Endofixedness and computation of fixed closures in free groups

Enric Ventura

Departament de Matemàtica Aplicada III
Universitat Politècnica de Catalunya

Porto, June 15, 2010

Outline

(9) Some history
(2) Algorithmic results
(3) Needed tools
(4) The proof

Outline

(9) Some history

2 Algorithmic results
(3) Needed tools

4 The proof

Notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- F_{n} is the free group on A.
- Aut $\left(F_{n}\right) \subseteq \operatorname{Mono}\left(F_{n}\right) \subseteq \operatorname{End}\left(F_{n}\right)$.
- I let endomorphisms $\phi: F_{n} \rightarrow F_{n}$ act on the right, $x \mapsto x \phi$.
- $\operatorname{Fix}(\phi)=\left\{x \in F_{n} \mid x \phi=x\right\} \leqslant F_{n}$.
- If $S \subseteq$ End $\left(F_{n}\right)$ then
$\operatorname{Fix}(S)=\left\{x \in F_{n} \mid x \phi=x \forall \phi \in S\right\}=\cap_{\phi \in S} F i x(\phi) \leqslant F_{n}$.

Notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- F_{n} is the free group on A.
- Aut $\left(F_{n}\right) \subseteq \operatorname{Mono}\left(F_{n}\right) \subseteq$ End $\left(F_{n}\right)$.
- I let endomorphisms $\phi: F_{n} \rightarrow F_{n}$ act on the right, $x \mapsto x \phi$.
- $\operatorname{Fix}(\phi)=\left\{x \in F_{n} \mid x \phi=x\right\} \leqslant F_{n}$.
- If $S \subseteq$ End $\left(F_{n}\right)$ then
$\operatorname{Fix}(S)=\left\{x \in F_{n} \mid x \phi=x \forall \phi \in S\right\}=\cap_{\rho \in S} F \operatorname{Fix}(\phi) \leqslant F_{n}$.

Notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- F_{n} is the free group on A.
- Aut $\left(F_{n}\right) \subseteq \operatorname{Mono}\left(F_{n}\right) \subseteq$ End $\left(F_{n}\right)$.
- I let endomorphisms $\phi: F_{n} \rightarrow F_{n}$ act on the right, $x \mapsto x \phi$.
- $\operatorname{Fix}(\phi)=\left\{x \in F_{n} \mid x \phi=x\right\} \leqslant F_{n}$.
- If $S \subseteq$ End $\left(F_{n}\right)$ then
$\operatorname{Fix}(S)=\left\{x \in F_{n} \mid x \phi=x \forall \phi \in S\right\}=\cap_{\phi \in S} F \operatorname{Fix}(\phi) \leqslant F_{n}$.

Notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- F_{n} is the free group on A.
- Aut $\left(F_{n}\right) \subseteq \operatorname{Mono}\left(F_{n}\right) \subseteq \operatorname{End}\left(F_{n}\right)$.
- I let endomorphisms $\phi: F_{n} \rightarrow F_{n}$ act on the right, $x \mapsto x \phi$.
- $\operatorname{Fix}(\phi)=\left\{x \in F_{n} \mid x \phi=x\right\} \leqslant F_{n}$.
- If $S \subseteq$ End $\left(F_{n}\right)$ then
$F i x(S)=\left\{x \in F_{n} \mid x \phi=x \forall \phi \in S\right\}=\cap_{\phi \in S} F i x(\phi) \leqslant F_{n}$.

Notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- F_{n} is the free group on A.
- Aut $\left(F_{n}\right) \subseteq \operatorname{Mono}\left(F_{n}\right) \subseteq \operatorname{End}\left(F_{n}\right)$.
- I let endomorphisms $\phi: F_{n} \rightarrow F_{n}$ act on the right, $x \mapsto x \phi$.
- If $S \subseteq$ End $\left(F_{n}\right)$ then
$\operatorname{Fix}(S)=\left\{x \in F_{n} \mid x \phi=x \forall \phi \in S\right\}=\cap_{\phi \in S} F i x(\phi) \leqslant F_{n}$.

Notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- F_{n} is the free group on A.
- Aut $\left(F_{n}\right) \subseteq \operatorname{Mono}\left(F_{n}\right) \subseteq \operatorname{End}\left(F_{n}\right)$.
- I let endomorphisms $\phi: F_{n} \rightarrow F_{n}$ act on the right, $x \mapsto x \phi$.
- $\operatorname{Fix}(\phi)=\left\{x \in F_{n} \mid x \phi=x\right\} \leqslant F_{n}$.
- If $S \subseteq$ End $\left(F_{n}\right)$ then
$\operatorname{Fix}(S)=\left\{x \in F_{n} \mid x \phi=x \forall \phi \in S\right\}=\cap_{\phi \in S} \operatorname{Fix}(\phi) \leqslant F_{n}$.

Notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- F_{n} is the free group on A.
- Aut $\left(F_{n}\right) \subseteq \operatorname{Mono}\left(F_{n}\right) \subseteq \operatorname{End}\left(F_{n}\right)$.
- I let endomorphisms $\phi: F_{n} \rightarrow F_{n}$ act on the right, $x \mapsto x \phi$.
- $\operatorname{Fix}(\phi)=\left\{x \in F_{n} \mid x \phi=x\right\} \leqslant F_{n}$.
- If $S \subseteq$ End $\left(F_{n}\right)$ then
$\operatorname{Fix}(S)=\left\{x \in F_{n} \mid x \phi=x \forall \phi \in S\right\}=\cap_{\phi \in S} \operatorname{Fix}(\phi) \leqslant F_{n}$.

Fixed subgroups are complicated

$$
\begin{aligned}
\phi: F_{3} & \rightarrow F_{3} \\
a & \mapsto a \\
b & \mapsto b a \\
c & \mapsto c a^{2}
\end{aligned}
$$

$$
\operatorname{Fix} \phi=\left\langle a, b a b^{-1}, c a c^{-1}\right\rangle
$$

Fixed subgroups are complicated

$$
\begin{aligned}
& \phi: F_{3} \rightarrow \\
& F_{3} \\
& a \mapsto a \\
& b \mapsto b a \\
& c \mapsto c a^{2}
\end{aligned}
$$

Fix $\phi=\left\langle a, b a b^{-1}, c a c^{-1}\right\rangle$

$\operatorname{Fix} \varphi=\langle w\rangle$, where \ldots

Fixed subgroups are complicated

$$
\begin{aligned}
\phi: F_{3} & \rightarrow F_{3} \\
a & \mapsto a \\
b & \mapsto b a \\
c & \mapsto c a^{2} \\
\varphi: F_{4} & \rightarrow F_{4} \\
a & \mapsto d a c \\
b & \mapsto c^{-1} a^{-1} d^{-1} a c \\
c & \mapsto c^{-1} a^{-1} b^{-1} a c \\
d & \mapsto c^{-1} a^{-1} b c
\end{aligned}
$$

Fixed subgroups are complicated

$$
\begin{array}{rlrl}
\phi: F_{3} & \rightarrow F_{3} & \\
a & \mapsto a & & \\
b & \mapsto b a & & \\
c & \mapsto c a^{2} & & \\
\varphi: F_{4} & \rightarrow F_{4} & \\
a & \mapsto & d a c & \\
b & \mapsto c^{-1} a^{-1} d^{-1} a c & & \\
c & \mapsto c^{-1} a^{-1} b^{-1} a c & & \\
d & \mapsto c^{-1} a^{-1} b c & &
\end{array}
$$

Fixed subgroups are complicated

$\phi: F_{3} \rightarrow F_{3}$
$a \mapsto a$
$b \mapsto b a$
$c \mapsto c a^{2}$
$\varphi: F_{4} \rightarrow F_{4}$
$a \mapsto d a c$
$b \mapsto c^{-1} a^{-1} d^{-1} a c$
$c \mapsto c^{-1} a^{-1} b^{-1} a c$
$d \mapsto \quad c^{-1} a^{-1} b c$
Fix $\phi=\left\langle a, b a b^{-1}, c a c^{-1}\right\rangle$
Fix $\varphi=\langle w\rangle$, where...
$w=c^{-1} a^{-1} b d^{-1} c^{-1} a^{-1} d^{-1} a d^{-1} c^{-1} b^{-1}$ acdadacdcdbcda-1 $a^{-1} d^{-1}$
$a^{-1} d^{-1} c^{-1} a^{-1} d^{-1} c^{-1} b^{-1} d^{-1} c^{-1} d^{-1} c^{-1}$ daabcdaccdb $b^{-1} a^{-1}$.

What is known about fixed subgroups ?

> Theorem (Dyer-Scott, 75)
> Let $G \leqslant \operatorname{Aut}\left(F_{n}\right)$ be a finite group of automorphisms of F_{n}. Then, Fix $(G) \leqslant \mathrm{ff} F_{n}$; in particular, $r(\operatorname{Fix}(G)) \leqslant n$.

