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Definitions and notation

A = {a1, . . . , an} is a finite alphabet (n letters).

A±1 = A ∪ A−1 = {a1, a−1
1 , . . . , an, a−1

n }.
Usually, A = {a, b, c}.
(A±1)∗ the free monoid on A±1 (words on A±1).

FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo reduction).

Every w ∈ A∗ has a unique reduced form,

1 denotes the empty word, and | · | the (shortest) length in FA:
|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.

Enric Ventura (UPC) W. minimization & computation of algebraic closures August 19th, 2009 4 / 62



Definitions and notation

A = {a1, . . . , an} is a finite alphabet (n letters).

A±1 = A ∪ A−1 = {a1, a−1
1 , . . . , an, a−1

n }.
Usually, A = {a, b, c}.
(A±1)∗ the free monoid on A±1 (words on A±1).

FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo reduction).

Every w ∈ A∗ has a unique reduced form,

1 denotes the empty word, and | · | the (shortest) length in FA:
|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.

Enric Ventura (UPC) W. minimization & computation of algebraic closures August 19th, 2009 4 / 62



Definitions and notation

A = {a1, . . . , an} is a finite alphabet (n letters).

A±1 = A ∪ A−1 = {a1, a−1
1 , . . . , an, a−1

n }.
Usually, A = {a, b, c}.
(A±1)∗ the free monoid on A±1 (words on A±1).

FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo reduction).

Every w ∈ A∗ has a unique reduced form,

1 denotes the empty word, and | · | the (shortest) length in FA:
|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.

Enric Ventura (UPC) W. minimization & computation of algebraic closures August 19th, 2009 4 / 62



Definitions and notation

A = {a1, . . . , an} is a finite alphabet (n letters).

A±1 = A ∪ A−1 = {a1, a−1
1 , . . . , an, a−1

n }.
Usually, A = {a, b, c}.
(A±1)∗ the free monoid on A±1 (words on A±1).

FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo reduction).

Every w ∈ A∗ has a unique reduced form,

1 denotes the empty word, and | · | the (shortest) length in FA:
|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.

Enric Ventura (UPC) W. minimization & computation of algebraic closures August 19th, 2009 4 / 62



Definitions and notation

A = {a1, . . . , an} is a finite alphabet (n letters).

A±1 = A ∪ A−1 = {a1, a−1
1 , . . . , an, a−1

n }.
Usually, A = {a, b, c}.
(A±1)∗ the free monoid on A±1 (words on A±1).

FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo reduction).

Every w ∈ A∗ has a unique reduced form,

1 denotes the empty word, and | · | the (shortest) length in FA:
|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.

Enric Ventura (UPC) W. minimization & computation of algebraic closures August 19th, 2009 4 / 62



Definitions and notation

A = {a1, . . . , an} is a finite alphabet (n letters).

A±1 = A ∪ A−1 = {a1, a−1
1 , . . . , an, a−1

n }.
Usually, A = {a, b, c}.
(A±1)∗ the free monoid on A±1 (words on A±1).

FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo reduction).

Every w ∈ A∗ has a unique reduced form,

1 denotes the empty word, and | · | the (shortest) length in FA:
|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.

Enric Ventura (UPC) W. minimization & computation of algebraic closures August 19th, 2009 4 / 62



Definitions and notation

A = {a1, . . . , an} is a finite alphabet (n letters).

A±1 = A ∪ A−1 = {a1, a−1
1 , . . . , an, a−1

n }.
Usually, A = {a, b, c}.
(A±1)∗ the free monoid on A±1 (words on A±1).

FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo reduction).

Every w ∈ A∗ has a unique reduced form,

1 denotes the empty word, and | · | the (shortest) length in FA:
|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.

Enric Ventura (UPC) W. minimization & computation of algebraic closures August 19th, 2009 4 / 62



Motivation

In basic linear algebra:

U 6 V 6 K n ⇒ V = U ⊕ L.

In Zn, the analog is almost true:

U 6 V 6 Zn ⇒ ∃ U ≤fi U ′ 6 V s.t. V = U ′ ⊕ L.

In F (A), the analog is ...

far from true because H 6 K 6⇒ r(H) 6 r(K ) ...
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In Zn, the analog is almost true:

U 6 V 6 Zn ⇒ ∃ U ≤fi U ′ 6 V s.t. V = U ′ ⊕ L.

