Whitehead minimization and computation of algebraic closures in polynomial time

Enric Ventura

Departament de Matemàtica Aplicada III
Universitat Politècnica de Catalunya

Omsk International Workshop

August 19th, 2009.

Outline

(1) Algebraic extensions
(2) The bijection between subgroups and automata
(3) Takahasi's theorem

4 Algebraic closures
(5) The first part of Whitehead algorithm made polynomial
(6) Generalization to subgroups
(7) Back to algebraic closures

Outline

(1) Algebraic extensions
(2) The bijection between subgroups and automata
(3) Takahasi's theorem

4 Algebraic closures
(5) The first part of Whitehead algorithm made polynomial
(6) Generalization to subgroups
(7) Back to algebraic closures

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo reduction).
- Every $w \in A^{*}$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_{A} : $|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3, \quad|u v| \leqslant|u|+|v|$.

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on A^{-1} modulo reduction).
- Every $w \in A^{*}$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_{A} :

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo reduction).
- Every $w \in A^{*}$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_{A} :

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo reduction).
- Every $w \in A^{*}$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_{A} :

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo reduction).
- Every $w \in A^{*}$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_{A} :

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo reduction).
- Every $w \in A^{*}$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_{A} :

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo reduction).
- Every $w \in A^{*}$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_{A} :

$$
|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3, \quad|u v| \leqslant|u|+|v| .
$$

Motivation

- In basic linear algebra:

$$
U \leqslant V \leqslant K^{n} \quad \Rightarrow \quad V=U \oplus L
$$

- $\ln \mathbb{Z}^{n}$, the analog is almost true:

- In $F(A)$, the analog is ...
far from true because $H \leqslant K \nRightarrow r(H) \leqslant r(K) \ldots$

Motivation

- In basic linear algebra:

$$
U \leqslant V \leqslant K^{n} \quad \Rightarrow \quad V=U \oplus L
$$

- In \mathbb{Z}^{n}, the analog is almost true:

$$
U \leqslant V \leqslant \mathbb{Z}^{n} \quad \Rightarrow \quad \exists U \leq_{f i} U^{\prime} \leqslant V \text { s.t. } V=U^{\prime} \oplus L
$$

- In $F(A)$, the analog is ...
far from true because $H \leqslant K \nRightarrow r(H) \leqslant r(K)$

Motivation

- In basic linear algebra:

$$
U \leqslant V \leqslant K^{n} \quad \Rightarrow \quad V=U \oplus L
$$

- In \mathbb{Z}^{n}, the analog is almost true:

$$
U \leqslant V \leqslant \mathbb{Z}^{n} \quad \Rightarrow \quad \exists U \leq_{f i} U^{\prime} \leqslant V \text { s.t. } V=U^{\prime} \oplus L .
$$

- In $F(A)$, the analog is ...
far from true because $H \leqslant K \nRightarrow r(H) \leqslant r(K) \ldots$

Motivation

- In basic linear algebra:

$$
U \leqslant V \leqslant K^{n} \quad \Rightarrow \quad V=U \oplus L
$$

- In \mathbb{Z}^{n}, the analog is almost true:

$$
U \leqslant V \leqslant \mathbb{Z}^{n} \quad \Rightarrow \quad \exists U \leq_{f i} U^{\prime} \leqslant V \text { s.t. } V=U^{\prime} \oplus L .
$$

- In $F(A)$, the analog is ...
almost true again, ... in the sense of Takahasi.

Algebraic and transcendental elements

Mimicking field theory...

Definition

Let $H \leqslant F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists 1 \neq e_{H}(x) \in H *\langle x\rangle$ such that $e_{H}(w)=1$;
- transcendental over H otherwise.

Observation
 w is transcendental over $H \Longleftrightarrow\langle H, w\rangle \simeq H *\langle w\rangle$ $\Longleftrightarrow H$ is contained in a proper f.f. of $\langle H, w\rangle$

Problem

\square $H=\langle a, \bar{b} a b, \bar{c} a c\rangle \leqslant\langle a, b, c\rangle$, and $w_{1}=b, w_{2}=\bar{c}$

Algebraic and transcendental elements

Mimicking field theory...

Definition

Let $H \leqslant F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists 1 \neq e_{H}(x) \in H *\langle x\rangle$ such that $e_{H}(w)=1$;
- transcendental over H otherwise.

Observation
 w is transcendental over $H \Longleftrightarrow\langle H, w\rangle \simeq H *\langle w\rangle$ $\Longleftrightarrow H$ is contained in a proper f.f. of $\langle H, w\rangle$.

Problem

\square $H=\langle a, \bar{b} a b, \bar{c} a c\rangle \leqslant\langle a, b, c\rangle$, and $w_{1}=b, w_{2}=\bar{c}$

Algebraic and transcendental elements

Mimicking field theory...

Definition

Let $H \leqslant F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists 1 \neq e_{H}(x) \in H *\langle x\rangle$ such that $e_{H}(w)=1$;
- transcendental over H otherwise.

Observation

w is transcendental over $H \Longleftrightarrow\langle H, w\rangle \simeq H *\langle w\rangle$

Problem
w_{1}, w_{2} algebraic over $H \nRightarrow w_{1} w_{2}$ algebraic over H
$H=\langle a, \bar{b} a b, \bar{c} a c\rangle \leqslant\langle a, b, c\rangle$, and $w_{1}=b, w_{2}=\bar{c}$

Algebraic and transcendental elements

Mimicking field theory...

Definition

Let $H \leqslant F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists 1 \neq e_{H}(x) \in H *\langle x\rangle$ such that $e_{H}(w)=1$;
- transcendental over H otherwise.

Observation

w is transcendental over $H \Longleftrightarrow\langle H, w\rangle \simeq H *\langle w\rangle$
$\Longleftrightarrow H$ is contained in a proper f.f. of $\langle H, w\rangle$.

Problem
w_{1}, w_{2} algebraic over $H \nRightarrow w_{1} w_{2}$ algebraic over H
$H=\langle a, \bar{b} a b, \bar{c} a c\rangle \leqslant\langle a, b, c\rangle$, and $w_{1}=b, w_{2}=\bar{c}$

Algebraic and transcendental elements

Mimicking field theory...

Definition

Let $H \leqslant F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists 1 \neq e_{H}(x) \in H *\langle x\rangle$ such that $e_{H}(w)=1$;
- transcendental over H otherwise.

Observation

w is transcendental over $H \Longleftrightarrow\langle H, w\rangle \simeq H *\langle w\rangle$
$\Longleftrightarrow H$ is contained in a proper f.f. of $\langle H, w\rangle$.

Problem

w_{1}, w_{2} algebraic over $H \nRightarrow w_{1} w_{2}$ algebraic over H.

```
\(H=\langle a, \bar{b} a b, \bar{c} a c\rangle \leqslant\langle a, b, c\rangle\), and \(w_{1}=b, w_{2}=\bar{c}\)
```


Algebraic and transcendental elements

Mimicking field theory...

Definition

Let $H \leqslant F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists 1 \neq e_{H}(x) \in H *\langle x\rangle$ such that $e_{H}(w)=1$;
- transcendental over H otherwise.

Observation

w is transcendental over $H \Longleftrightarrow\langle H, w\rangle \simeq H *\langle w\rangle$
$\Longleftrightarrow H$ is contained in a proper f.f. of $\langle H, w\rangle$.

Problem

w_{1}, w_{2} algebraic over $H \nRightarrow w_{1} w_{2}$ algebraic over H.
$H=\langle a, \bar{b} a b, \bar{c} a c\rangle \leqslant\langle a, b, c\rangle$, and $w_{1}=b, w_{2}=\bar{c}$

Algebraic and free extensions

A relative notion works better...

Definition

Let $H \leqslant K \leqslant F(A)$ and $w \in K$. We say that w is

- K-algebraic over H if \forall free factorization $K=K_{1} * K_{2}$ with $H \leqslant K_{1}$, we have $w \in K_{1}$;
- K-transcendental over H otherwise.

Observation

w is algebraic over H if and only if it is $\langle H, w\rangle$-algebraic over H.

Observation

If w_{1} and w_{2} are K-algebraic over H, then so is $w_{1} w_{2}$

Algebraic and free extensions

A relative notion works better...

Definition

Let $H \leqslant K \leqslant F(A)$ and $w \in K$. We say that w is

- K-algebraic over H if \forall free factorization $K=K_{1} * K_{2}$ with $H \leqslant K_{1}$, we have $w \in K_{1}$;
- K-transcendental over H otherwise.

Observation

w is algebraic over H if and only if it is $\langle H, w\rangle$-algebraic over H.

Observation
 If w_{1} and w_{2} are K-algebraic over H, then so is $w_{1} w_{2}$

Algebraic and free extensions

A relative notion works better...

Definition

Let $H \leqslant K \leqslant F(A)$ and $w \in K$. We say that w is

- K-algebraic over H if \forall free factorization $K=K_{1} * K_{2}$ with $H \leqslant K_{1}$, we have $w \in K_{1}$;
- K-transcendental over H otherwise.

Observation

w is algebraic over H if and only if it is $\langle H, w\rangle$-algebraic over H.

Observation

If w_{1} and w_{2} are K-algebraic over H, then so is $w_{1} w_{2}$.

Algebraic and free extensions

A relative notion works better...

Definition

Let $H \leqslant K \leqslant F(A)$ and $w \in K$. We say that w is

- K-algebraic over H if \forall free factorization $K=K_{1} * K_{2}$ with $H \leqslant K_{1}$, we have $w \in K_{1}$;
- K-transcendental over H otherwise.

Observation

w is algebraic over H if and only if it is $\langle H, w\rangle$-algebraic over H.

Observation

If w_{1} and w_{2} are K-algebraic over H, then so is $w_{1} w_{2}$.

Algebraic and free extensions

A relative notion works better...

Definition

Let $H \leqslant K \leqslant F(A)$ and $w \in K$. We say that w is

- K-algebraic over H if \forall free factorization $K=K_{1} * K_{2}$ with $H \leqslant K_{1}$, we have $w \in K_{1}$;
- K-transcendental over H otherwise.