Conjecture (Scott)

For every $\phi \in \operatorname{Aut}\left(F_{n}\right), r(F i x(\phi)) \leqslant n$

Theorem (Gersten, 83 (published 87))

Let $\phi \in \operatorname{Aut}\left(F_{n}\right)$. Then $r(\operatorname{Fix}(\phi))$

Theorem (Thomas, 88)

Let $G \leqslant \operatorname{Aut}\left(F_{n}\right)$ be an arkitrary group of automorphisms of F_{n}. Then,
$r($ Fix (G))

What is known about fixed subgroups ?

Theorem (Dyer-Scott, 75)

Let $G \leqslant \operatorname{Aut}\left(F_{n}\right)$ be a finite group of automorphisms of F_{n}. Then, $\operatorname{Fix}(G) \leqslant$ ff F_{n}; in particular, $r(F i x(G)) \leqslant n$.

Conjecture (Scott)
For every $\phi \in \operatorname{Aut}\left(F_{n}\right), r(F i x(\phi)) \leqslant n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in \operatorname{Aut}\left(F_{n}\right)$. Then $r($ Fix $(\phi))$

Theorem (Thomas, 88)

Let $G \leqslant \operatorname{Aut}\left(F_{n}\right)$ be an arkitrary group of automorphisms of F_{n}. Then,
$r($ Fix (G))

What is known about fixed subgroups?

Theorem (Dyer-Scott, 75)

Let $G \leqslant \operatorname{Aut}\left(F_{n}\right)$ be a finite group of automorphisms of F_{n}. Then, $\operatorname{Fix}(G) \leqslant$ ff F_{n}; in particular, $r(F i x(G)) \leqslant n$.

Conjecture (Scott)
For every $\phi \in \operatorname{Aut}\left(F_{n}\right), r(F i x(\phi)) \leqslant n$.
Theorem (Gersten, 83 (published 87))
Let $\phi \in \operatorname{Aut}\left(F_{n}\right)$. Then $r(F i x(\phi))<\infty$.

Theorem (Thomas, 88)
Let $G \leqslant \operatorname{Aut}\left(F_{n}\right)$ be an arbitrary group of automorphisms of F_{n}. Then,
$r($ Fix $(G))$

What is known about fixed subgroups ?

Theorem (Dyer-Scott, 75)

Let $G \leqslant \operatorname{Aut}\left(F_{n}\right)$ be a finite group of automorphisms of F_{n}. Then, $\operatorname{Fix}(G) \leqslant$ ff F_{n}; in particular, $r(F i x(G)) \leqslant n$.

Conjecture (Scott)
For every $\phi \in \operatorname{Aut}\left(F_{n}\right), r(F i x(\phi)) \leqslant n$.
Theorem (Gersten, 83 (published 87))
Let $\phi \in \operatorname{Aut}\left(F_{n}\right)$. Then $r(F i x(\phi))<\infty$.

Theorem (Thomas, 88)

Let $G \leqslant \operatorname{Aut}\left(F_{n}\right)$ be an arbitrary group of automorphisms of F_{n}. Then, $r(\operatorname{Fix}(G))<\infty$.

Train-tracks

Main result in this story:
Theorem (Bestvina-Handel, 88 (published 92))
Let $\phi \in \operatorname{Aut}\left(F_{n}\right)$. Then $r(F i x(\phi)) \leqslant n$.
introducing the theory of train-tracks for graphs.

After Bestvina-Handel, live continues

Theorem (Imrich-Turner, 89)
Let $\phi \in \operatorname{End}\left(F_{n}\right)$. Then $r(F i x(\phi)) \leqslant n$.

Theorem (Turner, 96)
Let $\phi \in \operatorname{End}\left(F_{n}\right)$. If ϕ is not bijective then $r(F i x(\phi)) \leqslant n-1$

Train-tracks

Main result in this story:
Theorem (Bestvina-Handel, 88 (published 92))
Let $\phi \in \operatorname{Aut}\left(F_{n}\right)$. Then $r(F i x(\phi)) \leqslant n$.
introducing the theory of train-tracks for graphs.
After Bestvina-Handel, live continues ...

Theorem (Imrich-Turner, 89)

Let $\phi \in \operatorname{End}\left(F_{n}\right)$. Then $r($ Fix $(\phi)) \leqslant n$.

Theorem (Turner, 96)
Let $\phi \in \operatorname{End}\left(F_{n}\right)$. If ϕ is not bijective then $r(F i x(\phi)) \leqslant n-1$

Train-tracks

Main result in this story:
Theorem (Bestvina-Handel, 88 (published 92))
Let $\phi \in \operatorname{Aut}\left(F_{n}\right)$. Then $r(F i x(\phi)) \leqslant n$.
introducing the theory of train-tracks for graphs.
After Bestvina-Handel, live continues ...

Theorem (Imrich-Turner, 89)

Let $\phi \in \operatorname{End}\left(F_{n}\right)$. Then $r($ Fix $(\phi)) \leqslant n$.

Theorem (Turner, 96)

Let $\phi \in \operatorname{End}\left(F_{n}\right)$. If ϕ is not bijective then $r(F i x(\phi)) \leqslant n-1$.

Description of fixed subgroups

There are three easy ways of building fixed points:

(Construction-1)

Let $\phi: F_{n} \rightarrow F_{n}$ be an automorphism and Fix (ϕ) its fixed subgroup.
 such that Fix $\left(\phi^{\prime}\right)=$ Fix (ϕ) (for example, invert all generators of F_{m})

(Construction-2)

Let $\phi_{1}: F_{n} \rightarrow F_{n}$ and $\phi_{2}: F_{m} \rightarrow F_{m}$ be two automorphisms and
Fix $\left(\phi_{1}\right)$ and Fix $\left(\phi_{2}\right)$ their fixed subgroups. Then,

(Construction-3)

Let $\phi: F_{n} \rightarrow F_{n}$ be a automorphism and Fix (ϕ) its fixed subgroup.
Let $h, h^{\prime} \in F_{n}$ be such that $h \phi=h^{\prime} h h^{\prime-1}$. Then, the extension
$\phi^{\prime}: F_{n} *\langle z\rangle \rightarrow F_{n} *\langle z\rangle$ defined by $z \mapsto h^{\prime} h^{r} z$ satisfies
$\operatorname{Fix}\left(\phi^{\prime}\right)=\operatorname{Fix}(\phi) *\left\langle z^{-1} h z\right\rangle$

Description of fixed subgroups

There are three easy ways of building fixed points:
(Construction-1)
Let $\phi: F_{n} \rightarrow F_{n}$ be an automorphism and Fix (ϕ) its fixed subgroup. Then, there are many ways of extending ϕ to $\phi^{\prime}: F_{n} * F_{m} \rightarrow F_{n} * F_{m}$ such that Fix $\left(\phi^{\prime}\right)=$ Fix (ϕ) (for example, invert all generators of F_{m}).

(Construction-3)

letF \rightarrow F he an automorphism and Fix (ϕ) its fixed subgroup. Let $h, h^{\prime} \in F_{n}$ be such that $h \phi=h^{\prime} h h^{\prime-1}$. Then, the extension

Description of fixed subgroups

There are three easy ways of building fixed points:

(Construction-1)

Let $\phi: F_{n} \rightarrow F_{n}$ be an automorphism and Fix (ϕ) its fixed subgroup. Then, there are many ways of extending ϕ to $\phi^{\prime}: F_{n} * F_{m} \rightarrow F_{n} * F_{m}$ such that Fix $\left(\phi^{\prime}\right)=$ Fix (ϕ) (for example, invert all generators of F_{m}).

(Construction-2)

Let $\phi_{1}: F_{n} \rightarrow F_{n}$ and $\phi_{2}: F_{m} \rightarrow F_{m}$ be two automorphisms and Fix $\left(\phi_{1}\right)$ and Fix $\left(\phi_{2}\right)$ their fixed subgroups. Then, $\phi_{1} * \phi_{2}: F_{n} * F_{m} \rightarrow F_{n} * F_{m}$ has Fix $\left(\phi_{1} * \phi_{2}\right)=\operatorname{Fix}\left(\phi_{1}\right) * \operatorname{Fix}\left(\phi_{2}\right)$.
(Construction-3)
Let $\phi: F_{n} \rightarrow F_{n}$ be an automorphism and Fix (ϕ) its fixed subgroup.
Let $h, h^{\prime} \in F_{n}$ be such that $h \phi=h^{\prime} h h^{\prime-1}$. Then, the extension

Description of fixed subgroups

There are three easy ways of building fixed points:

(Construction-1)

Let $\phi: F_{n} \rightarrow F_{n}$ be an automorphism and Fix (ϕ) its fixed subgroup. Then, there are many ways of extending ϕ to $\phi^{\prime}: F_{n} * F_{m} \rightarrow F_{n} * F_{m}$ such that Fix $\left(\phi^{\prime}\right)=$ Fix (ϕ) (for example, invert all generators of F_{m}).

