Membership in the BNS invariant

Enric Ventura

Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya

AMS/EMS/SPM International Meeting

Porto

June 11th, 2015.
(Joint work with D. Kharobaei, J. Delgado and B. Cavallo)

Outline

(1) Algorithmic recognition of groups
(2) \mathbb{Z}-extensions

3 The Bieri-Neumann-Strebel invariant

4 On the isomorphism problem
(5) Applications

Definition

Let \mathcal{G} be the class of f.p. groups. We are interested in algorithmic recognition of subclasses $\mathcal{H} \subseteq \mathcal{G}$:

- Membership: given $G \in \mathcal{G}$, decide whether it belongs to \mathcal{H} or not.
- Isomorphism: given $H_{1}, H_{2} \in \mathcal{H}$, decide whether $H_{1} \simeq H_{2}$.
- Good presentations: aiven $H \in \mathcal{H}$, find a "qood" pres. for H.

Many of these problems are algorithmically unsolvable:

- Triviality: membership in $\mathcal{H}=\{1\}$;
- Freeness: membership in $\mathcal{F}=\{$ f.g. free groups $\}$;
- Isomorphism: in \mathcal{G} and in many classes \mathcal{H};

But there are also positive results for some classes \mathcal{H}..

Definition

Let \mathcal{G} be the class of f.p. groups. We are interested in algorithmic recognition of subclasses $\mathcal{H} \subseteq \mathcal{G}$:

- Membership: given $G \in \mathcal{G}$, decide whether it belongs to \mathcal{H} or not.
- Isomorphism: given $H_{1}, H_{2} \in \mathcal{H}$, decide whether $H_{1} \simeq H_{2}$.
- Good presentations: given $H \in \mathcal{H}$, find a "good" pres. for H.

Many of these problems are algorithmically unsolvable:

- Triviality: membership in $\mathcal{H}=\{1\}$;
- Freeness: membership in $\mathcal{F}=\{$ f.g. free groups $\}$;
- Isomorphism: in \mathcal{G} and in many classes \mathcal{H};

But there are also positive results for some classes \mathcal{H}.

Definition

Let \mathcal{G} be the class of f.p. groups. We are interested in algorithmic recognition of subclasses $\mathcal{H} \subseteq \mathcal{G}$:

- Membership: given $G \in \mathcal{G}$, decide whether it belongs to \mathcal{H} or not.
- Isomorphism: given $H_{1}, H_{2} \in \mathcal{H}$, decide whether $H_{1} \simeq H_{2}$.
- Good presentations: given $H \in \mathcal{H}$, find a "good" pres. for H.

Many of these problems are algorithmically unsolvable:

- Triviality: membership in $\mathcal{H}=\{1\}$
- Freeness: membership in $\mathcal{F}=\{$ f.g. free groups $\}$;
- Isomorphism: in \mathcal{G} and in many classes \mathcal{H};

But there are also positive results for some classes \mathcal{H}.

Definition

Let \mathcal{G} be the class of f.p. groups. We are interested in algorithmic recognition of subclasses $\mathcal{H} \subseteq \mathcal{G}$:

- Membership: given $G \in \mathcal{G}$, decide whether it belongs to \mathcal{H} or not.
- Isomorphism: given $H_{1}, H_{2} \in \mathcal{H}$, decide whether $H_{1} \simeq H_{2}$.
- Good presentations: given $H \in \mathcal{H}$, find a "good" pres. for H.

Many of these problems are algorithmically unsolvable:

- Triviality: membership in $\mathcal{H}=\{1\}$
- Freeness: membership in $\mathcal{F}=\{$ f.g. free groups $\}$;
- Isomorphism: in \mathcal{G} and in many classes \mathcal{H};

But there are also positive results for some classes \mathcal{H}.

Definition

Let \mathcal{G} be the class of f.p. groups. We are interested in algorithmic recognition of subclasses $\mathcal{H} \subseteq \mathcal{G}$:

- Membership: given $G \in \mathcal{G}$, decide whether it belongs to \mathcal{H} or not.
- Isomorphism: given $H_{1}, H_{2} \in \mathcal{H}$, decide whether $H_{1} \simeq H_{2}$.
- Good presentations: given $H \in \mathcal{H}$, find a "good" pres. for H.

Many of these problems are algorithmically unsolvable:

- Triviality: membership in $\mathcal{H}=\{1\}$;
- Freeness: membership in $\mathcal{F}=\{$ f.g. free groups $\}$
- Isomorphism: in \mathcal{G} and in many classes \mathcal{H};

But there are also positive results for some classes \mathcal{H}

Definition

Let \mathcal{G} be the class of f.p. groups. We are interested in algorithmic recognition of subclasses $\mathcal{H} \subseteq \mathcal{G}$:

- Membership: given $G \in \mathcal{G}$, decide whether it belongs to \mathcal{H} or not.
- Isomorphism: given $H_{1}, H_{2} \in \mathcal{H}$, decide whether $H_{1} \simeq H_{2}$.
- Good presentations: given $H \in \mathcal{H}$, find a "good" pres. for H.

Many of these problems are algorithmically unsolvable:

- Triviality: membership in $\mathcal{H}=\{1\}$;
- Freeness: membership in $\mathcal{F}=\{$ f.g. free groups $\}$;

But there are also positive results for some classes \mathcal{H}.

Definition

Let \mathcal{G} be the class of f.p. groups. We are interested in algorithmic recognition of subclasses $\mathcal{H} \subseteq \mathcal{G}$:

- Membership: given $G \in \mathcal{G}$, decide whether it belongs to \mathcal{H} or not.
- Isomorphism: given $H_{1}, H_{2} \in \mathcal{H}$, decide whether $H_{1} \simeq H_{2}$.
- Good presentations: given $H \in \mathcal{H}$, find a "good" pres. for H.

Many of these problems are algorithmically unsolvable:

- Triviality: membership in $\mathcal{H}=\{1\}$;
- Freeness: membership in $\mathcal{F}=\{$ f.g. free groups $\}$;
- Isomorphism: in \mathcal{G} and in many classes \mathcal{H};

But there are also positive results for some classes \mathcal{H}.

Definition

Let \mathcal{G} be the class of f.p. groups. We are interested in algorithmic recognition of subclasses $\mathcal{H} \subseteq \mathcal{G}$:

- Membership: given $G \in \mathcal{G}$, decide whether it belongs to \mathcal{H} or not.
- Isomorphism: given $H_{1}, H_{2} \in \mathcal{H}$, decide whether $H_{1} \simeq H_{2}$.
- Good presentations: given $H \in \mathcal{H}$, find a "good" pres. for H.

Many of these problems are algorithmically unsolvable:

- Triviality: membership in $\mathcal{H}=\{1\}$;
- Freeness: membership in $\mathcal{F}=\{$ f.g. free groups $\}$;
- Isomorphism: in \mathcal{G} and in many classes \mathcal{H};

But there are also positive results for some classes \mathcal{H}...

Outline

(1) Algorithmic recognition of groups

(2) \mathbb{Z}-extensions

3 The Bieri-Neumann-Strebel invariant

4 On the isomorphism problem
(5) Applications

Z-extensions

Definition

Let $H=\langle X \mid R\rangle$ be a group and $\alpha \in \operatorname{Aut}(H)$. The semidirect extension of H given by α is:

$$
H_{\alpha}=H \rtimes_{\alpha} \mathbb{Z}=\left\langle X, t \mid R, t^{-1} x t=x \alpha \quad \forall x \in X\right\rangle ;
$$

also called a H -by-Z group. The above is called a standard presentation for H_{α}.

Observation

(ii) If $H \unlhd G$ with $G / H \simeq \mathbb{Z}$, then the short exact sequence

Z-extensions

Definition

Let $H=\langle X \mid R\rangle$ be a group and $\alpha \in \operatorname{Aut}(H)$. The semidirect extension of H given by α is:

$$
H_{\alpha}=H \rtimes_{\alpha} \mathbb{Z}=\left\langle X, t \mid R, t^{-1} x t=x \alpha \quad \forall x \in X\right\rangle ;
$$

also called a H -by-Z group. The above is called a standard presentation for H_{α}.

Observation

(i) $H \unlhd H_{\alpha}$ and $H_{\alpha} / H \simeq \mathbb{Z}$.
(ii) If $H \unlhd G$ with $G / H \simeq \mathbb{Z}$, then the short exact sequence

Z-extensions

Definition

Let $H=\langle X \mid R\rangle$ be a group and $\alpha \in \operatorname{Aut}(H)$. The semidirect extension of H given by α is:

$$
H_{\alpha}=H \rtimes_{\alpha} \mathbb{Z}=\left\langle X, t \mid R, t^{-1} x t=x \alpha \quad \forall x \in X\right\rangle ;
$$

also called a H-by-Z group. The above is called a standard presentation for H_{α}.

Observation

(i) $H \unlhd H_{\alpha}$ and $H_{\alpha} / H \simeq \mathbb{Z}$.
(ii) If $H \unlhd G$ with $G / H \simeq \mathbb{Z}$, then the short exact sequence

$$
1 \longrightarrow H \longrightarrow G \longrightarrow \mathbb{Z} \longrightarrow 1
$$

splits and $G \simeq H \rtimes_{\alpha} \mathbb{Z}$ for some $\alpha \in \operatorname{Aut}(H)$.