Observation

w is algebraic over H if and only if it is $\langle H, w\rangle$-algebraic over H.

Observation

If w_{1} and w_{2} are K-algebraic over H, then so is $w_{1} w_{2}$.

Algebraic and free extensions

```
Definition
Let \(H \leqslant K \leqslant F(A)\).
We say that \(H \leqslant K\) is an algebraic extension, denoted \(H \leq_{\text {alg }} K\), \(\Longleftrightarrow\) every \(w \in K\) is \(K\)-algebraic over \(H\), \(\Longleftrightarrow H\) is not contained in any proper free factor of \(K\), \(\Longleftrightarrow H \leqslant K_{1} \leqslant K_{1} * K_{2}=K\) implies \(K_{2}=1\).
We say thai \(H \leqslant K\) is a iree exiension, denoied \(H \leq_{f f} K\), \(\Longleftrightarrow\) every \(w \in K\) is K-transcendental over \(H\), \(\Longleftrightarrow H \leqslant H * L=K\) for some \(L\).
```


Algebraic and free extensions

Definition

Let $H \leqslant K \leqslant F(A)$.
We say that $H \leqslant K$ is an algebraic extension, denoted $H \leq$ alg K,
\Longleftrightarrow every $w \in K$ is K-algebraic over H,
$\Longleftrightarrow H$ is not contained in any proper free factor of K,

Algebraic and free extensions

Definition

Let $H \leqslant K \leqslant F(A)$.
We say that $H \leqslant K$ is an algebraic extension, denoted $H \leq_{\text {alg }} K$,
\Longleftrightarrow every $w \in K$ is K-algebraic over H,
$\Longleftrightarrow H$ is not contained in any proper free factor of K,
$\Longleftrightarrow H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$.
We say that $H \leqslant K$ is a free extension, denoted $H \leq_{H f} K$,
\Longleftrightarrow every $w \in K$ is K-transcendental over H,
$\Longleftrightarrow H \leqslant H * L=K$ for some L.

Algebraic and free extensions

Definition

Let $H \leqslant K \leqslant F(A)$.
We say that $H \leqslant K$ is an algebraic extension, denoted $H \leq_{\text {alg }} K$,
\Longleftrightarrow every $w \in K$ is K-algebraic over H,
$\Longleftrightarrow H$ is not contained in any proper free factor of K,
$\Longleftrightarrow H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$.
We say that $H \leqslant K$ is a free extension, denoted $H \leq_{f f} K$, \Longleftrightarrow every $w \in K$ is K-transcendental over H,

Algebraic and free extensions

Definition

Let $H \leqslant K \leqslant F(A)$.
We say that $H \leqslant K$ is an algebraic extension, denoted $H \leq_{\text {alg }} K$,
\Longleftrightarrow every $w \in K$ is K-algebraic over H,
$\Longleftrightarrow H$ is not contained in any proper free factor of K,
$\Longleftrightarrow H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$.
We say that $H \leqslant K$ is a free extension, denoted $H \leq_{f f} K$, \Longleftrightarrow every $w \in K$ is K-transcendental over H, $\Longleftrightarrow H \leqslant H * L=K$ for some L.

Algebraic and free extensions

Example

- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant a l g\langle x\rangle, \forall x \in F_{A} \forall 0 \neq r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg K.
- $H \leqslant$ alg $K \leqslant$ alg L implies $H \leqslant$ alg L.
- $H \leqslant_{f f} K \leqslant_{f f} L$ implies $H \leqslant_{f f} L$.
- $H \leqslant$ alg L and $H \leqslant K \leqslant L$ imply $K \leqslant$ alg L but not necessarily $H \leqslant$ alg K.
- $H \leqslant_{f f} L$ and $H \leqslant K \leqslant L$ imply $H \leqslant_{f f} K$ but not necessarily $K \leqslant_{f f} L$.

How many algebraic extensions does a given H have in $F(A)$?

Can we compute them all ?

Algebraic and free extensions

Example

- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{\text {alg }}\langle x\rangle, \forall x \in F_{A} \forall 0 \neq r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg K.
- $H \leqslant a l g K$ alg L implies $H \leqslant a l g L$.
- $H \leqslant_{f f} K \leqslant_{f f} L$ implies $H \leqslant_{f f} L$.
- $H \leqslant \operatorname{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant a l g L$ but not necessarily $H \leqslant a l g K$.
- $H \leqslant_{f f} L$ and $H \leqslant K \leqslant L$ imply $H \leqslant_{f f} K$ but not necessarily $K \leqslant_{f f} L$.

How many algebraic extensions does a given H have in $F(A)$?

Can we compute them all ?

Algebraic and free extensions

Example

- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{\text {alg }}\langle x\rangle, \forall x \in F_{A} \forall 0 \neq r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg K.
- $H \leqslant$ alg $K \leqslant$ alg L implies $H \leqslant$ alg L.
- $H \leqslant$ alg L and $H \leqslant K \leqslant L$ imply $K \leqslant$ alg L but not necessarily $H \leqslant$ alg K.
- $H \leqslant_{f t} L$ and $H \leqslant K \leqslant L$ imply $H \leqslant_{f f} K$ but not necessarily $K \leqslant_{f f} L$.

How many algebraic extensions does a given H have in $F(A)$?
Can we compute them all ?

Algebraic and free extensions

Example

- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{\text {alg }}\langle x\rangle, \forall x \in F_{A} \forall 0 \neq r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg K.
- $H \leqslant$ alg $K \leqslant$ alg L implies $H \leqslant$ alg L.
- $H \leqslant_{f f} K \leqslant_{f f} L$ implies $H \leqslant_{f f} L$.

$$
\begin{aligned}
& H \leqslant \text { alg } L \text { and } H \leqslant K \leqslant L \text { imply } K \leqslant \text { alg } L \text { but not necessarily } H \leqslant \text { alg } K \text {. } \\
& H \leqslant t \text { and } H \leqslant K \leqslant L \text { imply } H \leqslant f \text { but not necessarily } K \leqslant t \text {. }
\end{aligned}
$$

How many algebraic extensions does a given H have in $F(A)$?

Can we compute them all?

Algebraic and free extensions

Example

- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{\text {alg }}\langle x\rangle, \forall x \in F_{A} \forall 0 \neq r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg K.
- $H \leqslant$ alg $K \leqslant$ alg L implies $H \leqslant$ alg L.
- $H \leqslant_{f f} K \leqslant_{f f} L$ implies $H \leqslant_{f f} L$.
- $H \leqslant$ alg L and $H \leqslant K \leqslant L$ imply $K \leqslant$ alg L but not necessarily $H \leqslant$ alg K.

How many algebraic extensions does a given H have in $F(A)$?
Can we compute them all ?

Algebraic and free extensions

Example

- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{\text {alg }}\langle x\rangle, \forall x \in F_{A} \forall 0 \neq r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg K.
- $H \leqslant$ alg $K \leqslant$ alg L implies $H \leqslant$ alg L.
- $H \leqslant_{f f} K \leqslant_{f f} L$ implies $H \leqslant_{f f} L$.
- $H \leqslant$ alg L and $H \leqslant K \leqslant L$ imply $K \leqslant$ alg L but not necessarily $H \leqslant$ alg K.
- $H \leqslant_{f f} L$ and $H \leqslant K \leqslant L$ imply $H \leqslant_{f f} K$ but not necessarily $K \leqslant_{f f} L$.

How many algebraic extensions does a given H have in $F(A)$?
Can we compute them all ?

Algebraic and free extensions

Example

- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{\text {alg }}\langle x\rangle, \forall x \in F_{A} \forall 0 \neq r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg K.
- $H \leqslant$ alg $K \leqslant$ alg L implies $H \leqslant$ alg L.
- $H \leqslant_{f f} K \leqslant_{f f} L$ implies $H \leqslant_{f f} L$.
- $H \leqslant$ alg L and $H \leqslant K \leqslant L$ imply $K \leqslant$ alg L but not necessarily $H \leqslant$ alg K.
- $H \leqslant_{f t} L$ and $H \leqslant K \leqslant L$ imply $H \leqslant_{f f} K$ but not necessarily $K \leqslant_{f f} L$.

How many algebraic extensions does a given H have in $F(A)$?
Can we compute them all ?

Algebraic and free extensions

Example

- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{\text {alg }}\langle x\rangle, \forall x \in F_{A} \forall 0 \neq r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg K.
- $H \leqslant$ alg $K \leqslant$ alg L implies $H \leqslant$ alg L.
- $H \leqslant_{f f} K \leqslant_{f f} L$ implies $H \leqslant_{f f} L$.
- $H \leqslant$ alg L and $H \leqslant K \leqslant L$ imply $K \leqslant$ alg L but not necessarily $H \leqslant$ alg K.
- $H \leqslant_{f t} L$ and $H \leqslant K \leqslant L$ imply $H \leqslant_{f f} K$ but not necessarily $K \leqslant_{f f} L$.

How many algebraic extensions does a given H have in $F(A)$?

Can we compute them all?

Takahasi's Theorem

Theorem (Takahasi, 1951)

For every $H \leqslant_{f g} F_{A}$, the set of algebraic extensions, denoted $\mathcal{A E}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- Modern proof, using Stallings automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).
- Additionally, $\mathcal{A E}(H)$ is computable.

Takahasi's Theorem

Theorem (Takahasi, 1951)

For every $H \leqslant_{f g} F_{A}$, the set of algebraic extensions, denoted $\mathcal{A E}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- Modern proof, using Stallings automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002)
- Additionally, $\mathcal{A E}(H)$ is computable.

Takahasi's Theorem

Theorem (Takahasi, 1951)

For every $H \leqslant_{f g} F_{A}$, the set of algebraic extensions, denoted $\mathcal{A E}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- Modern proof, using Stallings automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).
- Additionally, $\mathcal{A E}(H)$ is computable.

