On the difficulty of inverting automorphisms of free groups

Enric Ventura

Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya

Université Paris-Sud, Centre d'Orsay

August 31th, 2011.

Outline

(1) Motivation
(2) Free groups
(3) Lower bounds: a good enough example

4 Upper bounds: outer space
(5) The special case of rank 2

6 Fixed subgroups: a nice story
(7) Algorithmic results

Outline

(2) Free groups

3 Lower bounds: a good enough example
(4) Upper bounds: outer space
(5) The special case of rank 2
(5) Fixed subgroups: a nice story
(7) Algorithmic results

Motivation

(Joint work with P. Silva and M. Ladra.)

Find a group G where • is "easy" but ($)^{-1}$ is "difficult"
Natural candidate: Aut $\left(F_{n}\right)$, where $F_{r}=\left\langle a_{1}\right.$
$F_{3}=\langle a, b, c \mid\rangle$.

$$
\begin{aligned}
\phi \psi: F_{3} & \rightarrow F_{3} \\
a & \mapsto b c^{-1} a^{-1} b c \\
b & \mapsto b c^{-1} a^{-1} b c a^{-1} b \\
c & \mapsto a^{-1} b c^{-1} .
\end{aligned}
$$

Motivation

(Joint work with P. Silva and M. Ladra.)

Find a group G where \cdot is "easy" but ($)^{-1}$ is "difficult".

Natural candidate: $\operatorname{Aut}\left(F_{n}\right)$, where $F_{r}=\left\langle a_{1}\right.$

$F_{3}=\langle a, b, c \mid\rangle$

Motivation

(Joint work with P. Silva and M. Ladra.)

Find a group G where \cdot is "easy" but ($)^{-1}$ is "difficult".
Natural candidate: Aut $\left(F_{n}\right)$, where $F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.

Motivation

(Joint work with P. Silva and M. Ladra.)

Find a group G where \cdot is "easy" but ($)^{-1}$ is "difficult".
Natural candidate: Aut $\left(F_{n}\right)$, where $F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.

$$
F_{3}=\langle a, b, c \mid\rangle
$$

$$
\begin{array}{rlrll}
\phi: F_{3} & \rightarrow F_{3} & \psi: F_{3} & \rightarrow F_{3} \\
a & \mapsto & a b & a & \mapsto
\end{array} b c^{-1} .
$$

Motivation

(Joint work with P. Silva and M. Ladra.)

Find a group G where \cdot is "easy" but ($)^{-1}$ is "difficult".
Natural candidate: Rut $\left(F_{n}\right)$, where $F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.

$$
F_{3}=\langle a, b, c \mid\rangle .
$$

$$
\left.\begin{array}{rlrll}
\phi: F_{3} & \rightarrow F_{3} & \psi: F_{3} & \rightarrow F_{3} \\
a & \mapsto & a b & a & \mapsto
\end{array} b c^{-1}\right)
$$

Motivation

$$
\begin{array}{rlrl}
F_{5}=\langle a, b, c, d, & & \rangle . \\
\psi_{n}: F_{5} & \rightarrow F_{5} & \psi_{n}^{-1}: F_{4} & \rightarrow F_{4} \\
a & \mapsto a & \mapsto & a \\
b & \mapsto a^{n} b & b & \mapsto
\end{array} a^{-n} b .
$$

- We have formalized the situation.

- We have seen that inverting in $\operatorname{Aut}\left(F_{r}\right)$ is not that bad.
- We now want to look for worse groups G.

Motivation

$$
\begin{aligned}
& F_{5}=\langle a, b, c, d, \quad \mid\rangle . \\
& \psi_{n}: F_{5} \rightarrow F_{5} \quad \psi_{n}^{-1}: F_{4} \rightarrow F_{4} \\
& a \mapsto a \\
& b \mapsto a^{n} b \\
& a \mapsto a \\
& c \mapsto b^{n} c \\
& c \mapsto\left(b^{-1} a^{n}\right)^{n} c \\
& d \mapsto c^{n} d \\
& \mapsto \quad d^{n} \\
& d \mapsto\left(c^{-1}\left(a^{-n} b\right)^{n}\right)^{n} d \\
& \mapsto \quad\left(d^{-1}\left(\left(b^{-1} a^{n}\right)^{n} c\right)^{n}\right)^{n} .
\end{aligned}
$$

- We have formalized the situation.
- We have seen that inverting in $\operatorname{Aut}\left(F_{r}\right)$ is not that bad.
- We now want to look for worse groups G.

Motivation

$$
\begin{array}{rlrl}
F_{5}=\langle a, b, c, d & , & \\
& & \\
\psi_{n}: F_{5} & \rightarrow F_{5} & \psi_{n}^{-1}: F_{4} & \rightarrow F_{4} \\
a & \mapsto a & a & \mapsto a \\
b & \mapsto & a^{n} b & b
\end{array} \mapsto a^{-n} b .
$$

- We have formalized the situation.
- We have seen that inverting in $\operatorname{Aut}\left(F_{r}\right)$ is not that bad.
- We now want to look for worse groups G.

Motivation

$$
\begin{array}{rlrl}
F_{5}=\langle a, b, c, d & , & & \\
\psi_{n}: F_{5} & \rightarrow F_{5} & \psi_{n}^{-1}: F_{4} & \rightarrow F_{4} \\
a & \mapsto a & a & \mapsto a \\
b & \mapsto & a^{n} b & b
\end{array} \mapsto a^{-n} b .
$$

- We have formalized the situation.
- We have seen that inverting in $\operatorname{Aut}\left(F_{r}\right)$ is not that bad.
- We now want to look for worse groups G.

Main definition

Definition

Let $A=\left\{a_{1}, \ldots, a_{r}\right\}$ be a finite alphabet, and $G=\langle A \mid R\rangle$ be a finite presentation for a group G. We have the word metric:

$$
\text { for } g \in G, \quad|g|=\min \left\{n \mid g=a_{i_{1}}^{\epsilon_{1}} \cdots a_{i_{n}}^{\epsilon_{n}}\right\} .
$$

Definition

For $\theta \in \operatorname{Aut}(G)$, note θ is determined by $a_{1} \theta, \ldots, a_{r} \theta$ and define

$$
\|\theta\|_{\infty}=\max \left\{\left|a_{1} \theta\right|, \ldots,\left|a_{r} \theta\right|\right\} .
$$

Observation

For everv $\theta \in A$

Main definition

Definition

Let $A=\left\{a_{1}, \ldots, a_{r}\right\}$ be a finite alphabet, and $G=\langle A \mid R\rangle$ be a finite presentation for a group G. We have the word metric:

$$
\text { for } g \in G, \quad|g|=\min \left\{n \mid g=a_{i_{1}}^{\epsilon_{1}} \cdots a_{i_{n}}^{\epsilon_{n}}\right\} .
$$

Definition

For $\theta \in \operatorname{Aut}(G)$, note θ is determined by $a_{1} \theta, \ldots, a_{r} \theta$ and define

$$
\|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|,
$$

Observation
For every $\theta \in \operatorname{Aut}\left(F_{r}\right),\|\theta\|$

Main definition

Definition

Let $A=\left\{a_{1}, \ldots, a_{r}\right\}$ be a finite alphabet, and $G=\langle A \mid R\rangle$ be a finite presentation for a group G. We have the word metric:

$$
\text { for } g \in G, \quad|g|=\min \left\{n \mid g=a_{i_{1}}^{\epsilon_{1}} \cdots a_{i_{n}}^{\epsilon_{n}}\right\} .
$$

Definition

For $\theta \in \operatorname{Aut}(G)$, note θ is determined by $a_{1} \theta, \ldots, a_{r} \theta$ and define

$$
\begin{gathered}
\|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|, \\
\|\theta\|_{\infty}=\max \left\{\left|a_{1} \theta\right|, \ldots,\left|a_{r} \theta\right|\right\} .
\end{gathered}
$$

Observation
For every $\theta \in \operatorname{Aut}\left(F_{r}\right),\|\theta\|$

Main definition

Definition

Let $A=\left\{a_{1}, \ldots, a_{r}\right\}$ be a finite alphabet, and $G=\langle A \mid R\rangle$ be a finite presentation for a group G. We have the word metric:

$$
\text { for } g \in G, \quad|g|=\min \left\{n \mid g=a_{i_{1}}^{\epsilon_{1}} \cdots a_{i_{n}}^{\epsilon_{n}}\right\} .
$$

Definition

For $\theta \in \operatorname{Aut}(G)$, note θ is determined by $a_{1} \theta, \ldots, a_{r} \theta$ and define

$$
\begin{gathered}
\|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|, \\
\|\theta\|_{\infty}=\max \left\{\left|a_{1} \theta\right|, \ldots,\left|a_{r} \theta\right|\right\} .
\end{gathered}
$$

Observation

For every $\theta \in \operatorname{Aut}\left(F_{r}\right),\|\theta\|_{\infty} \leqslant\|\theta\|_{1} \leqslant r\|\theta\|_{\infty}$

Main definition

Definition

Let $G=\langle A \mid R\rangle$ be a finite presentation for G. We define the function:

$$
\alpha_{A}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in \operatorname{Aut}(G),\|\theta\|_{1} \leqslant n\right\} .
$$

Clearly, $\alpha_{A}(n) \leqslant \alpha_{A}(n+1)$.

The bigger is α_{A}, the more "difficult" will be to invert automorphisms of G (with respect to the given set of generators A).

Question

Determine the asymptotic growth of the function α_{A}.

Main definition

Definition

Let $G=\langle A \mid R\rangle$ be a finite presentation for G. We define the function:

$$
\alpha_{A}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in \operatorname{Aut}(G),\|\theta\|_{1} \leqslant n\right\} .
$$

Clearly, $\alpha_{A}(n) \leqslant \alpha_{A}(n+1)$.

The bigger is α_{A}, the more "difficult" will be to invert automorphisms of G (with respect to the given set of generators A).

Question

Determine the asymptotic growth of the function α_{A}.

Main definition

Definition

Let $G=\langle A \mid R\rangle$ be a finite presentation for G. We define the function:

$$
\alpha_{A}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in \operatorname{Aut}(G),\|\theta\|_{1} \leqslant n\right\} .
$$

Clearly, $\alpha_{A}(n) \leqslant \alpha_{A}(n+1)$.

The bigger is α_{A}, the more "difficult" will be to invert automorphisms of G (with respect to the given set of generators A).

Question

Determine the asymptotic growth of the function α_{A}.

Outline

(1) Motivation

(2) Free groups

3 Lower bounds: a good enough example
4. Upper bounds: outer space
(5) The special case of rank 2

6 Fixed subgroups: a nice story
(7) Algorithmic results

Free group case

For the rest of the talk, $G=F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.

Definition

Every $w \in F_{r}$ has its length, $|w|$, and its cyclic length, $|w|$
$\left|a_{1} a_{1}^{-1} a_{2}\right|=\left|a_{2}\right|=\left|a_{2}\right|=1$,
$\left|a_{1} a_{2} a_{1}^{-2}\right|=4$,
$\left|a_{1} a_{2} a_{1}^{-2}\right| \cdot\left|a_{2} a_{1}^{-1}\right|=2$.

Observation

i) $\left|w^{n}\right| \leqslant|n||w|$ and $\cdot\left|w^{n}\right| \cdot=|n| \cdot|w| \cdot$
ii) $|v w| \leqslant|v|+|w|$, but $\cdot|v w| \cdot \leqslant|v| \cdot+|w| \cdot$ is not true in general.

Free group case

For the rest of the talk, $G=F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.

Definition

Every $w \in F_{r}$ has its length, $|w|$, and its cyclic length, $|w|$:
$\left|a_{1} a_{1}^{-1} a_{2}\right|=\left|a_{2}\right|=\left|a_{2}\right|=1$,
$\left|a_{1} a_{2} a_{1}^{-2}\right|=4$,
$\left|a_{1} a_{2} a_{1}^{-2}\right|=\left|a_{2} a_{1}^{-1}\right|=2$.

Observation

i) $\left|w^{n}\right|$
ii) $|v w| \leqslant|v|+|w|$, but $\cdot|v w| \cdot \leqslant|v| \cdot+|w| \cdot$ is not true in general.

Free group case

For the rest of the talk, $G=F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.

Definition

Every $w \in F_{r}$ has its length, $|w|$, and its cyclic length, $|w|$:
$\left|a_{1} a_{1}^{-1} a_{2}\right|=\left|a_{2}\right|=\left|a_{2}\right|=1$,
$\left|a_{1} a_{2} a_{1}^{-2}\right|=4$,
$\left|a_{1} a_{2} a_{1}^{-2}\right|=\left|a_{2} a_{1}^{-1}\right|=2$.

Observation

i) $\left|w^{n}\right| \leqslant|n||w|$ and $\cdot\left|w^{n}\right| \cdot=|n| \cdot|w|$;
ii) $|v w| \leqslant|v|+|w|$, but $\cdot|v w \cdot \leqslant \cdot| v \cdot+\cdot|w|$ is not true in general.

Free group case

For the rest of the talk, $G=F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.

Definition

Every $w \in F_{r}$ has its length, $|w|$, and its cyclic length, $|w|$:
$\left|a_{1} a_{1}^{-1} a_{2}\right|=\left|a_{2}\right|=\left|a_{2}\right|=1$,
$\left|a_{1} a_{2} a_{1}^{-2}\right|=4$,
$\left|a_{1} a_{2} a_{1}^{-2}\right|=\left|a_{2} a_{1}^{-1}\right|=2$.

Observation

i) $\left|w^{n}\right| \leqslant|n||w|$ and $\cdot\left|w^{n}\right| \cdot=|n| \cdot|w|$;
ii) $|v w| \leqslant|v|+|w|$, but $\cdot|v w| \cdot \leqslant|v| \cdot+|w|$ is not true in general.

Free group case

Definition

For $\theta \in \operatorname{Aut}\left(F_{r}\right)$, define

$$
\|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|,
$$

$$
|\cdot| \theta \|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|,
$$

Observation

but not equal in general.

Example

Consider $\theta: F_{4} \rightarrow F_{4}, a \mapsto a, b \mapsto a^{-1} b a, c \mapsto a^{-1} c a, d \mapsto d$. We
have $\|\theta\|_{1}=4,\|\mid \theta\|_{1}=6$ and $\|\theta\|_{1}=8$.

