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Orbit decidability

Definition

Let X be a set. A collection of maps A ⊆ Map(X ,X ) is said to be orbit
decidable (O.D.) if there is an algorithm s.t., given x , y ∈ X, it decides
whether xα = y for some α ∈ A (and, if so, finds such an α).

Definition

For X, A ⊆ Map(X ,X ), the A-orbit of x ∈ X is O(x) = {xα | α ∈ A}.

Observation
O.D. is membership in a given A-orbit.

(Zoom into the problem)

Geometry: take X = space, A = action;
Algebra: take X = algebraic structure, A ⊆ End(X );

Our case: X = G group, A ⊆ End(G), A ⊆ Aut(G).



1. Orbit decidability 2. Free group and relatives 3. Orbit undecidable subgroups 4. Connection with CP 5. Applications

Orbit decidability

Definition

Let X be a set. A collection of maps A ⊆ Map(X ,X ) is said to be orbit
decidable (O.D.) if there is an algorithm s.t., given x , y ∈ X, it decides
whether xα = y for some α ∈ A (and, if so, finds such an α).

Definition

For X, A ⊆ Map(X ,X ), the A-orbit of x ∈ X is O(x) = {xα | α ∈ A}.

Observation
O.D. is membership in a given A-orbit.

(Zoom into the problem)

Geometry: take X = space, A = action;
Algebra: take X = algebraic structure, A ⊆ End(X );

Our case: X = G group, A ⊆ End(G), A ⊆ Aut(G).



1. Orbit decidability 2. Free group and relatives 3. Orbit undecidable subgroups 4. Connection with CP 5. Applications

Orbit decidability

Definition

Let X be a set. A collection of maps A ⊆ Map(X ,X ) is said to be orbit
decidable (O.D.) if there is an algorithm s.t., given x , y ∈ X, it decides
whether xα = y for some α ∈ A (and, if so, finds such an α).

Definition

For X, A ⊆ Map(X ,X ), the A-orbit of x ∈ X is O(x) = {xα | α ∈ A}.

Observation
O.D. is membership in a given A-orbit.

(Zoom into the problem)

Geometry: take X = space, A = action;
Algebra: take X = algebraic structure, A ⊆ End(X );

Our case: X = G group, A ⊆ End(G), A ⊆ Aut(G).



1. Orbit decidability 2. Free group and relatives 3. Orbit undecidable subgroups 4. Connection with CP 5. Applications

Orbit decidability

Definition

Let X be a set. A collection of maps A ⊆ Map(X ,X ) is said to be orbit
decidable (O.D.) if there is an algorithm s.t., given x , y ∈ X, it decides
whether xα = y for some α ∈ A (and, if so, finds such an α).

Definition

For X, A ⊆ Map(X ,X ), the A-orbit of x ∈ X is O(x) = {xα | α ∈ A}.

Observation
O.D. is membership in a given A-orbit.

(Zoom into the problem)

Geometry: take X = space, A = action;
Algebra: take X = algebraic structure, A ⊆ End(X );

Our case: X = G group, A ⊆ End(G), A ⊆ Aut(G).



1. Orbit decidability 2. Free group and relatives 3. Orbit undecidable subgroups 4. Connection with CP 5. Applications

Orbit decidability

Definition

Let X be a set. A collection of maps A ⊆ Map(X ,X ) is said to be orbit
decidable (O.D.) if there is an algorithm s.t., given x , y ∈ X, it decides
whether xα = y for some α ∈ A (and, if so, finds such an α).

Definition

For X, A ⊆ Map(X ,X ), the A-orbit of x ∈ X is O(x) = {xα | α ∈ A}.

Observation
O.D. is membership in a given A-orbit.

(Zoom into the problem)

Geometry: take X = space, A = action;
Algebra: take X = algebraic structure, A ⊆ End(X );

Our case: X = G group, A ⊆ End(G), A ⊆ Aut(G).



