Finding the equations satisfied by a given element in the free group

Enric Ventura

Departament de Matemàtiques
Universitat Politècnica de Catalunya

Equations in Groups and Complexity

Newcastle Upon Tyne
(joint work with A. Rosenmann)

July 20th, 2022.

Outline

(1) Equations, dependence, dependence closure
(2) Main results

3 Stallings graphs
4. Back to equations

Outline

(1) Equations, dependence, dependence closure
(2) Main results
(3) Stallings graphs
4. Back to equations

Equations

Definition

Let G be a group, and $H \leqslant G$. An H-equation is an element $w(X) \in H *\langle X\rangle \simeq H * \mathbb{Z}$ (usually written $w(X)=1$). It has the form

$$
w(X)=h_{0} X^{\epsilon_{1}} h_{1} \cdots h_{d-1} X^{\epsilon_{d}} h_{d}
$$

where $h_{0}, \ldots, h_{d} \in H, \epsilon_{1}, \ldots, \epsilon_{d}= \pm 1$, and, for $i=1, \ldots, d-1, h_{i}=1$ implies $\epsilon_{i}=\epsilon_{i+1}$. The integer $d \geqslant 0$ is called the degree of $w(X)$. Further, $w(X)$ is balanced if $\epsilon_{1}+\cdots+\epsilon_{d}=0$.

Déefinition

An element $g \in G$ is a solution of $w(X)$ if $w(g)=h_{0} g^{\epsilon_{1}} h_{1} \cdots h_{n-1} g^{\epsilon_{n}} h_{n}=1 \mathrm{in} \mathrm{G}$.

Example
For $h \neq 1$, the $H-e q . X^{2} h X^{-2}=h\left(m e a n i n g h^{-1} X 1 X h X^{-1} 1 X^{-1}=1\right.$) is a balanced equation of degree 4 , having $g \in G$ as a solution \Leftrightarrow

Equations

Definition

Let G be a group, and $H \leqslant G$. An H-equation is an element $w(X) \in H *\langle X\rangle \simeq H * \mathbb{Z}$ (usually written $w(X)=1$). It has the form

$$
w(X)=h_{0} X^{\epsilon_{1}} h_{1} \cdots h_{d-1} X^{\epsilon_{d}} h_{d}
$$

where $h_{0}, \ldots, h_{d} \in H, \epsilon_{1}, \ldots, \epsilon_{d}= \pm 1$, and, for $i=1, \ldots, d-1, h_{i}=1$ implies $\epsilon_{i}=\epsilon_{i+1}$. The integer $d \geqslant 0$ is called the degree of $w(X)$. Further, $w(X)$ is balanced if $\epsilon_{1}+\cdots+\epsilon_{d}=0$.

Definition

An element $g \in G$ is a solution of $w(X)$ if $w(g)=h_{0} g^{\epsilon_{1}} h_{1} \cdots h_{n-1} g^{\epsilon_{n}} h_{n}=1$ in G.

Example
For $h \neq 1$, the H-eq. $X^{2} h X^{-2}=h$ (meaning $h^{-1} X 1 X h X^{-1} 1 X^{-1}=1$) is a balanced equation of degree 4 , having $g \in G$ as a solution \Leftrightarrow

Equations

Definition

Let G be a group, and $H \leqslant G$. An H-equation is an element $w(X) \in H *\langle X\rangle \simeq H * \mathbb{Z}$ (usually written $w(X)=1$). It has the form

$$
w(X)=h_{0} X^{\epsilon_{1}} h_{1} \cdots h_{d-1} X^{\epsilon_{d}} h_{d},
$$

where $h_{0}, \ldots, h_{d} \in H, \epsilon_{1}, \ldots, \epsilon_{d}= \pm 1$, and, for $i=1, \ldots, d-1, h_{i}=1$ implies $\epsilon_{i}=\epsilon_{i+1}$. The integer $d \geqslant 0$ is called the degree of $w(X)$. Further, $w(X)$ is balanced if $\epsilon_{1}+\cdots+\epsilon_{d}=0$.

Definition

An element $g \in G$ is a solution of $w(X)$ if $w(g)=h_{0} g^{\epsilon_{1}} h_{1} \cdots h_{n-1} g^{\epsilon_{n}} h_{n}=1$ in G.

Example

For $h \neq 1$, the H-eq. $X^{2} h X^{-2}=h$ (meaning $h^{-1} X 1 X h X^{-1} 1 X^{-1}=1$) is a balanced equation of degree 4, having $g \in G$ as a solution \Leftrightarrow $q^{2} \in \operatorname{Cen}_{G}(h)$.

Equations

There are many results concerning equations in different families of groups...

