Membership in the BNS invariant

Enric Ventura

Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya

AMS/EMS/SPM International Meeting

Porto

June 11th, 2015.

(Joint work with D. Kharobaei, J. Delgado and B. Cavallo)

Outline

- Algorithmic recognition of groups
- 2 Z-extensions
- 3 The Bieri-Neumann-Strebel invariant
- On the isomorphism problem
- 6 Applications

Let $\mathcal G$ be the class of f.p. groups. We are interested in algorithmic recognition of subclasses $\mathcal H\subseteq\mathcal G$:

- Membership: given $G \in \mathcal{G}$, decide whether it belongs to \mathcal{H} or not.
- Isomorphism: given $H_1, H_2 \in \mathcal{H}$, decide whether $H_1 \simeq H_2$.
- Good presentations: given H ∈ H, find a "good" pres. for H.

Many of these problems are algorithmically unsolvable:

- Triviality: membership in $\mathcal{H} = \{1\}$
- Freeness: membership in $\mathcal{F} = \{f.g. \text{ free groups}\};$
- Isomorphism: in \mathcal{G} and in many classes \mathcal{H} ;

Let $\mathcal G$ be the class of f.p. groups. We are interested in algorithmic recognition of subclasses $\mathcal H\subseteq\mathcal G$:

- Membership: given $G \in \mathcal{G}$, decide whether it belongs to \mathcal{H} or not.
- Isomorphism: given $H_1, H_2 \in \mathcal{H}$, decide whether $H_1 \simeq H_2$.
- ullet Good presentations: given $H\in \mathcal{H}$, find a "good" pres. for H.

Many of these problems are algorithmically unsolvable:

- Triviality: membership in $\mathcal{H} = \{1\}$
- Freeness: membership in $\mathcal{F} = \{\text{f.g. free groups}\};$
- Isomorphism: in \mathcal{G} and in many classes \mathcal{H} ;

Let $\mathcal G$ be the class of f.p. groups. We are interested in algorithmic recognition of subclasses $\mathcal H\subseteq\mathcal G$:

- Membership: given $G \in \mathcal{G}$, decide whether it belongs to \mathcal{H} or not.
- Isomorphism: given $H_1, H_2 \in \mathcal{H}$, decide whether $H_1 \simeq H_2$.
 - Good presentations: given $H \in \mathcal{H}$, find a "good" pres. for H.

Many of these problems are algorithmically unsolvable:

- Triviality: membership in $\mathcal{H} = \{1\}$
- Freeness: membership in $\mathcal{F} = \{\text{f.g. free groups}\};$
- Isomorphism: in \mathcal{G} and in many classes \mathcal{H} ;

Let $\mathcal G$ be the class of f.p. groups. We are interested in algorithmic recognition of subclasses $\mathcal H\subseteq\mathcal G$:

- Membership: given $G \in \mathcal{G}$, decide whether it belongs to \mathcal{H} or not.
- Isomorphism: given $H_1, H_2 \in \mathcal{H}$, decide whether $H_1 \simeq H_2$.
- Good presentations: given $H \in \mathcal{H}$, find a "good" pres. for H.

Many of these problems are algorithmically unsolvable:

- Triviality: membership in $\mathcal{H} = \{1\}$;
- Freeness: membership in $\mathcal{F} = \{\text{f.g. free groups}\};$
- Isomorphism: in \mathcal{G} and in many classes \mathcal{H} ;

Let $\mathcal G$ be the class of f.p. groups. We are interested in algorithmic recognition of subclasses $\mathcal H\subseteq\mathcal G$:

- Membership: given $G \in \mathcal{G}$, decide whether it belongs to \mathcal{H} or not.
- Isomorphism: given $H_1, H_2 \in \mathcal{H}$, decide whether $H_1 \simeq H_2$.
- Good presentations: given $H \in \mathcal{H}$, find a "good" pres. for H.

Many of these problems are algorithmically unsolvable:

- Triviality: membership in $\mathcal{H} = \{1\}$;
- Freeness: membership in $\mathcal{F} = \{f.g. \text{ free groups}\};$
- Isomorphism: in \mathcal{G} and in many classes \mathcal{H} ;

Let $\mathcal G$ be the class of f.p. groups. We are interested in algorithmic recognition of subclasses $\mathcal H\subseteq\mathcal G$:

- Membership: given $G \in \mathcal{G}$, decide whether it belongs to \mathcal{H} or not.
- Isomorphism: given $H_1, H_2 \in \mathcal{H}$, decide whether $H_1 \simeq H_2$.
- Good presentations: given $H \in \mathcal{H}$, find a "good" pres. for H.

Many of these problems are algorithmically unsolvable:

- Triviality: membership in $\mathcal{H} = \{1\}$;
- Freeness: membership in $\mathcal{F} = \{\text{f.g. free groups}\};$
- Isomorphism: in \mathcal{G} and in many classes \mathcal{H} ;

Let $\mathcal G$ be the class of f.p. groups. We are interested in algorithmic recognition of subclasses $\mathcal H\subseteq\mathcal G$:

- Membership: given $G \in \mathcal{G}$, decide whether it belongs to \mathcal{H} or not.
- Isomorphism: given $H_1, H_2 \in \mathcal{H}$, decide whether $H_1 \simeq H_2$.
- Good presentations: given $H \in \mathcal{H}$, find a "good" pres. for H.

Many of these problems are algorithmically unsolvable:

- Triviality: membership in $\mathcal{H} = \{1\}$;
- Freeness: membership in F = {f.g. free groups};
- Isomorphism: in \mathcal{G} and in many classes \mathcal{H} ;

Let $\mathcal G$ be the class of f.p. groups. We are interested in algorithmic recognition of subclasses $\mathcal H\subseteq\mathcal G$:

- Membership: given $G \in \mathcal{G}$, decide whether it belongs to \mathcal{H} or not.
- Isomorphism: given H₁, H₂ ∈ H, decide whether H₁ ≃ H₂.
- Good presentations: given $H \in \mathcal{H}$, find a "good" pres. for H.

Many of these problems are algorithmically unsolvable:

- Triviality: membership in $\mathcal{H} = \{1\}$;
- Freeness: membership in F = {f.g. free groups};
- Isomorphism: in \mathcal{G} and in many classes \mathcal{H} ;

Outline

- Algorithmic recognition of groups
- 2 Z-extensions
- The Bieri-Neumann-Strebel invariant
- On the isomorphism problem
- 6 Applications

Z-extensions

\mathbb{Z} -extensions

Definition

Let $H = \langle X \mid R \rangle$ be a group and $\alpha \in Aut(H)$. The semidirect extension of H given by α is:

$$H_{\alpha} = H \rtimes_{\alpha} \mathbb{Z} = \langle X, t \mid R, t^{-1}xt = x\alpha \ \forall x \in X \rangle;$$

also called a H-by-Z group. The above is called a standard presentation for H_{α} .

$$1 \longrightarrow H \longrightarrow G \longrightarrow \mathbb{Z} \longrightarrow 1$$

\mathbb{Z} -extensions

Definition

Let $H = \langle X \mid R \rangle$ be a group and $\alpha \in Aut(H)$. The semidirect extension of H given by α is:

$$H_{\alpha} = H \rtimes_{\alpha} \mathbb{Z} = \langle X, t \mid R, t^{-1}xt = x\alpha \ \forall x \in X \rangle;$$

also called a H-by- \mathbb{Z} group. The above is called a standard presentation for H_{α} .

Observation

- (i) $H \leq H_{\alpha}$ and $H_{\alpha}/H \simeq \mathbb{Z}$.
- (ii) If $H \subseteq G$ with $G/H \simeq \mathbb{Z}$, then the short exact sequence

$$1 \longrightarrow H \longrightarrow G \longrightarrow \mathbb{Z} \longrightarrow 1$$

splits and $G \simeq H \rtimes_{\alpha} \mathbb{Z}$ for some $\alpha \in Aut(H)$.

\mathbb{Z} -extensions

Definition

Let $H = \langle X \mid R \rangle$ be a group and $\alpha \in Aut(H)$. The semidirect extension of H given by α is:

$$H_{\alpha} = H \rtimes_{\alpha} \mathbb{Z} = \langle X, t \mid R, t^{-1}xt = x\alpha \ \forall x \in X \rangle;$$

also called a H-by-Z group. The above is called a standard presentation for H_{α} .

