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1. Main results 2. Fn × Zm 3. (Un)Realizable k -configs. 4. The free case 5. Open questions

Free groups

It is well known that subgroups of free groups are free ...

H 6 Fn ⇒ H is free

but not necessarily of rank ≤ n.

Example

Consider F2 = 〈x , y | 〉 and the normal closure of x,

� x �= 〈. . . , y2xy−2, yxy−1, x , y−1xy , y−2xy2, . . .〉.

Looking at its Stallings graph

we see these generators are a free basis; so, Fℵ0 6 F2.
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The Howson property

Definition
A group G is Howson if, for any finitely generated H,K 6fg G, the
intersection H ∩ K is, again, finitely generated.

Theorem (Howson, 1954)

Free groups are Howson.

In other words... the configuration

is not realizable in a free group (◦ means f.g. and • means non-f.g.).

Observation

Out of 23 = 8 possible such configurations this is the only one
forbidden in free groups.
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Intersection configurations

Question
What about configurations with k ≥ 2 subgroups (k-configurations)?

Using this convention, what about the following 3-configurations?
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Our main results

Theorem (Delgado–Roy–V., ’22)

A k-configuration is realizable in Fn, n ≥ 2,⇔ it respects the Howson
property.

Theorem (Delgado–Roy–V. ’22)

There exist finitely presented intersection-saturated groups.



1. Main results 2. Fn × Zm 3. (Un)Realizable k -configs. 4. The free case 5. Open questions

Our main results

Theorem (Delgado–Roy–V., ’22)

A k-configuration is realizable in Fn, n ≥ 2,⇔ it respects the Howson
property.

Theorem (Delgado–Roy–V. ’22)

There exist finitely presented intersection-saturated groups.



1. Main results 2. Fn × Zm 3. (Un)Realizable k -configs. 4. The free case 5. Open questions

Formal definitions

Definition

A (intersection) k-configuration is a map χ : P([k ]) \ {∅} → {0,1}. If
I = (1)χ−1 is the support of χ, we write χ = χI . Notation:
• 0 = χ∅ is the zero-configuration;
• 1 = χP([k ])\{∅} is the one-configuration;
• χI is an almost-zero k-configuration if I = {I}.

Definition
A k-configuration χ is realizable in a group G if there exists
subgroups H1, . . . ,Hk ≤ G such that, for every ∅ 6= I ⊆ [k ],
HI = ∩i∈IHi if f.g. ⇔ (I)χ = 0. Note that HI∪J = HI ∩ HJ .

Definition
A group G is intersection-saturated if every k-configuration is
realizable in G.
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Free-times-free-abelian groups

G = Fn × Zm = 〈x1, . . . , xn, t1, . . . , tm | [xi , tj ] = 1, [ti , tk ] = 1〉.

Normal form: ∀g ∈ G, g = w(x1, . . . , xn)ta1
1 · · · t

am
m = wta, where

a = (a1, . . . ,am) ∈ Zm. This way, (uta)(vt ) = uvta+b.

Observation
These groups sit in a split short exact sequence; and, for H 6 G,

1→ Zm ι
↪→G

π
� Fn → 1,

1→ LH = H ∩ Zm ↪→H � Hπ → 1.

Moreover, H is finitely generated⇔ Hπ is so.
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Free-times-free-abelian groups

Proposition (Delgado–V. ’13)

Every subgroup H 6 G admits a (computable) basis

H = 〈u1ta1 ,u2ta2 , . . . ,ur tar ; tb1 , . . . , tbs〉,

where {u1, . . . ,ur} is a free-basis for Hπ, a1, . . . ,ar ∈ Zm, 0 ≤ r ≤ ∞,
b1, . . . ,bs ∈ Zm is an abelian-basis for LH = H ∩ Zm, and 0 ≤ s ≤ m.

Proposition (Moldavanski)

The groups Fn × Zm, n ≥ 2, m ≥ 1, are not Howson.

Question
Are them intersection-saturated?... ... no... but collectively yes ...