Theorem (Makanin/Razborov)

There is an algorithm which, given an equation over a free group F_{r} decides whether it has a solution in F_{r}. or not. In the affirmative case. one can give a finite descriotion of the set of all such solutions

We are interested in the dual problems:

Probiem

Given H
\square

Equations

There are many results concerning equations in different families of groups...

Theorem (Makanin/Razborov)

There is an algorithm which, given an equation over a free group F_{r}, decides whether it has a solution in F_{r}, or not. In the affirmative case, one can give a finite description of the set of all such solutions.

We are interested in the dual problems:

Problem

Equations

There are many results concerning equations in different families of groups...

Theorem (Makanin/Razborov)

There is an algorithm which, given an equation over a free group F_{r}, decides whether it has a solution in F_{r}, or not. In the affirmative case, one can give a finite description of the set of all such solutions.

We are interested in the dual problems:

Problem

Given $H \leqslant_{f g} G$ and $g \in G$, does g satisfy some non-trivial H-equation $w(X)=1$? In the affirmative case, find/describe them all.

Equations

There are many results concerning equations in different families of groups...

Theorem (Makanin/Razborov)

There is an algorithm which, given an equation over a free group F_{r}, decides whether it has a solution in F_{r}, or not. In the affirmative case, one can give a finite description of the set of all such solutions.

We are interested in the dual problems:

Problem

Given $H \leqslant_{f g} G$ and $g \in G$, does g satisfy some non-trivial H-equation $w(X)=1$? In the affirmative case, find/describe them all.

Problem

Given $H \leqslant f g$ G, describe the set of all elements $g \in G$ satisfying some non-trivial H-equation (say, 'algebraic' over H).

Dependence

Definition

Let $H \leqslant_{f g} G$ and $g \in G$. We say that g is dependent on H if \exists a nontrivial H-equation $w(X)=1$ s.t. $w(g)=1$. Denote by

- $\operatorname{dep}_{G}(H)=\{g \in G \mid g$ dependent on $H\}$
- $\operatorname{Dep}_{G}(H)=\left\langle\operatorname{dep}_{G}(H)\right\rangle \leqslant G$, the dependence subgroup of H.

For $H \leqslant K \leqslant G$, we have $\operatorname{Dep}_{K}(H)=K \cap \operatorname{Dep}_{G}(H)$.

Example

- If $g \in H$ then g is dependent on H (satisfying $g^{-1} X=1$).
- If $1 \neq H \unlhd G$ then $\operatorname{dep}(H)=G$ (any $g \in G$ is a solution to the H-equation $X^{-1} h X=h^{\prime}$, where $1 \neq h \in H$, and $\left.h^{\prime}=g^{-1} h g \in H\right)$.
- If $H^{g^{-1}} \cap H \neq 1$ then g is dependent on H (satisfying $X^{-1} h X h^{-1}=1$, for every $h \in H^{g^{-1}} \cap H$ and $\left.h^{\prime}=g^{-1} h g \in H\right)$. - If $H \leqslant_{f i} G$ then $\operatorname{dep}(H)=G$ (any $g \in G$ is a solution to the H-equation $X^{r} h_{r}^{-1}=1$, for some $r \gg 0$, and $h_{r}=g^{r} \in H$). - $\operatorname{dep}(\{1\})=\{$ torsion elements in $G\}$ (the only $\{1\}$-equations are $X^{d}=1$, for $d \in \mathbb{Z}$).

Dependence

Definition

Let $H \leqslant_{f g} G$ and $g \in G$. We say that g is dependent on H if \exists a nontrivial H-equation $w(X)=1$ s.t. $w(g)=1$. Denote by

- $\operatorname{dep}_{G}(H)=\{g \in G \mid g$ dependent on $H\}$
- $\operatorname{Dep}_{G}(H)=\left\langle\operatorname{dep}_{G}(H)\right\rangle \leqslant G$, the dependence subgroup of H. For $H \leqslant K \leqslant G$, we have $\operatorname{Dep}_{K}(H)=K \cap \operatorname{Dep}_{G}(H)$

Example

- If $g \in H$ then g is dependent on H (satisfying $g^{-1} X=1$).
- If $1 \neq H \unlhd G$ then $\operatorname{dep}(H)=G$ (any $g \in G$ is a solution to the H-equation $X^{-1} h X=h^{\prime}$, where $1 \neq h \in H$, and $\left.h^{\prime}=g^{-1} h g \in H\right)$.
- If $H^{g^{-1}} \cap H \neq 1$ then g is dependent on H (satisfying
$X^{-1} h X h^{-1}=1$, for every $h \in H^{g^{-1}} \cap H$ and $\left.h^{\prime}=g^{-1} h g \in H\right)$.
- If $H \leqslant_{f i} G$ then $\operatorname{dep}(H)=G$ (any $g \in G$ is a solution to the H-equation $X^{r} h_{r}^{-1}=1$, for some $r \gg 0$, and $h_{r}=g^{r} \in H$).
- $\operatorname{dep}(\{1\})=\{$ torsion elements in $G\}$ (the only $\{1\}$-equations are $X^{d}=1$, for $d \in \mathbb{Z}$).

