On the difficulty of inverting automorphisms of free groups

Enric Ventura

Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya

Université Paris-Sud, Centre d'Orsay

August 31th, 2011.

Outline

- Motivation
- 2 Free groups
- 3 Lower bounds: a good enough example
- Upper bounds: outer space
- 5 The special case of rank 2
- Fixed subgroups: a nice story
- Algorithmic results

Outline

- Motivation
- 2 Free groups
- 3 Lower bounds: a good enough example
- Upper bounds: outer space
- The special case of rank 2
- Fixed subgroups: a nice story
- Algorithmic results

(Joint work with P. Silva and M. Ladra.)

Find a group G where \cdot is "easy" but ()⁻¹ is "difficult".

```
\phi \psi \colon F_3 \to F_3
        a \mapsto bc^{-1}a^{-1}bc
```


(Joint work with P. Silva and M. Ladra.)

Find a group G where \cdot is "easy" but ()⁻¹ is "difficult".

$$F_{3} = \langle a, b, c \mid \rangle.$$

$$\phi \colon F_{3} \to F_{3} \qquad \psi \colon F_{3} \to F_{3}$$

$$a \mapsto ab \qquad a \mapsto bc^{-1}$$

$$b \mapsto ab^{2}c \qquad b \mapsto a^{-1}bc$$

$$c \mapsto bc^{2} \qquad c \mapsto c^{-1}.$$

$$\phi \psi \colon F_{3} \to F_{3}$$

$$a \mapsto bc^{-1}a^{-1}bc$$

$$b \mapsto bc^{-1}a^{-1}bca^{-1}b$$

$$c \mapsto a^{-1}bc^{-1}.$$

(Joint work with P. Silva and M. Ladra.)

Find a group G where \cdot is "easy" but ()⁻¹ is "difficult".

```
\phi \psi \colon F_3 \to F_3
        a \mapsto bc^{-1}a^{-1}bc
```

(Joint work with P. Silva and M. Ladra.)

Find a group G where \cdot is "easy" but ()⁻¹ is "difficult".

```
F_3 = \langle a, b, c \mid \rangle.
          c \mapsto bc^2
```

(Joint work with P. Silva and M. Ladra.)

Find a group G where \cdot is "easy" but ()⁻¹ is "difficult".

$$F_{3} = \langle a, b, c \mid \rangle.$$

$$\phi \colon F_{3} \to F_{3} \qquad \psi \colon F_{3} \to F_{3}$$

$$a \mapsto ab \qquad a \mapsto bc^{-1}$$

$$b \mapsto ab^{2}c \qquad b \mapsto a^{-1}bc$$

$$c \mapsto bc^{2} \qquad c \mapsto c^{-1}.$$

$$\phi \psi \colon F_{3} \to F_{3}$$

$$a \mapsto bc^{-1}a^{-1}bc$$

$$b \mapsto bc^{-1}a^{-1}bca^{-1}b$$

$$c \mapsto a^{-1}bc^{-1}.$$

$$F_{5} = \langle a, b, c, d, e \mid \rangle.$$

$$\psi_{n} \colon F_{5} \to F_{5} \qquad \psi_{n}^{-1} \colon F_{4} \to F_{4}$$

$$a \mapsto a$$

$$b \mapsto a^{n}b \qquad b \mapsto a^{-n}b$$

$$c \mapsto b^{n}c \qquad c \mapsto (b^{-1}a^{n})^{n}c$$

$$d \mapsto c^{n}d \qquad d \mapsto (c^{-1}(a^{-n}b)^{n})^{n}d$$

$$e \mapsto d^{n}e \qquad e \mapsto (d^{-1}((b^{-1}a^{n})^{n}c)^{n})^{n}e.$$

- We have formalized the situation.
- We have seen that inverting in $Aut(F_r)$ is not that bad.
- We now want to look for worse groups G.

$$F_{5} = \langle a, b, c, d, e \mid \rangle.$$

$$\psi_{n} \colon F_{5} \to F_{5} \qquad \psi_{n}^{-1} \colon F_{4} \to F_{4}$$

$$a \mapsto a$$

$$b \mapsto a^{n}b \qquad b \mapsto a^{-n}b$$

$$c \mapsto b^{n}c \qquad c \mapsto (b^{-1}a^{n})^{n}c$$

$$d \mapsto c^{n}d \qquad d \mapsto (c^{-1}(a^{-n}b)^{n})^{n}d$$

$$e \mapsto d^{n}e \qquad e \mapsto (d^{-1}((b^{-1}a^{n})^{n}c)^{n})^{n}e.$$

- We have formalized the situation.
- We have seen that inverting in $Aut(F_r)$ is not that bad
- We now want to look for worse groups G.

$$F_{5} = \langle a, b, c, d, e \mid \rangle.$$

$$\psi_{n} \colon F_{5} \to F_{5} \qquad \psi_{n}^{-1} \colon F_{4} \to F_{4}$$

$$a \mapsto a \qquad a \mapsto a$$

$$b \mapsto a^{n}b \qquad b \mapsto a^{-n}b$$

$$c \mapsto b^{n}c \qquad c \mapsto (b^{-1}a^{n})^{n}c$$

$$d \mapsto c^{n}d \qquad d \mapsto (c^{-1}(a^{-n}b)^{n})^{n}d$$

$$e \mapsto d^{n}e \qquad e \mapsto (d^{-1}((b^{-1}a^{n})^{n}c)^{n})^{n}e.$$

- We have formalized the situation.
- We have seen that inverting in $Aut(F_r)$ is not that bad.
- We now want to look for worse groups G.

$$F_{5} = \langle a, b, c, d, e \mid \rangle.$$

$$\psi_{n} \colon F_{5} \to F_{5} \qquad \psi_{n}^{-1} \colon F_{4} \to F_{4}$$

$$a \mapsto a$$

$$b \mapsto a^{n}b \qquad b \mapsto a^{-n}b$$

$$c \mapsto b^{n}c \qquad c \mapsto (b^{-1}a^{n})^{n}c$$

$$d \mapsto c^{n}d \qquad d \mapsto (c^{-1}(a^{-n}b)^{n})^{n}d$$

$$e \mapsto d^{n}e \qquad e \mapsto (d^{-1}((b^{-1}a^{n})^{n}c)^{n})^{n}e.$$

- We have formalized the situation.
- We have seen that inverting in $Aut(F_r)$ is not that bad.
- We now want to look for worse groups G.

Definition

Let $A = \{a_1, \dots, a_r\}$ be a finite alphabet, and $G = \langle A \mid R \rangle$ be a finite presentation for a group G. We have the word metric:

for
$$g \in G$$
, $|g| = \min\{n \mid g = a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n}\}$.

Definitior

For $\theta \in Aut(G)$, note θ is determined by $a_1\theta, \ldots, a_r\theta$ and define

$$||\theta||_1=|a_1\theta|+\cdots+|a_r\theta|,$$

$$||\theta||_{\infty} = \max\{|a_1\theta|,\ldots,|a_r\theta|\}.$$

Observation

Definition

Let $A = \{a_1, \dots, a_r\}$ be a finite alphabet, and $G = \langle A \mid R \rangle$ be a finite presentation for a group G. We have the word metric:

for
$$g \in G$$
, $|g| = \min\{n \mid g = a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n}\}$.

Definition

For $\theta \in Aut(G)$, note θ is determined by $a_1\theta, \ldots, a_r\theta$ and define

$$||\theta||_1=|a_1\theta|+\cdots+|a_r\theta|,$$

$$||\theta||_{\infty} = \max\{|a_1\theta|,\ldots,|a_r\theta|\}.$$

Observation

Definition

Let $A = \{a_1, \dots, a_r\}$ be a finite alphabet, and $G = \langle A \mid R \rangle$ be a finite presentation for a group G. We have the word metric:

for
$$g \in G$$
, $|g| = \min\{n \mid g = a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n}\}$.

Definition

For $\theta \in Aut(G)$, note θ is determined by $a_1\theta, \ldots, a_r\theta$ and define

$$||\theta||_1=|a_1\theta|+\cdots+|a_r\theta|,$$

$$||\theta||_{\infty} = \max\{|a_1\theta|,\ldots,|a_r\theta|\}.$$

Observation

Definition

Let $A = \{a_1, \dots, a_r\}$ be a finite alphabet, and $G = \langle A \mid R \rangle$ be a finite presentation for a group G. We have the word metric:

for
$$g \in G$$
, $|g| = \min\{n \mid g = a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n}\}$.

Definition

For $\theta \in Aut(G)$, note θ is determined by $a_1\theta, \ldots, a_r\theta$ and define

$$||\theta||_1=|a_1\theta|+\cdots+|a_r\theta|,$$

$$||\theta||_{\infty} = \max\{|a_1\theta|,\ldots,|a_r\theta|\}.$$

Observation

Definition

Let $G = \langle A \mid R \rangle$ be a finite presentation for G. We define the function:

$$\alpha_{A}(n) = \max\{||\theta^{-1}||_{1} \mid \theta \in Aut(G), ||\theta||_{1} \leqslant n\}.$$

Clearly,
$$\alpha_A(n) \leqslant \alpha_A(n+1)$$
.

The bigger is α_A , the more "difficult" will be to invert automorphisms of G (with respect to the given set of generators A).

Question

Determine the asymptotic growth of the function α_A .

Definition

Let $G = \langle A \mid R \rangle$ be a finite presentation for G. We define the function:

$$\alpha_{A}(n) = \max\{||\theta^{-1}||_{1} \mid \theta \in Aut(G), ||\theta||_{1} \leqslant n\}.$$

Clearly, $\alpha_A(n) \leqslant \alpha_A(n+1)$.

The bigger is α_A , the more "difficult" will be to invert automorphisms of G (with respect to the given set of generators A).

Question

Determine the asymptotic growth of the function α_A

Definition

Let $G = \langle A \mid R \rangle$ be a finite presentation for G. We define the function:

$$\alpha_{A}(n) = \max\{||\theta^{-1}||_{1} \mid \theta \in Aut(G), ||\theta||_{1} \leqslant n\}.$$

Clearly, $\alpha_A(n) \leqslant \alpha_A(n+1)$.

The bigger is α_A , the more "difficult" will be to invert automorphisms of G (with respect to the given set of generators A).

Question

Determine the asymptotic growth of the function α_A .

Outline

- Motivation
- 2 Free groups
- 3 Lower bounds: a good enough example
- Upper bounds: outer space
- 5 The special case of rank 2
- Fixed subgroups: a nice story
- Algorithmic results

For the rest of the talk, $G = F_r = \langle a_1, \dots, a_r \mid \rangle$.

Definition

Every
$$w \in F_r$$
 has its length, $|w|$, and its cyclic length, $|w|$, $|a_1a_1^{-1}a_2| = |a_2| = |a_2| = 1$, $|a_1a_2a_1^{-2}| = 4$, $|a_1a_2a_1^{-2}| = |a_2a_1^{-1}| = 2$.

Observation

```
i) |w^n| \le |n| |w| and |w^n| = |n| |w|;
ii) |vw| \le |v| + |w|, but |vw| \le |v| + |w| is not true in general.
```

For the rest of the talk, $G = F_r = \langle a_1, \dots, a_r \mid \rangle$.

Definition

Every
$$w \in F_r$$
 has its length, $|w|$, and its cyclic length, $|w|$: $|a_1a_1^{-1}a_2| = |a_2| = |a_2| = 1$, $|a_1a_2a_1^{-2}| = 4$, $|a_1a_2a_1^{-2}| = |a_2a_1^{-1}| = 2$.

Observation

```
i) |w^n| \le |n||w| and |w^n| = |n||w|;
ii) |vw| \le |v| + |w|, but |vw| \le |v| + |w| is not true in general.
```

For the rest of the talk, $G = F_r = \langle a_1, \dots, a_r \mid \rangle$.

Definition

Every
$$w \in F_r$$
 has its length, $|w|$, and its cyclic length, $|w|$: $|a_1a_1^{-1}a_2| = |a_2| = |a_2| = 1$, $|a_1a_2a_1^{-2}| = 4$, $|a_1a_2a_1^{-2}| = |a_2a_1^{-1}| = 2$.

Observation

i) $|w^n| \le |n||w|$ and $|w^n| = |n||w|$; ii) $|vw| \le |v| + |w|$, but $|vw| \le |v| + |w|$ is not true in general

For the rest of the talk, $G = F_r = \langle a_1, \dots, a_r \mid \rangle$.

Definition

Every
$$w \in F_r$$
 has its length, $|w|$, and its cyclic length, $|w|$: $|a_1a_1^{-1}a_2| = |a_2| = |a_2| = 1$, $|a_1a_2a_1^{-2}| = 4$, $|a_1a_2a_1^{-2}| = |a_2a_1^{-1}| = 2$.

Observation

i) $|w^n| \le |n| |w|$ and $|w^n| = |n| |w|$; ii) $|vw| \le |v| + |w|$, but $|vw| \le |v| + |w|$ is not true in general.

Definition

For $\theta \in Aut(F_r)$, define

$$||\theta||_1=|a_1\theta|+\cdots+|a_r\theta|,$$

$$||\theta||_1 = |a_1\theta| + \cdots + |a_r\theta|,$$

$$|||\theta|||_1 = \min\{||\theta\gamma_v||_1 \mid v \in F_r\}.$$

Observation

 $||\theta||_1 \leq |||\theta|||_1 \leq ||\theta||_1$, but not equal in general.