In F (A), the analog is ...

almost true again, ... in the sense of Takahasi.
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Algebraic and transcendental elements

Mimicking field theory...

Definition
Let H 6 F (A) and w ∈ F (A). We say that w is

algebraic over H if ∃ 1 6= eH(x) ∈ H ∗ 〈x〉 such that eH(w) = 1;

transcendental over H otherwise.

Observation
w is transcendental over H ⇐⇒ 〈H, w〉 ' H ∗ 〈w〉

⇐⇒ H is contained in a proper f.f. of 〈H, w〉.

Problem
w1, w2 algebraic over H 6⇒ w1w2 algebraic over H.

H = 〈a, bab, cac〉 6 〈a, b, c〉, and w1 = b, w2 = c
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Algebraic and free extensions

A relative notion works better...

Definition
Let H 6 K 6 F (A) and w ∈ K . We say that w is

K -algebraic over H if ∀ free factorization K = K1 ∗ K2 with H 6 K1, we
have w ∈ K1;

K -transcendental over H otherwise.

Observation
w is algebraic over H if and only if it is 〈H, w〉-algebraic over H.

Observation
If w1 and w2 are K -algebraic over H, then so is w1w2.
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Algebraic and free extensions

Definition
Let H 6 K 6 F (A).
We say that H 6 K is an algebraic extension, denoted H ≤alg K ,
⇐⇒ every w ∈ K is K -algebraic over H,
⇐⇒ H is not contained in any proper free factor of K ,
⇐⇒ H 6 K1 6 K1 ∗ K2 = K implies K2 = 1.

We say that H 6 K is a free extension, denoted H ≤ff K ,
⇐⇒ every w ∈ K is K -transcendental over H,
⇐⇒ H 6 H ∗ L = K for some L.
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Algebraic and free extensions

Example
〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ FA ∀ 0 6= r ∈ Z.

if r(H) > 2 and r(K ) 6 2 then H 6alg K .

H 6alg K 6alg L implies H 6alg L.

H 6ff K 6ff L implies H 6ff L.

H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily H 6alg K .

H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily K 6ff L.

How many algebraic extensions does a given H have in F (A) ?

Can we compute them all ?

Enric Ventura (UPC) W. minimization & computation of algebraic closures August 19th, 2009 10 / 62



Algebraic and free extensions

Example
〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ FA ∀ 0 6= r ∈ Z.

if r(H) > 2 and r(K ) 6 2 then H 6alg K .

H 6alg K 6alg L implies H 6alg L.

H 6ff K 6ff L implies H 6ff L.

H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily H 6alg K .

H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily K 6ff L.

How many algebraic extensions does a given H have in F (A) ?

Can we compute them all ?

Enric Ventura (UPC) W. minimization & computation of algebraic closures August 19th, 2009 10 / 62



Algebraic and free extensions

Example
〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ FA ∀ 0 6= r ∈ Z.

if r(H) > 2 and r(K ) 6 2 then H 6alg K .

H 6alg K 6alg L implies H 6alg L.

H 6ff K 6ff L implies H 6ff L.

H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily H 6alg K .

H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily K 6ff L.

How many algebraic extensions does a given H have in F (A) ?

Can we compute them all ?

Enric Ventura (UPC) W. minimization & computation of algebraic closures August 19th, 2009 10 / 62



Algebraic and free extensions

Example
〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ FA ∀ 0 6= r ∈ Z.

if r(H) > 2 and r(K ) 6 2 then H 6alg K .

H 6alg K 6alg L implies H 6alg L.

H 6ff K 6ff L implies H 6ff L.

H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily H 6alg K .

H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily K 6ff L.

How many algebraic extensions does a given H have in F (A) ?

Can we compute them all ?

Enric Ventura (UPC) W. minimization & computation of algebraic closures August 19th, 2009 10 / 62



Algebraic and free extensions

Example
〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ FA ∀ 0 6= r ∈ Z.

if r(H) > 2 and r(K ) 6 2 then H 6alg K .

H 6alg K 6alg L implies H 6alg L.

H 6ff K 6ff L implies H 6ff L.

H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily H 6alg K .

H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily K 6ff L.

How many algebraic extensions does a given H have in F (A) ?

Can we compute them all ?