Recognition of \mathbb{Z}-extensions

$$
*-\text { by- } \mathbb{Z}=\left\{H \rtimes_{\alpha} \mathbb{Z} \mid \alpha \in \operatorname{Aut}(H)\right\} \subseteq \mathcal{G}
$$

Given $G \in \mathcal{G}$, we have

$$
\begin{aligned}
G \in *-b y-\mathbb{Z} & \Leftrightarrow \exists H \unlhd G \text { with } G / H \simeq \mathbb{Z} \\
& \Leftrightarrow G G \not b_{1}(G) \geqslant 1 .
\end{aligned}
$$

G f.g. $\Rightarrow G^{\mathrm{ab}}=\mathbb{Z}^{n} \oplus T$; the first Betti number is $b_{1}(G)=n$.

Observation

There is an alaorithm which, given $G \in \mathcal{G}$, decides whether G is a \mathbb{Z}-extension (of some normal subgroup $H \unlhd G$).

Recognition of \mathbb{Z}-extensions

$$
* \text {-by- } \mathbb{Z}=\left\{H \rtimes_{\alpha} \mathbb{Z} \mid \alpha \in \operatorname{Aut}(H)\right\} \subseteq \mathcal{G}
$$

Given $G \in \mathcal{G}$, we have

$$
\begin{aligned}
G \in *-b y-\mathbb{Z} & \Leftrightarrow \exists H \unlhd G \text { with } G / H \simeq \mathbb{Z} \\
& \Leftrightarrow \exists G \rightarrow \mathbb{Z} \\
& \Leftrightarrow b_{1}(G) \geqslant 1 .
\end{aligned}
$$

G f.g. $\Rightarrow G^{\mathrm{ab}}=\mathbb{Z}^{n} \oplus T$; the first Betti number is $b_{1}(G)=n$.

Observation

There is an algorithm which, given $G \in \mathcal{G}$, decides whether G is a \mathbb{Z}-extension (of some normal subgroup $H \unlhd G$).

Recognition of \mathbb{Z}-extensions

$$
*-\text { by- } \mathbb{Z}=\left\{H \rtimes_{\alpha} \mathbb{Z} \mid \alpha \in \operatorname{Aut}(H)\right\} \subseteq \mathcal{G}
$$

Given $G \in \mathcal{G}$, we have

$$
\begin{aligned}
G \in *-\text { by-Z } & \Leftrightarrow \exists H \unlhd G \text { with } G / H \simeq \mathbb{Z} \\
& \Leftrightarrow \exists G \rightarrow \mathbb{Z} \\
& \Leftrightarrow b_{1}(G) \geqslant 1 .
\end{aligned}
$$

G f.g. $\Rightarrow G^{\mathrm{ab}}=\mathbb{Z}^{n} \oplus T$; the first Betti number is $b_{1}(G)=n$.

Observation

There is an algorithm which, given $G \in \mathcal{G}$, decides whether G is a \mathbb{Z}-extension (of some normal subgroup $H \unlhd G$).

Recognition of \mathbb{Z}-extensions

$$
*-\text { by- } \mathbb{Z}=\left\{H \rtimes_{\alpha} \mathbb{Z} \mid \alpha \in \operatorname{Aut}(H)\right\} \subseteq \mathcal{G}
$$

Given $G \in \mathcal{G}$, we have

$$
\begin{aligned}
G \in *-b y-\mathbb{Z} & \Leftrightarrow \exists H \unlhd G \text { with } G / H \simeq \mathbb{Z} \\
& \Leftrightarrow \exists G \rightarrow \mathbb{Z} \\
& \Leftrightarrow b_{1}(G) \geqslant 1 .
\end{aligned}
$$

G f.g. $\Rightarrow G^{\mathrm{ab}}=\mathbb{Z}^{n} \oplus T$; the first Betti number is $b_{1}(G)=n$.

Observation

There is an algorithm which, given $G \in \mathcal{G}$, decides whether G is a \mathbb{Z}-extension (of some normal subgroup $H \unlhd G$).

Unique extensions

Definition

A group G is called a unique \mathbb{Z}-extension if it has a unique normal subgroup $H \unlhd G$ with $G / H \simeq \mathbb{Z}$. Denote by !-by-Z the family of these groups.

Given $G \in \mathcal{G}$, we have

Observation

There is an alaorithm which, given $G \in \mathcal{G}$, decides whether G is in -by-Z

Unique extensions

Definition

A group G is called a unique \mathbb{Z}-extension if it has a unique normal subgroup $H \unlhd G$ with $G / H \simeq \mathbb{Z}$. Denote by !-by-Z the family of these groups.

Given $G \in \mathcal{G}$, we have

$$
\begin{aligned}
G \in!-b y-\mathbb{Z} & \Leftrightarrow \exists!H \unlhd G \text { with } G / H \simeq \mathbb{Z} \\
& \Leftrightarrow b_{1}(G)=1 .
\end{aligned}
$$

Observation

There is an algorithm which, given $G \in \mathcal{G}$, decides whether G is in
!-by-Z .

Unique extensions

Definition

A group G is called a unique \mathbb{Z}-extension if it has a unique normal subgroup $H \unlhd G$ with $G / H \simeq \mathbb{Z}$. Denote by !-by-Z the family of these groups.

Given $G \in \mathcal{G}$, we have

$$
\begin{aligned}
G \in!-b y-\mathbb{Z} & \Leftrightarrow \exists!H \unlhd G \text { with } G / H \simeq \mathbb{Z} \\
& \Leftrightarrow b_{1}(G)=1 .
\end{aligned}
$$

Observation
There is an algorithm which, given $G \in \mathcal{G}$, decides whether G is in !-by-Z.

Unique extensions

Proposition (Cavallo-Kharobaei-Delgado-V.)
Let H be f.g., $b_{1}(H)=n$, let $\alpha \in \operatorname{Aut}(H)$. TFAE:
(a) $H \rtimes_{\alpha} \mathbb{Z}$ is !-by-Z
(b) $b_{1}\left(H \rtimes_{\alpha} \mathbb{Z}\right)=1$;
(c) $n^{\text {ab* }:} \mathbb{\pi}^{n} \rightarrow \mathbb{\pi}^{n}$ has no non-trivial fixed points (say a is deranged)
(d) H is a fully characteristic subgroup in $H \rtimes_{\alpha} \mathbb{Z}$.

Unique extensions

Proposition (Cavallo-Kharobaei-Delgado-V.)
Let H be f.g., $b_{1}(H)=n$, let $\alpha \in \operatorname{Aut}(H)$. TFAE:
(a) $H \rtimes_{\alpha} \mathbb{Z}$ is !-by- \mathbb{Z};
(b) $b_{1}\left(H \rtimes_{\alpha} \mathbb{Z}\right)=1$;
(c) $\alpha^{\text {ab* }}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ has no non-trivial fixed points (say α is deranged)
(d) H is a fully characteristic subgroup in $H x_{a} \mathbb{Z}$.

Unique extensions

Proposition (Cavallo-Kharobaei-Delgado-V.)
Let H be f.g., $b_{1}(H)=n$, let $\alpha \in \operatorname{Aut}(H)$. TFAE:
(a) $H \rtimes_{\alpha} \mathbb{Z}$ is !-by- \mathbb{Z};
(b) $b_{1}\left(H \rtimes_{\alpha} \mathbb{Z}\right)=1$;
(c) $\alpha^{\text {ab* }}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ has no non-trivial fixed points (say α is deranged)
(d) H is a fully characteristic subgroup in $H \rtimes_{\alpha} \mathbb{Z}$.

Unique extensions

Proposition (Cavallo-Kharobaei-Delgado-V.)
Let H be f.g., $b_{1}(H)=n$, let $\alpha \in \operatorname{Aut}(H)$. TFAE:
(a) $H \rtimes_{\alpha} \mathbb{Z}$ is !-by- \mathbb{Z};
(b) $b_{1}\left(H \rtimes_{\alpha} \mathbb{Z}\right)=1$;
(c) $\alpha^{\text {ab* }}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ has no non-trivial fixed points (say α is deranged)
(d) H is a fully characteristic subgroup in $H \rtimes_{\alpha} \mathbb{Z}$.

Unique extensions

Proposition (Cavallo-Kharobaei-Delgado-V.)
Let H be f.g., $b_{1}(H)=n$, let $\alpha \in \operatorname{Aut}(H)$. TFAE:
(a) $H \rtimes_{\alpha} \mathbb{Z}$ is !-by- \mathbb{Z};
(b) $b_{1}\left(H \rtimes_{\alpha} \mathbb{Z}\right)=1$;
(c) $\alpha^{\text {ab* }}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ has no non-trivial fixed points (say α is deranged)
(d) H is a fully characteristic subgroup in $H \rtimes_{\alpha} \mathbb{Z}$.

Recognition of \mathbb{Z}-extensions

Observation

(i) H f.g. (f.p.) $\Rightarrow H \rtimes_{\alpha} \mathbb{Z}$ is f.g. (f.p.);
(ii) $H \rtimes_{\alpha} \mathbb{Z}$ f.p. $\nRightarrow H$ is f.g.

Proof.