Example

Definition

For $\theta \in Aut(F_r)$, define

$$||\theta||_1=|a_1\theta|+\cdots+|a_r\theta|,$$

$$||\theta||_1 = |a_1\theta| + \cdots + |a_r\theta|,$$

$$|||\theta|||_1 = \min\{||\theta\gamma_v||_1 \mid v \in F_r\}.$$

Observation

 $||\theta||_1 \leq |||\theta|||_1 \leq ||\theta||_1$, but not equal in general.

Example

Definition

For $\theta \in Aut(F_r)$, define

$$||\theta||_1 = |a_1\theta| + \cdots + |a_r\theta|,$$

$$||\theta||_1 = |a_1\theta| + \cdots + |a_r\theta|,$$

$$|||\theta|||_1 = \min\{||\theta\gamma_v||_1 \mid v \in F_r\}.$$

Observation

 $||\theta||_1 \leq |||\theta|||_1 \leq ||\theta||_1$, but not equal in general.

Example

Definition

For $\theta \in Aut(F_r)$, define

$$||\theta||_1=|a_1\theta|+\cdots+|a_r\theta|,$$

$$||\theta||_1 = |a_1\theta| + \cdots + |a_r\theta|,$$

$$|||\theta|||_1 = \min\{||\theta\gamma_v||_1 \mid v \in F_r\}.$$

Observation

 $||\theta||_1 \leq |||\theta|||_1 \leq ||\theta||_1$, but not equal in general.

Example

Definition

For $\theta \in Aut(F_r)$, define

$$||\theta||_1 = |a_1\theta| + \cdots + |a_r\theta|,$$

$$||\theta||_1 = |a_1\theta| + \cdots + |a_r\theta|,$$

$$|||\theta|||_1 = \min\{||\theta\gamma_v||_1 \mid v \in F_r\}.$$

Observation

 $||\theta||_1 \leq |||\theta|||_1 \leq ||\theta||_1$, but not equal in general.

Example

Definition

$$\alpha_r(n) = \max\{||\theta^{-1}||_1 \mid \theta \in AutF_r, \ ||\theta||_1 \leqslant n\},$$

$$\beta_r(n) = \max\{|||\theta^{-1}|||_1 \mid \theta \in AutF_r, \ ||\theta|||_1 \leqslant n\},$$

$$\gamma_r(n) = \max\{||\theta^{-1}||_1 \mid \theta \in AutF_r, \ ||\theta||_1 \leqslant n\}.$$

Question

Are these functions equal up to multiplicative constants?

```
\alpha_r and \gamma_r are not;
\beta_r is not clear
```


Definition

$$\alpha_{r}(n) = \max\{||\theta^{-1}||_{1} \mid \theta \in AutF_{r}, \ ||\theta||_{1} \leq n\},$$

$$\beta_{r}(n) = \max\{|||\theta^{-1}|||_{1} \mid \theta \in AutF_{r}, \ ||\theta|||_{1} \leq n\},$$

$$\gamma_{r}(n) = \max\{||\theta^{-1}||_{1} \mid \theta \in AutF_{r}, \ ||\theta||_{1} \leq n\}.$$

Question

Are these functions equal up to multiplicative constants?

 α_r and γ_r are not; β_r is not clear.

Definition

$$\alpha_{r}(n) = \max\{||\theta^{-1}||_{1} \mid \theta \in AutF_{r}, \ ||\theta||_{1} \leq n\},$$

$$\beta_{r}(n) = \max\{|||\theta^{-1}|||_{1} \mid \theta \in AutF_{r}, \ ||\theta|||_{1} \leq n\},$$

$$\gamma_{r}(n) = \max\{||\theta^{-1}||_{1} \mid \theta \in AutF_{r}, \ ||\theta||_{1} \leq n\}.$$

Question

Are these functions equal up to multiplicative constants?

```
\alpha_r and \gamma_r are not; \beta_r is not clear.
```

Theorem

For rank r = 2 we have

- (i) for $n \ge 4$, $\alpha_2(n) \le \frac{(n-1)^2}{2}$,
- (ii) for $n \ge n_0$, $\alpha_2(n) \ge \frac{n^2}{16}$
- (iii) for $n \geqslant 1$, $\beta_2(n) = n$,
- (iv) for $n \geqslant 1$, $\gamma_2(n) = n$.

Theorem

For $r \geqslant 3$ there exist K = K(r) and M = M(r) such that, for $n \geqslant 1$

- (i) $\alpha_r(n) \geqslant Kn^r$
- (ii) $\beta_r(n) \leqslant Kn^M$,
- (iii) $\gamma_r(n) \geqslant Kn^{r-1}$.

Theorem

For rank r = 2 we have

- (i) for $n \ge 4$, $\alpha_2(n) \le \frac{(n-1)^2}{2}$,
- (ii) for $n \geqslant n_0$, $\alpha_2(n) \geqslant \frac{n^2}{16}$,
- (iii) for $n \geqslant 1$, $\beta_2(n) = n$,
- (iv) for $n \geqslant 1$, $\gamma_2(n) = n$.

Theorem

For $r \geqslant 3$ there exist K = K(r) and M = M(r) such that, for $n \geqslant 1$

- (i) $\alpha_r(n) \geqslant Kn^r$
- (ii) $\beta_r(n) \leqslant Kn^M$,
- (iii) $\gamma_r(n) \geqslant Kn^{r-1}$.

Theorem

For rank r = 2 we have

(i) for
$$n \ge 4$$
, $\alpha_2(n) \le \frac{(n-1)^2}{2}$,

(ii) for
$$n \geqslant n_0$$
, $\alpha_2(n) \geqslant \frac{n^2}{16}$,

(iii) for
$$n \geqslant 1$$
, $\beta_2(n) = n$,

(iv) for
$$n \geqslant 1$$
, $\gamma_2(n) = n$

Theorem

For $r \geqslant 3$ there exist K = K(r) and M = M(r) such that, for $n \geqslant 1$

(i)
$$\alpha_r(n) \geqslant Kn^r$$

(ii)
$$\beta_r(n) \leqslant Kn^M$$
,

(iii)
$$\gamma_r(n) \geqslant Kn^{r-1}$$
.

Theorem

For rank r = 2 we have

(i) for
$$n \ge 4$$
, $\alpha_2(n) \le \frac{(n-1)^2}{2}$,

(ii) for
$$n \geqslant n_0$$
, $\alpha_2(n) \geqslant \frac{n^2}{16}$,

(iii) for
$$n \geqslant 1$$
, $\beta_2(n) = n$,

(iv) for
$$n \ge 1$$
, $\gamma_2(n) = n$.

Theorem

For $r \geqslant 3$ there exist K = K(r) and M = M(r) such that, for $n \geqslant 1$,

(i)
$$\alpha_r(n) \geqslant Kn^r$$

(ii)
$$\beta_r(n) \leqslant Kn^M$$
,

(iii)
$$\gamma_r(n) \geqslant Kn^{r-1}$$
.

Main results

Theorem

For rank r = 2 we have

- (i) for $n \ge 4$, $\alpha_2(n) \le \frac{(n-1)^2}{2}$,
- (ii) for $n \geqslant n_0$, $\alpha_2(n) \geqslant \frac{n^2}{16}$,
- (iii) for $n \geqslant 1$, $\beta_2(n) = n$,
- (iv) for $n \ge 1$, $\gamma_2(n) = n$.

Theorem

For $r \geqslant 3$ there exist K = K(r) and M = M(r) such that, for $n \geqslant 1$,

- (i) $\alpha_r(n) \geqslant Kn^r$,
- (ii) $\beta_r(n) \leqslant Kn^M$
- (iii) $\gamma_r(n) \geqslant Kn^{r-1}$

Main results

Theorem

For rank r = 2 we have

- (i) for $n \ge 4$, $\alpha_2(n) \le \frac{(n-1)^2}{2}$,
- (ii) for $n \geqslant n_0$, $\alpha_2(n) \geqslant \frac{n^2}{16}$,
- (iii) for $n \geqslant 1$, $\beta_2(n) = n$,
- (iv) for $n \ge 1$, $\gamma_2(n) = n$.

Theorem

For $r \geqslant 3$ there exist K = K(r) and M = M(r) such that, for $n \geqslant 1$,

- (i) $\alpha_r(n) \geqslant Kn^r$,
- (ii) $\beta_r(n) \leqslant Kn^M$,
- (iii) $\gamma_r(n) \geqslant Kn^{r-1}$

Main results

Theorem

For rank r = 2 we have

- (i) for $n \ge 4$, $\alpha_2(n) \le \frac{(n-1)^2}{2}$,
- (ii) for $n \geqslant n_0$, $\alpha_2(n) \geqslant \frac{n^2}{16}$,
- (iii) for $n \geqslant 1$, $\beta_2(n) = n$,
- (iv) for $n \ge 1$, $\gamma_2(n) = n$.

Theorem

For $r \ge 3$ there exist K = K(r) and M = M(r) such that, for $n \ge 1$,

- (i) $\alpha_r(n) \geqslant Kn^r$,
- (ii) $\beta_r(n) \leqslant Kn^M$,
- (iii) $\gamma_r(n) \geqslant Kn^{r-1}$.

Outline

- Motivation
- 2 Free groups
- 3 Lower bounds: a good enough example
- Upper bounds: outer space
- 5 The special case of rank 2
- Fixed subgroups: a nice story
- Algorithmic results

Theorem

For $r \ge 2$, and $n \ge n_0$, we have $\gamma_r(n) \ge \frac{1}{2r^{r-1}}n^{r-1}$.

Proof: For $r \ge 2$ and $n \ge 1$, consider

$$\psi_{r,n} \colon F_r \to F_r \qquad \psi_{r,n}^{-1} \colon F_r \to F_r$$
 $a_1 \mapsto a_1 \qquad a_1 \mapsto a_1$
 $a_2 \mapsto a_1^n a_2 \qquad a_2 \mapsto a_1^{-n} a_2$
 $\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$
 $a_r \mapsto a_{r-1}^n a_r \qquad (2 \leqslant i \leqslant r)$

A straightforward calculation shows that

$$\|\psi_{r,n}\|_1 = \|\psi_{r,n}\|_1 = (r-1)n + r$$
, and $\|\psi_{r,n}^{-1}\|_1 = \|\psi_{r,n}^{-1}\|_1 = n^{r-1} + 2n^{r-2} + \dots + (r-1)n + r \geqslant n^{r-1}$

Theorem

For
$$r \geqslant 2$$
, and $n \geqslant n_0$, we have $\gamma_r(n) \geqslant \frac{1}{2r^{r-1}}n^{r-1}$.

Proof: For $r \ge 2$ and $n \ge 1$, consider

A straightforward calculation shows that

$$\|\psi_{r,n}\|_1 = \|\psi_{r,n}\|_1 = (r-1)n + r$$
, and $\|\psi_{r,n}^{-1}\|_1 = \|\psi_{r,n}^{-1}\|_1 = n^{r-1} + 2n^{r-2} + \dots + (r-1)n + r \geqslant n^{r-1}$.

Theorem

For
$$r \geqslant 2$$
, and $n \geqslant n_0$, we have $\gamma_r(n) \geqslant \frac{1}{2r^{r-1}}n^{r-1}$.

Proof: For $r \ge 2$ and $n \ge 1$, consider

$$\psi_{r,n} \colon F_r \to F_r \qquad \psi_{r,n}^{-1} \colon F_r \to F_r \\ a_1 \mapsto a_1 & a_1 \mapsto a_1 \\ a_2 \mapsto a_1^n a_2 & a_2 \mapsto a_1^{-n} a_2 \\ a_3 \mapsto a_2^n a_3 & \vdots \\ \vdots & a_r \mapsto a_{r-1}^n a_r & (2 \le i \le r)$$

A straightforward calculation shows that

$$||\psi_{r,n}||_1 = ||\psi_{r,n}||_1 = (r-1)n + r$$
, and $||\psi_{r,n}^{-1}||_1 = ||\psi_{r,n}^{-1}||_1 = n^{r-1} + 2n^{r-2} + \dots + (r-1)n + r \geqslant n^{r-1}$.

Hence, for $n \ge r$,

$$\gamma_r(rn) \geqslant \gamma_r((r-1)n+r) \geqslant n^{r-1}$$
.

Now, for *n* big enough, take the closest multiple of *r* below,

$$n \geqslant rm > n - r$$
,

and

$$\gamma_r(n) \geqslant \gamma_r(rm) \geqslant m^{r-1} > \left(\frac{n-r}{r}\right)^{r-1} = \left(\frac{n}{r}-1\right)^{r-1} \geqslant \frac{1}{2r^{r-1}}n^{r-1}. \quad \Box$$

Finally, conjugating by an appropriate element, we shall win an extra unit in the exponent.

Hence, for $n \ge r$,

$$\gamma_r(rn) \geqslant \gamma_r((r-1)n+r) \geqslant n^{r-1}.$$

Now, for *n* big enough, take the closest multiple of *r* below,

$$n \geqslant rm > n - r$$
,

and

$$\gamma_r(n) \geqslant \gamma_r(rm) \geqslant m^{r-1} > \left(\frac{n-r}{r}\right)^{r-1} = \left(\frac{n}{r}-1\right)^{r-1} \geqslant \frac{1}{2r^{r-1}}n^{r-1}. \quad \Box$$

Finally, conjugating by an appropriate element, we shall win an extra unit in the exponent.

