Orbit decidability and the conjugacy problem in groups

Enric Ventura

Departament de Matemàtica Aplicada III
Universitat Politècnica de Catalunya

Algebra Seminar, Oxford

February 25th, 2014.

Outline

(1) Orbit decidability

2 Free group and relatives
(3) Orbit undecidable subgroups
4. Connection with the Conjugacy Problem
(5) Applications

Outline

2 Free group and relatives

3 Orbit undecidable subgroups
4. Connection with the Conjugacy Problem
(5) Applications

Orbit decidability

Definition

Let X be a set. A collection of maps $A \subseteq \operatorname{Map}(X, X)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $x, y \in X$, it decides whether $x \alpha=y$ for some $\alpha \in A$ (and, if so, finds such an α).

Definition

Observation

O.D. is membership in a given A-orbit.

(Zoom into the problem)

- Geometry: take $X=$ space, $\quad A=$ action,
- Algebra: take $X=$ algebraic structure, $A \subseteq E n d(X)$,
- Our case: $X=G$ group, $\quad A \subseteq \operatorname{End}(G), \quad A \subseteq \operatorname{Aut}(G)$.

Orbit decidability

Definition

Let X be a set. A collection of maps $A \subseteq \operatorname{Map}(X, X)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $x, y \in X$, it decides whether $x \alpha=y$ for some $\alpha \in A$ (and, if so, finds such an α).

Definition

For $X, A \subseteq \operatorname{Map}(X, X)$, the A-orbit of $x \in X$ is $\mathcal{O}(x)=\{x \alpha \mid \alpha \in A\}$.

Observation

$O D$ is membership in a given A-orbit.

(Zoom into the problem)

- Geometrv: take $X=$ soace, $\quad A=$ action
- Algebra: take $X=$ algebraic structure, $A \subseteq E n d(X)$,

Orbit decidability

Definition

Let X be a set. A collection of maps $A \subseteq \operatorname{Map}(X, X)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $x, y \in X$, it decides whether $x \alpha=y$ for some $\alpha \in A$ (and, if so, finds such an α).

Definition

For $X, A \subseteq \operatorname{Map}(X, X)$, the A-orbit of $x \in X$ is $\mathcal{O}(x)=\{x \alpha \mid \alpha \in A\}$.

Observation

O.D. is membership in a given A-orbit.

(Zoom into the problem)

- Geometry: take $X=$ space,$\quad A=$ action,
- Algebra: take $X=$ algebraic structure, $\quad A \subseteq E n d(X)$

Orbit decidability

Definition

Let X be a set. A collection of maps $A \subseteq \operatorname{Map}(X, X)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $x, y \in X$, it decides whether $x \alpha=y$ for some $\alpha \in A$ (and, if so, finds such an α).

Definition

For $X, A \subseteq \operatorname{Map}(X, X)$, the A-orbit of $x \in X$ is $\mathcal{O}(x)=\{x \alpha \mid \alpha \in A\}$.

Observation

O.D. is membership in a given A-orbit.
(Zoom into the problem)

- Geometry: take $X=$ space, $\quad A=$ action;

Orbit decidability

Definition

Let X be a set. A collection of maps $A \subseteq \operatorname{Map}(X, X)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $x, y \in X$, it decides whether $x \alpha=y$ for some $\alpha \in A$ (and, if so, finds such an α).

Definition

For $X, A \subseteq \operatorname{Map}(X, X)$, the A-orbit of $x \in X$ is $\mathcal{O}(x)=\{x \alpha \mid \alpha \in A\}$.

Observation

O.D. is membership in a given A-orbit.
(Zoom into the problem)

- Geometry: take $X=$ space, $\quad A=$ action;
- Algebra: take $X=$ algebraic structure, $\quad A \subseteq \operatorname{End}(X)$;

Orbit decidability

Definition

Let X be a set. A collection of maps $A \subseteq \operatorname{Map}(X, X)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $x, y \in X$, it decides whether $x \alpha=y$ for some $\alpha \in A$ (and, if so, finds such an α).

Definition

For $X, A \subseteq \operatorname{Map}(X, X)$, the A-orbit of $x \in X$ is $\mathcal{O}(x)=\{x \alpha \mid \alpha \in A\}$.

Observation

O.D. is membership in a given A-orbit.
(Zoom into the problem)

- Geometry: take $X=$ space, $\quad A=$ action;
- Algebra: take $X=$ algebraic structure, $A \subseteq E n d(X)$;
- Our case: $X=G$ group, $\quad A \subseteq \operatorname{End}(G), \quad A \subseteq \operatorname{Aut}(G)$.

Classical examples

Theorem (Whitehead 1936)

There is an algorithm to decide, given $u, v \in F_{r}$, whether there exists $\alpha \in \operatorname{Aut}\left(F_{r}\right)$ s.t. $u \alpha=v$.

In other words: $\operatorname{Aut}\left(F_{r}\right)$ is O.D.

Variations with tuples of words, subgroups, tuples of subgroups, modulo conjugation, etc.
 All these are instances of the Orbit Decidability problem.

Observation

The conjugacy problem for G is just the $O . D$. for $A=\operatorname{lnn}(G) \leqslant \operatorname{Aut}(G)$

Classical examples

Theorem (Whitehead 1936)

There is an algorithm to decide, given $u, v \in F_{r}$, whether there exists $\alpha \in \operatorname{Aut}\left(F_{r}\right)$ s.t. $u \alpha=v$.

In other words: $\operatorname{Aut}\left(F_{r}\right)$ is O.D.

Variations with tuples of words, subgroups, tuples of subgroups, modulo conjugation, etc.
 All these are instances of the Orbit Decidability problem.

Observation

The coniugacy problem for G is just the O.D. for $A=\operatorname{Inn}(G) \leqslant \operatorname{Aut}(G)$

Classical examples

Theorem (Whitehead 1936)

There is an algorithm to decide, given $u, v \in F_{r}$, whether there exists $\alpha \in \operatorname{Aut}\left(F_{r}\right)$ s.t. $u \alpha=v$.

In other words: $\operatorname{Aut}\left(F_{r}\right)$ is O.D.

Variations with tuples of words, subgroups, tuples of subgroups, modulo conjugation, etc.
All these are instances of the Orbit Decidability problem.

Observation
The conjugacy problem for G is just the $O . D$. for $A=\operatorname{Inn}(G)$

Classical examples

Theorem (Whitehead 1936)
There is an algorithm to decide, given $u, v \in F_{r}$, whether there exists $\alpha \in \operatorname{Aut}\left(F_{r}\right)$ s.t. $u \alpha=v$.

In other words: $\operatorname{Aut}\left(F_{r}\right)$ is O.D.

Variations with tuples of words, subgroups, tuples of subgroups, modulo conjugation, etc.
All these are instances of the Orbit Decidability problem.

Observation
The conjugacy problem for G is just the $O . D$. for $A=\operatorname{Inn}(G)$

Classical examples

Theorem (Whitehead 1936)

There is an algorithm to decide, given $u, v \in F_{r}$, whether there exists $\alpha \in \operatorname{Aut}\left(F_{r}\right)$ s.t. $u \alpha=v$.

In other words: $\operatorname{Aut}\left(F_{r}\right)$ is O.D.

Variations with tuples of words, subgroups, tuples of subgroups, modulo conjugation, etc.
All these are instances of the Orbit Decidability problem.

Observation

The conjugacy problem for G is just the $O . D$. for $A=\operatorname{Inn}(G) \leqslant \operatorname{Aut}(G)$.

First examples: $G=\mathbb{Z}^{d}$

Observation (folklore)

The full group $\operatorname{Aut}\left(\mathbb{Z}^{d}\right)=G L_{d}(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^{d}$, there exists $A \in G L_{d}(\mathbb{Z})$ such that $v=u A$ if and only if $\operatorname{gcd}\left(u_{1}, \ldots, u_{d}\right)=\operatorname{gcd}\left(v_{1}, \ldots, v_{d}\right)$.

Proposition (Bogopolski-Martino-V., 2008)
 Finite index subgrouns of $G I_{d}(\mathbb{T})$ are $O D$

Proposition (Bogopolski-Martino-V., 2008)

Everv finitely aenerated subaroup of $G L_{2}(\mathbb{Z})$ is $O . D$.

First examples: $G=\mathbb{Z}^{d}$

Observation (folklore)

The full group $\operatorname{Aut}\left(\mathbb{Z}^{d}\right)=G L_{d}(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^{d}$, there exists $A \in \mathrm{GL}_{d}(\mathbb{Z})$ such that $v=u A$ if and only if $\operatorname{gcd}\left(u_{1}, \ldots, u_{d}\right)=\operatorname{gcd}\left(v_{1}, \ldots, v_{d}\right)$.

Proposition (Bogopolski-Martino-V., 2008)
 Finite index subgrouns of $G I_{d}(\mathbb{T})$ are $O D$

Proposition (Bogopolski-Martino-V., 2008)

Every finitely qenerated subaroup of $G L_{2}(\mathbb{Z})$ is O.D.

First examples: $G=\mathbb{Z}^{d}$

Observation (folklore)

The full group $\operatorname{Aut}\left(\mathbb{Z}^{d}\right)=G L_{d}(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^{d}$, there exists $A \in \mathrm{GL}_{d}(\mathbb{Z})$ such that $v=u A$ if and only if $\operatorname{gcd}\left(u_{1}, \ldots, u_{d}\right)=\operatorname{gcd}\left(v_{1}, \ldots, v_{d}\right)$.

Proposition (Bogopolski-Martino-V., 2008)

Finite index subgroups of $G L_{d}(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 2008)
Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

First examples: $G=\mathbb{Z}^{d}$

Observation (folklore)

The full group $\operatorname{Aut}\left(\mathbb{Z}^{d}\right)=\mathrm{GL}_{d}(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^{d}$, there exists $A \in \mathrm{GL}_{d}(\mathbb{Z})$ such that $v=u A$ if and only if $\operatorname{gcd}\left(u_{1}, \ldots, u_{d}\right)=\operatorname{gcd}\left(v_{1}, \ldots, v_{d}\right)$.

Proposition (Bogopolski-Martino-V., 2008)

Finite index subgroups of $G L_{d}(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 2008)
Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

First examples: $G=\mathbb{Z}^{d}$

Proposition (linear algebra)

For $A \in G L_{d}(\mathbb{Z})$, the subgroup $\langle A\rangle \leqslant G L_{d}(\mathbb{Z})$ is O.D.

Proof. (sketch)

- Given $A \in G L_{d}(\mathbb{Z}), u, v \in \mathbb{Z}^{d}$, want to decide wether $u A^{n}=v$ for some $n \in \mathbb{N}$.
- Keep computing $u, u A, u A^{2}, u A^{3}, \ldots$ and compare with v.
- Denote λ the eigenvalue of A with maximum modulus. The projection of $u A^{n}$ to E_{λ} grows faster than all other projections.
- So we can compute n_{0} such that either $u, u A, u A^{2}, u A^{3}, \ldots, u A^{n_{0}}$ hits v, or either $u A^{n} \neq v$ for all n.

