groups with unsolvable conjugacy problem.

Corollary

There exist 14 automorphisms $\varphi_{1}, \ldots \varphi_{14} \in \operatorname{Aut}\left(F_{3}\right)$ such that $\left\langle\varphi_{1}, \ldots, \varphi_{14}\right\rangle \leqslant \operatorname{Aut}\left(F_{3}\right)$ is orbit undecidable.

Moreover, we were able to find the reason and generalize it to Aut (F) for many more grups F.

Free-by-free negative results

Theorem (Miller '71)

There exist free-by-free groups with unsolvable conjugacy problem.

Corollary

There exist 14 automorphisms $\varphi_{1}, \ldots, \varphi_{14} \in \operatorname{Aut}\left(F_{3}\right)$ such that $\left\langle\varphi_{1}, \ldots, \varphi_{14}\right\rangle \leqslant \operatorname{Aut}\left(F_{3}\right)$ is orbit undecidable.

Moreover, we were able to find the reason and generalize it to Aut (F) for many more grups F.

Free-by-free negative results

Theorem (Miller '71)

There exist free-by-free groups with unsolvable conjugacy problem.

Corollary

There exist 14 automorphisms $\varphi_{1}, \ldots, \varphi_{14} \in \operatorname{Aut}\left(F_{3}\right)$ such that $\left\langle\varphi_{1}, \ldots, \varphi_{14}\right\rangle \leqslant \operatorname{Aut}\left(F_{3}\right)$ is orbit undecidable.

Moreover, we were able to find the reason and generalize it to Aut (F) for many more grups F.

Finding orbit undecidable subgroups

Observation (Bogopolski-Martino-V., 2008)
Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}^{*}(u)=1$. Then, A is O.D. $\quad \Rightarrow \quad M P(A, B)$ solvable.

Proof. Given $\varphi \in B \leq \operatorname{Aut}(F)$, let $w=u \varphi$ and

$$
\{\phi \in B \mid u \phi \sim w\}=\left(B \cap \operatorname{Sta}^{*}(u)\right) \cdot \varphi=\{\varphi\} .
$$

So, u can be mapped to a conjugate of w by some automorphism in A

Finding orbit undecidable subgroups

Observation (Bogopolski-Martino-V., 2008)
Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}^{*}(u)=1$. Then, A is O.D. $\quad \Rightarrow \quad M P(A, B)$ solvable.

Proof. Given $\varphi \in B \leq \operatorname{Aut}(F)$, let $w=u \varphi$ and

So, u can be mapped to a conjugate of w
by some automorphism in A
$\operatorname{MP}(A, B)$ is unsolvable
$A \leqslant \operatorname{Aut}(F)$ is orbit undecidable.

Finding orbit undecidable subgroups

Observation (Bogopolski-Martino-V., 2008)

Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}^{*}(u)=1$. Then, A is O.D. $\quad \Rightarrow \quad M P(A, B)$ solvable.

Proof. Given $\varphi \in B \leq \operatorname{Aut}(F)$, let $w=u \varphi$ and

$$
\{\phi \in B \mid u \phi \sim w\}=\left(B \cap \operatorname{Stab}^{*}(u)\right)
$$

So, u can be mapped to a conjugate of w
by some automorphism in A
$M P(A, B)$ is unsolvable $A \leqslant \operatorname{Aut}(F)$ is orbit undecidable.

Finding orbit undecidable subgroups

Observation (Bogopolski-Martino-V., 2008)

Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}^{*}(u)=1$. Then, A is O.D. $\quad \Rightarrow \quad M P(A, B)$ solvable.

Proof. Given $\varphi \in B \leq \operatorname{Aut}(F)$, let $w=u \varphi$ and

$$
\{\phi \in B \mid u \phi \sim w\}=\left(B \cap \operatorname{Stab}^{*}(u)\right) \cdot \varphi=\{\varphi\} .
$$

So, u can be mapped to a conjugate of w
by some automorphism in A
$M P(A, B)$ is unsolvable $A \leqslant \operatorname{Aut}(F)$ is orbit undecidable.

Finding orbit undecidable subgroups

Observation (Bogopolski-Martino-V., 2008)

Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}^{*}(u)=1$. Then, A is O.D. $\quad \Rightarrow \quad M P(A, B)$ solvable.