Hence, for $n \ge r$,

$$\gamma_r(rn) \geqslant \gamma_r((r-1)n+r) \geqslant n^{r-1}.$$

Now, for *n* big enough, take the closest multiple of *r* below,

$$n \geqslant rm > n - r$$
,

and

$$\gamma_r(n) \geqslant \gamma_r(rm) \geqslant m^{r-1} > \left(\frac{n-r}{r}\right)^{r-1} = \left(\frac{n}{r} - 1\right)^{r-1} \geqslant \frac{1}{2r^{r-1}}n^{r-1}. \quad \Box$$

Finally, conjugating by an appropriate element, we shall win an extra unit in the exponent.

A lower bound for α_r

Theorem

For
$$r \geqslant 2$$
, and $n \geqslant n_0$, we have $\alpha_r(n) \geqslant \frac{(r-1)^{r-1}}{2r^{2r-1}}n^r$.

Proof: For $r \geqslant 2$ and $n \geqslant 1$, consider $\psi_{r,n}\gamma_{a_r^{-m}a_1^{-1}}$, where $m = \lceil \frac{n}{2r-2} \rceil$. Writing $N = ||\psi_{r,n}\gamma_{a_r^{-m}a_1^{-1}}||_1$, straightforward calculations show that, for $n \geqslant n_0$,

$$||\gamma_{a_1a_r^m}\psi_{r,n}^{-1}||_1 = ||\psi_{r,n}^{-1}\gamma_{(a_1a_r^m)\psi_{r,n}^{-1}}||_1 \geqslant \frac{(r-1)^{r-1}}{2r^{2r-1}}N^r.$$

Hence,
$$\alpha_r(n) \geqslant \frac{(r-1)^{r-1}}{2r^{2r-1}}n^r$$
.

A lower bound for α_r

Theorem

For
$$r \geqslant 2$$
, and $n \geqslant n_0$, we have $\alpha_r(n) \geqslant \frac{(r-1)^{r-1}}{2r^{2r-1}}n^r$.

Proof: For $r\geqslant 2$ and $n\geqslant 1$, consider $\psi_{r,n}\gamma_{a_r^{-m}a_1^{-1}}$, where $m=\lceil\frac{n}{2r-2}\rceil$. Writing $N=||\psi_{r,n}\gamma_{a_r^{-m}a_1^{-1}}||_1$, straightforward calculations show that, for $n\geqslant n_0$,

$$||\gamma_{a_1a_r^m}\psi_{r,n}^{-1}||_1 = ||\psi_{r,n}^{-1}\gamma_{(a_1a_r^m)\psi_{r,n}^{-1}}||_1 \geqslant \frac{(r-1)^{r-1}}{2r^{2r-1}}N^r.$$

Hence,
$$\alpha_r(n) \geqslant \frac{(r-1)^{r-1}}{2r^{2r-1}}n^r$$
.

A lower bound for α_r

Theorem

For
$$r \geqslant 2$$
, and $n \geqslant n_0$, we have $\alpha_r(n) \geqslant \frac{(r-1)^{r-1}}{2r^{2r-1}}n^r$.

Proof: For $r\geqslant 2$ and $n\geqslant 1$, consider $\psi_{r,n}\gamma_{a_r^{-m}a_1^{-1}}$, where $m=\lceil\frac{n}{2r-2}\rceil$. Writing $N=||\psi_{r,n}\gamma_{a_r^{-m}a_1^{-1}}||_1$, straightforward calculations show that, for $n\geqslant n_0$,

$$||\gamma_{a_1a_r^m}\psi_{r,n}^{-1}||_1 = ||\psi_{r,n}^{-1}\gamma_{(a_1a_r^m)\psi_{r,n}^{-1}}||_1 \geqslant \frac{(r-1)^{r-1}}{2r^{2r-1}}N^r.$$

Hence,
$$\alpha_r(n) \geqslant \frac{(r-1)^{r-1}}{2r^{2r-1}}n^r$$
.

Outline

- Motivation
- 2 Free groups
- 3 Lower bounds: a good enough example
- Upper bounds: outer space
- 5 The special case of rank 2
- Fixed subgroups: a nice story
- Algorithmic results

To prove the upper bound

(ii)
$$\beta_r(n) \leqslant Kn^M$$
,

we'll need to use the recently discovered metric in the outer space \mathcal{X}_r .

- By graft we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell \colon E\Gamma \to [0,1]$ such that $\sum_{e \in E\Gamma} \ell(e) = 1$, and $\{e \in E\Gamma \mid \ell(e) = 0\}$ is a forest.
- For a graph Γ , $\Sigma_{\Gamma} = \{metrics \ on \ \Gamma\} = a \ simplex \ with \ missing faces.$
- If $\Gamma' = \Gamma/$ forest, then we identify points in $\Sigma_{\Gamma'}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_r \to \Gamma$.

To prove the upper bound

(ii)
$$\beta_r(n) \leqslant Kn^M$$
,

we'll need to use the recently discovered metric in the outer space \mathcal{X}_r .

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell \colon E\Gamma \to [0,1]$ such that $\sum_{e \in E\Gamma} \ell(e) = 1$, and $\{e \in E\Gamma \mid \ell(e) = 0\}$ is a forest.
- For a graph Γ, Σ_Γ = {metrics on Γ} = a simplex with missing faces.
- If $\Gamma' = \Gamma/$ forest, then we identify points in $\Sigma_{\Gamma'}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_r \to \Gamma$.

To prove the upper bound

(ii)
$$\beta_r(n) \leqslant Kn^M$$
,

we'll need to use the recently discovered metric in the outer space \mathcal{X}_r .

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell \colon E\Gamma \to [0,1]$ such that $\sum_{e \in E\Gamma} \ell(e) = 1$, and $\{e \in E\Gamma \mid \ell(e) = 0\}$ is a forest.
- For a graph Γ , $\Sigma_{\Gamma} = \{metrics \ on \ \Gamma\} = a \ simplex \ with \ missing faces.$
- If $\Gamma' = \Gamma/$ forest, then we identify points in $\Sigma_{\Gamma'}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_r \to \Gamma$.

To prove the upper bound

(ii)
$$\beta_r(n) \leqslant Kn^M$$
,

we'll need to use the recently discovered metric in the outer space \mathcal{X}_r .

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell \colon E\Gamma \to [0,1]$ such that $\sum_{e \in E\Gamma} \ell(e) = 1$, and $\{e \in E\Gamma \mid \ell(e) = 0\}$ is a forest.
- For a graph Γ , $\Sigma_{\Gamma} = \{metrics \ on \ \Gamma\} = a \ simplex \ with \ missing faces.$
- If $\Gamma' = \Gamma/$ forest, then we identify points in $\Sigma_{\Gamma'}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_r \to \Gamma$.

To prove the upper bound

(ii)
$$\beta_r(n) \leqslant Kn^M$$
,

we'll need to use the recently discovered metric in the outer space \mathcal{X}_r .

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell \colon E\Gamma \to [0,1]$ such that $\sum_{e \in E\Gamma} \ell(e) = 1$, and $\{e \in E\Gamma \mid \ell(e) = 0\}$ is a forest.
- For a graph Γ, Σ_Γ = {metrics on Γ} = a simplex with missing faces.
- If $\Gamma' = \Gamma/$ forest, then we identify points in $\Sigma_{\Gamma'}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_r \to \Gamma$.

To prove the upper bound

(ii)
$$\beta_r(n) \leqslant Kn^M$$
,

we'll need to use the recently discovered metric in the outer space \mathcal{X}_r .

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map ℓ: EΓ → [0,1] such that ∑_{e∈EΓ} ℓ(e) = 1, and {e ∈ EΓ | ℓ(e) = 0} is a forest.
- For a graph Γ, Σ_Γ = {metrics on Γ} = a simplex with missing faces.
- If $\Gamma' = \Gamma/$ forest, then we identify points in $\Sigma_{\Gamma'}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_r \to \Gamma$.

Definition

The outer space \mathcal{X}_r is

$$\mathcal{X}_r = \{ (\Gamma, f, \ell) \} / \sim$$

(where \sim is an equivalence relation).

Definition

There is a natural action of $Aut(F_r)$ on \mathcal{X}_r , given by

$$\phi \cdot (\Gamma, f, \ell) = (\Gamma, \phi f, \ell)$$

(thinking $\phi \colon R_r \to R_r$). In fact, this is an action of Out(F_r).

Definition

The outer space \mathcal{X}_r is

$$\mathcal{X}_r = \{ (\Gamma, f, \ell) \} / \sim$$

(where \sim is an equivalence relation).

Definition

There is a natural action of $Aut(F_r)$ on \mathcal{X}_r , given by

$$\phi \cdot (\Gamma, f, \ell) = (\Gamma, \phi f, \ell),$$

(thinking $\phi: R_r \to R_r$). In fact, this is an action of Out(F_r).

Definition

Let $x, x' \in \mathcal{X}_r$, $x = (\Gamma, f, \ell)$, $x' = (\Gamma', f', \ell')$. A difference of markings is a map $\alpha \colon \Gamma \to \Gamma'$, which is linear over edges and $f\alpha \simeq f'$.

Definition

 \mathcal{X}_r admits the following "metric":

$$d(x, x') = \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings }\}.$$

This minimum is achieved by Arzela-Ascoli's theorem

Definition

Let $x, x' \in \mathcal{X}_r$, $x = (\Gamma, f, \ell)$, $x' = (\Gamma', f', \ell')$. A difference of markings is a map $\alpha \colon \Gamma \to \Gamma'$, which is linear over edges and $f\alpha \simeq f'$. For such an α , define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

 \mathcal{X}_r admits the following "metric":

$$d(x, x') = \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings }\}.$$

This minimum is achieved by Arzela-Ascoli's theorem

Definition

Let $x, x' \in \mathcal{X}_r$, $x = (\Gamma, f, \ell)$, $x' = (\Gamma', f', \ell')$. A difference of markings is a map $\alpha \colon \Gamma \to \Gamma'$, which is linear over edges and $f\alpha \simeq f'$. For such an α , define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

 \mathcal{X}_r admits the following "metric":

$$d(x, x') = \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings }\}.$$

This minimum is achieved by Arzela-Ascoli's theorem.

Definition

Let $x, x' \in \mathcal{X}_r$, $x = (\Gamma, f, \ell)$, $x' = (\Gamma', f', \ell')$. A difference of markings is a map $\alpha \colon \Gamma \to \Gamma'$, which is linear over edges and $f\alpha \simeq f'$. For such an α , define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

 \mathcal{X}_r admits the following "metric":

$$d(x, x') = \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings }\}.$$

This minimum is achieved by Arzela-Ascoli's theorem.

Proposition

(i)
$$d(x, y) \ge 0$$
, and $= 0 \Leftrightarrow x = y$.

- (ii) $d(x,z) \leqslant d(x,y) + d(y,z)$
- (iii) $Out(F_r)$ acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y) = d(x, y)$.
- (iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

$$\mathcal{X}_r(\epsilon) = \{(\Gamma, f, \ell) \in \mathcal{X}_r \mid \ell(p) \geqslant \epsilon \ \forall \ \textit{closed path } p \neq 1 \}$$

Proposition

(i)
$$d(x, y) \geqslant 0$$
, and $= 0 \Leftrightarrow x = y$.

(ii)
$$d(x,z) \leq d(x,y) + d(y,z)$$
.

(iii) Out(F_r) acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y) = d(x, y)$.

(iv) But... $d(x,y) \neq d(y,x)$ in general.

Definition

$$\mathcal{X}_r(\epsilon) = \{(\Gamma, f, \ell) \in \mathcal{X}_r \mid \ell(p) \geqslant \epsilon \ \forall \ \textit{closed path } p \neq 1 \}$$

Proposition

(i)
$$d(x, y) \geqslant 0$$
, and $= 0 \Leftrightarrow x = y$.

(ii)
$$d(x,z) \leqslant d(x,y) + d(y,z)$$
.

(iii) Out(
$$F_r$$
) acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y) = d(x, y)$.

(iv) But...
$$d(x, y) \neq d(y, x)$$
 in general.

Definition

$$\mathcal{X}_r(\epsilon) = \{(\Gamma, f, \ell) \in \mathcal{X}_r \mid \ell(p) \geqslant \epsilon \ \forall \ \textit{closed path } p \neq 1 \}$$

Proposition

- (i) $d(x, y) \geqslant 0$, and $= 0 \Leftrightarrow x = y$.
- (ii) $d(x,z) \leqslant d(x,y) + d(y,z)$.
- (iii) Out(F_r) acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y) = d(x, y)$.
- (iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

$$\mathcal{X}_r(\epsilon) = \{(\Gamma, f, \ell) \in \mathcal{X}_r \mid \ell(p) \geqslant \epsilon \ \forall \ \textit{closed path } p \neq 1 \}$$

Proposition

- (i) $d(x, y) \geqslant 0$, and $= 0 \Leftrightarrow x = y$.
- (ii) $d(x,z) \leqslant d(x,y) + d(y,z)$.
- (iii) Out(F_r) acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y) = d(x, y)$.
- (iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

$$\mathcal{X}_r(\epsilon) = \{(\Gamma, f, \ell) \in \mathcal{X}_r \mid \ell(p) \geqslant \epsilon \ \forall \ \textit{closed path } p \neq 1\}$$

Bestvina-AlgomKfir theorem

Theorem (Bestvina-AlgomKfir)

For any $\epsilon > 0$ there is constant $M = M(r, \epsilon)$ such that for all $x, y \in \mathcal{X}_r(\epsilon)$,

$$d(x,y) \leqslant M \cdot d(y,x).$$

Corollary

For $r \geqslant 2$, there exists M = M(r) such that

$$\beta_r(n) \leqslant r n^M$$

Bestvina-AlgomKfir theorem

Theorem (Bestvina-AlgomKfir)

For any $\epsilon > 0$ there is constant $M = M(r, \epsilon)$ such that for all $x, y \in \mathcal{X}_r(\epsilon)$,

$$d(x,y) \leqslant M \cdot d(y,x).$$

Corollary

For $r \geqslant 2$, there exists M = M(r) such that

$$\beta_r(n) \leqslant r n^M$$
.