First examples: $G=\mathbb{Z}^{d}$

Proposition (linear algebra)
For $A \in G L_{d}(\mathbb{Z})$, the subgroup $\langle A\rangle \leqslant G L_{d}(\mathbb{Z})$ is O.D.

Proof. (sketch)

- Given $A \in \mathrm{GL}_{d}(\mathbb{Z}), u, v \in \mathbb{Z}^{d}$, want to decide wether $u A^{n}=v$ for some $n \in \mathbb{N}$.
- Keep computing $u, u A, u A^{2}, u A^{3}, \ldots$ and compare with v.
- Denote λ the eigenvalue of A with maximum modulus. The projection of $u A^{n}$ to E_{λ} grows faster than all other projections.
- So we can compute n_{0} such that either $u, u A, u A^{2}, u A^{3}$ hits v, or either $u A^{n} \neq v$ for all n.

First examples: $G=\mathbb{Z}^{d}$

Proposition (linear algebra)

For $A \in G L_{d}(\mathbb{Z})$, the subgroup $\langle A\rangle \leqslant G L_{d}(\mathbb{Z})$ is O.D.

Proof. (sketch)

- Given $A \in \mathrm{GL}_{d}(\mathbb{Z}), u, v \in \mathbb{Z}^{d}$, want to decide wether $u A^{n}=v$ for some $n \in \mathbb{N}$.
- Keep computing $u, u A, u A^{2}, u A^{3}, \ldots$ and compare with v.
- Denote λ the eigenvalue of A with maximum modulus. The projection of $u A^{n}$ to E_{λ} grows faster than all other projections.
- So we can compute n_{0} such that either $u, u A, u A^{2}, u A^{3}$ hits v, or either $u A^{n} \neq v$ for all n.

First examples: $G=\mathbb{Z}^{d}$

Proposition (linear algebra)

For $A \in G L_{d}(\mathbb{Z})$, the subgroup $\langle A\rangle \leqslant G L_{d}(\mathbb{Z})$ is O.D.

Proof. (sketch)

- Given $A \in \mathrm{GL}_{d}(\mathbb{Z}), u, v \in \mathbb{Z}^{d}$, want to decide wether $u A^{n}=v$ for some $n \in \mathbb{N}$.
- Keep computing $u, u A, u A^{2}, u A^{3}, \ldots$ and compare with v.
- Denote λ the eigenvalue of A with maximum modulus. The projection of $u A^{n}$ to E_{λ} grows faster than all other projections.
hits v, or either $u A^{n} \neq v$ for all n.

First examples: $G=\mathbb{Z}^{d}$

Proposition (linear algebra)

For $A \in G L_{d}(\mathbb{Z})$, the subgroup $\langle A\rangle \leqslant G L_{d}(\mathbb{Z})$ is O.D.

Proof. (sketch)

- Given $A \in \mathrm{GL}_{d}(\mathbb{Z}), u, v \in \mathbb{Z}^{d}$, want to decide wether $u A^{n}=v$ for some $n \in \mathbb{N}$.
- Keep computing $u, u A, u A^{2}, u A^{3}, \ldots$ and compare with v.
- Denote λ the eigenvalue of A with maximum modulus. The projection of $u A^{n}$ to E_{λ} grows faster than all other projections.
- So we can compute n_{0} such that either $u, u A, u A^{2}, u A^{3}, \ldots, u A^{n_{0}}$ hits v, or either $u A^{n} \neq v$ for all n.

Outline

(1) Orbit decidability

2 Free group and relatives

3 Orbit undecidable subgroups
4. Connection with the Conjugacy Problem
(5) Applications

Brinkmann's result

Theorem (Brinkmann, 2006)

Cyclic groups of $\operatorname{Aut}\left(F_{r}\right)$ are orbit decidable. That is, given $\varphi \in \operatorname{Aut}\left(F_{r}\right)$ and $u, v \in F_{r}$, one can decide whether $v=u \varphi^{n}$ for some $n \in \mathbb{Z}$.

Proof.

- Same idea as before: there is a computable no such that either $u, u \varphi, u \varphi^{2}, u \varphi^{3}, \ldots, u \varphi^{n_{0}}$ hits v, or either $u \varphi^{n} \neq v$ for all n.
- The computation of n_{0} is quite complicated, making strong use of train-tracks.

Theorem (Brinkmann, 2006)

Cvclic aroups of $\operatorname{Aut}\left(F_{r}\right)$ are ork it decidable up to conjugacy. That is, given $\varphi \in \operatorname{Aut}\left(F_{r}\right)$ and $u, v \in F_{r}$, one can decide whether $v \sim u \varphi^{n}$ for some $n \in \mathbb{Z}$ (i.e., $\langle\varphi\rangle \cdot \operatorname{lnn}\left(F_{r}\right)$ is O.D.).

Brinkmann's result

Theorem (Brinkmann, 2006)

Cyclic groups of $\operatorname{Aut}\left(F_{r}\right)$ are orbit decidable. That is, given $\varphi \in \operatorname{Aut}\left(F_{r}\right)$ and $u, v \in F_{r}$, one can decide whether $v=u \varphi^{n}$ for some $n \in \mathbb{Z}$.

Proof.

- Same idea as before: there is a computable n_{0} such that either $u, u \varphi, u \varphi^{2}, u \varphi^{3}, \ldots, u \varphi^{n_{0}}$ hits v, or either $u \varphi^{n} \neq v$ for all n.
 train-tracks.

Theorem (Brinkmann, 2006)

Cyclic groups of $\operatorname{Aut}\left(F_{r}\right)$ are orbit decidable up to conjugacy. That is, aiven $\varphi \in \operatorname{Aut}\left(F_{r}\right)$ and $u . v \in F_{r}$. one can decide whether $v \sim u \varphi^{n}$ for some $n \in \mathbb{Z}$ (i.e., $\langle\varphi\rangle \cdot \ln n\left(F_{r}\right)$ is O.D.)

Brinkmann's result

Theorem (Brinkmann, 2006)

Cyclic groups of $\operatorname{Aut}\left(F_{r}\right)$ are orbit decidable. That is, given $\varphi \in \operatorname{Aut}\left(F_{r}\right)$ and $u, v \in F_{r}$, one can decide whether $v=u \varphi^{n}$ for some $n \in \mathbb{Z}$.

Proof.

- Same idea as before: there is a computable n_{0} such that either $u, u \varphi, u \varphi^{2}, u \varphi^{3}, \ldots, u \varphi^{n_{0}}$ hits v, or either $u \varphi^{n} \neq v$ for all n.
- The computation of n_{0} is quite complicated, making strong use of train-tracks.

Brinkmann's result

Theorem (Brinkmann, 2006)

Cyclic groups of $\operatorname{Aut}\left(F_{r}\right)$ are orbit decidable. That is, given $\varphi \in \operatorname{Aut}\left(F_{r}\right)$ and $u, v \in F_{r}$, one can decide whether $v=u \varphi^{n}$ for some $n \in \mathbb{Z}$.

Proof.

- Same idea as before: there is a computable n_{0} such that either $u, u \varphi, u \varphi^{2}, u \varphi^{3}, \ldots, u \varphi^{n_{0}}$ hits v, or either $u \varphi^{n} \neq v$ for all n.
- The computation of n_{0} is quite complicated, making strong use of train-tracks.

Theorem (Brinkmann, 2006)

Cyclic groups of $\operatorname{Aut}\left(F_{r}\right)$ are orbit decidable up to conjugacy. That is, given $\varphi \in \operatorname{Aut}\left(F_{r}\right)$ and $u, v \in F_{r}$, one can decide whether $v \sim u \varphi^{n}$ for some $n \in \mathbb{Z}$ (i.e., $\langle\varphi\rangle \cdot \operatorname{Inn}\left(F_{r}\right)$ is O.D.).

Whitehead problem and variations

Theorem (Whitehead'30)

The full group $\operatorname{Aut}\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=u \alpha$ for some $\alpha \in \operatorname{Aut}\left(F_{r}\right)$ (also for tuples).

This is a classical and very influential result.

Proposition (Bogopolski-Martino-V., 2008)
Finite index subgroups of $\operatorname{Aut}\left(F_{r}\right)$ are O.D.

Proposition (Bogopolski-Martino-V., 2008)
Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Whitehead problem and variations

Theorem (Whitehead'30)

The full group $\operatorname{Aut}\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=u \alpha$ for some $\alpha \in \operatorname{Aut}\left(F_{r}\right)$ (also for tuples).

This is a classical and very influential result.

Proposition (Bogopolski-Martino-V., 2008)

Finite index subaroups of $\operatorname{Aut}\left(F_{r}\right)$ are O.D.

Proposition (Bogopolski-Martino-V., 2008)
Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Whitehead problem and variations

Theorem (Whitehead'30)

The full group $\operatorname{Aut}\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=u \alpha$ for some $\alpha \in \operatorname{Aut}\left(F_{r}\right)$ (also for tuples).

This is a classical and very influential result.

Proposition (Bogopolski-Martino-V., 2008)

Finite index subgroups of $\operatorname{Aut}\left(F_{r}\right)$ are O.D.

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Whitehead problem and variations

Theorem (Whitehead'30)

The full group $\operatorname{Aut}\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=u \alpha$ for some $\alpha \in \operatorname{Aut}\left(F_{r}\right)$ (also for tuples).

This is a classical and very influential result.

Proposition (Bogopolski-Martino-V., 2008)

Finite index subgroups of $\operatorname{Aut}\left(F_{r}\right)$ are O.D.

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Whitehead problem and variations

Theorem (Makanin, 1982)

The full $\operatorname{End}\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=u \alpha$ for some $\alpha \in \operatorname{End}\left(F_{r}\right)$ (also for tuples).

Proof. It reduces to solving (a system of) equations over F_{r}

Theorem (Ciobanu-Houcine, 2010)
$\operatorname{Mon}\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide
whether $v=u \alpha$ for some injective endomorphism $\alpha \in \operatorname{Mon}\left(F_{r}\right)$ (alsofor tuples)
Corollarymonos and endos)

Whitehead problem and variations

Theorem (Makanin, 1982)

The full $\operatorname{End}\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=u \alpha$ for some $\alpha \in \operatorname{End}\left(F_{r}\right)$ (also for tuples).

Proof. It reduces to solving (a system of) equations over F_{r}.
Theorem (Ciobanu-Houcine, 2010)
$\operatorname{Mon}\left(F_{r}\right)$ is orbit decidable. That is given $u, v \in F_{r}$ one can decide
whether $v=u \alpha$ for some injective endomorphism $\alpha \in \operatorname{Mon}\left(F_{r}\right)$ (alsofor tuples)
Corollary
For everyfo. Hmonos and endos)

Whitehead problem and variations

Theorem (Makanin, 1982)

The full End $\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=u \alpha$ for some $\alpha \in \operatorname{End}\left(F_{r}\right)$ (also for tuples).

Proof. It reduces to solving (a system of) equations over F_{r}.