(Construction-2)

Let $\phi_{1}: F_{n} \rightarrow F_{n}$ and $\phi_{2}: F_{m} \rightarrow F_{m}$ be two automorphisms and Fix $\left(\phi_{1}\right)$ and Fix $\left(\phi_{2}\right)$ their fixed subgroups. Then, $\phi_{1} * \phi_{2}: F_{n} * F_{m} \rightarrow F_{n} * F_{m}$ has Fix $\left(\phi_{1} * \phi_{2}\right)=\operatorname{Fix}\left(\phi_{1}\right) * \operatorname{Fix}\left(\phi_{2}\right)$.

(Construction-3)

Let $\phi: F_{n} \rightarrow F_{n}$ be an automorphism and Fix (ϕ) its fixed subgroup. Let $h, h^{\prime} \in F_{n}$ be such that $h \phi=h^{\prime} h h^{\prime-1}$. Then, the extension
$\phi^{\prime}: F_{n} *\langle z\rangle \rightarrow F_{n} *\langle z\rangle$ defined by $z \mapsto h^{\prime} h^{r} z$ satisfies
$\operatorname{Fix}\left(\phi^{\prime}\right)=\operatorname{Fix}(\phi) *\left\langle z^{-1} h z\right\rangle$.

Description of fixed subgroups

These are essentially the only possibilities:

Observation

A cyclic subaroup $\langle w\rangle \leqslant F_{n}$ is the fixed subgroup of some $\phi \in \operatorname{Aut}\left(F_{n}\right)$ if and only if w is not a proper power.

> Theorem (Martino-V., 04)
> Every automorphism $\phi: F_{n} \rightarrow F_{n}$ and its fixed subgroup Fix (ϕ) can
> be built from finitely many automorphisms $\phi_{i}: F_{m_{i}} \rightarrow F_{m_{i}}\left(m_{i} \leqslant n\right)$,
> $i=1, \ldots, r$, with cyclic fixed subgroup, $r\left(\operatorname{Fix}\left(\phi_{i}\right)\right)=1$, by finitely
> many applications of Constructions 1, 2 and 3.

Description of fixed subgroups

These are essentially the only possibilities:

Observation

A cyclic subgroup $\langle w\rangle \leqslant F_{n}$ is the fixed subgroup of some $\phi \in \operatorname{Aut}\left(F_{n}\right)$ if and only if w is not a proper power.

Description of fixed subgroups

These are essentially the only possibilities:

Observation

A cyclic subgroup $\langle w\rangle \leqslant F_{n}$ is the fixed subgroup of some $\phi \in \operatorname{Aut}\left(F_{n}\right)$ if and only if w is not a proper power.

Theorem (Martino-V., 04)

Every automorphism $\phi: F_{n} \rightarrow F_{n}$ and its fixed subgroup Fix (ϕ) can be built from finitely many automorphisms $\phi_{i}: F_{m_{i}} \rightarrow F_{m_{i}}\left(m_{i} \leqslant n\right)$, $i=1, \ldots, r$, with cyclic fixed subgroup, $r\left(F i x\left(\phi_{i}\right)\right)=1$, by finitely many applications of Constructions 1, 2 and 3.

Inertia

Definition

A subgroup $H \leqslant F_{n}$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_{n}$.

Theorem (Dicks-V, 96)
 Let $G \subseteq \operatorname{Mon}\left(F_{n}\right)$ be an arbitrary set of monomorphisms of F_{n}. Then, Fix (G) is inert; in particular, $r($ Fix $(G)) \leqslant n$.

Theorem (Bergman, 99)

Let $G \subset E n d\left(F_{n}\right)$ be an arbitrary set of endomorphisms of F_{n}. Then, $r($ Fix $(G)) \leqslant n$.

Conjecture (V.)

Let $\phi \in \operatorname{End}\left(F_{n}\right)$. Then Fix (ϕ) is inert.

Inertia

Definition

A subgroup $H \leqslant F_{n}$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_{n}$.

Theorem (Dicks-V, 96)

Let $G \subseteq \operatorname{Mon}\left(F_{n}\right)$ be an arbitrary set of monomorphisms of F_{n}. Then, $\operatorname{Fix}(G)$ is inert; in particular, $r(\operatorname{Fix}(G)) \leqslant n$.

Theorem (Bergman, 99)
 Let $G \subseteq E n d\left(F_{n}\right)$ be an arbitrary set of endomorphisms of F_{n}. Then,
 $r($ Fix $(G)) \leqslant n$.

Conjecture (V.)

Let $\phi \in$ End $\left(F_{n}\right)$. Then Fix (ϕ) is inert

Inertia

Definition

A subgroup $H \leqslant F_{n}$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_{n}$.

Theorem (Dicks-V, 96)

Let $G \subseteq \operatorname{Mon}\left(F_{n}\right)$ be an arbitrary set of monomorphisms of F_{n}. Then, $\operatorname{Fix}(G)$ is inert; in particular, $r(\operatorname{Fix}(G)) \leqslant n$.

Theorem (Bergman, 99)

Let $G \subseteq E n d\left(F_{n}\right)$ be an arbitrary set of endomorphisms of F_{n}. Then, $r(F i x(G)) \leqslant n$.

Inertia

Definition

A subgroup $H \leqslant F_{n}$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_{n}$.

Theorem (Dicks-V, 96)

Let $G \subseteq \operatorname{Mon}\left(F_{n}\right)$ be an arbitrary set of monomorphisms of F_{n}. Then, $\operatorname{Fix}(G)$ is inert; in particular, $r(\operatorname{Fix}(G)) \leqslant n$.

Theorem (Bergman, 99)

Let $G \subseteq E n d\left(F_{n}\right)$ be an arbitrary set of endomorphisms of F_{n}. Then, $r(F i x(G)) \leqslant n$.

Conjecture (V.)

Let $\phi \in \operatorname{End}\left(F_{n}\right)$. Then Fix (ϕ) is inert.

The four families

Definition

A subgroup $H \leqslant F_{n}$ is said to be

- 1-auto-fixed if $H=\operatorname{Fix}(\phi)$ for some $\phi \in \operatorname{Aut}\left(F_{n}\right)$,
- 1-endo-fixed if $H=F i x(\phi)$ for some $\phi \in \operatorname{End}\left(F_{n}\right)$,
- auto-fixed if $H=\operatorname{Fix}(S)$ for some $S \subseteq \operatorname{Aut}\left(F_{n}\right)$,
- endo-fixed if $H=F i x(S)$ for some $S \subseteq \operatorname{End}\left(F_{n}\right)$,

The four families

Definition

A subgroup $H \leqslant F_{n}$ is said to be

- 1-auto-fixed if $H=\operatorname{Fix}(\phi)$ for some $\phi \in \operatorname{Aut}\left(F_{n}\right)$,
- 1-endo-fixed if $H=\operatorname{Fix}(\phi)$ for some $\phi \in \operatorname{End}\left(F_{n}\right)$,
- auto-fixed if $H=F i x(S)$ for some $S \subseteq \operatorname{Aut}\left(F_{n}\right)$,
- endo-fixed if $H=F i x(S)$ for some $S \subseteq \operatorname{End}\left(F_{n}\right)$,

The four families

Definition

A subgroup $H \leqslant F_{n}$ is said to be

- 1-auto-fixed if $H=\operatorname{Fix}(\phi)$ for some $\phi \in \operatorname{Aut}\left(F_{n}\right)$,
- 1-endo-fixed if $H=F i x(\phi)$ for some $\phi \in \operatorname{End}\left(F_{n}\right)$,
- auto-fixed if $H=\operatorname{Fix}(S)$ for some $S \subseteq \operatorname{Aut}\left(F_{n}\right)$,
- endo-fixed if $H=F i x(S)$ for some $S \subseteq E n d\left(F_{n}\right)$,

The four families

Definition

A subgroup $H \leqslant F_{n}$ is said to be

- 1-auto-fixed if $H=\operatorname{Fix}(\phi)$ for some $\phi \in \operatorname{Aut}\left(F_{n}\right)$,
- 1-endo-fixed if $H=F i x(\phi)$ for some $\phi \in \operatorname{End}\left(F_{n}\right)$,
- auto-fixed if $H=F i x(S)$ for some $S \subseteq \operatorname{Aut}\left(F_{n}\right)$,
- endo-fixed if $H=\operatorname{Fix}(S)$ for some $S \subseteq \operatorname{End}\left(F_{n}\right)$,

The four families

Definition

A subgroup $H \leqslant F_{n}$ is said to be

- 1-auto-fixed if $H=\operatorname{Fix}(\phi)$ for some $\phi \in \operatorname{Aut}\left(F_{n}\right)$,
- 1-endo-fixed if $H=F i x(\phi)$ for some $\phi \in \operatorname{End}\left(F_{n}\right)$,
- auto-fixed if $H=\operatorname{Fix}(S)$ for some $S \subseteq \operatorname{Aut}\left(F_{n}\right)$,
- endo-fixed if $H=\operatorname{Fix}(S)$ for some $S \subseteq \operatorname{End}\left(F_{n}\right)$,

Easy to see that 1 -mono-fixed $=1$-auto-fixed.