Dependence

Definition

Let $H \leqslant_{f g} G$ and $g \in G$. We say that g is dependent on H if \exists a nontrivial H-equation $w(X)=1$ s.t. $w(g)=1$. Denote by

- $\operatorname{dep}_{G}(H)=\{g \in G \mid g$ dependent on $H\}$
- $\operatorname{Dep}_{G}(H)=\left\langle\operatorname{dep}_{G}(H)\right\rangle \leqslant G$, the dependence subgroup of H.
- If $1 \neq H \unlhd G$ then $\operatorname{dep}(H)=G$ (any $g \in G$ is a solution to the H-equation $X^{-1} h X=h^{\prime}$, where $1 \neq h \in H$, and $h^{\prime}=g^{-1} h g \in H$).
- If $H^{g^{-1}} \cap H \neq 1$ then g is dependent on H (satisfying
$X^{-1} h X h^{\prime-1}=1$, for every $h \in H^{g^{-1}} \cap H$ and $\left.h^{\prime}=g^{-1} h g \in H\right)$.
- If $H \leqslant_{f i} G$ then $\operatorname{dep}(H)=G$ (any $g \in G$ is a solution to the H-equation $X^{r} h_{r}^{-1}=1$, for some $r \gg 0$, and $h_{r}=g^{r} \in H$).
- $\operatorname{dep}(\{1\})=\{$ torsion elements in $G\}$ (the only $\{1\}$-equations are $X^{d}=1$, for $d \in \mathbb{Z}$).

Dependence

Definition

Let $H \leqslant_{f g} G$ and $g \in G$. We say that g is dependent on H if \exists a nontrivial H-equation $w(X)=1$ s.t. $w(g)=1$. Denote by

- $\operatorname{dep}_{G}(H)=\{g \in G \mid g$ dependent on $H\}$
- $\operatorname{Dep}_{G}(H)=\left\langle\operatorname{dep}_{G}(H)\right\rangle \leqslant G$, the dependence subgroup of H. For $H \leqslant K \leqslant G$, we have $\operatorname{Dep}_{K}(H)=K \cap \operatorname{Dep}_{G}(H)$.

Example

- If $g \in H$ then g is dependent on H (satisfying $g^{-1} X=1$).
- If $1 \neq H \unlhd G$ then $\operatorname{dep}(H)=G$ (any $g \in G$ is a solution to the H-equation $X^{-1} h X=h^{\prime}$, where $1 \neq h \in H$, and $h^{\prime}=g^{-1} h g \in H$).
- If $H^{g^{-1}} \cap H \neq 1$ then g is dependent on H (satisfying $X^{-1} h X h^{\prime-1}=1$, for every $h \in H^{g^{-1}} \cap H$ and $h^{\prime}=g^{-1} h g \in H$). - If $H \leqslant_{f i} G$ then $\operatorname{dep}(H)=G$ (any $g \in G$ is a solution to the H-equation $X^{r} h_{r}^{-1}=1$, for some $r \gg 0$, and $h_{r}=g^{r} \in H$). - $\operatorname{dep}(\{1\})=\{$ torsion elements in $G\}$ (the only $\{1\}$-equations are $X^{d}=1$, for $d \in \mathbb{Z}$).

Dependence

Definition

Let $H \leqslant_{f g} G$ and $g \in G$. We say that g is dependent on H if \exists a nontrivial H-equation $w(X)=1$ s.t. $w(g)=1$. Denote by

- $\operatorname{dep}_{G}(H)=\{g \in G \mid g$ dependent on $H\}$
- $\operatorname{Dep}_{G}(H)=\left\langle\operatorname{dep}_{G}(H)\right\rangle \leqslant G$, the dependence subgroup of H.

For $H \leqslant K \leqslant G$, we have $\operatorname{Dep}_{K}(H)=K \cap \operatorname{Dep}_{G}(H)$.

Example

- If $g \in H$ then g is dependent on H (satisfying $g^{-1} X=1$).

Dependence

Definition

Let $H \leqslant_{f g} G$ and $g \in G$. We say that g is dependent on H if \exists a nontrivial H-equation $w(X)=1$ s.t. $w(g)=1$. Denote by

- $\operatorname{dep}_{G}(H)=\{g \in G \mid g$ dependent on $H\}$
- $\operatorname{Dep}_{G}(H)=\left\langle\operatorname{dep}_{G}(H)\right\rangle \leqslant G$, the dependence subgroup of H.

For $H \leqslant K \leqslant G$, we have $\operatorname{Dep}_{K}(H)=K \cap \operatorname{Dep}_{G}(H)$.