Enric Ventura (UPC) W. minimization & computation of algebraic closures August 19th, 2009 10 / 62



Algebraic and free extensions

Example
〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ FA ∀ 0 6= r ∈ Z.

if r(H) > 2 and r(K ) 6 2 then H 6alg K .

H 6alg K 6alg L implies H 6alg L.

H 6ff K 6ff L implies H 6ff L.

H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily H 6alg K .

H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily K 6ff L.

How many algebraic extensions does a given H have in F (A) ?

Can we compute them all ?

Enric Ventura (UPC) W. minimization & computation of algebraic closures August 19th, 2009 10 / 62



Algebraic and free extensions

Example
〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ FA ∀ 0 6= r ∈ Z.

if r(H) > 2 and r(K ) 6 2 then H 6alg K .

H 6alg K 6alg L implies H 6alg L.

H 6ff K 6ff L implies H 6ff L.

H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily H 6alg K .

H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily K 6ff L.

How many algebraic extensions does a given H have in F (A) ?

Can we compute them all ?

Enric Ventura (UPC) W. minimization & computation of algebraic closures August 19th, 2009 10 / 62



Algebraic and free extensions

Example
〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ FA ∀ 0 6= r ∈ Z.

if r(H) > 2 and r(K ) 6 2 then H 6alg K .

H 6alg K 6alg L implies H 6alg L.

H 6ff K 6ff L implies H 6ff L.

H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily H 6alg K .

H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily K 6ff L.

How many algebraic extensions does a given H have in F (A) ?

Can we compute them all ?

Enric Ventura (UPC) W. minimization & computation of algebraic closures August 19th, 2009 10 / 62



Takahasi’s Theorem

Theorem (Takahasi, 1951)
For every H 6fg FA, the set of algebraic extensions, denoted AE(H), is finite.

Original proof by Takahasi was combinatorial and technical,

Modern proof, using Stallings automata, is much simpler, and due
independently to Ventura (1997), Margolis-Sapir-Weil (2001) and
Kapovich-Miasnikov (2002).

Additionally, AE(H) is computable.
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Stallings automata

Definition
A Stallings automaton is a finite A-labeled oriented graph with a distinguished
vertex, (X , v), such that:

1- X is connected,

2- no vertex of degree 1 except possibly v (X is a core-graph),

3- no two edges with the same label go out of (or in to) the same vertex.

NO : •

a

��

b

����
��
��
��
��
��
�

• c // •
a

** •

b

XX0000000000000

c

jj

YES : •

a
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b

����
��
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��
��
�

•
a

** •

b

XX0000000000000

c

jj
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Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),
551-565,

Stallings (building on previous works) gave a bijection between finitely
generated subgroups of FA and Stallings automata:

{f.g. subgroups of FA} ←→ {Stallings automata},

which is crucial for the modern understanding of the lattice of subgroups of FA.
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Reading the subgroup from the automata

Definition
To any given (Stallings) automaton (X , v), we associate its fundamental
group:

π(X , v) = { labels of closed paths at v} 6 FA,

clearly, a subgroup of FA.

•

a

��

X= b

����
��
��
��
��
��
�

•
a

** •

b

XX0000000000000

c

jj

π(X , •) = {1, a, a−1, bab, bc−1b,
babab−1cb−1, . . .}

π(X , •) 63 bc−1bcaa

Membership problem in π(X , •) is solvable.
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A basis for π(X , v)

Proposition
For every Stallings automaton (X , v), the group π(X , v) is free of rank
rk(π(X , v)) = 1− |VX |+ |EX |.

Proof:

Take a maximal tree T in X .

Write T [p, q] for the geodesic (i.e. the unique reduced path) in T from p
to q.

For every e ∈ EX − ET , xe = label(T [v , ιe] · e · T [τe, v ]) belongs to
π(X , v).

Not difficult to see that {xe | e ∈ EX − ET} is a basis for π(X , v).