Takahasi's Theorem

Theorem (Takahasi, 1951)

For every $H \leqslant_{f g} F_{A}$, the set of algebraic extensions, denoted $\mathcal{A E}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- Modern proof, using Stallings automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).
- Additionally, $\mathcal{A E}(H)$ is computable.

Outline

(1) Algebraic extensions
(2) The bijection between subgroups and automata
(3) Takahasi's theorem

4 Algebraic closures
(5) The first part of Whitehead algorithm made polynomial

6 Generalization to subgroups
(7) Back to algebraic closures

Stallings automata

Definition

A Stallings automaton is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:
1- X is connected,
2- no vertex of degree 1 except possibly v (X is a core-graph),
3- no two edges with the same label go out of (or in to) the same vertex.

Stallings automata

Definition

A Stallings automaton is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:
1- X is connected,
2- no vertex of degree 1 except possibly v (X is a core-graph),
3- no two edges with the same label go out of (or in to) the same vertex.

Stallings automata

Definition

A Stallings automaton is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:
1- X is connected,
2- no vertex of degree 1 except possibly v (X is a core-graph),
3- no two edges with the same label go out of (or in to) the same vertex.

YES :

Stallings automata

In the influent paper
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_{A} and Stallings automata:
 $$
\left\{f . g . \text { subgroups of } F_{A}\right\} \quad \longleftrightarrow \quad\{\text { Stallings automata }\}
$$

which is crucial for the modern understanding of the lattice of subgroups of F_{A}.

Stallings automata

In the influent paper
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_{A} and Stallings automata:

$$
\text { \{f.g. subgroups of } \left.F_{A}\right\} \quad \longleftrightarrow \quad\{\text { Stallings automata }\}
$$

which is crucial for the modern understanding of the lattice of subgroups of F_{A}.

Stallings automata

In the influent paper
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_{A} and Stallings automata:

$$
\text { \{f.g. subgroups of } \left.F_{A}\right\} \quad \longleftrightarrow \quad\{\text { Stallings automata }\}
$$

which is crucial for the modern understanding of the lattice of subgroups of F_{A}.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$\pi(X, \bullet) \not \supset \quad b c^{-1} b c a a$
Membership problem in $\pi(X, 0)$ is solvable.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$$
\pi(X, \bullet)=\{1
$$

$$
\pi(X, \bullet) \not \supset \quad b c^{-1} b c a a
$$

Membership problem in $\pi(X, \bullet)$ is solvable.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$$
\begin{aligned}
& \pi(X, \bullet)=\{1, a, \\
& \pi(X, \bullet) \quad \not \supset \quad b c^{-1} b c a a \\
& \text { Membership problem in } \pi(X, \bullet) \text { is solvable. }
\end{aligned}
$$

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$$
\pi(X, \bullet)=\left\{1, a, a^{-1}\right.
$$

$$
\pi(X, \bullet) \quad \not \supset \quad b c^{-1} b c a a
$$

Membership problem in $\pi(X, \bullet)$ is solvable.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$$
\pi(X, \bullet)=\left\{1, a, a^{-1}, b a b\right.
$$

$$
\pi(X, \bullet) \not \not \quad b c^{-1} b c a a
$$

Membership problem in $\pi(X, \bullet)$ is solvable.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$$
\pi(X, \bullet)=\left\{1, a, a^{-1}, b a b, b c^{-1} b\right.
$$

$$
\pi(X, \bullet) \not \nexists \quad b c^{-1} b c a a
$$

Membership problem in $\pi(X, \bullet)$ is solvable.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$$
\begin{aligned}
\pi(X, \bullet)= & \left\{1, a, a^{-1}, b a b, b c^{-1} b\right. \\
& \left.b a b a b^{-1} c b^{-1}, \ldots\right\}
\end{aligned}
$$

$\pi(X, \bullet) \quad \not \supset \quad b c^{-1} b c a a$
Membership problem in $\pi(X, \bullet)$ is solvable.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$$
\begin{aligned}
\pi(X, \bullet)= & \left\{1, a, a^{-1}, b a b, b c^{-1} b\right. \\
& \left.b a b a b^{-1} c b^{-1}, \ldots\right\}
\end{aligned}
$$

$$
\pi(X, \bullet) \quad \not \supset \quad b c^{-1} b c a a
$$

$$
\text { Membership problem in } \pi(X, \bullet) \text { is solvable. }
$$

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$$
\begin{aligned}
\pi(X, \bullet)= & \left\{1, a, a^{-1}, b a b, b c^{-1} b,\right. \\
& \left.b a b a b^{-1} c b^{-1}, \ldots\right\} \\
\pi(X, \bullet) \not \nexists \quad & b c^{-1} b c a a
\end{aligned}
$$

Membership problem in $\pi(X, \bullet)$ is solvable.

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, a]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And, $|E X-E T|$

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, c e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And, $|E X-E T|$

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.

- And,

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And,

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And,

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And, $|E X-E T|=|E X|-|E T|$

$$
=|E X|-(|V T|-1)=1-|V X|+|E X| . \square
$$

Example

$$
H=\langle \rangle
$$

Example

$$
H=\langle a, \quad\rangle
$$

Example

$$
H=\langle a, b a b, \quad\rangle
$$

Example

$$
H=\left\langle a, b a b, b^{-1} c b^{-1}\right\rangle
$$

Example

$H=\left\langle a, b a b, b^{-1} c b^{-1}\right\rangle$
$r k(H)=1-3+5=3$.

Example-2

$$
F_{\aleph_{0}} \simeq H=\left\langle\ldots, b^{-2} a b^{2}, b^{-1} a b, a, b a b^{-1}, b^{2} a b^{-2}, \ldots\right\rangle \leqslant F_{2} .
$$

Constructing the automata from the subgroup

In any automaton containing the following situation, for $x \in A^{ \pm 1}$,

we can fold and identify vertices u and v to obtain

This operation, $(X, v) \rightsquigarrow\left(X^{\prime}, v\right)$, is called a Stallings folding.

Constructing the automata from the subgroup

In any automaton containing the following situation, for $x \in A^{ \pm 1}$,

we can fold and identify vertices u and v to obtain

$$
\bullet \xrightarrow{x} u=v .
$$

This operation, $(X, v) \rightsquigarrow\left(X^{\prime}, v\right)$, is called a Stallings folding.

Constructing the automata from the subgroup

In any automaton containing the following situation, for $x \in A^{ \pm 1}$,

we can fold and identify vertices u and v to obtain

This operation, $(X, v) \rightsquigarrow\left(X^{\prime}, v\right)$, is called a Stallings folding.

Constructing the automata from the subgroup

Lemma (Stallings)
 If $(X, v) \rightsquigarrow\left(X^{\prime}, v^{\prime}\right)$ is a Stallings folding then $\pi(X, v)=\pi\left(X^{\prime}, v^{\prime}\right)$.

Given a f.g. subgroup $H=\left\langle w_{1}, \ldots w_{m}\right\rangle \leqslant F_{A}$ (we assume w_{i} are reduced words), do the following:

1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Constructing the automata from the subgroup

Lemma (Stallings)

If $(X, v) \rightsquigarrow\left(X^{\prime}, v^{\prime}\right)$ is a Stallings folding then $\pi(X, v)=\pi\left(X^{\prime}, v^{\prime}\right)$.

Given a f.g. subgroup $H=\left\langle w_{1}, \ldots w_{m}\right\rangle \leqslant F_{A}$ (we assume w_{i} are reduced words), do the following:
1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Constructing the automata from the subgroup

Lemma (Stallings)

If $(X, v) \rightsquigarrow\left(X^{\prime}, v^{\prime}\right)$ is a Stallings folding then $\pi(X, v)=\pi\left(X^{\prime}, v^{\prime}\right)$.

Given a f.g. subgroup $H=\left\langle w_{1}, \ldots w_{m}\right\rangle \leqslant F_{A}$ (we assume w_{i} are reduced words), do the following:
1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Flower(H)

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Flower(H)

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#1

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#1.

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#2.

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#2.

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#3.

By Stallings Lemma, $\pi(\Gamma(H), \bullet)=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#3.

$\Gamma(H)$

By Stallings Lemma, $\pi(\Gamma(H), \bullet)=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#3.

$\Gamma(H)$

By Stallings Lemma, $\pi(\Gamma(H), \bullet)=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

$$
=\left\langle b, a b a^{-1}, a^{3}\right\rangle
$$

Local confluence

It can be shown that

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection:

Local confluence

It can be shown that

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection:

Local confluence

It can be shown that

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection:
\{f.g. subgroups of $\left.F_{A}\right\} \quad \longleftrightarrow \quad\{$ Stallings automata $\}$

$$
\begin{aligned}
H & \rightarrow \Gamma(H) \\
\pi(X, v) & \leftarrow
\end{aligned}
$$

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of F_{A} is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of F_{A} is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of F_{A} is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.

Outline

(1) Algebraic extensions
(2) The bijection between subgroups and automata
(3) Takahasi's theorem

4 Algebraic closures
(5) The first part of Whitehead algorithm made polynomial
(6) Generalization to subgroups
(7) Back to algebraic closures

Takahasi's theorem

Definition

Let $H \leqslant K \leqslant F(A)$. Then, $H \leqslant K$ is algebraic if and only if H is not contained in any proper free factor of K.

Theorem (Takahasi, 1951)

For every $H \leqslant_{f g} F_{A}$, the set of algebraic extensions, $\mathcal{A E}(H)$, is finite.
Proof (Ventura; Margolis-Sapir-Weil; Kapovich-Miasnikov):

- Consider $\tilde{\Gamma}(H)$, the result of attaching all possible (infinite) "hairs" to $\Gamma(H)$ (i.e. the covering of the bouquet corresponding to H).
- Given $H \leqslant K$ (both f.g.), we can obtain $\tilde{\Gamma}(K)$ from $\tilde{\Gamma}(H)$ by performing the appropriate identifications of vertices (plus subsequent foldings).

Takahasi's theorem

Definition

Let $H \leqslant K \leqslant F(A)$. Then, $H \leqslant K$ is algebraic if and only if H is not contained in any proper free factor of K.

