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Fa

a

a'b
(b~'amc
(c'(a="b)")"
(d7((b~"a")"e)")" .

o We have formalized the situation.
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b — a'b b — a’b
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— n — ( 71((b71an)nc)n)n ]

e We have formalized the situation.
e We have seen that inverting in Aut (F;) is not that bad.
e We now want to look for worse groups G.
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Main definition

LetA={a,...,as} be afinite alphabet, and G= (A| R) be a finite
presentation for a group G. We have the word metric:

forge G, |g|=min{n|g=2a]---a’}

In

Definition
For 6 € Aut(G), note 6 is determined by a9, . . ., a-6 and define

| A,

110111 = |a16| + - - - + |a/f],

10]|0o = max{|af],...,|ad|}.

\

Observation
For every 6 € Aut(F;), ||0]lo < 10111 < r16]]00
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Main definition

Let G= (A | R) be a finite presentation for G. We define the function:
aa(n) = max{||0~"[l1 | § € Aut(G), [|0]l1 < n}.

Clearly, aa(n) < aa(n+1).

The bigger is aa, the more “difficult” will be to invert automorphisms
of G (with respect to the given set of generators A).

Determine the asymptotic growth of the function aa.
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Free group case

For the rest of the talk, G= F, = (a1,....ar | ).

Definition

Every w € F; has its length, |w|, and its cyclic length, {w| :
|aa; ' ap| = |ap| = Jaat =1,

|ajapa; ?| =4,

larapa?l = |aa; '} = 2.

Observation

i) [w”| < |nl|w| and {w"} = [n|{w},
i) lvw| < |v| + |w|, but {vw| < |v| + |w} is not true in general.
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Free group case

For 6 € Aut(F,), define
10111 = |@16] + - - -+ |a0],
HOl1 = Ja10} + - - - + a0},

1011+ = min{||6y[l1 | v € Fr}.

Observation
HOH1 < [[101]11 < [|€]]1, but not equal in general.

Consider: F4 — F4,a— a,b— a'ba,c— a'ca, d — d. We
have ||0}/1 = 4, |||9]|]1 = 6 and ||6]|1 = 8.
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Free group case

ar(n) =max{[|6~"[|1 | 6 € AutF;, ||6]|+ < n},
Be(n) = max{[[|0~"|||+ | 6 € AutF, [16]][+ < n},
vr(n) = max{}0=|1 | 6 € AutF,, }{6}1 < n}.

v

Are these functions equal up to multiplicative constants ?

ar and v, are not; J

By is not clear.




2. Free groups
[e]e]e] )

Main results

For rank r = 2 we have
2
(i) forn>4, ax(n) < 250,




2. Free groups
[e]e]e] )

Main results

For rank r = 2 we have
2
(i) forn>4, ax(n) < 250,

an 2
(i) forn > ng, ao(n) > {5,




2. Free groups
[e]e]e] )

Main results

For rank r = 2 we have

(i) forn >4, ax(n) < @

an 2
(i) forn > ng, ao(n) > {5,

(iiiy forn>=1, Ba(n)=n,




2. Free groups
[e]e]e] )

Main results

For rank r = 2 we have
2
(i) forn>4, ax(n) < 250,

(iiy forn= ny, az(n) > %,
(iii) forn>1 Ba(n) =
)

(iv) forn>1, ~2(n) =




2. Free groups
[e]e]e] )

Main results

For rank r = 2 we have
2
(i) forn>4, ax(n) < 250,

(iiy forn= ny, az(n) > %,
(iii) forn>1 Ba(n) =
(iv) forn>1, ~2(n) =

Theorem
For r > 3 there exist K = K(r) and M = M(r) such that, forn > 1,

(i) ar(n) = Kn',

| A,

A




2. Free groups
[e]e]e] )

Main results

For rank r = 2 we have
2
(i) forn>4, ax(n) < 250,

(iiy forn= ny, az(n) > %,
(iii) forn>1 Ba(n) =
)

(iv) forn=1, ~v2(n) =
Forr 3 there exist K = K(r) and M = M(r) such that, forn > 1,
ar(n) = Kn',