Observation

- (i) $H \subseteq H_{\alpha}$ and $H_{\alpha}/H \simeq \mathbb{Z}$.
- (ii) If $H \subseteq G$ with $G/H \simeq \mathbb{Z}$, then the short exact sequence

$$1 \longrightarrow H \longrightarrow G \longrightarrow \mathbb{Z} \longrightarrow 1$$

splits and $G \simeq H \rtimes_{\alpha} \mathbb{Z}$ for some $\alpha \in Aut(H)$.

$$*\text{-by-}\mathbb{Z} = \{H \rtimes_{\alpha} \mathbb{Z} \mid \alpha \in \operatorname{Aut}(H)\} \subseteq \mathcal{G}$$

$$G \in *-by-\mathbb{Z} \Leftrightarrow \exists H \unlhd G \text{ with } G/H \simeq \mathbb{Z}$$

 $\Leftrightarrow \exists G \to \mathbb{Z}$
 $\Leftrightarrow b_1(G) \geqslant 1.$

 $G f.g. \Rightarrow G^{ab} = \mathbb{Z}^n \oplus T$; the first Betti number is $b_1(G) = n$.

$$*\text{-by-}\mathbb{Z} = \{H \rtimes_{\alpha} \mathbb{Z} \mid \alpha \in \operatorname{Aut}(H)\} \subseteq \mathcal{G}$$

Given $G \in \mathcal{G}$, we have

$$G \in * ext{-by-}\mathbb{Z} \Leftrightarrow \exists H \unlhd G \text{ with } G/H \simeq \mathbb{Z}$$

 $\Leftrightarrow \exists G \twoheadrightarrow \mathbb{Z}$
 $\Leftrightarrow b_1(G) \geqslant 1.$

G f.g. \Rightarrow $G^{ab} = \mathbb{Z}^n \oplus T$; the first Betti number is $b_1(G) = n$.

Observation

There is an algorithm which, given $G \in \mathcal{G}$, decides whether G is a \mathbb{Z} -extension (of some normal subgroup $H \triangleleft G$).

$$*-\mathsf{by-}\mathbb{Z} = \{H \rtimes_{\alpha} \mathbb{Z} \mid \alpha \in \mathsf{Aut}(H)\} \subseteq \mathcal{G}$$

Given $G \in \mathcal{G}$, we have

$$G \in * ext{-by-}\mathbb{Z} \Leftrightarrow \exists H \unlhd G \text{ with } G/H \simeq \mathbb{Z}$$

 $\Leftrightarrow \exists G \twoheadrightarrow \mathbb{Z}$
 $\Leftrightarrow b_1(G) \geqslant 1.$

 $G f.g. \Rightarrow G^{ab} = \mathbb{Z}^n \oplus T$; the first Betti number is $b_1(G) = n$.

Observation

There is an algorithm which, given $G \in \mathcal{G}$, decides whether G is a \mathbb{Z} -extension (of some normal subgroup $H \triangleleft G$).

$$*\text{-by-}\mathbb{Z} = \{H \rtimes_{\alpha} \mathbb{Z} \mid \alpha \in \operatorname{Aut}(H)\} \subseteq \mathcal{G}$$

Given $G \in \mathcal{G}$, we have

$$G \in * ext{-by-}\mathbb{Z} \Leftrightarrow \exists H \unlhd G \text{ with } G/H \simeq \mathbb{Z}$$

 $\Leftrightarrow \exists G \twoheadrightarrow \mathbb{Z}$
 $\Leftrightarrow b_1(G) \geqslant 1.$

 $G f.g. \Rightarrow G^{ab} = \mathbb{Z}^n \oplus T$; the first Betti number is $b_1(G) = n$.

Observation

There is an algorithm which, given $G \in \mathcal{G}$, decides whether G is a \mathbb{Z} -extension (of some normal subgroup $H \triangleleft G$).

Definition

A group G is called a unique \mathbb{Z} -extension if it has a unique normal subgroup $H \subseteq G$ with $G/H \simeq \mathbb{Z}$. Denote by !-by- \mathbb{Z} the family of these groups.

Given $G \in \mathcal{G}$, we have

$$G \in !$$
-by- $\mathbb{Z} \Leftrightarrow \exists ! H \unlhd G \text{ with } G/H \simeq \mathbb{Z}$
 $\Leftrightarrow b_1(G) = 1.$

Observation

There is an algorithm which, given $G \in \mathcal{G}$, decides whether G is in 1-by- \mathbb{Z}_{+}

Definition

A group G is called a unique \mathbb{Z} -extension if it has a unique normal subgroup $H \subseteq G$ with $G/H \simeq \mathbb{Z}$. Denote by !-by- \mathbb{Z} the family of these groups.

Given $G \in \mathcal{G}$, we have

$$G \in !$$
-by- $\mathbb{Z} \Leftrightarrow \exists ! \ H \subseteq G \ with \ G/H \simeq \mathbb{Z}$
 $\Leftrightarrow b_1(G) = 1.$

Observation

There is an algorithm which, given $G \in \mathcal{G}$, decides whether G is in !-by- \mathbb{Z} .

Definition

A group G is called a unique \mathbb{Z} -extension if it has a unique normal subgroup $H \subseteq G$ with $G/H \simeq \mathbb{Z}$. Denote by !-by- \mathbb{Z} the family of these groups.

Given $G \in \mathcal{G}$, we have

$$G \in !$$
-by- $\mathbb{Z} \Leftrightarrow \exists ! \ H \leq G \ with \ G/H \simeq \mathbb{Z}$
 $\Leftrightarrow b_1(G) = 1.$

Observation

There is an algorithm which, given $G \in \mathcal{G}$, decides whether G is in $!\text{-by-}\mathbb{Z}$.

Proposition (Cavallo-Kharobaei-Delgado-V.)

Proposition (Cavallo-Kharobaei-Delgado-V.)

Z-extensions

- (a) $H \rtimes_{\alpha} \mathbb{Z}$ is !-by- \mathbb{Z} ;

Proposition (Cavallo-Kharobaei-Delgado-V.)

Z-extensions

- (a) $H \rtimes_{\alpha} \mathbb{Z}$ is !-by- \mathbb{Z} ;
- (b) $b_1(H \rtimes_{\alpha} \mathbb{Z}) = 1$;

Proposition (Cavallo-Kharobaei-Delgado-V.)

Z-extensions

- (a) $H \rtimes_{\alpha} \mathbb{Z}$ is !-by- \mathbb{Z} ;
- (b) $b_1(H \rtimes_{\alpha} \mathbb{Z}) = 1$;
- (c) $\alpha^{ab*}: \mathbb{Z}^n \to \mathbb{Z}^n$ has no non-trivial fixed points (say α is **deranged**)

Proposition (Cavallo-Kharobaei-Delgado-V.)

Z-extensions

- (a) $H \rtimes_{\alpha} \mathbb{Z}$ is !-by- \mathbb{Z} ;
- (b) $b_1(H \rtimes_{\alpha} \mathbb{Z}) = 1$;
- (c) $\alpha^{ab*}: \mathbb{Z}^n \to \mathbb{Z}^n$ has no non-trivial fixed points (say α is **deranged**)
- (d) H is a fully characteristic subgroup in $H \rtimes_{\alpha} \mathbb{Z}$.

Observation

- (i) H f.g. (f.p.) \Rightarrow H $\rtimes_{\alpha} \mathbb{Z}$ is f.g. (f.p.);
- (ii) $H \rtimes_{\alpha} \mathbb{Z}$ f.p. $\Rightarrow H$ is f.g.

Proof

(i)
$$H = \langle X \mid R \rangle \Rightarrow H \rtimes_{\alpha} \mathbb{Z} = \langle X, t \mid R, t^{-1}xt = x\alpha \ \forall x \in X \rangle$$
.

(ii) Consider a group K, take $H = *_{i \in \mathbb{Z}} K_i$ where $K_i \simeq K$, and let $\alpha \colon H \to H$, $(k \in K_i) \mapsto (k \in K_{i+1})$. We have,

$$H \rtimes_{\alpha} \mathbb{Z} \simeq \langle X_{i} (i \in \mathbb{Z}), t \mid R_{i}, t^{-1} x_{i} t = x_{i+1} (i \in \mathbb{Z}, x \in X) \rangle$$

$$\simeq \langle X_{i} (i \in \mathbb{Z}), t \mid R_{0}, t^{-1} x_{i} t = x_{i+1} (i \in \mathbb{Z}, x \in X) \rangle$$

$$\simeq \langle X_{0}, t \mid R_{0} \rangle \simeq K * \mathbb{Z}. \square$$

Observation

Taking $1 \neq K$, f.p. and perfect ($K^{ab} = 1$), we have $H = *_{i \in \mathbb{Z}} K_i$ not f.g. and so $K * \mathbb{Z}$ is f.p. and !-by- \mathbb{Z} , but not [f.g.]-by- \mathbb{Z} .