Theorem (Ciobanu-Houcine, 2010)

$\operatorname{Mon}\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=u \alpha$ for some injective endomorphism $\alpha \in \operatorname{Mon}\left(F_{r}\right)$ (also for tuples).

Corollary
For every f.g. $H \leqslant F_{r}$, Stab(H) is O.D (also for tuples, and similarly for monos and endos)

Whitehead problem and variations

Theorem (Makanin, 1982)

The full End $\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=u \alpha$ for some $\alpha \in \operatorname{End}\left(F_{r}\right)$ (also for tuples).

Proof. It reduces to solving (a system of) equations over F_{r}.

Theorem (Ciobanu-Houcine, 2010)

$\operatorname{Mon}\left(F_{r}\right)$ is orbit decidable. That is, given $u, v \in F_{r}$ one can decide whether $v=u \alpha$ for some injective endomorphism $\alpha \in \operatorname{Mon}\left(F_{r}\right)$ (also for tuples).

Corollary

For every f.g. $H \leqslant F_{r}, \operatorname{Stab}(H)$ is O.D (also for tuples, and similarly for monos and endos).

Whitehead problem and variations

Definition

A virtual endomorphism of G is a homomorphism $\varphi: H \rightarrow K$ between finite index subgroups $H, K \leqslant_{\mathrm{fi}} G$.

Theorem (Rubió-V., w.p.)

The collection of virtual endos (resp. virtual monos, virtual autos) of F_{r} is O.D. (also for tuples).

Whitehead problem and variations

Definition

A virtual endomorphism of G is a homomorphism $\varphi: H \rightarrow K$ between finite index subgroups $H, K \leqslant_{\mathrm{fi}} G$.

Theorem (Rubió-V., w.p.)

The collection of virtual endos (resp. virtual monos, virtual autos) of F_{r} is O.D. (also for tuples).

Other groups

Theorem (Collins, Zieschang, 1984)
 Let G_{1}, \ldots, G_{n} be freely indecomposable groups with $\operatorname{Aut}\left(G_{i}\right)$ being O.D. Then, its free product $G=G_{1} * G_{2} * \cdots * G_{n}$ has $\operatorname{Aut}(G)$ O.D.

Theorem (Levitt-Vogtman, 2000)

For a surface group G, Aut(G) is O.D. (also for tuples)

Theorem (Dahmani, Girardel, 2010)

For a hyperbolic aroup $G . \operatorname{Aut}(G)$ is O.D. (also for tuples)

Theorem (Kharlampovich-V., 2012)
For G torsion-free relatively hyperbolic with abelian parabolic
subgroups, Aut(G) is O.D. (also for tuples)

Other groups

Theorem (Collins, Zieschang, 1984)

Let G_{1}, \ldots, G_{n} be freely indecomposable groups with $\operatorname{Aut}\left(G_{i}\right)$ being O.D. Then, its free product $G=G_{1} * G_{2} * \cdots * G_{n}$ has $\operatorname{Aut}(G)$ O.D.

Theorem (Levitt-Vogtman, 2000)

For a surface group $G, \operatorname{Aut}(G)$ is O.D. (also for tuples).

Theorem (Dahmani, Girardel, 2010)
 For a hynerbolic groun $G \operatorname{Aut}(G)$ is O. D. (also for tuples)

Theorem (Kharlampovich-V., 2012)

For G torsion-free relatively hynerholic with abelian parabolic subgroups, Aut(G) is O.D. (also for tuples)

Other groups

Theorem (Collins, Zieschang, 1984)
Let G_{1}, \ldots, G_{n} be freely indecomposable groups with $\operatorname{Aut}\left(G_{i}\right)$ being O.D. Then, its free product $G=G_{1} * G_{2} * \cdots * G_{n}$ has $\operatorname{Aut}(G)$ O.D.

Theorem (Levitt-Vogtman, 2000)

For a surface group $G, \operatorname{Aut}(G)$ is O.D. (also for tuples).

Theorem (Dahmani, Girardel, 2010)

For a hyperbolic group $G, \operatorname{Aut}(G)$ is O.D. (also for tuples).

Theorem (Kharlampovich-V., 2012)
For G torsion-free relatively hyperbolic with abelian parabolic subgroups, Aut(G) is O.D. (also for tuples)

Other groups

Theorem (Collins, Zieschang, 1984)
Let G_{1}, \ldots, G_{n} be freely indecomposable groups with $\operatorname{Aut}\left(G_{i}\right)$ being O.D. Then, its free product $G=G_{1} * G_{2} * \cdots * G_{n}$ has Aut(G) O.D.

Theorem (Levitt-Vogtman, 2000)

For a surface group $G, \operatorname{Aut}(G)$ is O.D. (also for tuples).

Theorem (Dahmani, Girardel, 2010)

For a hyperbolic group $G, \operatorname{Aut}(G)$ is O.D. (also for tuples).

Theorem (Kharlampovich-V., 2012)

For G torsion-free relatively hyperbolic with abelian parabolic subgroups, $\operatorname{Aut}(G)$ is O.D. (also for tuples).

Other groups

Theorem (Day, 2013)

For G a PC group $\operatorname{Aut}(G)$ is O.D. (also for tuples modulo conjugation).

Theorem (Delgado-V., 2013)

For $G=\mathbb{Z}^{m} \times F_{n}, \operatorname{Aut}(G), \operatorname{Mon}(G)$ and $\operatorname{End}(G)$ are all O.D.

Other groups

Theorem (Day, 2013)

For G a PC group $\operatorname{Aut}(G)$ is O.D. (also for tuples modulo conjugation).

Theorem (Delgado-V., 2013)

For $G=\mathbb{Z}^{m} \times F_{n}, \operatorname{Aut}(G)$, $\operatorname{Mon}(G)$ and $\operatorname{End}(G)$ are all O.D.

Outline

(1) Orbit decidability

2 Free group and relatives

3 Orbit undecidable subgroups

4 Connection with the Conjugacy Problem
(5) Applications

Finding orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 2008)
Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}(u)=1$. Then, A is O.D. $\quad \Rightarrow \quad M P(A, B)$ solvable.

Proof. Given $\varphi \in B \leq \operatorname{Aut}(F)$, let $w=u \varphi$ and

$$
\{\phi \in B \mid u \phi=w\}=(B \cap \operatorname{Stab}(u)) \cdot \varphi=\{\varphi\} .
$$

So, u can be mapped to w by somebody in A

Finding orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 2008)
Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}(u)=1$. Then, A is O.D. $\quad \Rightarrow \quad M P(A, B)$ solvable.

Proof. Given $\varphi \in B \leq \operatorname{Aut}(F)$, let $w=u \varphi$ and

Finding orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 2008)

Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}(u)=1$. Then, A is O.D. $\quad \Rightarrow \quad M P(A, B)$ solvable.

Proof. Given $\varphi \in B \leq \operatorname{Aut}(F)$, let $w=u \varphi$ and

$$
\{\phi \in B \mid u \phi=w\}=(B \cap \operatorname{Stab}(u))
$$

Finding orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 2008)

Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}(u)=1$. Then, A is O.D. $\quad \Rightarrow \quad M P(A, B)$ solvable.

Proof. Given $\varphi \in B \leq \operatorname{Aut}(F)$, let $w=u \varphi$ and

$$
\{\phi \in B \mid u \phi=w\}=(B \cap \operatorname{Stab}(u)) \cdot \varphi=\{\varphi\} .
$$

Finding orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 2008)

Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}(u)=1$. Then, A is O.D. $\quad \Rightarrow \quad M P(A, B)$ solvable.

Proof. Given $\varphi \in B \leq \operatorname{Aut}(F)$, let $w=u \varphi$ and

$$
\{\phi \in B \mid u \phi=w\}=(B \cap \operatorname{Stab}(u)) \cdot \varphi=\{\varphi\} .
$$

So, u can be mapped to w by somebody in $A \quad \Leftrightarrow \quad \varphi \in A$.

Finding orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 2008)

Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}(u)=1$. Then, A is O.D. $\quad \Rightarrow \quad M P(A, B)$ solvable.

Proof. Given $\varphi \in B \leq \operatorname{Aut}(F)$, let $w=u \varphi$ and

$$
\{\phi \in B \mid u \phi=w\}=(B \cap \operatorname{Stab}(u)) \cdot \varphi=\{\varphi\} .
$$

So, u can be mapped to w by somebody in $A \Leftrightarrow \varphi \in A$.

Let F be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}^{*}(u)=1$. Then, $A \cdot \operatorname{Inn}(F)$ is O.D. $\quad \Rightarrow \quad M P(A, B)$ solvable.

Finding orbit undecidable subgroups

Corollary (Bogopolski-Martino-V., 2008)
Let F be a group, and let $F_{2} \times F_{2} \simeq B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}(u)=1$. Then, there exists f.g. $A \leqslant \operatorname{Aut}(F)$ which is orbit undecidable.

Proof. By Mihailova's construction, for every group
$U=\left\langle a_{1}, a_{2} \mid r_{1}, \ldots, r_{m}\right\rangle$ with unsolvable word problem, the finitely generated subgroup

has unsolvable membership problem. Hence, $A \leqslant \operatorname{Aut}(F)$ is orbit undecidable.

Finding orbit undecidable subgroups

Corollary (Bogopolski-Martino-V., 2008)

Let F be a group, and let $F_{2} \times F_{2} \simeq B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}(u)=1$. Then, there exists f.g. $A \leqslant \operatorname{Aut}(F)$ which is orbit undecidable.

Proof. By Mihailova's construction, for every group $U=\left\langle a_{1}, a_{2} \mid r_{1}, \ldots, r_{m}\right\rangle$ with unsolvable word problem, the finitely generated subgroup

$$
\begin{aligned}
A & =\left\langle\left(a_{1}, a_{1}\right),\left(a_{2}, a_{2}\right),\left(r_{1}, 1\right), \ldots,\left(r_{m}, 1\right)\right\rangle \\
& =\{(v, w) \mid v=u w\} \leqslant F_{2} \times F_{2}
\end{aligned}
$$

has unsolvable membership problem.

Finding orbit undecidable subgroups

Corollary (Bogopolski-Martino-V., 2008)

Let F be a group, and let $F_{2} \times F_{2} \simeq B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}(u)=1$. Then, there exists f.g. $A \leqslant \operatorname{Aut}(F)$ which is orbit undecidable.

Proof. By Mihailova's construction, for every group $U=\left\langle a_{1}, a_{2} \mid r_{1}, \ldots, r_{m}\right\rangle$ with unsolvable word problem, the finitely generated subgroup

$$
\begin{aligned}
A & =\left\langle\left(a_{1}, a_{1}\right),\left(a_{2}, a_{2}\right),\left(r_{1}, 1\right), \ldots,\left(r_{m}, 1\right)\right\rangle \\
& =\{(v, w) \mid v=u w\} \leqslant F_{2} \times F_{2}
\end{aligned}
$$

has unsolvable membership problem. Hence, $A \leqslant \operatorname{Aut}(F)$ is orbit undecidable.