Theorem (Delgado–Roy–V. ’22)

• The set of configs realizable in Fn × Zm increases strictly with m;
• Every configuration is realizable in Fn × Zm for m� 0.
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Free-times-free-abelian groups

Theorem (Delgado–V. ’13)

There is an algorithm which, on input (a set of generators for)
H,K 6fg G, decides whether H ∩ K is f.g. and, if so, computes a
basis for it.

(Sketch of proof)

Given (basis for) subgroups H1,H2 6fg G = Fn × Zm, consider

A calculation shows that (H1 ∩ H2)π = (L1 + L2)R−1ρ−1 E H1π ∩ H2π.

So, H1 ∩ H2 is f.g. ⇔
{

r = 0,1 or
r ≥ 2 and (H1 ∩ H2)π 6fi H1π ∩ H2π.
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Free-times-free-abelian groups

Theorem (Delgado–Roy–V. ’22)

There is an algorithm which, on input (a set of generators for)
H1, . . . ,Hk 6fg G, decides whether H1 ∩ · · · ∩ Hk is f.g. and, if so,
computes a basis for it.

Proposition

Let M ′,M ′′ 6 Fn be such that 〈M ′,M ′′〉 = M ′ ∗M ′′. Then, for any
H ′1, . . . ,H

′
k 6 M ′ 6 Fn and H ′′1 , . . . ,H

′′
k 6 M ′′ 6 Fn,⋂k

j=1
〈H ′j ,H ′′j 〉 =

〈 ⋂k

j=1
H ′j ,

⋂k

j=1
H ′′j
〉
.
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Free-times-free-abelian groups

Observation

The same is not true in G = Fn × Zm, even with M ′,M ′′ 6 G in
strongly complementary position, i.e., 〈M ′π,M ′′π〉 = M ′π ∗M ′′π and
〈M ′τ,M ′′τ〉 = M ′τ ⊕M ′′τ .

Example

Consider G = F4 × Z2 = 〈x1, x2, x3, x4 | −〉 × 〈t1, t2 | [t1, t2]〉,
M ′ = 〈x1, x2, t (1,0)〉, M ′′ = 〈x3, x4, t (0,1)〉, and the respective subgroups
• H ′1 = 〈x1, x2〉, H ′2 = 〈x1t (1,0), x2〉 6 M ′, and
• H ′′1 = 〈x3, x4〉, H ′′2 = 〈x3t (0,1), x4〉 6 M ′′.

We have H ′1 ∩ H ′2 = 〈x−i
1 x2x i

1, i ∈ Z〉, H ′′1 ∩ H ′′2 = 〈x−i
3 x4x i

3, i ∈ Z〉, and
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3 x4x i
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which does not contain x−1
3 x2x3 ∈ 〈H ′1, H ′′1 〉 = 〈x1, x2, x3, x4〉

∈ 〈H ′2, H ′′2 〉 = 〈x1t (1,0), x2, x3t (0,1), x4〉.
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Free-times-free-abelian groups

Theorem

Let H ′1, . . . ,H
′
k 6 G′ = Fn′ × Zm′ and H ′′1 , . . . ,H

′′
k 6 G′′ = Fn′′ × Zm′′

be k ≥ 2 subgroups of G′ and G′′, resp. Write r ′ = rk
(⋂k

j=1 H ′j π
)
,

r ′′ = rk
(⋂k

j=1 H ′′j π
)
, and consider 〈H ′1,H ′′1 〉, . . . , 〈H ′k ,H ′′k 〉 6 G′ ~G′′ =

= (Fn′ ∗ Fn′′)× (Zm′ ⊕ Zm′′). Then, if min(r ′, r ′′) 6= 1:⋂k
j=1〈H ′j ,H ′′j 〉 is f.g.⇔ both

⋂k
j=1 H ′j and

⋂k
j=1 H ′′j are f.g.