Observation

- (i) H f.g. (f.p.) $\Rightarrow H \rtimes_{\alpha} \mathbb{Z}$ is f.g. (f.p.);
- (ii) $H \rtimes_{\alpha} \mathbb{Z}$ f.p. $\Rightarrow H$ is f.g.

Proof

(i)
$$H = \langle X \mid R \rangle \Rightarrow H \rtimes_{\alpha} \mathbb{Z} = \langle X, t \mid R, t^{-1}xt = x\alpha \ \forall x \in X \rangle.$$

(ii) Consider a group K, take $H = *_{i \in \mathbb{Z}} K_i$ where $K_i \simeq K$, and let $\alpha \colon H \to H$, $(k \in K_i) \mapsto (k \in K_{i+1})$. We have,

$$H \rtimes_{\alpha} \mathbb{Z} \simeq \langle X_{i} (i \in \mathbb{Z}), t \mid R_{i}, t^{-1} x_{i} t = x_{i+1} (i \in \mathbb{Z}, x \in X) \rangle$$

$$\simeq \langle X_{i} (i \in \mathbb{Z}), t \mid R_{0}, t^{-1} x_{i} t = x_{i+1} (i \in \mathbb{Z}, x \in X) \rangle$$

$$\simeq \langle X_{0}, t \mid R_{0} \rangle \simeq K * \mathbb{Z}. \square$$

Observation

Taking $1 \neq K$, f.p. and perfect ($K^{ab} = 1$), we have $H = *_{i \in \mathbb{Z}} K_i$ not f.g. and so $K * \mathbb{Z}$ is f.p. and !-by- \mathbb{Z} , but not [f.g.]-by- \mathbb{Z} .

Recognition of Z-extensions

Observation

- (i) H f.g. (f.p.) \Rightarrow H $\rtimes_{\alpha} \mathbb{Z}$ is f.g. (f.p.);
- (ii) $H \rtimes_{\alpha} \mathbb{Z}$ f.p. $\Rightarrow H$ is f.g.

Proof.

(i)
$$H = \langle X \mid R \rangle \Rightarrow H \rtimes_{\alpha} \mathbb{Z} = \langle X, t \mid R, t^{-1}xt = x\alpha \ \forall x \in X \rangle.$$

(ii) Consider a group K, take $H=st_{i\in\mathbb{Z}}K_i$ where $K_i\simeq K$, and let $lpha\colon H o H$, $(k\in K_i)\mapsto (k\in K_{i+1})$. We have,

$$H \rtimes_{\alpha} \mathbb{Z} \simeq \langle X_{i} (i \in \mathbb{Z}), t \mid R_{i}, t^{-1} x_{i} t = x_{i+1} (i \in \mathbb{Z}, x \in X) \rangle$$

$$\simeq \langle X_{i} (i \in \mathbb{Z}), t \mid R_{0}, t^{-1} x_{i} t = x_{i+1} (i \in \mathbb{Z}, x \in X) \rangle$$

$$\simeq \langle X_{0}, t \mid R_{0} \rangle \simeq K * \mathbb{Z}. \square$$

Observation

Taking $1 \neq K$, f.p. and perfect ($K^{ab} = 1$), we have $H = *_{i \in \mathbb{Z}} K_i$ not f.g. and so $K * \mathbb{Z}$ is f.p. and !-by- \mathbb{Z} , but not [f.g.]-by- \mathbb{Z} .

On the isomorphism problem

Recognition of \mathbb{Z} -extensions

Observation

- (i) H f.g. (f.p.) \Rightarrow H $\rtimes_{\alpha} \mathbb{Z}$ is f.g. (f.p.);
- (ii) $H \rtimes_{\alpha} \mathbb{Z}$ f.p. $\Rightarrow H$ is f.g.

Proof.

(i)
$$H = \langle X \mid R \rangle \Rightarrow H \rtimes_{\alpha} \mathbb{Z} = \langle X, t \mid R, t^{-1}xt = x\alpha \ \forall x \in X \rangle$$
.

(ii) Consider a group K, take $H = *_{i \in \mathbb{Z}} K_i$ where $K_i \simeq K$, and let $\alpha \colon H \to H$, $(k \in K_i) \mapsto (k \in K_{i+1})$. We have,

$$\begin{array}{cccc} H \rtimes_{\alpha} \mathbb{Z} & \simeq & \langle X_{i} \, (i \in \mathbb{Z}), & t \mid R_{i}, & t^{-1} x_{i} t = x_{i+1} \, (i \in \mathbb{Z}, x \in X) \rangle \\ & \simeq & \langle X_{i} \, (i \in \mathbb{Z}), & t \mid R_{0}, & t^{-1} x_{i} t = x_{i+1} \, (i \in \mathbb{Z}, x \in X) \rangle \\ & \simeq & \langle X_{0}, & t \mid R_{0} \rangle \simeq K * \mathbb{Z}. & \Box \end{array}$$

Observation

- (i) H f.g. $(f.p.) \Rightarrow H \rtimes_{\alpha} \mathbb{Z}$ is f.g. (f.p.):
- (ii) $H \rtimes_{\alpha} \mathbb{Z}$ f.p. $\Rightarrow H$ is f.g.

Proof.

(i)
$$H = \langle X \mid R \rangle \Rightarrow H \rtimes_{\alpha} \mathbb{Z} = \langle X, t \mid R, t^{-1}xt = x\alpha \ \forall x \in X \rangle$$
.

(ii) Consider a group K, take $H = *_{i \in \mathbb{Z}} K_i$ where $K_i \simeq K$, and let $\alpha: H \to H$, $(k \in K_i) \mapsto (k \in K_{i+1})$. We have,

$$H \rtimes_{\alpha} \mathbb{Z} \simeq \langle X_{i} (i \in \mathbb{Z}), t \mid R_{i}, t^{-1}x_{i}t = x_{i+1} (i \in \mathbb{Z}, x \in X) \rangle$$

$$\simeq \langle X_{i} (i \in \mathbb{Z}), t \mid R_{0}, t^{-1}x_{i}t = x_{i+1} (i \in \mathbb{Z}, x \in X) \rangle$$

$$\simeq \langle X_{0}, t \mid R_{0} \rangle \simeq K * \mathbb{Z}. \square$$

Observation

Taking $1 \neq K$, f.p. and perfect $(K^{ab} = 1)$, we have $H = *_{i \in \mathbb{Z}} K_i$ not f.g. and so $K * \mathbb{Z}$ is f.p. and $!-by-\mathbb{Z}$, but not [f.g.]-by- \mathbb{Z} .

Theorem (Cavallo-Kharobaei-Delgado-V.)

There exists no algorithm to decide, given a finite presentation $G \in \mathcal{G}$ (even with $b_1(G) = 1$), whether $G \in [f.g.]$ -by- \mathbb{Z} or not.

Proof. There exists a recurrent sequence of finite presentations $K_j = \langle X_j \mid R_j \rangle$ such that K_j is perfect and triviality of K_j is undecidable.

- $K_j * \mathbb{Z} = (*_{i \in \mathbb{Z}} K_j) \rtimes_{\alpha} \mathbb{Z}$ has Betti number 1;
- the only normal subgroup of $K_j * \mathbb{Z}$ with quotient \mathbb{Z} is $\simeq *_{i \in \mathbb{Z}} K_j$;
- so, $K_j * \mathbb{Z} \in [f.g.]$ -by- $\mathbb{Z} \Leftrightarrow *_{i \in \mathbb{Z}} K_j f.g. \Leftrightarrow K_j = 1$, which is undecidable. \square

Theorem (Cavallo-Kharobaei-Delgado-V.)

There exists no algorithm to decide, given a finite presentation $G \in \mathcal{G}$ (even with $b_1(G) = 1$), whether $G \in [f.g.]$ -by- \mathbb{Z} or not.

Proof. There exists a recurrent sequence of finite presentations $K_j = \langle X_j \mid R_j \rangle$ such that K_j is perfect and triviality of K_j is undecidable.

- $K_j * \mathbb{Z} = (*_{i \in \mathbb{Z}} K_j) \rtimes_{\alpha} \mathbb{Z}$ has Betti number 1;
- the only normal subgroup of $K_j * \mathbb{Z}$ with quotient \mathbb{Z} is $\simeq *_{i \in \mathbb{Z}} K_j$;
- so, $K_j * \mathbb{Z} \in [f.g.]$ -by- $\mathbb{Z} \Leftrightarrow *_{i \in \mathbb{Z}} K_j f.g. \Leftrightarrow K_j = 1$, which is undecidable. \square

Theorem (Cavallo-Kharobaei-Delgado-V.)