1. Orbit decidability 2. Free group and relatives 3. Orbit undecidable subgroups 4. Connection with CP 5. Applications

Orbit decidability

Definition

Let X be a set. A collection of maps A ⊆ Map(X ,X ) is said to be orbit
decidable (O.D.) if there is an algorithm s.t., given x , y ∈ X, it decides
whether xα = y for some α ∈ A (and, if so, finds such an α).

Definition

For X, A ⊆ Map(X ,X ), the A-orbit of x ∈ X is O(x) = {xα | α ∈ A}.

Observation
O.D. is membership in a given A-orbit.

(Zoom into the problem)

Geometry: take X = space, A = action;
Algebra: take X = algebraic structure, A ⊆ End(X );

Our case: X = G group, A ⊆ End(G), A ⊆ Aut(G).



1. Orbit decidability 2. Free group and relatives 3. Orbit undecidable subgroups 4. Connection with CP 5. Applications

Classical examples

Theorem (Whitehead 1936)

There is an algorithm to decide, given u, v ∈ Fr , whether there exists
α ∈ Aut(Fr ) s.t. uα = v.

In other words: Aut(Fr ) is O.D.

Variations with tuples of words, subgroups, tuples of subgroups,
modulo conjugation, etc.
All these are instances of the Orbit Decidability problem.

Observation

The conjugacy problem for G is just the O.D. for A = Inn(G) 6 Aut(G).
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First examples: G = Zd

Observation (folklore)

The full group Aut(Zd ) = GLd (Z) is orbit decidable.

Proof. For u, v ∈ Zd , there exists A ∈ GLd (Z) such that v = uA if and
only if gcd(u1, . . . ,ud ) = gcd(v1, . . . , vd ).

Proposition (Bogopolski–Martino–V., 2008)

Finite index subgroups of GLd (Z) are O.D.

Proposition (Bogopolski–Martino–V., 2008)

Every finitely generated subgroup of GL2(Z) is O.D.
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First examples: G = Zd

Proposition (linear algebra)

For A ∈ GLd (Z), the subgroup 〈A〉 6 GLd (Z) is O.D.

Proof. (sketch)

Given A ∈ GLd (Z), u, v ∈ Zd , want to decide wether uAn = v for
some n ∈ N.
Keep computing u, uA, uA2,uA3, . . . and compare with v.
Denote λ the eigenvalue of A with maximum modulus. The
projection of uAn to Eλ grows faster than all other projections.
So we can compute n0 such that either u, uA, uA2,uA3, . . . ,uAn0

hits v, or either uAn 6= v for all n.
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Brinkmann’s result

Theorem (Brinkmann, 2006)

Cyclic groups of Aut(Fr ) are orbit decidable. That is, given
ϕ ∈ Aut(Fr ) and u, v ∈ Fr , one can decide whether v = uϕn for some
n ∈ Z.

Proof.
Same idea as before: there is a computable n0 such that either
u, uϕ, uϕ2,uϕ3, . . . ,uϕn0 hits v, or either uϕn 6= v for all n.
The computation of n0 is quite complicated, making strong use of
train-tracks.

Theorem (Brinkmann, 2006)

Cyclic groups of Aut(Fr ) are orbit decidable up to conjugacy. That is,
given ϕ ∈ Aut(Fr ) and u, v ∈ Fr , one can decide whether v ∼ uϕn for
some n ∈ Z (i.e., 〈ϕ〉 · Inn(Fr ) is O.D.).
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Whitehead problem and variations

Theorem (Whitehead’30)

The full group Aut(Fr ) is orbit decidable. That is, given u, v ∈ Fr one
can decide whether v = uα for some α ∈ Aut(Fr ) (also for tuples).

This is a classical and very influential result.

Proposition (Bogopolski–Martino–V., 2008)

Finite index subgroups of Aut(Fr ) are O.D.

Proposition (Bogopolski–Martino–V., 2008)

Every finitely generated subgroup of Aut(F2) is O.D.