(i) $H=\langle X \mid R\rangle \Rightarrow H \rtimes_{\alpha} \mathbb{Z}=\left\langle X, t \mid R, t^{-1} x t=x \alpha \quad \forall x \in X\right\rangle$
(ii) Consider a group K, take $H=*_{i \in \mathbb{Z}} K_{i}$ where $K_{i} \simeq K$, and let $\alpha: H \rightarrow H,\left(k \in K_{i}\right) \mapsto\left(k \in K_{i+1}\right)$. We have,

$$
\begin{aligned}
H \rtimes_{\alpha} \mathbb{Z} & \simeq\left\langle X_{i}(i \in \mathbb{Z}), \quad t \mid R_{i}, t^{-1} x_{i} t=x_{i+1}(i \in \mathbb{Z}, x \in X)\right\rangle \\
& \simeq\left\langle X_{i}(i \in \mathbb{Z}), t \mid R_{0}, t^{-1} x_{i} t=x_{i+1}(i \in \mathbb{Z}, x \in X)\right\rangle \\
& \simeq\left\langle X_{0}, \quad t \mid R_{0}\right\rangle \simeq K * \mathbb{Z} . \square
\end{aligned}
$$

Observation

Taking $1 \neq K \quad$ fp. and perfect $\left(K^{\mathrm{ab}}=1\right)$, we have $H=$ wiez K_{i} not fig
and so $K * \mathbb{Z}$ is f.p. and !-by-Z्Z, but not [f.g.]-by-Z्Z.

Recognition of \mathbb{Z}-extensions

Observation
(i) H f.g. (f.p.) $\Rightarrow H \rtimes_{\alpha} \mathbb{Z}$ is f.g. (f.p.);
(ii) $H \rtimes_{\alpha} \mathbb{Z}$ f.p. $\nRightarrow H$ is f.g.

Proof.

(i) $H=\langle X \mid R\rangle \Rightarrow H \rtimes_{\alpha} \mathbb{Z}=\left\langle X, t \mid R, t^{-1} x t=x \alpha \quad \forall x \in X\right\rangle$
(ii) Consider a group K, take $H=*_{i \in \mathbb{Z}} K_{i}$ where $K_{i} \sim K$, and let $\alpha: H \rightarrow H,\left(k \in K_{i}\right) \mapsto\left(k \in K_{i+1}\right)$. We have,

$$
\begin{aligned}
H \rtimes_{\alpha} \mathbb{Z} & \simeq\left\langle X_{i}(i \in \mathbb{Z}), \quad t \mid R_{i}, t^{-1} x_{i} t=x_{i+1}(i \in \mathbb{Z}, x \in X)\right\rangle \\
& \simeq\left\langle X_{i}(i \in \mathbb{Z}), \quad t \mid R_{0}, t^{-1} x_{i} t=x_{i+1}(i \in \mathbb{Z}, x \in X)\right\rangle \\
& \simeq\left\langle X_{0}, \quad t \mid R_{0}\right\rangle \simeq K * \mathbb{Z} . \square
\end{aligned}
$$

Observation

Taking $1 \neq K$ f.p. and perfect $\left(K^{\mathrm{ab}}=1\right)$, we have $H=$ wicz K_{i} not f.g
and so $K * \mathbb{Z}$ is f.p. and !-by- \mathbb{Z}, but not [f.g.]-by-Z्Z

Recognition of \mathbb{Z}-extensions

Observation
(i) H f.g. (f.p.) $\Rightarrow H \rtimes_{\alpha} \mathbb{Z}$ is f.g. (f.p.);
(ii) $H \rtimes_{\alpha} \mathbb{Z}$ f.p. $\nRightarrow H$ is f.g.

Proof.

(i) $H=\langle X \mid R\rangle \Rightarrow H \rtimes_{\alpha} \mathbb{Z}=\left\langle X, t \mid R, t^{-1} x t=x \alpha \quad \forall x \in X\right\rangle$.
(ii) Consider a group K, take $H=*_{i \in \mathbb{Z}} K_{i}$ where $K_{i} \simeq K$, and let $\alpha: H \rightarrow H,\left(k \in K_{i}\right) \mapsto\left(k \in K_{i+1}\right)$. We have,

Observation

Taking $1 \neq K$, f.p. and perfect $\left(K^{\mathrm{ab}}=1\right)$, we have $H=*_{i \in \mathbb{Z}} K_{i}$ not f.g and so $K * \mathbb{Z}$ is f.p. and !-by- \mathbb{Z}, but not [f.g.]-by-Z్Z

Recognition of \mathbb{Z}-extensions

Observation

(i) H f.g. (f.p.) $\Rightarrow H \rtimes_{\alpha} \mathbb{Z}$ is f.g. (f.p.);
(ii) $H \rtimes_{\alpha} \mathbb{Z}$ f.p. $\nRightarrow H$ is f.g.

Proof.

(i) $H=\langle X \mid R\rangle \Rightarrow H \rtimes_{\alpha} \mathbb{Z}=\left\langle X, t \mid R, t^{-1} x t=x \alpha \quad \forall x \in X\right\rangle$.
(ii) Consider a group K, take $H=*_{i \in \mathbb{Z}} K_{i}$ where $K_{i} \simeq K$, and let $\alpha: H \rightarrow H,\left(k \in K_{i}\right) \mapsto\left(k \in K_{i+1}\right)$. We have,

$$
\begin{aligned}
H \rtimes_{\alpha} \mathbb{Z} & \simeq\left\langle X_{i}(i \in \mathbb{Z}), \quad t \mid R_{i}, t^{-1} x_{i} t=x_{i+1}(i \in \mathbb{Z}, x \in X)\right\rangle \\
& \simeq\left\langle X_{i}(i \in \mathbb{Z}), \quad t \mid R_{0}, t^{-1} x_{i} t=x_{i+1}(i \in \mathbb{Z}, x \in X)\right\rangle \\
& \simeq\left\langle X_{0}, t \mid R_{0}\right\rangle \simeq K * \mathbb{Z} . \quad \square
\end{aligned}
$$

Recognition of \mathbb{Z}-extensions

Observation

$$
\begin{aligned}
& \text { (i) } H \text { f.g. (f.p.) } \Rightarrow H \rtimes_{\alpha} \mathbb{Z} \text { is f.g. (f.p.); } \\
& \text { (ii) } H \rtimes_{\alpha} \mathbb{Z} \text { f.p. } \nRightarrow H \text { is f.g. }
\end{aligned}
$$

Proof.

(i) $H=\langle X \mid R\rangle \Rightarrow H \rtimes_{\alpha} \mathbb{Z}=\left\langle X, t \mid R, t^{-1} x t=x \alpha \quad \forall x \in X\right\rangle$.
(ii) Consider a group K, take $H=*_{i \in \mathbb{Z}} K_{i}$ where $K_{i} \simeq K$, and let $\alpha: H \rightarrow H,\left(k \in K_{i}\right) \mapsto\left(k \in K_{i+1}\right)$. We have,

$$
\begin{aligned}
H \rtimes_{\alpha} \mathbb{Z} & \simeq\left\langle X_{i}(i \in \mathbb{Z}), \quad t \mid R_{i}, t^{-1} x_{i} t=x_{i+1}(i \in \mathbb{Z}, x \in X)\right\rangle \\
& \simeq\left\langle X_{i}(i \in \mathbb{Z}), t \mid R_{0}, t^{-1} x_{i} t=x_{i+1}(i \in \mathbb{Z}, x \in X)\right\rangle \\
& \simeq\left\langle X_{0}, t \mid R_{0}\right\rangle \simeq K * \mathbb{Z} . \quad \square
\end{aligned}
$$

Observation

Taking $1 \neq K$, f.p. and perfect ($K^{\mathrm{ab}}=1$), we have $H=*_{i \in \mathbb{Z}} K_{i}$ not f.g. and so $K * \mathbb{Z}$ is f.p. and !-by-ZZ, but not [f.g.]-by-Z्Z.

Unrecognizability of [f.g.]-by-Z

Theorem (Cavallo-Kharobaei-Delgado-V.)

There exists no algorithm to decide, given a finite presentation $G \in \mathcal{G}$ (even with $b_{1}(G)=1$), whether $G \in[f . g$.$] -by-Z$ or not.

Proof. There exists a recurrent sequence of finite presentations $K_{j}=\left\langle X_{j} \mid R_{j}\right\rangle$ such that K_{j} is perfect and triviality of K_{j} is undecidable.

Given $j \in \mathbb{N}$,

- $K_{j} * \mathbb{Z}=\left(*_{i \in \mathbb{Z}} K_{j}\right) \rtimes_{\alpha} \mathbb{Z}$ has Betti number 1 ;
- the only normal subaroup of $K_{i} * \mathbb{Z}$ with quotient \mathbb{Z} is $\simeq \psi_{i}$ _ K_{j};
- so, $K_{j} * \mathbb{Z} \in[$ f.g. $]$-by- $\mathbb{Z} \Leftrightarrow *_{i \in \mathbb{Z}} K_{j}$ f.g. $\Leftrightarrow K_{j}=1$, which is
undecidable. \square

Unrecognizability of [f.g.]-by-Z्Z

Theorem (Cavallo-Kharobaei-Delgado-V.)

There exists no algorithm to decide, given a finite presentation $G \in \mathcal{G}$ (even with $b_{1}(G)=1$), whether $G \in[f . g$.$] -by-Z$ or not.

Proof. There exists a recurrent sequence of finite presentations $K_{j}=\left\langle X_{j} \mid R_{j}\right\rangle$ such that K_{j} is perfect and triviality of K_{j} is undecidable.