Proof

Remind
$$\beta_r(n) = \max\{|||\theta^{-1}|||_1 \mid \theta \in Aut F_r, |||\theta|||_1 \le n\}.$$

Proof. Given $\phi \in \text{Aut}(F_r)$, consider $x = (R_r, id, \ell_0) \in \mathcal{X}_r$, and $\phi \cdot x = (R_r, \phi, \ell_0) \in \mathcal{X}_r$, where ℓ_0 is the uniform metric.

$$\begin{array}{ll} d(x,\phi\cdot x) &=& \min\{\log(\sigma(\alpha))\mid \alpha \text{ diff. markings}\}\\ &=& \log\big(\min\{\sigma(\phi\gamma_w\gamma_p)\mid w\in F_r,\, p=\text{ "half petal"}\}\big)\\ &\sim& \log\big(\min\{\sigma(\phi\gamma_w)\mid w\in F_r\}\big)\\ &=& \log\big(\min\{||\phi\gamma_w||_\infty\mid w\in F_r\}\big)\\ &=& \log(|||\phi|||_\infty)\\ &\sim& \log(|||\phi|||_1). \end{array}$$

Now, using Bestvina-AlgomKfir theorem,

$$\log(|||\phi^{-1}|||_1) \sim d(x, \phi^{-1} \cdot x) = d(\phi \cdot x, x) \leqslant Md(x, \phi \cdot x) \sim M\log(|||\phi|||_1).$$

Hence, for every $\phi \in \operatorname{Aut}(F_r)$, $|||\phi^{-1}|||_1 \leqslant r |||\phi|||_1^M$. \square

Proof

Remind
$$\beta_r(n) = \max\{|||\theta^{-1}|||_1 \mid \theta \in Aut F_r, |||\theta|||_1 \leqslant n\}.$$

Proof. Given $\phi \in \text{Aut}(F_r)$, consider $x = (R_r, id, \ell_0) \in \mathcal{X}_r$, and $\phi \cdot x = (R_r, \phi, \ell_0) \in \mathcal{X}_r$, where ℓ_0 is the uniform metric.

$$\begin{array}{ll} \textit{d}(\textit{x}, \phi \cdot \textit{x}) &=& \min \{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings}\} \\ &=& \log \left(\min \{\sigma(\phi \gamma_w \gamma_p) \mid w \in F_r, \ p = \text{ "half petal"}\}\right) \\ &\sim& \log \left(\min \{\sigma(\phi \gamma_w) \mid w \in F_r\}\right) \\ &=& \log \left(\min \{||\phi \gamma_w||_\infty \mid w \in F_r\}\right) \\ &=& \log(|||\phi|||_\infty) \\ &\sim& \log(|||\phi|||_1). \end{array}$$

Now, using Bestvina-AlgomKfir theorem,

```
\log(|||\phi^{-1}|||_1) \sim d(x, \phi^{-1} \cdot x) = d(\phi \cdot x, x) \leqslant Md(x, \phi \cdot x) \sim M\log(|||\phi|||_1).
```

Hence, for every $\phi \in \operatorname{Aut}(F_r)$, $|||\phi^{-1}|||_1 \leqslant r |||\phi|||_1^M$. \square

Proof

Remind
$$\beta_r(n) = \max\{|||\theta^{-1}|||_1 \mid \theta \in Aut F_r, |||\theta|||_1 \leqslant n\}.$$

Proof. Given $\phi \in \text{Aut}(F_r)$, consider $x = (R_r, id, \ell_0) \in \mathcal{X}_r$, and $\phi \cdot x = (R_r, \phi, \ell_0) \in \mathcal{X}_r$, where ℓ_0 is the uniform metric.

$$\begin{array}{ll} \textit{d}(\textit{x}, \phi \cdot \textit{x}) &=& \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings}\} \\ &=& \log\left(\min\{\sigma(\phi\gamma_w\gamma_p) \mid \textit{w} \in \textit{F}_r, \textit{p} = \text{ "half petal"}\}\right) \\ &\sim& \log\left(\min\{\sigma(\phi\gamma_w) \mid \textit{w} \in \textit{F}_r\}\right) \\ &=& \log\left(\min\{||\phi\gamma_w||_{\infty} \mid \textit{w} \in \textit{F}_r\}\right) \\ &=& \log(|||\phi|||_{\infty}) \\ &\sim& \log(|||\phi|||_1). \end{array}$$

Now, using Bestvina-AlgomKfir theorem,

```
\log(|||\phi^{-1}|||_1) \sim d(x, \phi^{-1} \cdot x) = d(\phi \cdot x, x) \leqslant Md(x, \phi \cdot x) \sim M\log(|||\phi|||_1).
```

Hence, for every $\phi \in \operatorname{Aut}(F_r)$, $|||\phi^{-1}|||_1 \leq r |||\phi|||_1^M$. \square

Remind
$$\beta_r(n) = \max\{|||\theta^{-1}|||_1 \mid \theta \in Aut F_r, |||\theta|||_1 \leqslant n\}.$$

Proof. Given $\phi \in \text{Aut}(F_r)$, consider $x = (R_r, id, \ell_0) \in \mathcal{X}_r$, and $\phi \cdot x = (R_r, \phi, \ell_0) \in \mathcal{X}_r$, where ℓ_0 is the uniform metric.

$$\begin{array}{ll} \textit{d}(\textit{x},\,\phi\cdot\textit{x}) &=& \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings}\}\\ &=& \log\big(\min\{\sigma(\phi\gamma_w\gamma_p) \mid \textit{w} \in \textit{F}_r,\, p = \text{ "half petal"}\}\big)\\ &\sim& \log\big(\min\{\sigma(\phi\gamma_w) \mid \textit{w} \in \textit{F}_r\}\big)\\ &=& \log\big(\min\{||\phi\gamma_w||_{\infty} \mid \textit{w} \in \textit{F}_r\}\big)\\ &=& \log(||\phi|||_{\infty})\\ &\sim& \log(||\phi|||_{1}). \end{array}$$

Now, using Bestvina-AlgomKfir theorem,

$$\log(|||\phi^{-1}|||_1) \sim d(x, \phi^{-1} \cdot x) = d(\phi \cdot x, x) \leqslant Md(x, \phi \cdot x) \sim M\log(|||\phi|||_1).$$

Remind
$$\beta_r(n) = \max\{|||\theta^{-1}|||_1 \mid \theta \in Aut F_r, |||\theta|||_1 \leqslant n\}.$$

Proof. Given $\phi \in \text{Aut}(F_r)$, consider $x = (R_r, id, \ell_0) \in \mathcal{X}_r$, and $\phi \cdot x = (R_r, \phi, \ell_0) \in \mathcal{X}_r$, where ℓ_0 is the uniform metric.

$$\begin{array}{ll} \textit{d}(\textit{x},\,\phi \cdot \textit{x}) &=& \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings}\}\\ &=& \log\big(\min\{\sigma(\phi\gamma_w\gamma_p) \mid \textit{w} \in \textit{F}_r,\, p = \text{ "half petal"}\}\big)\\ &\sim& \log\big(\min\{\sigma(\phi\gamma_w) \mid \textit{w} \in \textit{F}_r\}\big)\\ &=& \log\big(\min\{||\phi\gamma_w||_\infty \mid \textit{w} \in \textit{F}_r\}\big)\\ &=& \log(|||\phi|||_\infty)\\ &\sim& \log(|||\phi|||_1). \end{array}$$

Now, using Bestvina-AlgomKfir theorem,

$$\log(|||\phi^{-1}|||_1) \sim d(x, \phi^{-1} \cdot x) = d(\phi \cdot x, x) \leqslant Md(x, \phi \cdot x) \sim M\log(|||\phi|||_1).$$

Remind
$$\beta_r(n) = \max\{|||\theta^{-1}|||_1 \mid \theta \in Aut F_r, |||\theta|||_1 \leqslant n\}.$$

Proof. Given $\phi \in \text{Aut}(F_r)$, consider $x = (R_r, id, \ell_0) \in \mathcal{X}_r$, and $\phi \cdot x = (R_r, \phi, \ell_0) \in \mathcal{X}_r$, where ℓ_0 is the uniform metric.

$$\begin{array}{ll} \textit{d}(\textit{x},\,\phi\cdot\textit{x}) &=& \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings}\}\\ &=& \log\big(\min\{\sigma(\phi\gamma_w\gamma_p) \mid \textit{w} \in \textit{F}_r,\, p = \text{ "half petal"}\}\big)\\ &\sim& \log\big(\min\{\sigma(\phi\gamma_w) \mid \textit{w} \in \textit{F}_r\}\big)\\ &=& \log\big(\min\{||\phi\gamma_w||_\infty \mid \textit{w} \in \textit{F}_r\}\big)\\ &=& \log(|||\phi|||_\infty)\\ &\sim& \log(|||\phi|||_1). \end{array}$$

Now, using Bestvina-AlgomKfir theorem,

```
\log(|||\phi^{-1}|||_1) \sim d(x, \phi^{-1} \cdot x) = d(\phi \cdot x, x) \leqslant Md(x, \phi \cdot x) \sim M\log(|||\phi|||_1).
```


Remind
$$\beta_r(n) = \max\{|||\theta^{-1}|||_1 \mid \theta \in Aut F_r, |||\theta|||_1 \leqslant n\}.$$

Proof. Given $\phi \in \text{Aut}(F_r)$, consider $x = (R_r, id, \ell_0) \in \mathcal{X}_r$, and $\phi \cdot x = (R_r, \phi, \ell_0) \in \mathcal{X}_r$, where ℓ_0 is the uniform metric.

$$\begin{array}{ll} \textit{d}(\textit{x},\,\phi \cdot \textit{x}) &=& \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings}\} \\ &=& \log\big(\min\{\sigma(\phi\gamma_w\gamma_p) \mid \textit{w} \in \textit{F}_r,\, p = \text{ "half petal"}\}\big) \\ &\sim& \log\big(\min\{\sigma(\phi\gamma_w) \mid \textit{w} \in \textit{F}_r\}\big) \\ &=& \log\big(\min\{||\phi\gamma_w||_\infty \mid \textit{w} \in \textit{F}_r\}\big) \\ &=& \log(|||\phi|||_\infty) \\ &\sim& \log(|||\phi|||_1). \end{array}$$

Now, using Bestvina-AlgomKfir theorem,

```
\log(|||\phi^{-1}|||_1) \sim d(x, \phi^{-1} \cdot x) = d(\phi \cdot x, x) \leqslant Md(x, \phi \cdot x) \sim M\log(|||\phi|||_1).
```


Remind
$$\beta_r(n) = \max\{|||\theta^{-1}|||_1 \mid \theta \in Aut F_r, |||\theta|||_1 \leqslant n\}.$$

Proof. Given $\phi \in \text{Aut}(F_r)$, consider $x = (R_r, id, \ell_0) \in \mathcal{X}_r$, and $\phi \cdot x = (R_r, \phi, \ell_0) \in \mathcal{X}_r$, where ℓ_0 is the uniform metric.

$$\begin{array}{ll} \textit{d}(\textit{x},\,\phi\cdot\textit{x}) &=& \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings}\}\\ &=& \log\big(\min\{\sigma(\phi\gamma_w\gamma_p) \mid \textit{w} \in \textit{F}_r,\, p = \text{ "half petal"}\}\big)\\ &\sim& \log\big(\min\{\sigma(\phi\gamma_w) \mid \textit{w} \in \textit{F}_r\}\big)\\ &=& \log\big(\min\{||\phi\gamma_w||_\infty \mid \textit{w} \in \textit{F}_r\}\big)\\ &=& \log(|||\phi|||_\infty)\\ &\sim& \log(|||\phi|||_1). \end{array}$$

Now, using Bestvina-AlgomKfir theorem,

$$\log(|||\phi^{-1}|||_1) \sim d(x, \phi^{-1} \cdot x) = d(\phi \cdot x, x) \leqslant Md(x, \phi \cdot x) \sim M\log(|||\phi|||_1).$$

Remind
$$\beta_r(n) = \max\{|||\theta^{-1}|||_1 \mid \theta \in Aut F_r, |||\theta|||_1 \leqslant n\}.$$

Proof. Given $\phi \in \text{Aut}(F_r)$, consider $x = (R_r, id, \ell_0) \in \mathcal{X}_r$, and $\phi \cdot x = (R_r, \phi, \ell_0) \in \mathcal{X}_r$, where ℓ_0 is the uniform metric.

$$\begin{array}{ll} \textit{d}(\textit{x},\,\phi\cdot\textit{x}) &=& \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings}\}\\ &=& \log\big(\min\{\sigma(\phi\gamma_{\textit{w}}\gamma_{\textit{p}}) \mid \textit{w} \in \textit{F}_{\textit{r}},\,\textit{p} = \text{ "half petal"}\}\big)\\ &\sim& \log\big(\min\{\sigma(\phi\gamma_{\textit{w}}) \mid \textit{w} \in \textit{F}_{\textit{r}}\}\big)\\ &=& \log\big(\min\{||\phi\gamma_{\textit{w}}||_{\infty} \mid \textit{w} \in \textit{F}_{\textit{r}}\}\big)\\ &=& \log(|||\phi|||_{\infty})\\ &\sim& \log(|||\phi|||_{1}). \end{array}$$

Now, using Bestvina-AlgomKfir theorem,

$$\log(|||\phi^{-1}|||_1) \sim d(x, \phi^{-1} \cdot x) = d(\phi \cdot x, x) \leqslant Md(x, \phi \cdot x) \sim M\log(|||\phi|||_1).$$

Outline

- Motivation
- 2 Free groups
- 3 Lower bounds: a good enough example
- Upper bounds: outer space
- 5 The special case of rank 2
- Fixed subgroups: a nice story
- Algorithmic results

The rank 2 case

These functions for $Aut(F_2)$ are much easier to understand due to the following technical lemmas.