Free group case

Definition

For $\theta \in \operatorname{Aut}\left(F_{r}\right)$, define

$$
\begin{aligned}
& \|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|, \\
& \left.|\cdot \theta|\right|_{1}=\left|a_{1} \theta\right| \cdot+\cdots+\left|a_{r} \theta\right|,
\end{aligned}
$$

Observation

but not equal in general.

Example

Consider $\theta: F_{4} \rightarrow F_{4}, a \mapsto a, b \mapsto a^{-1} b a, c \mapsto a^{-1} c a, d \mapsto d$. We
have $\|\theta\|_{1}=4,\|\mid \theta\|_{1}=6$ and $\|\theta\|_{1}=8$.

Free group case

Definition

For $\theta \in \operatorname{Aut}\left(F_{r}\right)$, define

$$
\begin{aligned}
& \|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|, \\
& \|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|, \\
& \left\|\|\theta\|_{1}=\min \left\{\left\|\theta \gamma_{v}\right\|_{1} \mid v \in F_{r}\right\} .\right.
\end{aligned}
$$

Observation

but not equal in general.

Example

Consider $\theta: F_{4} \rightarrow F_{4}, a \mapsto a, b \mapsto a^{-1} b a, c \mapsto a^{-1} c a, d \mapsto d$. We have $\|\theta\|_{1}=4,\| \| \theta \|_{1}=6$ and $\|\theta\|_{1}=8$.

Free group case

Definition

For $\theta \in \operatorname{Aut}\left(F_{r}\right)$, define

$$
\begin{aligned}
& \|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|, \\
& \|\theta\|_{1}=\left|a_{1} \theta\right| \cdot+\cdots+\left|a_{r} \theta\right|, \\
& \|\theta \mid\|_{1}=\min \left\{\left\|\theta \gamma_{v}\right\|_{1} \mid v \in F_{r}\right\} .
\end{aligned}
$$

Observation

$\|\theta\|_{1} \leqslant\|\theta \theta\|_{1} \leqslant\|\theta\|_{1}$, but not equal in general.

Example

Consider $\theta: F_{4} \rightarrow F_{4}, a \mapsto a, b \mapsto a^{-1} b a, c \mapsto a^{-1} c a, d \mapsto d$. We
have $\|\theta\|_{1}=4,\| \| \theta \|_{1}=6$ and $\|\theta\|_{1}=8$.

Free group case

Definition

For $\theta \in \operatorname{Aut}\left(F_{r}\right)$, define

$$
\begin{aligned}
& \|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|, \\
& \left\|\left|\theta \|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|,\right.\right. \\
& \left\|\|\theta\|_{1}=\min \left\{\left\|\theta \gamma_{v}\right\|_{1} \mid v \in F_{r}\right\} .\right.
\end{aligned}
$$

Observation

$\left\|\theta H_{1} \leqslant\right\| \theta \theta\left\|_{1} \leqslant\right\| \theta \|_{1}$, but not equal in general.

Example

Consider $\theta: F_{4} \rightarrow F_{4}, a \mapsto a, b \mapsto a^{-1} b a, c \mapsto a^{-1} c a, d \mapsto d$. We have $\|\theta\|_{1}=4,\| \| \theta \|_{1}=6$ and $\|\theta\|_{1}=8$.

Free group case

Definition

$$
\begin{gathered}
\alpha_{r}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in \text { Aut } F_{r},\|\theta\|_{1} \leqslant n\right\}, \\
\beta_{r}(n)=\max \left\{\left\|\left|\theta^{-1} \|_{1}\right| \theta \in \text { Aut } F_{r},\right\|\|\theta\|_{1} \leqslant n\right\}, \\
\gamma_{r}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in \text { Aut } F_{r},\|\theta\|_{1} \leqslant n\right\}
\end{gathered}
$$

Question

Are these functions equal up to multiplicative constants ?

Free group case

Definition

$$
\begin{gathered}
\alpha_{r}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in \text { Aut } F_{r},\|\theta\|_{1} \leqslant n\right\} \\
\beta_{r}(n)=\max \left\{\| \| \theta^{-1} \|_{1} \mid \theta \in \text { Aut } F_{r},\| \| \theta \|_{1} \leqslant n\right\} \\
\gamma_{r}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in \text { Aut } F_{r},\|\theta\|_{1} \leqslant n\right\}
\end{gathered}
$$

Question

Are these functions equal up to multiplicative constants ?

Free group case

Definition

$$
\begin{gathered}
\alpha_{r}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in \text { Aut } F_{r},\|\theta\|_{1} \leqslant n\right\} \\
\beta_{r}(n)=\max \left\{\| \| \theta^{-1} \|_{1} \mid \theta \in \text { Aut } F_{r},\| \| \theta \|_{1} \leqslant n\right\} \\
\gamma_{r}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in \text { Aut } F_{r},\|\theta\|_{1} \leqslant n\right\}
\end{gathered}
$$

Question

Are these functions equal up to multiplicative constants ?
α_{r} and γ_{r} are not;
β_{r} is not clear.

Main results

Theorem

For rank $r=2$ we have
(i) for $n \geqslant 4, \quad \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) for $n \geqslant n_{0}, \quad \alpha_{2}(n) \geqslant \frac{n^{2}}{16}$,
(iii) for $n \geqslant 1, \beta_{2}(n)=n$,
(iv) for $n \geq 1 . v_{0}(n)=n$.

Theorem

For $r \geqslant 3$ there exist $K=K(r)$ and $M=M(r)$ such that, for $n \geqslant 1$,
(i) $\alpha_{r}(n) \geqslant K n^{r}$,
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
(iii) $\gamma_{r}(n) \geqslant K n^{r-1}$.

Main results

Theorem

For rank $r=2$ we have
(i) for $n \geqslant 4, \quad \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) for $n \geqslant n_{0}, \quad \alpha_{2}(n) \geqslant \frac{n^{2}}{16}$,
(iii) for $n \geqslant 1, \beta_{2}(n)=n$,
(iv) for $n \geqslant 1, \gamma_{2}(n)=n$.

Theorem

For $r \geqslant 3$ there exist $K=K(r)$ and $M=M(r)$ such that, for $n \geqslant 1$,
(i) $\alpha_{r}(n) \geqslant K n^{r}$,
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
(iii) $\gamma_{r}(n) \geqslant K n^{r-1}$

Main results

Theorem

For rank $r=2$ we have
(i) for $n \geqslant 4, \quad \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) for $n \geqslant n_{0}, \quad \alpha_{2}(n) \geqslant \frac{n^{2}}{16}$,
(iii) for $n \geqslant 1, \beta_{2}(n)=n$,
(iv) for $n \geqslant 1, \gamma_{2}(n)=n$.

Theorem

For $r \geqslant 3$ there exist $K=K(r)$ and $M=M(r)$ such that, for $n \geqslant 1$,
(i) $\alpha_{r}(n) \geqslant K n^{r}$,
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
(iii) $\gamma_{r}(n) \geqslant K n^{r-1}$

Main results

Theorem

For rank $r=2$ we have
(i) for $n \geqslant 4, \quad \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) for $n \geqslant n_{0}, \quad \alpha_{2}(n) \geqslant \frac{n^{2}}{16}$,
(iii) for $n \geqslant 1, \beta_{2}(n)=n$,
(iv) for $n \geqslant 1, \quad \gamma_{2}(n)=n$.

Theorem

For $r \geqslant 3$ there exist $K=K(r)$ and $M=M(r)$ such that, for $n \geqslant 1$,
(i) $\alpha_{r}(n) \geqslant K n^{r}$,
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
(iii) $\gamma_{r}(n) \geqslant K n^{r-1}$

Main results

Theorem

For rank $r=2$ we have
(i) for $n \geqslant 4, \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) for $n \geqslant n_{0}, \alpha_{2}(n) \geqslant \frac{n^{2}}{16}$,
(iii) for $n \geqslant 1, \beta_{2}(n)=n$,
(iv) for $n \geqslant 1, \gamma_{2}(n)=n$.

Theorem

For $r \geqslant 3$ there exist $K=K(r)$ and $M=M(r)$ such that, for $n \geqslant 1$, (i) $\alpha_{r}(n) \geqslant K n^{r}$,

Main results

Theorem

For rank $r=2$ we have
(i) for $n \geqslant 4, \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) for $n \geqslant n_{0}, \alpha_{2}(n) \geqslant \frac{n^{2}}{16}$,
(iii) for $n \geqslant 1, \beta_{2}(n)=n$,
(iv) for $n \geqslant 1, \gamma_{2}(n)=n$.

Theorem

For $r \geqslant 3$ there exist $K=K(r)$ and $M=M(r)$ such that, for $n \geqslant 1$,
(i) $\alpha_{r}(n) \geqslant K n^{r}$,
(ii) $\beta_{r}(n) \leqslant K n^{M}$,

Main results

Theorem

For rank $r=2$ we have
(i) for $n \geqslant 4, \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) for $n \geqslant n_{0}, \alpha_{2}(n) \geqslant \frac{n^{2}}{16}$,
(iii) for $n \geqslant 1, \beta_{2}(n)=n$,
(iv) for $n \geqslant 1, \gamma_{2}(n)=n$.

Theorem

For $r \geqslant 3$ there exist $K=K(r)$ and $M=M(r)$ such that, for $n \geqslant 1$,
(i) $\alpha_{r}(n) \geqslant K n^{r}$,
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
(iii) $\gamma_{r}(n) \geqslant K n^{r-1}$.

Outline

(1)
Motivation
(2) Free groups
(3) Lower bounds: a good enough example
4. Upper bounds: outer space
(5) The special case of rank 2
(6) Fixed subgroups: a nice story
(7) Algorithmic results

A lower bound for γ_{r}

Theorem

For $r \geqslant 2$, and $n \geqslant n_{0}$, we have $\gamma_{r}(n) \geqslant \frac{1}{2 r^{r-1}} n^{r-1}$.
Proof: For $r \geqslant 2$ and $n \geqslant 1$, consider

$\psi_{r, n}:$	F_{r}	\rightarrow	F_{r}	$\psi_{r, n}^{-1}:$	F_{r}
a_{1}	\mapsto	\rightarrow	F_{r}		
a_{2}	\mapsto	$a_{1}^{n} a_{2}$	a_{1}	\mapsto	a_{1}
a_{3}	\mapsto	$a_{2}^{n} a_{3}$	a_{2}	\mapsto	$a_{1}^{-n} a_{2}$
	\vdots			\vdots	
a_{r}	\mapsto	$a_{r-1}^{n} a_{r}$		a_{i}	\mapsto

A straightforward calculation shows that
$\left\|\psi_{r, n}\right\|_{1}=\left\|\psi_{r, n}\right\|_{1}=(r-1) n+r$, and
$\left\|\psi_{r, n}^{-1}\right\|_{1}=\left\|\psi_{r, n}^{-1}\right\|_{1}=n^{r-1}+2 n^{r-2}+\cdots+(r-1) n+r \geqslant n^{r-1}$.

A lower bound for γ_{r}

Theorem

For $r \geqslant 2$, and $n \geqslant n_{0}$, we have $\gamma_{r}(n) \geqslant \frac{1}{2 r^{r-1}} n^{r-1}$.
Proof: For $r \geqslant 2$ and $n \geqslant 1$, consider

$$
\begin{array}{rlrll}
\psi_{r, n}: & F_{r} & \rightarrow & F_{r} & \psi_{r, n}^{-1}: F_{r} \\
a_{1} & \mapsto & \rightarrow & F_{1} \\
a_{2} & \mapsto & a_{1}^{n} a_{2} & a_{1} & \mapsto
\end{array} a_{1} .
$$

A straightforward calculation shows that
$\left\|\psi_{r, n}\right\|_{1}=\left\|\psi_{r, n}\right\|_{1}=(r-1) n+r$, and

A lower bound for γ_{r}

Theorem

For $r \geqslant 2$, and $n \geqslant n_{0}$, we have $\gamma_{r}(n) \geqslant \frac{1}{2 r^{r-1}} n^{r-1}$.
Proof: For $r \geqslant 2$ and $n \geqslant 1$, consider

$$
\begin{array}{rlrll}
\psi_{r, n}: & F_{r} & \rightarrow & F_{r} & \psi_{r, n}^{-1}: \\
a_{1} & \mapsto & F_{r} & \rightarrow & F_{r} \\
a_{2} & \mapsto & a_{1}^{n} a_{2} & a_{1} & \mapsto
\end{array} a_{1} .
$$

A straightforward calculation shows that
$\left\|\psi_{r, n}\right\|_{1}=\left\|\psi_{r, n}\right\|_{1}=(r-1) n+r$, and
$\left\|\psi_{r, n}^{-1}\right\|_{1}=\left\|\psi_{r, n}^{-1}\right\|_{1}=n^{r-1}+2 n^{r-2}+\cdots+(r-1) n+r \geqslant n^{r-1}$.

A lower bound for γ_{r}

Hence, for $n \geqslant r$,

$$
\gamma_{r}(r n) \geqslant \gamma_{r}((r-1) n+r) \geqslant n^{r-1} .
$$

Now, for n big enough, take the closest multiple of r below,

Finally, conjugating by an appropriate element, we shall win an extra unit in the exponent.

A lower bound for γ_{r}

Hence, for $n \geqslant r$,

$$
\gamma_{r}(r n) \geqslant \gamma_{r}((r-1) n+r) \geqslant n^{r-1} .
$$

Now, for n big enough, take the closest multiple of r below,

$$
n \geqslant r m>n-r,
$$

and
$\gamma_{r}(n) \geqslant \gamma_{r}(r m) \geqslant m^{r-1}>\left(\frac{n-r}{r}\right)^{r-1}=\left(\frac{n}{r}-1\right)^{r-1} \geqslant \frac{1}{2 r^{r-1}} n^{r-1} . \square$
Finally, conjugating by an appropriate element, we shall win an extra
unit in the exponent.

A lower bound for γ_{r}

Hence, for $n \geqslant r$,

$$
\gamma_{r}(r n) \geqslant \gamma_{r}((r-1) n+r) \geqslant n^{r-1} .
$$

Now, for n big enough, take the closest multiple of r below,

$$
n \geqslant r m>n-r,
$$

and
$\gamma_{r}(n) \geqslant \gamma_{r}(r m) \geqslant m^{r-1}>\left(\frac{n-r}{r}\right)^{r-1}=\left(\frac{n}{r}-1\right)^{r-1} \geqslant \frac{1}{2 r^{r-1}} n^{r-1}$.
Finally, conjugating by an appropriate element, we shall win an extra unit in the exponent.