Theorem (Takahasi, 1951)

For every $H \leqslant{ }_{f g} F_{A}$, the set of algebraic extensions, $\mathcal{A E}(H)$, is finite.

```
Proof (Ventura; Margolis-Sapir-Weil; Kapovich-Miasnikov):
    - Consider }\tilde{\Gamma}(H)\mathrm{ , the result of attaching all possible (infinite) "hairs" to }\Gamma(H
    (i.e. the covering of the bouquet corresponding to H
    - Given H}\leqslantK (both f.g.), we can obtain \tilde{\Gamma}(K)\mathrm{ from }\tilde{\Gamma}(H)\mathrm{ by performing the
        appropriate identifications of vertices (plus subsequent foldings).
```


Takahasi's theorem

Definition

Let $H \leqslant K \leqslant F(A)$. Then, $H \leqslant K$ is algebraic if and only if H is not contained in any proper free factor of K.

Theorem (Takahasi, 1951)

For every $H \leqslant_{f g} F_{A}$, the set of algebraic extensions, $\mathcal{A E}(H)$, is finite.
Proof (Ventura; Margolis-Sapir-Weil; Kapovich-Miasnikov):

- Consider $\tilde{\Gamma}(H)$, the result of attaching all possible (infinite) "hairs" to $\Gamma(H)$ (i.e. the covering of the bouquet corresponding to H).
- Given $H \leqslant K$ (both f.g.), we can obtain $\tilde{\Gamma}(K)$ from $\tilde{\Gamma}(H)$ by performing the appropriate identifications of vertices (plus subsequent foldings)

Takahasi's theorem

Definition

Let $H \leqslant K \leqslant F(A)$. Then, $H \leqslant K$ is algebraic if and only if H is not contained in any proper free factor of K.

Theorem (Takahasi, 1951)

For every $H \leqslant_{f g} F_{A}$, the set of algebraic extensions, $\mathcal{A E}(H)$, is finite.
Proof (Ventura; Margolis-Sapir-Weil; Kapovich-Miasnikov):

- Consider $\tilde{\Gamma}(H)$, the result of attaching all possible (infinite) "hairs" to $\Gamma(H)$ (i.e. the covering of the bouquet corresponding to H).
- Given $H \leqslant K$ (both f.g.), we can obtain $\tilde{\Gamma}(K)$ from $\tilde{\Gamma}(H)$ by performing the appropriate identifications of vertices (plus subsequent foldings).

Takahasi's theorem

- Hence, if $H \leqslant K$ (both f.g.) then $\Gamma(K)$ contains as a subgraph either $\Gamma(H)$ or some quotient of it (i.e. $\Gamma(H)$ after some identifications of vertices, $\Gamma(H) / \sim)$.
- The overgroups of H :
$\mathcal{O}(H)=\{\pi(\Gamma(H) / \sim, \bullet) \mid \sim$ is a partition of $V \Gamma(H)\}$
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant f f$. - Thus, $\mathcal{A} \mathcal{E}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

Takahasi's theorem

- Hence, if $H \leqslant K$ (both f.g.) then $\Gamma(K)$ contains as a subgraph either $\Gamma(H)$ or some quotient of it (i.e. $\Gamma(H)$ after some identifications of vertices, $\Gamma(H) / \sim)$.
- The overgroups of H :
$\mathcal{O}(H)=\{\pi(\Gamma(H) / \sim, \bullet) \mid \sim$ is a partition of $V \Gamma(H)\}$.
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant f f$.
- Thus, $\mathcal{A E}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

Takahasi's theorem

- Hence, if $H \leqslant K$ (both f.g.) then $\Gamma(K)$ contains as a subgraph either $\Gamma(H)$ or some quotient of it (i.e. $\Gamma(H)$ after some identifications of vertices, $\Gamma(H) / \sim)$.
- The overgroups of H : $\mathcal{O}(H)=\{\pi(\Gamma(H) / \sim, \bullet) \mid \sim$ is a partition of $V \Gamma(H)\}$.
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant_{\text {ff }} K$.
- Thus, $\mathcal{A E}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

Takahasi's theorem

- Hence, if $H \leqslant K$ (both f.g.) then $\Gamma(K)$ contains as a subgraph either $\Gamma(H)$ or some quotient of it (i.e. $\Gamma(H)$ after some identifications of vertices, $\Gamma(H) / \sim)$.
- The overgroups of H : $\mathcal{O}(H)=\{\pi(\Gamma(H) / \sim, \bullet) \mid \sim$ is a partition of $V \Gamma(H)\}$.
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant_{f f} K$.
- Thus, $\mathcal{A E}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

Computing $\mathcal{A E}(H)$

Corollary

$\mathcal{A E}(H)$ is computable.
Proof:

- Compute Г (H),
- Compute $\Gamma(H) / \sim$ for all partitions \sim of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{\text {ff }} K_{2}$ and deleting K_{2}.
- The resulting set is $\mathcal{A E}(H)$. \square
there are exponentially many partitions ~
the cleaning process needs exponential time (... by the moment).

Computing $\mathcal{A E}(H)$

Corollary

$\mathcal{A E}(H)$ is computable.

Proof:

- Compute Г(H),
- Compute 「(H)/ ~ for all partitions ~ of V「(H),
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{f} K_{2}$ and deleting K_{2}.
- The resulting set is $\mathcal{A E}(H)$. \square

But
there are exponentially many partitions ~
the cleaning process needs exponential time (... by the moment).

Computing $\mathcal{A} \mathcal{E}(H)$

Corollary

$\mathcal{A E}(H)$ is computable.

Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions \sim of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{f f} K_{2}$ and deleting K_{2}.
- The resulting set is $\mathcal{A} \mathcal{E}(H)$. \square
there are exponentially many partitions ~
the cleaning process needs exponential time (... by the moment).

Computing $\mathcal{A E}(H)$

Corollary

$\mathcal{A E}(H)$ is computable.

Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions \sim of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{f f} K_{2}$ and deleting K_{2}.
- The resulting set is $\mathcal{A} \mathcal{E}(H)$. \square
there are exponentially many partitions ~
the cleaning process needs exponential time (... by the moment).

Computing $\mathcal{A E}(H)$

Corollary

$\mathcal{A E}(H)$ is computable.

Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions \sim of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{\text {ff }} K_{2}$ and deleting K_{2}.
- The resulting set is $\mathcal{A} \mathcal{E}(H)$. \square
there are exponentially many partitions ~
the cleaning process needs exponential time (... by the moment).

Computing $\mathcal{A} \mathcal{E}(H)$

Corollary

$\mathcal{A E}(H)$ is computable.

Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions \sim of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{\text {ff }} K_{2}$ and deleting K_{2}.
- The resulting set is $\mathcal{A E}(H)$. \square

> there are exponentially many partitions \sim
> the cleaning process needs exponential time (... by the moment).

Computing $\mathcal{A E}(H)$

Corollary

$\mathcal{A E}(H)$ is computable.

Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions \sim of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{f f} K_{2}$ and deleting K_{2}.
- The resulting set is $\mathcal{A E}(H)$. \square

But ...
\rightarrow there are exponentially many partitions \sim
the cleaning process needs exponential time (... by the moment).

Computing $\mathcal{A E}(H)$

Corollary

$\mathcal{A E}(H)$ is computable.

Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions \sim of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{\text {ff }} K_{2}$ and deleting K_{2}.
- The resulting set is $\mathcal{A E}(H)$. \square

But ...

\rightarrow there are exponentially many partitions \sim
\rightarrow the cleaning process needs exponential time (... by the moment).

Outline

(1) Algebraic extensions
(2) The bijection between subgroups and automata
(3) Takahasi's theorem

4 Algebraic closures
5. The first part of Whitehead algorithm made polynomial

6 Generalization to subgroups
(7) Back to algebraic closures

The algebraic closure

Observation

If $H \leqslant$ alg K_{1} and $H \leqslant$ alg K_{2} then $H \leqslant$ alg $\left\langle K_{1} \cup K_{2}\right\rangle$.

Corollary
 For every $H \leqslant K \leqslant F_{A}$ (all f.g.), $\mathcal{A} \mathcal{E}_{K}(H)$ has a unique maximal element, called the K-algebraic closure of H, and denoted $\mathrm{Cl}_{K}(H)$.

Corollary

Every extension $H \leqslant K$ of f.g. subgroups of F_{A} splits, in a unique way, in an algebraic part and a free part, $H \leqslant a l g I_{K}(H) \leqslant_{f f} K$.

Compare with Hall's property.

The algebraic closure

Observation

If $H \leqslant$ alg K_{1} and $H \leqslant$ alg K_{2} then $H \leqslant$ alg $\left\langle K_{1} \cup K_{2}\right\rangle$.

Corollary

For every $H \leqslant K \leqslant F_{A}$ (all f.g.), $\mathcal{A} \mathcal{E}_{K}(H)$ has a unique maximal element, called the K-algebraic closure of H , and denoted $\mathrm{Cl}_{K}(\mathrm{H})$.

Corollary

Every extension $H \leqslant K$ of f.g. subgroups of F_{A} splits, in a unique way, in an algebraic part and a free part, $H \leqslant \begin{array}{ll}K & \\ K\end{array}(H) \leqslant_{H} K$

Compare with Hall's property.

The algebraic closure

Observation

If $H \leqslant$ alg K_{1} and $H \leqslant$ alg K_{2} then $H \leqslant$ alg $\left\langle K_{1} \cup K_{2}\right\rangle$.

Corollary

For every $H \leqslant K \leqslant F_{A}$ (all f.g.), $\mathcal{A} \mathcal{E}_{K}(H)$ has a unique maximal element, called the K-algebraic closure of H , and denoted $\mathrm{Cl}_{K}(H)$.

Corollary

Every extension $H \leqslant K$ of f.g. subgroups of F_{A} splits, in a unique way, in an algebraic part and a free part, $H \leqslant_{\text {alg }} \mathrm{Cl}_{K}(H) \leqslant_{f} K$.

Compare with Hall's property.