Lemma

Let $\varphi \in Aut(F_2)$ be positive. Then φ^{-1} is cyclically reduced and $||\varphi^{-1}||_1 = ||\varphi||_1$.

Lemma

For every $\theta \in Aut(F_2)$, there exist two letter permuting autos $\psi_1, \ \psi_2 \in Aut(F_2)$, a positive one $\varphi \in Aut^+(F_2)$, and an element $g \in F_2$, such that $\theta = \psi_1 \varphi \psi_2 \lambda_q$ and $||\varphi||_1 + 2|g| \leqslant ||\theta||_1$.

The rank 2 case

These functions for $Aut(F_2)$ are much easier to understand due to the following technical lemmas.

Lemma

Let $\varphi \in Aut(F_2)$ be positive. Then φ^{-1} is cyclically reduced and $||\varphi^{-1}||_1 = ||\varphi||_1$.

Lemma

For every $\theta \in Aut(F_2)$, there exist two letter permuting autos $\psi_1, \ \psi_2 \in Aut(F_2)$, a positive one $\varphi \in Aut^+(F_2)$, and an element $g \in F_2$, such that $\theta = \psi_1 \varphi \psi_2 \lambda_q$ and $||\varphi||_1 + 2|g| \le ||\theta||_1$.

The rank 2 case

These functions for $Aut(F_2)$ are much easier to understand due to the following technical lemmas.

Lemma

Let $\varphi \in Aut(F_2)$ be positive. Then φ^{-1} is cyclically reduced and $||\varphi^{-1}||_1 = ||\varphi||_1$.

Lemma

For every $\theta \in Aut(F_2)$, there exist two letter permuting autos ψ_1 , $\psi_2 \in Aut(F_2)$, a positive one $\varphi \in Aut^+(F_2)$, and an element $g \in F_2$, such that $\theta = \psi_1 \varphi \psi_2 \lambda_g$ and $||\varphi||_1 + 2|g| \leq ||\theta||_1$.

Theorem

For every $\theta \in Aut(F_2)$, $||\theta^{-1}||_1 = ||\theta||_1$. Hence, $\gamma_2(n) = n$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then

$$||\theta||_1 = ||\psi_1 \varphi \psi_2 \lambda_g||_1 = ||\psi_1 \varphi \psi_2||_1 = ||\varphi||_1 = ||\varphi||_1$$

$$\begin{split} \|\theta^{-1}\|_1 &= \|\lambda_{g^{-1}}\psi_2^{-1}\varphi^{-1}\psi_1^{-1}\|_1 = \|\psi_2^{-1}\varphi^{-1}\psi_1^{-1}\|_1 = \\ &= \|\varphi^{-1}\|_1 = \|\varphi^{-1}\|_1 = \|\varphi\|_1. \quad \Box \end{split}$$

Theorem

For every $\theta \in Aut(F_2)$, $||\theta^{-1}||_1 = ||\theta||_1$. Hence, $\gamma_2(n) = n$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then,

$$||\theta||_1 = ||\psi_1 \varphi \psi_2 \lambda_g||_1 = ||\psi_1 \varphi \psi_2||_1 = ||\varphi||_1 = ||\varphi||_1.$$

$$\|\theta^{-1}\|_{1} = \|\lambda_{g^{-1}}\psi_{2}^{-1}\varphi^{-1}\psi_{1}^{-1}\|_{1} = \|\psi_{2}^{-1}\varphi^{-1}\psi_{1}^{-1}\|_{1} =$$
$$= \|\varphi^{-1}\|_{1} = \|\varphi^{-1}\|_{1} = \|\varphi\|_{1}. \quad \Box$$

Theorem

For every
$$\theta \in Aut(F_2)$$
, $||\theta^{-1}||_1 = ||\theta||_1$. Hence, $\gamma_2(n) = n$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then,

$$||\theta||_1 = ||\psi_1 \varphi \psi_2 \lambda_g||_1 = ||\psi_1 \varphi \psi_2||_1 = ||\varphi||_1 = ||\varphi||_1.$$

$$\begin{split} \|\theta^{-1}\|_1 &= \|\lambda_{g^{-1}}\psi_2^{-1}\varphi^{-1}\psi_1^{-1}\|_1 = \|\psi_2^{-1}\varphi^{-1}\psi_1^{-1}\|_1 = \\ &= \|\varphi^{-1}\|_1 = \|\varphi^{-1}\|_1 = \|\varphi\|_1. \quad \Box \end{split}$$

Theorem

For every
$$\theta \in Aut(F_2)$$
, $||\theta^{-1}||_1 = ||\theta||_1$. Hence, $\gamma_2(n) = n$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then,

$$||\theta||_1 = ||\psi_1 \varphi \psi_2 \lambda_g||_1 = ||\psi_1 \varphi \psi_2||_1 = ||\varphi||_1 = ||\varphi||_1.$$

$$\|\theta^{-1}\|_{1} = \|\lambda_{g^{-1}}\psi_{2}^{-1}\varphi^{-1}\psi_{1}^{-1}\|_{1} = \|\psi_{2}^{-1}\varphi^{-1}\psi_{1}^{-1}\|_{1} =$$
$$= \|\varphi^{-1}\|_{1} = \|\varphi^{-1}\|_{1} = \|\varphi\|_{1}. \quad \Box$$

Theorem

For every $\theta \in Aut(F_2)$, $|||\theta^{-1}|||_1 = |||\theta|||_1$. Hence, $\beta_2(n) = n$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then

$$|||\theta|||_1 = |||\psi_1 \varphi \psi_2 \lambda_g|||_1 = |||\psi_1 \varphi \psi_2|||_1 = |||\varphi|||_1 = ||\varphi||_1$$

$$\begin{aligned} |||\theta^{-1}|||_1 &= |||\lambda_{g^{-1}}\psi_2^{-1}\varphi^{-1}\psi_1^{-1}|||_1 &= |||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}|||_1 &= \\ &= |||\varphi^{-1}|||_1 &= ||\varphi^{-1}||_1 &= ||\varphi||_1. \quad \Box \end{aligned}$$

Theorem

For every
$$\theta \in Aut(F_2)$$
, $|||\theta^{-1}|||_1 = |||\theta|||_1$. Hence, $\beta_2(n) = n$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then,

$$|||\theta|||_1 = |||\psi_1 \varphi \psi_2 \lambda_g|||_1 = |||\psi_1 \varphi \psi_2|||_1 = |||\varphi|||_1 = ||\varphi||_1$$

$$\begin{aligned} |||\theta^{-1}|||_1 &= |||\lambda_{g^{-1}}\psi_2^{-1}\varphi^{-1}\psi_1^{-1}|||_1 &= |||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}|||_1 &= \\ &= |||\varphi^{-1}|||_1 &= ||\varphi^{-1}||_1 &= ||\varphi||_1. \quad \Box \end{aligned}$$

Theorem

For every
$$\theta \in Aut(F_2)$$
, $|||\theta^{-1}|||_1 = |||\theta|||_1$. Hence, $\beta_2(n) = n$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then,

$$|||\theta|||_1 = |||\psi_1 \varphi \psi_2 \lambda_g|||_1 = |||\psi_1 \varphi \psi_2|||_1 = |||\varphi|||_1 = ||\varphi||_1.$$

$$\begin{aligned} |||\theta^{-1}|||_1 &= |||\lambda_{g^{-1}}\psi_2^{-1}\varphi^{-1}\psi_1^{-1}|||_1 &= |||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}|||_1 &= \\ &= |||\varphi^{-1}|||_1 &= ||\varphi^{-1}||_1 &= ||\varphi||_1. \quad \Box \end{aligned}$$

Theorem

For every
$$\theta \in Aut(F_2)$$
, $|||\theta^{-1}|||_1 = |||\theta|||_1$. Hence, $\beta_2(n) = n$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then,

$$|||\theta|||_1 = |||\psi_1 \varphi \psi_2 \lambda_g|||_1 = |||\psi_1 \varphi \psi_2|||_1 = |||\varphi|||_1 = ||\varphi||_1.$$

$$\begin{aligned} |||\theta^{-1}|||_1 &= |||\lambda_{g^{-1}}\psi_2^{-1}\varphi^{-1}\psi_1^{-1}|||_1 &= |||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}|||_1 &= \\ &= |||\varphi^{-1}|||_1 &= ||\varphi^{-1}||_1 &= ||\varphi||_1. \quad \Box \end{aligned}$$

Theorem

For $n \geqslant 4$ we have $\alpha_2(n) \leqslant \frac{(n-1)^2}{2}$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then, $\theta^{-1} = \lambda_{g^{-1}} \psi_2^{-1} \varphi^{-1} \psi_1^{-1}$ and

$$||\theta^{-1}||_1 \le 4|g| \cdot ||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}||_{\infty} = 4|g| \cdot ||\varphi^{-1}||_{\infty} \le$$

$$\leq 4|g|(||\varphi^{-1}||_1-1)=4|g|(||\varphi||_1-1).$$

Now from $||\varphi||_1 + 2|g| \leqslant ||\theta||_1 = n$, we deduce $|g| \leqslant \frac{n - ||\varphi||_1}{2}$ and so,

$$\|\theta^{-1}\|_1 \leq 2(n-\|\varphi\|_1)(\|\varphi\|_1-1).$$

$$||\theta^{-1}||_1 \le 2(n-||\varphi||_1)(||\varphi||_1-1) \le 2(n-\frac{n+1}{2})(\frac{n+1}{2}-1) = \frac{(n-1)^2}{2}.$$

Theorem

For
$$n \geqslant 4$$
 we have $\alpha_2(n) \leqslant \frac{(n-1)^2}{2}$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then, $\theta^{-1} = \lambda_{g^{-1}} \psi_2^{-1} \varphi^{-1} \psi_1^{-1}$ and

$$||\theta^{-1}||_1 \le 4|g| \cdot ||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}||_{\infty} = 4|g| \cdot ||\varphi^{-1}||_{\infty} \le$$

$$\leq 4|g|(||\varphi^{-1}||_1-1)=4|g|(||\varphi||_1-1).$$

Now from $||\varphi||_1 + 2|g| \leqslant ||\theta||_1 = n$, we deduce $|g| \leqslant \frac{n - ||\varphi||_1}{2}$ and so,

$$\|\theta^{-1}\|_1 \leq 2(n - \|\varphi\|_1)(\|\varphi\|_1 - 1)$$

$$||\theta^{-1}||_1 \leqslant 2(n-||\varphi||_1)(||\varphi||_1-1) \leqslant 2(n-\frac{n+1}{2})(\frac{n+1}{2}-1) = \frac{(n-1)^2}{2}.$$

Theorem

For
$$n \geqslant 4$$
 we have $\alpha_2(n) \leqslant \frac{(n-1)^2}{2}$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then, $\theta^{-1} = \lambda_{g^{-1}} \psi_2^{-1} \varphi^{-1} \psi_1^{-1}$ and

$$||\theta^{-1}||_1 \leqslant 4|g| \cdot ||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}||_{\infty} = 4|g| \cdot ||\varphi^{-1}||_{\infty} \leqslant$$

$$\leq 4|g|(||\varphi^{-1}||_1-1)=4|g|(||\varphi||_1-1).$$

Now from $||arphi||_1+2|g|\leqslant || heta||_1=n$, we deduce $|g|\leqslant rac{n-||arphi||_1}{2}$ and so,

$$\|\theta^{-1}\|_1 \leq 2(n-\|\varphi\|_1)(\|\varphi\|_1-1)$$

$$||\theta^{-1}||_1 \leqslant 2(n-||\varphi||_1)(||\varphi||_1-1) \leqslant 2(n-\frac{n+1}{2})(\frac{n+1}{2}-1) = \frac{(n-1)^2}{2}.$$

Theorem

For
$$n \geqslant 4$$
 we have $\alpha_2(n) \leqslant \frac{(n-1)^2}{2}$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then, $\theta^{-1} = \lambda_{g^{-1}} \psi_2^{-1} \varphi^{-1} \psi_1^{-1}$ and

$$||\theta^{-1}||_1 \le 4|g| \cdot ||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}||_{\infty} = 4|g| \cdot ||\varphi^{-1}||_{\infty} \le$$
$$\le 4|g|(||\varphi^{-1}||_1 - 1) = 4|g|(||\varphi||_1 - 1).$$

Now from $||\varphi||_1 + 2|g| \leqslant ||\theta||_1 = n$, we deduce $|g| \leqslant \frac{n-||\varphi||_1}{2}$ and so,

$$\|\theta^{-1}\|_1 \leqslant 2(n-\|\varphi\|_1)(\|\varphi\|_1-1).$$

$$||\theta^{-1}||_1 \leqslant 2(n-||\varphi||_1)(||\varphi||_1-1) \leqslant 2(n-\frac{n+1}{2})(\frac{n+1}{2}-1) = \frac{(n-1)^2}{2}.$$

Theorem

For
$$n \geqslant 4$$
 we have $\alpha_2(n) \leqslant \frac{(n-1)^2}{2}$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then, $\theta^{-1} = \lambda_{g^{-1}} \psi_2^{-1} \varphi^{-1} \psi_1^{-1}$ and

$$||\theta^{-1}||_1 \leqslant 4|g| \cdot ||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}||_{\infty} = 4|g| \cdot ||\varphi^{-1}||_{\infty} \leqslant$$

$$\leq 4|g|(||\varphi^{-1}||_1-1)=4|g|(||\varphi||_1-1).$$

Now from $||\varphi||_1 + 2|g| \leqslant ||\theta||_1 = n$, we deduce $|g| \leqslant \frac{n - ||\varphi||_1}{2}$ and so,

$$\|\theta^{-1}\|_1 \leq 2(n-\|\varphi\|_1)(\|\varphi\|_1-1).$$

$$||\theta^{-1}||_1 \leqslant 2(n-||\varphi||_1)(||\varphi||_1-1) \leqslant 2(n-\frac{n+1}{2})(\frac{n+1}{2}-1) = \frac{(n-1)^2}{2}.$$

Theorem

For $n \geqslant n_0$ we have $\alpha_2(n) \geqslant \frac{n^2}{16}$.