1. Orbit decidability 2. Free group and relatives 3. Orbit undecidable subgroups 4. Connection with CP 5. Applications

Whitehead problem and variations

Theorem (Whitehead’30)

The full group Aut(Fr ) is orbit decidable. That is, given u, v ∈ Fr one
can decide whether v = uα for some α ∈ Aut(Fr ) (also for tuples).

This is a classical and very influential result.

Proposition (Bogopolski–Martino–V., 2008)

Finite index subgroups of Aut(Fr ) are O.D.

Proposition (Bogopolski–Martino–V., 2008)

Every finitely generated subgroup of Aut(F2) is O.D.



1. Orbit decidability 2. Free group and relatives 3. Orbit undecidable subgroups 4. Connection with CP 5. Applications

Whitehead problem and variations

Theorem (Whitehead’30)

The full group Aut(Fr ) is orbit decidable. That is, given u, v ∈ Fr one
can decide whether v = uα for some α ∈ Aut(Fr ) (also for tuples).

This is a classical and very influential result.

Proposition (Bogopolski–Martino–V., 2008)

Finite index subgroups of Aut(Fr ) are O.D.

Proposition (Bogopolski–Martino–V., 2008)

Every finitely generated subgroup of Aut(F2) is O.D.



1. Orbit decidability 2. Free group and relatives 3. Orbit undecidable subgroups 4. Connection with CP 5. Applications

Whitehead problem and variations

Theorem (Whitehead’30)

The full group Aut(Fr ) is orbit decidable. That is, given u, v ∈ Fr one
can decide whether v = uα for some α ∈ Aut(Fr ) (also for tuples).

This is a classical and very influential result.

Proposition (Bogopolski–Martino–V., 2008)

Finite index subgroups of Aut(Fr ) are O.D.

Proposition (Bogopolski–Martino–V., 2008)

Every finitely generated subgroup of Aut(F2) is O.D.



1. Orbit decidability 2. Free group and relatives 3. Orbit undecidable subgroups 4. Connection with CP 5. Applications

Whitehead problem and variations

Theorem (Makanin, 1982)

The full End(Fr ) is orbit decidable. That is, given u, v ∈ Fr one can
decide whether v = uα for some α ∈ End(Fr ) (also for tuples).

Proof. It reduces to solving (a system of) equations over Fr .

Theorem (Ciobanu–Houcine, 2010)

Mon(Fr ) is orbit decidable. That is, given u, v ∈ Fr one can decide
whether v = uα for some injective endomorphism α ∈ Mon(Fr ) (also
for tuples).

Corollary

For every f.g. H 6 Fr , Stab(H) is O.D (also for tuples, and similarly for
monos and endos).
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Whitehead problem and variations

Definition
A virtual endomorphism of G is a homomorphism ϕ : H → K between
finite index subgroups H,K 6fi G.

Theorem (Rubió–V., w.p.)

The collection of virtual endos (resp. virtual monos, virtual autos) of
Fr is O.D. (also for tuples).
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Other groups

Theorem (Collins, Zieschang, 1984)

Let G1, . . . , Gn be freely indecomposable groups with Aut(Gi ) being
O.D. Then, its free product G = G1 ∗G2 ∗ · · · ∗Gn has Aut(G) O.D.

Theorem (Levitt–Vogtman, 2000)

For a surface group G, Aut(G) is O.D. (also for tuples).

Theorem (Dahmani, Girardel, 2010)

For a hyperbolic group G, Aut(G) is O.D. (also for tuples).

Theorem (Kharlampovich–V., 2012)

For G torsion-free relatively hyperbolic with abelian parabolic
subgroups, Aut(G) is O.D. (also for tuples).
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O.D. Then, its free product G = G1 ∗G2 ∗ · · · ∗Gn has Aut(G) O.D.

Theorem (Levitt–Vogtman, 2000)

For a surface group G, Aut(G) is O.D. (also for tuples).

Theorem (Dahmani, Girardel, 2010)

For a hyperbolic group G, Aut(G) is O.D. (also for tuples).