And, |EX − ET | = |EX | − |ET |
= |EX | − (|VT | − 1) = 1− |VX |+ |EX |. �
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Example

•

a

��

b

���
�
�
�
�
�
�

•
a

** •

b

XX0
0
0
0
0
0
0

c

jj

H = 〈 〉
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•
a

** •

b

XX0
0
0
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H = 〈a, bab, b−1cb−1〉
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Example

•

a

��

b

���
�
�
�
�
�
�

•
a

** •

b

XX0
0
0
0
0
0
0

c

jj

H = 〈a, bab, b−1cb−1〉
rk(H) = 1− 3 + 5 = 3.
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Example-2

· · · b // • b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
· · ·

Fℵ0 ' H = 〈. . . , b−2ab2, b−1ab, a, bab−1, b2ab−2, . . .〉 6 F2.
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Constructing the automata from the subgroup

In any automaton containing the following situation, for x ∈ A±1,

• x //

x
&&NNNNNNNNNNNNN u

v

we can fold and identify vertices u and v to obtain

• x // u = v .

This operation, (X , v) (X ′, v), is called a Stallings folding.
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Constructing the automata from the subgroup

Lemma (Stallings)
If (X , v) (X ′, v ′) is a Stallings folding then π(X , v) = π(X ′, v ′).

Given a f.g. subgroup H = 〈w1, . . . wm〉 6 FA (we assume wi are reduced
words), do the following:

1- Draw the flower automaton,

2- Perform successive foldings until obtaining a Stallings automaton,
denoted Γ(H).
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Example: H = 〈baba−1, aba−1, aba2〉

• a // •

b

��
• a // •

b

OO

a //

a

��?
??

??
??

??
??

??
??

?

a

��

a

����
��

��
��

��
��

��
��

•

•

a

??����������������
•

b
oo • •

b
oo

Flower(H)
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• a // •
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��
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b
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b

��
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•
a
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Example: H = 〈baba−1, aba−1, aba2〉
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Folding #2.
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Example: H = 〈baba−1, aba−1, aba2〉

• a //
b

.. •

a

����
��

��
��

��
��

��
��

b
pp

•

a

OO

Folding #3. Γ(H)

By Stallings Lemma, π(Γ(H), •) = 〈baba−1, aba−1, aba2〉
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Example: H = 〈baba−1, aba−1, aba2〉

• a //
b

.. •

a

����
��

��
��

��
��

��
��

b
pp

•

a

OO

Folding #3. Γ(H)

By Stallings Lemma, π(Γ(H), •) = 〈baba−1, aba−1, aba2〉
= 〈b, aba−1, a3〉
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Local confluence

It can be shown that

Proposition
The automaton Γ(H) does not depend on the sequence of foldings

Proposition
The automaton Γ(H) does not depend on the generators of H.

Theorem
The following is a bijection:

{f.g. subgroups of FA} ←→ {Stallings automata}
H → Γ(H)

π(X , v) ← (X , v)
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Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)
Every subgroup of FA is free.

Finite automata work for the finitely generated case, but everything
extends easily to the general case (using infinite graphs).

The original proof (1920’s) is combinatorial and much more technical.
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Takahasi’s theorem

Definition
Let H 6 K 6 F (A). Then, H 6 K is algebraic if and only if H is not contained
in any proper free factor of K .

Theorem (Takahasi, 1951)
For every H 6fg FA, the set of algebraic extensions, AE(H), is finite.

Proof (Ventura; Margolis-Sapir-Weil; Kapovich-Miasnikov):

Consider Γ̃(H), the result of attaching all possible (infinite) “hairs" to Γ(H)
(i.e. the covering of the bouquet corresponding to H).

Given H 6 K (both f.g.), we can obtain Γ̃(K ) from Γ̃(H) by performing the
appropriate identifications of vertices (plus subsequent foldings).
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Takahasi’s theorem

Hence, if H 6 K (both f.g.) then Γ(K ) contains as a subgraph either Γ(H)
or some quotient of it (i.e. Γ(H) after some identifications of vertices,
Γ(H)/ ∼).

The overgroups of H:
O(H) = {π(Γ(H)/ ∼, •) | ∼ is a partition of VΓ(H)}.
Hence, for every H 6 K , there exists L ∈ O(H) such that H 6 L 6ff K .

Thus, AE(H) ⊆ O(H) and so, it is finite. �
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Computing AE(H)

Corollary
AE(H) is computable.

Proof:

Compute Γ(H),

Compute Γ(H)/ ∼ for all partitions ∼ of VΓ(H),

Compute O(H),

Clean O(H) by detecting all pairs K1, K2 ∈ O(H) such that K1 6ff K2 and
deleting K2.

The resulting set is AE(H). �

But ...

→ there are exponentially many partitions ∼
→ the cleaning process needs exponential time (... by the moment).
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The algebraic closure

Observation
If H 6alg K1 and H 6alg K2 then H 6alg 〈K1 ∪ K2〉.