Proof. Given $\varphi \in B \leq \operatorname{Aut}(F)$, let $w=u \varphi$ and

$$
\{\phi \in B \mid u \phi \sim w\}=\left(B \cap \operatorname{Stab}^{*}(u)\right) \cdot \varphi=\{\varphi\} .
$$

So, u can be mapped to a conjugate of w by some automorphism in A

$$
\Leftrightarrow \quad \varphi \in A .
$$

$M P(A, B)$ is unsolvable

Finding orbit undecidable subgroups

Observation (Bogopolski-Martino-V., 2008)

Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}^{*}(u)=1$. Then, A is O.D. $\quad \Rightarrow \quad M P(A, B)$ solvable.

Proof. Given $\varphi \in B \leq \operatorname{Aut}(F)$, let $w=u \varphi$ and

$$
\{\phi \in B \mid u \phi \sim w\}=\left(B \cap \operatorname{Stab}^{*}(u)\right) \cdot \varphi=\{\varphi\} .
$$

So, u can be mapped to a conjugate of w by some automorphism in A
$M P(A, B)$ is unsolvable $\Rightarrow A \leqslant A u t(F)$ is orbit undecidable.

Finding orbit undecidable subgroups

Corollary (Bogopolski-Martino-V., 2008)
Let F be a group, and let $F_{2} \times F_{2} \simeq B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}^{*}(u)=1$. Then, there exists f.g. $A \leqslant \operatorname{Aut}(F)$ which is orbit undecidable.

Proof. By Mihailova's construction:

- Take a aroup $U=\left\langle a_{1}, a_{2} \mid r_{1}, \ldots, r_{m}\right\rangle$ with unsolvable word problem;
- Consider $A=\{(v, w) \mid v=u w\} \leqslant F_{2} \times F_{2}$;
- Easy to see that $A=\left\langle\left(a_{1}, a_{1}\right),\left(a_{2}, a_{2}\right),\left(r_{1}, 1\right), \ldots,\left(r_{m}, 1\right)\right\rangle$ so, A is finitely generated;
- $\operatorname{MP}\left(A, F_{2} \times F_{2}\right)$ is unsolvable;
- Hence, $A \leqslant$ Aut (F) is orbit undecidable. \square

Finding orbit undecidable subgroups

Corollary (Bogopolski-Martino-V., 2008)
Let F be a group, and let $F_{2} \times F_{2} \simeq B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}^{*}(u)=1$. Then, there exists f.g. $A \leqslant \operatorname{Aut}(F)$ which is orbit undecidable.

Proof. By Mihailova's construction:

- Take a group $U=\left\langle a_{1}, a_{2} \mid r_{1}, \ldots, r_{m}\right\rangle$ with unsolvable word problem;

Finding orbit undecidable subgroups

Corollary (Bogopolski-Martino-V., 2008)

Let F be a group, and let $F_{2} \times F_{2} \simeq B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}^{*}(u)=1$. Then, there exists f.g. $A \leqslant \operatorname{Aut}(F)$ which is orbit undecidable.

Proof. By Mihailova's construction:

- Take a group $U=\left\langle a_{1}, a_{2} \mid r_{1}, \ldots, r_{m}\right\rangle$ with unsolvable word problem;
- Consider $A=\{(v, w) \mid v=u w\} \leqslant F_{2} \times F_{2}$;
- Easy to see that $A=\left\langle\left(a_{1}\right.\right.$,
so, A is finitely generated; - $M P\left(A, F_{2}\right.$ F_{2}) is unsolvable; - Hence, A

Finding orbit undecidable subgroups

Corollary (Bogopolski-Martino-V., 2008)

Let F be a group, and let $F_{2} \times F_{2} \simeq B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}^{*}(u)=1$. Then, there exists f.g. $A \leqslant \operatorname{Aut}(F)$ which is orbit undecidable.