Theorem (Kharlampovich–V., 2012)

For G torsion-free relatively hyperbolic with abelian parabolic
subgroups, Aut(G) is O.D. (also for tuples).
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Other groups

Theorem (Day, 2013)

For G a PC group Aut(G) is O.D. (also for tuples modulo conjugation).

Theorem (Delgado–V., 2013)

For G = Zm × Fn, Aut(G), Mon(G) and End(G) are all O.D.
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Finding orbit undecidable subgroups

Proposition (Bogopolski–Martino–V., 2008)

Let F be a group, and let A 6 B 6 Aut(F ) and u ∈ F be such that
B ∩ Stab(u) = 1. Then, A is O.D. ⇒ MP(A,B) solvable.

Proof. Given ϕ ∈ B ≤ Aut(F ), let w = uϕ and

{φ ∈ B | uφ = w} = (B ∩ Stab(u)) · ϕ = {ϕ}.

So, u can be mapped to w by somebody in A ⇔ ϕ ∈ A. �

Let F be a group, and let A 6 B 6 Aut(F ) and u ∈ F be such that
B ∩ Stab∗(u) = 1. Then, A · Inn(F ) is O.D. ⇒ MP(A,B) solvable.
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Finding orbit undecidable subgroups

Corollary (Bogopolski–Martino–V., 2008)

Let F be a group, and let F2 × F2 ' B 6 Aut(F ) and u ∈ F be such
that B ∩ Stab(u) = 1. Then, there exists f.g. A 6 Aut(F ) which is orbit
undecidable.

Proof. By Mihailova’s construction, for every group
U = 〈a1, a2 | r1, . . . , rm〉 with unsolvable word problem, the finitely
generated subgroup

A = 〈(a1,a1), (a2,a2), (r1,1), . . . , (rm,1)〉
= {(v ,w) | v =U w} 6 F2 × F2

has unsolvable membership problem. Hence, A 6 Aut(F ) is orbit
undecidable.
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Finding orbit undecidable subgroups

For free groups

Corollary (Bogopolski–Martino–V., 2008)

Aut(Fr ) contains f.g. orbit undecidable subgroups, for r > 3.

Proof. Take the copy B of F2 × F2 in Aut(F3) via the embedding

F2 × F2 ↪→ Aut (F3),
(u, v) 7→ uθv : F3 → F3

a 7→ a
b 7→ b
q 7→ u−1qv ;

(u = qaqbq satisfies B ∩ Stab∗(u) = 1). Now, take any Mihailova
subgroup in there, A 6 B 6 Aut(F3), and A will be orbit undecidable.

Proposition (Bogopolski–Martino–V., 2008)

Every finitely generated subgroup of Aut(F2) is O.D.
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Finding orbit undecidable subgroups

For free abelian groups

Corollary (Bogopolski–Martino–V., 2008)

GLd (Z) contains f.g. orbit undecidable subgroups, for d > 4.

Proof. Consider F2 ' 〈P =

(
1 1
1 2

)
, Q =

(
2 1
1 1

)
〉 ≤24 GL2(Z).

Stab(1,0) = {M | (1,0)M = (1,0)} = {
(

1 0
n ±1

)
| n ∈ Z}.

〈P,Q〉 ∩ Stab(1,0) = 〈
(

1 0
12 1

)
〉.

Choose a free subgroup F2 ' 〈P ′,Q′〉 ≤ 〈P,Q〉 such that
〈P ′,Q′〉 ∩ Stab(1,0) = {I} and consider

B = 〈
(

P ′ 0
0 I

)
,

(
Q′ 0
0 I

)
,

(
I 0
0 P ′

)
,

(
I 0
0 Q′

)
〉 ≤ GL4(Z).
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Finding orbit undecidable subgroups

Note that B ' F2 × F2.
Write u = (1,0,1,0). By construction, B ∩ Stab(u) = {Id}.
Take A ≤ B ' F2 × F2 with unsolvable membership problem.
By previous Proposition, A 6 GL4(Z) is orbit undecidable.
Similarly for A 6 GLd (Z), d > 4. �

Proposition (Bogopolski–Martino–V., 2008)

Every finitely generated subgroup of GL2(Z) is O.D.