So, the global known picture is

(i)
$$\frac{n^2}{16} \leqslant \alpha_2(n) \leqslant \frac{(n-1)^2}{2}$$

(ii)
$$\beta_2(n) = n$$
,

(iii)
$$\gamma_2(n) = n$$
,

(iv)
$$Kn^r \leqslant \alpha_r(n)$$

(v)
$$\beta_r(n) \leqslant Kn^M$$

(iii)
$$Kn^{r-1} \leqslant \gamma_r(n)$$
.

for some constants K = K(r), M = M(r), and for $n \ge n_0$.

Theorem

For $n \geqslant n_0$ we have $\alpha_2(n) \geqslant \frac{n^2}{16}$.

So, the global known picture is

(i)
$$\frac{n^2}{16} \leqslant \alpha_2(n) \leqslant \frac{(n-1)^2}{2}$$
,

(ii)
$$\beta_2(n) = n$$
,

(iii)
$$\gamma_2(n) = n$$
,

(iv)
$$Kn^r \leqslant \alpha_r(n)$$
,

(v)
$$\beta_r(n) \leqslant Kn^M$$
,

(iii)
$$Kn^{r-1} \leqslant \gamma_r(n)$$
.

for some constants K = K(r), M = M(r), and for $n \ge n_0$.

Outline

- Motivation
- 2 Free groups
- 3 Lower bounds: a good enough example
- Upper bounds: outer space
- 5 The special case of rank 2
- 6 Fixed subgroups: a nice story
- Algorithmic results


```
\phi \colon F_{3} \to F_{3}
a \mapsto a
b \mapsto ba
c \mapsto ca^{2}
\varphi \colon F_{4} \to F_{4}
a \mapsto dac
b \mapsto c^{-1}a^{-1}d^{-1}ac
c \mapsto c^{-1}a^{-1}b^{-1}ac
d \mapsto c^{-1}a^{-1}bc
Fix \phi = \langle a, bab^{-1}, cac^{-1} \rangle
Fix \phi = \langle w \rangle, where...
```

```
\phi: F_{3} \rightarrow F_{3}
a \mapsto a
b \mapsto ba
c \mapsto ca^{2}
\varphi: F_{4} \rightarrow F_{4}
a \mapsto dac
b \mapsto c^{-1}a^{-1}d^{-1}ac
c \mapsto c^{-1}a^{-1}b^{-1}ac
d \mapsto c^{-1}a^{-1}bc
Fix \varphi = \langle w \rangle, where...
```

```
\varphi \colon F_{3} \to F_{3}
a \mapsto a
b \mapsto ba
c \mapsto ca^{2}
\varphi \colon F_{4} \to F_{4}
a \mapsto dac
b \mapsto c^{-1}a^{-1}d^{-1}ac
c \mapsto c^{-1}a^{-1}b^{-1}ac
d \mapsto c^{-1}a^{-1}bc
Fix \varphi = \langle w \rangle, where...
```

 $w = c^{-1}a^{-1}bd^{-1}c^{-1}a^{-1}d^{-1}ad^{-1}c^{-1}b^{-1}$ acdadacdcdbcda $^{-1}a^{-1}d^{-1}$ $a^{-1}d^{-1}c^{-1}a^{-1}d^{-1}c^{-1}b^{-1}d^{-1}c^{-1}d^{-1}c^{-1}$ daabcdaccdb $^{-1}a^{-1}$.

$$\phi: F_3 \rightarrow F_3$$

$$a \mapsto a$$

$$b \mapsto ba$$

$$c \mapsto ca^2$$

$$\varphi: F_4 \rightarrow F_4$$

$$a \mapsto dac$$

$$b \mapsto c^{-1}a^{-1}d^{-1}ac$$

$$c \mapsto c^{-1}a^{-1}b^{-1}ac$$

$$d \mapsto c^{-1}a^{-1}bc$$
Fix $\varphi = \langle w \rangle$, where...

 $w = c^{-1}a^{-1}bd^{-1}c^{-1}a^{-1}d^{-1}ad^{-1}c^{-1}b^{-1}$ acdadacdcdbcda $^{-1}a^{-1}d^{-1}$ $a^{-1}d^{-1}c^{-1}a^{-1}d^{-1}c^{-1}b^{-1}d^{-1}c^{-1}d^{-1}c^{-1}$ daabcdaccdb $^{-1}a^{-1}$.


```
\phi \colon F_3 \to F_3
                                                              Fix \phi = \langle a, bab^{-1}, cac^{-1} \rangle
       \varphi \colon F_4 \to F_4
             a \mapsto dac
             b \mapsto c^{-1}a^{-1}d^{-1}ac
                                                             Fix \varphi = \langle w \rangle, where...
             c \mapsto c^{-1}a^{-1}b^{-1}ac
             d \mapsto c^{-1}a^{-1}bc
w = c^{-1}a^{-1}bd^{-1}c^{-1}a^{-1}d^{-1}ad^{-1}c^{-1}b^{-1}acdadacdcdbcda^{-1}a^{-1}d^{-1}
a^{-1}d^{-1}c^{-1}a^{-1}d^{-1}c^{-1}h^{-1}d^{-1}c^{-1}d^{-1}c^{-1} daabcdaccdb^{-1}a^{-1}.
```

Theorem (Dyer-Scott, 75)

Let $G \leq Aut(F_n)$ be a finite group of automorphisms of F_n . Then, $Fix(G) \leq_{\text{ff}} F_n$; in particular, $r(Fix(G)) \leq n$.

Conjecture (Scott

For every $\phi \in Aut(F_n)$, $r(Fix(\phi)) \leqslant n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) < \infty$.

Theorem (Thomas, 88

Let $G \leqslant Aut(F_n)$ be an arbitrary group of automorphisms of F_n . Then, $r(Fix(G)) < \infty$.

Theorem (Dyer-Scott, 75)

Let $G \leq Aut(F_n)$ be a finite group of automorphisms of F_n . Then, $Fix(G) \leq_{\mathrm{ff}} F_n$; in particular, $r(Fix(G)) \leq n$.

Conjecture (Scott)

For every $\phi \in Aut(F_n)$, $r(Fix(\phi)) \leqslant n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) < \infty$.

Theorem (Thomas, 88

Let $G \leqslant Aut(F_n)$ be an arbitrary group of automorphisms of F_n . Then, $r(Fix(G)) < \infty$.

Theorem (Dyer-Scott, 75)

Let $G \leq Aut(F_n)$ be a finite group of automorphisms of F_n . Then, $Fix(G) \leq_{\text{ff}} F_n$; in particular, $r(Fix(G)) \leq n$.

Conjecture (Scott)

For every $\phi \in Aut(F_n)$, $r(Fix(\phi)) \leqslant n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) < \infty$.

Theorem (Thomas, 88

Let $G \leqslant Aut(F_n)$ be an arbitrary group of automorphisms of F_n . Then, $r(Fix(G)) < \infty$.

Theorem (Dyer-Scott, 75)

Let $G \leq Aut(F_n)$ be a finite group of automorphisms of F_n . Then, $Fix(G) \leq_{\mathrm{ff}} F_n$; in particular, $r(Fix(G)) \leq n$.

Conjecture (Scott)

For every $\phi \in Aut(F_n)$, $r(Fix(\phi)) \leqslant n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) < \infty$.

Theorem (Thomas, 88)

Let $G \leq Aut(F_n)$ be an arbitrary group of automorphisms of F_n . Then, $r(Fix(G)) < \infty$.

Train-tracks

Main result in this story:

Theorem (Bestvina-Handel, 88 (published 92))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) \leq n$.

introducing the theory of train-tracks for graphs.

After Bestvina-Handel, live continues ...

Theorem (Imrich-Turner, 89)

Let $\phi \in End(F_n)$. Then $r(Fix(\phi)) \leqslant n$

Theorem (Turner, 96)

Let $\phi \in End(F_n)$. If ϕ is not bijective then $r(Fix(\phi)) \leq n-1$.

Train-tracks

Main result in this story:

Theorem (Bestvina-Handel, 88 (published 92))

Let
$$\phi \in Aut(F_n)$$
. Then $r(Fix(\phi)) \leq n$.

introducing the theory of train-tracks for graphs.

After Bestvina-Handel, live continues ...

Theorem (Imrich-Turner, 89)

Let
$$\phi \in End(F_n)$$
. Then $r(Fix(\phi)) \leqslant n$.

Theorem (Turner, 96

Let $\phi \in End(F_n)$. If ϕ is not bijective then $r(Fix(\phi)) \leq n-1$.

Train-tracks

Main result in this story:

Theorem (Bestvina-Handel, 88 (published 92))

Let
$$\phi \in Aut(F_n)$$
. Then $r(Fix(\phi)) \leq n$.

introducing the theory of train-tracks for graphs.

After Bestvina-Handel, live continues ...

Theorem (Imrich-Turner, 89)

Let
$$\phi \in End(F_n)$$
. Then $r(Fix(\phi)) \leq n$.

Theorem (Turner, 96)

Let $\phi \in End(F_n)$. If ϕ is not bijective then $r(Fix(\phi)) \leq n-1$.

Definition

A subgroup $H \leqslant F_n$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_n$.

Theorem (Dicks-V, 96

Let $G \subseteq Mon(F_n)$ be an arbitrary set of monomorphisms of F_n . Then, Fix(G) is inert; in particular, $r(Fix(G)) \leq n$.

Theorem (Bergman, 99

Let $G \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then $r(Fix(G)) \leq n$.

Conjecture (V.)

Let $\phi \in End(F_n)$. Then $Fix(\phi)$ is inert.

Definition

A subgroup $H \leqslant F_n$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_n$.

Theorem (Dicks-V, 96)

Let $G \subseteq Mon(F_n)$ be an arbitrary set of monomorphisms of F_n . Then, Fix(G) is inert; in particular, $r(Fix(G)) \leq n$.

Theorem (Bergman, 99

Let $G \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then $r(Fix(G)) \leq n$.

Conjecture (V.)

Let $\phi \in End(F_n)$. Then $Fix(\phi)$ is inert

Definition

A subgroup $H \leqslant F_n$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_n$.

Theorem (Dicks-V, 96)

Let $G \subseteq Mon(F_n)$ be an arbitrary set of monomorphisms of F_n . Then, Fix(G) is inert; in particular, $r(Fix(G)) \leq n$.

Theorem (Bergman, 99)

Let $G \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then, $r(Fix(G)) \leqslant n$.

Conjecture (V.

Let $\phi \in End(F_n)$. Then $Fix(\phi)$ is inert

Definition

A subgroup $H \leqslant F_n$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_n$.

Theorem (Dicks-V, 96)

Let $G \subseteq Mon(F_n)$ be an arbitrary set of monomorphisms of F_n . Then, Fix(G) is inert; in particular, $r(Fix(G)) \leq n$.

Theorem (Bergman, 99)

Let $G \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then, $r(Fix(G)) \leqslant n$.

Conjecture (V.)

Let $\phi \in End(F_n)$. Then $Fix(\phi)$ is inert.