(ii) ﬂ,(n) < Kn,

A




2. Free groups
[e]e]e] )

Main results

For rank r = 2 we have

(i) forn >4, ax(n) < @
(iiy forn= ny, az(n) > %,
(iii) forn>1 Ba(n) =

(iv) forn>1, ~2(n) =

Theorem
For r > 3 there exist K = K(r) and M = M(r) such that, forn > 1,

ar(n) = Kn',
(ii) ﬂ,(n) < Kn,
(iii) ~vr(n) = Kn"—

| A

1

N,
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A lower bound for ~,

Forr > 2, and n > ny, we have ~.(n) > 2r2_1 n—1,

Proof: For r > 2 and n > 1, consider

—1
wryn:Fr — Fr wr)n:Fr — Fr
a — a ai — a
a — ala a — a;"a

a — ajas
— —1
aj = (ai—n1 )¢r,n - &y

ar — aqa (2<i<r)

A straightforward calculation shows that
Hornth = [[¢rnllt = (r = 1)n+r, and
- =n'+2en2+...4(r—N)n+r=n"-
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A lower bound for ~,

Hence, forn > r,
yr(rn) =y ((r—=1)n+r)>n""1.
Now, for n big enough, take the closest multiple of r below,
n>rm>n-—r,
and

_\1 r—1
() =y (rm)y > m'—! > (n r) = (Q - 1) > LIRS

r r 2rr—1

Finally, conjugating by an appropriate element, we shall win an extra
unit in the exponent.
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A lower bound for «,

_ 1y 1
Forr > 2, and n > ny, we have a,(n) > (’ZrQ,L n.

Proof: For r > 2 and n > 1, consider ¢,n7,-n, L where m = [ 555 1.
Writing N = ||ty ny,—m -1 |1, straightforward calculatlons show that,
r 1

for n > ng,
—1
—1 —1 (r—1)
||'Ya1a£”7vbr,n||1 = ||wr,n7(a1a;")¢;n‘ Il = Torar—1 "

Hence, a,(n) > %n 0
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To prove the upper bound

(ii) Br(n) < Kn", J

we’ll need to use the recently discovered metric in the outer space ;.

e By graf I we mean a finite, connected graph of rank r, with no
vertices of degree 1 or 2.

e AmetriconT isamap(: ET — [0,1] such that ) ((e) =1,
and{e € ET | /(e) = 0} is a forest.

e Foragraph', X = {metrics onT} = a simplex with missing
faces.

e If[" =T /forest, then we identify points in X with the
corresponding points in ¥ by assigning length 0 to the collapsed
edges.

e A marking onT is a homotopy equivalence f: R, — T.
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Outer space

Definition
The outer space X is

Xr={(,£,0)} ~

(where ~ is an equivalence relation).

Definition
There is a natural action of Aut(F,) on X, given by

d)' (ra fvé) = (r7¢fa€)a
(thinking ¢: R — Ry). In fact, this is an action of Out(F;).
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Metric on X,

Definition

Letx,x' € X, x = (I, f,0), x’ = (", f,¢'). A difference of markings is
amap a: I — ', which is linear over edges and fa ~ f'.

For such an «, define o(«) to be its maximum slope over edges.

Definition

| \

X, admits the following “metric":

d(x, x") = min{log(c()) | a diff. markings }.

This minimum is achieved by Arzela-Ascoli’s theorem.

A\

This is Bestvina-AlgomKifir version of Martino-Francaviglia’s original
metric.
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Metric on X,

(i) d(x,y)=>0,and=0 < x =y.
(i) d(x,2) < d(x,y)+d(y,2).

(iii) Out(F,) acts by isometries, i.e. d(¢ - x,¢-y) = d(X,y).
(iv) But... d(x,y) # d(y, x) in general.