Question

Does there exist an orbit undecidable subgroup of GL3(Z) ?
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Connection to semidirect products

Observation (Bogopolski–Martino–V., 2008)

Let F be f.g., and A 6fg Aut(F ). If A n F has solvable CP, then
A · Inn(F ) 6 Aut(F ) is orbit decidable.

Proof. G = A n F contains elements (α, x) ∈ A× F operated like

(α1, x1) · (α2, x2) = (α1α2, (x1α2)x2)

(α, x)−1 = (α−1, x−1α−1).

For x1, x2 ∈ F 6 G, we have x1 ∼G x2 ⇔ ∃(α, x) ∈ A n F s.t.

(Id , x2) = (α, x)−1 · (Id , x1) · (α, x)
(α−1, x−1α−1) · (α, (x1α)x)
(Id , x−1(x1α)x).

Hence, x1 ∼G x2 ⇔ ∃α ∈ A and x ∈ F s.t. x2 = x−1(x1α)x . �
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For x1, x2 ∈ F 6 G, we have x1 ∼G x2 ⇔ ∃(α, x) ∈ A n F s.t.

(Id , x2) = (α, x)−1 · (Id , x1) · (α, x)
(α−1, x−1α−1) · (α, (x1α)x)
(Id , x−1(x1α)x).

Hence, x1 ∼G x2 ⇔ ∃α ∈ A and x ∈ F s.t. x2 = x−1(x1α)x . �
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Connection to semidirect products

In fact, for the free and free abelian cases (among others), the
converse is also true after “erasing the relations from A”:

Let F be a group, α1, . . . , αm ∈ Aut(F ), and consider
A = 〈α1, . . . , αm〉 6 Aut(F ) and the semidirect product
G = Fm nα1,...,αm F.

Theorem (Bogopolski–Martino–V., 2008)

Let F be Zd or Fr . Then G = Fm nα1,...,αm F has solvable CP if and
only if A · Inn(F ) = 〈α1, . . . , αm〉 · Inn(F ) 6 Aut(F ) is orbit decidable.

This comes from a more general result:
replace F to any group with solvable TCP,
replace Fm to any group with CP and “easy" centralizers,
replace semidirect products to arbitrary short exact sequences.
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The short exact sequence theorem

Theorem (Bogopolski–Martino–V., 2008)

Let
1 −→ F α−→ G β−→ H −→ 1

be an algorithmic short exact sequence of groups such that
(i) TCP(F ) is solvable,
(ii) CP(H) is solvable,
(iii) there is an algorithm which, given an input 1 6= h ∈ H, computes

a finite set of elements zh,1, . . . , zh,th ∈ H such that

CH(h) = 〈h〉zh,1 t · · · t 〈h〉zh,th .

Then,

CP(G) is solvable ⇐⇒
AG =

{
γg : F → F

x 7→ g−1xg

∣∣∣∣g ∈ G
}

6 Aut(F ) is orbit decidable.
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Twisted conjugacy

Definition

For ϕ ∈ End(F ), two elements u, v ∈ F are said to be ϕ-twisted
conjugated, denoted u ∼ϕ v, if v = (gϕ)−1ug for some g ∈ F.

Definition

The twisted conjugacy problem for F , denoted TCP(F ):
“Given ϕ ∈ Aut(F ) and u, v ∈ F decide whether u ∼ϕ v".

Observation

TCP(Zd ) is solvable.

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

TCP(Fr ) is solvable.
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Twisted conjugacy

Theorem (Bogopolski–Martino–V., 2008)

Let G be a surface group. Then, TCP(G) for is solvable.

Theorem (González–Meneses–V., 2010)

Let Bn be the Braid group. Then, TCP(Bn) is solvable.

Theorem (Burillo–Matucci–V., 12)

Let F be Thompson’s group. Then, TCP(F ) is solvable.