Observation

Again, not true without the hypothesis min(r ′, r ′′) 6= 1.
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Positive results

Definition

Define the join of two k-configurations χ and χ′ as

Proposition

Let χ′ (resp. χ′′) be k-config. realized by H ′1, . . . ,H
′
k 6 G′ = Fn′ × Zm′

(resp. H ′′1 , . . . ,H
′′
k 6 G′′ = Fn′′ × Zm′′ ) with r ′I = rk

(⋂
i∈I H ′i π

)
6= 1

(resp. r ′′I 6= 1) ∀ I ⊆ [k ] with |I| ≥ 2. Then, χ′ ∨ χ′′ is realizable in
G′ ~G′′ = Fn′+n′′ × Zm′+m′′ by H1 = 〈H ′1,H ′′1 〉, . . . ,Hk = 〈H ′k ,H ′′k 〉,
again satisfying rI 6= 1 ∀ I ⊆ [k ] with |I| ≥ 2.
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Positive results

Proposition

The k-config. χ[k ] is realizable in Fn × Zk−1.

(Sketch of proof)

H1 = 〈x , y ; te2 , . . . , tek−1〉 6 F2 × Zk−1,

H2 = 〈x , y ; te1 , te3 , . . . , tek−1〉 6 F2 × Zk−1,

...

Hk−1 = 〈x , y ; te1 , . . . , tek−2〉 6 F2 × Zk−1,

Hk = 〈x , yte1 ; te2−e1 , . . . , tek−1−e1〉 = 〈x , yte1 , . . . , ytek−1〉 6 F2 × Zk−1.

Corollary

Any almost-zero k-config. χI0 is realizable in Fn×Z|I0|−1 by subgroups
H1, . . . ,Hk further satisfying rk

(⋂
i∈I Hiπ

)
6= 1, for every ∅ 6= I ⊆ [k ].
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Positive results

Theorem (Delgado–Roy–V. ’22)

Every k-configuration χI is realizable in Fn × Zm, for n ≥ 2 and
m ≥

∑
I∈I(|I| − 1).

(proof)

• Decompose χI = χI1 ∨ · · · ∨ χIr , where I = {I1, . . . , Ir};
• realize each χIj in F2 × Z|Ij |−1, j = 1, . . . , r ;
• put together in a strongly complementary way.

Example

Consider χ = χI , where I = {{1}, {2,3}, {1,3,4}, {2,3,4}}. Let us
realize it in F2 × Zm for m = 0 + 1 + 2 + 2 = 5. Decomposing χ, we
have

χ = χ{1} ∨ χ{2,3} ∨ χ{1,3,4} ∨ χ{2,3,4}.
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Positive results

Example (cont.)

In F2 = 〈x , y | −〉 take the freely independent words uj = y−jxy j ∈ F2,
j ∈ Z. Let {e1,e2,e3,e4,e5} be the canonical basis for Z5. Realize:
• χ{1} as H ′1 = 〈. . . ,u−2,u−1〉, H ′2 = {1}, H ′3 = {1}, H ′4 = {1}, all
inside G′ = 〈...,u−2,u−1;−〉 6 F2 × Z5;
• χ{2,3} as H ′′1 = {1}, H ′′2 = 〈u0,u1〉, H ′′3 = 〈u0,u1te1〉, H ′′4 = {1}, all
inside G′′ = 〈u0,u1; te1〉 6 F2 × Z5;
• χ{1,3,4} as H ′′′1 = 〈u2,u3; te3〉, H ′′′2 = {1}, H ′′′3 = 〈u2,u3; te2〉,
H ′′′4 = 〈u2,u3te2 ; te3−e2〉, all inside G′′′ = 〈u2,u3; te2 , te3〉 6 F2 × Z5;
• χ{2,3,4} as H ′′′′1 = {1}, H ′′′′2 = 〈u4,u5; te5〉, H ′′′′3 = 〈u4,u5; te4〉,
H ′′′′4 = 〈u4,u5te4 ; te5−e4〉, all inside G′′′′ = 〈u4,u5; te4 , te5〉 6 F2 × Z5.
And note that rk

(⋂
i∈I H ′i π

)
6= 1, rk

(⋂
i∈I H ′′i π

)
6= 1,

rk
(⋂

i∈I H ′′′i π
)
6= 1, and rk

(⋂
i∈I H ′′′′i π

)
6= 1. Therefore, we can
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Example (cont.)