Definition
For e > 0, the e-thick part of X, is

| \

Xr(e) ={(T,f,£) € X | {(p) > € V closed pathp # 1}
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Bestvina-AlgomKfir theorem

Theorem (Bestvina-AlgomKfir)

For any ¢ > 0 there is constant M = M(r, ¢) such that for all
X,y € Xi(e),
d(x,y) < M- d(y,x).
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Bestvina-AlgomKfir theorem

Theorem (Bestvina-AlgomKfir)
For any ¢ > 0 there is constant M = M(r, ¢) such that for all
X,y € Xi(e),

d(x,y) < M- d(y,x).

Forr > 2, there exists M = M(r) such that

Br(n) < rnM.
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o -x = (R, ¢,4) € X, where { is the uniform metric.
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Proof. Given ¢ € Aut(F;), consider x = (R, id, ¢y) € X, and
o -x = (R, ¢,4) € X, where { is the uniform metric.

d(X, ¢X)

2

min{log(c(«)) | « diff. markings}

log (min{c(¢wp) | W € Fr, p= “half petal"})
log (min{o(¢vw) | w € F})

log ( min{||¢ywl|o | W € Fr})
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Proof

Remind 3,(n) = max{[||o="|lls | 6 € AutF:, ||[6][}s < n}. J

Proof. Given ¢ € Aut(F;), consider x = (R, id, ¢y) € X, and
o -x = (R, ¢,4) € X, where { is the uniform metric.
d(x, ¢-x) min{log(c(«)) | « diff. markings}
log (min{c(¢wp) | W € Fr, p= “half petal"})
log min{0(¢'}’w) | we Fr})
log (min{|[¢wllee | W € F/})
log(l[|¢1l]oc)
log([[|#ll[+)-

Now, using Bestvina-AlgomKfir theorem,

P [ | A

log([[l¢~"Ill1) ~ d(x,¢~"-x) = d(¢-x, x) < Md(x, ¢-x) ~ Mlog(]||¢]||+)-
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4. Upper bounds
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Remind 3.(n) = max{|||0="|||1 | 0 € AutF,, |||0]||1 < n}.

Proof. Given ¢ € Aut(F;), consider x = (R, id, ¢y) € X, and
o -x = (R, ¢,4) € X, where { is the uniform metric.

d(x,¢-x) =

2

min{log(c(«)) | « diff. markings}

log (min{c(¢wp) | W € Fr, p= “half petal"})
log (min{o(¢vw) | w € F})

log ( min{||¢ywl|o | W € Fr})

log([[|#1]l-)

log([l[#ll]1)-

Now, using Bestvina-AlgomKfir theorem,
log(|l¢~"[[11) ~ d(x,¢"-x) = d(¢-x, x) < Md(x, ¢-x) ~ Mlog(|[|8]||1)-
Hence, for every ¢ € Aut(F;), |[lo~ |||+ < rll|¢]||M. O
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The rank 2 case

These functions for Aut (F,) are much easier to understand due to the
following technical lemmas.

Let ¢ € Aut(F,) be positive. Then o~ is cyclically reduced and
eIl = llells

For every 6 € Aut(F,), there exist two letter permuting autos
U1, Yo € Aut(F2), a positive one ¢ € Aut™(F2), and an element
g € Fa, such that 6 = dpye)g and [|¢lls + 2/g] < 116]]1-
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The rank 2 case: v»

For every 0 € Aut(F,), |0~ {1 = |0}|1. Hence, v2(n) = n.

Proof. Let 0 € Aut(F2), decomposed as above, 6 = ¢ pin)g. Then,

HOH1 = Hirpwadghls = Hrevells = Hetl = [lells.

On the other hand,
O™ H1 = HAg-19a "™ oy THa = Wy 'o ™"y Tl =

=He i =lle~ Il =llelk. O
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The rank 2 case: (-

For every 0 € Aut(Fz), |10~ "||l1 = |||0]||1- Hence, B2(n) = n.