A lower bound for α_{r}

Theorem

For $r \geqslant 2$, and $n \geqslant n_{0}$, we have $\alpha_{r}(n) \geqslant \frac{(r-1)^{r-1}}{2 r^{2 r-1}} n^{r}$.
Proof: For $r \geqslant 2$ and $n \geqslant 1$, consider $\psi_{r, n} \gamma_{a_{r}^{-m}} a_{1}^{-1}$, where $m=\left\lceil\frac{n}{2 r-2}\right\rceil$ Writing $N=\left\|\psi_{r, n} \gamma_{a_{r}^{-m}}^{a_{1}^{-1}}\right\|_{1}$, straightforward calculations show that, for $n \geqslant n_{0}$,

Hence, $\alpha_{r}(n) \geqslant \frac{(r-1)^{r-1}}{2 r^{2 r-1}} n^{r}$.

A lower bound for α_{r}

Theorem

For $r \geqslant 2$, and $n \geqslant n_{0}$, we have $\alpha_{r}(n) \geqslant \frac{(r-1)^{r-1}}{2 r^{2 r-1}} n^{r}$.
Proof: For $r \geqslant 2$ and $n \geqslant 1$, consider $\psi_{r, n} \gamma_{a_{r}^{-m} a_{1}^{-1}}$, where $m=\left\lceil\frac{n}{2 r-2}\right\rceil$. Writing $N=\left\|\psi_{r, n} \gamma_{a_{r}^{-m}} a_{1}^{-1}\right\|_{1}$, straightforward calculations show that, for $n \geqslant n_{0}$,

$$
\left\|\gamma_{a_{1} a_{r}^{m}} \psi_{r, n}^{-1}\right\|_{1}=\left\|\psi_{r, n}^{-1} \gamma_{\left(a_{1} a_{r}^{m}\right) \psi_{r, n}^{-,}}\right\|_{1} \geqslant \frac{(r-1)^{r-1}}{2 r^{2 r-1}} N^{r}
$$

A lower bound for α_{r}

Theorem

For $r \geqslant 2$, and $n \geqslant n_{0}$, we have $\alpha_{r}(n) \geqslant \frac{(r-1)^{r-1}}{2 r^{2 r-1}} n^{r}$.
Proof: For $r \geqslant 2$ and $n \geqslant 1$, consider $\psi_{r, n} \gamma_{a_{r}^{-m} a_{1}^{-1}}$, where $m=\left\lceil\frac{n}{2 r-2}\right\rceil$. Writing $N=\left\|\psi_{r, n} \gamma_{a_{r}^{-m} a_{1}^{-1}}\right\|_{1}$, straightforward calculations show that, for $n \geqslant n_{0}$,

$$
\left\|\gamma_{a_{1} a_{r}^{m}} \psi_{r, n}^{-1}\right\|_{1}=\left\|\psi_{r, n}^{-1} \gamma_{\left(a_{1} a_{r}^{m}\right) \psi_{r, n}^{-1}}\right\|_{1} \geqslant \frac{(r-1)^{r-1}}{2 r^{2 r-1}} N^{r}
$$

Hence, $\alpha_{r}(n) \geqslant \frac{(r-1)^{r-1}}{2 r^{2 r-1}} n^{r}$.

Outline

(1)

Motivation

(2) Free groups
(3) Lower bounds: a good enough example
(4) Upper bounds: outer space
(5) The special case of rank 2

6 Fixed subgroups: a nice story
(7) Algorithmic results

Outer space

To prove the upper bound
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
we'll need to use the recently discovered metric in the outer space \mathcal{X}_{r}.

Definition

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell: E \Gamma \rightarrow[0,1]$ such that $\sum_{e \in E \Gamma} \ell(e)=1$, and $\{e \in E \Gamma \mid \ell(e)=0\}$ is a forest.
- For a graph $\Gamma, \Sigma_{\Gamma}=\{$ metrics on $\Gamma\}=$ a simplex with missing faces.
- If $\Gamma^{\prime}=\Gamma /$ forest, then we identify points in $\Sigma_{\Gamma^{\prime}}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_{r} \rightarrow \Gamma$.

Outer space

To prove the upper bound
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
we'll need to use the recently discovered metric in the outer space \mathcal{X}_{r}.

Definition

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.

Outer space

To prove the upper bound
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
we'll need to use the recently discovered metric in the outer space \mathcal{X}_{r}.

Definition

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell: E \Gamma \rightarrow[0,1]$ such that $\sum_{e \in E \Gamma} \ell(e)=1$, and $\{e \in E \Gamma \mid \ell(e)=0\}$ is a forest.
- For a graph $\Gamma, \Sigma_{\Gamma}=\{$ metrics on $\Gamma\}=$ a simplex with missing faces.
- If $\Gamma^{\prime}=\Gamma /$ forest, then we identify points in $\Sigma_{\Gamma^{\prime}}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_{r} \rightarrow \Gamma$

Outer space

To prove the upper bound
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
we'll need to use the recently discovered metric in the outer space \mathcal{X}_{r}.

Definition

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell: E \Gamma \rightarrow[0,1]$ such that $\sum_{e \in E \Gamma} \ell(e)=1$, and $\{e \in E \Gamma \mid \ell(e)=0\}$ is a forest.
- For a graph $\Gamma, \Sigma_{\Gamma}=\{$ metrics on $\Gamma\}=$ a simplex with missing faces.
- If $\Gamma^{\prime}=\Gamma /$ forest, then we identify points in $\Sigma_{\Gamma^{\prime}}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_{r} \rightarrow \Gamma$.

Outer space

To prove the upper bound
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
we'll need to use the recently discovered metric in the outer space \mathcal{X}_{r}.

Definition

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell: E \Gamma \rightarrow[0,1]$ such that $\sum_{e \in E \Gamma} \ell(e)=1$, and $\{e \in E \Gamma \mid \ell(e)=0\}$ is a forest.
- For a graph $\Gamma, \Sigma_{\Gamma}=\{$ metrics on $\Gamma\}=$ a simplex with missing faces.
- If $\Gamma^{\prime}=\Gamma$ /forest, then we identify points in $\Sigma_{\Gamma^{\prime}}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Г is a homotopy equivalence f

Outer space

To prove the upper bound
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
we'll need to use the recently discovered metric in the outer space \mathcal{X}_{r}.

Definition

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell: E \Gamma \rightarrow[0,1]$ such that $\sum_{e \in E \Gamma} \ell(e)=1$, and $\{e \in E \Gamma \mid \ell(e)=0\}$ is a forest.
- For a graph $\Gamma, \Sigma_{\Gamma}=\{$ metrics on $\Gamma\}=$ a simplex with missing faces.
- If $\Gamma^{\prime}=\Gamma$ /forest, then we identify points in $\Sigma_{\Gamma^{\prime}}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_{r} \rightarrow \Gamma$.

Outer space

Definition

The outer space \mathcal{X}_{r} is

$$
\mathcal{X}_{r}=\{(\Gamma, f, \ell)\} / \sim
$$

(where \sim is an equivalence relation).

Definition

There is a natural action of $\operatorname{Aut}\left(F_{r}\right)$ on \mathcal{X}_{r}, given by
(thinking $\phi: R_{r} \rightarrow R_{r}$). In fact, this is an action of Out $\left(F_{r}\right)$.

Outer space

Definition

The outer space \mathcal{X}_{r} is

$$
\mathcal{X}_{r}=\{(\Gamma, f, \ell)\} / \sim
$$

(where \sim is an equivalence relation).

Definition

There is a natural action of $\operatorname{Aut}\left(F_{r}\right)$ on \mathcal{X}_{r}, given by

$$
\phi \cdot(\Gamma, f, \ell)=(\Gamma, \phi f, \ell),
$$

(thinking $\phi: R_{r} \rightarrow R_{r}$). In fact, this is an action of Out $\left(F_{r}\right)$.

Metric on \mathcal{X}_{r}

Definition

Let $x, x^{\prime} \in \mathcal{X}_{r}, x=(\Gamma, f, \ell), x^{\prime}=\left(\Gamma^{\prime}, f^{\prime}, \ell^{\prime}\right)$. A difference of markings is a map $\alpha: \Gamma \rightarrow \Gamma^{\prime}$, which is linear over edges and $f \alpha \simeq f^{\prime}$.
For such an α, define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

\mathcal{X}_{r} admits the following "metric":

$$
d\left(x, x^{\prime}\right)=\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\}
$$

This minimum is achieved by Arzela-Ascoli's theorem.
This is Bestvina-AlgomKfir version of Martino-Francaviglia's original metric.

Metric on \mathcal{X}_{r}

Definition

Let $x, x^{\prime} \in \mathcal{X}_{r}, x=(\Gamma, f, \ell), x^{\prime}=\left(\Gamma^{\prime}, f^{\prime}, \ell^{\prime}\right)$. A difference of markings is a map $\alpha: \Gamma \rightarrow \Gamma^{\prime}$, which is linear over edges and $f \alpha \simeq f^{\prime}$. For such an α, define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

\mathcal{X}_{r} admits the following "metric":
$d\left(x, x^{\prime}\right)=\min \{\log (\sigma(\alpha)) \mid \alpha$ diff. markings $\}$
This minimum is achieved by Arzela-Ascoli's theorem.
This is Bestvina-AlgomKfir version of Martino-Francaviglia's original metric.

Metric on \mathcal{X}_{r}

Definition

Let $x, x^{\prime} \in \mathcal{X}_{r}, x=(\Gamma, f, \ell), x^{\prime}=\left(\Gamma^{\prime}, f^{\prime}, \ell^{\prime}\right)$. A difference of markings is a map $\alpha: \Gamma \rightarrow \Gamma^{\prime}$, which is linear over edges and $f \alpha \simeq f^{\prime}$. For such an α, define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

\mathcal{X}_{r} admits the following "metric":

$$
d\left(x, x^{\prime}\right)=\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} .
$$

This minimum is achieved by Arzela-Ascoli's theorem.
This is Bestvina-AlgomKfir version of Martino-Francaviglia's original metric.

Definition

Let $x, x^{\prime} \in \mathcal{X}_{r}, x=(\Gamma, f, \ell), x^{\prime}=\left(\Gamma^{\prime}, f^{\prime}, \ell^{\prime}\right)$. A difference of markings is a map $\alpha: \Gamma \rightarrow \Gamma^{\prime}$, which is linear over edges and $f \alpha \simeq f^{\prime}$. For such an α, define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

\mathcal{X}_{r} admits the following "metric":

$$
d\left(x, x^{\prime}\right)=\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} .
$$

This minimum is achieved by Arzela-Ascoli's theorem.
This is Bestvina-AlgomKfir version of Martino-Francaviglia's original metric.

Metric on \mathcal{X}_{r}

Proposition

(i) $d(x, y) \geqslant 0$, and $=0 \Leftrightarrow x=y$.

(ii) $d(x, z) \leqslant d(x, y)+d(y, z)$.

(iii) $\operatorname{Out}\left(F_{r}\right)$ acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y)=d(x, y)$.
(iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

For $\epsilon>0$, the ϵ-thick part of \mathcal{X}_{r} is

$$
\mathcal{X}_{r}(\epsilon)=\left\{(\Gamma, f, \ell) \in \mathcal{X}_{r} \mid \ell(p) \geqslant \epsilon \forall \text { closed path } p \neq 1\right\}
$$

Metric on \mathcal{X}_{r}

Proposition

(i) $d(x, y) \geqslant 0$, and $=0 \Leftrightarrow x=y$.
(ii) $d(x, z) \leqslant d(x, y)+d(y, z)$.

(iii) Out($\left.F_{r}\right)$ acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y)=d(x, y)$.
 (iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

For $\epsilon>0$, the ϵ-thick part of \mathcal{X}_{r} is

$$
x_{r}(\epsilon)=\left\{\left(\Gamma, f,() \in x_{r} \mid \Lambda(p) \geqslant \epsilon \forall \text { closed path } p \neq 1\right\}\right.
$$

Metric on \mathcal{X}_{r}

Proposition

(i) $d(x, y) \geqslant 0$, and $=0 \Leftrightarrow x=y$.
(ii) $d(x, z) \leqslant d(x, y)+d(y, z)$.
(iii) $\operatorname{Out}\left(F_{r}\right)$ acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y)=d(x, y)$.
(iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

For $\epsilon>0$, the ϵ-thick part of \mathcal{X}_{r} is

Metric on \mathcal{X}_{r}

Proposition

(i) $d(x, y) \geqslant 0$, and $=0 \Leftrightarrow x=y$.
(ii) $d(x, z) \leqslant d(x, y)+d(y, z)$.
(iii) $\operatorname{Out}\left(F_{r}\right)$ acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y)=d(x, y)$.
(iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

For $\epsilon>0$, the ϵ-thick part of \mathcal{X}_{r} is

Metric on \mathcal{X}_{r}

Proposition

(i) $d(x, y) \geqslant 0$, and $=0 \Leftrightarrow x=y$.
(ii) $d(x, z) \leqslant d(x, y)+d(y, z)$.
(iii) $\operatorname{Out}\left(F_{r}\right)$ acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y)=d(x, y)$.
(iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

For $\epsilon>0$, the ϵ-thick part of \mathcal{X}_{r} is

$$
\mathcal{X}_{r}(\epsilon)=\left\{(\Gamma, f, \ell) \in \mathcal{X}_{r} \mid \ell(p) \geqslant \epsilon \forall \text { closed path } p \neq 1\right\}
$$

Bestvina-AlgomKfir theorem

Theorem (Bestvina-AlgomKfir)

For any $\epsilon>0$ there is constant $M=M(r, \epsilon)$ such that for all $x, y \in \mathcal{X}_{r}(\epsilon)$,

$$
d(x, y) \leqslant M \cdot d(y, x)
$$

Corollary

For $r \geqslant 2$, there exists $M=M(r)$ such that

Bestvina-AlgomKfir theorem

Theorem (Bestvina-AlgomKfir)

For any $\epsilon>0$ there is constant $M=M(r, \epsilon)$ such that for all $x, y \in \mathcal{X}_{r}(\epsilon)$,

$$
d(x, y) \leqslant M \cdot d(y, x)
$$

Corollary
For $r \geqslant 2$, there exists $M=M(r)$ such that

$$
\beta_{r}(n) \leqslant r n^{M} .
$$

Proof

$$
\text { Remind } \beta_{r}(n)=\max \left\{\left\|| | \theta^{-1}\left|\left\|_{1} \mid \theta \in \operatorname{Aut} F_{r},\right\| \theta\| \|_{1} \leqslant n\right\} .\right.\right.
$$

Proof. Given $\phi \in \operatorname{Aut}\left(F_{r}\right)$, consider $x=\left(R_{r}, i d, \ell_{0}\right) \in \mathcal{X}_{r}$, and $\phi \cdot x=\left(R_{r}, \phi, \ell_{0}\right) \in \mathcal{X}_{r}$, where ℓ_{0} is the uniform metric.