There exists no algorithm to decide, given a finite presentation $G \in \mathcal{G}$ (even with $b_1(G) = 1$), whether $G \in [f.g.]$ -by- \mathbb{Z} or not.

Proof. There exists a recurrent sequence of finite presentations $K_j = \langle X_j \mid R_j \rangle$ such that K_j is perfect and triviality of K_j is undecidable.

- $K_j * \mathbb{Z} = (*_{i \in \mathbb{Z}} K_j) \rtimes_{\alpha} \mathbb{Z}$ has Betti number 1;
- the only normal subgroup of $K_j * \mathbb{Z}$ with quotient \mathbb{Z} is $\simeq *_{i \in \mathbb{Z}} K_j$;
- so, $K_j * \mathbb{Z} \in [f.g.]$ -by- $\mathbb{Z} \Leftrightarrow *_{i \in \mathbb{Z}} K_j f.g. \Leftrightarrow K_j = 1$, which is undecidable. \square

Theorem (Cavallo-Kharobaei-Delgado-V.)

There exists no algorithm to decide, given a finite presentation $G \in \mathcal{G}$ (even with $b_1(G) = 1$), whether $G \in [f.g.]$ -by- \mathbb{Z} or not.

Proof. There exists a recurrent sequence of finite presentations $K_j = \langle X_j \mid R_j \rangle$ such that K_j is perfect and triviality of K_j is undecidable.

- $K_i * \mathbb{Z} = (*_{i \in \mathbb{Z}} K_i) \rtimes_{\alpha} \mathbb{Z}$ has Betti number 1;
- the only normal subgroup of $K_j * \mathbb{Z}$ with quotient \mathbb{Z} is $\simeq *_{i \in \mathbb{Z}} K_j$;
- so, $K_j * \mathbb{Z} \in [f.g.]$ -by- $\mathbb{Z} \Leftrightarrow *_{i \in \mathbb{Z}} K_j f.g. \Leftrightarrow K_j = 1$, which is undecidable. \square

Theorem (Cavallo-Kharobaei-Delgado-V.)

There exists no algorithm to decide, given a finite presentation $G \in \mathcal{G}$ (even with $b_1(G) = 1$), whether $G \in [f.g.]$ -by- \mathbb{Z} or not.

Proof. There exists a recurrent sequence of finite presentations $K_j = \langle X_j \mid R_j \rangle$ such that K_j is perfect and triviality of K_j is undecidable.

- $K_j * \mathbb{Z} = (*_{i \in \mathbb{Z}} K_j) \rtimes_{\alpha} \mathbb{Z}$ has Betti number 1;
- the only normal subgroup of $K_j * \mathbb{Z}$ with quotient \mathbb{Z} is $\simeq *_{i \in \mathbb{Z}} K_j$;
- so, $K_j * \mathbb{Z} \in [f.g.]$ -by- $\mathbb{Z} \Leftrightarrow *_{i \in \mathbb{Z}} K_j f.g. \Leftrightarrow K_j = 1$, which is undecidable. \square

Proposition (Cavallo-Kharobaei-Delgado-V.)

All the (finite) standard presentations of a given [f.p.]-by- \mathbb{Z} group G are recursively enumerable.

The BNS invariant

Proof. We are given a finite presentation $\langle X \mid R \rangle$ of a group G which is in [f.p.]-by- \mathbb{Z} .

• Enumerate all pres. of G (by diagonally applying all possible Tietze

$$\langle y_1,\ldots,y_n,t\mid r_i,\ t^{-1}y_jt=w_j\ (i=1,\ldots,m),(j=1,\ldots,n)\rangle,$$

• For each such pres., check whether $y_i \mapsto w_i$ defines an endo, say α ,

Proposition (Cavallo-Kharobaei-Delgado-V.)

All the (finite) standard presentations of a given [f.p.]-by- \mathbb{Z} group G are recursively enumerable.

Proof. We are given a finite presentation $\langle X \mid R \rangle$ of a group G which is in [f.p.]-by- \mathbb{Z} .

• Enumerate all pres. of G (by diagonally applying all possible Tietze transformations to $\langle X \mid R \rangle$), of the form

$$\langle y_1, \ldots, y_n, t \mid r_i, t^{-1}y_jt = w_j \ (i = 1, \ldots, m), (j = 1, \ldots, n) \rangle,$$

where the r_i 's and w_i 's are words on the y_i 's.

• For each such pres., check whether $y_i \mapsto w_i$ defines an endo, say α ,

Proposition (Cavallo-Kharobaei-Delgado-V.)

All the (finite) standard presentations of a given [f.p.]-by- \mathbb{Z} group G are recursively enumerable.

The BNS invariant

Proof. We are given a finite presentation $\langle X \mid R \rangle$ of a group G which is in [f.p.]-by- \mathbb{Z} .

• Enumerate all pres. of G (by diagonally applying all possible Tietze transformations to $\langle X \mid R \rangle$), of the form

$$\langle y_1, \ldots, y_n, t \mid r_i, t^{-1}y_jt = w_j \ (i = 1, \ldots, m), (j = 1, \ldots, n) \rangle,$$

where the r_i 's and w_i 's are words on the y_i 's.

• For each such pres., check whether $y_i \mapsto w_i$ defines an endo, say α , of $H = \langle y_1, \dots, y_n \mid r_1, \dots, r_m \rangle$ (by enumerating $\ll r_1, \dots, r_m \gg$ and checking whether each $r_i(w_1, \ldots, w_n)$ does appear in the list). Warning! we cannot use WP(H)...

- For each such pres., check whether $\alpha \colon H \to H$ is an isomorphism of H (by enumerating all possible endos $\beta \colon H \to H$ and checking for well definedness and for $\alpha\beta = \beta\alpha = Id$).
- If $\alpha \in Aut(H)$ output the corresponding standard presentation.

- Each such process will either output a valid standard presentation for G, or work forever with no output.
- Every standard presentation for G (there exists at least one!)
 eventually appears in the process. □

- For each such pres., check whether $\alpha \colon H \to H$ is an isomorphism of H (by enumerating all possible endos $\beta \colon H \to H$ and checking for well definedness and for $\alpha\beta = \beta\alpha = Id$).
- If $\alpha \in Aut(H)$ output the corresponding standard presentation.

- Each such process will either output a valid standard presentation for G, or work forever with no output.
- Every standard presentation for G (there exists at least one!) eventually appears in the process. □

- For each such pres., check whether $\alpha \colon H \to H$ is an isomorphism of H (by enumerating all possible endos $\beta \colon H \to H$ and checking for well definedness and for $\alpha\beta = \beta\alpha = Id$).
- If $\alpha \in Aut(H)$ output the corresponding standard presentation.

- Each such process will either output a valid standard presentation for G, or work forever with no output.
- Every standard presentation for G (there exists at least one!) eventually appears in the process. □

- For each such pres., check whether $\alpha \colon H \to H$ is an isomorphism of H (by enumerating all possible endos $\beta \colon H \to H$ and checking for well definedness and for $\alpha\beta = \beta\alpha = Id$).
- If $\alpha \in Aut(H)$ output the corresponding standard presentation.

- Each such process will either output a valid standard presentation for G, or work forever with no output.
- Every standard presentation for G (there exists at least one!)
 eventually appears in the process. □

Outline

- Algorithmic recognition of groups
- 2 Z-extensions
- 3 The Bieri-Neumann-Strebel invariant
- On the isomorphism problem
- 6 Applications

The theory of sigma invariants was started and developed in the 1980's by Robert Bieri, Walter Neumann and Ralf Strebel

Definition

Let $G = \langle X \mid R \rangle$ be a f.g. group. A character is a morphism $\chi \colon G \to \mathbb{R}$. Every such χ factors through $G^{ab*} = G^{ab}/T(G^{ab}) = \mathbb{Z}^r$ (where $n = b_1(G)$) and so,

$$\{\mathit{characters\ of\ G}\} = \mathsf{Hom}(\mathit{G},\mathbb{R}) = \mathsf{Hom}(\mathbb{Z}^n,\mathbb{R}) \simeq \mathbb{R}^n.$$

Define $\chi_1 \sim \chi_2 \iff \chi_2 = \lambda \chi_1 \text{ for some } \lambda > 0$,

$$S(G) = \{\chi \colon G \to \mathbb{R} \mid \chi \neq 0\} / \sim = (\mathbb{R}^n \setminus \{0\}) / \sim = S^{n-1}.$$

is the character sphere of G. Given $H \leqslant G$ define

$$S(G, H) = \{ \chi \in S(G) \mid \chi(H) = 0 \}$$

The theory of sigma invariants was started and developed in the 1980's by Robert Bieri, Walter Neumann and Ralf Strebel