Corollary
For every H 6 K 6 FA (all f.g.), AEK (H) has a unique maximal element, called
the K -algebraic closure of H, and denoted ClK (H).

Corollary
Every extension H 6 K of f.g. subgroups of FA splits, in a unique way, in an
algebraic part and a free part, H 6alg ClK (H) 6ff K .

Compare with Hall’s property.
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Computing algebraic closures

In the rest of the talk we’ll sketch the proof of:

Theorem (V. 2009)
Given H 6 K 6 FA (all f.g.) one can compute (a basis for) ClK (H) in
polynomial time w.r.t. the sum of lengths of given generators for H and K .

Main ingredients in the proof:

1) Construct directly ClK (H) without having to compute all of O(H).
2) Use

Theorem (Roig-V.-Weil, 2007)
Given H, K 6 FA (all f.g.), one can decide whether H 6ff K or not, in
polynomial time w.r.t. the sum of lengths of given generators for H and K .

Whitehead 1930’s (classical and exponential),
Silva-Weil 2006 (graphical algorithm, faster but still exponential),
Roig-V.-Weil 2007 (variation of Whitehead algorithm in polynomial time).
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Whitehead problem:

Whitehead Problem
For a group G, find an algorithm s.t. given u, v ∈ G decides whether there
exists ϕ ∈ Aut(G) such that ϕ(u) = v.

Theorem (Whitehead)
Whitehead problem is solvable in F (A).

“Proof":
First part: reduce ‖u‖ and ‖v‖ as much as possible by applying autos:

u → u1 → u2 → · · · → u′,

v → v1 → v2 → · · · → v ′.

Second part: analyze who is image of who by some auto, in the (finite!)
sphere of given radius n, Sn = {w ∈ Fk | ‖w‖ = n}. �
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Whitehead minimization problem

Let us concentrate in the first part:

Whitehead Minimization Problem (WMP)
Given u ∈ F (A), find ϕ ∈ Aut(F (A)) such that ‖ϕ(u)‖ is minimal.

Lemma (Whitehead)
Let u ∈ F (A). If ∃ϕ ∈ Aut(F (A)) such that ‖ϕ(u)‖ < ‖u‖ then ∃ a “Whitehead
automorphism" α such that ‖ϕ(u)‖ < ‖u‖.

Definition
Whitehead automorphisms are those of the form:

F (A) → F (A)
ai 7→ ai (the multiplier)

ai 6= aj 7→ aεj

i aj aδj

i

where εj = 0,−1 and δj = 0, 1 (there are ∼ k · 4k many, where k = |A|).
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Classical Whitehead’s algorithm (first part)

Classical whitehead algorithm is

Keep applying whitehead automorphisms to given u until finding one that
decreases its cyclic length.

Repeat until all whiteheads are non-decreasing.

This is polynomial on ‖u‖, but exponential on the ambient rank, k .

There are several recent results (theoric, heuristic, probabilistic) suggesting
that Whitehead algorithm is faster in practice.
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Improvement

Theorem (Roig, V., Weil, 2007)
There is an algorithm which solves Whitehead Minimization Problem for Fk in
time O(n2 k3).

main idea: given u ∈ Fk , we find in polynomial time one of the whiteheads
that decreases ‖u‖ the most possible.

Key point: How does a given Whitehead automorphism α affect the length of
a given word u ?

Three ingredients:

1) Codify u as its Whitehead’s graph (classic in Group Theory),

2) Codify α as a cut in this graph (≈ classic in Group Theory),

3) Use max-flow min-cut algorithm (classic in Computer Science),

4) ... put together and mix ( new! ).
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Whitehead’s graph

First ingredient: Whitehead’s graph of a word.

Definition
Given u ∈ Fk (cyclically reduced), its (unoriented) Whitehead graph, denoted
Wh(u), is:

vertices: A±1,

edges: for every pair of (cycl.) consecutive letters u = · · · xy · · · put an
edge between x and y−1.

Example

u = aba−1c−1bbabc−1, a

EE
EE
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E

EE
EE

EE
EE

E b

yy
yy
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yy

y
c

lllllllllllllllll

a−1 b−1 c−1
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Cut in a graph

Second ingredient: Cut in a graph.