Now, using Bestvina-AlgomKfir theorem,
$\log \left(\left|\left|\left|\phi^{-1}\right| \|_{1}\right) \sim d^{\prime}\left(x, \phi^{-1} \cdot x\right)=d^{\prime}(\phi \cdot x, x) \leqslant M d(x, \phi \cdot x) \sim M \log \left(\||\phi|\|_{1}\right)\right.\right.$
Hence, for every $\phi \in \operatorname{Aut}\left(F_{r}\right),\| \| \phi^{-1}\| \|_{1} \leqslant r\| \| \phi \|_{1}^{M}$. \square

Proof

Remind $\beta_{r}(n)=\max \left\{\left|\left\|\theta^{-1}\left|\|_{1}\right| \theta \in\right.\right.\right.$ Aut $\left.\left.\left.F_{r},\right\|\right|\|\theta\|_{1} \leqslant n\right\}$.
Proof. Given $\phi \in \operatorname{Aut}\left(F_{r}\right)$, consider $x=\left(R_{r}, i d, \ell_{0}\right) \in \mathcal{X}_{r}$, and $\phi \cdot x=\left(R_{r}, \phi, \ell_{0}\right) \in \mathcal{X}_{r}$, where ℓ_{0} is the uniform metric.

$$
d(x, \phi \cdot x)=\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\}
$$

Now, using Bestvina-AlgomKfir theorem,

Proof

$$
\text { Remind } \beta_{r}(n)=\max \left\{\left\|| | \theta^{-1}\right\|\left\|_{1} \mid \theta \in \operatorname{Aut} F_{r},\right\| \theta\| \|_{1} \leqslant n\right\} .
$$

Proof. Given $\phi \in \operatorname{Aut}\left(F_{r}\right)$, consider $x=\left(R_{r}, i d, \ell_{0}\right) \in \mathcal{X}_{r}$, and $\phi \cdot x=\left(R_{r}, \phi, \ell_{0}\right) \in \mathcal{X}_{r}$, where ℓ_{0} is the uniform metric.

$$
\begin{aligned}
d(x, \phi \cdot x) & =\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} \\
& =\log \left(\min \left\{\sigma\left(\phi \gamma_{w} \gamma_{p}\right) \mid w \in F_{r}, p=\text { "half petal" }\right\}\right)
\end{aligned}
$$

Now, using Bestvina-AlgomKfir theorem,

Proof

$$
\text { Remind } \beta_{r}(n)=\max \left\{\left\|| | \theta^{-1}\left|\left\|_{1} \mid \theta \in \operatorname{Aut} F_{r},\right\| \theta\| \|_{1} \leqslant n\right\} .\right.\right.
$$

Proof. Given $\phi \in \operatorname{Aut}\left(F_{r}\right)$, consider $x=\left(R_{r}, i d, \ell_{0}\right) \in \mathcal{X}_{r}$, and $\phi \cdot x=\left(R_{r}, \phi, \ell_{0}\right) \in \mathcal{X}_{r}$, where ℓ_{0} is the uniform metric.

$$
\begin{aligned}
d(x, \phi \cdot x) & =\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} \\
& =\log \left(\min \left\{\sigma\left(\phi \gamma_{w} \gamma_{p}\right) \mid w \in F_{r}, p=\text { "half petal" }\right\}\right) \\
& \sim \log \left(\min \left\{\sigma\left(\phi \gamma_{w}\right) \mid w \in F_{r}\right\}\right)
\end{aligned}
$$

Now, using Bestvina-AlgomKfir theorem,

Proof

$$
\text { Remind } \beta_{r}(n)=\max \left\{\left\|| | \theta^{-1}\left|\left\|_{1} \mid \theta \in \operatorname{Aut} F_{r},\right\| \theta\| \|_{1} \leqslant n\right\} .\right.\right.
$$

Proof. Given $\phi \in \operatorname{Aut}\left(F_{r}\right)$, consider $x=\left(R_{r}, i d, \ell_{0}\right) \in \mathcal{X}_{r}$, and $\phi \cdot x=\left(R_{r}, \phi, \ell_{0}\right) \in \mathcal{X}_{r}$, where ℓ_{0} is the uniform metric.

$$
\begin{aligned}
d(x, \phi \cdot x) & =\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} \\
& =\log \left(\min \left\{\sigma\left(\phi \gamma_{w} \gamma_{p}\right) \mid w \in F_{r}, p=\text { "half petal" }\right\}\right) \\
& \sim \log \left(\min \left\{\sigma\left(\phi \gamma_{w}\right) \mid w \in F_{r}\right\}\right) \\
& =\log \left(\min \left\{\left\|\phi \gamma_{w}\right\|_{\infty} \mid w \in F_{r}\right\}\right)
\end{aligned}
$$

Now, using Bestvina-AlgomKfir theorem,

$\log \left(\left|\left|\left|\phi^{-1}\right| \|_{1}\right) \sim d^{\prime}\left(x, \phi^{-1} \cdot x\right)=d^{\prime}(\phi \cdot x, x) \leq M d(x, \phi \cdot x) \sim M \log \left(\| \| \phi \|_{1}\right)\right.\right.$

Proof

$$
\text { Remind } \beta_{r}(n)=\max \left\{\left\|| | \theta^{-1}\right\| \|_{1} \mid \theta \in \text { Aut } F_{r},\|\theta\| \|_{1} \leqslant n\right\} .
$$

Proof. Given $\phi \in \operatorname{Aut}\left(F_{r}\right)$, consider $x=\left(R_{r}, i d, \ell_{0}\right) \in \mathcal{X}_{r}$, and $\phi \cdot x=\left(R_{r}, \phi, \ell_{0}\right) \in \mathcal{X}_{r}$, where ℓ_{0} is the uniform metric.

$$
\begin{aligned}
d(x, \phi \cdot x) & =\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} \\
& =\log \left(\min \left\{\sigma\left(\phi \gamma_{w} \gamma_{p}\right) \mid w \in F_{r}, p=\text { "half petal" }\right\}\right) \\
& \sim \log \left(\min \left\{\sigma\left(\phi \gamma_{w}\right) \mid w \in F_{r}\right\}\right) \\
& =\log \left(\min \left\{\left\|\phi \gamma_{w}\right\|_{\infty} \mid w \in F_{r}\right\}\right) \\
& =\log \left(\|\phi\|_{\infty}\right)
\end{aligned}
$$

Now, using Bestvina-AlgomKfir theorem,

$\log \left(\left|\left|\left|\phi^{-1}\right| \|_{1}\right) \sim d^{\prime}\left(x, \phi^{-1} \cdot x\right)=d^{\prime}(\phi \cdot x, x) \leqslant M d(x, \phi \cdot x) \sim M \log \left(\| \| \phi \|_{1}\right)\right.\right.$

Proof

$$
\text { Remind } \beta_{r}(n)=\max \left\{\left\|| | \theta^{-1}\left|\|_{1}\right| \theta \in \text { Aut } F_{r},\right\| \theta\| \|_{1} \leqslant n\right\} .
$$

Proof. Given $\phi \in \operatorname{Aut}\left(F_{r}\right)$, consider $x=\left(R_{r}, i d, \ell_{0}\right) \in \mathcal{X}_{r}$, and $\phi \cdot x=\left(R_{r}, \phi, \ell_{0}\right) \in \mathcal{X}_{r}$, where ℓ_{0} is the uniform metric.

$$
\begin{aligned}
d(x, \phi \cdot x) & =\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} \\
& =\log \left(\min \left\{\sigma\left(\phi \gamma_{w} \gamma_{p}\right) \mid w \in F_{r}, p=\text { "half petal" }\right\}\right) \\
& \sim \log \left(\min \left\{\sigma\left(\phi \gamma_{w}\right) \mid w \in F_{r}\right\}\right) \\
& =\log \left(\min \left\{\left\|\phi \gamma_{w}\right\|_{\infty} \mid w \in F_{r}\right\}\right) \\
& =\log \left(\|\phi\|_{\infty}\right) \\
& \sim \log \left(\|\mid\| \phi \|_{1}\right) .
\end{aligned}
$$

Now, using Bestvina-AlgomKfir theorem,

$\log \left(\left\|\mid \phi^{-1}\right\| \|_{1}\right) \sim d\left(x, \phi^{-1} \cdot x\right)=d(\phi \cdot x, x) \leqslant M d(x, \phi \cdot x) \sim M \log \left(\| \| \phi \|_{1}\right)$

Proof

Remind $\beta_{r}(n)=\max \left\{\left\|| | \theta^{-1}\right\|_{1} \mid \theta \in\right.$ Aut $\left.F_{r},\|\theta\| \|_{1} \leqslant n\right\}$.
Proof. Given $\phi \in \operatorname{Aut}\left(F_{r}\right)$, consider $x=\left(R_{r}, i d, \ell_{0}\right) \in \mathcal{X}_{r}$, and $\phi \cdot x=\left(R_{r}, \phi, \ell_{0}\right) \in \mathcal{X}_{r}$, where ℓ_{0} is the uniform metric.

$$
\begin{aligned}
d(x, \phi \cdot x) & =\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} \\
& =\log \left(\min \left\{\sigma\left(\phi \gamma_{w} \gamma_{p}\right) \mid w \in F_{r}, p=\text { "half petal" }\right\}\right) \\
& \sim \log \left(\min \left\{\sigma\left(\phi \gamma_{w}\right) \mid w \in F_{r}\right\}\right) \\
& =\log \left(\min \left\{\left\|\phi \gamma_{w}\right\|_{\infty} \mid w \in F_{r}\right\}\right) \\
& =\log \left(\|\phi\|_{\infty}\right) \\
& \sim \log \left(\|\phi \mid\|_{1}\right) .
\end{aligned}
$$

Now, using Bestvina-AlgomKfir theorem,
$\log \left(\left\|\phi^{-1}\right\| \|_{1}\right) \sim d\left(x, \phi^{-1} \cdot x\right)=d(\phi \cdot x, x) \leqslant M d(x, \phi \cdot x) \sim M \log \left(\left|\|\phi \mid\|_{1}\right)\right.$.
Hence, for every $\phi \in \operatorname{Aut}\left(F_{r}\right),\left\|| | \phi^{-1}\right\|\left\|_{1} \leqslant r\right\|\|\phi\|_{1}^{M}$. \square

Proof

Remind $\beta_{r}(n)=\max \left\{\left|\left\|\theta^{-1}\left|\|_{1}\right| \theta \in\right.\right.\right.$ Aut $\left.\left.\left.F_{r},\right\|\right| \theta \mid \|_{1} \leqslant n\right\}$.

Proof. Given $\phi \in \operatorname{Aut}\left(F_{r}\right)$, consider $x=\left(R_{r}, i d, \ell_{0}\right) \in \mathcal{X}_{r}$, and $\phi \cdot x=\left(R_{r}, \phi, \ell_{0}\right) \in \mathcal{X}_{r}$, where ℓ_{0} is the uniform metric.

$$
\begin{aligned}
d(x, \phi \cdot x) & =\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} \\
& =\log \left(\min \left\{\sigma\left(\phi \gamma_{w} \gamma_{p}\right) \mid w \in F_{r}, p=\text { "half petal" }\right\}\right) \\
& \sim \log \left(\min \left\{\sigma\left(\phi \gamma_{w}\right) \mid w \in F_{r}\right\}\right) \\
& =\log \left(\min \left\{\left\|\phi \gamma_{w}\right\|_{\infty} \mid w \in F_{r}\right\}\right) \\
& =\log \left(\|\phi\|_{\infty}\right) \\
& \sim \log \left(\|\phi\| \|_{1}\right) .
\end{aligned}
$$

Now, using Bestvina-AlgomKfir theorem,
$\log \left(\left\|\left|\phi^{-1}\right|\right\|_{1}\right) \sim d\left(x, \phi^{-1} \cdot x\right)=d(\phi \cdot x, x) \leqslant M d(x, \phi \cdot x) \sim M \log \left(\left|\|\phi \mid\|_{1}\right)\right.$.
Hence, for every $\phi \in \operatorname{Aut}\left(F_{r}\right),\| \| \phi^{-1}\| \|_{1} \leqslant r\| \| \phi \|_{1}^{M} . \square$

Outline

(9)

Motivation

(2) Free groups
(3) Lower bounds: a good enough example
(4) Upper bounds: outer space
(5) The special case of rank 2

6 Fixed subgroups: a nice story
(7) Algorithmic results

The rank 2 case

These functions for $\operatorname{Aut}\left(F_{2}\right)$ are much easier to understand due to the following technical lemmas.

Lemma

Let $\varphi \in \operatorname{Aut}\left(F_{2}\right)$ be positive. Then φ^{-1} is cyclically reduced and

Lemma

 $\psi_{1}, \psi_{2} \in \operatorname{Aut}\left(F_{2}\right)$, a positive one $\varphi \in \operatorname{Aut}^{+}\left(F_{2}\right)$, and an element $g \in F_{2}$, such that $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$ and

The rank 2 case

These functions for $\operatorname{Aut}\left(F_{2}\right)$ are much easier to understand due to the following technical lemmas.

Lemma

Let $\varphi \in \operatorname{Aut}\left(F_{2}\right)$ be positive. Then φ^{-1} is cyclically reduced and $\left\|\varphi^{-1}\right\|_{1}=\|\varphi\|_{1}$.

Lemma

\square

The rank 2 case

These functions for $\operatorname{Aut}\left(F_{2}\right)$ are much easier to understand due to the following technical lemmas.

Lemma

Let $\varphi \in \operatorname{Aut}\left(F_{2}\right)$ be positive. Then φ^{-1} is cyclically reduced and $\left\|\varphi^{-1}\right\|_{1}=\|\varphi\|_{1}$.