Proof. By Mihailova's construction:

- Take a group $U=\left\langle a_{1}, a_{2} \mid r_{1}, \ldots, r_{m}\right\rangle$ with unsolvable word problem;
- Consider $A=\{(v, w) \mid v=u w\} \leqslant F_{2} \times F_{2}$;
- Easy to see that $A=\left\langle\left(a_{1}, a_{1}\right),\left(a_{2}, a_{2}\right),\left(r_{1}, 1\right), \ldots,\left(r_{m}, 1\right)\right\rangle$ so, A is finitely generated;

Finding orbit undecidable subgroups

Corollary (Bogopolski-Martino-V., 2008)

Let F be a group, and let $F_{2} \times F_{2} \simeq B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}^{*}(u)=1$. Then, there exists f.g. $A \leqslant \operatorname{Aut}(F)$ which is orbit undecidable.

Proof. By Mihailova's construction:

- Take a group $U=\left\langle a_{1}, a_{2} \mid r_{1}, \ldots, r_{m}\right\rangle$ with unsolvable word problem;
- Consider $A=\{(v, w) \mid v=u w\} \leqslant F_{2} \times F_{2}$;
- Easy to see that $A=\left\langle\left(a_{1}, a_{1}\right),\left(a_{2}, a_{2}\right),\left(r_{1}, 1\right), \ldots,\left(r_{m}, 1\right)\right\rangle$ so, A is finitely generated;
- $\operatorname{MP}\left(A, F_{2} \times F_{2}\right)$ is unsolvable;

Finding orbit undecidable subgroups

Corollary (Bogopolski-Martino-V., 2008)

Let F be a group, and let $F_{2} \times F_{2} \simeq B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}^{*}(u)=1$. Then, there exists f.g. $A \leqslant \operatorname{Aut}(F)$ which is orbit undecidable.

Proof. By Mihailova's construction:

- Take a group $U=\left\langle a_{1}, a_{2} \mid r_{1}, \ldots, r_{m}\right\rangle$ with unsolvable word problem;
- Consider $A=\{(v, w) \mid v=u w\} \leqslant F_{2} \times F_{2}$;
- Easy to see that $A=\left\langle\left(a_{1}, a_{1}\right),\left(a_{2}, a_{2}\right),\left(r_{1}, 1\right), \ldots,\left(r_{m}, 1\right)\right\rangle$ so, A is finitely generated;
- $\operatorname{MP}\left(A, F_{2} \times F_{2}\right)$ is unsolvable;
- Hence, $A \leqslant \operatorname{Aut}(F)$ is orbit undecidable.

Finding orbit undecidable subgroups

For free groups
Corollary (Bogopolski-Martino-V., 2008)
Aut $\left(F_{r}\right)$ contains f.g. orbit undecidable subgroups, for $r \geqslant 3$.
Proof. Take the copy B of $F_{2} \times F_{2}$ in Aut $\left(F_{3}\right)$ via the embedding
($u=$ qaqbq satisfies $B \cap \operatorname{Stab}^{*}(u)=1$). Now, take any Mihailova subgroup in there, $A \leqslant B \leqslant \operatorname{Aut}\left(F_{3}\right)$, and A will be orbit undecidable.

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Finding orbit undecidable subgroups

For free groups

Corollary (Bogopolski-Martino-V., 2008)

Aut $\left(F_{r}\right)$ contains f.g. orbit undecidable subgroups, for $r \geqslant 3$.

Proof. Take the copy B of $F_{2} \times F_{2}$ in Aut $\left(F_{3}\right)$ via the embedding

$$
\begin{array}{rlccc}
F_{2} \times F_{2} & \hookrightarrow & \operatorname{Aut}\left(F_{3}\right) & \\
(u, v) & \mapsto & \theta_{v}: F_{3} & \rightarrow & F_{3} \\
& & a & \mapsto & a \\
& & b & \mapsto & b \\
& & q & \mapsto & u^{-1} q v
\end{array}
$$

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Finding orbit undecidable subgroups

For free groups

Corollary (Bogopolski-Martino-V., 2008)

Aut $\left(F_{r}\right)$ contains f.g. orbit undecidable subgroups, for $r \geqslant 3$.

Proof. Take the copy B of $F_{2} \times F_{2}$ in Aut $\left(F_{3}\right)$ via the embedding

\[

\]

($u=$ qaqbq satisfies $B \cap \operatorname{Stab}^{*}(u)=1$). Now, take any Mihailova
subgroup in there, $A \leqslant B \leqslant \operatorname{Aut}\left(F_{3}\right)$, and A will be orbit undecidable.
Proposition (Bogopolski-Martino-V., 2008)
Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Finding orbit undecidable subgroups

For free groups

Corollary (Bogopolski-Martino-V., 2008)

Aut $\left(F_{r}\right)$ contains f.g. orbit undecidable subgroups, for $r \geqslant 3$.