Finding orbit undecidable subgroups

For free groups
Corollary (Bogopolski-Martino-V., 2008)
Aut $\left(F_{r}\right)$ contains f.g. orbit undecidable subgroups, for $r \geqslant 3$.

Proof. Take the copy B of $F_{2} \times F_{2}$ in $\operatorname{Aut}\left(F_{3}\right)$ via the embedding
($u=$ qaqbq satisfies $B \cap \operatorname{Stab}^{*}(u)=1$). Now, take any Mihailova subgroup in there, $A \leqslant B \leqslant \operatorname{Aut}\left(F_{3}\right)$, and A will be orbit undecidable.

Proposition (Bogopolski-Martino-V., 2008)
Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Finding orbit undecidable subgroups

For free groups

Corollary (Bogopolski-Martino-V., 2008)

Aut $\left(F_{r}\right)$ contains f.g. orbit undecidable subgroups, for $r \geqslant 3$.

Proof. Take the copy B of $F_{2} \times F_{2}$ in $\operatorname{Aut}\left(F_{3}\right)$ via the embedding

$$
\begin{aligned}
& F_{2} \times F_{2} \hookrightarrow \quad \operatorname{Aut}\left(F_{3}\right), \\
& (u, v) \mapsto u \theta_{v}: F_{3} \rightarrow \quad F_{3} \\
& a \mapsto \quad a \\
& b \mapsto \quad b \\
& q \mapsto u^{-1} q v \text {; }
\end{aligned}
$$

($u=$ qaqbq satisfies $B \cap \operatorname{Stab}^{*}(u)=1$). Now, take any Mihailova subgroup in there, $A \leqslant B \leqslant \operatorname{Aut}\left(F_{3}\right)$, and A will be orbit undecidable.

Proposition (Bogopolski-Martino-V., 2008)
Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Finding orbit undecidable subgroups

For free groups

Corollary (Bogopolski-Martino-V., 2008)

Aut $\left(F_{r}\right)$ contains f.g. orbit undecidable subgroups, for $r \geqslant 3$.

Proof. Take the copy B of $F_{2} \times F_{2}$ in $\operatorname{Aut}\left(F_{3}\right)$ via the embedding

\[

\]

($u=$ qaqbq satisfies $B \cap \operatorname{Stab}^{*}(u)=1$). Now, take any Mihailova
subgroup in there, $A \leqslant B \leqslant \operatorname{Aut}\left(F_{3}\right)$, and A will be orbit undecidable.
Proposition (Bogopolski-Martino-V., 2008)
Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Finding orbit undecidable subgroups

For free groups

Corollary (Bogopolski-Martino-V., 2008)

Aut $\left(F_{r}\right)$ contains f.g. orbit undecidable subgroups, for $r \geqslant 3$.

Proof. Take the copy B of $F_{2} \times F_{2}$ in $\operatorname{Aut}\left(F_{3}\right)$ via the embedding

$$
\begin{array}{rlrll}
F_{2} \times F_{2} & \hookrightarrow & & \operatorname{Aut}\left(F_{3}\right) \\
(u, v) & \mapsto & \theta_{v}: & \\
& & F_{3} & \rightarrow & F_{3} \\
& & a & \mapsto & a \\
& & b & \mapsto & b \\
& & q & \mapsto & u^{-1} q v
\end{array}
$$

($u=$ qaqbq satisfies $B \cap \operatorname{Stab}^{*}(u)=1$). Now, take any Mihailova subgroup in there, $A \leqslant B \leqslant \operatorname{Aut}\left(F_{3}\right)$, and A will be orbit undecidable.

Proposition (Bogopolski-Martino-V., 2008)

\square

Finding orbit undecidable subgroups

For free groups

Corollary (Bogopolski-Martino-V., 2008)

Aut $\left(F_{r}\right)$ contains f.g. orbit undecidable subgroups, for $r \geqslant 3$.

Proof. Take the copy B of $F_{2} \times F_{2}$ in $\operatorname{Aut}\left(F_{3}\right)$ via the embedding

$$
\begin{aligned}
& F_{2} \times F_{2} \hookrightarrow \quad \operatorname{Aut}\left(F_{3}\right), \\
& (u, v) \mapsto u \theta_{v}: F_{3} \rightarrow \quad F_{3} \\
& a \mapsto \quad a \\
& b \mapsto \quad b \\
& q \mapsto u^{-1} q v \text {; }
\end{aligned}
$$

($u=$ qaqbq satisfies $B \cap \operatorname{Stab}^{*}(u)=1$). Now, take any Mihailova subgroup in there, $A \leqslant B \leqslant \operatorname{Aut}\left(F_{3}\right)$, and A will be orbit undecidable.

Proposition (Bogopolski-Martino-V., 2008)
Every finitely generated subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Finding orbit undecidable subgroups

For free abelian groups
Corollary (Bogopolski-Martino-V., 2008)
$\mathrm{GL}_{d}(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \geqslant 4$.

Proof. Consider $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq{ }_{24} G L_{2}(\mathbb{Z})$.

- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.
- $\langle P, Q\rangle \cap \operatorname{Stab}(1,0)=\left\langle\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right\rangle$
- Choose a free subgroup $F_{2} \simeq\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that $\left\langle P^{\prime}, Q^{\prime}\right\rangle \cap \operatorname{Stab}(1,0)=\{1\}$ and consider

Finding orbit undecidable subgroups

For free abelian groups
Corollary (Bogopolski-Martino-V., 2008)
$\mathrm{GL}_{d}(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \geqslant 4$.

Proof. Consider $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq_{24} G L_{2}(\mathbb{Z})$. - $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\{($ $\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}$

- Choose a free subgroup $F_{2} \simeq\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that $\left\langle P^{\prime}, Q^{\prime}\right\rangle$ $\operatorname{Stab}(1,0)=\{I\}$ and consider

Finding orbit undecidable subgroups

For free abelian groups

Corollary (Bogopolski-Martino-V., 2008)

$\mathrm{GL}_{d}(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \geqslant 4$.

Proof. Consider $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq_{24} G L_{2}(\mathbb{Z})$.

- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.
- Choose a free subgroup $F_{2} \simeq\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that $\left\langle P^{\prime}, Q^{\prime}\right\rangle \cap \operatorname{Stab}(1,0)=\{I\}$ and consider

Finding orbit undecidable subgroups

For free abelian groups

Corollary (Bogopolski-Martino-V., 2008)

$\mathrm{GL}_{d}(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \geqslant 4$.

Proof. Consider $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq_{24} G L_{2}(\mathbb{Z})$.

- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.
- $\langle P, Q\rangle \cap \operatorname{Stab}(1,0)=\left\langle\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right\rangle$.
- Choose a free subgroup $F_{2} \simeq\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that $\left\langle P^{\prime}, Q^{\prime}\right\rangle \cap \operatorname{Stab}(1,0)=\{I\}$ and consider

Finding orbit undecidable subgroups

For free abelian groups

Corollary (Bogopolski-Martino-V., 2008)

$\mathrm{GL}_{d}(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \geqslant 4$.

Proof. Consider $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq_{24} G L_{2}(\mathbb{Z})$.

- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.
- $\langle P, Q\rangle \cap \operatorname{Stab}(1,0)=\left\langle\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right\rangle$.
- Choose a free subgroup $F_{2} \simeq\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that $\left\langle P^{\prime}, Q^{\prime}\right\rangle \cap \operatorname{Stab}(1,0)=\{I\}$ and consider

Finding orbit undecidable subgroups

For free abelian groups

Corollary (Bogopolski-Martino-V., 2008)

$\mathrm{GL}_{d}(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \geqslant 4$.

Proof. Consider $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq_{24} G L_{2}(\mathbb{Z})$.

- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.
- $\langle P, Q\rangle \cap \operatorname{Stab}(1,0)=\left\langle\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right\rangle$.
- Choose a free subgroup $F_{2} \simeq\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that $\left\langle P^{\prime}, Q^{\prime}\right\rangle \cap \operatorname{Stab}(1,0)=\{I\}$ and consider

$$
B=\left\langle\left(\begin{array}{c|c}
P^{\prime} & 0 \\
\hline 0 & I
\end{array}\right),\left(\begin{array}{c|c}
Q^{\prime} & 0 \\
\hline 0 & I
\end{array}\right),\left(\begin{array}{c|c}
I & 0 \\
\hline 0 & P^{\prime}
\end{array}\right),\left(\begin{array}{c|c}
I & 0 \\
\hline 0 & Q^{\prime}
\end{array}\right)\right\rangle \leq G L_{4}(\mathbb{Z}) .
$$

Finding orbit undecidable subgroups

- Note that $B \simeq F_{2} \times F_{2}$.
- Write $u=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(u)=\{I d\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \mathrm{GL}_{d}(\mathbb{Z}), d \geqslant 4$. \square

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

Question

Does there exist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Finding orbit undecidable subgroups

- Note that $B \simeq F_{2} \times F_{2}$.
- Write $u=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(u)=\{I d\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for A

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

Question

Does there

Finding orbit undecidable subgroups

- Note that $B \simeq F_{2} \times F_{2}$.
- Write $u=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(u)=\{I d\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for A

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

Question

Does there exist an orbit undecidable subgroup of $G L_{3}$

Finding orbit undecidable subgroups

- Note that $B \simeq F_{2} \times F_{2}$.
- Write $u=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(u)=\{I d\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

Question

Does there ϵ xist an orbit undecidable subgroup of GL3

Finding orbit undecidable subgroups

- Note that $B \simeq F_{2} \times F_{2}$.
- Write $u=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(u)=\{I d\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \mathrm{GL}_{d}(\mathbb{Z}), d \geqslant 4$.

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

Question

Does there exist an orbit undecidable subgroup of $G L_{3}$

Finding orbit undecidable subgroups

- Note that $B \simeq F_{2} \times F_{2}$.
- Write $u=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(u)=\{I d\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \mathrm{GL}_{d}(\mathbb{Z}), d \geqslant 4$.

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

Finding orbit undecidable subgroups

- Note that $B \simeq F_{2} \times F_{2}$.
- Write $u=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(u)=\{I d\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \mathrm{GL}_{d}(\mathbb{Z}), d \geqslant 4$. \square

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

Question

Does there exist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Outline

(1) Orbit decidability

2 Free group and relatives

3 Orbit undecidable subgroups
4. Connection with the Conjugacy Problem
(5) Applications

Connection to semidirect products

Observation (Bogopolski-Martino-V., 2008)
Let F be f.g., and $A \leqslant_{\mathrm{fg}} \operatorname{Aut}(F)$. If $A \ltimes F$ has solvable $C P$, then $A \cdot \operatorname{Inn}(F) \leqslant \operatorname{Aut}(F)$ is orbit decidable.