Theorem (Bogopolski–Martino–V., 2008)

There exists a group G with solvable CP but unsolvable TCP.
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Twisted conjugacy

Theorem (Romankov–V., 2009)

Let G be a polycyclic metabelian group. Then, TCP(G) for
endomorphisms is solvable.

Question

Is TCP(Fr ) solvable for endomorphisms ?

Theorem (Miasnikov–Nikolaev–Ushakov, preprint)

Double-TCP(Fr ) is unsolvable for r > 28.
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The short exact sequence theorem

Theorem (Bogopolski–Martino–V., 2008)

Let
1 −→ F α−→ G β−→ H −→ 1

be an algorithmic short exact sequence of groups such that
(i) TCP(F ) is solvable,
(ii) CP(H) is solvable,
(iii) there is an algorithm which, given an input 1 6= h ∈ H, computes

a finite set of elements zh,1, . . . , zh,th ∈ H such that

CH(h) = 〈h〉zh,1 t · · · t 〈h〉zh,th .

Then,

CP(G) is solvable ⇐⇒
AG =

{
γg : F → F

x 7→ g−1xg

∣∣∣∣g ∈ G
}

6 Aut(F ) is orbit decidable.
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The short exact sequence theorem

Proof. CP(G) splits into two subproblems:
- given u, v ∈ F decide whether they are conjugate in G: this is
orbit decidability of AG ≤ Aut(F ).
- given g,g′ ∈ G \ F decide whether they are conjugate in G; Let us
solve this using (i), (ii) and (iii):

• check whether gβ,g′β are conjugate in H; if not, g,g′ are not
conjugate in G either.

• Otherwise, compute u ∈ G such that (uβ)−1(gβ)(uβ) = g′β.
• Changing g to gu, we can assume gβ = g′β 6= 1H . Compute

f ∈ F such that g′ = gf .
• Compute the centralizer of gβ 6= 1 in H, and preimages y1, . . . , yt

in G: CH(gβ) = 〈gβ〉(y1β) t · · · t 〈gβ〉(ytβ).
• Compute pi ∈ F such that y−1

i gyi = gpi (since gβ and yiβ
commute in H).
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• Compute the centralizer of gβ 6= 1 in H, and preimages y1, . . . , yt

in G: CH(gβ) = 〈gβ〉(y1β) t · · · t 〈gβ〉(ytβ).
• Compute pi ∈ F such that y−1

i gyi = gpi (since gβ and yiβ
commute in H).
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The short exact sequence theorem

• All possible conjugators from g to g′ in G commute with gβ = g′β
in H, so they are of the form gr yix, for some r ∈ Z, i = 1, . . . , t
and x ∈ F. Now,

(x−1y−1
i g−r ) g (gr yix) = x−1(y−1

i gyi )x = x−1gpix

and
x−1gpix = gf ⇐⇒ g−1x−1gpix = f

(xψg)−1pix = f
f ∼ψg pi ,

• And this can be decided with finitely many applications of
TCP(F ).



1. Orbit decidability 2. Free group and relatives 3. Orbit undecidable subgroups 4. Connection with CP 5. Applications

The short exact sequence theorem

• All possible conjugators from g to g′ in G commute with gβ = g′β
in H, so they are of the form gr yix, for some r ∈ Z, i = 1, . . . , t
and x ∈ F. Now,

(x−1y−1
i g−r ) g (gr yix) = x−1(y−1

i gyi )x = x−1gpix

and
x−1gpix = gf ⇐⇒ g−1x−1gpix = f

(xψg)−1pix = f
f ∼ψg pi ,

• And this can be decided with finitely many applications of
TCP(F ).



1. Orbit decidability 2. Free group and relatives 3. Orbit undecidable subgroups 4. Connection with CP 5. Applications

The short exact sequence theorem

• All possible conjugators from g to g′ in G commute with gβ = g′β
in H, so they are of the form gr yix, for some r ∈ Z, i = 1, . . . , t
and x ∈ F. Now,

(x−1y−1
i g−r ) g (gr yix) = x−1(y−1

i gyi )x = x−1gpix

and
x−1gpix = gf ⇐⇒ g−1x−1gpix = f

(xψg)−1pix = f
f ∼ψg pi ,

• And this can be decided with finitely many applications of
TCP(F ).