Definition

A subgroup $H \leqslant F_n$ is said to be

- 1-auto-fixed if $H = Fix(\phi)$ for some $\phi \in Aut(F_n)$,
- 1-endo-fixed if $H = Fix(\phi)$ for some $\phi \in End(F_n)$,
- auto-fixed if H = Fix(S) for some $S \subseteq Aut(F_n)$,
- endo-fixed if H = Fix(S) for some $S \subseteq End(F_n)$,

Definition

A subgroup $H \leqslant F_n$ is said to be

- 1-auto-fixed if $H = Fix(\phi)$ for some $\phi \in Aut(F_n)$,
- 1-endo-fixed if $H = Fix(\phi)$ for some $\phi \in End(F_n)$,
- auto-fixed if H = Fix(S) for some $S \subseteq Aut(F_n)$,
- endo-fixed if H = Fix(S) for some $S \subseteq End(F_n)$,

Definition

A subgroup $H \leqslant F_n$ is said to be

- 1-auto-fixed if $H = Fix(\phi)$ for some $\phi \in Aut(F_n)$,
- 1-endo-fixed if $H = Fix(\phi)$ for some $\phi \in End(F_n)$,
- auto-fixed if H = Fix(S) for some $S \subseteq Aut(F_n)$,
- endo-fixed if H = Fix(S) for some $S \subseteq End(F_n)$,

Definition

A subgroup $H \leqslant F_n$ is said to be

- 1-auto-fixed if $H = Fix(\phi)$ for some $\phi \in Aut(F_n)$,
- 1-endo-fixed if $H = Fix(\phi)$ for some $\phi \in End(F_n)$,
- auto-fixed if H = Fix(S) for some $S \subseteq Aut(F_n)$,
- endo-fixed if H = Fix(S) for some $S \subseteq End(F_n)$,

Definition

A subgroup $H \leqslant F_n$ is said to be

- 1-auto-fixed if $H = Fix(\phi)$ for some $\phi \in Aut(F_n)$,
- 1-endo-fixed if $H = Fix(\phi)$ for some $\phi \in End(F_n)$,
- auto-fixed if H = Fix(S) for some $S \subseteq Aut(F_n)$,
- endo-fixed if H = Fix(S) for some $S \subseteq End(F_n)$,

Relations between them

Relations between them

$$\begin{array}{c|c}
\hline
1 - auto - fixed
\end{array} \stackrel{\subseteq}{\neq} \begin{array}{c|c}
\hline
1 - endo - fixed
\end{array}$$

$$\begin{array}{c|c}
\hline
auto - fixed
\end{array} \stackrel{\subseteq}{\neq} \begin{array}{c|c}
\hline
endo - fixed
\end{array}$$

Example (Martino-V., 03; Ciobanu-Dicks, 06)

Let $F_3 = \langle a, b, c \rangle$ and $H = \langle b, cacbab^{-1}c^{-1} \rangle \leqslant F_3$. Then, $H = Fix(a \mapsto 1, b \mapsto b, c \mapsto cacbab^{-1}c^{-1})$, but H is NOT the fixed subgroup of any set of automorphism of F_3 .

Relations between them

$$\begin{array}{c|c}
1 - auto - fixed & \stackrel{\subseteq}{\neq} & 1 - endo - fixed \\
 & \cap | \parallel? & & \cap | \parallel? \\
\hline
 & auto - fixed & \stackrel{\subseteq}{\neq} & endo - fixed
\end{array}$$

Theorem (Martino-V., 00)

Let $S \subseteq End(F_n)$. Then, $\exists \phi \in \langle S \rangle$ such that $Fix(S) \leqslant_{\mathrm{ff}} Fix(\phi)$.

But... free factors of 1-endo-fixed (1-auto-fixed) subgroups need not be even endo-fixed (auto-fixed).

Outline

- Motivation
- 2 Free groups
- 3 Lower bounds: a good enough example
- Upper bounds: outer space
- The special case of rank 2
- Fixed subgroups: a nice story
- Algorithmic results

Computing fixed subgroups

Proposition (Turner, 86)

There exists a pseudo-algorithm to compute fix of an endo.

Easy but is not an algorithm...

Theorem (Maslakova, 03

Fixed subgroups of automorphisms of F_n are computable.

Difficult, using train-tracks. Mistake found,... and fixed by W. Dicks

Theorem (Dicks, 11)

Fixed subgroups of endomorphisms of F_n are computable.

Computing fixed subgroups

Proposition (Turner, 86)

There exists a pseudo-algorithm to compute fix of an endo.

Easy but is not an algorithm...

Theorem (Maslakova, 03)

Fixed subgroups of automorphisms of F_n are computable.

Difficult, using train-tracks. Mistake found,... and fixed by W. Dicks

Theorem (Dicks, 11)

Fixed subgroups of endomorphisms of F_n are computable.

Computing fixed subgroups

Proposition (Turner, 86)

There exists a pseudo-algorithm to compute fix of an endo.

Easy but is **not** an algorithm...

Theorem (Maslakova, 03)

Fixed subgroups of automorphisms of F_n are computable.

Difficult, using train-tracks. Mistake found,... and fixed by W. Dicks

Theorem (Dicks, 11)

Fixed subgroups of endomorphisms of F_n are computable.

Deciding fixedness

What about the dual problem?

Theorem (V. 2010

Given $H \leq_{fg} F_n$, one can algorithmically decide whether

- 1) H is auto-fixed or not,
- ii) H is endo-fixed or not,

and in the affirmative case, find a finite family, $S = \{\phi_1, \dots, \phi_m\}$, of automorphisms (endomorphisms) of F_n such that Fix(S) = H.

Conjecture

Given $H \leq_{fg} F_n$, one can algorithmically decide whether

- i) H is 1-auto-fixed or not
- ii) H is 1-endo-fixed or not,

and in the affirmative case, find one automorphism (endomorphism) ϕ of F_n such that $Fix(\phi) = H$.

Deciding fixedness

What about the dual problem?

Theorem (V. 2010)

Given $H \leq_{\mathrm{fg}} F_n$, one can algorithmically decide whether

- i) H is auto-fixed or not,
- ii) H is endo-fixed or not,

and in the affirmative case, find a finite family, $S = \{\phi_1, \dots, \phi_m\}$, of automorphisms (endomorphisms) of F_n such that Fix(S) = H.

Conjecture

Given $H \leq_{fg} F_n$, one can algorithmically decide whether

- i) H is 1-auto-fixed or not
- ii) H is 1-endo-fixed or not,

and in the affirmative case, find one automorphism (endomorphism) ϕ of F_n such that $Fix(\phi) = H$.

Deciding fixedness

What about the dual problem?

Theorem (V. 2010)

Given $H \leq_{\mathrm{fg}} F_n$, one can algorithmically decide whether

- i) H is auto-fixed or not,
- ii) H is endo-fixed or not,

and in the affirmative case, find a finite family, $S = \{\phi_1, \dots, \phi_m\}$, of automorphisms (endomorphisms) of F_n such that Fix(S) = H.

Conjecture

Given $H \leq_{fg} F_n$, one can algorithmically decide whether

- i) H is 1-auto-fixed or not,
- ii) H is 1-endo-fixed or not,

and in the affirmative case, find one automorphism (endomorphism) ϕ of F_n such that $Fix(\phi) = H$.

Fixed closures

Definition

Given $H \leq_{fg} F_n$, we define the (auto- and endo-) stabilizer of H, respectively, as

$$Aut_H(F_n) = \{\phi \in Aut(F_n) \mid H \leqslant Fix(\phi)\} \leqslant Aut(F_n)$$

and

$$End_{H}(F_{n}) = \{\phi \in End(F_{n}) \mid H \leqslant Fix(\phi)\} \leqslant End(F_{n})$$

Definition

Given $H \leq F_n$, we define the auto-closure and endo-closure of H as

$$a$$
- $CI(H) = Fix(Aut_H(F_n)) \geqslant F$

ano

$$e$$
- $CI(H) = Fix(End_H(F_n)) \geqslant F$

Fixed closures

Definition

Given $H \leq_{fg} F_n$, we define the (auto- and endo-) stabilizer of H, respectively, as

$$Aut_H(F_n) = \{\phi \in Aut(F_n) \mid H \leqslant Fix(\phi)\} \leqslant Aut(F_n)$$

and

$$End_{H}(F_{n}) = \{\phi \in End(F_{n}) \mid H \leqslant Fix(\phi)\} \leqslant End(F_{n})$$

Definition

Given $H \leq F_n$, we define the auto-closure and endo-closure of H as

$$a$$
- $CI(H) = Fix(Aut_H(F_n)) \geqslant H$

and

$$e$$
- $CI(H) = Fix(End_H(F_n)) \geqslant H$

Main result

Theorem

For every $H \leq_{\mathrm{fg}} F_n$, a-Cl(H) and e-Cl(H) are finitely generated and one can algorithmically compute bases for them.

Corollary

Auto-fixedness and endo-fixedness are decidable.

Observe that e- $CI(H) \le a$ -CI(H) but, in general, they are not equal.

Main result

Theorem

For every $H \leq_{\mathrm{fg}} F_n$, a-CI(H) and e-CI(H) are finitely generated and one can algorithmically compute bases for them.

Corollary

Auto-fixedness and endo-fixedness are decidable.

Observe that e- $Cl(H) \le a$ -Cl(H) but, in general, they are not equal.

The automorphism case

Theorem (McCool, 70's)

Let $H \leq_{fg} F_n$. Then $Aut_H(F_n)$ is finitely generated (in fact, finitely presented) and a finite set of generators (and relations) is algorithmically computable from H.

Theorem

For every $H \leq_{fg} F_n$, a-Cl(H) is finitely generated and algorithmically computable.

```
Proof. a\text{-}Cl(H) = \operatorname{Fix}(\operatorname{Aut}_H(F_n))
= \operatorname{Fix}(\langle \phi_1, \dots, \phi_m \rangle)
= \operatorname{Fix}(\phi_1) \cap \dots \cap \operatorname{Fix}(\phi_m).
```

The automorphism case

Theorem (McCool, 70's)

Let $H \leq_{fg} F_n$. Then $Aut_H(F_n)$ is finitely generated (in fact, finitely presented) and a finite set of generators (and relations) is algorithmically computable from H.

Theorem

For every $H \leq_{fg} F_n$, a-Cl(H) is finitely generated and algorithmically computable.

```
Proof. a\text{-}Cl(H) = \operatorname{Fix}(\operatorname{Aut}_H(F_n))
= \operatorname{Fix}(\langle \phi_1, \dots, \phi_m \rangle)
= \operatorname{Fix}(\phi_1) \cap \dots \cap \operatorname{Fix}(\phi_m).
```

The automorphism case

Theorem (McCool, 70's)

Let $H \leq_{fg} F_n$. Then $Aut_H(F_n)$ is finitely generated (in fact, finitely presented) and a finite set of generators (and relations) is algorithmically computable from H.

Theorem

For every $H \leq_{\mathrm{fg}} F_n$, a-Cl(H) is finitely generated and algorithmically computable.

```
Proof. a\text{-}Cl(H) = \operatorname{Fix}(\operatorname{Aut}_H(F_n))
= \operatorname{Fix}(\langle \phi_1, \dots, \phi_m \rangle)
= \operatorname{Fix}(\phi_1) \cap \dots \cap \operatorname{Fix}(\phi_m). \square
```

A similar approach does not work because:

 $H \leq_{\text{fg}} F_n$ does not imply that $\text{End}_H(F_n)$ is finitely generated as submonoid of $\text{End}(F_n)$.

A similar approach does not work because:

 $H \leq_{\text{fg}} F_n$ does not imply that $\text{End}_H(F_n)$ is finitely generated as submonoid of $\text{End}(F_n)$.

Example

Consider $F_3 = \langle a, b, c \rangle$, the element $d = ba[c^2, b]a^{-1}$, and the subgroup $H = \langle a, d \rangle \leqslant F_3$. Clearly, the morphisms

$$\psi \colon F_3 \to F_3 \qquad \phi \colon F_3 \to F_3 \qquad \phi''\psi \colon F_3 \to F_3$$

$$a \mapsto a \qquad a \mapsto a \qquad a \mapsto a$$

$$b \mapsto d \qquad b \mapsto b \qquad b \mapsto d$$

$$c \mapsto 1 \qquad c \mapsto cb \qquad c \mapsto d'$$

satisfy $H \leqslant Fix(\phi^n \psi)$ for every $n \in \mathbb{Z}$. With some computations, Ciobanu-Dicks-06 show that

$$End_{H}(F_{3}) = \{ Id, \, \phi^{n}\psi \mid n \in \mathbb{Z} \}$$

But, $\phi^m \psi \cdot \phi^n \psi = \phi^m \psi$. Hence, End_H(F₃) is not finitely generated.

Furthermore, $a\text{-}Cl(H) = \text{Fix}(Id) = F_3$ and $e\text{-}Cl(H) = \text{Fix}(\psi) = H$.

Example

Consider $F_3 = \langle a, b, c \rangle$, the element $d = ba[c^2, b]a^{-1}$, and the subgroup $H = \langle a, d \rangle \leqslant F_3$. Clearly, the morphisms

satisfy $H \leqslant Fix(\phi^n \psi)$ for every $n \in \mathbb{Z}$.

With some computations, Ciobanu-Dicks-06 show that

$$\textit{End}_{\textit{H}}(\textit{F}_{3}) = \{\textit{Id},\, \phi^{\textit{n}}\psi \mid \textit{n} \in \mathbb{Z}\}$$

But, $\phi^m \psi \cdot \phi^n \psi = \phi^m \psi$. Hence, End_H(F_3) is not finitely generated.

Furthermore, a- $CI(H) = Fix(Id) = F_3$ and e- $CI(H) = Fix(<math>\psi$) = H

Example

Consider $F_3 = \langle a, b, c \rangle$, the element $d = ba[c^2, b]a^{-1}$, and the subgroup $H = \langle a, d \rangle \leqslant F_3$. Clearly, the morphisms

$$\psi \colon F_3 \to F_3 \qquad \phi \colon F_3 \to F_3 \qquad \phi^n \psi \colon F_3 \to F_3$$
 $a \mapsto a \qquad a \mapsto a \qquad a \mapsto a$
 $b \mapsto d \qquad b \mapsto b \qquad b \mapsto d$
 $c \mapsto 1 \qquad c \mapsto cb \qquad c \mapsto d^n$

satisfy $H \leqslant Fix(\phi^n \psi)$ for every $n \in \mathbb{Z}$. With some computations, Ciobanu-Dicks-06 show that

$$End_{H}(F_{3}) = \{Id, \phi^{n}\psi \mid n \in \mathbb{Z}\}.$$

But, $\phi^m \psi \cdot \phi^n \psi = \phi^m \psi$. Hence, End_H(F_3) is not finitely generated.