The algebraic closure

Observation

If $H \leqslant$ alg K_{1} and $H \leqslant$ alg K_{2} then $H \leqslant$ alg $\left\langle K_{1} \cup K_{2}\right\rangle$.

Corollary

For every $H \leqslant K \leqslant F_{A}$ (all f.g.), $\mathcal{A} \mathcal{E}_{K}(H)$ has a unique maximal element, called the K-algebraic closure of H , and denoted $\mathrm{Cl}_{K}(H)$.

Corollary

Every extension $H \leqslant K$ of f.g. subgroups of F_{A} splits, in a unique way, in an algebraic part and a free part, $H \leqslant_{\text {alg }} \mathrm{Cl}_{K}(H) \leqslant_{f} K$.

Compare with Hall's property.

Computing algebraic closures

In the rest of the talk we'll sketch the proof of:

Theorem (V. 2009)

Given $H \leqslant K \leqslant F_{A}$ (all f.g.) one can compute (a basis for) $C I_{K}(H)$ in polynomial time w.r.t. the sum of lengths of given generators for H and K .

Main ingredients in the proof:

1) Construct directly $C I_{K}(H)$ without having to compute all of $\mathcal{O}(H)$.
2) Use

Theorem (Roig-V.-Weil, 2007)

Given $H, K \leqslant F_{A}$ (all f.g.), one can decide whether $H \leqslant_{f f} K$ or not, in polynomial time w.r.t. the sum of lengths of given generators for H and K

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-V.-Weil 2007 (variation of Whitehead algorithm in polynomial time)

Computing algebraic closures

In the rest of the talk we'll sketch the proof of:

Theorem (V. 2009)

Given $H \leqslant K \leqslant F_{A}$ (all f.g.) one can compute (a basis for) $\mathrm{Cl}_{K}(H)$ in polynomial time w.r.t. the sum of lengths of given generators for H and K .

Main ingredients in the proof:

1) Construct directly $C I_{K}(H)$ without having to compute all of $\mathcal{O}(H)$.

Theorem (Roig-V.-Weil, 2007)
Given $H, K \leqslant F_{A}$ (all f.g.), one can decide whether $H \leqslant f$ K or not, in polynomial time w.r.t. the sum of lengths of given generators for H and K

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-V.-Weil 2007 (variation of Whitehead algorithm in polynomial time)

Computing algebraic closures

In the rest of the talk we'll sketch the proof of:

Theorem (V. 2009)

Given $H \leqslant K \leqslant F_{A}$ (all f.g.) one can compute (a basis for) $C_{K}(H)$ in polynomial time w.r.t. the sum of lengths of given generators for H and K .

Main ingredients in the proof:

1) Construct directly $C I_{K}(H)$ without having to compute all of $\mathcal{O}(H)$.
2) Use

Theorem (Roig-V.-Weil, 2007)

Given $H, K \leqslant F_{A}$ (all f.g.), one can decide whether $H \leqslant_{H} K$ or not, in polynomial time w.r.t. the sum of lengths of given generators for H and K .

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-V.-Weil 2007 (variation of Whitehead algorithm in polynomial time)

Computing algebraic closures

In the rest of the talk we'll sketch the proof of:

Theorem (V. 2009)

Given $H \leqslant K \leqslant F_{A}$ (all f.g.) one can compute (a basis for) $C I_{K}(H)$ in polynomial time w.r.t. the sum of lengths of given generators for H and K.

Main ingredients in the proof:

1) Construct directly $C I_{K}(H)$ without having to compute all of $\mathcal{O}(H)$.
2) Use

Theorem (Roig-V.-Weil, 2007)

Given $H, K \leqslant F_{A}$ (all f.g.), one can decide whether $H \leqslant_{H} K$ or not, in polynomial time w.r.t. the sum of lengths of given generators for H and K .

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-V.-Weil 2007 (variation of Whitehead algorithm in polynomial time)

Computing algebraic closures

In the rest of the talk we'll sketch the proof of:

Theorem (V. 2009)

Given $H \leqslant K \leqslant F_{A}$ (all f.g.) one can compute (a basis for) $C_{K}(H)$ in polynomial time w.r.t. the sum of lengths of given generators for H and K.

Main ingredients in the proof:

1) Construct directly $C I_{K}(H)$ without having to compute all of $\mathcal{O}(H)$.
2) Use

Theorem (Roig-V.-Weil, 2007)

Given $H, K \leqslant F_{A}$ (all f.g.), one can decide whether $H \leqslant_{H} K$ or not, in polynomial time w.r.t. the sum of lengths of given generators for H and K .

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-V.-Weil 2007 (variation of Whitehead algorithm in polynomial time)

Computing algebraic closures

In the rest of the talk we'll sketch the proof of:

Theorem (V. 2009)

Given $H \leqslant K \leqslant F_{A}$ (all f.g.) one can compute (a basis for) $C_{K}(H)$ in polynomial time w.r.t. the sum of lengths of given generators for H and K.

Main ingredients in the proof:

1) Construct directly $C I_{K}(H)$ without having to compute all of $\mathcal{O}(H)$.
2) Use

Theorem (Roig-V.-Weil, 2007)

Given $H, K \leqslant F_{A}$ (all f.g.), one can decide whether $H \leqslant_{H} K$ or not, in polynomial time w.r.t. the sum of lengths of given generators for H and K .

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-V.-Weil 2007 (variation of Whitehead algorithm in polynomial time).

Outline

(1) Algebraic extensions
(2) The bijection between subgroups and automata
(3) Takahasi's theorem

4 Algebraic closures
(5) The first part of Whitehead algorithm made polynomial
(6) Generalization to subgroups
(7) Back to algebraic closures

Whitehead problem:

Whitehead Problem

For a group G, find an algorithm s.t. given $u, v \in G$ decides whether there exists $\varphi \in \operatorname{Aut}(G)$ such that $\varphi(u)=v$.

Theorem (Whitehead)

Whitehead problem is solvable in $F(A)$.
"Proof":
First part: reduce $\|u\|$ and $\|v\|$ as much as possible by applying autos:

$v \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v^{\prime}$.
Second part: analyze who is image of who by some auto, in the (finite!) sphere of given radius $n, S_{n}=\left\{w \in F_{k} \mid\|w\|=n\right\}$. \square

Whitehead problem:

Whitehead Problem

For a group G, find an algorithm s.t. given $u, v \in G$ decides whether there exists $\varphi \in \operatorname{Aut}(G)$ such that $\varphi(u)=v$.

Theorem (Whitehead)

Whitehead problem is solvable in $F(A)$.
"Proof":
First part: reduce $\|u\|$ and $\|v\|$ as much as possible by applying autos:
$u \rightarrow u_{1} \rightarrow u_{2} \rightarrow \cdots \rightarrow u^{\prime}$,
$v \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v^{\prime}$.
Second part: analyze who is image of who by some auto, in the (finite!) sphere of given radius $n, S_{n}=\left\{w \in F_{k} \mid\|w\|=n\right\}$. \square

Whitehead problem:

Whitehead Problem

For a group G, find an algorithm s.t. given $u, v \in G$ decides whether there exists $\varphi \in \operatorname{Aut}(G)$ such that $\varphi(u)=v$.

Theorem (Whitehead)

Whitehead problem is solvable in $F(A)$.

"Proof":

First part: reduce $\|u\|$ and $\|v\|$ as much as possible by applying autos:

$$
\begin{aligned}
& u \rightarrow u_{1} \rightarrow u_{2} \rightarrow \cdots \rightarrow u^{\prime} \\
& v \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v^{\prime}
\end{aligned}
$$

Second part: analyze who is image of who by some auto, in the (finite!) sphere of given radius $n, S_{n}=\left\{w \in F_{k} \mid\|w\|=n\right\}$. \square

Whitehead problem:

Whitehead Problem

For a group G, find an algorithm s.t. given $u, v \in G$ decides whether there exists $\varphi \in \operatorname{Aut}(G)$ such that $\varphi(u)=v$.

Theorem (Whitehead)

Whitehead problem is solvable in $F(A)$.

"Proof":

First part: reduce $\|u\|$ and $\|v\|$ as much as possible by applying autos:

$$
\begin{aligned}
& u \rightarrow u_{1} \rightarrow u_{2} \rightarrow \cdots \rightarrow u^{\prime} \\
& v \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v^{\prime}
\end{aligned}
$$

Second part: analyze who is image of who by some auto, in the (finite!) sphere of given radius $n, S_{n}=\left\{w \in F_{k} \mid\|w\|=n\right\}$. \square

Whitehead minimization problem

Let us concentrate in the first part:

Whitehead Minimization Problem (WMP)

Given $u \in F(A)$, find $\varphi \in \operatorname{Aut}(F(A))$ such that $\|\varphi(u)\|$ is minimal.

Lemma (Whitenead)

Definition

Whitehead automorphisms are those of the form

Whitehead minimization problem

Let us concentrate in the first part:

Whitehead Minimization Problem (WMP)

Given $u \in F(A)$, find $\varphi \in \operatorname{Aut}(F(A))$ such that $\|\varphi(u)\|$ is minimal.

Lemma (Whitehead)

Let $u \in F(A)$. If $\exists \varphi \in \operatorname{Aut}(F(A))$ such that $\|\varphi(u)\|<\|u\|$ then \exists a "Whitehead automorphism" α such that $\|\varphi(u)\|<\|u\|$.

Definition
Whitehead automorphisms are those of the form
\square

Whitehead minimization problem

Let us concentrate in the first part:

Whitehead Minimization Problem (WMP)

Given $u \in F(A)$, find $\varphi \in \operatorname{Aut}(F(A))$ such that $\|\varphi(u)\|$ is minimal.

Lemma (Whitehead)

Let $u \in F(A)$. If $\exists \varphi \in \operatorname{Aut}(F(A))$ such that $\|\varphi(u)\|<\|u\|$ then \exists a "Whitehead automorphism" α such that $\|\varphi(u)\|<\|u\|$.