Proof. $G=A \ltimes F$ contains elements $(\alpha, x) \in A \times F$ operated like
$\left(\alpha_{1}, x_{1}\right) \cdot\left(\alpha_{2}, x_{2}\right)=\left(\alpha_{1} \alpha_{2},\left(x_{1} \alpha_{2}\right) x_{2}\right)$

For $x_{1}, x_{2} \in F \leqslant G$, we have $x_{1} \sim_{G} x_{2} \Leftrightarrow \exists(\alpha, x) \in A \ltimes F$ s.t.

$$
\begin{aligned}
\left(I d, x_{2}\right)= & (\alpha, x)^{-1} \cdot\left(I d, x_{1}\right) \cdot(\alpha, x) \\
& \left(\alpha^{-1}, x^{-1} \alpha^{-1}\right) \cdot\left(\alpha,\left(x_{1} \alpha\right) x\right) \\
& \left(I d, x^{-1}\left(x_{1} \alpha\right) x\right) .
\end{aligned}
$$

Hence, $x_{1} \sim_{G} X_{2} \Leftrightarrow \exists \alpha \in A$ and $x \in F$ s.t. $x_{2}=x^{-1}\left(x_{1} \alpha\right) x . \quad \square$

Connection to semidirect products

Observation (Bogopolski-Martino-V., 2008)

Let F be f.g., and $A \leqslant_{\mathrm{fg}} \operatorname{Aut}(F)$. If $A \ltimes F$ has solvable CP, then $A \cdot \operatorname{Inn}(F) \leqslant \operatorname{Aut}(F)$ is orbit decidable.

Proof. $G=A \ltimes F$ contains elements $(\alpha, x) \in A \times F$ operated like

$$
\begin{gathered}
\left(\alpha_{1}, x_{1}\right) \cdot\left(\alpha_{2}, x_{2}\right)=\left(\alpha_{1} \alpha_{2},\left(x_{1} \alpha_{2}\right) x_{2}\right) \\
(\alpha, x)^{-1}=\left(\alpha^{-1}, x^{-1} \alpha^{-1}\right)
\end{gathered}
$$

For $x_{1}, x_{2} \in F \leqslant G$, we have $x_{1} \sim_{G} x_{2} \Leftrightarrow \exists(\alpha, x) \in A \ltimes F$ s.t.

Connection to semidirect products

Observation (Bogopolski-Martino-V., 2008)

Let F be f.g., and $A \leqslant_{\mathrm{fg}} \operatorname{Aut}(F)$. If $A \ltimes F$ has solvable CP, then $A \cdot \operatorname{Inn}(F) \leqslant \operatorname{Aut}(F)$ is orbit decidable.

Proof. $G=A \ltimes F$ contains elements $(\alpha, x) \in A \times F$ operated like

$$
\begin{gathered}
\left(\alpha_{1}, x_{1}\right) \cdot\left(\alpha_{2}, x_{2}\right)=\left(\alpha_{1} \alpha_{2},\left(x_{1} \alpha_{2}\right) x_{2}\right) \\
(\alpha, x)^{-1}=\left(\alpha^{-1}, x^{-1} \alpha^{-1}\right)
\end{gathered}
$$

For $x_{1}, x_{2} \in F \leqslant G$, we have $x_{1} \sim_{G} x_{2} \Leftrightarrow \exists(\alpha, x) \in A \ltimes F$ s.t.

$$
\begin{aligned}
\left(I d, x_{2}\right)= & (\alpha, x)^{-1} \cdot\left(I d, x_{1}\right) \cdot(\alpha, x) \\
& \left(\alpha^{-1}, x^{-1} \alpha^{-1}\right) \cdot\left(\alpha,\left(x_{1} \alpha\right) x\right) \\
& \left(I d, x^{-1}\left(x_{1} \alpha\right) x\right)
\end{aligned}
$$

Connection to semidirect products

Observation (Bogopolski-Martino-V., 2008)

Let F be f.g., and $A \leqslant_{\mathrm{fg}} \operatorname{Aut}(F)$. If $A \ltimes F$ has solvable CP, then $A \cdot \operatorname{Inn}(F) \leqslant \operatorname{Aut}(F)$ is orbit decidable.

Proof. $G=A \ltimes F$ contains elements $(\alpha, x) \in A \times F$ operated like

$$
\begin{gathered}
\left(\alpha_{1}, x_{1}\right) \cdot\left(\alpha_{2}, x_{2}\right)=\left(\alpha_{1} \alpha_{2},\left(x_{1} \alpha_{2}\right) x_{2}\right) \\
(\alpha, x)^{-1}=\left(\alpha^{-1}, x^{-1} \alpha^{-1}\right)
\end{gathered}
$$

For $x_{1}, x_{2} \in F \leqslant G$, we have $x_{1} \sim_{G} x_{2} \Leftrightarrow \exists(\alpha, x) \in A \ltimes F$ s.t.

$$
\begin{aligned}
\left(I d, x_{2}\right)= & (\alpha, x)^{-1} \cdot\left(I d, x_{1}\right) \cdot(\alpha, x) \\
& \left(\alpha^{-1}, x^{-1} \alpha^{-1}\right) \cdot\left(\alpha,\left(x_{1} \alpha\right) x\right) \\
& \left(I d, x^{-1}\left(x_{1} \alpha\right) x\right)
\end{aligned}
$$

Hence, $x_{1} \sim_{G} x_{2} \Leftrightarrow \exists \alpha \in A$ and $x \in F$ s.t. $x_{2}=x^{-1}\left(x_{1} \alpha\right) x$.

Connection to semidirect products

In fact, for the free and free abelian cases (among others), the converse is also true after "erasing the relations from A ":

Let F be a group, $\alpha_{1}, \ldots, \alpha_{m} \in \operatorname{Aut}(F)$, and consider A $=\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \leqslant \operatorname{Aut}(F)$ and the semidirect product $G=F_{m} \ltimes_{\alpha_{1}, \ldots, \alpha_{m}} F$.

Theorem (Bogopolski-Martino-V., 2008)

This comes from a more general result:

- replace F to any group with solvable TCP,
- replace F_{m} to any group with CP and "easy" centralizers,
- replace semidirect products to arbitrary short exact sequences.

Connection to semidirect products

In fact, for the free and free abelian cases (among others), the converse is also true after "erasing the relations from A ":

Let F be a group, $\alpha_{1}, \ldots, \alpha_{m} \in \operatorname{Aut}(F)$, and consider $\boldsymbol{A}=\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \leqslant \operatorname{Aut}(F)$ and the semidirect product $G=F_{m} \ltimes_{\alpha_{1}, \ldots, \alpha_{m}} F$.

Theorem (Bogopolski-Martino-V., 2008)

Let F be \mathbb{Z}^{d} or F_{r}. Then $G=F_{m} \ltimes_{\alpha_{1}, \ldots, \alpha_{m}} F$ has solvable CP if and only if $A \cdot \operatorname{Inn}(F)=\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \cdot \operatorname{Inn}(F) \leqslant \operatorname{Aut}(F)$ is orbit decidable.

This comes from a more general result:

- replace F to any group with solvable TCP
- replace F_{m} to any group with CP and "easy" centralizers,
- replace semidirect products to arbitrary short exact sequences.

Connection to semidirect products

In fact, for the free and free abelian cases (among others), the converse is also true after "erasing the relations from A ":

Let F be a group, $\alpha_{1}, \ldots, \alpha_{m} \in \operatorname{Aut}(F)$, and consider $\boldsymbol{A}=\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \leqslant \operatorname{Aut}(F)$ and the semidirect product $G=F_{m} \ltimes_{\alpha_{1}, \ldots, \alpha_{m}} F$.

Theorem (Bogopolski-Martino-V., 2008)

Let F be \mathbb{Z}^{d} or F_{r}. Then $G=F_{m} \ltimes_{\alpha_{1}, \ldots, \alpha_{m}} F$ has solvable CP if and only if $A \cdot \operatorname{Inn}(F)=\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \cdot \operatorname{Inn}(F) \leqslant \operatorname{Aut}(F)$ is orbit decidable.

This comes from a more general result:

- replace F to any group with solvable TCP,
- replace F_{m} to any group with CP and "easy" centralizers,
- replace semidirect products to arbitrary short exact sequences.

Connection to semidirect products

In fact, for the free and free abelian cases (among others), the converse is also true after "erasing the relations from A ":

Let F be a group, $\alpha_{1}, \ldots, \alpha_{m} \in \operatorname{Aut}(F)$, and consider $\boldsymbol{A}=\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \leqslant \operatorname{Aut}(F)$ and the semidirect product $G=F_{m} \ltimes_{\alpha_{1}, \ldots, \alpha_{m}} F$.

Theorem (Bogopolski-Martino-V., 2008)

Let F be \mathbb{Z}^{d} or F_{r}. Then $G=F_{m} \ltimes_{\alpha_{1}, \ldots, \alpha_{m}} F$ has solvable CP if and only if $A \cdot \operatorname{Inn}(F)=\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \cdot \operatorname{Inn}(F) \leqslant \operatorname{Aut}(F)$ is orbit decidable.

This comes from a more general result:

- replace F to any group with solvable $T C P$,
- replace F_{m} to any group with CP and "easy" centralizers,
- replace semidirect products to arbitrary short exact sequences.

Connection to semidirect products

In fact, for the free and free abelian cases (among others), the converse is also true after "erasing the relations from A ":

Let F be a group, $\alpha_{1}, \ldots, \alpha_{m} \in \operatorname{Aut}(F)$, and consider $\boldsymbol{A}=\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \leqslant \operatorname{Aut}(F)$ and the semidirect product $G=F_{m} \ltimes_{\alpha_{1}, \ldots, \alpha_{m}} F$.

Theorem (Bogopolski-Martino-V., 2008)

Let F be \mathbb{Z}^{d} or F_{r}. Then $G=F_{m} \ltimes_{\alpha_{1}, \ldots, \alpha_{m}} F$ has solvable CP if and only if $A \cdot \operatorname{Inn}(F)=\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \cdot \operatorname{Inn}(F) \leqslant \operatorname{Aut}(F)$ is orbit decidable.

This comes from a more general result:

- replace F to any group with solvable $T C P$,
- replace F_{m} to any group with CP and "easy" centralizers,
- replace semidirect products to arbitrary short exact sequences.