Example

- If $g \in H$ then g is dependent on H (satisfying $g^{-1} X=1$).
- If $1 \neq H \unlhd G$ then $\operatorname{dep}(H)=G$ (any $g \in G$ is a solution to the H-equation $X^{-1} h X=h^{\prime}$, where $1 \neq h \in H$, and $h^{\prime}=g^{-1} h g \in H$).

Dependence

Definition

Let $H \leqslant_{f g} G$ and $g \in G$. We say that g is dependent on H if \exists a nontrivial H-equation $w(X)=1$ s.t. $w(g)=1$. Denote by

- $\operatorname{dep}_{G}(H)=\{g \in G \mid g$ dependent on $H\}$
- $\operatorname{Dep}_{G}(H)=\left\langle\operatorname{dep}_{G}(H)\right\rangle \leqslant G$, the dependence subgroup of H.

For $H \leqslant K \leqslant G$, we have $\operatorname{Dep}_{K}(H)=K \cap \operatorname{Dep}_{G}(H)$.

Example

- If $g \in H$ then g is dependent on H (satisfying $g^{-1} X=1$).
- If $1 \neq H \unlhd G$ then $\operatorname{dep}(H)=G$ (any $g \in G$ is a solution to the H-equation $X^{-1} h X=h^{\prime}$, where $1 \neq h \in H$, and $h^{\prime}=g^{-1} h g \in H$).
- If $H^{g^{-1}} \cap H \neq 1$ then g is dependent on H (satisfying $X^{-1} h X h^{\prime-1}=1$, for every $h \in H^{g^{-1}} \cap H$ and $\left.h^{\prime}=g^{-1} h g \in H\right)$.

Dependence

Definition

Let $H \leqslant_{f g} G$ and $g \in G$. We say that g is dependent on H if \exists a nontrivial H-equation $w(X)=1$ s.t. $w(g)=1$. Denote by

- $\operatorname{dep}_{G}(H)=\{g \in G \mid g$ dependent on $H\}$
- $\operatorname{Dep}_{G}(H)=\left\langle\operatorname{dep}_{G}(H)\right\rangle \leqslant G$, the dependence subgroup of H.

For $H \leqslant K \leqslant G$, we have $\operatorname{Dep}_{K}(H)=K \cap \operatorname{Dep}_{G}(H)$.

Example

- If $g \in H$ then g is dependent on H (satisfying $g^{-1} X=1$).
- If $1 \neq H \unlhd G$ then $\operatorname{dep}(H)=G$ (any $g \in G$ is a solution to the H-equation $X^{-1} h X=h^{\prime}$, where $1 \neq h \in H$, and $h^{\prime}=g^{-1} h g \in H$).
- If $H^{g^{-1}} \cap H \neq 1$ then g is dependent on H (satisfying $X^{-1} h X h^{\prime-1}=1$, for every $h \in H^{g^{-1}} \cap H$ and $h^{\prime}=g^{-1} h g \in H$). - If $H \leqslant{ }_{f i} G$ then $\operatorname{dep}(H)=G$ (any $g \in G$ is a solution to the H-equation $X^{r} h_{r}^{-1}=1$, for some $r \gg 0$, and $h_{r}=g^{r} \in H$).

Dependence

Definition

Let $H \leqslant_{f g} G$ and $g \in G$. We say that g is dependent on H if \exists a nontrivial H-equation $w(X)=1$ s.t. $w(g)=1$. Denote by

- $\operatorname{dep}_{G}(H)=\{g \in G \mid g$ dependent on $H\}$
- $\operatorname{Dep}_{G}(H)=\left\langle\operatorname{dep}_{G}(H)\right\rangle \leqslant G$, the dependence subgroup of H.

For $H \leqslant K \leqslant G$, we have $\operatorname{Dep}_{K}(H)=K \cap \operatorname{Dep}_{G}(H)$.

Example

- If $g \in H$ then g is dependent on H (satisfying $g^{-1} X=1$).
- If $1 \neq H \unlhd G$ then $\operatorname{dep}(H)=G$ (any $g \in G$ is a solution to the H-equation $X^{-1} h X=h^{\prime}$, where $1 \neq h \in H$, and $h^{\prime}=g^{-1} h g \in H$).
- If $H^{g^{-1}} \cap H \neq 1$ then g is dependent on H (satisfying $X^{-1} h X h^{\prime-1}=1$, for every $h \in H^{g^{-1}} \cap H$ and $h^{\prime}=g^{-1} h g \in H$). - If $H \leqslant{ }_{f i} G$ then $\operatorname{dep}(H)=G$ (any $g \in G$ is a solution to the H-equation $X^{r} h_{r}^{-1}=1$, for some $r \gg 0$, and $h_{r}=g^{r} \in H$).
- $\operatorname{dep}(\{1\})=\{$ torsion elements in $G\}$ (the only $\{1\}$-equations are $X^{d}=1$, for $d \in \mathbb{Z}$).