Lemma

For every $\theta \in \operatorname{Aut}\left(F_{2}\right)$, there exist two letter permuting autos $\psi_{1}, \psi_{2} \in \operatorname{Aut}\left(F_{2}\right)$, a positive one $\varphi \in$ Aut $^{+}\left(F_{2}\right)$, and an element $g \in F_{2}$, such that $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$ and $\|\varphi\|_{1}+2|g| \leqslant\|\theta\|_{1}$.

The rank 2 case: γ_{2}

Theorem
For every $\theta \in \operatorname{Aut}\left(F_{2}\right),\left\|\cdot \theta^{-1}\right\|_{1}=H \cdot \mid H_{1}$. Hence, $\gamma_{2}(n)=n$.

Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then,

$$
\|\theta\|_{1}=\left\|\psi_{1} \varphi \psi_{2} \lambda_{g}\right\|_{1}=\left\|\psi_{1} \varphi \psi_{2}\right\|_{1}=\|\varphi\|_{1}=\|\varphi\|_{1} .
$$

On the other hand,

The rank 2 case: γ_{2}

Theorem
For every $\theta \in \operatorname{Aut}\left(F_{2}\right),\left\|\cdot \theta^{-1}\right\|_{1}=\|\theta\|_{1}$. Hence, $\gamma_{2}(n)=n$.

Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. On the other hand,

The rank 2 case: γ_{2}

Theorem

For every $\theta \in \operatorname{Aut}\left(F_{2}\right),\left\|\cdot \theta^{-1}\right\|_{1}=\|\theta\|_{1}$. Hence, $\gamma_{2}(n)=n$.

Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then,

$$
\left\|\theta H_{1}=\right\| \psi_{1} \varphi \psi_{2} \lambda_{g}\left\|_{1}=\right\| \psi_{1} \varphi \psi_{2}\left\|_{1}=\right\| \varphi\left\|_{1}=\right\| \varphi \|_{1} .
$$

On the other hand,

The rank 2 case: γ_{2}

Theorem

For every $\theta \in \operatorname{Aut}\left(F_{2}\right),\left\|\cdot \theta^{-1}\right\|_{1}=\|\theta\|_{1}$. Hence, $\gamma_{2}(n)=n$.

Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then,

$$
\left\|\theta H_{1}=\right\| \psi_{1} \varphi \psi_{2} \lambda_{g} H_{1}=\left\|\psi_{1} \varphi \psi_{2}\right\|_{1}=\left\|\varphi H_{1}=\right\| \varphi \|_{1} .
$$

On the other hand,

$$
\begin{aligned}
\left\|\theta^{-1}\right\|_{1} & =\left\|\lambda_{g^{-1}} \psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}\right\|_{1}=\left\|\psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}\right\|_{1}= \\
& =\left\|\varphi^{-1}\right\|_{1}=\left\|\varphi^{-1}\right\|_{1}=\|\varphi\|_{1} . \quad \square
\end{aligned}
$$

The rank 2 case: β_{2}

Theorem
For every $\theta \in \operatorname{Aut}\left(F_{2}\right),\left\|\left|\left|\theta^{-1}\left\|_{1}=\right\|\right| \theta\| \|_{1}\right.\right.$. Hence, $\beta_{2}(n)=n$.

Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then,

On the other hand,

The rank 2 case: β_{2}

Theorem
For every $\theta \in \operatorname{Aut}\left(F_{2}\right),\| \| \theta^{-1}\left\|_{1}=\right\|\|\theta\|_{1}$. Hence, $\beta_{2}(n)=n$.

Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$.

On the other hand,

The rank 2 case: β_{2}

Theorem

For every $\theta \in \operatorname{Aut}\left(F_{2}\right),\left\|\left|\left|\theta^{-1}\left\|_{1}=\right\|\right| \theta\| \|_{1}\right.\right.$. Hence, $\beta_{2}(n)=n$.

Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then,

$$
\left|\|\theta\|\left\|_{1}=\right\|\left\|\psi_{1} \varphi \psi_{2} \lambda_{g}\right\|_{1}=\| \| \psi_{1} \varphi \psi_{2}\left\|_{1}=\mid\right\| \varphi\left\|_{1}=\right\| \varphi \|_{1} .\right.
$$

On the other hand,

The rank 2 case: β_{2}

Theorem

For every $\theta \in \operatorname{Aut}\left(F_{2}\right),\| \| \theta^{-1}\left\|_{1}=\right\|\|\theta\|_{1}$. Hence, $\beta_{2}(n)=n$.

Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then,

$$
\left|\|\theta\|\left\|_{1}=\right\|\left\|\psi_{1} \varphi \psi_{2} \lambda_{g}\right\|_{1}=\| \| \psi_{1} \varphi \psi_{2}\left\|_{1}=\mid\right\| \varphi\left\|_{1}=\right\| \varphi \|_{1} .\right.
$$

On the other hand,

$$
\begin{aligned}
\left\|\left\|\theta^{-1}\right\|\right\|_{1} & =\| \| \lambda_{g^{-1}} \psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}\left\|_{1}=\right\|\left\|\psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}\right\|_{1}= \\
& =\| \| \varphi^{-1}\| \|_{1}=\left\|\varphi^{-1}\right\|_{1}=\|\varphi\|_{1} .
\end{aligned}
$$

The rank 2 case: α_{2}

Theorem

For $n \geqslant 4$ we have $\alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$.
Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then, $\theta^{-1}=\lambda_{g^{-1}} \psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}$ and

$$
4|g|\left(\left\|\varphi^{-1}\right\|_{1}-1\right)=4|g|\left(\|\varphi\| \|_{1}-1\right) .
$$

Now from $\|\varphi\|_{1}+2|g| \leqslant\|\theta\|_{1}=n$, we deduce $|g| \leqslant \frac{n-\|\varphi\|_{1}}{2}$ and so,

$$
\left\|\theta^{-1}\right\|_{1} \leqslant 2\left(n-\|\varphi\|_{1}\right)\left(\|\varphi\|_{1}-1\right) .
$$

Finally, the parabola $f(x)=2(n-x)(x-1)$ takes its maximum at $x=\frac{n+1}{2}$ and so,

The rank 2 case: α_{2}

Theorem

For $n \geqslant 4$ we have $\alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$.
Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$.

Now from $\|\varphi\|_{1}+2|g| \leqslant\|\theta\|_{1}=n$, we deduce $|g| \leqslant \frac{n-\|\varphi\|_{1}}{2}$ and so,

$$
\left\|\theta^{-1}\right\|_{1} \leqslant 2\left(n-\|\varphi\|_{1}\right)\left(\|\varphi\|_{1}-1\right)
$$

Finally, the parabola $f(x)=2(n-x)(x-1)$ takes its maximum at $x=\frac{n+1}{2}$ and so,

The rank 2 case: α_{2}

Theorem

For $n \geqslant 4$ we have $\alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$.
Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then, $\theta^{-1}=\lambda_{g^{-1}} \psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}$ and

$$
\begin{gathered}
\left\|\theta^{-1}\right\|_{1} \leqslant 4|g| \cdot\left\|\psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}\right\|_{\infty}=4|g| \cdot\left\|\varphi^{-1}\right\|_{\infty} \leqslant \\
\leqslant 4|g|\left(\left\|\varphi^{-1}\right\|_{1}-1\right)=4|g|\left(\|\varphi\|_{1}-1\right) .
\end{gathered}
$$

Now from $\|\varphi\|_{1}+2|g| \leqslant\|\theta\|_{1}=n$, we deduce $|g| \leqslant \frac{n-|\varphi|_{1}}{2}$ and so,

Finally, the parabola $f(x)=2(n-x)(x-1)$ takes its maximum at $x=\frac{n+1}{2}$ and so,

The rank 2 case: α_{2}

Theorem

For $n \geqslant 4$ we have $\alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$.
Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then, $\theta^{-1}=\lambda_{g^{-1}} \psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}$ and

$$
\begin{gathered}
\left\|\theta^{-1}\right\|_{1} \leqslant 4|g| \cdot\left\|\psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}\right\|_{\infty}=4|g| \cdot\left\|\varphi^{-1}\right\|_{\infty} \leqslant \\
\leqslant 4|g|\left(\left\|\varphi^{-1}\right\|_{1}-1\right)=4|g|\left(\|\varphi\|_{1}-1\right) .
\end{gathered}
$$

Now from $\|\varphi\|_{1}+2|g| \leqslant\|\theta\|_{1}=n$, we deduce $|g| \leqslant \frac{n-\|\varphi\|_{1}}{2}$ and so,

$$
\left\|\theta^{-1}\right\|_{1} \leqslant 2\left(n-\|\varphi\|_{1}\right)\left(\|\varphi\|_{1}-1\right)
$$

Finally, the parabola $f(x)=2(n-x)(x-1)$ takes its maximum at $x=\frac{n+1}{2}$ and so,

The rank 2 case: α_{2}

Theorem

For $n \geqslant 4$ we have $\alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$.
Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then, $\theta^{-1}=\lambda_{g^{-1}} \psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}$ and

$$
\begin{gathered}
\left\|\theta^{-1}\right\|_{1} \leqslant 4|g| \cdot\left\|\psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}\right\|_{\infty}=4|g| \cdot\left\|\varphi^{-1}\right\|_{\infty} \leqslant \\
\leqslant 4|g|\left(\left\|\varphi^{-1}\right\|_{1}-1\right)=4|g|\left(\|\varphi\|_{1}-1\right) .
\end{gathered}
$$

Now from $\|\varphi\|_{1}+2|g| \leqslant\|\theta\|_{1}=n$, we deduce $|g| \leqslant \frac{n-\|\varphi\|_{1}}{2}$ and so,

$$
\left\|\theta^{-1}\right\|_{1} \leqslant 2\left(n-\|\varphi\|_{1}\right)\left(\|\varphi\|_{1}-1\right)
$$

Finally, the parabola $f(x)=2(n-x)(x-1)$ takes its maximum at $x=\frac{n+1}{2}$ and so,

$$
\left\|\theta^{-1}\right\|_{1} \leqslant 2\left(n-\|\varphi\|_{1}\right)\left(\|\varphi\|_{1}-1\right) \leqslant 2\left(n-\frac{n+1}{2}\right)\left(\frac{n+1}{2}-1\right)=\frac{(n-1)^{2}}{2}
$$

The rank 2 case: α_{2}

Theorem

For $n \geqslant n_{0}$ we have $\alpha_{2}(n) \geqslant \frac{n^{2}}{16}$.
So, the global known picture is

(iv) $K n^{r} \leqslant \alpha_{r}(n)$,
(v) $\rho_{r}(n)<K n M$
(iii) $K n^{r-1} \leqslant \gamma_{r}(n)$
ror some constan's $K=K(r), M=M(r)$, and for $n \geqslant n_{0}$.

The rank 2 case: α_{2}

Theorem

For $n \geqslant n_{0}$ we have $\alpha_{2}(n) \geqslant \frac{n^{2}}{16}$.
So, the global known picture is
(i) $\frac{n^{2}}{16} \leqslant \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) $\beta_{2}(n)=n$,
(iii) $\gamma_{2}(n)=n$,
(iv) $K n^{r} \leqslant \alpha_{r}(n)$,
(v) $\beta_{r}(n) \leqslant K n^{M}$,
(iii) $K n^{r-1} \leqslant \gamma_{r}(n)$.
for some constants $K=K(r), M=M(r)$, and for $n \geqslant n_{0}$.

Outline

(9)

Motivation

(2) Free groups

3 Lower bounds: a good enough example
4. Upper bounds: outer space
(5) The special case of rank 2

6 Fixed subgroups: a nice story
(7) Algorithmic results

Fixed subgroups are complicated

$$
\begin{aligned}
\phi: F_{3} & \rightarrow F_{3} \\
a & \mapsto a \\
b & \mapsto b a \\
c & \mapsto c a^{2}
\end{aligned}
$$

$$
\operatorname{Fix} \phi=\left\langle a, b a b^{-1}, c a c^{-1}\right\rangle
$$

Fixed subgroups are complicated

$$
\begin{aligned}
\phi: F_{3} & \rightarrow F_{3} \\
a & \mapsto a \\
b & \mapsto b a \\
c & \mapsto c a^{2}
\end{aligned}
$$

Fix $\phi=\left\langle a, b a b^{-1}, c a c^{-1}\right\rangle$

$\operatorname{Fix} \varphi=\langle w\rangle$, where...

Fixed subgroups are complicated

$$
\begin{aligned}
\phi: F_{3} & \rightarrow F_{3} \\
a & \mapsto a \\
b & \mapsto b a \\
c & \mapsto c a^{2} \\
\varphi: F_{4} & \rightarrow F_{4} \\
a & \mapsto d a c \\
b & \mapsto c^{-1} a^{-1} d^{-1} a c \\
c & \mapsto c^{-1} a^{-1} b^{-1} a c \\
d & \mapsto c^{-1} a^{-1} b c
\end{aligned}
$$

Fixed subgroups are complicated

$$
\begin{aligned}
\phi: F_{3} & \rightarrow F_{3} \\
a & \mapsto a \\
b & \mapsto b a \\
c & \mapsto c a^{2} \\
\varphi: F_{4} & \rightarrow F_{4} \\
a & \mapsto d a c \\
b & \mapsto c^{-1} a^{-1} d^{-1} a c \\
c & \mapsto c^{-1} a^{-1} b^{-1} a c \\
d & \mapsto c^{-1} a^{-1} b c
\end{aligned}
$$

$\operatorname{Fix} \varphi=\langle w\rangle$, where...

Fixed subgroups are complicated

$$
\begin{aligned}
& \phi: F_{3} \rightarrow F_{3} \\
& a \mapsto a \\
& b \mapsto b a \\
& c \mapsto c a^{2} \\
& \varphi: F_{4} \rightarrow F_{4} \\
& a \mapsto d a c \\
& b \mapsto c^{-1} a^{-1} d^{-1} a c \\
& \operatorname{Fix} \varphi=\langle w\rangle \text {, where... } \\
& w=c^{-1} a^{-1} b d^{-1} c^{-1} a^{-1} d^{-1} a d^{-1} c^{-1} b^{-1} \text { acdadacdcdbcda-1 } a^{-1} d^{-1} \\
& a^{-1} d^{-1} c^{-1} a^{-1} d^{-1} c^{-1} b^{-1} d^{-1} c^{-1} d^{-1} c^{-1} \text { daabcdaccdb } b^{-1} a^{-1} .
\end{aligned}
$$

What is known about fixed subgroups?