Given $j \in \mathbb{N}$,

- $K_{j} * \mathbb{Z}=\left(*_{i \in \mathbb{Z}} K_{j}\right) \rtimes_{\alpha} \mathbb{Z}$ has Betti number 1 ;
- the only normal subgroup of $K_{j} * \mathbb{Z}$ with quotient \mathbb{Z} is $\simeq *_{i \in \mathbb{Z}} K_{j}$;
- so. $K_{i} * \mathbb{Z} \in$ [f.a.]-bv- $\mathbb{Z} \Leftrightarrow *_{i \in \mathbb{Z}} K_{i}$ f.a. $\Leftrightarrow K_{i}=1$, which is
undecidable. \square

Unrecognizability of [f.g.]-by-Z्Z

Theorem (Cavallo-Kharobaei-Delgado-V.)

There exists no algorithm to decide, given a finite presentation $G \in \mathcal{G}$ (even with $b_{1}(G)=1$), whether $G \in[f . g$.$] -by-Z$ or not.

Proof. There exists a recurrent sequence of finite presentations $K_{j}=\left\langle X_{j} \mid R_{j}\right\rangle$ such that K_{j} is perfect and triviality of K_{j} is undecidable.

Given $j \in \mathbb{N}$,

- $K_{j} * \mathbb{Z}=\left(*_{i \in \mathbb{Z}} K_{j}\right) \rtimes_{\alpha} \mathbb{Z}$ has Betti number 1;
- the only normal subgroup of $K_{j} * \mathbb{Z}$ with quotient \mathbb{Z} is $\simeq *_{i \in \mathbb{Z}} K_{j}$;
- so, $K_{j} * \mathbb{Z} \in$ [f.g.]-by- $\mathbb{Z} \Leftrightarrow *_{i \in \mathbb{Z}} K_{j}$ f.g. $\Leftrightarrow K_{j}=1$, which is undecidable.

Unrecognizability of [f.g.]-by-Z्Z

Theorem (Cavallo-Kharobaei-Delgado-V.)

There exists no algorithm to decide, given a finite presentation $G \in \mathcal{G}$ (even with $b_{1}(G)=1$), whether $G \in$ [f.g.]-by-Z or not.

Proof. There exists a recurrent sequence of finite presentations $K_{j}=\left\langle X_{j} \mid R_{j}\right\rangle$ such that K_{j} is perfect and triviality of K_{j} is undecidable.

Given $j \in \mathbb{N}$,

- $K_{j} * \mathbb{Z}=\left(*_{i \in \mathbb{Z}} K_{j}\right) \rtimes_{\alpha} \mathbb{Z}$ has Betti number 1;
- the only normal subgroup of $K_{j} * \mathbb{Z}$ with quotient \mathbb{Z} is $\simeq *_{i \in \mathbb{Z}} K_{j}$;

Unrecognizability of [f.g.]-by-Z्Z

Theorem (Cavallo-Kharobaei-Delgado-V.)

There exists no algorithm to decide, given a finite presentation $G \in \mathcal{G}$ (even with $b_{1}(G)=1$), whether $G \in[f . g$.$] -by-Z$ or not.

Proof. There exists a recurrent sequence of finite presentations $K_{j}=\left\langle X_{j} \mid R_{j}\right\rangle$ such that K_{j} is perfect and triviality of K_{j} is undecidable.

Given $j \in \mathbb{N}$,

- $K_{j} * \mathbb{Z}=\left(*_{i \in \mathbb{Z}} K_{j}\right) \rtimes_{\alpha} \mathbb{Z}$ has Betti number 1;
- the only normal subgroup of $K_{j} * \mathbb{Z}$ with quotient \mathbb{Z} is $\simeq *_{i \in \mathbb{Z}} K_{j}$;
- so, $K_{j} * \mathbb{Z} \in[f . g]-$. by $\mathbb{Z} \Leftrightarrow *_{i \in \mathbb{Z}} K_{j}$ f.g. $\Leftrightarrow K_{j}=1$, which is undecidable. \square

Finding standard presentations

Proposition (Cavallo-Kharobaei-Delgado-V.)

All the (finite) standard presentations of a given [f.p.]-by-Z group G are recursively enumerable.

Proof. We are given a finite presentation $\langle X \mid R\rangle$ of a group G which is in [f.p.]-by-Z.Z.

- Enumerate all pres. of G (by diagonally applying all possible Tietze transformations to $\langle X \mid R\rangle$), of the form
where the r_{i} 's and w_{j} 's are words on the y_{j} 's.
- For each such pres., check whether $v_{i} \mapsto w_{i}$ defines an endo, say α of $H=\left\langle y_{1}, \ldots, y_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ (by enumerating and checking whether each $r_{i}\left(w_{1}, \ldots, w_{n}\right)$ does appear in the list $)$. Warning! we cannot use WP(H)

Finding standard presentations

Proposition (Cavallo-Kharobaei-Delgado-V.)

All the (finite) standard presentations of a given [f.p.]-by-Z group G are recursively enumerable.

Proof. We are given a finite presentation $\langle X \mid R\rangle$ of a group G which is in [f.p.]-by-Z.Z.

- Enumerate all pres. of G (by diagonally applying all possible Tietze transformations to $\langle X \mid R\rangle$), of the form

$$
\left\langle y_{1}, \ldots, y_{n}, t \mid r_{i}, t^{-1} y_{j} t=w_{j}(i=1, \ldots, m),(j=1, \ldots, n)\right\rangle,
$$

where the r_{i} 's and w_{j} 's are words on the y_{j} 's.

- For each such pres., check whether $y_{j} \mapsto w_{j}$ defines an endo, say c

\square

Finding standard presentations

Proposition (Cavallo-Kharobaei-Delgado-V.)

All the (finite) standard presentations of a given [f.p.]-by-Z group G are recursively enumerable.

Proof. We are given a finite presentation $\langle X \mid R\rangle$ of a group G which is in [f.p.]-by-Z.Z.

- Enumerate all pres. of G (by diagonally applying all possible Tietze transformations to $\langle X \mid R\rangle$), of the form

$$
\left\langle y_{1}, \ldots, y_{n}, t \mid r_{i}, t^{-1} y_{j} t=w_{j}(i=1, \ldots, m),(j=1, \ldots, n)\right\rangle,
$$

where the r_{i} 's and w_{j} 's are words on the y_{j} 's.

- For each such pres., check whether $y_{j} \mapsto w_{j}$ defines an endo, say α, of $H=\left\langle y_{1}, \ldots, y_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ (by enumerating $\ll r_{1}, \ldots, r_{m} \gg$ and checking whether each $r_{i}\left(w_{1}, \ldots, w_{n}\right)$ does appear in the list). Warning! we cannot use WP(H).

Finding standard presentations

- For each such pres., check whether $\alpha: H \rightarrow H$ is an isomorphism of H (by enumerating all possible endos $\beta: H \rightarrow H$ and checking for well definedness and for $\alpha \beta=\beta \alpha=l d$).
- If $\alpha \in \operatorname{Aut}(H)$ output the corresponding standard presentation.
- Each such process will either output a valid standard presentation for G, or work forever with no output.
- Every standard presentation for G (there exists at least one!) eventually appears in the process. \square

Finding standard presentations

- For each such pres., check whether $\alpha: H \rightarrow H$ is an isomorphism of H (by enumerating all possible endos $\beta: H \rightarrow H$ and checking for well definedness and for $\alpha \beta=\beta \alpha=$ ld $)$.
- If $\alpha \in \operatorname{Aut}(H)$ output the corresponding standard presentation.
- Each such process will either output a valid standard presentation for G, or work forever with no output.
- Every standard presentation for G (there exists at least one!)
eventually appears in the process. \square

Finding standard presentations

- For each such pres., check whether $\alpha: H \rightarrow H$ is an isomorphism of H (by enumerating all possible endos $\beta: H \rightarrow H$ and checking for well definedness and for $\alpha \beta=\beta \alpha=$ ld $)$.
- If $\alpha \in \operatorname{Aut}(H)$ output the corresponding standard presentation.
- Each such process will either output a valid standard presentation for G, or work forever with no output.
- Every standard presentation for G (there exists at least one!)
eventually appears in the process.

Finding standard presentations

- For each such pres., check whether $\alpha: H \rightarrow H$ is an isomorphism of H (by enumerating all possible endos $\beta: H \rightarrow H$ and checking for well definedness and for $\alpha \beta=\beta \alpha=I d$).
- If $\alpha \in \operatorname{Aut}(H)$ output the corresponding standard presentation.
- Each such process will either output a valid standard presentation for G, or work forever with no output.
- Every standard presentation for G (there exists at least one!) eventually appears in the process.