Dependence

Observation

Let G be a group and $H \leqslant G$. If $g \in \operatorname{dep}(H)$ then $H g H \subseteq \operatorname{dep}(H)$.

Let $w(X)=h_{0} X^{\epsilon_{1}} h_{1} X^{\epsilon_{2}} \cdots h_{d-1} X^{\epsilon_{d}} h_{d}$ be an H-equation (of degree d) s.t. $w(g)=1$. Then, for every $h, h^{\prime} \in H$, $w^{\prime}(X)=h_{0}\left(h^{-1} X h^{\prime-1}\right)^{\epsilon_{1}} h_{1}\left(h^{-1} X h^{\prime-1}\right)^{\epsilon_{2}} \cdots h_{d-1}\left(h^{-1} X h^{\prime-1}\right)^{\epsilon_{d}} h_{d}$

```
(of degree }\leqslantd)\mathrm{ satisfies w'}\mp@subsup{w}{}{\prime}(hg\mp@subsup{h}{}{\prime})=w(g)=1.So, hgh' \in dep (H)
```


Qoservation

In general, dep (H) is not necessarily a subgroup of G.

In the free group $G=F_{\{a, b\}}$, let $H=\left\langle a^{2}, b^{2}\right\rangle$. Both $a, b \in \operatorname{dep}(H)$ (satisfying the H-equations $a^{-2} X^{2}=1$ and $b^{-2} X^{2}=1$, resp.), but $a b \notin \operatorname{dep}(H)$ (since $\left\{a^{2}, b^{2}, a b\right\}$ is a freely independent set).

Dependence

Observation

Let G be a group and $H \leqslant G$. If $g \in \operatorname{dep}(H)$ then $H g H \subseteq \operatorname{dep}(H)$.

Let $w(X)=h_{0} X^{\epsilon_{1}} h_{1} X^{\epsilon_{2}} \cdots h_{d-1} X^{\epsilon_{d}} h_{d}$ be an H-equation (of degree d) s.t. $w(g)=1$. Then, for every $h, h^{\prime} \in H$,

$$
w^{\prime}(X)=h_{0}\left(h^{-1} X h^{\prime-1}\right)^{\epsilon_{1}} h_{1}\left(h^{-1} X h^{-1}\right)^{\epsilon_{2}} \cdots h_{d-1}\left(h^{-1} X h^{-1}\right)^{\epsilon_{d}} h_{d}
$$

(of degree $\leqslant d$) satisfies $w^{\prime}\left(h g h^{\prime}\right)=w(g)=1$. So, $h g h^{\prime} \in \operatorname{dep}(H) . \square$

Qoservation

In general, dep (H) is not necessarily a subgroup of G.

In the free group $G=F_{\{a, b\}}$, let $H=\left\langle a^{2}, b^{2}\right\rangle$. Both $a, b \in \operatorname{dep}(H)$ (satisfying the H-equations $a^{-2} X^{2}=1$ and $b^{-2} X^{2}=1$, resp.), but $a b \notin \operatorname{dep}(H)$ (since $\left\{a^{2}, b^{2}, a b\right\}$ is a freely independent set).

Dependence

Observation

Let G be a group and $H \leqslant G$. If $g \in \operatorname{dep}(H)$ then $H g H \subseteq \operatorname{dep}(H)$.

Let $w(X)=h_{0} X^{\epsilon_{1}} h_{1} X^{\epsilon_{2}} \cdots h_{d-1} X^{\epsilon_{d}} h_{d}$ be an H-equation (of degree d) s.t. $w(g)=1$. Then, for every $h, h^{\prime} \in H$,

$$
w^{\prime}(X)=h_{0}\left(h^{-1} X h^{\prime-1}\right)^{\epsilon_{1}} h_{1}\left(h^{-1} X h^{-1}\right)^{\epsilon_{2}} \cdots h_{d-1}\left(h^{-1} X h^{-1}\right)^{\epsilon_{d}} h_{d}
$$

(of degree $\leqslant d$) satisfies $w^{\prime}\left(h g h^{\prime}\right)=w(g)=1$. So, $h g h^{\prime} \in \operatorname{dep}(H) . \square$

Observation

In general, dep (H) is not necessarily a subgroup of G.

In the free group $G=F_{\{a, b\}}$, let $H=\left\langle a^{2}, b^{2}\right\rangle$. Both $a, b \in \operatorname{dep}(H)$ (satisfying the H-equations $a^{-2} X^{2}=1$ and $b^{-2} X^{2}=1$, resp.), but $a b \notin \operatorname{dep}(H)$ (since $\left\{a^{2}, b^{2}, a b\right\}$ is a freely independent set).