Definition
Given a Whitehead’s automorphism α, we represent it as the (a, a−1)-cut

(T = {a} ∪ {letters that go multiplied on the right by a}, a)

of the set A±1.

Example

〈a, b, c〉 = F3 → F3

a 7→ ab
b 7→ b
c 7→ b−1cb

a b c

a−1 b−1 c−1
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Rephrasement of Wh. Lemma

Lemma (Whitehead)
Given a word u ∈ Fk and a Whitehead automorphism α, think α as a cut in
Wh(u), say α = (T , a), and then

‖α(u)‖ − ‖u‖ = cap(T )− deg(a).

Proof: Analyzing combinatorial cases (see Lyndon-Schupp).
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Example

Example

Consider u = aba−1c−1bbabc−1 and α : F3 → F3

a 7→ ab
b 7→ b
c 7→ b−1cb

like before. We

have α(u) = aba−1b−1c−1bbbabc−1b. Furthermore,

a

EE
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EE
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E b
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yy

y
c

lllllllllllllllll

a−1 b−1 c−1

and, in fact,

12− 9 = ‖α(u)‖ − ‖u‖ = cap(T )− deg(b) = 7− 4.
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Max-flow min-cut algorithm

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead’s Minimization Problem reduces to:

run over all possible multipliers, say a, (there are 2k),

find an (a, a−1)-cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm ...

...which works in polynomial time w.r.t. the number of edges of the graph
(= ‖u‖) and the number of vertices (= 2k ).
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Primitivity

Hence we have proved

Theorem (Roig, V., Weil, 2007)
There is an algorithm which solves Whitehead Minimization Problem for Fk in
time O(n2 k3).

Corollary (Roig, V., Weil, 2007)
Given a word u ∈ Fk , one can check whether u is primitive in Fk in time
O(n2k3), where n = ‖u‖.
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Outline

1 Algebraic extensions

2 The bijection between subgroups and automata

3 Takahasi’s theorem

4 Algebraic closures

5 The first part of Whitehead algorithm made polynomial

6 Generalization to subgroups

7 Back to algebraic closures
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Whitehead’s hypergraph

A cyclically reduced word can be thought as a circular graph; and then, its
Whitehead graph Wh(u) just describes the in-links of the vertices.

Definition
Let H 6 Fk be a f.g. subgroup, and let Γ(H) be its core graph. We define the
Whitehead hyper-graph of H, denoted Wh(H), as:

vertices: A±1,

hyper-edges: for every vertex v in Γ(H), put a hyper-edge consisting on
the in-link of v.

Lemma (Roig, V., Weil, 2007)
Given a f.g. subgroup H 6 Fk and a Whitehead automorphism α, think α as a
cut in Wh(H), say α = (T , a), and then

‖α(u)‖ − ‖u‖ = cap(T )− deg(a),

where ‖H‖ is the number of vertices in Γ(H).
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Whitehead’s hypergraph

Consider H = 〈b, aba−1, aca〉 6 F3. Its core graph Γ(H), and Whitehead
hyper-graph Wh(H) are:

• a //
b

.. •

c
wwppppppppppppp

b
pp

•

a

OO a b c

a−1 b−1 c−1

In fact, α(H) = 〈b, aba−1, acbab〉 and then

Γ(α(H)) = • a //
b

.. •
c

��

b
pp

•

a

OO

•
b

oo

and so, 4− 3 = ‖α(H)‖ − ‖H‖ = 3− 2.
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Minimizing capacities in hyper-graphs

So, Whitehead’s Minimization Problem for subgroups reduces to:

run over all possible multipliers, say a, (there are 2k),

find an (a, a−1)-cut with minimal possible capacity in the given
hyper-graph.

Unfortunately, there is no analog of max-flow min-cut algorithm for
hyper-graphs ...

...but it is still possible to find minimal cuts in polynomial time because of
sub-modularity:

Observation
For every f.g. H 6 Fk , let W = Wh(H) and then the map P(A±1)→ N,
T 7→ capW (T ) is sub-modular.
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Sub-modularity

Definition
A map f : P(V )→ N is called sub-modular if, for every A, B ⊆ V,
f (A ∪ B) + f (A ∩ B) 6 f (A) + f (B).

Efficient minimization of sub-modular functions is an active research topic in
computer science. One of the classical results is the following

Proposition
There exists a algorithm which, given a sub-modular function f : P(V )→ N
computes its minimum with a number of queries to evaluate f bounded above
by a polynomial on |V |.