Outline

(1) Algorithmic recognition of groups

(2) \mathbb{Z}-extensions
(3) The Bieri-Neumann-Strebel invariant

4 On the isomorphism problem
(5) Applications

The BNS invariant

The theory of sigma invariants was started and developed in the 1980's by Robert Bieri, Walter Neumann and Ralf Strebel

```
Definition
Let G}=\langleX|R\rangle\mathrm{ be a f.g. group. A character is a morphism
    G->\mathbb{R}. Every such \chi factors through G}\mp@subsup{G}{}{\textrm{ab*}}=\mp@subsup{G}{}{\textrm{ab}}/T(\mp@subsup{G}{}{\textrm{ab}})=\mp@subsup{\mathbb{Z}}{}{n
(where n= b
    {characters of }G}=Hom(G,\mathbb{R})=\operatorname{Hom}(\mp@subsup{\mathbb{Z}}{}{n},\mathbb{R})\simeq\mp@subsup{\mathbb{R}}{}{n
Define }\mp@subsup{\chi}{1}{}~\mp@subsup{\chi}{2}{}\Leftrightarrow\mp@subsup{\chi}{2}{}=\lambda\mp@subsup{\chi}{1}{}\mathrm{ for some }\lambda>0\mathrm{ ,
    S(G)={\chi:G->\mathbb{R}|\chi\not=0}/~=(\mathbb{R}
is the character sphere of G. Given H}\leqslant G define
    S(G,H)={\chi\inS(G)|\chi(H)=0}.
```


The BNS invariant

The theory of sigma invariants was started and developed in the 1980's by Robert Bieri, Walter Neumann and Ralf Strebel

Definition

Let $G=\langle X \mid R\rangle$ be a f.g. group. A character is a morphism $\chi: G \rightarrow \mathbb{R}$. Every such χ factors through $G^{\mathrm{ab*}}=G^{\mathrm{ab}} / T\left(G^{\mathrm{ab}}\right)=\mathbb{Z}^{n}$ (where $n=b_{1}(G)$) and so, $\{$ characters of $G\}=\operatorname{Hom}(G, \mathbb{R})=\operatorname{Hom}\left(\mathbb{Z}^{n}, \mathbb{R}\right) \simeq \mathbb{R}^{n}$.

Define

is the character sphere of G. Given $H \leqslant G$ define

The BNS invariant

The theory of sigma invariants was started and developed in the 1980's by Robert Bieri, Walter Neumann and Ralf Strebel

Definition

Let $G=\langle X \mid R\rangle$ be a f.g. group. A character is a morphism $\chi: G \rightarrow \mathbb{R}$. Every such χ factors through $G^{\mathrm{ab*}}=G^{\mathrm{ab}} / T\left(G^{\mathrm{ab}}\right)=\mathbb{Z}^{n}$
(where $n=b_{1}(G)$) and so,

$$
\{\text { characters of } G\}=\operatorname{Hom}(G, \mathbb{R})=\operatorname{Hom}\left(\mathbb{Z}^{n}, \mathbb{R}\right) \simeq \mathbb{R}^{n} .
$$

Define $\chi_{1} \sim \chi_{2} \Leftrightarrow \chi_{2}=\lambda \chi_{1}$ for some $\lambda>0$,

is the character sphere of G. Given $H \leqslant G$ define

The BNS invariant

The theory of sigma invariants was started and developed in the 1980's by Robert Bieri, Walter Neumann and Ralf Strebel

Definition

Let $G=\langle X \mid R\rangle$ be a f.g. group. A character is a morphism
$\chi: G \rightarrow \mathbb{R}$. Every such χ factors through $G^{\mathrm{ab} *}=G^{\mathrm{ab}} / T\left(G^{\mathrm{ab}}\right)=\mathbb{Z}^{n}$
(where $n=b_{1}(G)$) and so,

$$
\{\text { characters of } G\}=\operatorname{Hom}(G, \mathbb{R})=\operatorname{Hom}\left(\mathbb{Z}^{n}, \mathbb{R}\right) \simeq \mathbb{R}^{n}
$$

Define $\chi_{1} \sim \chi_{2} \Leftrightarrow \chi_{2}=\lambda \chi_{1}$ for some $\lambda>0$,

$$
S(G)=\{\chi: G \rightarrow \mathbb{R} \mid \chi \neq 0\} / \sim=\left(\mathbb{R}^{n} \backslash\{0\}\right) / \sim=S^{n-1} .
$$

is the character sphere of G.

The BNS invariant

The theory of sigma invariants was started and developed in the 1980's by Robert Bieri, Walter Neumann and Ralf Strebel

Definition

Let $G=\langle X \mid R\rangle$ be a f.g. group. A character is a morphism
$\chi: G \rightarrow \mathbb{R}$. Every such χ factors through $G^{\mathrm{ab} *}=G^{\mathrm{ab}} / T\left(G^{\mathrm{ab}}\right)=\mathbb{Z}^{n}$
(where $n=b_{1}(G)$) and so,

$$
\{\text { characters of } G\}=\operatorname{Hom}(G, \mathbb{R})=\operatorname{Hom}\left(\mathbb{Z}^{n}, \mathbb{R}\right) \simeq \mathbb{R}^{n}
$$

Define $\chi_{1} \sim \chi_{2} \Leftrightarrow \chi_{2}=\lambda \chi_{1}$ for some $\lambda>0$,

$$
S(G)=\{\chi: G \rightarrow \mathbb{R} \mid \chi \neq 0\} / \sim=\left(\mathbb{R}^{n} \backslash\{0\}\right) / \sim=S^{n-1} .
$$

is the character sphere of G. Given $H \leqslant G$ define

$$
S(G, H)=\{\chi \in S(G) \mid \chi(H)=0\} .
$$

The BNS invariant

Definition

The first sigma invariant of G (also called the BNS invariant) is the following subset of the character sphere:

$$
\Sigma^{1}(G)=\left\{\chi \in S(G) \mid G_{\chi} \text { is connected in } \Gamma(G, X)\right\} \subseteq S(G),
$$

where $G_{\chi}=\{g \in G \mid \chi(g)>0\}$ is the positive cone; (this connectivity does not depend on X !).

Theorem
 Let G be f.g. and $H \unlhd G$ s.t. G / H is abelian. Then,

 In particular, if $G / H=\mathbb{Z}$ and $\pi: G \rightarrow G / H=\mathbb{Z}$, then

The BNS invariant

Definition

The first sigma invariant of G (also called the BNS invariant) is the following subset of the character sphere:

$$
\Sigma^{1}(G)=\left\{\chi \in S(G) \mid G_{\chi} \text { is connected in } \Gamma(G, X)\right\} \subseteq S(G),
$$

where $G_{\chi}=\{g \in G \mid \chi(g)>0\}$ is the positive cone; (this connectivity does not depend on X !).

Theorem

Let G be f.g. and $H \unlhd G$ s.t. G / H is abelian. Then,

$$
H \text { is f.g. } \Leftrightarrow \quad \Leftrightarrow(G, H) \subseteq \Sigma^{1}(G) .
$$

In particular, if $G / H=\mathbb{Z}$ and $\pi: G \rightarrow G / H=\mathbb{Z}$, then

$$
H \text { is f.g. } \Leftrightarrow \pi,-\pi \in \Sigma^{1}(G) \text {. }
$$

Undecidability of the BNS invariant

Theorem (Cavallo-Kharobaei-Delgado-V.)

There exists no algorithm s.t., given a finite pres. $G=\langle X \mid R\rangle$, and a character $\chi: G \rightarrow \mathbb{R}$ (i.e., a point $p=[\chi] \in S(G)$) decides whether $p \in \Sigma^{1}(G)$ or not.

Proof. Suppose there exists such an algorithm \mathcal{A}.
Consider any finite pres. $G=\langle X \mid R\rangle \in!$-by- \mathbb{Z} (i.e., with $b_{1}(G)=1$), and let $\pi: G \rightarrow G^{\text {ab* }}=\mathbb{Z}$.

Apply \mathcal{A} to G and both $\pm \pi$ to decide whether $\pi \in \Sigma^{1}(G)$ or not, and whether $-\pi \in \Sigma^{1}(G)$ or not.
But, $\pm \pi \in \Sigma^{1}(G) \Leftrightarrow \operatorname{ker}(\pi)$ is f.g. $\Leftrightarrow G \in[f . g$.]-by-Z्Z.
So, we have decided whether $G \in[f . g]-.b y-\mathbb{Z}$, a contradiction. \square

Undecidability of the BNS invariant

Theorem (Cavallo-Kharobaei-Delgado-V.)

There exists no algorithm s.t., given a finite pres. $G=\langle X \mid R\rangle$, and a character $\chi: G \rightarrow \mathbb{R}$ (i.e., a point $p=[\chi] \in S(G)$) decides whether $p \in \Sigma^{1}(G)$ or not.

Proof. Suppose there exists such an algorithm \mathcal{A}.
Consider any finite pres. $G=\langle X \mid R\rangle \in!$-by- \mathbb{Z} (i.e., with $b_{1}(G)=1$), and let $\pi: G \rightarrow G^{\text {ab* }}$

Apply. A to G and both $\pm \pi$ to decide whether $\pi \in \Sigma^{1}(G)$ or not, and whether $-\pi \in \Sigma^{1}(G)$ or not.

But, $\pm \pi \in \Sigma^{1}(G) \Leftrightarrow \operatorname{ker}(\pi)$ is f.g. $\Leftrightarrow G \in[$ f.g.]-by-Z .
So, we have decided whether $G \in[f . g .1-b y-\mathbb{Z}$, a contradiction. \square

Undecidability of the BNS invariant

Theorem (Cavallo-Kharobaei-Delgado-V.)

There exists no algorithm s.t., given a finite pres. $G=\langle X \mid R\rangle$, and a character $\chi: G \rightarrow \mathbb{R}$ (i.e., a point $p=[\chi] \in S(G)$) decides whether $p \in \Sigma^{1}(G)$ or not.