Definition

Let $G = \langle X \mid R \rangle$ be a f.g. group. A character is a morphism $\chi \colon G \to \mathbb{R}$. Every such χ factors through $G^{ab*} = G^{ab}/T(G^{ab}) = \mathbb{Z}^n$ (where $n = b_1(G)$) and so,

$$\{characters\ of\ G\} = \mathsf{Hom}(G,\mathbb{R}) = \mathsf{Hom}(\mathbb{Z}^n,\mathbb{R}) \simeq \mathbb{R}^n.$$

Define $\chi_1 \sim \chi_2 \iff \chi_2 = \lambda \chi_1$ for some $\lambda > 0$,

$$S(G) = \{\chi \colon G \to \mathbb{R} \mid \chi \neq 0\} / \sim = (\mathbb{R}^n \setminus \{0\}) / \sim = S^{n-1}.$$

is the character sphere of G. Given $H \leqslant G$ define

$$S(G, H) = \{ \chi \in S(G) \mid \chi(H) = 0 \}$$

The theory of sigma invariants was started and developed in the 1980's by Robert Bieri, Walter Neumann and Ralf Strebel

Definition

Let $G = \langle X \mid R \rangle$ be a f.g. group. A character is a morphism $\chi \colon G \to \mathbb{R}$. Every such χ factors through $G^{ab*} = G^{ab}/T(G^{ab}) = \mathbb{Z}^n$ (where $n = b_1(G)$) and so,

$$\{characters\ of\ G\} = \mathsf{Hom}(G,\mathbb{R}) = \mathsf{Hom}(\mathbb{Z}^n,\mathbb{R}) \simeq \mathbb{R}^n.$$

Define $\chi_1 \sim \chi_2 \iff \chi_2 = \lambda \chi_1 \text{ for some } \lambda > 0$,

$$S(G) = \{\chi \colon G \to \mathbb{R} \mid \chi \neq 0\} / \sim = (\mathbb{R}^n \setminus \{0\}) / \sim = S^{n-1}.$$

is the character sphere of G. Given $H \leqslant G$ define

$$S(G, H) = \{ \chi \in S(G) \mid \chi(H) = 0 \}$$

The theory of sigma invariants was started and developed in the 1980's by Robert Bieri, Walter Neumann and Ralf Strebel

Definition

Let $G = \langle X \mid R \rangle$ be a f.g. group. A character is a morphism $\chi \colon G \to \mathbb{R}$. Every such χ factors through $G^{ab*} = G^{ab}/T(G^{ab}) = \mathbb{Z}^n$ (where $n = b_1(G)$) and so,

$$\{characters\ of\ G\} = \mathsf{Hom}(G,\mathbb{R}) = \mathsf{Hom}(\mathbb{Z}^n,\mathbb{R}) \simeq \mathbb{R}^n.$$

Define $\chi_1 \sim \chi_2 \iff \chi_2 = \lambda \chi_1 \text{ for some } \lambda > 0$,

$$S(G) = \{\chi \colon G \to \mathbb{R} \mid \chi \neq 0\} / \sim = (\mathbb{R}^n \setminus \{0\}) / \sim = S^{n-1}.$$

is the character sphere of G. Given $H \leq G$ define

$$S(G, H) = \{ \chi \in S(G) \mid \chi(H) = 0 \}$$

The theory of sigma invariants was started and developed in the 1980's by Robert Bieri, Walter Neumann and Ralf Strebel

Definition

Let $G = \langle X \mid R \rangle$ be a f.g. group. A character is a morphism $\chi \colon G \to \mathbb{R}$. Every such χ factors through $G^{ab*} = G^{ab}/T(G^{ab}) = \mathbb{Z}^n$ (where $n = b_1(G)$) and so,

$$\{characters\ of\ G\} = \mathsf{Hom}(G,\mathbb{R}) = \mathsf{Hom}(\mathbb{Z}^n,\mathbb{R}) \simeq \mathbb{R}^n.$$

Define $\chi_1 \sim \chi_2 \iff \chi_2 = \lambda \chi_1 \text{ for some } \lambda > 0$,

$$S(G) = \{\chi \colon G \to \mathbb{R} \mid \chi \neq 0\} / \sim = (\mathbb{R}^n \setminus \{0\}) / \sim = S^{n-1}.$$

is the character sphere of G. Given $H \leq G$ define

$$S(G, H) = \{ \chi \in S(G) \mid \chi(H) = 0 \}.$$

Definition

The first sigma invariant of G (also called the BNS invariant) is the following subset of the character sphere:

$$\Sigma^{1}(G) = \{\chi \in S(G) \mid G_{\chi} \text{ is connected in } \Gamma(G, X)\} \subseteq S(G),$$

where $G_{\chi} = \{g \in G \mid \chi(g) > 0\}$ is the positive cone; (this connectivity does not depend on X!).

$$H ext{ is } f.g. \Leftrightarrow S(G,H) \subseteq \Sigma^1(G)$$

H is f.g.
$$\Leftrightarrow \pi, -\pi \in \Sigma^1(G)$$

On the isomorphism problem

The BNS invariant

Definition

The first sigma invariant of G (also called the BNS invariant) is the following subset of the character sphere:

$$\Sigma^{1}(G) = \{\chi \in S(G) \mid G_{\chi} \text{ is connected in } \Gamma(G, X)\} \subseteq S(G),$$

where $G_{\chi} = \{g \in G \mid \chi(g) > 0\}$ is the positive cone; (this connectivity does not depend on X!).

Theorem

Let G be f.g. and $H \triangleleft G$ s.t. G/H is abelian. Then,

$$H$$
 is f.g. \Leftrightarrow $S(G, H) \subseteq \Sigma^{1}(G)$.

In particular, if $G/H = \mathbb{Z}$ and $\pi: G \rightarrow G/H = \mathbb{Z}$, then

H is f.g.
$$\Leftrightarrow \pi, -\pi \in \Sigma^1(G)$$
.

Theorem (Cavallo-Kharobaei-Delgado-V.)

There exists no algorithm s.t., given a finite pres. $G = \langle X \mid R \rangle$, and a character $\chi: G \to \mathbb{R}$ (i.e., a point $p = [\chi] \in S(G)$) decides whether $p \in \Sigma^1(G)$ or not.

Consider any finite pres. $G = \langle X \mid R \rangle \in !\text{-by-}\mathbb{Z}$ (i.e., with $b_1(G) = 1$),

Apply A to G and both $\pm \pi$ to decide whether $\pi \in \Sigma^1(G)$ or not, and whether $-\pi \in \Sigma^1(G)$ or not.

But, $\pm \pi \in \Sigma^1(G) \Leftrightarrow \ker(\pi)$ is f.g. $\Leftrightarrow G \in [f.g.]$ -by- \mathbb{Z} .

Theorem (Cavallo-Kharobaei-Delgado-V.)

There exists no algorithm s.t., given a finite pres. $G = \langle X \mid R \rangle$, and a character $\chi \colon G \to \mathbb{R}$ (i.e., a point $p = [\chi] \in S(G)$) decides whether $p \in \Sigma^1(G)$ or not.

Proof. Suppose there exists such an algorithm A.

Consider any finite pres. $G = \langle X \mid R \rangle \in !$ -by- \mathbb{Z} (i.e., with $b_1(G) = 1$) and let $\pi \colon G \twoheadrightarrow G^{\mathrm{ab}*} = \mathbb{Z}$.

Apply A to G and both $\pm \pi$ to decide whether $\pi \in \Sigma^1(G)$ or not, and whether $-\pi \in \Sigma^1(G)$ or not.

But, $\pm \pi \in \Sigma^1(G) \Leftrightarrow \ker(\pi) \text{ is f.g. } \Leftrightarrow G \in [\text{f.g.}]\text{-by-}\mathbb{Z}$.

Theorem (Cavallo-Kharobaei-Delgado-V.)

There exists no algorithm s.t., given a finite pres. $G = \langle X \mid R \rangle$, and a character $\chi \colon G \to \mathbb{R}$ (i.e., a point $p = [\chi] \in S(G)$) decides whether $p \in \Sigma^1(G)$ or not.

Proof. Suppose there exists such an algorithm A.

Consider any finite pres. $G = \langle X \mid R \rangle \in !\text{-by-}\mathbb{Z}$ (i.e., with $b_1(G) = 1$), and let $\pi \colon G \twoheadrightarrow G^{ab*} = \mathbb{Z}$.

Apply A to G and both $\pm \pi$ to decide whether $\pi \in \Sigma^1(G)$ or not, and whether $-\pi \in \Sigma^1(G)$ or not.