Relations between them

$$
\begin{array}{ccc}
\hline 1 \text { - auto - fixed } & \subseteq \begin{array}{r}
1-\text { endo - fixed } \\
\cap \\
\cap
\end{array} \\
\hline \text { auto - fixed } & \subseteq & \text { endo - fixed }
\end{array}
$$

Relations between them

$$
1 \text { - auto - fixed }
$$

$$
\cap
$$

$$
\text { auto - fixed } \quad \risingdotseq
$$

endo - fixed

Example (Martino-V., 03; Ciobanu-Dicks, 06)

Let $F_{3}=\langle a, b, c\rangle$ and $H=\left\langle b, c a c b a b^{-1} c^{-1}\right\rangle \leqslant F_{3}$. Then, $H=F i x\left(a \mapsto 1, b \mapsto b, c \mapsto c^{\prime} a c b a b^{-1} c^{-1}\right)$, but H is NOT the fixed subgroup of any set of automorphism of F_{3}.

Relations between them

$$
\begin{array}{ccc|}
\hline 1 \text { - auto - fixed } & \stackrel{\subseteq}{\neq} & \begin{array}{c}
1-\text { endo - fixed } \\
\cap \| ? \\
\\
\hline \text { auto - fixed }
\end{array} \\
\subsetneq & \text { endo - fixed } \\
\hline
\end{array}
$$

Conjecture

For every $S \subseteq \operatorname{End}\left(F_{n}\right)\left(S \subseteq\right.$ Aut $\left.\left(F_{n}\right)\right)$ there exists $\phi \in \operatorname{End}\left(F_{n}\right)$ $\left(\phi \in \operatorname{End}\left(F_{n}\right)\right.$) such that $\operatorname{Fix}(S)=\operatorname{Fix}(\phi)$.

Theorem (Martino-V., 00)

Let $S \subseteq$ End $\left(F_{n}\right)$. Then, $\exists \phi \in\langle S\rangle$ such that Fix $(S) \leqslant_{\text {ff }}$ Fix (ϕ).
But... free factors of 1-endo-fixed (1-auto-fixed) subgroups need not be even endo-fixed (auto-fixed).

Relations between them

$$
\begin{array}{ccc|}
\hline 1 \text { - auto - fixed } & \stackrel{\subseteq}{\neq} & \begin{array}{c}
1-\text { endo - fixed } \\
\cap\|\| ? \\
\\
\text { auto - fixed }
\end{array} \\
\risingdotseq & \text { endo - fixed } \\
\hline
\end{array}
$$

Conjecture
For every $S \subseteq \operatorname{End}\left(F_{n}\right)\left(S \subseteq\right.$ Aut $\left.\left(F_{n}\right)\right)$ there exists $\phi \in \operatorname{End}\left(F_{n}\right)$
($\phi \in \operatorname{End}\left(F_{n}\right)$) such that $\operatorname{Fix}(S)=\operatorname{Fix}(\phi)$.
Theorem (Martino-V., 00)
Let $S \subseteq \operatorname{End}\left(F_{n}\right)$. Then, $\exists \phi \in\langle S\rangle$ such that $\operatorname{Fix}(S) \leqslant_{\mathrm{ff}} \operatorname{Fix}(\phi)$.
But... free factors of 1 -endo-fixed (1-auto-fixed) subgroups need not be even endo-fixed (auto-fixed).

Outline

(S Some history

(2) Algorithmic results
(3) Needed tools
4. The proof

Computing fixed subgroups

Proposition (Turner, 86)

There exists a pseudo-algorithm to compute fix of an endo.

Easy but is not an algorithm...

Theorem (Maslakova, 03)

Fixed subaroups of automorphisms of F_{n} are computable

Difficult but it is an algorithm!

Conjecture

Fixed subarou so endomorphisms of F_{n} are computable

Computing fixed subgroups

Proposition (Turner, 86)

There exists a pseudo-algorithm to compute fix of an endo.

Easy but is not an algorithm...

Theorem (Maslakova, 03)
Fixed subgroups of automorphisms of F_{n} are computable.

Difficult but it is an algorithm!

Conjecture

Fixed subarou s of endomorphisms of F_{n} are computable

Computing fixed subgroups

Proposition (Turner, 86)

There exists a pseudo-algorithm to compute fix of an endo.

Easy but is not an algorithm...

Theorem (Maslakova, 03)

Fixed subgroups of automorphisms of F_{n} are computable.

Difficult but it is an algorithm!

Conjecture
Fixed subgroups of endomorphisms of F_{n} are computable.

Deciding fixedness

In this talk, l'll solve the two dual problems:

Theorem

Given $\mathrm{H} \leqslant_{\mathrm{fg}} F_{n}$, one can algorithmically decide whether H is auto-fixed or not. ii) H is endo-fixed or not, and in the affirmative case, find a finite family, $S=\left\{\phi_{1}, \ldots, \phi_{m}\right\}$, of automorphisms (endomorphisms) of F_{n} such that Fix $(S)=H$.

Conjecture

Given $H \leqslant \mathrm{fo}_{\mathrm{o}} F$, one can algorithmically decide whether
i) H is 1-auto-fixed or not,
ii) H is 1 -endo-fixed or not,
and in the affimmative case, find one automorphism (endomorphism) of F_{n} such that Fix $(\phi)=H$

Deciding fixedness

In this talk, l'll solve the two dual problems:

Theorem

Given $H \leqslant_{\mathrm{fg}} F_{n}$, one can algorithmically decide whether
i) H is auto-fixed or not,
ii) H is endo-fixed or not,
and in the affirmative case, find a finite family, $S=\left\{\phi_{1}, \ldots, \phi_{m}\right\}$, of automorphisms (endomorphisms) of F_{n} such that $\operatorname{Fix}(S)=H$.

Conjecture

Given $H \leqslant_{\mathrm{fg}} F_{n}$, one can algorithmically decide whether

Deciding fixedness

In this talk, l'll solve the two dual problems:

Theorem

Given $H \leqslant_{\mathrm{fg}} F_{n}$, one can algorithmically decide whether
i) H is auto-fixed or not,
ii) H is endo-fixed or not, and in the affirmative case, find a finite family, $S=\left\{\phi_{1}, \ldots, \phi_{m}\right\}$, of automorphisms (endomorphisms) of F_{n} such that $\operatorname{Fix}(S)=H$.

Conjecture

Given $H \leqslant_{\mathrm{fg}} F_{n}$, one can algorithmically decide whether
i) H is 1 -auto-fixed or not,
ii) H is 1 -endo-fixed or not,
and in the affirmative case, find one automorphism (endomorphism) ϕ of F_{n} such that Fix $(\phi)=H$.

Outline

(1) Some history
(2) Algorithmic results
(3) Needed tools

4 The proof

Fixed closures

Definition

Given $H \leqslant_{\mathrm{fg}} F_{n}$, we define the (auto- and endo-) stabilizer of H, respectively, as

$$
\operatorname{Aut}_{H}\left(F_{n}\right)=\left\{\phi \in \operatorname{Aut}\left(F_{n}\right) \mid H \leqslant \operatorname{Fix}(\phi)\right\} \leqslant \operatorname{Aut}\left(F_{n}\right)
$$

and

$$
\operatorname{End}_{H}\left(F_{n}\right)=\left\{\phi \in \operatorname{End}\left(F_{n}\right) \mid H \leqslant \operatorname{Fix}(\phi)\right\} \leqslant \operatorname{End}\left(F_{n}\right)
$$

Definition

Given $H \leqslant F_{n}$, we define the auto-closure and endo-closure of H as

$$
a-C l(H)=F i x\left(A u t_{H}\left(F_{n}\right)\right) \geqslant H
$$

Fixed closures

Definition

Given $H \leqslant{ }_{\mathrm{fg}} F_{n}$, we define the (auto- and endo-) stabilizer of H, respectively, as

$$
\operatorname{Aut}_{H}\left(F_{n}\right)=\left\{\phi \in \operatorname{Aut}\left(F_{n}\right) \mid H \leqslant \operatorname{Fix}(\phi)\right\} \leqslant \operatorname{Aut}\left(F_{n}\right)
$$

and

$$
\operatorname{End}_{H}\left(F_{n}\right)=\left\{\phi \in \operatorname{End}\left(F_{n}\right) \mid H \leqslant \operatorname{Fix}(\phi)\right\} \leqslant \operatorname{End}\left(F_{n}\right)
$$

Definition

Given $H \leqslant F_{n}$, we define the auto-closure and endo-closure of H as

$$
a-C l(H)=F i x\left(A u t_{H}\left(F_{n}\right)\right) \geqslant H
$$

and

$$
e-C l(H)=\operatorname{Fix}\left(\operatorname{End}_{H}\left(F_{n}\right)\right) \geqslant H
$$

Main result

Theorem

For every $H \leqslant_{\mathrm{fg}} F_{n}$, a-Cl(H) and e-Cl(H) are finitely generated and one can algorithmically compute bases for them.