Proof. Suppose there exists such an algorithm \mathcal{A}.
Consider any finite pres. $G=\langle X \mid R\rangle \in!$-by- \mathbb{Z} (i.e., with $b_{1}(G)=1$), and let $\pi: G \rightarrow G^{a b *}=\mathbb{Z}$.

Apply \mathcal{A} to G and both $\pm \pi$ to decide whether $\pi \in \Sigma^{1}(G)$ or not, and whether $-\pi \in \Sigma^{1}(G)$ or not.

Dut, $\perp \pi \in \Sigma^{1}(G) \Leftrightarrow \operatorname{ker}(\tau)$ is f.g. $\Leftrightarrow G \in[f . g$.]-by-Z्Z.
So, we have decided whether $G \in[f . g$.$] -by- \mathbb{Z}$, a contradiction. \square

Undecidability of the BNS invariant

Theorem (Cavallo-Kharobaei-Delgado-V.)

There exists no algorithm s.t., given a finite pres. $G=\langle X \mid R\rangle$, and a character $\chi: G \rightarrow \mathbb{R}$ (i.e., a point $p=[\chi] \in S(G)$) decides whether $p \in \Sigma^{1}(G)$ or not.

Proof. Suppose there exists such an algorithm \mathcal{A}.
Consider any finite pres. $G=\langle X \mid R\rangle \in!$-by- \mathbb{Z} (i.e., with $b_{1}(G)=1$), and let $\pi: G \rightarrow G^{a b *}=\mathbb{Z}$.

Apply \mathcal{A} to G and both $\pm \pi$ to decide whether $\pi \in \Sigma^{1}(G)$ or not, and whether $-\pi \in \Sigma^{1}(G)$ or not.

But, $\pm \pi \in \Sigma^{1}(G) \Leftrightarrow \operatorname{ker}(\pi)$ is f.g. $\Leftrightarrow G \in[$ f.g.]-by-ZZ.

Undecidability of the BNS invariant

Theorem (Cavallo-Kharobaei-Delgado-V.)

There exists no algorithm s.t., given a finite pres. $G=\langle X \mid R\rangle$, and a character $\chi: G \rightarrow \mathbb{R}$ (i.e., a point $p=[\chi] \in S(G)$) decides whether $p \in \Sigma^{1}(G)$ or not.

Proof. Suppose there exists such an algorithm \mathcal{A}.
Consider any finite pres. $G=\langle X \mid R\rangle \in!$-by- \mathbb{Z} (i.e., with $b_{1}(G)=1$), and let $\pi: G \rightarrow G^{a b *}=\mathbb{Z}$.

Apply \mathcal{A} to G and both $\pm \pi$ to decide whether $\pi \in \Sigma^{1}(G)$ or not, and whether $-\pi \in \Sigma^{1}(G)$ or not.

But, $\pm \pi \in \Sigma^{1}(G) \Leftrightarrow \operatorname{ker}(\pi)$ is f.g. $\Leftrightarrow G \in[f . g]-.b y-\mathbb{Z}$.

Undecidability of the BNS invariant

Theorem (Cavallo-Kharobaei-Delgado-V.)

There exists no algorithm s.t., given a finite pres. $G=\langle X \mid R\rangle$, and a character $\chi: G \rightarrow \mathbb{R}$ (i.e., a point $p=[\chi] \in S(G)$) decides whether $p \in \Sigma^{1}(G)$ or not.

Proof. Suppose there exists such an algorithm \mathcal{A}.
Consider any finite pres. $G=\langle X \mid R\rangle \in!$-by- \mathbb{Z} (i.e., with $b_{1}(G)=1$), and let $\pi: G \rightarrow G^{a b *}=\mathbb{Z}$.

Apply \mathcal{A} to G and both $\pm \pi$ to decide whether $\pi \in \Sigma^{1}(G)$ or not, and whether $-\pi \in \Sigma^{1}(G)$ or not.

But, $\pm \pi \in \Sigma^{1}(G) \Leftrightarrow \operatorname{ker}(\pi)$ is f.g. $\Leftrightarrow G \in[$ f.g.]-by-Z
So, we have decided whether $G \in[f . g]-.b y-\mathbb{Z}$, a contradiction. \square

Outline

(1) Algorithmic recognition of groups

(2) \mathbb{Z}-extensions
(3) The Bieri-Neumann-Strebel invariant

4 On the isomorphism problem
(5) Applications

The isomorphism problem

Question

Given $H=\langle X \mid R\rangle$ and $\alpha, \beta \in \operatorname{Aut}(H): \quad H \rtimes_{\alpha} \mathbb{Z} \simeq H \rtimes_{\beta} \mathbb{Z} \Leftrightarrow$?

Observation

Theorem (Bogopolski-Martino-V.)
For $H=F_{2}$ and $\alpha, \beta \in \operatorname{Aut}\left(F_{\imath}\right)$

Example (Dicks)

$\exists \alpha . \beta \in \operatorname{Aut}\left(F_{3}\right)$ such that $F_{3} \rtimes_{\alpha} \mathbb{Z} \simeq F_{3} \rtimes_{\beta} \mathbb{Z}$ but $\left.[\alpha] \alpha[\beta]\right]^{-1}$ in
Out (F_{3})

The isomorphism problem

Question

Given $H=\langle X \mid R\rangle$ and $\alpha, \beta \in \operatorname{Aut}(H): \quad H \rtimes_{\alpha} \mathbb{Z} \simeq H \rtimes_{\beta} \mathbb{Z} \quad \Leftrightarrow \quad$?

Observation

$$
[\alpha] \sim[\beta]^{ \pm 1} \text { in } \operatorname{Out}(H) \Rightarrow H \rtimes_{\alpha} \mathbb{Z} \simeq H \rtimes_{\beta} \mathbb{Z}
$$

$\left(\alpha=\chi^{-1} \beta^{ \pm 1} \chi \gamma_{h}\right.$ for some $h \in H$ and $\chi \in \operatorname{Aut}(H)$)

Theorem (Bogopolski-Martino-V.)

\square

Example (Dicks)
$\exists \alpha, \beta \in \operatorname{Aut}\left(F_{3}\right)$ such that $F_{3} \rtimes_{\alpha} \mathbb{Z} \simeq F_{3} \rtimes_{\beta} \mathbb{Z}$ but $[\alpha] \alpha[\beta]=1$ in
Out $\left(F_{3}\right)$

The isomorphism problem

Question

Given $H=\langle X \mid R\rangle$ and $\alpha, \beta \in \operatorname{Aut}(H): \quad H \rtimes_{\alpha} \mathbb{Z} \simeq H \rtimes_{\beta} \mathbb{Z} \quad \Leftrightarrow \quad$?

Observation

$$
[\alpha] \sim[\beta]^{ \pm 1} \text { in } \operatorname{Out}(H) \Rightarrow H \rtimes_{\alpha} \mathbb{Z} \simeq H \rtimes_{\beta} \mathbb{Z} .
$$

$\left(\alpha=\chi^{-1} \beta^{ \pm 1} \chi \gamma_{h}\right.$ for some $h \in H$ and $\chi \in \operatorname{Aut}(H)$)

Theorem (Bogopolski-Martino-V.)

For $H=F_{2}$ and $\alpha, \beta \in \operatorname{Aut}\left(F_{2}\right)$:
$F_{2} \rtimes_{\alpha} \mathbb{Z} \simeq F_{2} \rtimes_{\beta} \mathbb{Z} \quad \Leftrightarrow \quad[\alpha] \sim[\beta]^{ \pm 1} \operatorname{in} \operatorname{Out}\left(F_{2}\right)$.

Example (Dicks)
$\exists \alpha, \beta \in \operatorname{Aut}\left(F_{3}\right)$ such that $F_{3} \rtimes_{\alpha} \mathbb{Z} \simeq F_{3} \rtimes_{\beta} \mathbb{Z}$ but $[\alpha] \nsim[\beta]^{ \pm 1}$ in
Out $\left(F_{3}\right)$

The isomorphism problem

Question

Given $H=\langle X \mid R\rangle$ and $\alpha, \beta \in \operatorname{Aut}(H): \quad H \rtimes_{\alpha} \mathbb{Z} \simeq H \rtimes_{\beta} \mathbb{Z} \quad \Leftrightarrow \quad$?

Observation

$$
[\alpha] \sim[\beta]^{ \pm 1} \text { in } \operatorname{Out}(H) \Rightarrow H \rtimes_{\alpha} \mathbb{Z} \simeq H \rtimes_{\beta} \mathbb{Z} .
$$

$\left(\alpha=\chi^{-1} \beta^{ \pm 1} \chi \gamma_{h}\right.$ for some $h \in H$ and $\chi \in \operatorname{Aut}(H)$)

Theorem (Bogopolski-Martino-V.)

For $H=F_{2}$ and $\alpha, \beta \in \operatorname{Aut}\left(F_{2}\right)$:
$F_{2} \rtimes_{\alpha} \mathbb{Z} \simeq F_{2} \rtimes_{\beta} \mathbb{Z} \quad \Leftrightarrow \quad[\alpha] \sim[\beta]^{ \pm 1} \operatorname{in} \operatorname{Out}\left(F_{2}\right)$.

Example (Dicks)

$\exists \alpha, \beta \in \operatorname{Aut}\left(F_{3}\right)$ such that $F_{3} \rtimes_{\alpha} \mathbb{Z} \simeq F_{3} \rtimes_{\beta} \mathbb{Z}$ but $[\alpha] \nsim[\beta]^{ \pm 1}$ in Out $\left(F_{3}\right)$.