H1 = 〈. . . ,u−2,u−1,u2,u3; te3〉,
H2 = 〈u0,u1,u4,u5; te5〉,
H3 = 〈u0,u1te1 ,u2,u3,u4,u5; te2 , te4〉,
H4 = 〈u2,u3te2 ,u4,u5te4 ; te3−e2 , te5−e4〉.

of G′ ~G′′ ~G′′′ ~G′′′′ 6 F2 × Z5.

Corollary

F2 ×
(
⊕ℵ0 Z

)
is intersection-saturated.

Theorem (Delgado–Roy–V. ’22)

There exist finitely presented intersection-saturated groups.
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Positive results

Theorem (Delgado–Roy–V. ’22)

There exist finitely presented intersection-saturated groups.

(Proof 1)

• Consider Thomson’s group F;
• it is well know to be finitely presented and to contain ⊕ℵ0Z;
• therefore, F2 × F is intersection-saturated.
• (Need to take F2× because F does not contain F2.)

(Proof 2)

• Consider G =
(
⊕ℵ0 Z

)
oα Z, where α is the automorphism given by

right translation of generators;
• G is recursively presented so, it embeds in a finitely presented
group, G ↪→ G′;
• F2 ×G′ is finitely presented and intersection-saturated.
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An obstruction

Lemma

Let H1, . . . ,Hk 6 G = Fn × Zm. Suppose that, for ∅ 6= I, J ⊆ [k ], HI
and HJ are f.g. whereas HI∪J = HI ∩HJ is not. Then, ∃i ∈ I, ∃j ∈ J s.t.
Li = Hi ∩ Zm and Lj = Hj ∩ Zm both have rank strictly smaller than m.

Proposition

Let χ be a k-config. and ∅ 6= I1, . . . , Ir ⊆ [k ] be r ≥ 2 subsets s.t.
∀j ∈ [r ], (I1 ∪ · · · ∪ Îj ∪ · · · ∪ Ir )χ = 0, but (I1 ∪ · · · ∪ Ir )χ = 1. Then χ is
not realizable in Fn × Zr−2.

Corollary

The 3-configurations are not realizable in Fn × Z.
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An obstruction

Proposition

The k-configuration χ[k ] is realizable in Fn × Zk−1, but not in
Fn × Zk−2.
Hence, the set of configurations realizable in Fn × Zm increases
strictly with m.
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More on configurations

Definition

Let χ be a k-config. and let i ∈ [k ]. Its restriction to î = [k ] \ {i} is the
(k − 1)-configuration

χ| î : P([k ] \ {i}) \ {∅} → {0, 1}
I 7→ (I)χ .

Definition

Given two k-configurations χ, χ′ and δ ∈ {0,1}, we define

χ �δ χ′ : P([k + 1]) \ {∅} → {0, 1}

I 7→

{ (I)χ if k + 1 6∈ I,
(I \ {k + 1})χ′ if {k + 1} ( I,
δ if {k + 1} = I,

a (k + 1)-configuration.
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More on cofigurations

Example

Definition

Let χ be a k-configuration, and i ∈ [k ]. The index i is said to be
0-monochromatic (in χ) if (I)χ = 0 ∀I ⊆ [k ] containing i; i.e., if
χ = χ| î �0 0. Similarly, the index i is said to be 1-monochromatic (in
χ) if χ = χ| î �1 1.

Lemma
If a k-configuration χ is realizable in Fn with n ≥ 2, then the
(k + 1)-configurations χ �0 0, χ �1 1, χ �0 χ, and χ �1 χ are also
realizable in Fn.
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Lemma
If a k-configuration χ is realizable in Fn with n ≥ 2, then the
(k + 1)-configurations χ �0 0, χ �1 1, χ �0 χ, and χ �1 χ are also
realizable in Fn.