Definition

Whitehead automorphisms are those of the form:

$$
\begin{aligned}
F(A) & \rightarrow F(A) \\
a_{i} & \mapsto a_{i} \\
a_{i} \neq a_{j} & \mapsto a_{i}^{\epsilon_{j}} a_{j} a_{i}^{\delta_{j}}
\end{aligned} \quad \text { (the multiplier) }
$$

where $\epsilon_{j}=0,-1$ and $\delta_{j}=0,1$ (there are $\sim k \cdot 4^{k}$ many, where $k=|A|$).

Classical Whitehead's algorithm (first part)

Classical whitehead algorithm is

- Keep applying whitehead automorphisms to given u until finding one that decreases its cyclic length.
- Repeat until all whiteheads are non-decreasing.
\square
This is polynomial on $\|u\|$, but exponential on the ambient rank, k.

There are several recent results (theoric, heuristic, probabilistic) suggesting that Whitehead algorithm is faster in practice.

Classical Whitehead's algorithm (first part)

Classical whitehead algorithm is

- Keep applying whitehead automorphisms to given u until finding one that decreases its cyclic length.
- Repeat until all whiteheads are non-decreasing.

> This is polynomial on $\|u\|$, but exponential on the ambient rank, k.
> There are several recent results (theoric, heuristic, probabilistic) suggesting that Whitehead algorithm is faster in practice.

Classical Whitehead's algorithm (first part)

Classical whitehead algorithm is

- Keep applying whitehead automorphisms to given u until finding one that decreases its cyclic length.
- Repeat until all whiteheads are non-decreasing.

This is polynomial on $\|u\|$, but exponential on the ambient rank, k.

There are several recent results (theoric, heuristic, probabilistic) suggesting that Whitehead algorithm is faster in practice.

Classical Whitehead's algorithm (first part)

Classical whitehead algorithm is

- Keep applying whitehead automorphisms to given u until finding one that decreases its cyclic length.
- Repeat until all whiteheads are non-decreasing.

This is polynomial on $\|u\|$, but exponential on the ambient rank, k.

There are several recent results (theoric, heuristic, probabilistic) suggesting that Whitehead algorithm is faster in practice.

Improvement

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_{k} in time $O\left(n^{2} k^{3}\right)$.

```
main idea: given \(u \in F_{k}\), we find in polynomial time one of the whiteheads that decreases \(\|u\|\) the most possible.
Key point: How does a given Whitehead automorphism \(\alpha\) affect the length of a given word \(u\) ?
```


Three ingredients:

1) Codify u as its W hitehead's graph (classic in Group Theory),
2) Codify α as a cut in this graph (\approx classic in Group Theory),
3) Use max-flow min-cut algorithm (classic in Computer Science),
4) ... put together and mix (new!).

Improvement

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_{k} in time $O\left(n^{2} k^{3}\right)$.
main idea: given $u \in F_{k}$, we find in polynomial time one of the whiteheads that decreases $\|u\|$ the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u ?

Three ingredients:
\square

Improvement

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_{k} in time $O\left(n^{2} k^{3}\right)$.
main idea: given $u \in F_{k}$, we find in polynomial time one of the whiteheads that decreases $\|u\|$ the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u ?

Three ingredients:
Codify u as its Whitehead's graph (classic in Group Theory),
2) Codify α as a cut in this araph (\approx
3) Use max-flow min-cut algorithm
4) \ldots put together and mix (new!)

Improvement

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_{k} in time $O\left(n^{2} k^{3}\right)$.
main idea: given $u \in F_{k}$, we find in polynomial time one of the whiteheads that decreases $\|u\|$ the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u ?

Three ingredients:

1) Codify u as its Whitehead's graph (classic in Group Theory),
2) Codify α as a cut in this graph (\approx classic in Group Theory),
3) Use max-flow min-cut algorithm (classic in Computer Science),
\square

Improvement

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_{k} in time $O\left(n^{2} k^{3}\right)$.
main idea: given $u \in F_{k}$, we find in polynomial time one of the whiteheads that decreases $\|u\|$ the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u ?

Three ingredients:

1) Codify u as its Whitehead's graph (classic in Group Theory),
2) Codify α as a cut in this graph (\approx classic in Group Theory),
3) Use max-flow min-cut algorithm (classic in Computer Science),
\square

Improvement

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_{k} in time $O\left(n^{2} k^{3}\right)$.
main idea: given $u \in F_{k}$, we find in polynomial time one of the whiteheads that decreases $\|u\|$ the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u ?

Three ingredients:

1) Codify u as its Whitehead's graph (classic in Group Theory),
2) Codify α as a cut in this graph (\approx classic in Group Theory),
3) Use max-flow min-cut algorithm (classic in Computer Science),
4) ... put together and mix (new!)

Improvement

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_{k} in time $O\left(n^{2} k^{3}\right)$.
main idea: given $u \in F_{k}$, we find in polynomial time one of the whiteheads that decreases $\|u\|$ the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u ?

Three ingredients:

1) Codify u as its Whitehead's graph (classic in Group Theory),
2) Codify α as a cut in this graph (\approx classic in Group Theory),
3) Use max-flow min-cut algorithm (classic in Computer Science),
4) ... put together and mix (new!).

Whitehead's graph

First ingredient: Whitehead's graph of a word.

Definition

Given $u \in F_{k}$ (cyclically reduced), its (unoriented) Whitehead graph, denoted Wh(u), is:

- vertices: $A^{ \pm 1}$,
- edges: for every pair of (cycl.) consecutive letters $u=\cdots x y \cdots$ put an edge between x and y^{-1}.

Example

Whitehead's graph

First ingredient: Whitehead's graph of a word.

Definition

Given $u \in F_{k}$ (cyclically reduced), its (unoriented) Whitehead graph, denoted Wh(u), is:

- vertices: $A^{ \pm 1}$,
- edges: for every pair of (cycl.) consecutive letters $u=\cdots x y \cdots$ put an edge between x and y^{-1}.

Example

$$
u=a b a^{-1} c^{-1} b b a b c^{-1}
$$

Cut in a graph

Second ingredient: Cut in a graph.

Definition

Given a Whitehead's automorphism α, we represent it as the $\left(a, a^{-1}\right)$-cut

$$
(T=\{a\} \cup\{\text { letters that go multiplied on the right by } a\}, a)
$$

of the set $A^{ \pm 1}$.

Example

Cut in a graph

Second ingredient: Cut in a graph.

Definition

Given a Whitehead's automorphism α, we represent it as the $\left(a, a^{-1}\right)$-cut

$$
(T=\{a\} \cup\{\text { letters that go multiplied on the right by } a\}, a)
$$

of the set $A^{ \pm 1}$.

Example

$$
\begin{array}{rlll}
\langle a, b, c\rangle=F_{3} & \rightarrow & F_{3} & a \\
a & \mapsto & a b \\
b & \mapsto & b \\
c & \mapsto & b^{-1} c b & a^{-1}
\end{array} b^{-1}>c^{-1}
$$

Rephrasement of Wh. Lemma

Lemma (Whitehead)

Given a word $u \in F_{k}$ and a Whitehead automorphism α, think α as a cut in $W h(u)$, say $\alpha=(T, a)$, and then

$$
\|\alpha(u)\|-\|u\|=\operatorname{cap}(T)-\operatorname{deg}(a) .
$$

Proof: Analyzing combinatorial cases (see Lyndon-Schupp).

Rephrasement of Wh. Lemma

Lemma (Whitehead)

Given a word $u \in F_{k}$ and a Whitehead automorphism α, think α as a cut in $W h(u)$, say $\alpha=(T, a)$, and then

$$
\|\alpha(u)\|-\|u\|=\operatorname{cap}(T)-\operatorname{deg}(a) .
$$

Proof: Analyzing combinatorial cases (see Lyndon-Schupp).

Example

Example

Consider $u=a b a^{-1} c^{-1} b_{b a b c}{ }^{-1}$ and $\alpha: F_{3} \rightarrow F_{3} \quad$ like before. We

$$
\begin{array}{lll}
a & \mapsto & a b \\
b & \mapsto & b \\
c & \mapsto & b^{-1} c b
\end{array}
$$

have $\alpha(u)=a b a^{-1} b^{-1} c^{-1} b b b a b c^{-1} b$. Furthermore,

Example

Example

Consider $u=a b a^{-1} c^{-1} b_{b a b c}{ }^{-1}$ and $\alpha: F_{3} \rightarrow F_{3} \quad$ like before. We

$$
\begin{array}{rll}
a & \mapsto & a b \\
b & \mapsto & b \\
c & \mapsto & b^{-1} c b
\end{array}
$$

have $\alpha(u)=a b a^{-1} b^{-1} c^{-1} b b b a b c^{-1} b$. Furthermore,

Example

Example

Consider $u=a b a^{-1} c^{-1} b_{b a b c}{ }^{-1}$ and $\alpha: F_{3} \rightarrow F_{3} \quad$ like before. We

$$
\begin{array}{rll}
a & \mapsto & a b \\
b & \mapsto & b \\
c & \mapsto & b^{-1} c b
\end{array}
$$

have $\alpha(u)=a b a^{-1} b^{-1} c^{-1} b b b a b c^{-1} b$. Furthermore,

Example

Example

Consider $u=a b a^{-1} c^{-1} b_{b a b c}{ }^{-1}$ and $\alpha: F_{3} \rightarrow F_{3} \quad$ like before. We

$$
\begin{array}{rll}
a & \mapsto & a b \\
b & \mapsto & b \\
c & \mapsto & b^{-1} c b
\end{array}
$$

have $\alpha(u)=a b a^{-1} b^{-1} c^{-1} b b b a b c^{-1} b$. Furthermore,
and, in fact,

$$
12-9=\|\alpha(u)\|-\|u\|=\operatorname{cap}(T)-\operatorname{deg}(b)=7-4 .
$$

Max-flow min-cut algorithm

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead's Minimization Problem reduces to:

- run over all possible multipliers, say a, (there are $2 k$),
- find an ($\left.a, a^{-1}\right)$-cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm
which works in polynomial time w.r.t. the number of edges of the graph $(=\|u\|)$ and the number of vertices $(=2 k)$.