A solution for the deranged case

Observation
Let H and K be f.g. and $\alpha \in \operatorname{Aut}(H), \beta \in \operatorname{Aut}(K)$ be deranged. Then,
(i) H
(ii) all isomorphisms from $H \rtimes_{\alpha} \mathbb{Z}$ to $H \rtimes_{\beta} \mathbb{Z}$ (if any) are of the form:
where $\psi \in \operatorname{Aut}(H), \epsilon= \pm 1$ and $h \in H$ such that $\psi \beta^{\epsilon} \gamma_{h}=\alpha \psi$; (iii) so. $H \times x_{\sim} \mathbb{Z} \simeq K x_{a} \mathbb{Z} \Leftrightarrow H \simeq K$ and $[\alpha] \sim[\beta]^{ \pm 1}$ in Out(H).

A solution for the deranged case

Observation

Let H and K be f.g. and $\alpha \in \operatorname{Aut}(H), \beta \in \operatorname{Aut}(K)$ be deranged. Then,
(i) $H \rtimes_{\alpha} \mathbb{Z} \simeq K \rtimes_{\beta} \mathbb{Z} \Rightarrow H \simeq K$;
(ii) all isomorphisms from $\mathrm{H} \rtimes_{\alpha} \mathbb{Z}$ to $\mathrm{H} \rtimes_{\beta} \mathbb{Z}$ (if any) are of the form:
where $\psi \in \operatorname{Aut}(H), \epsilon= \pm 1$ and $h \in H$ such that $\psi \beta^{\epsilon} \gamma_{h}=\alpha \psi$; (iii) so. $H \times \mathbb{Z}_{2} \sim K \rtimes_{\beta} \mathbb{Z} \Leftrightarrow H \simeq K$ and $[\alpha] \sim[\beta]^{ \pm 1}$ in Out(H).

A solution for the deranged case

Observation

Let H and K be f.g. and $\alpha \in \operatorname{Aut}(H), \beta \in \operatorname{Aut}(K)$ be deranged. Then,
(i) $H \rtimes_{\alpha} \mathbb{Z} \simeq K \rtimes_{\beta} \mathbb{Z} \quad \Rightarrow \quad H \simeq K$;
(ii) all isomorphisms from $H \rtimes_{\alpha} \mathbb{Z}$ to $H \rtimes_{\beta} \mathbb{Z}$ (if any) are of the form:

$$
\begin{aligned}
\Psi: H \rtimes_{\alpha} \mathbb{Z} & \rightarrow H \rtimes_{\beta} \mathbb{Z}, \\
h & \mapsto h \psi \\
t & \mapsto t^{\epsilon} h
\end{aligned}
$$

where $\psi \in \operatorname{Aut}(H), \epsilon= \pm 1$ and $h \in H$ such that $\psi \beta^{\epsilon} \gamma_{h}=\alpha \psi$;

A solution for the deranged case

Observation

Let H and K be f.g. and $\alpha \in \operatorname{Aut}(H), \beta \in \operatorname{Aut}(K)$ be deranged. Then,
(i) $H \rtimes_{\alpha} \mathbb{Z} \simeq K \rtimes_{\beta} \mathbb{Z} \Rightarrow H \simeq K$;
(ii) all isomorphisms from $H \rtimes_{\alpha} \mathbb{Z}$ to $H \rtimes_{\beta} \mathbb{Z}$ (if any) are of the form:

$$
\begin{aligned}
\Psi: H \rtimes_{\alpha} \mathbb{Z} & \rightarrow H \rtimes_{\beta} \mathbb{Z}, \\
h & \mapsto h \psi \\
t & \mapsto t^{\epsilon} h
\end{aligned}
$$

where $\psi \in \operatorname{Aut}(H), \epsilon= \pm 1$ and $h \in H$ such that $\psi \beta^{\epsilon} \gamma_{h}=\alpha \psi$;
(iii) so, $H \rtimes_{\alpha} \mathbb{Z} \simeq K \rtimes_{\beta} \mathbb{Z} \quad \Leftrightarrow \quad H \simeq K$ and $[\alpha] \sim[\beta]^{ \pm 1}$ in $\operatorname{Out}(H)$.

The isomorphism problem

Theorem (Cavallo-Kharobaei-Delgado-V.)

Let $\mathcal{H} \subseteq \mathcal{G}$ be a family of f.p. groups. Then,
$\operatorname{Isom}(\mathcal{H})$ solvable
$\forall H \in \mathcal{H}, \quad \frac{1}{2} C P^{\prime}($ Out $(H))$ solvable $\Rightarrow \quad$ Isom $(!\mathcal{H}$-by-Z $\mathbb{Z})$ solvable.

Definition

For a group G, the $\frac{1}{2} C P(G)$ consists on deciding, given $g_{1}, g_{2} \in G$, whether $g_{1} \sim g_{2}^{ \pm}$

Observation

CP(G) solivahle

The isomorphism problem

Theorem (Cavallo-Kharobaei-Delgado-V.)

Let $\mathcal{H} \subseteq \mathcal{G}$ be a family of f.p. groups. Then,

$$
\left.\begin{array}{l|l}
\text { Isom }(\mathcal{H}) \text { solvable } \\
\frac{1}{2} \mathrm{CP}^{\prime}(\text { Out }(H)) \text { solvable }
\end{array} \quad \Rightarrow \quad \text { Isom(! } \mathcal{H}-\text { by-Z }\right) \text { solvable. } .
$$

Definition

For a group G, the $\frac{1}{2} \operatorname{CP}(G)$ consists on deciding, given $g_{1}, g_{2} \in G$, whether $g_{1} \sim g_{2}^{ \pm 1}$.

Observation

cn(G) solvable

$\frac{1}{2} \mathrm{CP}(G)$ solvable

Convers ?

The isomorphism problem

Theorem (Cavallo-Kharobaei-Delgado-V.)

Let $\mathcal{H} \subseteq \mathcal{G}$ be a family of f.p. groups. Then,

```
Isom(H) solvable
\(\Rightarrow \quad\) Isom(! \(\mathcal{H}\)-by-Z \(\mathbb{Z})\) solvable.
```


Definition

For a group G, the $\frac{1}{2} \operatorname{CP}(G)$ consists on deciding, given $g_{1}, g_{2} \in G$, whether $g_{1} \sim g_{2}^{ \pm 1}$.

Observation
$\mathrm{CP}(G)$ solvable $\quad \Rightarrow \quad \frac{1}{2} \mathrm{CP}(G)$ solvable.

The isomorphism problem

Theorem (Cavallo-Kharobaei-Delgado-V.)

Let $\mathcal{H} \subseteq \mathcal{G}$ be a family of f.p. groups. Then,

```
Isom(H) solvable
\(\Rightarrow \quad\) Isom(! \(\mathcal{H}\)-by-Z \(\mathbb{Z})\) solvable.
```


Definition

For a group G, the $\frac{1}{2} \operatorname{CP}(G)$ consists on deciding, given $g_{1}, g_{2} \in G$, whether $g_{1} \sim g_{2}^{ \pm 1}$.

Observation
$\mathrm{CP}(G)$ solvable $\quad \Rightarrow \quad \frac{1}{2} \mathrm{CP}(G)$ solvable.
Convers?

The isomorphism problem

Definition

For a f.p. $H=\langle X \mid R\rangle, \mathrm{CP}^{\prime}($ Out $(H))$ is the following problem: given $\alpha, \beta \in \operatorname{Aut}(H)$ by the images the $x \in X$'s, decide whether $[\alpha] \sim[\beta]$ in $\operatorname{Out}(H)$.

Observation
 For a f. n group $H=\langle X \mid R\rangle$, suppose we know a finite set of autos $\alpha_{1}, \ldots, \alpha_{n} \in \operatorname{Aut}(H)$ generating Out (H). Then,

The isomorphism problem

Definition

For a f.p. $H=\langle X \mid R\rangle, \mathrm{CP}^{\prime}($ Out $(H))$ is the following problem: given $\alpha, \beta \in \operatorname{Aut}(H)$ by the images the $x \in X$'s, decide whether $[\alpha] \sim[\beta]$ in Out (H).

Observation

For a f.p. group $H=\langle X \mid R\rangle$, suppose we know a finite set of autos $\alpha_{1}, \ldots, \alpha_{n} \in \operatorname{Aut}(H)$ generating Out (H). Then, $\mathrm{CP}($ Out $(H))$ solvable $\Leftrightarrow \mathrm{CP}^{\prime}($ Out $(H))$ solvable.

The isomorphism problem

Theorem (Cavallo-Kharobaei-Delgado-V.)

Let $\mathcal{H} \subseteq \mathcal{G}$ be a family of f.p. groups. Then,

>	Isom (\mathcal{H}) solvable
$\mathrm{CP}^{\prime}($ Out $(H))$ solvable	$\quad \Rightarrow \quad$ Isom $(!\mathcal{H}-$ by-Z $)$ solvable.