Dependence

Observation

Let G be a group and $H \leqslant G$. If $g \in \operatorname{dep}(H)$ then $H g H \subseteq \operatorname{dep}(H)$.

Let $w(X)=h_{0} X^{\epsilon_{1}} h_{1} X^{\epsilon_{2}} \cdots h_{d-1} X^{\epsilon_{d}} h_{d}$ be an H-equation (of degree d) s.t. $w(g)=1$. Then, for every $h, h^{\prime} \in H$,

$$
w^{\prime}(X)=h_{0}\left(h^{-1} X h^{\prime-1}\right)^{\epsilon_{1}} h_{1}\left(h^{-1} X h^{-1}\right)^{\epsilon_{2}} \cdots h_{d-1}\left(h^{-1} X h^{-1}\right)^{\epsilon_{d}} h_{d}
$$

(of degree $\leqslant d$) satisfies $w^{\prime}\left(h g h^{\prime}\right)=w(g)=1$. So, $h g h^{\prime} \in \operatorname{dep}(H) . \square$

Observation

In general, dep (H) is not necessarily a subgroup of G.

In the free group $G=F_{\{a, b\}}$, let $H=\left\langle a^{2}, b^{2}\right\rangle$. Both $a, b \in \operatorname{dep}(H)$ (satisfying the H-equations $a^{-2} X^{2}=1$ and $b^{-2} X^{2}=1$, resp.), but $a b \notin \operatorname{dep}(H)$ (since $\left\{a^{2}, b^{2}, a b\right\}$ is a freely independent set).

Dependence closure

Definition

Let $H \leqslant G$. We say that H is dependence-closed if $\operatorname{Dep}(H)=H$. For example, free factors of G are dependence-closed.

Dependence closure

Definition

Let $H \leqslant G$. We say that H is dependence-closed if $\operatorname{Dep}(H)=H$. For example, free factors of G are dependence-closed.

Definition

For $H \leqslant G$, define $H_{0} \leqslant H_{1} \leqslant H_{2} \leqslant \cdots$ as $H_{0}=H$ and $H_{i}=\operatorname{Dep}\left(H_{i-1}\right)=\operatorname{Dep}^{i}(H), i \geqslant 1$. The dependence closure of H is $\widehat{\operatorname{Dep}}(H)=\cup_{i \geqslant 0} H_{i} \leqslant G$. Of course, $\widehat{\operatorname{Dep}}(H)$ is the smallest dependence-closed subgroup containing H.

Outline

(1) Equations, dependence, dependence closure

3 Stallings graphs

4 Back to equations

Main results

Theorem (A)

Let $F(A)$ be a free group. There is an algorithm which, on input a (set of generators for a) subgroup $H \leqslant_{\mathrm{fg}} F(A)$, it computes finitely many elements $g_{1}, \ldots, g_{t} \in F(A)$ dependent on H such that $\operatorname{dep}_{F(A)}(H)=H g_{1} H \cup \cdots \cup H g_{t} H$.

Theorem (C)

\square $F(A)$ then $\widehat{\operatorname{Dep}}(H)$ is again f.g. and computable (in particular, $\widehat{\operatorname{Dep}}(H)$ stabilizes in finitely many steps).

Main results

Theorem (A)

Let $F(A)$ be a free group. There is an algorithm which, on input a (set of generators for a) subgroup $H \leqslant_{\mathrm{fg}} F(A)$, it computes finitely many elements $g_{1}, \ldots, g_{t} \in F(A)$ dependent on H such that $\operatorname{dep}_{F(A)}(H)=H g_{1} H \cup \cdots \cup H g_{t} H$.

Theorem (B)

Let $F(A)$ be a free group. There is an algorithm which, on input $H \leqslant_{\mathrm{fg}} F(A)$ and $g \in F(A)$, decides whether g is dependent on H and, in case it is, it computes $m \geqslant 1$ many non-trivial H-equations $w_{1}(X), \ldots, w_{m}(X) \in H *\langle X\rangle$ such that $w_{1}(g)=\cdots=w_{m}(g)=1$ and $\operatorname{ker} \varphi_{g}=\ll w_{1}(X), \ldots, w_{m}(X) \gg$.

Main results

Theorem (A)

Let $F(A)$ be a free group. There is an algorithm which, on input a (set of generators for a) subgroup $H \leqslant_{\mathrm{fg}} F(A)$, it computes finitely many elements $g_{1}, \ldots, g_{t} \in F(A)$ dependent on H such that $\operatorname{dep}_{F(A)}(H)=H g_{1} H \cup \cdots \cup H g_{t} H$.