But, $\pm \pi \in \Sigma^{1}(G) \Leftrightarrow \ker(\pi) \text{ is f.g. } \Leftrightarrow G \in [\text{f.g.}]\text{-by-}\mathbb{Z}.$

Theorem (Cavallo-Kharobaei-Delgado-V.)

There exists no algorithm s.t., given a finite pres. $G = \langle X \mid R \rangle$, and a character $\chi \colon G \to \mathbb{R}$ (i.e., a point $p = [\chi] \in S(G)$) decides whether $p \in \Sigma^1(G)$ or not.

Proof. Suppose there exists such an algorithm A.

Consider any finite pres. $G = \langle X \mid R \rangle \in !\text{-by-}\mathbb{Z}$ (i.e., with $b_1(G) = 1$), and let $\pi \colon G \twoheadrightarrow G^{ab*} = \mathbb{Z}$.

Apply \mathcal{A} to G and both $\pm \pi$ to decide whether $\pi \in \Sigma^1(G)$ or not, and whether $-\pi \in \Sigma^1(G)$ or not.

But, $\pm \pi \in \Sigma^{1}(G) \Leftrightarrow \ker(\pi) \text{ is f.g. } \Leftrightarrow G \in [\text{f.g.}]\text{-by-}\mathbb{Z}.$

Theorem (Cavallo-Kharobaei-Delgado-V.)

There exists no algorithm s.t., given a finite pres. $G = \langle X \mid R \rangle$, and a character $\chi \colon G \to \mathbb{R}$ (i.e., a point $p = [\chi] \in S(G)$) decides whether $p \in \Sigma^1(G)$ or not.

Proof. Suppose there exists such an algorithm A.

Consider any finite pres. $G = \langle X \mid R \rangle \in !\text{-by-}\mathbb{Z}$ (i.e., with $b_1(G) = 1$), and let $\pi \colon G \twoheadrightarrow G^{ab*} = \mathbb{Z}$.

Apply \mathcal{A} to G and both $\pm \pi$ to decide whether $\pi \in \Sigma^1(G)$ or not, and whether $-\pi \in \Sigma^1(G)$ or not.

But, $\pm \pi \in \Sigma^1(G) \Leftrightarrow \ker(\pi) \text{ is f.g. } \Leftrightarrow G \in [\text{f.g.}]\text{-by-}\mathbb{Z}.$

Theorem (Cavallo-Kharobaei-Delgado-V.)

There exists no algorithm s.t., given a finite pres. $G = \langle X \mid R \rangle$, and a character $\chi \colon G \to \mathbb{R}$ (i.e., a point $p = [\chi] \in S(G)$) decides whether $p \in \Sigma^1(G)$ or not.

Proof. Suppose there exists such an algorithm A.

Consider any finite pres. $G = \langle X \mid R \rangle \in !\text{-by-}\mathbb{Z}$ (i.e., with $b_1(G) = 1$), and let $\pi \colon G \twoheadrightarrow G^{ab*} = \mathbb{Z}$.

Apply \mathcal{A} to G and both $\pm \pi$ to decide whether $\pi \in \Sigma^1(G)$ or not, and whether $-\pi \in \Sigma^1(G)$ or not.

But, $\pm \pi \in \Sigma^{1}(G) \Leftrightarrow \ker(\pi) \text{ is f.g. } \Leftrightarrow G \in [\text{f.g.}]\text{-by-}\mathbb{Z}.$

Outline

- Algorithmic recognition of groups
- 2 Z-extensions
- 3 The Bieri-Neumann-Strebel invariant
- On the isomorphism problem
- 6 Applications

Question

Given
$$H = \langle X \mid R \rangle$$
 and $\alpha, \beta \in Aut(H)$: $H \rtimes_{\alpha} \mathbb{Z} \simeq H \rtimes_{\beta} \mathbb{Z}$

$$[\alpha] \sim [\beta]^{\pm 1} \text{ in } Out(H) \quad \Rightarrow \quad H \rtimes_{\alpha} \mathbb{Z} \simeq H \rtimes_{\beta} \mathbb{Z}.$$

$$(\alpha = \chi^{-1}\beta^{\pm 1}\chi\gamma_h \text{ for some } h \in H \text{ and } \chi \in Aut(H))$$

For
$$H = F_2$$
 and $\alpha, \beta \in Aut(F_2)$:

$$F_2 \rtimes_{\alpha} \mathbb{Z} \simeq F_2 \rtimes_{\beta} \mathbb{Z} \quad \Leftrightarrow \quad [\alpha] \sim [\beta]^{\pm 1} \text{ in } Out(F_2).$$

On the isomorphism problem

The isomorphism problem

Question

Given $H = \langle X \mid R \rangle$ and $\alpha, \beta \in Aut(H)$: $H \rtimes_{\alpha} \mathbb{Z} \simeq H \rtimes_{\beta} \mathbb{Z}$

Observation

$$[\alpha] \sim [\beta]^{\pm 1}$$
 in $Out(H) \Rightarrow H \rtimes_{\alpha} \mathbb{Z} \simeq H \rtimes_{\beta} \mathbb{Z}$.

 $(\alpha = \chi^{-1}\beta^{\pm 1}\chi\gamma_h \text{ for some } h \in H \text{ and } \chi \in Aut(H))$

Question

Given $H = \langle X \mid R \rangle$ and $\alpha, \beta \in Aut(H)$: $H \rtimes_{\alpha} \mathbb{Z} \simeq H \rtimes_{\beta} \mathbb{Z} \Leftrightarrow ?$

Observation

$$[\alpha] \sim [\beta]^{\pm 1}$$
 in $Out(H) \Rightarrow H \rtimes_{\alpha} \mathbb{Z} \simeq H \rtimes_{\beta} \mathbb{Z}$.

 $(\alpha = \chi^{-1}\beta^{\pm 1}\chi\gamma_h \text{ for some } h \in H \text{ and } \chi \in Aut(H))$

Theorem (Bogopolski-Martino-V.)

For $H = F_2$ and $\alpha, \beta \in Aut(F_2)$:

 $F_2 \rtimes_{\alpha} \mathbb{Z} \simeq F_2 \rtimes_{\beta} \mathbb{Z} \quad \Leftrightarrow \quad [\alpha] \sim [\beta]^{\pm 1} \text{ in } Out(F_2).$

Example (Dicks)

 $\exists \ \alpha, \beta \in Aut(F_3)$ such that $F_3 \rtimes_{\alpha} \mathbb{Z} \simeq F_3 \rtimes_{\beta} \mathbb{Z}$ but $[\alpha] \not\sim [\beta]^{\pm 1}$ in $Out(F_3)$.

Question

Given $H = \langle X \mid R \rangle$ and $\alpha, \beta \in Aut(H)$: $H \rtimes_{\alpha} \mathbb{Z} \simeq H \rtimes_{\beta} \mathbb{Z} \Leftrightarrow ?$

Observation

$$[\alpha] \sim [\beta]^{\pm 1}$$
 in $Out(H) \implies H \rtimes_{\alpha} \mathbb{Z} \simeq H \rtimes_{\beta} \mathbb{Z}$.

 $(\alpha = \chi^{-1}\beta^{\pm 1}\chi\gamma_h \text{ for some } h \in H \text{ and } \chi \in Aut(H))$

Theorem (Bogopolski-Martino-V.)

For $H = F_2$ and $\alpha, \beta \in Aut(F_2)$:

 $F_2 \rtimes_{\alpha} \mathbb{Z} \simeq F_2 \rtimes_{\beta} \mathbb{Z} \quad \Leftrightarrow \quad [\alpha] \sim [\beta]^{\pm 1} \text{ in Out}(F_2).$

Example (Dicks)

 $\exists \alpha, \beta \in Aut(F_3)$ such that $F_3 \rtimes_{\alpha} \mathbb{Z} \simeq F_3 \rtimes_{\beta} \mathbb{Z}$ but $[\alpha] \not\sim [\beta]^{\pm 1}$ in $Out(F_3)$.