The short exact sequence theorem

$$
\begin{aligned}
& \text { Theorem (Bogopolski-Martino-V., 2008) } \\
& \text { Let } \\
& \qquad 1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
\end{aligned}
$$

be an algorithmic short exact sequence of groups such that

```
TCP(F) is solvable,
CP(H) is solvable,
there is an alnorithm which, given an input 1 }\not=h\inH\mathrm{ , computes
a finite set of elements }\mp@subsup{z}{h,1}{},\ldots,\mp@subsup{z}{h,\mp@subsup{t}{h}{}}{}\inH\mathrm{ such that
```

$C_{H}(h)=\langle h\rangle z_{h, 1} \sqcup \cdots \sqcup\langle h\rangle z_{h, t_{h}}$
Then,

The short exact sequence theorem

$$
\begin{aligned}
& \text { Theorem (Bogopolski-Martino-V., 2008) } \\
& \text { Let } \\
& \qquad 1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
\end{aligned}
$$

be an algorithmic short exact sequence of groups such that
(i) $\operatorname{TCP}(F)$ is solvable,
(iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h, 1}, \ldots, z_{h, t_{h}} \in H$ such that
$C_{H}(h)=\langle h\rangle z_{h, 1} \sqcup \cdots \sqcup\langle h\rangle z_{h, t_{h}}$

Then,

The short exact sequence theorem

Theorem (Bogopolski-Martino-V., 2008)

Let

$$
1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
$$

be an algorithmic short exact sequence of groups such that
(i) $\operatorname{TCP}(F)$ is solvable,
(ii) $\mathrm{CP}(H)$ is solvable,

(iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h, 1}, \ldots, z_{h, t_{h}} \in H$ such that

\square
Then,

The short exact sequence theorem

Theorem (Bogopolski-Martino-V., 2008)

Let

$$
1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
$$

be an algorithmic short exact sequence of groups such that
(i) $\operatorname{TCP}(F)$ is solvable,
(ii) $C P(H)$ is solvable,
(iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h, 1}, \ldots, z_{h, t_{h}} \in H$ such that

$$
C_{H}(h)=\langle h\rangle z_{h, 1} \sqcup \cdots \sqcup\langle h\rangle z_{h, t_{h}} .
$$

Then,

The short exact sequence theorem

Theorem (Bogopolski-Martino-V., 2008)

Let

$$
1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
$$

be an algorithmic short exact sequence of groups such that
(i) $\operatorname{TCP}(F)$ is solvable,
(ii) $C P(H)$ is solvable,
(iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h, 1}, \ldots, z_{h, t_{h}} \in H$ such that

$$
C_{H}(h)=\langle h\rangle z_{h, 1} \sqcup \cdots \sqcup\langle h\rangle z_{h, t_{h}} .
$$

Then,
$C P(G)$ is solvable $\Longleftrightarrow A_{G}=\left\{\left.\begin{array}{rll}\gamma_{g}: F & \rightarrow & F \\ x & \mapsto & g^{-1} x g\end{array} \right\rvert\, g \in G\right\}$
$\leqslant \operatorname{Aut}(F)$ is orbit decidable.

Twisted conjugacy

Definition

For $\varphi \in \operatorname{End}(F)$, two elements $u, v \in F$ are said to be φ-twisted conjugated, denoted $u \sim_{\varphi} v$, if $v=(g \varphi)^{-1}$ ug for some $g \in F$.

Definition

The twisted conjugacy problem for F, denoted $\operatorname{TCP}(F)$:
"Given $\varphi \in \operatorname{Aut}(F)$ and $u, v \in F$ decide whether $u \sim_{\varphi} v$ ".

Observation

TCP $\left(\mathbb{Z}^{d}\right)$ is solvable.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

$\operatorname{TCP}\left(F_{r}\right)$ is solvable.

Twisted conjugacy

Definition

For $\varphi \in \operatorname{End}(F)$, two elements $u, v \in F$ are said to be φ-twisted conjugated, denoted $u \sim_{\varphi} v$, if $v=(g \varphi)^{-1}$ ug for some $g \in F$.

Definition

The twisted conjugacy problem for F, denoted $T C P(F)$: "Given $\varphi \in \operatorname{Aut}(F)$ and $u, v \in F$ decide whether $u \sim_{\varphi} v$ ".

Observation

TCP $\left(\mathbb{Z}^{d}\right)$ is solvable.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

$\operatorname{TCP}\left(F_{r}\right)$ is solvable.

Twisted conjugacy

Definition

For $\varphi \in \operatorname{End}(F)$, two elements $u, v \in F$ are said to be φ-twisted conjugated, denoted $u \sim_{\varphi} v$, if $v=(g \varphi)^{-1}$ ug for some $g \in F$.

Definition

The twisted conjugacy problem for F, denoted $T C P(F)$: "Given $\varphi \in \operatorname{Aut}(F)$ and $u, v \in F$ decide whether $u \sim_{\varphi} v$ ".

Observation

$T C P\left(\mathbb{Z}^{d}\right)$ is solvable.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

TCP $\left(F_{r}\right)$ is solvable.

Twisted conjugacy

Definition

For $\varphi \in \operatorname{End}(F)$, two elements $u, v \in F$ are said to be φ-twisted conjugated, denoted $u \sim_{\varphi} v$, if $v=(g \varphi)^{-1}$ ug for some $g \in F$.

Definition

The twisted conjugacy problem for F, denoted $T C P(F)$: "Given $\varphi \in \operatorname{Aut}(F)$ and $u, v \in F$ decide whether $u \sim_{\varphi} v$ ".

Observation

$T C P\left(\mathbb{Z}^{d}\right)$ is solvable.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

$\operatorname{TCP}\left(F_{r}\right)$ is solvable.

Twisted conjugacy

Theorem (Bogopolski-Martino-V., 2008)
 Let G be a surface group. Then, $\operatorname{TCP}(G)$ for is solvable.

Theorem (González-Meneses-V., 2010)
 Let B_{n} be the Braid group. Then, $\operatorname{TCP}\left(B_{n}\right)$ is solvable.

Theorem (Burillo-Matucci-V., 12)

Let F be Thompson's group. Then, $7 C P(F)$ is solvable.

Theorem (Bogopolski-Martino-V., 2008)

There exists a group G with solvable CP but unsolvable TCP.

Twisted conjugacy

Theorem (Bogopolski-Martino-V., 2008)

Let G be a surface group. Then, $\operatorname{TCP}(G)$ for is solvable.

Theorem (González-Meneses-V., 2010)
 Let B_{n} be the Braid group. Then, $\operatorname{TCP}\left(B_{n}\right)$ is solvable.

Theorem (Burilo-Matucci-V., 12)

Let F be Thompson's group. Then, $\operatorname{TCP}(F)$ is solvable.

Theorem (Bogopolski-Martino-V., 2008)

There exists a group G with solvable CP but unsolvable TCP.

Twisted conjugacy

Theorem (Bogopolski-Martino-V., 2008)

Let G be a surface group. Then, $\operatorname{TCP}(G)$ for is solvable.

Theorem (González-Meneses-V., 2010)

Let B_{n} be the Braid group. Then, $\operatorname{TCP}\left(B_{n}\right)$ is solvable.

Theorem (Burillo-Matucci-V., 12)

Let F be Thompson's group. Then, $\operatorname{TCP}(F)$ is solvable.

Theorem (Bogopolski-Martino-V., 2008)
There exists a group G with solvable CP but unsolvable TCP.

Twisted conjugacy

Theorem (Bogopolski-Martino-V., 2008)

Let G be a surface group. Then, $\operatorname{TCP}(G)$ for is solvable.

Theorem (González-Meneses-V., 2010)

Let B_{n} be the Braid group. Then, $\operatorname{TCP}\left(B_{n}\right)$ is solvable.

Theorem (Burillo-Matucci-V., 12)

Let F be Thompson's group. Then, $\operatorname{TCP}(F)$ is solvable.

Theorem (Bogopolski-Martino-V., 2008)

There exists a group G with solvable CP but unsolvable TCP.

Twisted conjugacy

Theorem (Romankov-V., 2009)
Let G be a polycyclic metabelian group. Then, $\operatorname{TCP}(G)$ for endomorphisms is solvable.

Question

Is TCP $\left(F_{r}\right)$ solvable for endomorphisms

Theorem (Miasnikov-Nikolaev-Ushakov, preprint)
Double-TCP $\left(F_{r}\right)$ is unsolvable for $r \geqslant 28$

Twisted conjugacy

Theorem (Romankov-V., 2009)

Let G be a polycyclic metabelian group. Then, $\operatorname{TCP}(G)$ for endomorphisms is solvable.

Question

Is $\operatorname{TCP}\left(F_{r}\right)$ solvable for endomorphisms ?

Theorem (Miasnikov-Nikolaev-Ushakov, preprint)
Double-TCP $\left(F_{r}\right)$ is unsolvable for $r \geqslant 28$.

Twisted conjugacy

Theorem (Romankov-V., 2009)

Let G be a polycyclic metabelian group. Then, $\operatorname{TCP}(G)$ for endomorphisms is solvable.

Question

Is $\operatorname{TCP}\left(F_{r}\right)$ solvable for endomorphisms ?

Theorem (Miasnikov-Nikolaev-Ushakov, preprint)
Double-TCP $\left(F_{r}\right)$ is unsolvable for $r \geqslant 28$.

The short exact sequence theorem

Theorem (Bogopolski-Martino-V., 2008)

Let

$$
1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
$$

be an algorithmic short exact sequence of groups such that
(i) $\operatorname{TCP}(F)$ is solvable,
(ii) $C P(H)$ is solvable,
(iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h, 1}, \ldots, z_{h, t_{h}} \in H$ such that

$$
C_{H}(h)=\langle h\rangle z_{h, 1} \sqcup \cdots \sqcup\langle h\rangle z_{h, t_{h}} .
$$

Then,
$C P(G)$ is solvable $\Longleftrightarrow A_{G}=\left\{\left.\begin{array}{rll}\gamma_{g}: F & \rightarrow & F \\ x & \mapsto & g^{-1} x g\end{array} \right\rvert\, g \in G\right\}$
$\leqslant \operatorname{Aut}(F)$ is orbit decidable.

The short exact sequence theorem

Proof. $C P(G)$ splits into two subproblems:
given $u, v \in F$ decide whether they are conjugate in G : this is orbit decidability of $A_{G} \leq \operatorname{Aut}(F)$.
given $g, g^{\prime} \in G \backslash F$ decide whether they are conjugate in G; Let us solve this using (i), (ii) and (iii):

- check whether g $\beta, g^{\prime} \beta$ are conjugate in H; if not, g, g^{\prime} are not conjugate in G either.
- Otherwise, compute $u \in G$ such that $(u \beta)^{-1}(g \beta)(u \beta)=g^{\prime} \beta$.
- Changing g to g^{u}, we can assume $g \beta=g^{\prime} \beta \neq 1_{H}$. Compute $f \in F$ such that $g^{\prime}=g f$.
- Compute the centralizer of $g \beta \neq 1$ in H, and preimages y_{1}, \ldots, y_{t} in $G: C_{H}(g \beta)=\langle g \beta\rangle\left(y_{1} \beta\right) \sqcup \cdots \sqcup\langle g \beta\rangle\left(y_{t} \beta\right)$.
- Compute $p_{i} \in F$ such that $y_{i}^{-1} g y_{i}=g p_{i}$ (since $g \beta$ and $y_{i} \beta$ commute in H).

The short exact sequence theorem

Proof. $C P(G)$ splits into two subproblems:

- given $u, v \in F$ decide whether they are conjugate in G : this is orbit decidability of $A_{G} \leq \operatorname{Aut}(F)$.