Max-flow min-cut algorithm

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead's Minimization Problem reduces to:

- run over all possible multipliers, say a, (there are $2 k$),
- find an ($\left.a, a^{-1}\right)$-cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm
which works in polynomial time w.r.t. the number of edges of the graph $(=\|u\|)$ and the number of vertices $(=2 k)$.

Max-flow min-cut algorithm

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead's Minimization Problem reduces to:

- run over all possible multipliers, say a, (there are $2 k$),
- find an ($\left.a, a^{-1}\right)$-cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm ...
..which works in polynomial time w.r.t. the number of edges of the graph $(=\|u\|)$ and the number of vertices $(=2 k)$.

Max-flow min-cut algorithm

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead's Minimization Problem reduces to:

- run over all possible multipliers, say a, (there are $2 k$),
- find an ($\left.a, a^{-1}\right)$-cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm ...
...which works in polynomial time w.r.t. the number of edges of the graph $(=\|u\|)$ and the number of vertices $(=2 k)$.

Primitivity

Hence we have proved

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_{k} in time $O\left(n^{2} k^{3}\right)$.

Corollary (Roig, V., Weil, 2007)
 Given a word $u \in F_{k}$, one can check whether u is primitive in F_{k} in time $O\left(n^{2} k^{3}\right)$, where $n=\|u\|$

Primitivity

Hence we have proved

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_{k} in time $O\left(n^{2} k^{3}\right)$.

Corollary (Roig, V., Weil, 2007)

Given a word $u \in F_{k}$, one can check whether u is primitive in F_{k} in time $O\left(n^{2} k^{3}\right)$, where $n=\|u\|$.

Outline

(1) Algebraic extensions
(2) The bijection between subgroups and automata
(3) Takahasi's theorem

4 Algebraic closures
(5) The first part of Whitehead algorithm made polynomial
(6) Generalization to subgroups
(7) Back to algebraic closures

Whitehead's hypergraph

A cyclically reduced word can be thought as a circular graph; and then, its Whitehead graph $W h(u)$ just describes the in-links of the vertices.

```
Definition
Let H\leqslant FF be a f.g. subgroup, and let }\Gamma(H)\mathrm{ be its core graph. We define the
Whitehead hyper-graph of H, denoted Wh(H), as:
    - vertices: }\mp@subsup{A}{}{\pm1
    - hyper-edges: for every vertex v in Г(H), put a hyper-edge consisting on
    the in-link of v.
```


where $\|H\|$ is the number of vertices in $\Gamma(H)$.

Whitehead's hypergraph

A cyclically reduced word can be thought as a circular graph; and then, its Whitehead graph $W h(u)$ just describes the in-links of the vertices.

Definition

Let $H \leqslant F_{k}$ be a f.g. subgroup, and let $\Gamma(H)$ be its core graph. We define the Whitehead hyper-graph of H, denoted Wh(H), as:

- vertices: $A^{ \pm 1}$,
- hyper-edges: for every vertex v in $\Gamma(H)$, put a hyper-edge consisting on the in-link of v.

where $\|H\|$ is the number of vertices in $\Gamma(H)$

Whitehead's hypergraph

A cyclically reduced word can be thought as a circular graph; and then, its Whitehead graph $W h(u)$ just describes the in-links of the vertices.

Definition

Let $H \leqslant F_{k}$ be a f.g. subgroup, and let $\Gamma(H)$ be its core graph. We define the Whitehead hyper-graph of H, denoted $W h(H)$, as:

- vertices: $A^{ \pm 1}$,
- hyper-edges: for every vertex v in $\Gamma(H)$, put a hyper-edge consisting on the in-link of v.

Lemma (Roig, V., Weil, 2007)

Given a f.g. subgroup $H \leqslant F_{k}$ and a Whitehead automorphism α, think α as a cut in $W h(H)$, say $\alpha=(T, a)$, and then

$$
\|\alpha(u)\|-\|u\|=\operatorname{cap}(T)-\operatorname{deg}(a)
$$

where $\|H\|$ is the number of vertices in $\Gamma(H)$.

Whitehead's hypergraph

Consider $H=\left\langle b, a b a^{-1}, a c a\right\rangle \leqslant F_{3}$. Its core graph $\Gamma(H)$, and Whitehead hyper-graph Wh(H) are:

In fact, $\alpha(H)=\left\langle b, a b a^{-1}, a c b a b\right\rangle$ and then

and so, $4-3=\|\alpha(H)\|-\|H\|=3-2$.

Whitehead's hypergraph

Consider $H=\left\langle b, a b a^{-1}\right.$, aca $\rangle \leqslant F_{3}$. Its core graph $\Gamma(H)$, and Whitehead hyper-graph Wh(H) are:

In fact, $\alpha(H)=\left\langle b, a b a^{-1}, a c b a b\right\rangle$ and then

and so, $4-3=\|\alpha(H)\|-\|H\|=3-2$.

Minimizing capacities in hyper-graphs

So, Whitehead's Minimization Problem for subgroups reduces to:

- run over all possible multipliers, say a, (there are $2 k$),
- find an $\left(a, a^{-1}\right)$-cut with minimal possible capacity in the given hyper-graph.

Unfortunately, there is no analog of max-flow min-cut algorithm for hyper-graphs
> ..but it is still possible to find minimal cuts in polynomial time because of sub-modularity:

Ooservation

For every f.g. $H \leqslant F_{k,}$ let $W=W h(H)$ and then the map $P\left(A^{+1}\right) \rightarrow \mathbb{N}$,
$T \mapsto \operatorname{cap} W(T)$ is sub-modular.

Enric Ventura (UPC)
w. minimization \& computation of algebraic closures

Minimizing capacities in hyper-graphs

So, Whitehead's Minimization Problem for subgroups reduces to:

- run over all possible multipliers, say a, (there are $2 k$),
- find an $\left(a, a^{-1}\right)$-cut with minimal possible capacity in the given hyper-graph.

Unfortunately, there is no analog of max-flow min-cut algorithm for hyper-graphs
> .but it is still possible to find minimal cuts in polynomial time because of sub-modularity:

Ooservation

For every f.g. $H \leqslant F_{k}$, let $W=W h(H)$ and then the $\operatorname{map} \mathcal{P}\left(A^{ \pm 1}\right) \rightarrow \mathbb{N}$, $T \mapsto \operatorname{cap}_{w}(T)$ is sub-modular.

Minimizing capacities in hyper-graphs

So, Whitehead's Minimization Problem for subgroups reduces to:

- run over all possible multipliers, say a, (there are $2 k$),
- find an $\left(a, a^{-1}\right)$-cut with minimal possible capacity in the given hyper-graph.

Unfortunately, there is no analog of max-flow min-cut algorithm for hyper-graphs ...

.but it is still possible to find minimal cuts in polynomial time because of sub-modularity:

Observation

\square

Minimizing capacities in hyper-graphs

So, Whitehead's Minimization Problem for subgroups reduces to:

- run over all possible multipliers, say a, (there are $2 k$),
- find an $\left(a, a^{-1}\right)$-cut with minimal possible capacity in the given hyper-graph.

Unfortunately, there is no analog of max-flow min-cut algorithm for hyper-graphs ...
...but it is still possible to find minimal cuts in polynomial time because of sub-modularity:

Observation
\square

Minimizing capacities in hyper-graphs

So, Whitehead's Minimization Problem for subgroups reduces to:

- run over all possible multipliers, say a, (there are $2 k$),
- find an $\left(a, a^{-1}\right)$-cut with minimal possible capacity in the given hyper-graph.

Unfortunately, there is no analog of max-flow min-cut algorithm for hyper-graphs ...
...but it is still possible to find minimal cuts in polynomial time because of sub-modularity:

Observation

For every f.g. $H \leqslant F_{k}$, let $W=W h(H)$ and then the $\operatorname{map} \mathcal{P}\left(A^{ \pm 1}\right) \rightarrow \mathbb{N}$, $T \mapsto \operatorname{cap}_{W}(T)$ is sub-modular.

Sub-modularity

Definition

A map $f: \mathcal{P}(V) \rightarrow \mathbb{N}$ is called sub-modular if, for every $A, B \subseteq V$, $f(A \cup B)+f(A \cap B) \leqslant f(A)+f(B)$.

Efficient minimization of sub-modular functions is an active research topic in computer science. One of the classical results is the following

Proposition

There exists a algorithm which, given a sub-modular function f : computes its minimum with a number of queries to evaluate f bounded above by a polynomial on |V|.

Corollary

There is an algorithm which solves Whitehead Minimization Problem for subgroups $H \leqslant F_{k}$, in time $O\left(\left(n^{2} k^{4}+n^{3} k^{2}\right) \log (n k)\right)$, where $n=\|H\|$

Sub-modularity

Definition

A map $f: \mathcal{P}(V) \rightarrow \mathbb{N}$ is called sub-modular if, for every $A, B \subseteq V$, $f(A \cup B)+f(A \cap B) \leqslant f(A)+f(B)$.

Efficient minimization of sub-modular functions is an active research topic in computer science. One of the classical results is the following

Proposition
 There exists a algorithm which, given a sub-modular function f: $\mathcal{P}(V)$ computes its minimum with a number of queries to evaluate f bounded above by a polynomial on |V|
 Corollary
 There is an a gorithm which solves Whitehead Minimization Problem for subgroups Hs

Sub-modularity

Definition

A map $f: \mathcal{P}(V) \rightarrow \mathbb{N}$ is called sub-modular if, for every $A, B \subseteq V$, $f(A \cup B)+f(A \cap B) \leqslant f(A)+f(B)$.

Efficient minimization of sub-modular functions is an active research topic in computer science. One of the classical results is the following

Proposition

There exists a algorithm which, given a sub-modular function $f: \mathcal{P}(V) \rightarrow \mathbb{N}$ computes its minimum with a number of queries to evaluate f bounded above by a polynomial on $|V|$.