Observation

Let H and K be f.g. and $\alpha \in Aut(H)$, $\beta \in Aut(K)$ be deranged. Then,

- (i) $H \rtimes_{\alpha} \mathbb{Z} \simeq K \rtimes_{\beta} \mathbb{Z} \quad \Rightarrow \quad H \simeq K;$
- (ii) all isomorphisms from $H \rtimes_{\alpha} \mathbb{Z}$ to $H \rtimes_{\beta} \mathbb{Z}$ (if any) are of the form

$$\Psi: H \rtimes_{\alpha} \mathbb{Z} \quad \to \quad H \rtimes_{\beta} \mathbb{Z}, \\
h \quad \mapsto \quad h\psi \\
t \quad \mapsto \quad t^{\epsilon}h$$

where $\psi \in Aut(H)$, $\epsilon = \pm 1$ and $h \in H$ such that $\psi \beta^{\epsilon} \gamma_h = \alpha \psi$;

(iii) so, $H \rtimes_{\alpha} \mathbb{Z} \simeq K \rtimes_{\beta} \mathbb{Z} \quad \Leftrightarrow \quad H \simeq K \text{ and } [\alpha] \sim [\beta]^{\pm 1} \text{ in } \mathsf{Out}(H).$

Observation

Let H and K be f.g. and $\alpha \in Aut(H)$, $\beta \in Aut(K)$ be deranged. Then,

- (i) $H \rtimes_{\alpha} \mathbb{Z} \simeq K \rtimes_{\beta} \mathbb{Z} \implies H \simeq K$;
- (ii) all isomorphisms from $H\rtimes_{lpha}\mathbb{Z}$ to $H\rtimes_{eta}\mathbb{Z}$ (if any) are of the form

$$\Psi \colon H \rtimes_{\alpha} \mathbb{Z} \quad \to \quad H \rtimes_{\beta} \mathbb{Z}, \\
h \quad \mapsto \quad h\psi \\
t \quad \mapsto \quad t^{\epsilon}h$$

where $\psi \in Aut(H)$, $\epsilon = \pm 1$ and $h \in H$ such that $\psi \beta^{\epsilon} \gamma_h = \alpha \psi$;

(iii) so,
$$H \rtimes_{\alpha} \mathbb{Z} \simeq K \rtimes_{\beta} \mathbb{Z} \quad \Leftrightarrow \quad H \simeq K \text{ and } [\alpha] \sim [\beta]^{\pm 1} \text{ in } \mathsf{Out}(H)$$

Observation

Let H and K be f.g. and $\alpha \in Aut(H)$, $\beta \in Aut(K)$ be deranged. Then,

(i)
$$H \rtimes_{\alpha} \mathbb{Z} \simeq K \rtimes_{\beta} \mathbb{Z} \quad \Rightarrow \quad H \simeq K$$
;

(ii) all isomorphisms from $H \rtimes_{\alpha} \mathbb{Z}$ to $H \rtimes_{\beta} \mathbb{Z}$ (if any) are of the form:

$$\Psi \colon H \rtimes_{\alpha} \mathbb{Z} \quad \to \quad H \rtimes_{\beta} \mathbb{Z}, \\
h \quad \mapsto \quad h\psi \\
t \quad \mapsto \quad t^{\epsilon}h$$

where $\psi \in Aut(H)$, $\epsilon = \pm 1$ and $h \in H$ such that $\psi \beta^{\epsilon} \gamma_h = \alpha \psi$;

(iii) so, $H \rtimes_{\alpha} \mathbb{Z} \simeq K \rtimes_{\beta} \mathbb{Z} \quad \Leftrightarrow \quad H \simeq K \text{ and } [\alpha] \sim [\beta]^{\pm 1} \text{ in Out}(H)$

Observation

Let H and K be f.g. and $\alpha \in Aut(H)$, $\beta \in Aut(K)$ be deranged. Then,

(i)
$$H \rtimes_{\alpha} \mathbb{Z} \simeq K \rtimes_{\beta} \mathbb{Z} \quad \Rightarrow \quad H \simeq K$$
;

(ii) all isomorphisms from $H \rtimes_{\alpha} \mathbb{Z}$ to $H \rtimes_{\beta} \mathbb{Z}$ (if any) are of the form:

$$\Psi \colon H \rtimes_{\alpha} \mathbb{Z} \quad \to \quad H \rtimes_{\beta} \mathbb{Z}, \\
h \quad \mapsto \quad h\psi \\
t \quad \mapsto \quad t^{\epsilon}h$$

where $\psi \in Aut(H)$, $\epsilon = \pm 1$ and $h \in H$ such that $\psi \beta^{\epsilon} \gamma_h = \alpha \psi$;

(iii) so,
$$H \rtimes_{\alpha} \mathbb{Z} \simeq K \rtimes_{\beta} \mathbb{Z} \quad \Leftrightarrow \quad H \simeq K \text{ and } [\alpha] \sim [\beta]^{\pm 1} \text{ in Out}(H).$$

Theorem (Cavallo-Kharobaei-Delgado-V.)

Let $\mathcal{H} \subseteq \mathcal{G}$ be a family of f.p. groups. Then,

$$| \mathsf{Isom}(\mathcal{H}) \ \textit{solvable} \\ \forall \textit{H} \in \mathcal{H}, \quad \frac{1}{2} \ \mathsf{CP}'(\textit{Out}(\textit{H})) \ \textit{solvable} \\ | \Rightarrow \quad | \mathsf{Isom}(!\mathcal{H}\textit{-by-}\mathbb{Z}) \ \textit{solvable}.$$

Definition

For a group G, the $\frac{1}{2}$ CP(G) consists on deciding, given $g_1, g_2 \in G$, whether $g_1 \sim g_2^{\pm 1}$.

Observation

CP(G) solvable $\Rightarrow \frac{1}{2}CP(G)$ solvable.

Convers ?

Theorem (Cavallo-Kharobaei-Delgado-V.)

Let $\mathcal{H} \subseteq \mathcal{G}$ be a family of f.p. groups. Then,

$$| som(\mathcal{H}) \ solvable \\ \forall H \in \mathcal{H}, \quad \frac{1}{2} \ \mathsf{CP}'(Out(H)) \ solvable | \Rightarrow | lsom(!\mathcal{H}\text{-by-}\mathbb{Z}) \ solvable.$$

Definition

For a group G, the $\frac{1}{2}$ CP(G) consists on deciding, given $g_1, g_2 \in G$, whether $g_1 \sim g_2^{\pm 1}$.

Observation

CP(G) solvable $\Rightarrow \frac{1}{2}CP(G)$ solvable

Convers ?

Theorem (Cavallo-Kharobaei-Delgado-V.)

Let $\mathcal{H} \subseteq \mathcal{G}$ be a family of f.p. groups. Then,

$$| som(\mathcal{H}) \ solvable \\ \forall H \in \mathcal{H}, \quad \frac{1}{2} \ \mathsf{CP}'(Out(H)) \ solvable | \Rightarrow | lsom(!\mathcal{H}\text{-by-}\mathbb{Z}) \ solvable.$$

Definition

For a group G, the $\frac{1}{2}$ CP(G) consists on deciding, given $g_1, g_2 \in G$, whether $g_1 \sim g_2^{\pm 1}$.

Observation

CP(G) solvable $\Rightarrow \frac{1}{2}CP(G)$ solvable.

Convers ?

Theorem (Cavallo-Kharobaei-Delgado-V.)

Let $\mathcal{H} \subseteq \mathcal{G}$ be a family of f.p. groups. Then,

$$|\mathsf{som}(\mathcal{H}) \; \mathsf{solvable}| \qquad \Rightarrow \quad |\mathsf{som}(!\mathcal{H}\text{-by-}\mathbb{Z}) \; \mathsf{solvable}.$$

Definition

For a group G, the $\frac{1}{2}$ CP(G) consists on deciding, given $g_1, g_2 \in G$, whether $g_1 \sim g_2^{\pm 1}$.

Observation

CP(G) solvable $\Rightarrow \frac{1}{2}CP(G)$ solvable.

Convers?

Definition

For a f.p. $H = \langle X \mid R \rangle$, CP'(Out(H)) is the following problem: given $\alpha, \beta \in Aut(H)$ by the images the $x \in X$'s, decide whether $[\alpha] \sim [\beta]$ in Out(H).

Observation

For a f.p. group $H = \langle X \mid R \rangle$, suppose we know a finite set of autos $\alpha_1, \ldots, \alpha_n \in Aut(H)$ generating Out(H). Then,

CP(Out(H)) solvable \Leftrightarrow CP'(Out(H)) solvable.

Definition

For a f.p. $H = \langle X \mid R \rangle$, CP'(Out(H)) is the following problem: given $\alpha, \beta \in Aut(H)$ by the images the $x \in X$'s, decide whether $[\alpha] \sim [\beta]$ in Out(H).

Observation

For a f.p. group $H = \langle X \mid R \rangle$, suppose we know a finite set of autos $\alpha_1, \ldots, \alpha_n \in Aut(H)$ generating Out(H). Then,

CP(Out(H)) solvable \Leftrightarrow CP'(Out(H)) solvable.

Theorem (Cavallo-Kharobaei-Delgado-V.)

Let $\mathcal{H} \subseteq \mathcal{G}$ be a family of f.p. groups. Then,

$$|som(\mathcal{H})| solvable$$
$$\forall H \in \mathcal{H}, \quad \frac{1}{2} CP'(Out(H))| solvable$$

 $\mathsf{Isom}(!\mathcal{H}\text{-}\mathit{by-}\mathbb{Z})$ solvable.