1. Orbit decidability 2. Free group and relatives 3. Orbit undecidable subgroups 4. Connection with CP 5. Applications

Outline

1 Orbit decidability

2 Free group and relatives

3 Orbit undecidable subgroups

4 Connection with the Conjugacy Problem

5 Applications



1. Orbit decidability 2. Free group and relatives 3. Orbit undecidable subgroups 4. Connection with CP 5. Applications

Positive applications

For free abelian-by-free groups: 1→ Zd → G→ Fm → 1.

Corollary

Zd -by-Z groups have solvable conjugacy problem.

Corollary (Bogopolski–Martino–V., 2008)

If Γ = 〈M1, . . . ,Mm〉 is of finite index in GLd (Z) then Zd oM1,...,Mm Fm
has solvable conjugacy problem.

Corollary (Bogopolski–Martino–V., 2008)

Every Z2-by-free group has solvable conjugacy problem.
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Positive applications

For free-by-free groups: 1→ Fn → G→ Fm → 1.

Corollary (Bogopolski–Martino–Maslakova–V. 2006
alt.: Bridson–Groves 2010 + Ol’shanski–Sapir 2006)

Free-by-cyclic groups have solvable conjugacy problem.

Corollary (Bogopolski–Martino–V., 2008)

If Γ = 〈ϕ1, . . . , ϕm〉 has finite index in Aut(Fr ) then Fr oϕ1,...,ϕm Fm has
solvable conjugacy problem.

Corollary (Bogopolski–Martino–V., 2008)
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Positive applications

For braid-by-free groups: 1→ Bn → G→ Fm → 1.

Corollary (González-Meneses–V., 2008)

Every braid-by-free group has solvable conjugacy problem.
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Negative applications

Theorem (Miller, 70’s)

There exist free-by-free groups (more precisely F3 o F14) with
unsolvable conjugacy problem.

Theorem (Bogopolski–Martino–Maslakova–V., 2006)

There exist Z4-by-free groups (more precisely Z4-by-F14) with
unsolvable conjugacy problem.

Theorem (Burillo–Matucci–V., 2012)

There exists a Thompson-by-free group with unsolvable conjugacy
problem.

Question

Does there exist a Z3-by-free group with unsolvable conjugacy
problem ?
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Playing with 2 extra dimensions...

Those orbit undecidable examples Γ 6 GL4(Z) came from Mihailova’s
construction, so they are not finitely presented...

Proposition (Sunic–V.)

For d > 6, GLd (Z) contains f.g., orbit undecidable, free, subgroups.

Proof. Let d > 6.
Since d − 2 > 4, there exists 〈g1, . . . ,gm〉 = Γ 6 GLd−2(Z) being
orbit undecidable.
Let Fm = 〈f1, . . . , fm〉, and choose matrices s1, . . . , sm ∈ GL2(Z)
such that 〈s1, . . . , sm〉 ' Fm.
Consider the homomorphism given by

φ : Fm → GLd (Z)

fi 7→
(

gi 0
0 si

)
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Playing with 2 extra dimensions...

Since 〈s1, . . . , sm〉 6 GL2(Z) is free with basis {s1, . . . , sm}, then
φ must be one-to-one, and its image F is a free subgroup of
GLd (Z) or rank m.
Easy to see that F 6 GLd (Z) is orbit undecidable (using the orbit
undecidability of 〈g1, . . . ,gm〉 = Γ 6 GLd−2(Z)). �

In summary,

For d > 6, there exists a free Γ 6 GLd (Z) such that Zd o Γ has
unsolvable CP.

Theorem (Sunic–V., 2012)

There exist automaton groups (i.e. self-similar groups generated by
finite self-similar sets) with unsolvable conjugacy problem.
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