1. Main results 2. Fn × Zm 3. (Un)Realizable k -configs. 4. The free case 5. Open questions

Characterization for the free case

(Proof)

Let F2 ∗ Fℵ0 'W ∗ U = 〈w1,w2, . . .〉 ∗ 〈u, v〉 6 Fn, and take
H1, . . . ,Hk 6W 6 Fn realizing χ. Now, in order to realize:

χ �0 0, take H̃1 = H1, . . . , H̃k = Hk , and H̃k+1 = {1};
χ �1 1, take H̃1 = H1 ∗ 〈u, v〉, . . . , H̃k = Hk ∗ 〈u, v〉 and
H̃k+1 =� u �U : H̃1, . . . , H̃k realize χ ∨ 0 = χ and, for every
i 6= k + 1, H̃k+1 ∩ H̃i = H̃k+1 which is non-f.g.;
χ �0 χ, take H̃1 = H1, . . . , H̃k = Hk , and H̃k+1 = Fn;
χ �1 χ, take H̃1 = H1, . . . , H̃k = Hk , and H̃k+1 = W.

Definition

A k-configuration χ is said to be Howson if, for every ∅ 6= I, J ⊆ [k ],
(I)χ = (J)χ = 0 ⇒ (I ∪ J)χ = 0.
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Characterization for the free case

Theorem (Delgado–Roy–V., ’22)

A k-configuration is realizable in Fn, n ≥ 2⇔ it is Howson.

(Proof)

For⇐, we will do induction on the cardinal of the support of χ, say s
(regardless of its size k).

If s = 0 then χ = 0, clearly realizable in F2.
Given χ with | supp(χ)| = s and being Howson, define the cone
of χ with vertex I ⊆ [k ], denoted by cI(χ), as

cI(χ) : P([k ]) \ {∅} → {0, 1}

J 7→
{

0 if J 6⊆ I,
(J)χ if J ⊆ I.

Now let I1, . . . , Ip ⊆ [k ] be the maximal elements in supp(χ) (w.r.t.
inclusion). It is clear that χ = cI1(χ) ∨ · · · ∨ cIp(χ).
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Characterization for the free case

(cont.)

If p ≥ 2, by the induction hypothesis we can realize each of
cI1(χ), . . . , cIp(χ) in F2, and so, realize their join χ, in F2 as well.
Hence, we are reduced to the case p = 1: χ is Howson and
∃ ∅ 6= I1 ⊆ [k ] with (I1)χ = 1, and (J)χ = 0 for every J 6⊆ I1.
If I1 6= [k ] then any j ∈ [k ] \ I1 is 0-monochromatic, χ = χ| ĵ �0 0,
and we are reduced to realize χ| ĵ ; repeating, we can assume
I1 = [k ]. That is, χ is a Howson k-config. s.t. ([k ])χ = 1.
If χ = 1 then it is clearly realizable in F2.
Otherwise, take ∅ 6= I2 ⊆ [k ] with (I2)χ = 0 and with maximal
possible cardinal.
Since I2 6= [k ], ∃j 6∈ I2, and any such index is 1-monochromatic:
in fact, any j ∈ J ⊆ [k ] satisfies |I2 ∪ J| > |I2| so (I2 ∪ J)χ = 1
and, since χ is Howson and (I2)χ = 0, then (J)χ = 1.
Hence, by induction hypothesis, χ| ĵ is realizable in F2 and
χ = χ| ĵ �1 1 as well.
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Open questions

Question
Can we characterize the k-configurations realizable in Fn × Zm, for
each particular m?

Question
Is there an algorithm which, on input m and χ, decides whether χ is
realizable in Fn × Zm (and, in the affirmative case, computes such a
realization)?

Question
Is there a finitely presented intersection-saturated group G which
does not contain F2 × Zm, for some m ∈ N?
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realizable in Fn × Zm (and, in the affirmative case, computes such a
realization)?

Question
Is there a finitely presented intersection-saturated group G which
does not contain F2 × Zm, for some m ∈ N?
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