Corollary
There is an algorithm which solves Whitehead Minimization Problem for subgroups $H \leqslant F_{k}$, in time $O\left(\left(n^{2} k^{4}+n^{3} k^{2}\right) \log (n k)\right)$, where $n=\|H\|$

Sub-modularity

Definition

A map $f: \mathcal{P}(V) \rightarrow \mathbb{N}$ is called sub-modular if, for every $A, B \subseteq V$, $f(A \cup B)+f(A \cap B) \leqslant f(A)+f(B)$.

Efficient minimization of sub-modular functions is an active research topic in computer science. One of the classical results is the following

Proposition

There exists a algorithm which, given a sub-modular function $f: \mathcal{P}(V) \rightarrow \mathbb{N}$ computes its minimum with a number of queries to evaluate f bounded above by a polynomial on $|V|$.

Corollary

There is an algorithm which solves Whitehead Minimization Problem for subgroups $H \leqslant F_{k}$, in time $O\left(\left(n^{2} k^{4}+n^{3} k^{2}\right) \log (n k)\right)$, where $n=\|H\|$.

Deciding free-factorness

Observation

A given subgroup $H \leqslant F_{k}$ of rank $r(H)=r \leqslant k$ is a free factor of F_{k} if and only if $\exists \varphi \in \operatorname{Aut}\left(F_{k}\right)$ such that $\|\varphi(H)\|=1$.

Corollary (Roig, V., Weil, 2007)

Given a f.g. subgroup $H \leqslant F_{k}$, one can check whether H is a free factor of F_{k} in time $O\left(\left(n^{2} k^{4}+n^{3} k^{2}\right) \log (n k)\right)$, where $n=\|H\|$

Corollary (Roig, V., Weil, 2007)

Given f.g. subgroups $H \leqslant K \leqslant F_{k}$, one can check whether H is a free factor of K in polynomial time w.r.t. the given generators of H and K.

Deciding free-factorness

Observation

A given subgroup $H \leqslant F_{k}$ of rank $r(H)=r \leqslant k$ is a free factor of F_{k} if and only if $\exists \varphi \in \operatorname{Aut}\left(F_{k}\right)$ such that $\|\varphi(H)\|=1$.

Corollary (Roig, V., Weil, 2007)

Given a f.g. subgroup $H \leqslant F_{k}$, one can check whether H is a free factor of F_{k} in time $O\left(\left(n^{2} k^{4}+n^{3} k^{2}\right) \log (n k)\right)$, where $n=\|H\|$.

Corollary (Roig, V., Weil, 2007)

Given f.g. subgroups $H \leqslant K \leqslant F_{k}$, one can check whether H is a free factor of K in polynomial time w.r.t. the given generators of H and K.

Deciding free-factorness

Observation

A given subgroup $H \leqslant F_{k}$ of rank $r(H)=r \leqslant k$ is a free factor of F_{k} if and only if $\exists \varphi \in \operatorname{Aut}\left(F_{k}\right)$ such that $\|\varphi(H)\|=1$.

Corollary (Roig, V., Weil, 2007)

Given a f.g. subgroup $H \leqslant F_{k}$, one can check whether H is a free factor of F_{k} in time $O\left(\left(n^{2} k^{4}+n^{3} k^{2}\right) \log (n k)\right)$, where $n=\|H\|$.

Corollary (Roig, V., Weil, 2007)

Given f.g. subgroups $H \leqslant K \leqslant F_{k}$, one can check whether H is a free factor of K in polynomial time w.r.t. the given generators of H and K.

Outline

(1) Algebraic extensions
(2) The bijection between subgroups and automata
(3) Takahasi's theorem

4 Algebraic closures
(5) The first part of Whitehead algorithm made polynomial
(6) Generalization to subgroups
(7) Back to algebraic closures

Computing algebraic closures in polynomial time

Theorem (V. 2009)

Given f.g. subgroups $H \leqslant K \leqslant F_{k}$, one can compute the K-algebraic closure $\mathrm{Cl}_{K}(H)$ of H in polynomial time w.r.t. the given generators of H and K.

Proof:

- Find bases for H, and for K (say $\left\{x_{1}, \ldots, x_{r}\right\}$),
- write H in terms of $\left\{x_{1}\right.$,
- compute $H_{\text {min }}$ and $\varphi \in \operatorname{Aut}(K)$ such that $\varphi(H)=H_{\text {min }}$, using WMP relative to K,
- consider the smallest set of letters $X_{0} \subseteq\left\{x_{1}, \ldots, x_{r}\right\}$ such that
- now, $C l_{K}(H)=\varphi^{-1}\left(\left\langle X_{0}\right\rangle\right)$. \square

Computing algebraic closures in polynomial time

Theorem (V. 2009)

Given f.g. subgroups $H \leqslant K \leqslant F_{k}$, one can compute the K-algebraic closure $\mathrm{Cl}_{K}(H)$ of H in polynomial time w.r.t. the given generators of H and K.

Proof:

- Find bases for H, and for K (say $\left\{x_{1}, \ldots, x_{r}\right\}$),
- write H in terms of $\left\{x_{1}\right.$
- compute $H_{\text {min }}$ and $\varphi \in \operatorname{Aut}(K)$ such that $\varphi(H)=H_{\text {min }}$, using WMP relative to K,
- consider the smallest set of letters $X_{0} \subseteq\left\{x_{1}, \ldots, x_{r}\right\}$ such that
- now, $C I_{K}(H)=\varphi^{-1}\left(\left\langle X_{0}\right\rangle\right)$. \square

Computing algebraic closures in polynomial time

Theorem (V. 2009)

Given f.g. subgroups $H \leqslant K \leqslant F_{k}$, one can compute the K-algebraic closure $\mathrm{Cl}_{K}(H)$ of H in polynomial time w.r.t. the given generators of H and K.

Proof:

- Find bases for H, and for K (say $\left\{x_{1}, \ldots, x_{r}\right\}$),
- write H in terms of $\left\{x_{1}, \ldots, x_{r}\right\}$,
- compute $H_{\text {min }}$ and $\varphi \in \operatorname{Aut}(K)$ such that $\varphi(H)=H_{\text {min }}$, using WMP relative to K,
- consider the smallest set of letters $X_{0} \subseteq\left\{x_{1}, \ldots, x_{r}\right\}$ such that
- now, $C l_{K}(H)=\varphi^{-1}\left(\left\langle X_{0}\right\rangle\right)$. \square

Computing algebraic closures in polynomial time

Theorem (V. 2009)

Given f.g. subgroups $H \leqslant K \leqslant F_{k}$, one can compute the K-algebraic closure $\mathrm{Cl}_{K}(H)$ of H in polynomial time w.r.t. the given generators of H and K.

Proof:

- Find bases for H, and for K (say $\left\{x_{1}, \ldots, x_{r}\right\}$),
- write H in terms of $\left\{x_{1}, \ldots, x_{r}\right\}$,
- compute $H_{\text {min }}$ and $\varphi \in \operatorname{Aut}(K)$ such that $\varphi(H)=H_{\text {min }}$, using WMP relative to K,
- consider the smallest set of letters $X_{0} \subseteq\left\{x_{1}, \ldots, x_{r}\right\}$ such that
- now, $C l_{K}(H)=\varphi^{-1}\left(\left\langle X_{0}\right\rangle\right)$. \square

Computing algebraic closures in polynomial time

Theorem (V. 2009)

Given f.g. subgroups $H \leqslant K \leqslant F_{k}$, one can compute the K-algebraic closure $\mathrm{Cl}_{K}(H)$ of H in polynomial time w.r.t. the given generators of H and K.

Proof:

- Find bases for H, and for K (say $\left\{x_{1}, \ldots, x_{r}\right\}$),
- write H in terms of $\left\{x_{1}, \ldots, x_{r}\right\}$,
- compute $H_{\text {min }}$ and $\varphi \in \operatorname{Aut}(K)$ such that $\varphi(H)=H_{\text {min }}$, using WMP relative to K,
- consider the smallest set of letters $X_{0} \subseteq\left\{x_{1}, \ldots, x_{r}\right\}$ such that $H_{\text {min }} \leqslant\left\langle X_{0}\right\rangle$;
- now, $C_{k}(H)=\varphi^{-1}\left(\left\langle X_{0}\right\rangle\right)$. \square

Computing algebraic closures in polynomial time

Theorem (V. 2009)

Given f.g. subgroups $H \leqslant K \leqslant F_{k}$, one can compute the K-algebraic closure $\mathrm{Cl}_{K}(H)$ of H in polynomial time w.r.t. the given generators of H and K.

Proof:

- Find bases for H, and for K (say $\left\{x_{1}, \ldots, x_{r}\right\}$),
- write H in terms of $\left\{x_{1}, \ldots, x_{r}\right\}$,
- compute $H_{\text {min }}$ and $\varphi \in \operatorname{Aut}(K)$ such that $\varphi(H)=H_{\text {min }}$, using WMP relative to K,
- consider the smallest set of letters $X_{0} \subseteq\left\{x_{1}, \ldots, x_{r}\right\}$ such that $H_{\text {min }} \leqslant\left\langle X_{0}\right\rangle$;
- now, $C l_{k}(H)=\varphi^{-1}\left(\left\langle X_{0}\right\rangle\right)$. \square

Computing algebraic closures in polynomial time

Because...

Proposition (see I.5.4 in Lyndon-Schupp)

Let F be a free group with basis X, and let w be a word or cyclic word of minimal length (w.r.t. the action of Aut (F)). If exactly n letters occur in w then at least n letters will occur in $\varphi(w)$, for every $\varphi \in \operatorname{Aut}(F)$.

And the similar statement is true as well, for subgroups.

Computing algebraic closures in polynomial time

Because...

Proposition (see I.5.4 in Lyndon-Schupp)

Let F be a free group with basis X, and let w be a word or cyclic word of minimal length (w.r.t. the action of Aut (F)). If exactly n letters occur in w then at least n letters will occur in $\varphi(w)$, for every $\varphi \in \operatorname{Aut}(F)$.

And the similar statement is true as well, for subgroups.

THANKS