Theorem (Dyer-Scott, 75)
 Let $G \leqslant \operatorname{Aut}\left(F_{n}\right)$ be a finite group of automorphisms of F_{n}. Then, Fix $(G) \leqslant \mathrm{ff} F_{n}$; in particular, $r(\operatorname{Fix}(G)) \leqslant n$.

Conjecture (Scott)

For every $\phi \in \operatorname{Aut}\left(F_{n}\right), r(F i x(\phi)) \leqslant n$

Theorem (Gersten, 83 (published 87))

\square

Theorem (Thomas, 88)
Let $G \leqslant \operatorname{Aut}\left(F_{n}\right)$ be an arkitrary group of automorphisms of F_{n}. Then, r(Fix(G))

What is known about fixed subgroups?

Theorem (Dyer-Scott, 75)

Let $G \leqslant \operatorname{Aut}\left(F_{n}\right)$ be a finite group of automorphisms of F_{n}. Then, $\operatorname{Fix}(G) \leqslant \mathrm{ff} F_{n}$; in particular, $r(\operatorname{Fix}(G)) \leqslant n$.

Conjecture (Scott)

For every $\phi \in \operatorname{Aut}\left(F_{n}\right), r(F i x(\phi)) \leqslant n$.

Theorem (Gersten, 83 (published 87))

\square

Theorem (Thomas, 88)

Let $G \leqslant \operatorname{Aut}\left(F_{n}\right)$ be an arbitrary group of automorphisms of F_{n}. Then,
\square

What is known about fixed subgroups ?

Theorem (Dyer-Scott, 75)

Let $G \leqslant \operatorname{Aut}\left(F_{n}\right)$ be a finite group of automorphisms of F_{n}. Then, $\operatorname{Fix}(G) \leqslant$ ff F_{n}; in particular, $r(F i x(G)) \leqslant n$.

Conjecture (Scott)

For every $\phi \in \operatorname{Aut}\left(F_{n}\right), r(F i x(\phi)) \leqslant n$.
Theorem (Gersten, 83 (published 87))
Let $\phi \in \operatorname{Aut}\left(F_{n}\right)$. Then $r(\operatorname{Fix}(\phi))<\infty$.

Theorem (Thomas, 88)
Let $G \leqslant \operatorname{Aut}\left(F_{n}\right)$ be an arbitrary group of automorphisms of F_{n}. Then,
$r($ Fix $(G))$

What is known about fixed subgroups?

Theorem (Dyer-Scott, 75)

Let $G \leqslant \operatorname{Aut}\left(F_{n}\right)$ be a finite group of automorphisms of F_{n}. Then, $\operatorname{Fix}(G) \leqslant \mathrm{ff} F_{n}$; in particular, $r(\operatorname{Fix}(G)) \leqslant n$.

Conjecture (Scott)

For every $\phi \in \operatorname{Aut}\left(F_{n}\right), r(F i x(\phi)) \leqslant n$.
Theorem (Gersten, 83 (published 87))
Let $\phi \in \operatorname{Aut}\left(F_{n}\right)$. Then $r(\operatorname{Fix}(\phi))<\infty$.

Theorem (Thomas, 88)

Let $G \leqslant \operatorname{Aut}\left(F_{n}\right)$ be an arbitrary group of automorphisms of F_{n}. Then, $r(\operatorname{Fix}(G))<\infty$.

Train-tracks

Main result in this story:
Theorem (Bestvina-Handel, 88 (published 92))
Let $\phi \in \operatorname{Aut}\left(F_{n}\right)$. Then $r(F i x(\phi)) \leqslant n$.
introducing the theory of train-tracks for graphs.

After Bestvina-Handel, live continues

Theorem (Imrich-Turner, 89)

Let $\phi \in \operatorname{End}\left(F_{n}\right)$. Then $r(F i x(\phi)) \leqslant n$.

Theorem (Turner, 96)

Let $\phi \in \operatorname{End}\left(F_{n}\right)$. If ϕ is not bijective then $r(F i x(\phi)) \leqslant n-1$

Train-tracks

Main result in this story:
Theorem (Bestvina-Handel, 88 (published 92))
Let $\phi \in \operatorname{Aut}\left(F_{n}\right)$. Then $r(F i x(\phi)) \leqslant n$.
introducing the theory of train-tracks for graphs.

After Bestvina-Handel, live continues ...

Theorem (Imrich-Turner, 89)

Let $\phi \in \operatorname{End}\left(F_{n}\right)$. Then $r($ Fix $(\phi)) \leqslant n$.

Theorem (Turner, 96)

Let $\phi \in \operatorname{End}\left(F_{n}\right)$. If ϕ is not bijective then $r(F i x(\phi)) \leqslant n-1$

Train-tracks

Main result in this story:
Theorem (Bestvina-Handel, 88 (published 92))
Let $\phi \in \operatorname{Aut}\left(F_{n}\right)$. Then $r(F i x(\phi)) \leqslant n$.
introducing the theory of train-tracks for graphs.

After Bestvina-Handel, live continues ...

Theorem (Imrich-Turner, 89)

Let $\phi \in \operatorname{End}\left(F_{n}\right)$. Then $r(F i x(\phi)) \leqslant n$.

Theorem (Turner, 96)

Let $\phi \in \operatorname{End}\left(F_{n}\right)$. If ϕ is not bijective then $r(F i x(\phi)) \leqslant n-1$.

Inertia

Definition

A subgroup $H \leqslant F_{n}$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_{n}$.

Theorem (Dicks-V, 96)
 Let $G \subseteq \operatorname{Mon}\left(F_{n}\right)$ be an arbitrary set of monomorphisms of F_{n}. Then, Fix (G) is inert; in particular, $r($ Fix $(G)) \leqslant n$.

Theorem (Bergman, 99)

Let $G \subset E n d\left(F_{n}\right)$ be an arbitrary set of endomorphisms of F_{n}. Then, $r($ Fix $(G)) \leqslant n$.

Conjecture (V.)

Let $\phi \in \operatorname{End}\left(F_{n}\right)$. Then Fix (ϕ) is inert

Inertia

Definition

A subgroup $H \leqslant F_{n}$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_{n}$.

Theorem (Dicks-V, 96)

Let $G \subseteq \operatorname{Mon}\left(F_{n}\right)$ be an arbitrary set of monomorphisms of F_{n}. Then, $\operatorname{Fix}(G)$ is inert; in particular, $r(\operatorname{Fix}(G)) \leqslant n$.

Theorem (Bergman, 99)

Let $G \subseteq$ End $\left(F_{n}\right)$ be an arbitrary set of endomorphisms of F_{n}. Then,

Conjecture (V.)

Let $\phi \in \operatorname{End}\left(F_{n}\right)$. Then Fix (ϕ) is inert

Inertia

Definition

A subgroup $H \leqslant F_{n}$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_{n}$.

Theorem (Dicks-V, 96)

Let $G \subseteq \operatorname{Mon}\left(F_{n}\right)$ be an arbitrary set of monomorphisms of F_{n}. Then, $\operatorname{Fix}(G)$ is inert; in particular, $r(\operatorname{Fix}(G)) \leqslant n$.

Theorem (Bergman, 99)

Let $G \subseteq E n d\left(F_{n}\right)$ be an arbitrary set of endomorphisms of F_{n}. Then, $r(F i x(G)) \leqslant n$.

Inertia

Definition

A subgroup $H \leqslant F_{n}$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_{n}$.

Theorem (Dicks-V, 96)

Let $G \subseteq \operatorname{Mon}\left(F_{n}\right)$ be an arbitrary set of monomorphisms of F_{n}. Then, $\operatorname{Fix}(G)$ is inert; in particular, $r(\operatorname{Fix}(G)) \leqslant n$.

Theorem (Bergman, 99)

Let $G \subseteq E n d\left(F_{n}\right)$ be an arbitrary set of endomorphisms of F_{n}. Then, $r(F i x(G)) \leqslant n$.

Conjecture (V.)

Let $\phi \in \operatorname{End}\left(F_{n}\right)$. Then Fix (ϕ) is inert.

The four families

Definition

A subgroup $H \leqslant F_{n}$ is said to be

- 1-auto-fixed if $H=\operatorname{Fix}(\phi)$ for some $\phi \in \operatorname{Aut}\left(F_{n}\right)$,
- 1-endo-fixed if $H=$ Fix (ϕ) for some $\phi \in \operatorname{End}\left(F_{n}\right)$,
- auto-fixed if $H=F i x(S)$ for some $S \subseteq \operatorname{Aut}\left(F_{n}\right)$,
- endo-fixed if $H=F i x(S)$ for some $S \subseteq \operatorname{End}\left(F_{n}\right)$,

The four families

Definition

A subgroup $H \leqslant F_{n}$ is said to be

- 1-auto-fixed if $H=\operatorname{Fix}(\phi)$ for some $\phi \in \operatorname{Aut}\left(F_{n}\right)$,
- 1-endo-fixed if $H=\operatorname{Fix}(\phi)$ for some $\phi \in \operatorname{End}\left(F_{n}\right)$,
- auto-fixed if $H=F i x(S)$ for some $S \subseteq \operatorname{Aut}\left(F_{n}\right)$,
- endo-fixed if $H=F i x(S)$ for some $S \subseteq \operatorname{End}\left(F_{n}\right)$,

The four families

Definition

A subgroup $H \leqslant F_{n}$ is said to be

- 1-auto-fixed if $H=\operatorname{Fix}(\phi)$ for some $\phi \in \operatorname{Aut}\left(F_{n}\right)$,
- 1-endo-fixed if $H=\operatorname{Fix}(\phi)$ for some $\phi \in \operatorname{End}\left(F_{n}\right)$,
- auto-fixed if $H=\operatorname{Fix}(S)$ for some $S \subseteq \operatorname{Aut}\left(F_{n}\right)$,
- endo-fixed if $H=F i x(S)$ for some $S \subseteq E n d\left(F_{n}\right)$,

The four families

Definition

A subgroup $H \leqslant F_{n}$ is said to be

- 1-auto-fixed if $H=\operatorname{Fix}(\phi)$ for some $\phi \in \operatorname{Aut}\left(F_{n}\right)$,
- 1-endo-fixed if $H=F i x(\phi)$ for some $\phi \in \operatorname{End}\left(F_{n}\right)$,
- auto-fixed if $H=\operatorname{Fix}(S)$ for some $S \subseteq \operatorname{Aut}\left(F_{n}\right)$,
- endo-fixed if $H=F i x(S)$ for some $S \subseteq \operatorname{End}\left(F_{n}\right)$,

The four families

Definition

A subgroup $H \leqslant F_{n}$ is said to be

- 1-auto-fixed if $H=\operatorname{Fix}(\phi)$ for some $\phi \in \operatorname{Aut}\left(F_{n}\right)$,
- 1-endo-fixed if $H=\operatorname{Fix}(\phi)$ for some $\phi \in \operatorname{End}\left(F_{n}\right)$,
- auto-fixed if $H=\operatorname{Fix}(S)$ for some $S \subseteq \operatorname{Aut}\left(F_{n}\right)$,
- endo-fixed if $H=F i x(S)$ for some $S \subseteq \operatorname{End}\left(F_{n}\right)$,

Easy to see that 1 -mono-fixed $=1$-auto-fixed.

Relations between them

$$
\begin{array}{cc}
\hline 1 \text { - auto - fixed } & \subseteq \begin{array}{r}
1-\text { endo - fixed } \\
\cap \\
\cap
\end{array} \\
\hline \text { auto - fixed } & \subseteq \\
\hline
\end{array}
$$

Relations between them

$$
1 \text { - auto - fixed }
$$

auto - fixed

$$
1 \text { - endo - fixed }
$$

endo - fixed

Example (Martino-V., 03; Ciobanu-Dicks, 06)

Let $F_{3}=\langle a, b, c\rangle$ and $H=\left\langle b, c a c b a b^{-1} c^{-1}\right\rangle \leqslant F_{3}$. Then, $H=F i x\left(a \mapsto 1, b \mapsto b, c \mapsto c a c b a b^{-1} c^{-1}\right)$, but H is NOT the fixed subgroup of any set of automorphism of F_{3}.

Relations between them

$$
\begin{array}{ccc|}
\hline 1 \text { - auto - fixed } & \risingdotseq & \begin{array}{cc}
1-\text { endo - fixed } \\
\cap\|\| ? & \cap \| ? \\
\text { auto - fixed } & \subsetneq \\
\hline & \text { endo - fixed }
\end{array} \\
\hline
\end{array}
$$

Theorem (Martino-V., 00)

Let $S \subseteq \operatorname{End}\left(F_{n}\right)$. Then, $\exists \phi \in\langle S\rangle$ such that Fix $(S) \leqslant_{\text {ff }} \operatorname{Fix}(\phi)$.
But... free factors of 1-endo-fixed (1-auto-fixed) subgroups need not be even endo-fixed (auto-fixed).

Outline

(9)

Motivation

(2) Free groups
(3) Lower bounds: a good enough example
4. Upper bounds: outer space
(5) The special case of rank 2

6 Fixed subgroups: a nice story
(7) Algorithmic results

Computing fixed subgroups

Proposition (Turner, 86)

There exists a pseudo-algorithm to compute fix of an endo.

Easy but is not an algorithm...

Theorem (Maslakova, 03)

Fixed subaroups of automorphisms of F_{n} are computable

Difficult, using train-tracks. Mistake found,... and fixed by W. Dicks

Theorem (Dicks, 11)
Fixed subaroups of end morphisms of F_{n} are computable.

Computing fixed subgroups

Proposition (Turner, 86)

There exists a pseudo-algorithm to compute fix of an endo.

Easy but is not an algorithm...

Theorem (Maslakova, 03)

Fixed subgroups of automorphisms of F_{n} are computable.

Difficult, using train-tracks. Mistake found,... and fixed by W. Dicks

Theorem (Dicks, 11)

Fixed subaroups of end omorphisms of F_{n} are computable.

Computing fixed subgroups

Proposition (Turner, 86)

There exists a pseudo-algorithm to compute fix of an endo.

Easy but is not an algorithm...

Theorem (Maslakova, 03)

Fixed subgroups of automorphisms of F_{n} are computable.

Difficult, using train-tracks. Mistake found,... and fixed by W. Dicks

Theorem (Dicks, 11)

Fixed subgroups of endomorphisms of F_{n} are computable.

Deciding fixedness

What about the dual problem ?