Theorem (B)

Let $F(A)$ be a free group. There is an algorithm which, on input $H \leqslant_{\mathrm{fg}} F(A)$ and $g \in F(A)$, decides whether g is dependent on H and, in case it is, it computes $m \geqslant 1$ many non-trivial H-equations $w_{1}(X), \ldots, w_{m}(X) \in H *\langle X\rangle$ such that $w_{1}(g)=\cdots=w_{m}(g)=1$ and $\operatorname{ker} \varphi_{g}=\ll w_{1}(X), \ldots, w_{m}(X) \gg$.

Theorem (C)

If $H \leqslant f g F(A)$ then $\widehat{\operatorname{Dep}}(H)$ is again f.g. and computable (in particular, $H_{0} \leqslant H_{1} \leqslant \cdots \leqslant \widehat{\operatorname{Dep}}(H)$ stabilizes in finitely many steps).

A proof using Nielsen transformations

A first proof is easy using classical results...

Definition

Given $H \leqslant G$ and $g \in G$, consider the morphism $\varphi_{g}: H *\langle X\rangle \rightarrow G$,
$h \mapsto h, X \mapsto g$. Then, $w(X) \varphi_{g}=w(g)$ and so,

Proof Thm. B.

- Compute a free basis $\left\{h_{1}, \ldots, h_{r}\right\}$ for H.
- Consider the morphism $\begin{aligned} \varphi_{g}: H *\langle X\rangle & \rightarrow F(A) . \\ h_{1} & \mapsto h_{1}\end{aligned}$

A proof using Nielsen transformations

A first proof is easy using classical results...

Definition

Given $H \leqslant G$ and $g \in G$, consider the morphism $\varphi_{g}: H *\langle X\rangle \rightarrow G$, $h \mapsto h, X \mapsto g$. Then, $w(X) \varphi_{g}=w(g)$ and so,
$\{w(X) \mid w(g)=1\}=\operatorname{ker} \varphi_{g} \unlhd H *\langle X\rangle$.

Proof Thy. B

- Compute a free basis $\left\{h_{1}, \ldots, h_{r}\right\}$ for H.
- Consider the morphism $\begin{aligned} \varphi_{g}: H *\langle X\rangle & \rightarrow F(A) . \\ h_{1} & \mapsto h_{1}\end{aligned}$
\square

A proof using Nielsen transformations

A first proof is easy using classical results...

Definition

Given $H \leqslant G$ and $g \in G$, consider the morphism $\varphi_{g}: H *\langle X\rangle \rightarrow G$, $h \mapsto h, X \mapsto g$. Then, $w(X) \varphi_{g}=w(g)$ and so,
$\{w(X) \mid w(g)=1\}=\operatorname{ker} \varphi_{g} \unlhd H *\langle X\rangle$.

Proof Thm. B.

- Compute a free basis $\left\{h_{1}, \ldots, h_{r}\right\}$ for H.

A proof using Nielsen transformations

A first proof is easy using classical results...

Definition

Given $H \leqslant G$ and $g \in G$, consider the morphism $\varphi_{g}: H *\langle X\rangle \rightarrow G$, $h \mapsto h, X \mapsto g$. Then, $w(X) \varphi_{g}=w(g)$ and so,
$\{w(X) \mid w(g)=1\}=\operatorname{ker} \varphi_{g} \unlhd H *\langle X\rangle$.

Proof Thm. B.

- Compute a free basis $\left\{h_{1}, \ldots, h_{r}\right\}$ for H.
- Consider the morphism $\varphi_{g}: H *\langle X\rangle \rightarrow F(A)$.
$h_{1} \mapsto \quad h_{1}$

$$
\begin{array}{ccc}
h_{r} & \mapsto & h_{r} \\
X & \mapsto & g
\end{array}
$$

- Since $\operatorname{Im}\left(\varphi_{g}\right)=\left\langle h_{1}, \ldots, h_{r}, g\right\rangle=\langle H, g\rangle$, we deduce that $\operatorname{rk}\left(\operatorname{lm}\left(\varphi_{g}\right)\right) \leqslant r+1$, say $\operatorname{rk}\left(\operatorname{Im}\left(\varphi_{g}\right)\right)=r+1-m$, for $m \geqslant 0$, and there

A proof using Nielsen transformations

A first proof is easy using classical results...

Definition

Given $H \leqslant G$ and $g \in G$, consider the morphism $\varphi_{g}: H *\langle X\rangle \rightarrow G$, $h \mapsto h, X \mapsto g$. Then, $w(X) \varphi_{g}=w(g)$ and so,
$\{w(X) \mid w(g)=1\}=\operatorname{ker} \varphi_{g} \unlhd H *\langle X\rangle$.

Proof Thm. B.