Proof. Given two finite presentations, $\left\langle X_{1} \mid R_{1}\right\rangle$ and $\left\langle X_{2} \mid R_{2}\right\rangle$, of groups in ! \mathcal{H}-by-ZZ:

- Compute standard presentations for them, and extract finite presentations for H and K, and autos $\alpha \in \operatorname{Aut}(H), \beta \in \operatorname{Aut}(K)$;
- check whether $H \simeq K$ using Isom(\mathcal{H}); if $H \nsim K$ answer NO;
- otherwise $H \simeq K$, rewrite β in terms of H, and check whether $[\alpha] \sim[\beta]^{ \pm 1}$ in Out (H) using $\frac{1}{2} \mathrm{CP}^{\prime}($ Out $(H))$;
- if yes answer YES, if no answer NO. \square

The isomorphism problem

Theorem (Cavallo-Kharobaei-Delgado-V.)

Let $\mathcal{H} \subseteq \mathcal{G}$ be a family of f.p. groups. Then,

$$
\begin{array}{l|l}
\text { Isom }(\mathcal{H}) \text { solvable } \\
\frac{1}{\circ} \mathrm{CP}^{\prime}(\text { Out }(H)) \text { solvable }
\end{array} \quad \Rightarrow \quad \text { Isom }(!\mathcal{H}-\text { by-Z }) \text { solvable. } .
$$

Proof. Given two finite presentations, $\left\langle X_{1} \mid R_{1}\right\rangle$ and $\left\langle X_{2} \mid R_{2}\right\rangle$, of groups in ! \mathcal{H}-by-ZZ:

- Compute standard presentations for them, and extract finite presentations for H and K, and autos $\alpha \in \operatorname{Aut}(H), \beta \in \operatorname{Aut}(K)$,
- cheok whether $H \simeq K$ Using $\log \operatorname{som}(\mathcal{H})$; if $H \nsim K$ anginer NTO;
- otherwise $H \simeq K$, rewrite β in terms of H, and check whether $[\alpha] \sim[\beta]^{ \pm 1}$ in Out (H) using $\frac{1}{2} \mathrm{CP}^{\prime}(\operatorname{Out}(H))$;
- if yes ancinar VES, if no ancinar NTO. \square

The isomorphism problem

Theorem (Cavallo-Kharobaei-Delgado-V.)

Let $\mathcal{H} \subseteq \mathcal{G}$ be a family of f.p. groups. Then,

>	Isom (\mathcal{H}) solvable
$\forall H \in \mathcal{H}, \quad \frac{1}{2} C P^{\prime}($ Out $(H))$ solvable	$\Rightarrow \quad$ Isom $(!\mathcal{H}$-by- $\mathbb{Z})$ solvable.

Proof. Given two finite presentations, $\left\langle X_{1} \mid R_{1}\right\rangle$ and $\left\langle X_{2} \mid R_{2}\right\rangle$, of groups in ! $\mathcal{H}-b y-\mathbb{Z}$:

- Compute standard presentations for them, and extract finite presentations for H and K, and autos $\alpha \in \operatorname{Aut}(H), \beta \in \operatorname{Aut}(K)$;
- check whether $H \simeq K$ using $\operatorname{Isom}(\mathcal{H})$; if $H \nsim K$ answer NO;
- otherwise $H \simeq K$, rewrite β in terms of H, and check whether $[\alpha] \sim[\beta]^{ \pm 1} \operatorname{in} \operatorname{Out}(H)$ using $\frac{1}{2} \mathrm{CP}^{\prime}(\operatorname{Out}(H))$;

The isomorphism problem

Theorem (Cavallo-Kharobaei-Delgado-V.)

Let $\mathcal{H} \subseteq \mathcal{G}$ be a family of f.p. groups. Then,

$$
\left.\left.\begin{array}{c}
\text { Isom }(\mathcal{H}) \text { solvable } \\
\forall H \in \mathcal{H}, \quad \frac{1}{2} \mathrm{CP}^{\prime}(\text { Out }(H)) \text { solvable }
\end{array} \right\rvert\, \Rightarrow \text { Isom(! } \mathcal{H} \text {-by-Z } \mathbb{Z}\right) \text { solvable. } .
$$

Proof. Given two finite presentations, $\left\langle X_{1} \mid R_{1}\right\rangle$ and $\left\langle X_{2} \mid R_{2}\right\rangle$, of groups in ! $\mathcal{H}-b y-\mathbb{Z}$:

- Compute standard presentations for them, and extract finite presentations for H and K, and autos $\alpha \in \operatorname{Aut}(H), \beta \in \operatorname{Aut}(K)$;
- check whether $H \simeq K$ using Isom(\mathcal{H}); if $H \nsucceq K$ answer No;

in Out (H) using $\frac{1}{2} \mathrm{CP}^{\prime}(\operatorname{Out}(H))$;

The isomorphism problem

Theorem (Cavallo-Kharobaei-Delgado-V.)

Let $\mathcal{H} \subseteq \mathcal{G}$ be a family of f.p. groups. Then,

> | $\operatorname{Isom}(\mathcal{H})$ solvable |
| :---: |
| $\forall H \in \mathcal{H}$, |
| $\frac{1}{2} \mathrm{CP}^{\prime}($ Out $(H))$ solvable |$| \Rightarrow$ Isom(! \mathcal{H}-by-ZZ) solvable..

Proof. Given two finite presentations, $\left\langle X_{1} \mid R_{1}\right\rangle$ and $\left\langle X_{2} \mid R_{2}\right\rangle$, of groups in ! $\mathcal{H}-b y-\mathbb{Z}$:

- Compute standard presentations for them, and extract finite presentations for H and K, and autos $\alpha \in \operatorname{Aut(H),~} \beta \in \operatorname{Aut}(K)$;
- check whether $H \simeq K$ using Isom(\mathcal{H}); if $H \nsim K$ answer No;
- otherwise $H \simeq K$, rewrite β in terms of H, and check whether $[\alpha] \sim[\beta]^{ \pm 1}$ in Out (H) using $\frac{1}{2} \operatorname{CP}^{\prime}(\operatorname{Out}(H))$;

The isomorphism problem

Theorem (Cavallo-Kharobaei-Delgado-V.)

Let $\mathcal{H} \subseteq \mathcal{G}$ be a family of f.p. groups. Then,

$$
\left.\left.\begin{array}{c}
\text { Isom }(\mathcal{H}) \text { solvable } \\
\forall H \in \mathcal{H}, \quad \frac{1}{2} C^{\prime}(\text { Out }(H)) \text { solvable }
\end{array} \right\rvert\, \Rightarrow \text { Isom(! } \mathcal{H} \text {-by-Z } \mathbb{Z}\right) \text { solvable. } .
$$

Proof. Given two finite presentations, $\left\langle X_{1} \mid R_{1}\right\rangle$ and $\left\langle X_{2} \mid R_{2}\right\rangle$, of groups in ! $\mathcal{H}-b y-\mathbb{Z}$:

- Compute standard presentations for them, and extract finite presentations for H and K, and autos $\alpha \in \operatorname{Aut(H),~} \beta \in \operatorname{Aut}(K)$;
- check whether $H \simeq K$ using Isom(\mathcal{H}); if $H \nsim K$ answer No;
- otherwise $H \simeq K$, rewrite β in terms of H, and check whether $[\alpha] \sim[\beta]^{ \pm 1}$ in Out (H) using $\frac{1}{2} \operatorname{CP}^{\prime}($ Out $(H))$;
- if yes answer YES, if no answer NO. \square

Outline

(1) Algorithmic recognition of groups
(2) \mathbb{Z}-extensions
(3) The Bieri-Neumann-Strebel invariant

4 On the isomorphism problem
(5) Applications

Applications

Corollary

Let \mathcal{F} be the family of f.g. free groups. Modulo a solution to $\mathrm{CP}\left(\right.$ Out $\left.\left(F_{n}\right)\right)$ for all $n \in \mathbb{N}$, Isom $(!\mathcal{F}$-by- $\mathbb{Z})$ is solvable.

Corollary
 Let \mathcal{B} be the family of Braid groups, $\mathcal{B}=\left\{B_{n} \mid n \geqslant 2\right\}$. Then, Isom(! \mathcal{B}-by- $\mathbb{Z})$ is solvable.

Corollary

Let F be Thompson's group. Then, Isom(!F-by-Z $)$ is solvable.

Applications

Corollary

Let \mathcal{F} be the family of f.g. free groups. Modulo a solution to $\mathrm{CP}\left(\right.$ Out $\left.\left(F_{n}\right)\right)$ for all $n \in \mathbb{N}$, Isom $(!\mathcal{F}$-by- $\mathbb{Z})$ is solvable.

Corollary

Let \mathcal{B} be the family of Braid groups, $\mathcal{B}=\left\{B_{n} \mid n \geqslant 2\right\}$. Then, Isom(!B-by-ZZ) is solvable.

Corollary

Let F be Thompson's group. Then, Isom $(!F-b y-\mathbb{Z})$ is solvable

Applications

Corollary

Let \mathcal{F} be the family of f.g. free groups. Modulo a solution to $\mathrm{CP}\left(\right.$ Out $\left.\left(F_{n}\right)\right)$ for all $n \in \mathbb{N}$, Isom $(!\mathcal{F}$-by- $\mathbb{Z})$ is solvable.

Corollary

Let \mathcal{B} be the family of Braid groups, $\mathcal{B}=\left\{B_{n} \mid n \geqslant 2\right\}$. Then, Isom(! \mathcal{B}-by- $\mathbb{Z})$ is solvable.

Corollary

Let F be Thompson's group. Then, Isom(! F-by-Z $\mathbb{Z})$ is solvable.

MUITO OBRIGADO