Theorem (V. 2010)

Given $H \leqslant_{\mathrm{fg}} F_{n}$, one can algorithmically decide whether
i) H is auto-fixed or not.
ii) H is endo-fixed or not,
and in the affirmative case, find a finite family, $S=\left\{\phi_{1}, \ldots, \phi_{m}\right\}$, of automorphisms (endomorphisms) of F_{n} such that Fix $(S)=H$.

Conjecture

Given $H \leqslant f_{c} F_{n \text {, one can algorithmically decide whether }}$
i) H is 1-auto-fixed or not,
ii) H is 1-endo-fixed or not,
and in the affirmative case. find one automorphism (endomorphism)
of F_{n} such that Fix $(\phi)=H$

Deciding fixedness

What about the dual problem ?

Theorem (V. 2010)

Given $H \leqslant_{\mathrm{fg}} F_{n}$, one can algorithmically decide whether
i) H is auto-fixed or not,
ii) H is endo-fixed or not, and in the affirmative case, find a finite family, $S=\left\{\phi_{1}, \ldots, \phi_{m}\right\}$, of automorphisms (endomorphisms) of F_{n} such that $\operatorname{Fix}(S)=H$.

Conjecture

Given $H \leqslant f_{\mathrm{fo}} F_{n \text {, one can algorithmically decide whether }}$
\qquad
ii) H is 1-endo-fixed or not,
and in the affirmative case, find one automorphism (endomorphism)

Deciding fixedness

What about the dual problem?

Theorem (V. 2010)

Given $H \leqslant_{\mathrm{fg}} F_{n}$, one can algorithmically decide whether
i) H is auto-fixed or not,
ii) H is endo-fixed or not, and in the affirmative case, find a finite family, $S=\left\{\phi_{1}, \ldots, \phi_{m}\right\}$, of automorphisms (endomorphisms) of F_{n} such that $\operatorname{Fix}(S)=H$.

Conjecture

Given $H \leqslant_{\mathrm{fg}} F_{n}$, one can algorithmically decide whether
i) H is 1 -auto-fixed or not,
ii) H is 1 -endo-fixed or not,
and in the affirmative case, find one automorphism (endomorphism) ϕ of F_{n} such that Fix $(\phi)=H$.

Fixed closures

Definition

Given $H \leqslant_{\mathrm{fg}} F_{n}$, we define the (auto- and endo-) stabilizer of H, respectively, as

$$
\operatorname{Aut}_{H}\left(F_{n}\right)=\left\{\phi \in \operatorname{Aut}\left(F_{n}\right) \mid H \leqslant \operatorname{Fix}(\phi)\right\} \leqslant \operatorname{Aut}\left(F_{n}\right)
$$

and

$$
\operatorname{End}_{H}\left(F_{n}\right)=\left\{\phi \in \operatorname{End}\left(F_{n}\right) \mid H \leqslant \operatorname{Fix}(\phi)\right\} \leqslant \operatorname{End}\left(F_{n}\right)
$$

Definition

Given $H \leqslant F_{n}$, we define the auto-closure and endo-closure of H as

Fixed closures

Definition

Given $H \leqslant{ }_{\mathrm{fg}} F_{n}$, we define the (auto- and endo-) stabilizer of H, respectively, as

$$
\operatorname{Aut}_{H}\left(F_{n}\right)=\left\{\phi \in \operatorname{Aut}\left(F_{n}\right) \mid H \leqslant \operatorname{Fix}(\phi)\right\} \leqslant \operatorname{Aut}\left(F_{n}\right)
$$

and

$$
\operatorname{End}_{H}\left(F_{n}\right)=\left\{\phi \in \operatorname{End}\left(F_{n}\right) \mid H \leqslant \operatorname{Fix}(\phi)\right\} \leqslant \operatorname{End}\left(F_{n}\right)
$$

Definition

Given $H \leqslant F_{n}$, we define the auto-closure and endo-closure of H as

$$
a-C l(H)=F i x\left(A u t_{H}\left(F_{n}\right)\right) \geqslant H
$$

and

$$
e-C l(H)=\operatorname{Fix}\left(\operatorname{End}_{H}\left(F_{n}\right)\right) \geqslant H
$$

Main result

Theorem

For every $H \leqslant_{\mathrm{fg}} F_{n}, \mathrm{a}-\mathrm{Cl}(H)$ and $\mathrm{e}-\mathrm{Cl}(H)$ are finitely generated and one can algorithmically compute bases for them.

Corollary

Auto-fixedness and endo-fixedness are decidable.

Observe that $e-C l(H) \leqslant a-C l(H)$ but, in general, they are not equal.

Main result

Theorem

For every $H \leqslant_{\mathrm{fg}} F_{n}, \mathrm{a}-\mathrm{Cl}(H)$ and $\mathrm{e}-\mathrm{Cl}(H)$ are finitely generated and one can algorithmically compute bases for them.

Corollary
Auto-fixedness and endo-fixedness are decidable.

Observe that $e-C l(H) \leqslant a-C l(H)$ but, in general, they are not equal.

The automorphism case

Theorem (McCool, 70's)

Let $H \leqslant_{\mathrm{fg}} F_{n}$. Then Aut $_{H}\left(F_{n}\right)$ is finitely generated (in fact, finitely presented) and a finite set of generators (and relations) is algorithmically computable from H .

Theorem
For every H computable.

Proof. a-Cl(H)

The automorphism case

Theorem (McCool, 70's)

Let $H \leqslant_{\mathrm{fg}} F_{n}$. Then Aut $_{H}\left(F_{n}\right)$ is finitely generated (in fact, finitely presented) and a finite set of generators (and relations) is algorithmically computable from H .

Theorem

For every $\mathrm{H} \leqslant_{\mathrm{fg}} F_{n}$, a-Cl(H) is finitely generated and algorithmically computable.

Proof. $\operatorname{a-Cl}(H)=\operatorname{Fix}\left(\operatorname{Aut}_{H}\left(F_{n}\right)\right)$

The automorphism case

Theorem (McCool, 70's)

Let $H \leqslant_{\mathrm{fg}} F_{n}$. Then Aut $_{H}\left(F_{n}\right)$ is finitely generated (in fact, finitely presented) and a finite set of generators (and relations) is algorithmically computable from H .

Theorem

For every $H \leqslant{ }_{\mathrm{fg}} F_{n}$, a-Cl(H) is finitely generated and algorithmically computable.

Proof. $\mathrm{a}-\mathrm{Cl}(H)=\operatorname{Fix}\left(\operatorname{Aut}_{H}\left(F_{n}\right)\right)$
$=\operatorname{Fix}\left(\left\langle\phi_{1}, \ldots, \phi_{m}\right\rangle\right)$
$=\operatorname{Fix}\left(\phi_{1}\right) \cap \cdots \cap \operatorname{Fix}\left(\phi_{m}\right) . \square$

The endomorphism case

A similar approach does not work because:
> $H \leqslant_{\mathrm{fg}} F_{n}$ does not imply that $\operatorname{End}_{H}\left(F_{n}\right)$ is finitely generated as submonoid of End $\left(F_{n}\right)$.

The endomorphism case

A similar approach does not work because:
$H \leqslant_{\mathrm{fg}} F_{n}$ does not imply that $\operatorname{End}_{H}\left(F_{n}\right)$ is finitely generated as submonoid of End $\left(F_{n}\right)$.

The endomorphism case

Example

Consider $F_{3}=\langle a, b, c\rangle$, the element $d=b a\left[c^{2}, b\right] a^{-1}$, and the subgroup $H=\langle a, d\rangle \leqslant F_{3}$. Clearly, the morphisms

satisfy $H \leqslant \operatorname{Fix}\left(\phi^{n} \psi\right)$ for every $n \in \mathbb{Z}$. With some computations, Ciobanu-Dicks-06 show that

But, $\phi^{m} \psi \cdot \phi^{n} \psi=\phi^{m} \psi$. Hence, End $H_{H}\left(F_{3}\right)$ is not finitely generated.
Furthermore, $\mathrm{a}-\mathrm{Cl}(H)=\mathrm{Fix}(I d)=\mathrm{F}_{3}$ and $\mathrm{e}-\mathrm{Cl}(H)=\mathrm{Fix}(\psi)=\mathrm{H}$.

The endomorphism case

Example

Consider $F_{3}=\langle a, b, c\rangle$, the element $d=b a\left[c^{2}, b\right] a^{-1}$, and the subgroup $H=\langle a, d\rangle \leqslant F_{3}$. Clearly, the morphisms

$$
\begin{array}{rlrlrlll}
\psi: F_{3} & \rightarrow & F_{3} & \phi: F_{3} & \rightarrow & F_{3} & \phi^{n} \psi: F_{3} & \rightarrow \\
a & \mapsto & F_{3} \\
b & \mapsto & & a & \mapsto a & & \mapsto & a \\
c & b & \mapsto & b & b & \mapsto & d \\
c & c & \mapsto & c b & c & \mapsto & d^{n}
\end{array}
$$

satisfy $H \leqslant \operatorname{Fix}\left(\phi^{n} \psi\right)$ for every $n \in \mathbb{Z}$.
With some computations, Ciobanu-Dicks-06 show that

But, $\phi^{m} \psi \cdot \phi^{n} \psi=\phi^{m} \psi$. Hence, End $H_{H}\left(F_{3}\right)$ is not finitely generated.
Furthermore, $\operatorname{a-Cl}(H)=\operatorname{Fix}(I d)=F_{3}$ and $\mathrm{e}-\mathrm{Cl}(H)=\operatorname{Fix}(\psi)=H$.

The endomorphism case

Example

Consider $F_{3}=\langle a, b, c\rangle$, the element $d=b a\left[c^{2}, b\right] a^{-1}$, and the subgroup $H=\langle a, d\rangle \leqslant F_{3}$. Clearly, the morphisms

$$
\begin{aligned}
& \psi: F_{3} \rightarrow F_{3} \quad \phi: F_{3} \rightarrow F_{3} \quad \phi^{n} \psi: F_{3} \rightarrow F_{3} \\
& a \mapsto a \quad a \mapsto a \quad a \mapsto a \\
& b \mapsto d \quad b \mapsto b \quad b \mapsto d \\
& c \mapsto 1 \quad c \mapsto c b \quad c \quad \mapsto \quad d^{n}
\end{aligned}
$$

satisfy $H \leqslant \operatorname{Fix}\left(\phi^{n} \psi\right)$ for every $n \in \mathbb{Z}$.
With some computations, Ciobanu-Dicks-06 show that

$$
\operatorname{End}_{H}\left(F_{3}\right)=\left\{I d, \phi^{n} \psi \mid n \in \mathbb{Z}\right\}
$$

But, $\phi^{m} \psi \cdot \phi^{n} \psi=\phi^{m} \psi$. Hence, End $H_{H}\left(F_{3}\right)$ is not finitely generated.
Furthermore, $\operatorname{a-Cl}(H)=\operatorname{Fix}(I d)=F_{3}$ and $e-C l(H)=\operatorname{Fix}(\psi)=H$.

The endomorphism case

Example

Consider $F_{3}=\langle a, b, c\rangle$, the element $d=b a\left[c^{2}, b\right] a^{-1}$, and the subgroup $H=\langle a, d\rangle \leqslant F_{3}$. Clearly, the morphisms

$$
\begin{aligned}
& \psi: F_{3} \rightarrow F_{3} \quad \phi: F_{3} \rightarrow F_{3} \quad \phi^{n} \psi: F_{3} \rightarrow F_{3} \\
& a \mapsto a \quad a \mapsto a \quad a \mapsto a \\
& b \mapsto d \quad b \mapsto b b d \\
& c \mapsto 1 \quad c \mapsto c b \quad c \quad \mapsto \quad d^{n}
\end{aligned}
$$

satisfy $H \leqslant \operatorname{Fix}\left(\phi^{n} \psi\right)$ for every $n \in \mathbb{Z}$.
With some computations, Ciobanu-Dicks-06 show that

$$
\operatorname{End}_{H}\left(F_{3}\right)=\left\{I d, \phi^{n} \psi \mid n \in \mathbb{Z}\right\}
$$

But, $\phi^{m} \psi \cdot \phi^{n} \psi=\phi^{m} \psi$. Hence, End ${ }_{H}\left(F_{3}\right)$ is not finitely generated.

The endomorphism case

Example

Consider $F_{3}=\langle a, b, c\rangle$, the element $d=b a\left[c^{2}, b\right] a^{-1}$, and the subgroup $H=\langle a, d\rangle \leqslant F_{3}$. Clearly, the morphisms

$$
\begin{aligned}
& \psi: F_{3} \rightarrow F_{3} \quad \phi: F_{3} \rightarrow F_{3} \quad \phi^{n} \psi: F_{3} \rightarrow F_{3} \\
& a \mapsto a \quad a \mapsto a \quad a \mapsto a \\
& b \mapsto d \quad b \mapsto b \quad b \mapsto d \\
& c \mapsto 1 \quad c \mapsto c b \quad c \quad \mapsto \quad d^{n}
\end{aligned}
$$

satisfy $H \leqslant \operatorname{Fix}\left(\phi^{n} \psi\right)$ for every $n \in \mathbb{Z}$.
With some computations, Ciobanu-Dicks-06 show that

$$
\operatorname{End}_{H}\left(F_{3}\right)=\left\{I d, \phi^{n} \psi \mid n \in \mathbb{Z}\right\} .
$$

But, $\phi^{m} \psi \cdot \phi^{n} \psi=\phi^{m} \psi$. Hence, End ${ }_{H}\left(F_{3}\right)$ is not finitely generated.
Furthermore, $\mathrm{a}-\mathrm{Cl}(H)=\mathrm{Fix}(I d)=F_{3}$ and $e-C l(H)=\operatorname{Fix}(\psi)=H$.

The endomorphism case

Theorem

For every $\mathrm{H} \leqslant_{\mathrm{fg}} F_{n}$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given H (in generators),

- Compute $\mathcal{A E}(H)=\left\{H_{1}, H_{2}, \ldots, H_{q}\right\}$
- Select those which are retracts, $\mathcal{A} \mathcal{E}_{\text {ret }}(H)=\left\{H_{1}, \ldots . H_{r}\right\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_{i} s, $i=1, \ldots, r$.
- Compute bases for $\mathrm{a}-\mathrm{Cl}_{H_{1}}(H), \ldots, a-\mathrm{Cl}_{H_{r}}(H)$.
- Compute a basis for a-Cl $H_{H_{1}}(H) \cap \cdots \cap a-C l_{H_{r}}(H)$.