Corollary
There is an algorithm which solves Whitehead Minimization Problem for
subgroups H 6 Fk , in time O((n2k4 + n3k2) log(nk)), where n = ‖H‖.

Enric Ventura (UPC) W. minimization & computation of algebraic closures August 19th, 2009 57 / 62



Sub-modularity

Definition
A map f : P(V )→ N is called sub-modular if, for every A, B ⊆ V,
f (A ∪ B) + f (A ∩ B) 6 f (A) + f (B).

Efficient minimization of sub-modular functions is an active research topic in
computer science. One of the classical results is the following

Proposition
There exists a algorithm which, given a sub-modular function f : P(V )→ N
computes its minimum with a number of queries to evaluate f bounded above
by a polynomial on |V |.

Corollary
There is an algorithm which solves Whitehead Minimization Problem for
subgroups H 6 Fk , in time O((n2k4 + n3k2) log(nk)), where n = ‖H‖.

Enric Ventura (UPC) W. minimization & computation of algebraic closures August 19th, 2009 57 / 62



Sub-modularity

Definition
A map f : P(V )→ N is called sub-modular if, for every A, B ⊆ V,
f (A ∪ B) + f (A ∩ B) 6 f (A) + f (B).

Efficient minimization of sub-modular functions is an active research topic in
computer science. One of the classical results is the following

Proposition
There exists a algorithm which, given a sub-modular function f : P(V )→ N
computes its minimum with a number of queries to evaluate f bounded above
by a polynomial on |V |.

Corollary
There is an algorithm which solves Whitehead Minimization Problem for
subgroups H 6 Fk , in time O((n2k4 + n3k2) log(nk)), where n = ‖H‖.

Enric Ventura (UPC) W. minimization & computation of algebraic closures August 19th, 2009 57 / 62



Sub-modularity

Definition
A map f : P(V )→ N is called sub-modular if, for every A, B ⊆ V,
f (A ∪ B) + f (A ∩ B) 6 f (A) + f (B).

Efficient minimization of sub-modular functions is an active research topic in
computer science. One of the classical results is the following

Proposition
There exists a algorithm which, given a sub-modular function f : P(V )→ N
computes its minimum with a number of queries to evaluate f bounded above
by a polynomial on |V |.

Corollary
There is an algorithm which solves Whitehead Minimization Problem for
subgroups H 6 Fk , in time O((n2k4 + n3k2) log(nk)), where n = ‖H‖.

Enric Ventura (UPC) W. minimization & computation of algebraic closures August 19th, 2009 57 / 62



Deciding free-factorness

Observation
A given subgroup H 6 Fk of rank r(H) = r 6 k is a free factor of Fk if and only
if ∃ ϕ ∈ Aut(Fk ) such that ‖ϕ(H)‖ = 1.

Corollary (Roig, V., Weil, 2007)
Given a f.g. subgroup H 6 Fk , one can check whether H is a free factor of Fk

in time O((n2k4 + n3k2) log(nk)), where n = ‖H‖.

Corollary (Roig, V., Weil, 2007)
Given f.g. subgroups H 6 K 6 Fk , one can check whether H is a free factor of
K in polynomial time w.r.t. the given generators of H and K .
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Computing algebraic closures in polynomial time

Theorem (V. 2009)
Given f.g. subgroups H 6 K 6 Fk , one can compute the K -algebraic closure
ClK (H) of H in polynomial time w.r.t. the given generators of H and K .

Proof:

Find bases for H, and for K (say {x1, . . . , xr}),
write H in terms of {x1, . . . , xr},
compute Hmin and ϕ ∈ Aut(K ) such that ϕ(H) = Hmin, using WMP relative
to K ,

consider the smallest set of letters X0 ⊆ {x1, . . . , xr} such that
Hmin 6 〈X0〉;
now, ClK (H) = ϕ−1(〈X0〉). �
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Computing algebraic closures in polynomial time

Because...

Proposition (see I.5.4 in Lyndon-Schupp)
Let F be a free group with basis X, and let w be a word or cyclic word of
minimal length (w.r.t. the action of Aut(F )). If exactly n letters occur in w then
at least n letters will occur in ϕ(w), for every ϕ ∈ Aut(F ).

And the similar statement is true as well, for subgroups.
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