Proof. Given two finite presentations, $\langle X_1 | R_1 \rangle$ and $\langle X_2 | R_2 \rangle$, of groups in $!\mathcal{H}$ -by- \mathbb{Z} :

- Compute standard presentations for them, and extract finite presentations for H and K, and autos $\alpha \in Aut(H)$, $\beta \in Aut(K)$;
- check whether $H \simeq K$ using $Isom(\mathcal{H})$; if $H \not\simeq K$ answer NO;
- otherwise $H \simeq K$, rewrite β in terms of H, and check whether $[\alpha] \sim [\beta]^{\pm 1}$ in Out(H) using $\frac{1}{2} \operatorname{CP}'(Out(H))$;
- if yes answer YES, if no answer NO. □

Theorem (Cavallo-Kharobaei-Delgado-V.)

Let $\mathcal{H} \subseteq \mathcal{G}$ be a family of f.p. groups. Then,

$$|\mathsf{som}(\mathcal{H}) \ \textit{solvable} \\ \forall H \in \mathcal{H}, \quad \frac{1}{2} \ \mathsf{CP}'(\textit{Out}(H)) \ \textit{solvable}$$

 $\mathsf{Isom}(!\mathcal{H}\text{-}\mathit{by-}\mathbb{Z})$ solvable.

Proof. Given two finite presentations, $\langle X_1 \mid R_1 \rangle$ and $\langle X_2 \mid R_2 \rangle$, of groups in $!\mathcal{H}$ -by- \mathbb{Z} :

- Compute standard presentations for them, and extract finite presentations for H and K, and autos $\alpha \in Aut(H)$, $\beta \in Aut(K)$
- check whether $H \simeq K$ using $Isom(\mathcal{H})$; if $H \not\simeq K$ answer NO;
- otherwise $H \simeq K$, rewrite β in terms of H, and check whether $[\alpha] \sim [\beta]^{\pm 1}$ in Out(H) using $\frac{1}{2} \operatorname{CP}'(Out(H))$;
- if yes answer YES, if no answer NO.

Theorem (Cavallo-Kharobaei-Delgado-V.)

Let $\mathcal{H} \subseteq \mathcal{G}$ be a family of f.p. groups. Then,

$$|som(\mathcal{H})| solvable$$
$$\forall H \in \mathcal{H}, \quad \frac{1}{2} CP'(Out(H))| solvable$$

 \Rightarrow Isom(! \mathcal{H} -by- \mathbb{Z}) solvable.

Proof. Given two finite presentations, $\langle X_1 \mid R_1 \rangle$ and $\langle X_2 \mid R_2 \rangle$, of groups in $!\mathcal{H}$ -by- \mathbb{Z} :

- Compute standard presentations for them, and extract finite presentations for H and K, and autos $\alpha \in Aut(H)$, $\beta \in Aut(K)$;
- check whether $H \simeq K$ using $Isom(\mathcal{H})$; if $H \not\simeq K$ answer NO;
- otherwise $H \simeq K$, rewrite β in terms of H, and check whether $[\alpha] \sim [\beta]^{\pm 1}$ in Out(H) using $\frac{1}{2} CP'(Out(H))$;
- if yes answer YES, if no answer NO.

Theorem (Cavallo-Kharobaei-Delgado-V.)

Let $\mathcal{H} \subseteq \mathcal{G}$ be a family of f.p. groups. Then,

$$|som(\mathcal{H})| solvable$$

$$\forall H \in \mathcal{H}, \quad \frac{1}{2} CP'(Out(H))| solvable$$

 $\mathsf{Isom}(!\mathcal{H}\text{-}\mathit{by}\text{-}\mathbb{Z})$ solvable.

Proof. Given two finite presentations, $\langle X_1 \mid R_1 \rangle$ and $\langle X_2 \mid R_2 \rangle$, of groups in \mathcal{H} -by- \mathbb{Z} :

- Compute standard presentations for them, and extract finite presentations for H and K, and autos $\alpha \in Aut(H)$, $\beta \in Aut(K)$;
- check whether $H \simeq K$ using $lsom(\mathcal{H})$; if $H \not\simeq K$ answer NO;
- otherwise $H \simeq K$, rewrite β in terms of H, and check whether
- if yes answer YES, if no answer NO. □

Theorem (Cavallo-Kharobaei-Delgado-V.)

Let $\mathcal{H} \subseteq \mathcal{G}$ be a family of f.p. groups. Then,

 $\mathsf{Isom}(!\mathcal{H}\text{-}\mathit{by}\text{-}\mathbb{Z})$ solvable.

On the isomorphism problem

Proof. Given two finite presentations, $\langle X_1 \mid R_1 \rangle$ and $\langle X_2 \mid R_2 \rangle$, of groups in \mathcal{H} -by- \mathbb{Z} :

- Compute standard presentations for them, and extract finite presentations for H and K, and autos $\alpha \in Aut(H)$, $\beta \in Aut(K)$;
- check whether $H \simeq K$ using $lsom(\mathcal{H})$; if $H \not\simeq K$ answer NO;
- otherwise $H \simeq K$, rewrite β in terms of H, and check whether $[\alpha] \sim [\beta]^{\pm 1}$ in Out(H) using $\frac{1}{2} \operatorname{CP}'(\operatorname{Out}(H))$;
- if yes answer YES, if no answer NO. □

Theorem (Cavallo-Kharobaei-Delgado-V.)

Let $\mathcal{H} \subseteq \mathcal{G}$ be a family of f.p. groups. Then,

$$|som(\mathcal{H})| solvable$$
$$\forall H \in \mathcal{H}, \quad \frac{1}{2} CP'(Out(H))| solvable$$

 $\mathsf{Isom}(!\mathcal{H}\text{-}\mathit{by}\text{-}\mathbb{Z})$ solvable.

On the isomorphism problem

Proof. Given two finite presentations, $\langle X_1 \mid R_1 \rangle$ and $\langle X_2 \mid R_2 \rangle$, of groups in \mathcal{H} -by- \mathbb{Z} :

- Compute standard presentations for them, and extract finite presentations for H and K, and autos $\alpha \in Aut(H)$, $\beta \in Aut(K)$;
- check whether $H \simeq K$ using $lsom(\mathcal{H})$; if $H \not\simeq K$ answer NO;
- otherwise $H \simeq K$, rewrite β in terms of H, and check whether $[\alpha] \sim [\beta]^{\pm 1}$ in Out(H) using $\frac{1}{2} CP'(Out(H))$;
- if yes answer YES, if no answer NO.

Outline

- Algorithmic recognition of groups
- 2 Z-extensions
- 3 The Bieri-Neumann-Strebel invariant
- On the isomorphism problem
- 5 Applications

Applications

Corollary

Let \mathcal{F} be the family of f.g. free groups. Modulo a solution to $CP(Out(F_n))$ for all $n \in \mathbb{N}$, $Isom(!\mathcal{F}$ -by- $\mathbb{Z})$ is solvable.

Corollary

Let \mathcal{B} be the family of Braid groups, $\mathcal{B} = \{B_n \mid n \geqslant 2\}$. Then, Isom(! \mathcal{B} -by- \mathbb{Z}) is solvable.

Corollary

Let F be Thompson's group. Then, $Isom(!F-by-\mathbb{Z})$ is solvable

Applications

Corollary

Let \mathcal{F} be the family of f.g. free groups. Modulo a solution to $CP(Out(F_n))$ for all $n \in \mathbb{N}$, $Isom(!\mathcal{F}$ -by- $\mathbb{Z})$ is solvable.

Corollary

Let \mathcal{B} be the family of Braid groups, $\mathcal{B} = \{B_n \mid n \geq 2\}$. Then, $lsom(!\mathcal{B}\text{-by-}\mathbb{Z})$ is solvable.

Corollary

Let F be Thompson's group. Then, $lsom(!F-by-\mathbb{Z})$ is solvable

Applications

Corollary

Let \mathcal{F} be the family of f.g. free groups. Modulo a solution to $CP(Out(F_n))$ for all $n \in \mathbb{N}$, $Isom(!\mathcal{F}$ -by- \mathbb{Z}) is solvable.

Corollary

Let \mathcal{B} be the family of Braid groups, $\mathcal{B} = \{B_n \mid n \geq 2\}$. Then, $lsom(!\mathcal{B}\text{-by-}\mathbb{Z})$ is solvable.

Corollary

Let F be Thompson's group. Then, Isom(!F-by- \mathbb{Z}) is solvable.

MUITO OBRIGADO