The short exact sequence theorem

Proof. $C P(G)$ splits into two subproblems:

- given $u, v \in F$ decide whether they are conjugate in G : this is orbit decidability of $A_{G} \leq \operatorname{Aut}(F)$.
- given $g, g^{\prime} \in G \backslash F$ decide whether they are conjugate in G; Let us solve this using (i), (ii) and (iii):

The short exact sequence theorem

Proof. $C P(G)$ splits into two subproblems:

- given $u, v \in F$ decide whether they are conjugate in G : this is orbit decidability of $A_{G} \leq \operatorname{Aut}(F)$.
- given $g, g^{\prime} \in G \backslash F$ decide whether they are conjugate in G; Let us solve this using (i), (ii) and (iii):
- check whether $g \beta, g^{\prime} \beta$ are conjugate in H; if not, g, g^{\prime} are not conjugate in G either.
- Otherwise, compute $u \in G$ such that $(u \beta)^{-1}(g \beta)(u \beta)=g^{\prime} \beta$.
 $f \in F$ such that $g^{\prime}=g f$.
- Compute the centralizer of $g \beta \neq 1$ in H, and preimages y_{1} in $G: C_{H}(g \beta)=\langle g \beta\rangle\left(y_{1} \beta\right) \sqcup$

The short exact sequence theorem

Proof. $C P(G)$ splits into two subproblems:

- given $u, v \in F$ decide whether they are conjugate in G : this is orbit decidability of $A_{G} \leq \operatorname{Aut}(F)$.
- given $g, g^{\prime} \in G \backslash F$ decide whether they are conjugate in G; Let us solve this using (i), (ii) and (iii):
- check whether $g \beta, g^{\prime} \beta$ are conjugate in H; if not, g, g^{\prime} are not conjugate in G either.
- Otherwise, compute $u \in G$ such that $(u \beta)^{-1}(g \beta)(u \beta)=g^{\prime} \beta$.

- Compute the centralizer of $g \beta \neq 1$ in H, and preimages y_{1}

The short exact sequence theorem

Proof. $C P(G)$ splits into two subproblems:

- given $u, v \in F$ decide whether they are conjugate in G : this is orbit decidability of $A_{G} \leq \operatorname{Aut}(F)$.
- given $g, g^{\prime} \in G \backslash F$ decide whether they are conjugate in G; Let us solve this using (i), (ii) and (iii):
- check whether $g \beta, g^{\prime} \beta$ are conjugate in H; if not, g, g^{\prime} are not conjugate in G either.
- Otherwise, compute $u \in G$ such that $(u \beta)^{-1}(g \beta)(u \beta)=g^{\prime} \beta$.
- Changing g to g^{μ}, we can assume $g \beta=g^{\prime} \beta \neq 1_{\mathrm{H}}$. Compute $f \in F$ such that $g^{\prime}=g f$.

The short exact sequence theorem

Proof. $C P(G)$ splits into two subproblems:

- given $u, v \in F$ decide whether they are conjugate in G : this is orbit decidability of $A_{G} \leq \operatorname{Aut}(F)$.
- given $g, g^{\prime} \in G \backslash F$ decide whether they are conjugate in G; Let us solve this using (i), (ii) and (iii):
- check whether $g \beta, g^{\prime} \beta$ are conjugate in H; if not, g, g^{\prime} are not conjugate in G either.
- Otherwise, compute $u \in G$ such that $(u \beta)^{-1}(g \beta)(u \beta)=g^{\prime} \beta$.
- Changing g to g^{μ}, we can assume $g \beta=g^{\prime} \beta \neq 1_{H}$. Compute $f \in F$ such that $g^{\prime}=g f$.
- Compute the centralizer of $g \beta \neq 1$ in H, and preimages y_{1}, \ldots, y_{t} in $G: C_{H}(g \beta)=\langle g \beta\rangle\left(y_{1} \beta\right) \sqcup \cdots \sqcup\langle g \beta\rangle\left(y_{t} \beta\right)$.

The short exact sequence theorem

Proof. $C P(G)$ splits into two subproblems:

- given $u, v \in F$ decide whether they are conjugate in G : this is orbit decidability of $A_{G} \leq \operatorname{Aut}(F)$.
- given $g, g^{\prime} \in G \backslash F$ decide whether they are conjugate in G; Let us solve this using (i), (ii) and (iii):
- check whether $g \beta, g^{\prime} \beta$ are conjugate in H; if not, g, g^{\prime} are not conjugate in G either.
- Otherwise, compute $u \in G$ such that $(u \beta)^{-1}(g \beta)(u \beta)=g^{\prime} \beta$.
- Changing g to g^{μ}, we can assume $g \beta=g^{\prime} \beta \neq 1_{H}$. Compute $f \in F$ such that $g^{\prime}=g f$.
- Compute the centralizer of $g \beta \neq 1$ in H, and preimages y_{1}, \ldots, y_{t} in $G: C_{H}(g \beta)=\langle g \beta\rangle\left(y_{1} \beta\right) \sqcup \cdots \sqcup\langle g \beta\rangle\left(y_{t} \beta\right)$.
- Compute $p_{i} \in F$ such that $y_{i}^{-1} g y_{i}=g p_{i}\left(\right.$ since $g \beta$ and $y_{i} \beta$ commute in H).

The short exact sequence theorem

- All possible conjugators from g to g^{\prime} in G commute with $g \beta=g^{\prime} \beta$ in H, so they are of the form $g^{r} y_{i} x$, for some $r \in \mathbb{Z}, i=1, \ldots, t$ and $x \in F$. Now,

$$
\left(x^{-1} y_{i}^{-1} g^{-r}\right) g\left(g^{r} y_{i} x\right)=x^{-1}\left(y_{i}^{-1} g y_{i}\right) x=x^{-1} g p_{i} x
$$

- And this can be decided with finitely many applications of TCP (F).

The short exact sequence theorem

- All possible conjugators from g to g^{\prime} in G commute with $g \beta=g^{\prime} \beta$ in H, so they are of the form $g^{r} y_{i} x$, for some $r \in \mathbb{Z}, i=1, \ldots, t$ and $x \in F$. Now,

$$
\left(x^{-1} y_{i}^{-1} g^{-r}\right) g\left(g^{r} y_{i} x\right)=x^{-1}\left(y_{i}^{-1} g y_{i}\right) x=x^{-1} g p_{i} x
$$

and

$$
\begin{aligned}
x^{-1} g p_{i} x=g f \Longleftrightarrow & g^{-1} x^{-1} g p_{i} x=f \\
& \left(x \psi_{g}\right)^{-1} p_{i} x=f \\
& f \sim_{\psi_{g}} p_{i},
\end{aligned}
$$

- And this can be decided with finitely many applications of TCP(F).

The short exact sequence theorem

- All possible conjugators from g to g^{\prime} in G commute with $g \beta=g^{\prime} \beta$ in H, so they are of the form $g^{r} y_{i} x$, for some $r \in \mathbb{Z}, i=1, \ldots, t$ and $x \in F$. Now,

$$
\left(x^{-1} y_{i}^{-1} g^{-r}\right) g\left(g^{r} y_{i} x\right)=x^{-1}\left(y_{i}^{-1} g y_{i}\right) x=x^{-1} g p_{i} x
$$

and

$$
\begin{aligned}
x^{-1} g p_{i} x=g f \Longleftrightarrow & g^{-1} x^{-1} g p_{i} x=f \\
& \left(x \psi_{g}\right)^{-1} p_{i} x=f \\
& f \sim_{\psi_{g}} p_{i},
\end{aligned}
$$

- And this can be decided with finitely many applications of TCP (F).

Outline

(1) Orbit decidability

2 Free group and relatives

3 Orbit undecidable subgroups

4 Connection with the Conjugacy Problem
(5) Applications

Positive applications

For free abelian-by-free groups: $\quad 1 \rightarrow \mathbb{Z}^{d} \rightarrow G \rightarrow F_{m} \rightarrow 1$.

Corollary

\mathbb{Z}^{d}-by- \mathbb{Z} groups have solvable conjugacy problem.
Corollary (Bogopolski-Martino-V., 2008)
If $\Gamma=\left\langle M_{1}, \ldots, M_{m}\right\rangle$ is of finite index in $G L_{d}(\mathbb{Z})$ then $\mathbb{Z}^{d} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}$
has solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)

Every \mathbb{Z}^{2}-by-free group has solvable coniuaacy problem.

Positive applications

For free abelian-by-free groups: $\quad 1 \rightarrow \mathbb{Z}^{d} \rightarrow G \rightarrow F_{m} \rightarrow 1$.

Corollary

\mathbb{Z}^{d}-by- \mathbb{Z} groups have solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)
If $\Gamma=\left\langle M_{1}, \ldots, M_{m}\right\rangle$ is of finite index in $G L_{d}(\mathbb{Z})$ then $\mathbb{Z}^{d} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}$
has solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)

Everv \mathbb{T}^{2}-bv-free aroun has solvable coniugacy problem.

Positive applications

For free abelian-by-free groups: $\quad 1 \rightarrow \mathbb{Z}^{d} \rightarrow G \rightarrow F_{m} \rightarrow 1$.

Corollary

\mathbb{Z}^{d}-by- \mathbb{Z} groups have solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)
If $\Gamma=\left\langle M_{1}, \ldots, M_{m}\right\rangle$ is of finite index in $G L_{d}(\mathbb{Z})$ then $\mathbb{Z}^{d} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}$ has solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)
Every \mathbb{Z}^{2}-by-free group has solvable coniugacy problem.

Positive applications

For free abelian-by-free groups: $\quad 1 \rightarrow \mathbb{Z}^{d} \rightarrow G \rightarrow F_{m} \rightarrow 1$.

Corollary

\mathbb{Z}^{d}-by- \mathbb{Z} groups have solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)
If $\Gamma=\left\langle M_{1}, \ldots, M_{m}\right\rangle$ is of finite index in $G L_{d}(\mathbb{Z})$ then $\mathbb{Z}^{d} \rtimes_{M_{1}, \ldots, M_{m}} F_{m}$ has solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)
Every \mathbb{Z}^{2}-by-free group has solvable conjugacy problem.

Positive applications

For free-by-free groups: $\quad 1 \rightarrow F_{n} \rightarrow G \rightarrow F_{m} \rightarrow 1$.

Corollary (Bogopolski-Martino-Maslakova-V. 2006 alt.: Bridson-Groves 2010 + Ol'shanski-Sapir 2006)
 Free-by-cyclic groups have solvable conjugacy problem.
 Corollary (Bogopolski-Martino-V., 2008)
 If $\Gamma=\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ has finite index in $\operatorname{Aut}\left(F_{r}\right)$ then $F_{r} \lambda_{\varphi_{1}} . \mathrm{F}_{\mathrm{m}} F_{m}$ has solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)

Every F_{2}-by-free group has solvable conjugacy problem.

Positive applications

For free-by-free groups: $\quad 1 \rightarrow F_{n} \rightarrow G \rightarrow F_{m} \rightarrow 1$.

```
Corollary (Bogopolski-Martino-Maslakova-V. 2006 alt.: Bridson-Groves 2010 + Ol'shanski-Sapir 2006)
```

Free-by-cyclic groups have solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)
Every F_{2}-by-free group has solvable conjugacy problem.

