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Definition
Let G be the class of f.p. groups. We are interested in algorithmic
recognition of subclasses H ⊆ G:

Membership: given G ∈ G, decide whether it belongs to H or not.
Isomorphism: given H1,H2 ∈ H, decide whether H1 ' H2.
Good presentations: given H ∈ H, find a “good" pres. for H.

Many of these problems are algorithmically unsolvable:

Triviality: membership in H = {1};
Freeness: membership in F = {f.g. free groups};
Isomorphism: in G and in many classes H;

But there are also positive results for some classes H...
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Z-extensions

Definition

Let H = 〈X | R〉 be a group and α ∈ Aut (H). The semidirect
extension of H given by α is:

Hα = H oα Z = 〈X , t | R, t−1xt = xα ∀x ∈ X 〉;

also called a H-by-Z group. The above is called a standard
presentation for Hα.

Observation

(i) H E Hα and Hα/H ' Z.
(ii) If H EG with G/H ' Z, then the short exact sequence

1 −→ H −→ G −→ Z −→ 1

splits and G ' H oα Z for some α ∈ Aut (H).
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Recognition of Z-extensions

∗-by-Z = {H oα Z | α ∈ Aut (H)} ⊆ G

Given G ∈ G, we have

G ∈ ∗-by-Z ⇔ ∃ H EG with G/H ' Z
⇔ ∃ G� Z
⇔ b1(G) > 1.

G f.g. ⇒ G ab = Zn ⊕ T ; the first Betti number is b1(G) = n.

Observation
There is an algorithm which, given G ∈ G, decides whether G is a
Z-extension (of some normal subgroup H EG).
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Unique extensions

Definition
A group G is called a unique Z-extension if it has a unique normal
subgroup H EG with G/H ' Z. Denote by !-by-Z the family of these
groups.

Given G ∈ G, we have

G ∈ !-by-Z ⇔ ∃! H EG with G/H ' Z
⇔ b1(G) = 1.

Observation
There is an algorithm which, given G ∈ G, decides whether G is in
!-by-Z.
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Unique extensions

Proposition (Cavallo–Kharobaei–Delgado–V.)

Let H be f.g., b1(H) = n, let α ∈ Aut (H). TFAE:

(a) H oα Z is !-by-Z;

(b) b1(H oα Z) = 1;

(c) α ab∗ : Zn → Zn has no non-trivial fixed points (say α is deranged)

(d) H is a fully characteristic subgroup in H oα Z.
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Recognition of Z-extensions

Observation
(i) H f.g. (f.p.) ⇒ H oα Z is f.g. (f.p.);
(ii) H oα Z f.p. 6⇒ H is f.g.

Proof.
(i) H = 〈X | R〉 ⇒ H oα Z = 〈X , t | R, t−1xt = xα ∀x ∈ X 〉.

(ii) Consider a group K , take H = ∗i∈ZKi where Ki ' K , and let
α : H → H, (k ∈ Ki ) 7→ (k ∈ Ki+1). We have,

H oα Z ' 〈Xi (i ∈ Z), t | Ri , t−1xi t = xi+1 (i ∈ Z, x ∈ X )〉
' 〈Xi (i ∈ Z), t | R0, t−1xi t = xi+1 (i ∈ Z, x ∈ X )〉
' 〈X0, t | R0〉 ' K ∗ Z. �

Observation

Taking 1 6= K , f.p. and perfect (K ab = 1), we have H = ∗i∈ZKi not f.g.
and so K ∗ Z is f.p. and !-by-Z, but not [f.g.]-by-Z.
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Unrecognizability of [f.g.]-by-Z

Theorem (Cavallo–Kharobaei–Delgado–V.)

There exists no algorithm to decide, given a finite presentation G ∈ G
(even with b1(G) = 1), whether G ∈ [f.g.]-by-Z or not.

Proof. There exists a recurrent sequence of finite presentations
Kj = 〈Xj | Rj〉 such that Kj is perfect and triviality of Kj is undecidable.

Given j ∈ N,

• Kj ∗ Z = (∗i∈ZKj ) oα Z has Betti number 1;

• the only normal subgroup of Kj ∗ Z with quotient Z is ' ∗i∈ZKj ;

• so, Kj ∗ Z ∈ [f.g.]-by-Z ⇔ ∗i∈ZKj f.g. ⇔ Kj = 1, which is
undecidable. �
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Finding standard presentations

Proposition (Cavallo–Kharobaei–Delgado–V.)