Proof. Take the copy B of $F_{2} \times F_{2}$ in Aut $\left(F_{3}\right)$ via the embedding

\[

\]

($u=$ qaqbq satisfies $B \cap \operatorname{Stab}^{*}(u)=1$). Now, take any Mihailova subgroup in there, $A \leqslant B \leqslant \operatorname{Aut}\left(F_{3}\right)$, and A will be orbit undecidable.

Proposition (Bogopolski-Martino-V., 2008)
Every finitely generated subgroup of Aut $\left(F_{2}\right)$ is O.D.

Finding orbit undecidable subgroups

For free groups

Corollary (Bogopolski-Martino-V., 2008)

Aut $\left(F_{r}\right)$ contains f.g. orbit undecidable subgroups, for $r \geqslant 3$.

Proof. Take the copy B of $F_{2} \times F_{2}$ in Aut $\left(F_{3}\right)$ via the embedding

\[

\]

($u=$ qaqbq satisfies $B \cap \operatorname{Stab}^{*}(u)=1$). Now, take any Mihailova subgroup in there, $A \leqslant B \leqslant \operatorname{Aut}\left(F_{3}\right)$, and A will be orbit undecidable.

Proposition (Bogopolski-Martino-V., 2008)
Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Thompson-by-free negative results

For the braid group

- Aut $\left(B_{n}\right)$ does not contain $F_{2} \times F_{2}$;
- we proved that every extension of B_{n} (by torsion-free hyperbolic) has solvable conjugacy problem.

For Thompson's group

Proposition (Burillo-Matucci-V. 2010)

$F_{2} \times F_{2}$ embeds in Aut(F).

Corollary (Burillo-Matucci-V. 2010)
There exist Thompson-by-free groups, F × Fm, with unsolvable conjugacy problem.

Thompson-by-free negative results

For the braid group

- Aut $\left(B_{n}\right)$ does not contain $F_{2} \times F_{2}$;
- we proved that every extension of B_{n} (by torsion-free hyperbolic) has solvable conjugacy problem.

For Thompson's group

Proposition (Burillo-Matucci-V. 2010)

\square

Corollary (Burillo-Matucci-V. 2010)
There exist Thompson-bv-free aroups. F \times Fm, with unsolvable
conjugacy problem.

Thompson-by-free negative results

For the braid group

- Aut $\left(B_{n}\right)$ does not contain $F_{2} \times F_{2}$;
- we proved that every extension of B_{n} (by torsion-free hyperbolic) has solvable conjugacy problem.
For Thompson's group

Proposition (Burillo-Matucci-V. 2010)

$F_{2} \times F_{2}$ embeds in $\operatorname{Aut}(F)$.
Corollary (Burillo-Matucci-V. 2010)
There exist Thompson-by-free groups, $F \rtimes F_{m}$, with unsolvable
conjugacy problem.

Thompson-by-free negative results

For the braid group

- Aut $\left(B_{n}\right)$ does not contain $F_{2} \times F_{2}$;
- we proved that every extension of B_{n} (by torsion-free hyperbolic) has solvable conjugacy problem.

For Thompson's group

Proposition (Burillo-Matucci-V. 2010)

$F_{2} \times F_{2}$ embeds in $\operatorname{Aut}(F)$.

Corollary (Burillo-Matucci-V. 2010)

There exist Thompson-by-free groups, $F \rtimes F_{m}$, with unsolvable conjugacy problem.

(Free abelian)-by-free negative results

For free abelian groups
Corollary (Bogopolski-Martino-V., 2008)
$\mathrm{GL}_{d}(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \geqslant 4$.

Proof.

(Free abelian)-by-free negative results

For free abelian groups
Corollary (Bogopolski-Martino-V., 2008)
$\mathrm{GL}_{d}(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \geqslant 4$.

Proof.

- $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq_{24} G L_{2}(\mathbb{Z})$.
- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$

- Choose a free subgroup $F_{2} \simeq\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that $\left\langle P^{\prime}, Q^{\prime}\right\rangle \cap \operatorname{Stab}(1,0)=\{I\}$ and consider

(Free abelian) -by-free neogtive results

For free abelian groups
Corollary (Bogopolski-Martino-V., 2008)
$\mathrm{GL}_{d}(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \geqslant 4$.