Proof. Let 0 € Aut(F2), decomposed as above, 6 = ¢ pin)g. Then,

0111 = [ll1evarglllt = [llvreellls = [llelll = [lells-

On the other hand,
116711 = IAg-19z o™ o Ml = vy o~ wy 'l =

= llle™"lllh = lle~"lr =llells. O
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The rank 2 case: as

For n > 4 we have ax(n) < "5

Proof. Let 0 € Aut(F2), decomposed as above, 6 = ¢ pin)g. Then,
0=1 = Xg-1b5 "¢~y " and

16111 < 41gl - 119 "o~ "5 Ml = 4191 - [l lloe <

< 4gl(lle~ Ml = 1) = 4lglllell = 1)

Now from [|o||1 + 2|g| < ||8]]1 = n, we deduce |g| < “='2ll and so,
161+ < 2(n = [lella)(llells = 1)-
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The rank 2 case: as

(n-1)?

Forn > 4 we have az(n) < .

Proof. Let 0 € Aut(F2), decomposed as above, 6 = ¢ pin)g. Then,
0=1 = Xg-1b5 "¢~y " and

107111 < 4lgl - 1193 e "¢5 oo = 419l - [l oo <
< A4lgl(lle~ Mt = 1) = 4[gl(llells = 1)
Now from [|o||1 + 2|g| < ||8]]1 = n, we deduce |g| < “='2ll and so,

10~ < 2(n = liel)(lell = 1)-

Finally, the parabola f(x) = 2(n — x)(x — 1) takes its maximum at
x = 1 and so,

_ n+1y\/n+1 n—1)?
1671y < 200 [l el 1) <2(n- ") (T 4y = 20 g
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The rank 2 case: as

2
Forn > ny we have ax(n) > f5.

So, the global known picture is

(i) & <az(n) < 5L
(i) Bo(n) = n,
(iii) ~2(n) = n,

(iv) Kn" < ar(n),
(V) Br(n) < KnM,
(ily Kn"=1 < ~,(n).
for some constants K = K(r), M = M(r), and for n > ny. )
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Fixed subgroups are complicated
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e b -1 —1
ba Fixp = (a,bab™',cac™")
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Fixed subgroups are complicated

¢: F3 F3

a o 1 —1
ba Fixp = (a,bab™',cac™")

2

1111

ca

F4

dac

c'a'd'ac Fix o = (w), where...
c'a'b'ac

c'a'bc

s
Qoocod oo

11111

w=c 'a'bd~'c'a'd'ad—'c'b'acdadacdcdbcda—'a'd~!
a'd'c'a'd'c'b'd'c'd~'c 'daabcdaccdb—'a'.
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5. Fixed subgroups

What is known about fixed subgroups ?

Theorem (Dyer-Scott, 75)

Let G < Aut(Fy) be a finite group of automorphisms of F,. Then,
Fix(G) < Fp; in particular, r(Fix(G)) < n.

Conjecture (Scott)
For every ¢ € Aut(Fp), r(Fix(¢)) < n.

Theorem (Gersten, 83 (published 87))
Let ¢ € Aut(Fp). Then r(Fix(¢)) < oo.

Theorem (Thomas, 88)

Let G < Aut(F,) be an arbitrary group of automorphisms of F,. Then,
r(Fix(G)) < oo.
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Train-tracks

Main result in this story:

Theorem (Bestvina-Handel, 88 (published 92))

Let ¢ € Aut(Fp). Then r(Fix(¢)) < n.

introducing the theory of train-tracks for graphs.
After Bestvina-Handel, live continues ...

Theorem (Imrich-Turner, 89)
Let ¢ € End(Fp). Then r(Fix(¢)) < n.

Theorem (Turner, 96)

Let ¢ € End(Fp). If ¢ is not bijective then r(Fix(¢)) < n—1.
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5. Fixed subgroups

Inertia

Definition

A subgroup H < F, is called inert if r(HN K) < r(K) for every K < Fp,.

Theorem (Dicks-V, 96)

Let G C Mon (F,) be an arbitrary set of monomorphisms of F,. Then,
Fix(G) is inert; in particular, r(Fix(G)) < n.

Theorem (Bergman, 99)

Let G C End(F,) be an arbitrary set of endomorphisms of F,. Then,
r(Fix(G)) < n.

Conjecture (V.)