All the (finite) standard presentations of a given [f.p.]-by-Z group G are
recursively enumerable.

Proof. We are given a finite presentation 〈X | R〉 of a group G which
is in [f.p.]-by-Z.

• Enumerate all pres. of G (by diagonally applying all possible Tietze
transformations to 〈X | R〉), of the form

〈y1, . . . , yn, t | ri , t−1yj t = wj (i = 1, . . . ,m), (j = 1, . . . ,n)〉,

where the ri ’s and wj ’s are words on the yj ’s.

• For each such pres., check whether yj 7→ wj defines an endo, say α,
of H = 〈y1, . . . , yn | r1, . . . , rm〉 (by enumerating� r1, . . . , rm � and
checking whether each ri (w1, . . . ,wn) does appear in the list).
Warning! we cannot use WP(H). . .
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is in [f.p.]-by-Z.

• Enumerate all pres. of G (by diagonally applying all possible Tietze
transformations to 〈X | R〉), of the form

〈y1, . . . , yn, t | ri , t−1yj t = wj (i = 1, . . . ,m), (j = 1, . . . ,n)〉,

where the ri ’s and wj ’s are words on the yj ’s.

• For each such pres., check whether yj 7→ wj defines an endo, say α,
of H = 〈y1, . . . , yn | r1, . . . , rm〉 (by enumerating� r1, . . . , rm � and
checking whether each ri (w1, . . . ,wn) does appear in the list).
Warning! we cannot use WP(H). . .
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Finding standard presentations

• For each such pres., check whether α : H → H is an isomorphism of
H (by enumerating all possible endos β : H → H and checking for well
definedness and for αβ = βα = Id).

• If α ∈ Aut (H) output the corresponding standard presentation.

• • •

• Each such process will either output a valid standard presentation
for G, or work forever with no output.

• Every standard presentation for G (there exists at least one!)
eventually appears in the process. �
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The BNS invariant

The theory of sigma invariants was started and developed in the
1980’s by Robert Bieri, Walter Neumann and Ralf Strebel

Definition

Let G = 〈X | R〉 be a f.g. group. A character is a morphism
χ : G→ R. Every such χ factors through G ab∗ = G ab/T (G ab) = Zn

(where n = b1(G)) and so,

{characters of G} = Hom(G,R) = Hom(Zn,R) ' Rn.

Define χ1 ∼ χ2 ⇔ χ2 = λχ1 for some λ > 0,

S(G) = {χ : G→ R | χ 6= 0}/ ∼ = (Rn \ {0})/ ∼ = Sn−1.

is the character sphere of G. Given H 6 G define

S(G,H) = {χ ∈ S(G) | χ(H) = 0}.
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The BNS invariant

Definition
The first sigma invariant of G (also called the BNS invariant) is the
following subset of the character sphere:

Σ1(G) = {χ ∈ S(G) | Gχ is connected in Γ(G,X )} ⊆ S(G),

where Gχ = {g ∈ G | χ(g) > 0} is the positive cone; (this connectivity
does not depend on X !).

Theorem

Let G be f.g. and H EG s.t. G/H is abelian. Then,

H is f.g. ⇔ S(G,H) ⊆ Σ1(G).

In particular, if G/H = Z and π : G� G/H = Z, then

H is f.g. ⇔ π, −π ∈ Σ1(G).
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Undecidability of the BNS invariant

Theorem (Cavallo–Kharobaei–Delgado–V.)

There exists no algorithm s.t., given a finite pres. G = 〈X | R〉, and a
character χ : G→ R (i.e., a point p = [χ] ∈ S(G)) decides whether
p ∈ Σ1(G) or not.

Proof. Suppose there exists such an algorithm A.

Consider any finite pres. G = 〈X | R〉 ∈ !-by-Z (i.e., with b1(G) = 1),
and let π : G� G ab∗ = Z.

Apply A to G and both ±π to decide whether π ∈ Σ1(G) or not, and
whether −π ∈ Σ1(G) or not.

But, ±π ∈ Σ1(G) ⇔ ker(π) is f.g. ⇔ G ∈ [f.g.]-by-Z.