Corollary

Auto-fixedness and endo-fixedness are decidable.

Observe that $e-C l(H) \leqslant a-C l(H)$ but, in general, they are not equal.

Main result

Theorem

For every $H \leqslant_{\mathrm{fg}} F_{n}, \mathrm{a}-\mathrm{Cl}(H)$ and $\mathrm{e}-\mathrm{Cl}(H)$ are finitely generated and one can algorithmically compute bases for them.

Corollary
Auto-fixedness and endo-fixedness are decidable.

Observe that $e-C l(H) \leqslant a-C l(H)$ but, in general, they are not equal.

Main result

Theorem

For every $H \leqslant_{\mathrm{fg}} F_{n}, \mathrm{a}-\mathrm{Cl}(H)$ and $\mathrm{e}-\mathrm{Cl}(H)$ are finitely generated and one can algorithmically compute bases for them.

Corollary
Auto-fixedness and endo-fixedness are decidable.

Observe that $e-C l(H) \leqslant a-C l(H)$ but, in general, they are not equal.

Retracts

Definition

A subgroup $H \leqslant F_{n}$ is a retract if there exists a retraction, i.e. a morphism $\rho: F_{n} \rightarrow H$ which restricts to the identity of H.

Free factors are retracts, but there are more.

Observation

If $H \leqslant F_{n}$ is a retract then $r(H)$

Observation (Turner)
It is algorithmically decic able whether a given $H \leqslant F_{n}$ is a retract or not.

Retracts

Definition

A subgroup $H \leqslant F_{n}$ is a retract if there exists a retraction, i.e. a morphism $\rho: F_{n} \rightarrow H$ which restricts to the identity of H.

Free factors are retracts, but there are more.

Observation

If $H \leqslant F_{n}$ is a retract then $r(H) \leqslant n \quad$ (and, $r(H)=n \Leftrightarrow H=F_{n}$).

Observation (Turner)
It is algorithmically decid able whether a given $H \leqslant F_{n}$ is a retract or
not.

Retracts

Definition

A subgroup $H \leqslant F_{n}$ is a retract if there exists a retraction, i.e. a morphism $\rho: F_{n} \rightarrow H$ which restricts to the identity of H.

Free factors are retracts, but there are more.

Observation
If $H \leqslant F_{n}$ is a retract then $r(H) \leqslant n \quad$ (and, $r(H)=n \Leftrightarrow H=F_{n}$).

Observation (Turner)

It is algorithmically decidable whether a given $H \leqslant F_{n}$ is a retract or not.

The stable image

Definition

Let $\phi \in \operatorname{End}\left(F_{n}\right)$. The stable image of ϕ is $F_{n} \phi^{\infty}=\cap_{i=1}^{\infty} F_{n} \phi^{i}$.

Theorem (Imrich-Turner, 89)

For every endomorphism $\phi: F_{n} \rightarrow F_{n}$,
i) $F_{n} \phi^{\infty}$ is ϕ-invariant,
ii) the restriction $\phi: F_{n} \phi^{\infty} \rightarrow F_{n} \phi^{\infty}$ is an isomorphism,
iii) $F_{n} \phi^{\infty}$ is a retract.
iv) $\operatorname{Fix}(\phi) \leqslant F_{n} \phi^{\circ}$

Example: For $\phi: F_{2} \rightarrow F_{2}, a \mapsto a, b \mapsto b^{2}$, we have $F_{2} \phi=\left\langle a, b^{2}\right\rangle$,
$F_{2} \phi^{2}=\left\langle a, b^{4}\right\rangle, F_{2} \phi^{3}=\left\langle a, b^{8}\right\rangle, \ldots$. So, $F_{2} \phi^{\infty}=\langle a\rangle \leqslant_{\text {ff }} F_{2}$.

The stable image

Definition

Let $\phi \in \operatorname{End}\left(F_{n}\right)$. The stable image of ϕ is $F_{n} \phi^{\infty}=\cap_{i=1}^{\infty} F_{n} \phi^{i}$.

Theorem (Imrich-Turner, 89)

For every endomorphism $\phi: F_{n} \rightarrow F_{n}$,
i) $F_{n} \phi^{\infty}$ is ϕ-invariant,
ii) the restriction $\phi: F_{n} \phi^{\infty} \rightarrow F_{n} \phi^{\infty}$ is an isomorphism,
iii) $F_{n} \phi^{\infty}$ is a retract.
iv) $\operatorname{Fix}(\phi) \leqslant F_{n} \phi^{\infty}$.

The stable image

Definition

Let $\phi \in \operatorname{End}\left(F_{n}\right)$. The stable image of ϕ is $F_{n} \phi^{\infty}=\cap_{i=1}^{\infty} F_{n} \phi^{i}$.

Theorem (Imrich-Turner, 89)

For every endomorphism $\phi: F_{n} \rightarrow F_{n}$,
i) $F_{n} \phi^{\infty}$ is ϕ-invariant,
ii) the restriction $\phi: F_{n} \phi^{\infty} \rightarrow F_{n} \phi^{\infty}$ is an isomorphism,
iii) $F_{n} \phi^{\infty}$ is a retract.
iv) $\operatorname{Fix}(\phi) \leqslant F_{n} \phi^{\infty}$.

Example: For $\phi: F_{2} \rightarrow F_{2}, a \mapsto a, b \mapsto b^{2}$, we have $F_{2} \phi=\left\langle a, b^{2}\right\rangle$,
$F_{2} \phi^{2}=\left\langle a, b^{4}\right\rangle, F_{2} \phi^{3}=\left\langle a, b^{8}\right\rangle, \ldots$. So, $F_{2} \phi^{\infty}=\langle a\rangle \leqslant \mathrm{ff} F_{2}$.

Stallings' graphs and intersections

Theorem (Stallings, 83)

For any free group $F_{n}=F(A)$, there is an effectively computable bijection
$\left\{\right.$ f.g. subgroups of $\left.F_{n}\right\} \longleftrightarrow\{$ finite A-labeled core graphs $\}$

Theorem

Given sets of generators for H, K \&fy Fn, one can algorithmically
compute a basis for $\mathrm{H} \cap \mathrm{K}$

Stallings' graphs and intersections

Theorem (Stallings, 83)

For any free group $F_{n}=F(A)$, there is an effectively computable bijection
$\left\{\right.$ f.g. subgroups of $\left.F_{n}\right\} \longleftrightarrow\{$ finite A-labeled core graphs $\}$

Theorem

Given sets of generators for $\mathrm{H}, \mathrm{K} \leqslant_{\mathrm{fg}} F_{n}$, one can algorithmically compute a basis for $\mathrm{H} \cap \mathrm{K}$.

Algebraic extensions

Definition

An extension of subgroups $H \leqslant K \leqslant F_{n}$ is called algebraic, denoted $H \leqslant$ alg K, if H is not contained in any proper free factor of K. Write

$$
\mathcal{A E}(H)=\left\{K \leqslant F_{n} \mid H \leqslant \text { alg } K\right\} .
$$

Theorem (Takahasi, 51)

If $H \leqslant_{\mathrm{fg}} F_{n}$ then $\mathcal{A E}(H)$ is finite and computable (i.e. H has finitely many algebraic extensions, all of them are finitely generated, and bases are computable from H).

Theorem

Every extension of subgroups H $H \leqslant$ alg $L \leqslant \mathrm{ff} K \leqslant F_{n}$

Algebraic extensions

Definition

An extension of subgroups $H \leqslant K \leqslant F_{n}$ is called algebraic, denoted $H \leqslant$ alg K, if H is not contained in any proper free factor of K. Write

$$
\mathcal{A E}(H)=\left\{K \leqslant F_{n} \mid H \leqslant \text { alg } K\right\} .
$$

Theorem (Takahasi, 51)

If $H \leqslant_{\mathrm{fg}} F_{n}$ then $\mathcal{A E}(H)$ is finite and computable (i.e. H has finitely many algebraic extensions, all of them are finitely generated, and bases are computable from H).

Algebraic extensions

Definition

An extension of subgroups $H \leqslant K \leqslant F_{n}$ is called algebraic, denoted $H \leqslant$ alg K, if H is not contained in any proper free factor of K. Write

$$
\mathcal{A E}(H)=\left\{K \leqslant F_{n} \mid H \leqslant \text { alg } K\right\} .
$$

Theorem (Takahasi, 51)

If $H \leqslant_{\mathrm{fg}} F_{n}$ then $\mathcal{A E}(H)$ is finite and computable (i.e. H has finitely many algebraic extensions, all of them are finitely generated, and bases are computable from H).