Let ¢ € End(Fp). Then Fix(¢) is inert.
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@ T1-auto-fixed if H = Fix () for some ¢ € Aut(Fy),
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The four families

A subgroup H < F, is said to be
@ T1-auto-fixed if H = Fix () for some ¢ € Aut(Fy),
@ 1-endo-fixed if H = Fix(¢) for some ¢ € End(F),
@ auto-fixed if H = Fix(S) for some S C Aut(Fp),
@ endo-fixed if H = Fix(S) for some S C End(F;,),

Easy to see that 1-mono-fixed = 1-auto-fixed.
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Relations between them

]1 —auto—fixed\ £ ]1 —endo—fixed\

al

al al

o _ed] §  [ondo—Tied]

Example (Martino-V., 03; Ciobanu-Dicks, 06)

N

Let F3 = (a,b,c) and H = (b, cacbab~'c~') < F3. Then,
H = Fix(a+ 1, b+ b, ¢ — cacbab—'c~'), but H is NOT the fixed
subgroup of any set of automorphism of F3.




Relations between them

]1 —auto—fixed\ 5& ]1 —endo—fixed\

N7 N7

ato_ed] 3 [ondo—Tied]

Theorem (Martino-V., 00)

N

Let S C End(Fp). Then, 3¢ € (S) such that Fix(S) < Fix(¢).

But... free factors of 1-endo-fixed (1-auto-fixed) subgroups need not
be even endo-fixed (auto-fixed).
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Computing fixed subgroups

Proposition (Turner, 86)
There exists a pseudo-algorithm to compute fix of an endo.

Easy but is not an algorithm...

Theorem (Maslakova, 03)
Fixed subgroups of automorphisms of F, are computable.

Difficult, using train-tracks. Mistake found,... and fixed by W. Dicks

Theorem (Dicks, 11)
Fixed subgroups of endomorphisms of F, are computable.
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Deciding fixedness

What about the dual problem ?
Theorem (V. 2010)

Given H <g, Fs, one can algorithmically decide whether
i) H is auto-fixed or not,

ii) H is endo-fixed or not,

and in the affirmative case, find a finite family, S = {¢1, ..., ém}, of
automorphisms (endomorphisms) of F,, such that Fix(S) = H.
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Deciding fixedness

What about the dual problem ?
Theorem (V. 2010)

Given H <g, Fs, one can algorithmically decide whether
i) H is auto-fixed or not,

ii) H is endo-fixed or not,

and in the affirmative case, find a finite family, S = {¢1, ..., ém}, of
automorphisms (endomorphisms) of F,, such that Fix(S) = H.

| \

Conjecture

Given H <g, Fn, one can algorithmically decide whether
i) H is 1-auto-fixed or not,
ii) H is 1-endo-fixed or not,

and in the affirmative case, find one automorphism (endomorphism)
¢ of F, such that Fix(¢) = H.
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Fixed closures

Definition
Given H <;, Fn, we define the (auto- and endo-) stabilizer of H,
respectively, as

Auty(Fn) = {¢ € Aut(F,) | H < Fix(¢)} < Aut(Fy)

and

Endy(Fn) = {¢ € End(F,) | H < Fix(¢)} < End(Fp)
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Fixed closures

Definition
Given H <;, Fn, we define the (auto- and endo-) stabilizer of H,
respectively, as

Auty(Fn) = {¢ € Aut(F,) | H < Fix(¢)} < Aut(Fy)

and
Endy(Fn) = {¢ € End(F,) | H < Fix(¢)} < End(Fp)

Definition
Given H < F,,, we define the auto-closure and endo-closure of H as

a-Cl(H) = Fix (Auty(F»)) > H

and

e-Cl(H) = Fix(Endy(F,)) > H
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Main result

For every H <, Fp, a-Cl(H) and e-CI(H) are finitely generated and
one can algorithmically compute bases for them.