Positive applications

For free-by-free groups: $1 \rightarrow F_{n} \rightarrow G \rightarrow F_{m} \rightarrow 1$.

Corollary (Bogopolski-Martino-Maslakova-V. 2006 alt.: Bridson-Groves 2010 + Ol'shanski-Sapir 2006)
Free-by-cyclic groups have solvable conjugacy problem.
Corollary (Bogopolski-Martino-V., 2008)
If $\Gamma=\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ has finite index in $\operatorname{Aut}\left(F_{r}\right)$ then $F_{r} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}$ has solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)
Every F_{2}-by-free group has solvable conjugacy problem.

Positive applications

For free-by-free groups:

$$
1 \rightarrow F_{n} \rightarrow G \rightarrow F_{m} \rightarrow 1
$$

Corollary (Bogopolski-Martino-Maslakova-V. 2006 alt.: Bridson-Groves 2010 + Ol'shanski-Sapir 2006)
Free-by-cyclic groups have solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)
If $\Gamma=\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle$ has finite index in $\operatorname{Aut}\left(F_{r}\right)$ then $F_{r} \rtimes_{\varphi_{1}, \ldots, \varphi_{m}} F_{m}$ has solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)
Every F_{2}-by-free group has solvable conjugacy problem.

Positive applications

For braid-by-free groups: $\quad 1 \rightarrow B_{n} \rightarrow G \rightarrow F_{m} \rightarrow 1$.

Corollary (González-Meneses-V., 2008)

Every braid-by-free group has solvable conjugacy problem.

Negative applications

Theorem (Miller, 70's)

There exist free-by-free groups (more precisely $F_{3} \rtimes F_{14}$) with unsolvable conjugacy problem.
Theorem (Bogopolski-Martino-Maslakova-V., 2006)
There exist \mathbb{Z}^{4}-by-free groups (more precisely \mathbb{Z}^{4}-by- F_{14}) withunsolvable conjugacy problem.
Theorem (Burillo-Matucci-V., 2012)
There exists a Thompson-bv-free aroup with unsolvable conjugacy

Question

\qquad
\qquad

Negative applications

Theorem (Miller, 70's)

There exist free-by-free groups (more precisely $F_{3} \rtimes F_{14}$) with unsolvable conjugacy problem.

Theorem (Bogopolski-Martino-Maslakova-V., 2006)

There exist \mathbb{Z}^{4}-by-free groups (more precisely \mathbb{Z}^{4}-by- F_{14}) with unsolvable conjugacy problem.

Theorem (Burillo-Matucci-V., 2012)
 There exists a Thompson-by-free group with unsolvable conjugacy problem.

Question

nono thore exist a Z^{3}-by-free group with unsolvable conjugacy
problem

Negative applications

Theorem (Miller, 70's)

There exist free-by-free groups (more precisely $F_{3} \rtimes F_{14}$) with unsolvable conjugacy problem.

Theorem (Bogopolski-Martino-Maslakova-V., 2006)

There exist \mathbb{Z}^{4}-by-free groups (more precisely \mathbb{Z}^{4}-by- F_{14}) with unsolvable conjugacy problem.

Theorem (Burillo-Matucci-V., 2012)

There exists a Thompson-by-free group with unsolvable conjugacy problem.

Negative applications

Theorem (Miller, 70's)

There exist free-by-free groups (more precisely $F_{3} \rtimes F_{14}$) with unsolvable conjugacy problem.

Theorem (Bogopolski-Martino-Maslakova-V., 2006)

There exist \mathbb{Z}^{4}-by-free groups (more precisely \mathbb{Z}^{4}-by- F_{14}) with unsolvable conjugacy problem.

Theorem (Burillo-Matucci-V., 2012)

There exists a Thompson-by-free group with unsolvable conjugacy problem.

Question

Does there exist a \mathbb{Z}^{3}-by-free group with unsolvable conjugacy problem?

Playing with 2 extra dimensions...

Those orbit undecidable examples $\Gamma \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ came from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \geqslant 6, \mathrm{GL}_{d}(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Proof. Let $d \geqslant 6$.

- Since $d-2 \geqslant 4$, there exists $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_{m}=\left\langle f_{1}, \ldots, f_{m}\right\rangle$, and choose matrices $s_{1}, \ldots, s_{m} \in \mathrm{GL}_{2}(\mathbb{Z})$ such that $\left\langle s_{1}, \ldots, s_{m}\right\rangle \simeq F_{m}$.
- Consider the homomorphism given by

$$
\begin{aligned}
\phi: F_{m} & \rightarrow \mathrm{GL}_{d}(\mathbb{Z}) \\
f_{i} & \mapsto\left(\begin{array}{cc}
g_{i} & 0 \\
0 & s_{i}
\end{array}\right)
\end{aligned}
$$

Playing with 2 extra dimensions...

Those orbit undecidable examples $\Gamma \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ came from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \geqslant 6, \mathrm{GL}_{d}(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

- Since $d-2 \geqslant 4$, there exists $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_{m}=\left\langle f_{1}, \ldots, f_{m}\right\rangle$, and choose matrices $s_{1}, \ldots, s_{m} \in \mathrm{GL}_{2}(\mathbb{Z})$ such that $\left\langle s_{1}, \ldots, s_{m}\right\rangle \simeq F_{m}$.
- Consider the homomorphism given by

Playing with 2 extra dimensions...

Those orbit undecidable examples $\Gamma \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ came from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \geqslant 6, \mathrm{GL}_{d}(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Proof. Let $d \geqslant 6$.

- Since $d-2 \geqslant 4$, there exists $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant G L_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_{m}=\left\langle f_{1}, \ldots, f_{m}\right\rangle$, and choose matrices $s_{1}, \ldots, s_{m} \in G L_{2}(\mathbb{Z})$
such that $\left\langle s_{1}, \ldots, s_{m}\right\rangle \simeq F_{m}$.
- Consider the homomorphism given by

Playing with 2 extra dimensions...

Those orbit undecidable examples $\Gamma \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ came from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \geqslant 6, \mathrm{GL}_{d}(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Proof. Let $d \geqslant 6$.

- Since $d-2 \geqslant 4$, there exists $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$ being orbit undecidable.

Playing with 2 extra dimensions...

Those orbit undecidable examples $\Gamma \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ came from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \geqslant 6, \mathrm{GL}_{d}(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Proof. Let $d \geqslant 6$.

- Since $d-2 \geqslant 4$, there exists $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_{m}=\left\langle f_{1}, \ldots, f_{m}\right\rangle$, and choose matrices $s_{1}, \ldots, s_{m} \in \mathrm{GL}_{2}(\mathbb{Z})$ such that $\left\langle s_{1}, \ldots, s_{m}\right\rangle \simeq F_{m}$.
- Consider the homomorphism given by

Playing with 2 extra dimensions...

Those orbit undecidable examples $\Gamma \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ came from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \geqslant 6, \mathrm{GL}_{d}(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Proof. Let $d \geqslant 6$.

- Since $d-2 \geqslant 4$, there exists $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_{m}=\left\langle f_{1}, \ldots, f_{m}\right\rangle$, and choose matrices $s_{1}, \ldots, s_{m} \in \mathrm{GL}_{2}(\mathbb{Z})$ such that $\left\langle s_{1}, \ldots, s_{m}\right\rangle \simeq F_{m}$.
- Consider the homomorphism given by

$$
\begin{aligned}
\phi: F_{m} & \rightarrow \mathrm{GL}_{d}(\mathbb{Z}) \\
f_{i} & \mapsto\left(\begin{array}{cc}
g_{i} & 0 \\
0 & s_{i}
\end{array}\right)
\end{aligned}
$$

Playing with 2 extra dimensions...

- Since $\left\langle s_{1}, \ldots, s_{m}\right\rangle \leqslant G L_{2}(\mathbb{Z})$ is free with basis $\left\{s_{1}, \ldots, s_{m}\right\}$, then ϕ must be one-to-one, and its image F is a free subgroup of $\mathrm{GL}_{d}(\mathbb{Z})$ or rank m.
- Easy to see that $F \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ is orbit undecidable (using the orbit undecidability of $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$). \square

In summary,

For $d \geqslant 6$, there exists a free $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ such that $\mathbb{Z}^{d} \rtimes \Gamma$ has unsolvable CP.

Theorem (Sunic-V., 2012)
There exist automaton groups (i.e. self-similar groups generated by finite self-similar sets) with unsolvable conjugacy problem.

Playing with 2 extra dimensions...

- Since $\left\langle s_{1}, \ldots, s_{m}\right\rangle \leqslant G L_{2}(\mathbb{Z})$ is free with basis $\left\{s_{1}, \ldots, s_{m}\right\}$, then ϕ must be one-to-one, and its image F is a free subgroup of $\mathrm{GL}_{d}(\mathbb{Z})$ or rank m.
- Easy to see that $F \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ is orbit undecidable (using the orbit undecidability of $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$). \square

In summary,

For $d \geqslant 6$, there exists a free $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ such that $\mathbb{Z}^{d} \rtimes \Gamma$ has
unsolvable CP.

Theorem (Sunic-V., 2012)
There exist automaton aroups (i.e. self-similar groups generated by
finite self-similar sets) with unsolvable conjugacy problem.

Playing with 2 extra dimensions...

- Since $\left\langle s_{1}, \ldots, s_{m}\right\rangle \leqslant G L_{2}(\mathbb{Z})$ is free with basis $\left\{s_{1}, \ldots, s_{m}\right\}$, then ϕ must be one-to-one, and its image F is a free subgroup of $\mathrm{GL}_{d}(\mathbb{Z})$ or rank m.
- Easy to see that $F \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ is orbit undecidable (using the orbit undecidability of $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$). \square

In summary,
For $d \geqslant 6$, there exists a free $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ such that $\mathbb{Z}^{d} \rtimes \Gamma$ has unsolvable CP.

Theorem (Sunic-V., 2012)
There exist automaton groups (i.e. self-similar groups generated by finite self-similar sets) with unsolvable conjugacy problem.

Playing with 2 extra dimensions...

- Since $\left\langle s_{1}, \ldots, s_{m}\right\rangle \leqslant G L_{2}(\mathbb{Z})$ is free with basis $\left\{s_{1}, \ldots, s_{m}\right\}$, then ϕ must be one-to-one, and its image F is a free subgroup of $\mathrm{GL}_{d}(\mathbb{Z})$ or rank m.
- Easy to see that $F \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ is orbit undecidable (using the orbit undecidability of $\left\langle g_{1}, \ldots, g_{m}\right\rangle=\Gamma \leqslant \mathrm{GL}_{d-2}(\mathbb{Z})$). \square

In summary,
For $d \geqslant 6$, there exists a free $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ such that $\mathbb{Z}^{d} \rtimes \Gamma$ has unsolvable CP.

Theorem (Sunic-V., 2012)

There exist automaton groups (i.e. self-similar groups generated by finite self-similar sets) with unsolvable conjugacy problem.

THANKS