Theorem

Every extension of subgroups $H \leqslant K \leqslant F_{n}$ factors in a unique way as $H \leqslant$ alg $L \leqslant$ ff $K \leqslant F_{n}$.

Outline

(9) Some history

2 Algorithmic results
(3) Needed tools
(4) The proof

The automorphism case

Theorem (McCool)

Let $H \leqslant_{\mathrm{fg}} F_{n}$. Then Aut $_{H}\left(F_{n}\right)$ is finitely generated (in fact, finitely presented) and a finite set of generators (and relations) is algorithmically computable from H .

Theorem
For every H fre F_{n}, a-Cl(H) is finitely generated and algorithmically
computable
Proof. $\mathrm{a}-\mathrm{Cl}(H)=\operatorname{Fix}\left(\operatorname{Aut}_{H}\left(F_{n}\right)\right)$

The automorphism case

Theorem (McCool)

Let $H \leqslant_{\mathrm{fg}} F_{n}$. Then $\operatorname{Aut}_{H}\left(F_{n}\right)$ is finitely generated (in fact, finitely presented) and a finite set of generators (and relations) is algorithmically computable from H .

Theorem

For every $H \leqslant \mathrm{fg} F_{n}$, a-Cl(H) is finitely generated and algorithmically computable.

Proof. $\operatorname{a-Cl}(H)=\operatorname{Fix}\left(\operatorname{Aut}_{H}\left(F_{n}\right)\right)$

The automorphism case

Theorem (McCool)

Let $H \leqslant_{\mathrm{fg}} F_{n}$. Then $\operatorname{Aut}_{H}\left(F_{n}\right)$ is finitely generated (in fact, finitely presented) and a finite set of generators (and relations) is algorithmically computable from H .

Theorem

For every $\mathrm{H} \leqslant \mathrm{fg} F_{n}$, a-Cl(H) is finitely generated and algorithmically computable.

Proof. $\quad \mathrm{a}-\mathrm{Cl}(H)=\operatorname{Fix}\left(\operatorname{Aut}_{H}\left(F_{n}\right)\right)$
$=\operatorname{Fix}\left(\left\langle\phi_{1}, \ldots, \phi_{m}\right\rangle\right)$
$=\operatorname{Fix}\left(\phi_{1}\right) \cap \cdots \cap \operatorname{Fix}\left(\phi_{m}\right) . \square$

The endomorphism case

For the endomorphism case, a similar approach does not work because:

- we don't know how to compute fix subgroups of endomorphisms

- $H \leqslant \leqslant_{\mathrm{fg}} F_{n}$ does not imply that $\operatorname{End}_{H}\left(F_{n}\right)$ is finitely generated as submonoid of End (F_{n})

The endomorphism case

For the endomorphism case, a similar approach does not work because:

- we don't know how to compute fix subgroups of endomorphisms
- $H \leqslant_{\mathrm{fg}} F_{n}$ does not imply that $\operatorname{End}_{H}\left(F_{n}\right)$ is finitely generated as submonoid of End (F_{n})

The endomorphism case

For the endomorphism case, a similar approach does not work because:

- we don't know how to compute fix subgroups of endomorphisms
- $H \leqslant_{\mathrm{fg}} F_{n}$ does not imply that $\operatorname{End}_{H}\left(F_{n}\right)$ is finitely generated as submonoid of End (F_{n})

The endomorphism case

Example (Ciobanu-Dicks, 06)

Consider $F_{3}=\langle a, b, c\rangle$, the element $d=b a\left[c^{2}, b\right] a^{-1}$, and the subgroup $H=\langle a, d\rangle \leqslant F_{3}$. Clearly, the morphisms

satisfy $H \leqslant \operatorname{Fix}\left(\phi^{n} \psi\right)$ for every $n \in \mathbb{Z}$.
 With some computations, it can be show that

But, $\phi^{m} \psi \cdot \phi^{n} \psi=\phi^{m} \psi$. Hence, End $H_{H}\left(F_{3}\right)$ is not finitely generated.
Furthermore, $\operatorname{a-Cl}(H)=\operatorname{Fix}(I d)=F_{3}$ and $\mathrm{e}-\mathrm{Cl}(H)=\operatorname{Fix}(\psi)=H$.

The endomorphism case

Example (Ciobanu-Dicks, 06)

Consider $F_{3}=\langle a, b, c\rangle$, the element $d=b a\left[c^{2}, b\right] a^{-1}$, and the subgroup $H=\langle a, d\rangle \leqslant F_{3}$. Clearly, the morphisms

$$
\begin{aligned}
& \psi: F_{3} \rightarrow F_{3} \quad \phi: F_{3} \rightarrow F_{3} \quad \phi^{n} \psi: F_{3} \rightarrow F_{3} \\
& a \mapsto a \quad a \mapsto a \quad a \mapsto a \\
& b \mapsto d \quad b \mapsto b \quad b \quad \mapsto d \\
& c \mapsto 1 \quad c \mapsto c b \quad c \quad \mapsto \quad d^{n}
\end{aligned}
$$

satisfy $H \leqslant \operatorname{Fix}\left(\phi^{n} \psi\right)$ for every $n \in \mathbb{Z}$.
With some computations, it can be shown that

But, $\phi^{m} \psi \cdot \phi^{n} \psi=\phi^{m} \psi$. Hence, End $H_{H}\left(F_{3}\right)$ is not finitely generated.
Furthermore, $\operatorname{a-Cl}(H)=\operatorname{Fix}(I d)=F_{3}$ and $\mathrm{e}-\mathrm{Cl}(H)=\operatorname{Fix}(\psi)=H$.

The endomorphism case

Example (Ciobanu-Dicks, 06)

Consider $F_{3}=\langle a, b, c\rangle$, the element $d=b a\left[c^{2}, b\right] a^{-1}$, and the subgroup $H=\langle a, d\rangle \leqslant F_{3}$. Clearly, the morphisms

$$
\begin{aligned}
& \psi: F_{3} \rightarrow F_{3} \quad \phi: F_{3} \rightarrow F_{3} \quad \phi^{n} \psi: F_{3} \rightarrow F_{3} \\
& a \mapsto a \quad a \mapsto a \quad a \mapsto a \\
& b \mapsto d \quad b \mapsto b \quad b \quad \mapsto d \\
& c \mapsto 1 \quad c \quad c b c b \quad c \quad d^{n}
\end{aligned}
$$

satisfy $H \leqslant \operatorname{Fix}\left(\phi^{n} \psi\right)$ for every $n \in \mathbb{Z}$.
With some computations, it can be shown that

$$
\operatorname{End}_{H}\left(F_{3}\right)=\left\{I d, \phi^{n} \psi \mid n \in \mathbb{Z}\right\}
$$

But, $\phi^{m} \psi \cdot \phi^{n} \psi=\phi^{m} \psi$. Hence, End $H_{H}\left(F_{3}\right)$ is not finitely generated.
Furthermore, $\operatorname{a-Cl}(H)=\operatorname{Fix}(I d)=F_{3}$ and $e-C l(H)=\operatorname{Fix}(\psi)=H$.

The endomorphism case

Example (Ciobanu-Dicks, 06)

Consider $F_{3}=\langle a, b, c\rangle$, the element $d=b a\left[c^{2}, b\right] a^{-1}$, and the subgroup $H=\langle a, d\rangle \leqslant F_{3}$. Clearly, the morphisms

$$
\begin{aligned}
& \psi: F_{3} \rightarrow F_{3} \quad \phi: F_{3} \rightarrow F_{3} \quad \phi^{n} \psi: F_{3} \rightarrow F_{3} \\
& a \mapsto a \quad a \mapsto a \quad a \mapsto a \\
& b \mapsto d \quad b \mapsto b \quad b \quad \mapsto d \\
& c \mapsto 1 \quad c \mapsto c b \quad c \quad \mapsto \quad d^{n}
\end{aligned}
$$

satisfy $H \leqslant \operatorname{Fix}\left(\phi^{n} \psi\right)$ for every $n \in \mathbb{Z}$.
With some computations, it can be shown that

$$
\operatorname{End}_{H}\left(F_{3}\right)=\left\{l d, \phi^{n} \psi \mid n \in \mathbb{Z}\right\} .
$$

But, $\phi^{m} \psi \cdot \phi^{n} \psi=\phi^{m} \psi$. Hence, End ${ }_{H}\left(F_{3}\right)$ is not finitely generated.