Auto-fixedness and endo-fixedness are decidable. \

Observe that e-CI(H) < a-CI(H) but, in general, they are not equal.
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The automorphism case

Theorem (McCool, 70’s)

Let H <t Fn. Then Auty(Fp) is finitely generated (in fact, finitely
presented) and a finite set of generators (and relations) is
algorithmically computable from H.
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The automorphism case

Theorem (McCool, 70’s)

Let H <t Fn. Then Auty(Fp) is finitely generated (in fact, finitely
presented) and a finite set of generators (and relations) is
algorithmically computable from H.

For every H <, Fp, a-CI(H) is finitely generated and algorithmically
computable.
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The automorphism case

Theorem (McCool, 70’s)

Let H <t Fn. Then Auty(Fp) is finitely generated (in fact, finitely
presented) and a finite set of generators (and relations) is
algorithmically computable from H.

For every H <, Fp, a-CI(H) is finitely generated and algorithmically
computable.

Proof. a-Cl(H) Fix (Auty(Fp))

FiX(<¢17' . -a¢m>)
Fix (¢4) (- -~ NFix (). O
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The endomorphism case

A similar approach does not work because:

H <¢; F, does not imply that Endy(Fp) is finitely generated as
submonoid of End (F;).
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The endomorphism case

c), the element d = ba[c?, bla~', and the

Consider F3 = (a, b,
a, d) < Fs.

subgroup H = {a,




The endomorphism case

Algorithmic results
000000@0000

Consider F3 = (a,
subgroup H = {a,

’(/)Z F3 — F3 (b: F3 —
a — a a +—
b — d b —
c — 1 c

satisfy H < Fix(¢™)) for every n € Z.

8_0‘&)@71

¢"™p: F3
a
b
c

1111

b, c), the element d = bac?, bla~"', and the
d) < F3. Clearly, the morphisms

F3

a
d
d

n
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The endomorphism case

Example

b, c), the element d = bac?, bla~"', and the

Consider F3 = (a, b,
,d) < F3. Clearly, the morphisms

subgroup H = (a

Yv:F3s — F  ¢:F — F ¢"W:F — R
a — a a — a a — a
b — d b — b b — d
c — 1 c — c¢cb c — d"

satisfy H < Fix(¢™)) for every n € Z.
With some computations, Ciobanu-Dicks-06 show that

Endy(F3) = {ld, ¢"¢ | n € Z}.
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Example

b, c), the element d = bac?, bla~"', and the

Consider F3 = (a, b,
,d) < F3. Clearly, the morphisms

subgroup H = (a

Yv:F3s — F  ¢:F — F ¢"W:F — R
a — a a — a a — a
b — d b — b b — d
c — 1 c — c¢cb c — d"

satisfy H < Fix(¢™)) for every n € Z.
With some computations, Ciobanu-Dicks-06 show that

Endy(F3) = {ld, ¢"¢ | n € Z}.

But, ™) - ¢"p = ¢™p. Hence, Endy(F3) is not finitely generated.




Algorithmic results
000000@0000

The endomorphism case

Example

b, c), the element d = bac?, bla~"', and the

Consider F3 = (a, b,
,d) < F3. Clearly, the morphisms

subgroup H = (a

Yv:F3s — F  ¢:F — F ¢"W:F — R
a — a a — a a — a
b — d b — b b — d
c — 1 c — c¢cb c — d"

satisfy H < Fix(¢™)) for every n € Z.
With some computations, Ciobanu-Dicks-06 show that

Endy(F3) = {ld, ¢"¢ | n € Z}.

But, ™) - ¢"p = ¢™p. Hence, Endy(F3) is not finitely generated.

Furthermore, a-C/(H) = Fix (Id) = F3 and e-CI(H) = Fix (¢) = H.
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The endomorphism case

For every H <, Fp, e-CI(H) is finitely generated and algorithmically
computable.

Proof. Given H (in generators),
@ Compute AE(H) = {Hi, Ho, ..., Hq}.
@ Select those which are retracts, AEei(H) = {H1,..., H/}

(1<r<aq).
@ Write the generators of H as words on the generators of each
one of these Hi’s,i=1,...,r.

@ Compute bases for a-Cly, (H), ..., a-Cly,(H).
e Compute a basis for a-Cly, (H) N --- N a-Cl ,(H).
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The endomorphism case

For every H <, Fp, e-CI(H) is finitely generated and algorithmically
computable.