So, we have decided whether G ∈ [f.g.]-by-Z, a contradiction. �
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The isomorphism problem

Question

Given H = 〈X | R〉 and α, β ∈ Aut (H) : H oα Z ' H oβ Z ⇔ ?

Observation

[α] ∼ [β]±1 in Out (H) ⇒ H oα Z ' H oβ Z.

(α = χ−1β±1χγh for some h ∈ H and χ ∈ Aut (H) )

Theorem (Bogopolski–Martino–V.)

For H = F2 and α, β ∈ Aut (F2):
F2 oα Z ' F2 oβ Z ⇔ [α] ∼ [β]±1 in Out (F2).

Example (Dicks)

∃ α, β ∈ Aut (F3) such that F3 oα Z ' F3 oβ Z but [α] 6∼ [β]±1 in
Out (F3).
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A solution for the deranged case

Observation

Let H and K be f.g. and α ∈ Aut (H), β ∈ Aut (K ) be deranged. Then,

(i) H oα Z ' K oβ Z ⇒ H ' K ;

(ii) all isomorphisms from H oα Z to H oβ Z (if any) are of the form:

Ψ: H oα Z → H oβ Z,
h 7→ hψ
t 7→ tεh

where ψ ∈ Aut (H), ε = ±1 and h ∈ H such that ψβεγh = αψ;

(iii) so, H oα Z ' K oβ Z ⇔ H ' K and [α] ∼ [β]±1 in Out (H).
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The isomorphism problem

Theorem (Cavallo–Kharobaei–Delgado–V.)

Let H ⊆ G be a family of f.p. groups. Then,

Isom(H) solvable
∀H ∈ H, 1

2 CP′(Out (H)) solvable

∣∣∣∣ ⇒ Isom(!H-by-Z) solvable.

Definition

For a group G, the 1
2 CP(G) consists on deciding, given g1,g2 ∈ G,

whether g1 ∼ g±1
2 .

Observation

CP(G) solvable ⇒ 1
2 CP(G) solvable.

Convers ?
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The isomorphism problem

Definition

For a f.p. H = 〈X | R〉, CP′(Out (H)) is the following problem:
given α, β ∈ Aut (H) by the images the x ∈ X’s, decide whether
[α] ∼ [β] in Out (H).

Observation

For a f.p. group H = 〈X | R〉, suppose we know a finite set of autos
α1, . . . , αn ∈ Aut (H) generating Out (H). Then,

CP(Out (H)) solvable ⇔ CP′(Out (H)) solvable.
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The isomorphism problem

Theorem (Cavallo–Kharobaei–Delgado–V.)

Let H ⊆ G be a family of f.p. groups. Then,

Isom(H) solvable
∀H ∈ H, 1

2 CP′(Out (H)) solvable

∣∣∣∣ ⇒ Isom(!H-by-Z) solvable.

Proof. Given two finite presentations, 〈X1 | R1〉 and 〈X2 | R2〉, of
groups in !H-by-Z:

• Compute standard presentations for them, and extract finite
presentations for H and K , and autos α ∈ Aut (H), β ∈ Aut (K );

• check whether H ' K using Isom(H); if H 6' K answer NO;

• otherwise H ' K , rewrite β in terms of H, and check whether
[α] ∼ [β]±1 in Out (H) using 1

2 CP′(Out (H));

• if yes answer YES, if no answer NO. �
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groups in !H-by-Z:

• Compute standard presentations for them, and extract finite
presentations for H and K , and autos α ∈ Aut (H), β ∈ Aut (K );

• check whether H ' K using Isom(H); if H 6' K answer NO;

• otherwise H ' K , rewrite β in terms of H, and check whether
[α] ∼ [β]±1 in Out (H) using 1

2 CP′(Out (H));

• if yes answer YES, if no answer NO. �
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Applications

Corollary

Let F be the family of f.g. free groups. Modulo a solution to
CP(Out (Fn)) for all n ∈ N, Isom(!F -by-Z) is solvable.

Corollary

Let B be the family of Braid groups, B = {Bn | n > 2}. Then,
Isom(!B-by-Z) is solvable.

Corollary

Let F be Thompson’s group. Then, Isom(!F -by-Z) is solvable.
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