The endomorphism case

Example (Ciobanu-Dicks, 06)

Consider $F_{3}=\langle a, b, c\rangle$, the element $d=b a\left[c^{2}, b\right] a^{-1}$, and the subgroup $H=\langle a, d\rangle \leqslant F_{3}$. Clearly, the morphisms

$$
\begin{aligned}
& \psi: F_{3} \rightarrow F_{3} \quad \phi: F_{3} \rightarrow F_{3} \quad \phi^{n} \psi: F_{3} \rightarrow F_{3} \\
& a \mapsto a \quad a \mapsto a \quad a \mapsto a \\
& b \mapsto d \quad b \mapsto b \quad b \quad \mapsto d \\
& c \mapsto 1 \quad c \mapsto c b \quad c \quad \mapsto \quad d^{n}
\end{aligned}
$$

satisfy $H \leqslant \operatorname{Fix}\left(\phi^{n} \psi\right)$ for every $n \in \mathbb{Z}$.
With some computations, it can be shown that

$$
\operatorname{End}_{H}\left(F_{3}\right)=\left\{I d, \phi^{n} \psi \mid n \in \mathbb{Z}\right\} .
$$

But, $\phi^{m} \psi \cdot \phi^{n} \psi=\phi^{m} \psi$. Hence, End ${ }_{H}\left(F_{3}\right)$ is not finitely generated.
Furthermore, $\mathrm{a}-\mathrm{Cl}(H)=\mathrm{Fix}(I d)=F_{3}$ and $e-C l(H)=\operatorname{Fix}(\psi)=H$.

The endomorphism case

Theorem

For every $\mathrm{H} \leqslant_{\mathrm{fg}} F_{n}$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given H (in generators),

- Compute $\mathcal{A E}(H)=\left\{H_{1}, H_{2}, \ldots, H_{q}\right\}$
- Select those which are retracts, $\mathcal{A} \mathcal{E}_{\text {ret }}(H)=\left\{H_{1}, \ldots, H_{r}\right\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_{i} 's, $i=1, \ldots, r$.
- Compute bases for $\mathrm{a}-\mathrm{Cl}_{H_{1}}(H), \ldots, a-\mathrm{Cl}_{H_{r}}(H)$.
- Compute a basis for a-Cl $H_{H_{1}}(H) \cap \cdots \cap a-C l_{H_{r}}(H)$.

Claim

$a-\mathrm{Cl}_{H_{1}}(\mathrm{H}) \cap$

$$
a-C l_{H_{r}}(H)=e-C l(H) .
$$

The endomorphism case

Theorem

For every $\mathrm{H} \leqslant_{\mathrm{fg}} F_{n}$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given H (in generators),

- Compute $\mathcal{A E}(H)=\left\{H_{1}, H_{2}, \ldots, H_{q}\right\}$.
- Select those which are retracts, $\mathcal{A} \mathcal{E}_{\text {ret }}(H)=\left\{H_{1}, \ldots, H_{r}\right\}$
- Write the generators of H as words on the generators of each one of these H_{i} 's, $i=1, \ldots, r$.
- Compute bases for $\mathrm{a}-\mathrm{Cl}_{H_{1}}(H), \ldots, a-\mathrm{Cl}_{H_{r}}(H)$.
- Compute a basis for $a-$ Cl $_{H_{1}}(H) \cap \cdots \cap a-C_{H_{r}}(H)$.

Claim

\square
\square

The endomorphism case

Theorem

For every $H \leqslant_{\mathrm{fg}} F_{n}$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given H (in generators),

- Compute $\mathcal{A E}(H)=\left\{H_{1}, H_{2}, \ldots, H_{q}\right\}$.
- Select those which are retracts, $\mathcal{A} \mathcal{E}_{\text {ret }}(H)=\left\{H_{1}, \ldots, H_{r}\right\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_{i} 's, $i=1$,
- Compute bases for $\mathrm{a}-\mathrm{Cl}_{H_{1}}(H), \ldots, a-\mathrm{Cl}_{H_{l}}(H)$.
- Compute a basis for $\mathrm{a}-\mathrm{Cl}_{H_{1}}(H) \cap \cdots \cap \mathrm{a}-\mathrm{Cl}_{H_{r}}(H)$.

Claim

$a-\mathrm{Cl}_{H_{1}}(\mathrm{H}) \cap \cdots \cap \mathrm{a-Cl} \mathrm{H}_{2}(H)=e-\mathrm{Cl}(H)$.

The endomorphism case

Theorem

For every $\mathrm{H} \leqslant_{\mathrm{fg}} F_{n}$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given H (in generators),

- Compute $\mathcal{A E}(H)=\left\{H_{1}, H_{2}, \ldots, H_{q}\right\}$.
- Select those which are retracts, $\mathcal{A E}_{\text {ret }}(H)=\left\{H_{1}, \ldots, H_{r}\right\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_{i} 's, $i=1, \ldots, r$.
- Compute bases for $\mathrm{a}-\mathrm{Cl}_{H_{1}}(H), \ldots, a-\mathrm{Cl}_{H_{r}}(H)$.
- Compute a basis for $a-\mathrm{Cl}_{H_{1}}(H) \cap \cdots \cap a-\mathrm{Cl}_{H_{r}}(H)$.

Clatim

$a-\mathrm{Cl}_{H_{1}}(H) \cap \cdots \cap \mathrm{a}-\mathrm{Cl}_{H_{r}}(H)=e-\mathrm{Cl}(H)$.

The endomorphism case

Theorem

For every $\mathrm{H} \leqslant_{\mathrm{fg}} F_{n}$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given H (in generators),

- Compute $\mathcal{A E}(H)=\left\{H_{1}, H_{2}, \ldots, H_{q}\right\}$.
- Select those which are retracts, $\mathcal{A} \mathcal{E}_{\text {ret }}(H)=\left\{H_{1}, \ldots, H_{r}\right\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_{i} 's, $i=1, \ldots, r$.
- Compute bases for $\mathrm{a}-\mathrm{Cl}_{H_{1}}(H), \ldots, a-\mathrm{Cl}_{H_{r}}(H)$.
- Compute a basis for $\mathrm{a}-\mathrm{Cl}_{H_{1}}(H) \cap \cdots \cap \mathrm{a}-\mathrm{Cl}_{H_{r}}(H)$.

Claim
$a-\mathrm{Cl}_{H_{1}}(H) \cap \cdots \cap \mathrm{a}-\mathrm{Cl}_{H_{t}}(H)=e-\mathrm{Cl}(H)$.

The endomorphism case

Theorem

For every $\mathrm{H} \leqslant_{\mathrm{fg}} F_{n}$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given H (in generators),

- Compute $\mathcal{A E}(H)=\left\{H_{1}, H_{2}, \ldots, H_{q}\right\}$.
- Select those which are retracts, $\mathcal{A E}_{\text {ret }}(H)=\left\{H_{1}, \ldots, H_{r}\right\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_{i} 's, $i=1, \ldots, r$.
- Compute bases for a-Cl $H_{H_{1}}(H), \ldots, a-C_{H_{r}}(H)$.
- Compute a basis for $a-\mathrm{Cl}_{H_{1}}(H) \cap \cdots \cap a-\mathrm{Cl}_{H_{r}}(H)$.

Claim

$a-\mathrm{Cl}_{H_{1}}(H) \cap \cdots \cap \mathrm{a}-\mathrm{Cl}_{H_{t}}(H)=e-\mathrm{Cl}(H)$.

The endomorphism case

Theorem

For every $\mathrm{H} \leqslant_{\mathrm{fg}} F_{n}$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given H (in generators),

- Compute $\mathcal{A E}(H)=\left\{H_{1}, H_{2}, \ldots, H_{q}\right\}$.
- Select those which are retracts, $\mathcal{A} \mathcal{E}_{\text {ret }}(H)=\left\{H_{1}, \ldots, H_{r}\right\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_{i} 's, $i=1, \ldots, r$.
- Compute bases for $a-\mathrm{Cl}_{H_{1}}(H), \ldots, a-\mathrm{Cl}_{H_{r}}(H)$.
- Compute a basis for $a-\mathrm{Cl}_{H_{1}}(H) \cap \cdots \cap a-\mathrm{Cl}_{H_{r}}(H)$.

Claim

$$
a-C l_{H_{1}}(H) \cap \cdots \cap a-C_{H_{r}}(H)=e-C l(H) .
$$

The endomorphism case

Claim

$$
a-C_{H_{1}}(H) \cap \cdots \cap a-C_{H_{r}}(H)=e-C l(H) .
$$

Proof. Let us see that

$$
\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}\left(\mathcal{H}_{i}\right) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha)=\bigcap_{\substack{\beta \in \operatorname{End}\left(F_{n}\right) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta) .
$$

- Take $\beta \in \operatorname{End}\left(F_{n}\right)$ with $H \leqslant \operatorname{Fix}(\beta)$.
- $\exists i=1, \ldots, r$ such that $H \leqslant_{\text {alg }} H_{i} \leqslant_{\text {ff }} F \beta^{\infty} \leqslant_{\text {ret }} F$
- Now, β restricts to an automorphism $\alpha: H_{i} \rightarrow H_{i}$
- And, clearly, $H \leqslant \operatorname{Fix}(\alpha) \leqslant \operatorname{Fix}(\beta)$.
- Hence, we have " \leqslant ".