Proof.

- $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq_{24} G L_{2}(\mathbb{Z})$.
- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.

(Free abelian)-by-free neogtive results

For free abelian groups
Corollary (Bogopolski-Martino-V., 2008)
$\mathrm{GL}_{d}(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \geqslant 4$.

Proof.

- $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq_{24} G L_{2}(\mathbb{Z})$.
- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.
- $\langle P, Q\rangle \cap \operatorname{Stab}(1,0)=\left\langle\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right\rangle$.
- Choose a free subgroup $F_{2} \simeq\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that $\left\langle P^{\prime}, Q^{\prime}\right\rangle \cap \operatorname{Stab}(1,0)=\{I\}$ and consider

(Free abelian)-by-free necative results

For free abelian groups

Corollary (Bogopolski-Martino-V., 2008)

$\mathrm{GL}_{d}(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \geqslant 4$.

Proof.

- $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq_{24} G L_{2}(\mathbb{Z})$.
- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.
- $\langle P, Q\rangle \cap \operatorname{Stab}(1,0)=\left\langle\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right\rangle$.
- Choose a free subgroup $F_{2} \simeq\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that $\left\langle P^{\prime}, Q^{\prime}\right\rangle \cap \operatorname{Stab}(1,0)=\{I\}$ and consider

(Free abelian)-by-free negative results

For free abelian groups

Corollary (Bogopolski-Martino-V., 2008)

$\mathrm{GL}_{d}(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \geqslant 4$.

Proof.

- $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq_{24} G L_{2}(\mathbb{Z})$.
- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.
- $\langle P, Q\rangle \cap \operatorname{Stab}(1,0)=\left\langle\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right\rangle$.
- Choose a free subgroup $F_{2} \simeq\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that $\left\langle P^{\prime}, Q^{\prime}\right\rangle \cap \operatorname{Stab}(1,0)=\{I\}$ and consider

$$
B=\left\langle\left(\begin{array}{c|c}
P^{\prime} & 0 \\
\hline 0 & I
\end{array}\right),\left(\begin{array}{c|c}
Q^{\prime} & 0 \\
\hline 0 & I
\end{array}\right),\left(\begin{array}{c|c}
I & 0 \\
\hline 0 & P^{\prime}
\end{array}\right),\left(\begin{array}{c|c}
I & 0 \\
\hline 0 & Q^{\prime}
\end{array}\right)\right\rangle \leq G L_{4}(\mathbb{Z}) .
$$

(Free abelian)-by-free negative results

- Note that $B \simeq F_{2} \times F_{2}$.
- Write $u=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}^{*}(u)=\{I d\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous result, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \mathrm{GL}_{d}(\mathbb{Z})$, with $4 \leqslant d$. \square

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

Definition

A f.g. subgroup $A \leqslant G L_{d}(\mathbb{Z})$ is orbit decidable is there exists an algorithm \mathcal{A} which, given two vectors $u, v \in \mathbb{Z}^{n}$ decides whether $v=u M$ by some matrix $M \in A$.

(Free abelian)-by-free negative results

- Note that $B \simeq F_{2} \times F_{2}$.
- Write $u=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}^{*}(u)=\{I d\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous result, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \mathrm{GL}_{d}(\mathbb{Z})$, with $4 \leqslant d$. \square

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

Definition

A f.g. subgroup $A \leqslant G L_{d}(\mathbb{Z})$ is orbit decidable is there exists an algorithm \mathcal{A} which, given two vectors $u, v \in \mathbb{Z}^{n}$ decides whether $v=u M$ by some matrix $M \in A$.

(Free abelian)-by-free negative results

- Note that $B \simeq F_{2} \times F_{2}$.
- Write $u=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}^{*}(u)=\{I d\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous result, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for A

Proposition (Bogopolski-Martino-V., 2008)
Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

Definition
A f.g. subgroup $A \leqslant G L_{d}(\mathbb{Z})$ is orbit decidable is there exists an algorithm \mathcal{A} which, given two vectors $u, v \in \mathbb{Z}^{n}$ decides whether $v=u M$ by some matrix $M \in A$.