Proof. Given H (in generators),
@ Compute AE(H) = {Hi, Ho, ..., Hq}.
@ Select those which are retracts, AEei(H) = {H1,..., H/}

(1<r<aq).
@ Write the generators of H as words on the generators of each
one of these Hi’s,i=1,...,r.

@ Compute bases for a-Cly, (H), ..., a-Cly,(H).
e Compute a basis for a-Cly, (H) N --- N a-Cl ,(H).

a-Cly, (H) N --- N a-Cly, (H) = e-CI(H).
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The endomorphism case

a-Cly,(H) N -+ N a-Cly, (H) = e-CI(H).

Proof. Let us see that

N () Fix(e) = (1 Fix(9).

i=1 o€ Aut(H) 8 € End (Fp)
H < Fix(a) H < Fix(8)
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H < Fix(a) H < Fix(8)

@ Take 5 € End (Fp) with H < Fix (5).
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The endomorphism case

a-Cly,(H) N -+ N a-Cly, (H) = e-CI(H).

Proof. Let us see that

N () Fix(e) = (1 Fix(9).

i=1 o€ Aut(H) 8 € End (Fp)
H < Fix(a) H < Fix(8)

@ Take 5 € End (Fp) with H < Fix (5).
o Jdi= 17...,rSUChthatH<alg H,’ <ffFﬂOO < F.
@ Now, g restricts to an automorphism «: H; — H;.
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The endomorphism case

a-Cly,(H) N -+ N a-Cly, (H) = e-CI(H).

Proof. Let us see that

N () Fix(e) = (1 Fix(9).

i=1 o€ Aut(H) 8 € End (Fp)
H < Fix(a) H < Fix(8)

@ Take 5 € End (Fp) with H < Fix (5).

@ Ji=1,...,rsuchthat H <us H; <g F5> < F.

@ Now, [ restricts to an automorphism a: H; — H;.
@ And, clearly, H < Fix («) < Fix(8).
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The endomorphism case

a-Cly,(H) N -+ N a-Cly, (H) = e-CI(H).

Proof. Let us see that

N () Fix(e) = (1 Fix(9).

i=1 o€ Aut(H) 8 € End (Fp)
H < Fix(a) H < Fix(8)

@ Take 5 € End (Fp) with H < Fix (5).

@ Ji=1,...,rsuchthat H <us H; <g F5> < F.

@ Now, [ restricts to an automorphism a: H; — H;.
@ And, clearly, H < Fix («) < Fix(8).

@ Hence, we have "<”.
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The endomorphism case

h (| Fix(e) = (1 Fix(9).
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The endomorphism case

h (| Fix(e) = (1 Fix(9).

Aut(H) $ € End (F,)
ix(a) H < Fix(B)

@ Take H; € A&et(H), and o € Aut (H;) with H < Fix ().
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The endomorphism case

N [ Fix(e) = (1 Fix(9).
| Aut

ut (H,) 8 € End (Fp)
) H < Fix(B)
@ Take H; € AE(H), and o € Aut (H;) with H < Fix («).

@ Let p: F — H; be a retraction, and consider the endomorphism,
B:Fo b Hi % H <5 Fp
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The endomorphism case

N [ Fix(e) = N Fix (3).
j Aut

ut (H,) B € End (Fp)
) H < Fix(B)
@ Take H; € A&et(H), and o € Aut (H;) with H < Fix ().
@ Let p: F — H; be a retraction, and consider the endomorphism,
B:Fnl H S H S F
@ Clearly, H < Fix (a) = Fix (5).
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The endomorphism case

N [ Fix(e) = N Fix (3).
j Aut

ut (H,) B € End (Fp)
) H < Fix(B)
@ Take H; € A&et(H), and o € Aut (H;) with H < Fix ().
@ Let p: F — H; be a retraction, and consider the endomorphism,
B:Fnl H S H S F
@ Clearly, H < Fix (a) = Fix (5).
@ Hence, we have ">". O
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