The endomorphism case

Claim

$$
a-C_{H_{1}}(H) \cap \cdots \cap a-C_{H_{r}}(H)=e-C l(H) .
$$

Proof. Let us see that

- Take $\beta \in \operatorname{End}\left(F_{n}\right)$ with $H \leqslant \operatorname{Fix}(\beta)$.
- $\exists i=1, \ldots, r$ such that $H \leqslant_{\text {alg }} H_{i} \leqslant_{\text {ff }} F \beta^{\infty} \leqslant_{\text {ret }} F$
- Now, β restricts to an automorphism $\alpha: H_{i} \rightarrow H_{i}$.
- And, clearly, $H \leqslant \operatorname{Fix}(\alpha) \leqslant \operatorname{Fix}(\beta)$.
- Hence, we have " \leqslant ".

The endomorphism case

Claim

$$
a-C l_{H_{1}}(H) \cap \cdots \cap a-C l_{H_{r}}(H)=e-C l(H) .
$$

Proof. Let us see that

- Take $\beta \in \operatorname{End}\left(F_{n}\right)$ with $H \leqslant \operatorname{Fix}(\beta)$.
- $\exists i=1, \ldots, r$ such that $H \leqslant_{\text {alg }} H_{i} \leqslant_{\text {ff }} F \beta^{\infty} \leqslant_{\text {ret }} F$.
- Now, β restricts to an automorphism $\alpha: H_{i} \rightarrow H_{i}$.
- And, clearly, $H \leqslant \operatorname{Fix}(\alpha) \leqslant \operatorname{Fix}(\beta)$.
- Hence, we have " \leqslant ".

The endomorphism case

Claim

$$
a-C l_{H_{1}}(H) \cap \cdots \cap a-C_{H_{r}}(H)=e-C l(H) .
$$

Proof. Let us see that

- Take $\beta \in \operatorname{End}\left(F_{n}\right)$ with $H \leqslant \operatorname{Fix}(\beta)$.
- $\exists i=1, \ldots, r$ such that $H \leqslant_{\text {alg }} H_{i} \leqslant_{\text {ff }} F \beta^{\infty} \leqslant_{\text {ret }} F$.
- Now, β restricts to an automorphism $\alpha: H_{i} \rightarrow H_{i}$.
- And, clearly, $H \leqslant \operatorname{Fix}(\alpha) \leqslant \operatorname{Fix}(\beta)$.
- Hence, we have " \leqslant ".

The endomorphism case

Claim

$$
a-C l_{H_{1}}(H) \cap \cdots \cap a-C_{H_{r}}(H)=e-C l(H) .
$$

Proof. Let us see that

$$
\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}\left(H_{i}\right) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha)=\bigcap_{\substack{\beta \in \operatorname{End}\left(F_{n}\right) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta) .
$$

- Take $\beta \in \operatorname{End}\left(F_{n}\right)$ with $H \leqslant \operatorname{Fix}(\beta)$.
- $\exists i=1, \ldots, r$ such that $H \leqslant_{\text {alg }} H_{i} \leqslant_{\text {ff }} F \beta^{\infty} \leqslant_{\text {ret }} F$.
- Now, β restricts to an automorphism $\alpha: H_{i} \rightarrow H_{i}$.
- And, clearly, $H \leqslant \operatorname{Fix}(\alpha) \leqslant \operatorname{Fix}(\beta)$.
- Hence, we have

The endomorphism case

Claim

$$
a-C l_{H_{1}}(H) \cap \cdots \cap a-C_{H_{r}}(H)=e-C l(H) .
$$

Proof. Let us see that

$$
\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}\left(H_{i}\right) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha)=\bigcap_{\substack{\beta \in \operatorname{End}\left(F_{n}\right) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta) .
$$

- Take $\beta \in \operatorname{End}\left(F_{n}\right)$ with $H \leqslant \operatorname{Fix}(\beta)$.
- $\exists i=1, \ldots, r$ such that $H \leqslant_{\text {alg }} H_{i} \leqslant_{\text {ff }} F \beta^{\infty} \leqslant_{\text {ret }} F$.
- Now, β restricts to an automorphism $\alpha: H_{i} \rightarrow H_{i}$.
- And, clearly, $H \leqslant \operatorname{Fix}(\alpha) \leqslant \operatorname{Fix}(\beta)$.
- Hence, we have " \leqslant ".

The endomorphism case

- Take $H_{i} \in \mathcal{A} \mathcal{E}_{\text {ret }}(H)$, and $\alpha \in \operatorname{Aut}\left(H_{i}\right)$ with $H \leqslant \operatorname{Fix}(\alpha)$.
- Let $\rho: F \rightarrow H_{i}$ be a retraction, and consider the endomorphism, $\beta: F_{n} \xrightarrow{\rho} H_{i} \xrightarrow{\alpha} H_{i} \stackrel{\hookrightarrow}{\hookrightarrow} F_{n}$.
- Clearly, $H \leqslant \operatorname{Fix}(\alpha)=\operatorname{Fix}(\beta)$.
- Hence, we have " \geqslant ". \square

The endomorphism case

$$
\bigcap_{\substack{\alpha \in \operatorname{Aut}\left(H_{i}\right) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha)=\bigcap_{\substack{\beta \in \operatorname{End}\left(F_{n}\right) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta)
$$

- Take $H_{i} \in \mathcal{A E}_{\text {ret }}(H)$, and $\alpha \in \operatorname{Aut}\left(H_{i}\right)$ with $H \leqslant \operatorname{Fix}(\alpha)$.
- Let $\rho: F \rightarrow H_{i}$ be a retraction, and consider the endomorphism,
$\beta: F_{n} \xrightarrow{\rho} H_{i} \xrightarrow{\alpha} H_{i} \stackrel{\iota}{\hookrightarrow} F_{n}$.
- Clearly, $H \leqslant \operatorname{Fix}(\alpha)=\operatorname{Fix}(\beta)$.
- Hence, we have " \geqslant ". \square

The endomorphism case

$$
\bigcap_{\substack{\alpha \in \operatorname{Aut}\left(H_{i}\right) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha)=\bigcap_{\substack{\beta \in \operatorname{End}\left(F_{n}\right) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta)
$$

- Take $H_{i} \in \mathcal{A E}_{\text {ret }}(H)$, and $\alpha \in \operatorname{Aut}\left(H_{i}\right)$ with $H \leqslant \operatorname{Fix}(\alpha)$.
- Let $\rho: F \rightarrow H_{i}$ be a retraction, and consider the endomorphism, $\beta: F_{n} \xrightarrow{\rho} H_{i} \xrightarrow{\alpha} H_{i} \stackrel{\iota}{\hookrightarrow} F_{n}$.
- Clearly, $H \leqslant \operatorname{Fix}(\alpha)=\operatorname{Fix}(\beta)$.
- Hence, we have " \geqslant ". \square

The endomorphism case

$$
\bigcap_{\substack{\alpha \in \operatorname{Aut}\left(H_{i}\right) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha)=\bigcap_{\substack{\beta \in \operatorname{End}\left(F_{n}\right) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta)
$$

- Take $H_{i} \in \mathcal{A E} \mathcal{E}_{\text {ret }}(H)$, and $\alpha \in \operatorname{Aut}\left(H_{i}\right)$ with $H \leqslant \operatorname{Fix}(\alpha)$.
- Let $\rho: F \rightarrow H_{i}$ be a retraction, and consider the endomorphism, $\beta: F_{n} \xrightarrow{\rho} H_{i} \xrightarrow{\alpha} H_{i} \stackrel{\iota}{\hookrightarrow} F_{n}$.
- Clearly, $\boldsymbol{H} \leqslant \operatorname{Fix}(\alpha)=\operatorname{Fix}(\beta)$.
- Hence, we have " \geqslant ". \square

The endomorphism case

$$
\bigcap_{\substack{\alpha \in \operatorname{Aut}\left(H_{i}\right) \\ H \leqslant \operatorname{Fix}(\alpha)}}^{r} \operatorname{Fix}(\alpha)=\bigcap_{\substack{\beta \in \operatorname{End}\left(F_{n}\right) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta)
$$

- Take $H_{i} \in \mathcal{A E}$ ret (H), and $\alpha \in \operatorname{Aut}\left(H_{i}\right)$ with $H \leqslant \operatorname{Fix}(\alpha)$.
- Let $\rho: F \rightarrow H_{i}$ be a retraction, and consider the endomorphism, $\beta: F_{n} \xrightarrow{\rho} H_{i} \xrightarrow{\alpha} H_{i} \stackrel{\iota}{\hookrightarrow} F_{n}$.
- Clearly, $\boldsymbol{H} \leqslant \operatorname{Fix}(\alpha)=\operatorname{Fix}(\beta)$.
- Hence, we have " \geqslant ". \square

THANKS