Furthermore, a- $CI(H) = Fix(Id) = F_3$ and e- $CI(H) = Fix(<math>\psi$) = H

Example

Consider $F_3 = \langle a, b, c \rangle$, the element $d = ba[c^2, b]a^{-1}$, and the subgroup $H = \langle a, d \rangle \leqslant F_3$. Clearly, the morphisms

satisfy $H \leqslant Fix(\phi^n \psi)$ for every $n \in \mathbb{Z}$. With some computations, Ciobanu-Dicks-06 show that

$$End_{H}(F_{3}) = \{Id, \phi^{n}\psi \mid n \in \mathbb{Z}\}.$$

But, $\phi^m \psi \cdot \phi^n \psi = \phi^m \psi$. Hence, $End_H(F_3)$ is not finitely generated.

Furthermore, a- $CI(H) = Fix(Id) = F_3$ and e- $CI(H) = Fix(<math>\psi$) = H

Example

Consider $F_3 = \langle a, b, c \rangle$, the element $d = ba[c^2, b]a^{-1}$, and the subgroup $H = \langle a, d \rangle \leqslant F_3$. Clearly, the morphisms

satisfy $H \leqslant Fix(\phi^n \psi)$ for every $n \in \mathbb{Z}$. With some computations, Ciobanu-Dicks-06 show that

$$End_{H}(F_{3}) = \{Id, \phi^{n}\psi \mid n \in \mathbb{Z}\}.$$

But, $\phi^m \psi \cdot \phi^n \psi = \phi^m \psi$. Hence, $End_H(F_3)$ is not finitely generated.

Furthermore, a- $CI(H) = Fix(Id) = F_3$ and e- $CI(H) = Fix(\psi) = H$.

Theorem

For every $H \leq_{\mathrm{fg}} F_n$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given *H* (in generators)

- Compute $AE(H) = \{H_1, H_2, ..., H_q\}.$
- Select those which are retracts, $\mathcal{AE}_{ret}(H) = \{H_1, \dots, H_r\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_i's, i = 1,...,r.
- Compute bases for a- $Cl_{H_1}(H), \dots, a$ - $Cl_{H_r}(H)$.
- Compute a basis for a- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H)$.

Claim

$$a$$
- $CI_{H_1}(H) \cap \cdots \cap a$ - $CI_{H_r}(H) = e$ - $CI(H)$.

Theorem

For every $H \leq_{\mathrm{fg}} F_n$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given *H* (in generators),

- Compute $\mathcal{AE}(H) = \{H_1, H_2, ..., H_q\}.$
- Select those which are retracts, $\mathcal{AE}_{ret}(H) = \{H_1, \dots, H_r\}$ $(1 \le r \le q)$.
- Write the generators of H as words on the generators of each one of these H_i 's, i = 1, ..., r.
- Compute bases for a- $Cl_{H_1}(H), \dots, a$ - $Cl_{H_r}(H)$.
- Compute a basis for a- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H)$.

Claim

 $a-Cl_{H_1}(H) \cap \cdots \cap a-Cl_{H_r}(H) = e-Cl(H).$

Theorem

For every $H \leq_{\mathrm{fg}} F_n$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given *H* (in generators),

- Compute $\mathcal{AE}(H) = \{H_1, H_2, \dots, H_q\}.$
- Select those which are retracts, $\mathcal{AE}_{ret}(H) = \{H_1, \dots, H_r\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_i 's, $i = 1, \ldots, r$.
- Compute bases for a- $Cl_{H_1}(H), \ldots, a$ - $Cl_{H_r}(H)$.
- Compute a basis for a- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H)$.

Claim

 $a-Cl_{H_1}(H)\cap\cdots\cap a-Cl_{H_r}(H)=e-Cl(H).$

Theorem

For every $H \leq_{fg} F_n$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given *H* (in generators),

- Compute $AE(H) = \{H_1, H_2, ..., H_q\}.$
- Select those which are retracts, $\mathcal{AE}_{ret}(H) = \{H_1, \dots, H_r\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_i's, i = 1,...,r.
- Compute bases for a- $Cl_{H_1}(H), \ldots, a$ - $Cl_{H_r}(H)$.
- Compute a basis for a- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H)$.

Clain

a- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H) = e$ -Cl(H).

Theorem

For every $H \leq_{fg} F_n$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given *H* (in generators),

- Compute $\mathcal{AE}(H) = \{H_1, H_2, \dots, H_q\}.$
- Select those which are retracts, $\mathcal{AE}_{ret}(H) = \{H_1, \dots, H_r\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_i's, i = 1,...,r.
- Compute bases for a- $Cl_{H_1}(H), \dots, a$ - $Cl_{H_r}(H)$.
- Compute a basis for a- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H)$.

Clain

 $a\text{-}Cl_{H_1}(H)\cap\cdots\cap a\text{-}Cl_{H_r}(H)=e\text{-}Cl(H).$

Theorem

For every $H \leq_{fg} F_n$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given *H* (in generators),

- Compute $\mathcal{AE}(H) = \{H_1, H_2, ..., H_q\}.$
- Select those which are retracts, $\mathcal{AE}_{ret}(H) = \{H_1, \dots, H_r\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_i's, i = 1,...,r.
- Compute bases for a- $Cl_{H_1}(H), \dots, a$ - $Cl_{H_r}(H)$.
- Compute a basis for a- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H)$.

Clain

a- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H) = e$ -Cl(H).

Theorem

For every $H \leq_{fg} F_n$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given *H* (in generators),

- Compute $AE(H) = \{H_1, H_2, ..., H_q\}.$
- Select those which are retracts, $\mathcal{AE}_{ret}(H) = \{H_1, \dots, H_r\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_i's, i = 1,...,r.
- Compute bases for a- $Cl_{H_1}(H), \dots, a$ - $Cl_{H_r}(H)$.
- Compute a basis for $a\text{-}Cl_{H_1}(H) \cap \cdots \cap a\text{-}Cl_{H_r}(H)$.

Claim

a- $CI_{H_1}(H) \cap \cdots \cap a$ - $CI_{H_r}(H) = e$ -CI(H).

Claim

$$a$$
- $CI_{H_1}(H) \cap \cdots \cap a$ - $CI_{H_r}(H) = e$ - $CI(H)$.

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_{i}) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_{n}) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $\beta \in \text{End}(F_n)$ with $H \leqslant \text{Fix}(\beta)$.
- $\exists i = 1, ..., r$ such that $H \leq_{\text{alg}} H_i \leq_{\text{ff}} F\beta^{\infty} \leq F$.
- Now, β restricts to an automorphism $\alpha \colon H_i \to H_i$.
- And, clearly, $H \leq \text{Fix}(\alpha) \leq \text{Fix}(\beta)$.
- Hence, we have "≤".

Claim

$$a\text{-}CI_{H_1}(H)\cap\cdots\cap a\text{-}CI_{H_r}(H)=e\text{-}CI(H).$$

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_{i}) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_{n}) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $\beta \in \text{End}(F_n)$ with $H \leqslant \text{Fix}(\beta)$.
- $\exists i = 1, ..., r$ such that $H \leq_{\text{alg}} H_i \leq_{\text{ff}} F \beta^{\infty} \leq F$.
- Now, β restricts to an automorphism $\alpha: H_i \to H_i$.
- And, clearly, $H \leq \operatorname{Fix}(\alpha) \leq \operatorname{Fix}(\beta)$.
- Hence, we have "≤".

Claim

$$a\text{-}CI_{H_1}(H)\cap\cdots\cap a\text{-}CI_{H_r}(H)=e\text{-}CI(H).$$

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_{i}) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_{n}) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $\beta \in \text{End}(F_n)$ with $H \leqslant \text{Fix}(\beta)$.
- $\exists i = 1, ..., r$ such that $H \leq_{\text{alg}} H_i \leq_{\text{ff}} F \beta^{\infty} \leq F$.
- Now, β restricts to an automorphism $\alpha \colon H_i \to H_i$.
- And, clearly, $H \leq \text{Fix}(\alpha) \leq \text{Fix}(\beta)$.
- Hence, we have "≤".

Claim

$$a\text{-}CI_{H_1}(H)\cap\cdots\cap a\text{-}CI_{H_r}(H)=e\text{-}CI(H).$$

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_{i}) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_{n}) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $\beta \in \text{End}(F_n)$ with $H \leqslant \text{Fix}(\beta)$.
- $\exists i = 1, ..., r$ such that $H \leq_{\text{alg}} H_i \leq_{\text{ff}} F \beta^{\infty} \leq F$.
- Now, β restricts to an automorphism $\alpha \colon H_i \to H_i$.
- And, clearly, $H \leq \text{Fix}(\alpha) \leq \text{Fix}(\beta)$.
- Hence, we have "≤".

Claim

$$a\text{-}CI_{H_1}(H)\cap\cdots\cap a\text{-}CI_{H_r}(H)=e\text{-}CI(H).$$

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_{i}) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_{n}) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $\beta \in \text{End}(F_n)$ with $H \leqslant \text{Fix}(\beta)$.
- $\exists i = 1, ..., r$ such that $H \leq_{\text{alg}} H_i \leq_{\text{ff}} F \beta^{\infty} \leq F$.
- Now, β restricts to an automorphism $\alpha \colon H_i \to H_i$.
- And, clearly, $H \leq \text{Fix}(\alpha) \leq \text{Fix}(\beta)$.
- Hence, we have "≤".

Claim

$$a\text{-}CI_{H_1}(H)\cap\cdots\cap a\text{-}CI_{H_r}(H)=e\text{-}CI(H).$$

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_{i}) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_{n}) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $\beta \in \text{End}(F_n)$ with $H \leqslant \text{Fix}(\beta)$.
- $\exists i = 1, ..., r$ such that $H \leq_{\text{alg}} H_i \leq_{\text{ff}} F \beta^{\infty} \leq F$.
- Now, β restricts to an automorphism $\alpha \colon H_i \to H_i$.
- And, clearly, $H \leq \text{Fix}(\alpha) \leq \text{Fix}(\beta)$.
- Hence, we have "≤".

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_i) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_n) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $H_i \in \mathcal{AE}_{ret}(H)$, and $\alpha \in \text{Aut}(H_i)$ with $H \leqslant \text{Fix}(\alpha)$.
- Let $\rho: F \to H_i$ be a retraction, and consider the endomorphism, $\beta: F_n \xrightarrow{\rho} H_i \xrightarrow{\alpha} H_i \xrightarrow{\iota} F_n$.
- Clearly, $H \leq \operatorname{Fix}(\alpha) = \operatorname{Fix}(\beta)$.
- Hence, we have "≥". □

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_{i}) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_{n}) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $H_i \in \mathcal{AE}_{ret}(H)$, and $\alpha \in Aut(H_i)$ with $H \leqslant Fix(\alpha)$.
- Let $\rho: F \to H_i$ be a retraction, and consider the endomorphism, $\beta: F_n \xrightarrow{\rho} H_i \xrightarrow{\alpha} H_i \xrightarrow{\iota} F_n$.
- Clearly, $H \leq \operatorname{Fix}(\alpha) = \operatorname{Fix}(\beta)$.
- Hence, we have "≥". □

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_i) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_n) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $H_i \in \mathcal{AE}_{ret}(H)$, and $\alpha \in Aut(H_i)$ with $H \leqslant Fix(\alpha)$.
- Let $\rho: F \to H_i$ be a retraction, and consider the endomorphism, $\beta: F_n \xrightarrow{\rho} H_i \xrightarrow{\alpha} H_i \xrightarrow{\iota} F_n$.
- Clearly, $H \leq \operatorname{Fix}(\alpha) = \operatorname{Fix}(\beta)$.
- Hence, we have "≥".

$$\bigcap_{i=1}^{r}\bigcap_{\substack{\alpha \in \operatorname{Aut}(H_{i})\\ H \leqslant \operatorname{Fix}(\alpha)}}\operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_{n})\\ H \leqslant \operatorname{Fix}(\beta)}}\operatorname{Fix}(\beta).$$

- Take $H_i \in \mathcal{AE}_{ret}(H)$, and $\alpha \in Aut(H_i)$ with $H \leqslant Fix(\alpha)$.
- Let $\rho \colon F \to H_i$ be a retraction, and consider the endomorphism, $\beta \colon F_n \stackrel{\rho}{\to} H_i \stackrel{\alpha}{\to} H_i \stackrel{\iota}{\hookrightarrow} F_n$.
- Clearly, $H \leq \operatorname{Fix}(\alpha) = \operatorname{Fix}(\beta)$.
- Hence, we have "≥". □

$$\bigcap_{i=1}^{r}\bigcap_{\substack{\alpha \in \operatorname{Aut}(H_{i})\\ H \leqslant \operatorname{Fix}(\alpha)}}\operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_{n})\\ H \leqslant \operatorname{Fix}(\beta)}}\operatorname{Fix}(\beta).$$

- Take $H_i \in \mathcal{AE}_{ret}(H)$, and $\alpha \in Aut(H_i)$ with $H \leqslant Fix(\alpha)$.
- Let $\rho: F \to H_i$ be a retraction, and consider the endomorphism, $\beta: F_n \xrightarrow{\rho} H_i \xrightarrow{\alpha} H_i \xrightarrow{\iota} F_n$.
- Clearly, $H \leq \operatorname{Fix}(\alpha) = \operatorname{Fix}(\beta)$.
- Hence, we have "≥". □

THANKS