(Free abelian)-by-free negative results

- Note that $B \simeq F_{2} \times F_{2}$.
- Write $u=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}^{*}(u)=\{I d\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous result, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.

Proposition (Bogopolski-Martino-V., 2008)
 Every finitely generated suhgroun of $\mathrm{GI}_{2}(\mathbb{T})$ is O.D.

Definition

$\Delta f g$ subgroup $A \leqslant G L_{d}(\mathbb{Z})$ is orbit decidable is there exists an
algorithm \mathcal{A} which, given two vectors $u, v \in \mathbb{Z}^{n}$ decides whether
$v=u M$ by some matrix $M \in A$.

(Free abelian)-by-free negative results

- Note that $B \simeq F_{2} \times F_{2}$.
- Write $u=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}^{*}(u)=\{I d\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous result, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \mathrm{GL}_{d}(\mathbb{Z})$, with $4 \leqslant d$. \square

Proposition (Bogopolski-Martino-V., 2008)
 Fvery finitely generated subgroun of $G I_{2}(\mathbb{T})$ is O.D.

Definition
A f.a. subaroup $A \leqslant G L_{d}(\mathbb{Z})$ is orbit decidable is there exists an
algorithm \mathcal{A} which, given two vectors $u, v \in \mathbb{Z}^{n}$ decides whether
$v=u M$ by some matrix $M \in A$.

(Free abelian)-by-free negative results

- Note that $B \simeq F_{2} \times F_{2}$.
- Write $u=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}^{*}(u)=\{I d\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous result, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \mathrm{GL}_{d}(\mathbb{Z})$, with $4 \leqslant d$.

Proposition (Bogopolski-Martino-V., 2008)
Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

Definition

A f.g. subgroup $A \leqslant G L_{d}(\mathbb{Z})$ is orbit decidable is there exists an
algorithm \mathcal{A} which, given two vectors $u, v \in \mathbb{Z}^{n}$ decides whether
$v=u M$ by some matrix $M \in A$.

(Free abelian)-by-free negative results

- Note that $B \simeq F_{2} \times F_{2}$.
- Write $u=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}^{*}(u)=\{I d\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous result, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \mathrm{GL}_{d}(\mathbb{Z})$, with $4 \leqslant d$.

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

Definition

A f.g. subgroup $A \leqslant G L_{d}(\mathbb{Z})$ is orbit decidable is there exists an algorithm \mathcal{A} which, given two vectors $u, v \in \mathbb{Z}^{n}$ decides whether $v=u M$ by some matrix $M \in A$.

(Free abelian)-by-free negative results

Theorem (Bogopolski-Martino-V., 2008)

There exist 14 matrices $M_{1}, \ldots, M_{14} \in G L_{d}(\mathbb{Z})$, for $d \geqslant 4$, such that $\left\langle M_{1}, \ldots, M_{14}\right\rangle \leqslant G L_{d}(\mathbb{Z})$ is orbit undecidable.

Corollary (Bogopolski-Martino-V., 2008)

There exists a \mathbb{Z}^{4}-by- F_{14} group with unsolvable conjugacy problem

Question

Does $G L_{3}(\mathbb{Z})$ contain orbit undecidable subgroups

Question

Does there exist \mathbb{Z}^{3}-by-free groups with unsolvable conjugacy
problem

(Free abelian)-by-free negative results

Theorem (Bogopolski-Martino-V., 2008)

There exist 14 matrices $M_{1}, \ldots, M_{14} \in G L_{d}(\mathbb{Z})$, for $d \geqslant 4$, such that $\left\langle M_{1}, \ldots, M_{14}\right\rangle \leqslant G L_{d}(\mathbb{Z})$ is orbit undecidable.

Corollary (Bogopolski-Martino-V., 2008)

There exists a \mathbb{Z}^{4}-by- F_{14} group with unsolvable conjugacy problem.

Question

Does $G L_{a}(\mathbb{Z})$ contain orbit undecidable subgroups?