Claim

$a-\mathrm{Cl}_{H_{1}}(\mathrm{H}) \cap$

$$
a-C l_{H_{r}}(H)=e-C l(H)
$$

The endomorphism case

Theorem

For every $\mathrm{H} \leqslant_{\mathrm{fg}} F_{n}$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given H (in generators),

- Compute $\mathcal{A E}(H)=\left\{H_{1}, H_{2}, \ldots, H_{q}\right\}$.
- Select those which are retracts, $\mathcal{A} \mathcal{E}_{\text {ret }}(H)=\left\{H_{1}\right.$
- Write the generators of H as words on the generators of each one of these H_{i} 's, $i=1$,
- Compute bases for a-Cl $H_{1}(H)$ $a-\mathrm{Cl}_{\mathrm{H}_{r}}(\mathrm{H})$.
- Compute a basis for a-Cl $H_{H_{1}}(H)$ $\mathrm{a}-\mathrm{Cl}_{\mathrm{H}_{+}}(\mathrm{H})$

Claim

\square
\square

The endomorphism case

Theorem

For every $H \leqslant_{\mathrm{fg}} F_{n}$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given H (in generators),

- Compute $\mathcal{A E}(H)=\left\{H_{1}, H_{2}, \ldots, H_{q}\right\}$.
- Select those which are retracts, $\mathcal{A E}_{\text {ret }}(H)=\left\{H_{1}, \ldots, H_{r}\right\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_{i} 's, $i=1$,
- Compute bases for $\mathrm{a}-\mathrm{Cl}_{H_{1}}(\mathrm{H})$ $a-\mathrm{Cl}_{\mathrm{H}_{r}}(\mathrm{H})$.
- Compute a basis for $\mathrm{a}-\mathrm{Cl}_{\mathrm{H}_{1}}(\mathrm{H})$ $\mathrm{a}-\mathrm{Cl}_{\mathrm{H}_{+}}(\mathrm{H})$

Claim

\square
\square

The endomorphism case

Theorem

For every $H \leqslant_{\mathrm{fg}} F_{n}$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given H (in generators),

- Compute $\mathcal{A E}(H)=\left\{H_{1}, H_{2}, \ldots, H_{q}\right\}$.
- Select those which are retracts, $\mathcal{A E}_{\text {ret }}(H)=\left\{H_{1}, \ldots, H_{r}\right\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_{i} 's, $i=1, \ldots, r$.
- Compute bases for $\mathrm{a}-\mathrm{Cl}_{H_{1}}(H), \ldots, a-\mathrm{Cl}_{H_{r}}(H)$.
- Compute a basis for $a-\mathrm{Cl}_{H_{1}}(H) \cap \cdots \cap a-\mathrm{Cl}_{H_{r}}(H)$.

Claim

The endomorphism case

Theorem

For every $\mathrm{H} \leqslant_{\mathrm{fg}} F_{n}$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given H (in generators),

- Compute $\mathcal{A E}(H)=\left\{H_{1}, H_{2}, \ldots, H_{q}\right\}$.
- Select those which are retracts, $\mathcal{A E}_{\text {ret }}(H)=\left\{H_{1}, \ldots, H_{r}\right\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_{i} 's, $i=1, \ldots, r$.
- Compute bases for $\mathrm{a}-\mathrm{Cl}_{H_{1}}(H), \ldots, a-\mathrm{Cl}_{H_{r}}(H)$.
- Compute a basis for $a-\mathrm{Cl}_{H_{1}}(H) \cap \cdots \cap a-\mathrm{Cl}_{H_{r}}(H)$.

Claim

\square

The endomorphism case

Theorem

For every $\mathrm{H} \leqslant_{\mathrm{fg}} F_{n}$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given H (in generators),

- Compute $\mathcal{A E}(H)=\left\{H_{1}, H_{2}, \ldots, H_{q}\right\}$.
- Select those which are retracts, $\mathcal{A} \mathcal{E}_{\text {ret }}(H)=\left\{H_{1}, \ldots, H_{r}\right\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_{i} 's, $i=1, \ldots, r$.
- Compute bases for $\mathrm{a}-\mathrm{Cl}_{H_{1}}(H), \ldots, a-\mathrm{Cl}_{H_{r}}(H)$.
- Compute a basis for $a-\mathrm{Cl}_{H_{1}}(H) \cap \cdots \cap a-\mathrm{Cl}_{H_{r}}(H)$.

Claim

The endomorphism case

Theorem

For every $H \leqslant_{\mathrm{fg}} F_{n}$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given H (in generators),

- Compute $\mathcal{A E}(H)=\left\{H_{1}, H_{2}, \ldots, H_{q}\right\}$.
- Select those which are retracts, $\mathcal{A} \mathcal{E}_{\text {ret }}(H)=\left\{H_{1}, \ldots, H_{r}\right\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_{i} 's, $i=1, \ldots, r$.
- Compute bases for $a-\mathrm{Cl}_{H_{1}}(H), \ldots, a-\mathrm{Cl}_{H_{r}}(H)$.
- Compute a basis for $a-\mathrm{Cl}_{H_{1}}(H) \cap \cdots \cap a-\mathrm{Cl}_{H_{r}}(H)$.

Claim

$$
a-C l_{H_{1}}(H) \cap \cdots \cap a-C l_{H_{r}}(H)=e-C l(H) .
$$

The endomorphism case

Claim

$$
a-\mathrm{Cl}_{\mathrm{H}_{1}}(\mathrm{H}) \cap \cdots \cap \mathrm{a}-\mathrm{Cl}_{\mathrm{H}_{r}}(\mathrm{H})=e-\mathrm{Cl}(\mathrm{H}) .
$$

Proof. Let us see that

$$
\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}\left(H_{i}\right) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha)=\bigcap_{\substack{\beta \in \operatorname{End}\left(F_{n}\right) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta) .
$$

- Take $\beta \in \operatorname{End}\left(F_{n}\right)$ with $H \leqslant \operatorname{Fix}(\beta)$.
- $\exists i=1 \ldots . r$ such that $H \leqslant \begin{aligned} \text { alg }\end{aligned} H_{i} \leqslant f f \beta^{\infty} \leqslant F$
- Now, β restricts to an automorphism $\alpha: H_{i} \rightarrow H_{i}$.
- And, clearly, $H \leqslant \operatorname{Fix}(\alpha) \leqslant \operatorname{Fix}(\beta)$.
- Hence, we have " \leqslant ".

The endomorphism case

Claim

$$
a-\mathrm{Cl}_{H_{r}}(\mathrm{H}) \cap \cdots \cap \mathrm{a}-\mathrm{Cl}_{\mathrm{H}_{r}}(\mathrm{H})=\mathrm{e}-\mathrm{Cl}(\mathrm{H}) .
$$

Proof. Let us see that

- Take $\beta \in \operatorname{End}\left(F_{n}\right)$ with $H \leqslant \operatorname{Fix}(\beta)$.
- Now, β restricts to an automorphism $\alpha: H_{i} \rightarrow H_{i}$.
- And, clearly, $H \leqslant \operatorname{Fix}(\alpha) \leqslant \operatorname{Fix}(\beta)$.
- Hence, we have " \leqslant ".

The endomorphism case

Claim

$$
a-C_{H_{1}}(H) \cap \cdots \cap a-C_{H_{r}}(H)=e-C l(H) .
$$

Proof. Let us see that

- Take $\beta \in \operatorname{End}\left(F_{n}\right)$ with $H \leqslant \operatorname{Fix}(\beta)$.
- $\exists i=1, \ldots, r$ such that $H \leqslant$ alg $H_{i} \leqslant$ ff $F \beta^{\infty} \leqslant F$.
- Now, β restricts to an automorphism $\alpha: H_{i} \rightarrow H_{i}$
- And, clearly, $H \leqslant \operatorname{Fix}(\alpha) \leqslant \operatorname{Fix}(\beta)$.
- Hence, we have " \leqslant ".

The endomorphism case

Claim

$$
a-C_{H_{1}}(H) \cap \cdots \cap a-C_{H_{r}}(H)=e-C l(H) .
$$

Proof. Let us see that

- Take $\beta \in \operatorname{End}\left(F_{n}\right)$ with $H \leqslant \operatorname{Fix}(\beta)$.
- $\exists i=1, \ldots, r$ such that $H \leqslant_{\text {alg }} H_{i} \leqslant$ ff $F \beta^{\infty} \leqslant F$.
- Now, β restricts to an automorphism $\alpha: H_{i} \rightarrow H_{i}$.
- And, clearly, $H \leqslant$ Fix $(\alpha) \leqslant$ Fix (β).
- Hence, we have " \leqslant ".

The endomorphism case

Claim

$$
a-C_{H_{1}}(H) \cap \cdots \cap a-C_{H_{r}}(H)=e-C l(H) .
$$

Proof. Let us see that

- Take $\beta \in \operatorname{End}\left(F_{n}\right)$ with $H \leqslant \operatorname{Fix}(\beta)$.
- $\exists i=1, \ldots, r$ such that $H \leqslant_{\text {alg }} H_{i} \leqslant_{\text {ff }} F \beta^{\infty} \leqslant F$.
- Now, β restricts to an automorphism $\alpha: H_{i} \rightarrow H_{i}$.
- And, clearly, $H \leqslant \operatorname{Fix}(\alpha) \leqslant \operatorname{Fix}(\beta)$.
- Hence, we have

The endomorphism case

Claim

$$
a-C_{H_{1}}(H) \cap \cdots \cap a-C_{H_{r}}(H)=e-C l(H) .
$$

Proof. Let us see that

- Take $\beta \in \operatorname{End}\left(F_{n}\right)$ with $H \leqslant \operatorname{Fix}(\beta)$.
- $\exists i=1, \ldots, r$ such that $H \leqslant_{\text {alg }} H_{i} \leqslant_{\text {ff }} F \beta^{\infty} \leqslant F$.
- Now, β restricts to an automorphism $\alpha: H_{i} \rightarrow H_{i}$.
- And, clearly, $H \leqslant \operatorname{Fix}(\alpha) \leqslant \operatorname{Fix}(\beta)$.
- Hence, we have " \leqslant ".

The endomorphism case

- Take $H_{i} \in \mathcal{A} \mathcal{E}_{\text {ret }}(H)$, and $\alpha \in \operatorname{Aut}\left(H_{i}\right)$ with $H \leqslant \operatorname{Fix}(\alpha)$.
- Let $\rho: F \rightarrow H_{i}$ be a retraction, and consider the endomorphism, $\beta: F_{n} \xrightarrow{\rho} H_{i} \xrightarrow{\alpha} H_{i} \stackrel{\hookrightarrow}{\hookrightarrow} F_{n}$.
- Clearly, $H \leqslant \operatorname{Fix}(\alpha)=\operatorname{Fix}(\beta)$.
- Hence, we have " \geqslant ". \square

The endomorphism case

$$
\bigcap_{\substack{\alpha \in \operatorname{Aut}\left(H_{i}\right) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha)=\bigcap_{\substack{\beta \in \operatorname{End}\left(F_{n}\right) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta)
$$

- Take $H_{i} \in \mathcal{A E}_{\text {ret }}(H)$, and $\alpha \in \operatorname{Aut}\left(H_{i}\right)$ with $H \leqslant \operatorname{Fix}(\alpha)$.
- Let $\rho: F \rightarrow H_{i}$ be a retraction, and consider the endomorphism,
$\beta: F_{n} \xrightarrow{\rho} H_{i} \xrightarrow{\alpha} H_{i} \stackrel{\iota}{\hookrightarrow} F_{n}$.
- Clearly, $H \leqslant \operatorname{Fix}(\alpha)=\operatorname{Fix}(\beta)$.
- Hence, we have " "". \square

The endomorphism case

$$
\bigcap_{\substack{\alpha \in \operatorname{Aut}\left(H_{i}\right) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha)=\bigcap_{\substack{\beta \in \operatorname{End}\left(F_{n}\right) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta)
$$

- Take $H_{i} \in \mathcal{A E}_{\text {ret }}(H)$, and $\alpha \in \operatorname{Aut}\left(H_{i}\right)$ with $H \leqslant \operatorname{Fix}(\alpha)$.
- Let $\rho: F \rightarrow H_{i}$ be a retraction, and consider the endomorphism, $\beta: F_{n} \xrightarrow{\rho} H_{i} \xrightarrow{\alpha} H_{i} \stackrel{\iota}{\hookrightarrow} F_{n}$.
- Clearly, $H \leqslant \operatorname{Fix}(\alpha)=\operatorname{Fix}(\beta)$.
- Hence, we have " \geqslant ". \square

The endomorphism case

$$
\bigcap_{\substack{\alpha \in \operatorname{Aut}\left(H_{i}\right) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha)=\bigcap_{\substack{\beta \in \operatorname{End}\left(F_{n}\right) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta)
$$

- Take $H_{i} \in \mathcal{A E}_{\text {ret }}(H)$, and $\alpha \in \operatorname{Aut}\left(H_{i}\right)$ with $H \leqslant \operatorname{Fix}(\alpha)$.
- Let $\rho: F \rightarrow H_{i}$ be a retraction, and consider the endomorphism, $\beta: F_{n} \xrightarrow{\rho} H_{i} \xrightarrow{\alpha} H_{i} \stackrel{\iota}{\hookrightarrow} F_{n}$.
- Clearly, $\boldsymbol{H} \leqslant \operatorname{Fix}(\alpha)=\operatorname{Fix}(\beta)$.

The endomorphism case

$$
\bigcap_{\substack{\alpha \in \operatorname{Aut}\left(H_{i}\right) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha)=\bigcap_{\substack{\beta \in \operatorname{End}\left(F_{n}\right) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta)
$$

- Take $H_{i} \in \mathcal{A E}_{\text {ret }}(H)$, and $\alpha \in \operatorname{Aut}\left(H_{i}\right)$ with $H \leqslant \operatorname{Fix}(\alpha)$.
- Let $\rho: F \rightarrow H_{i}$ be a retraction, and consider the endomorphism, $\beta: F_{n} \xrightarrow{\rho} H_{i} \xrightarrow{\alpha} H_{i} \stackrel{\iota}{\hookrightarrow} F_{n}$.
- Clearly, $\boldsymbol{H} \leqslant \operatorname{Fix}(\alpha)=\operatorname{Fix}(\beta)$.
- Hence, we have " \geqslant ". \square

THANKS