Question

Does there exist \mathbb{Z}^{3}-by-free groups with unsolvable conjugacy
problem

(Free abelian)-by-free negative results

Theorem (Bogopolski-Martino-V., 2008)

There exist 14 matrices $M_{1}, \ldots, M_{14} \in G L_{d}(\mathbb{Z})$, for $d \geqslant 4$, such that $\left\langle M_{1}, \ldots, M_{14}\right\rangle \leqslant G L_{d}(\mathbb{Z})$ is orbit undecidable.

Corollary (Bogopolski-Martino-V., 2008)

There exists a $\mathbb{Z}^{4}-b y-F_{14}$ group with unsolvable conjugacy problem.

Question

Does $\mathrm{GL}_{3}(\mathbb{Z})$ contain orbit undecidable subgroups ?

Question

Does there exist \mathbb{Z}^{3}-by-free groups with unsolvable conjugacy
problem

(Free abelian)-by-free negative results

Theorem (Bogopolski-Martino-V., 2008)

There exist 14 matrices $M_{1}, \ldots, M_{14} \in G L_{d}(\mathbb{Z})$, for $d \geqslant 4$, such that $\left\langle M_{1}, \ldots, M_{14}\right\rangle \leqslant G L_{d}(\mathbb{Z})$ is orbit undecidable.

Corollary (Bogopolski-Martino-V., 2008)

There exists a $\mathbb{Z}^{4}-b y-F_{14}$ group with unsolvable conjugacy problem.

Question

Does $\mathrm{GL}_{3}(\mathbb{Z})$ contain orbit undecidable subgroups ?

Question

Does there exist \mathbb{Z}^{3}-by-free groups with unsolvable conjugacy problem?

Automata groups

Proposition (S̆unić-V., 2010)

For $d \geqslant 6$, the group $G L_{d}(\mathbb{Z})$ contains orbit undecidable, free subgroups.

So, for $d \geqslant 6$, there exists a group of the form

with unsolvable conjugacy problem.
Theorem-(S̆unic-V, 2010)
All such groups $\Gamma=\mathbb{Z}^{d} \rtimes F_{m}$ can be realized as automaton groups.

Corollary (Šunić-V., 2010)
There exists automaton groups with unsolvable conjugacy problem.

Automata groups

Proposition (Šunić-V., 2010)

For $d \geqslant 6$, the group $G L_{d}(\mathbb{Z})$ contains orbit undecidable, free subgroups.

So, for $d \geqslant 6$, there exists a group of the form

$$
\Gamma=\mathbb{Z}^{d} \rtimes F_{m} \leqslant \mathbb{Z}^{d} \rtimes G L_{d}(\mathbb{Z})
$$

with unsolvable conjugacy problem.

Theorem (Sunić-V., 2010)

All such groups $\Gamma=\mathbb{Z}^{d} \rtimes F_{m}$ can be realized as automaton groups.

Corollary (Sunić-V., 2010)
There exists automaton groups with unsolvable conjugacy problem.

Automata groups

Proposition (S̆unić-V., 2010)

For $d \geqslant 6$, the group $G L_{d}(\mathbb{Z})$ contains orbit undecidable, free subgroups.

So, for $d \geqslant 6$, there exists a group of the form

$$
\Gamma=\mathbb{Z}^{d} \rtimes F_{m} \leqslant \mathbb{Z}^{d} \rtimes G L_{d}(\mathbb{Z})
$$

with unsolvable conjugacy problem.

Theorem (Šunić-V., 2010)

All such groups $\Gamma=\mathbb{Z}^{d} \rtimes F_{m}$ can be realized as automaton groups.

Corollary (Šunić-V., 2010)
There exists automaton groups with unsolvable conjugacy problem.

Automata groups

Proposition (Šunić-V., 2010)

For $d \geqslant 6$, the group $G L_{d}(\mathbb{Z})$ contains orbit undecidable, free subgroups.

So, for $d \geqslant 6$, there exists a group of the form

$$
\Gamma=\mathbb{Z}^{d} \rtimes F_{m} \leqslant \mathbb{Z}^{d} \rtimes G L_{d}(\mathbb{Z})
$$

with unsolvable conjugacy problem.

Theorem (S̆unić-V., 2010)

All such groups $\Gamma=\mathbb{Z}^{d} \rtimes F_{m}$ can be realized as automaton groups.

Corollary (Šunić-V., 2010)

There exists automaton groups with unsolvable conjugacy problem.

Next step:

What about TCP in

your favorite group ?

THANKS