- Compute a free basis $\left\{h_{1}, \ldots, h_{r}\right\}$ for H.
- Consider the morphism $\varphi_{g}: H *\langle X\rangle \rightarrow F(A)$.

$$
h_{1} \mapsto h_{1}
$$

$$
\begin{array}{cll}
h_{r} & \mapsto & h_{r} \\
X & \mapsto & g
\end{array}
$$

- Since $\operatorname{Im}\left(\varphi_{g}\right)=\left\langle h_{1}, \ldots, h_{r}, g\right\rangle=\langle H, g\rangle$, we deduce that $\operatorname{rk}\left(\operatorname{lm}\left(\varphi_{g}\right)\right) \leqslant r+1$, say $\operatorname{rk}\left(\operatorname{Im}\left(\varphi_{g}\right)\right)=r+1-m$, for $m \geqslant 0$, and there

A proof using Nielsen transformations

a sequence of Nielsen transformations such that

$$
\begin{array}{cll}
\varphi_{g}: H *\langle X\rangle & \rightarrow F(A) & \\
& & \\
h_{1} & \mapsto & h_{1} \quad \sim \cdots \sim 1 \\
h_{m} & \cdots & \\
h_{m+1} & \mapsto & h_{m} \quad \sim \cdots \sim 1 \\
& \cdots & h_{m+1} \\
h_{r} & \mapsto & h_{r} \\
X & \mapsto & \sim \cdots \sim u_{m+1}^{\prime} \\
X & & \sim \cdots \sim u_{r}^{\prime} \\
u_{r+1}^{\prime}
\end{array}
$$

$\left\{u_{m+1}^{\prime}, \ldots, u_{r+1}^{\prime}\right\}$ is a free basis for $\operatorname{Im}\left(\varphi_{g}\right)=\langle H, g\rangle$.

A proof using Nielsen transformations

a sequence of Nielsen transformations such that

$\varphi_{g}: H *\langle X\rangle$							\rightarrow	$F(A)$
$w_{1}(X)$	$\sim \cdots \sim$	h_{1}	\mapsto	h_{1}	$\sim \cdots \sim 1$			
$w_{m}(X)$	$\sim \cdots \sim$	h_{m}	\cdots	h_{m}	$\sim \cdots \sim 1$			
$*$	$\sim \cdots \sim$	h_{m+1}	\mapsto	h_{m+1}	$\sim \cdots \sim u_{m+1}^{\prime}$			
$*$	$\sim \cdots \sim$	h_{r}	\cdots	h_{r}	$\sim \cdots \sim u_{r}^{\prime}$			
$*$	$\sim \cdots \sim$	X	\mapsto	g	$\sim \cdots \sim u_{r+1}^{\prime}$			

$\left\{u_{m+1}^{\prime}, \ldots, u_{r+1}^{\prime}\right\}$ is a free basis for $\operatorname{Im}\left(\varphi_{g}\right)=\langle H, g\rangle$.

A proof using Nielsen transformations

a sequence of Nielsen transformations such that

	$\varphi_{g}: H *\langle X\rangle \quad \rightarrow$			$F(A)$		
$w_{1}(X)$	$\sim \cdots \sim$	h_{1}	\mapsto	h_{1}	$\sim \cdots \sim$	1
$w_{m}(X)$	$\sim \cdots \sim$	h_{m}	\mapsto	h_{m}	$\sim \cdots \sim$	1
*	$\sim \cdots \sim$	h_{m+1}	\mapsto	h_{m+1}	\sim	u_{m+1}^{\prime}
*	$\sim \cdots \sim$	h_{r}	\mapsto	h_{r}	\sim	u_{r}^{\prime}
*	$\sim \cdots \sim$	X	\mapsto	g	$\sim \cdots \sim$	u_{r+1}^{\prime}

$\left\{u_{m+1}^{\prime}, \ldots, u_{r+1}^{\prime}\right\}$ is a free basis for $\operatorname{Im}\left(\varphi_{g}\right)=\langle H, g\rangle$. Therefore, $\operatorname{ker}\left(\varphi_{g}\right)=\ll w_{1}(X), \ldots, w_{m}(X) \gg \leqslant H\langle X\rangle$.

A proof using Nielsen transformations

a sequence of Nielsen transformations such that

	$\varphi_{g}: H *\langle X\rangle$						\rightarrow	$F(A)$
$w_{1}(X)$	$\sim \cdots \sim$	h_{1}	\mapsto	h_{1}	$\sim \cdots \sim 1$			
$w_{m}(X)$	$\sim \cdots \sim$	h_{m}	\mapsto	h_{m}	$\sim \cdots \sim 1$			
$*$	$\sim \cdots \sim$	h_{m+1}	\mapsto	h_{m+1}	$\sim \cdots \sim u_{m+1}^{\prime}$			
$*$	$\sim \cdots \sim$	h_{r}	\mapsto	h_{r}	$\sim \cdots \sim u_{r}^{\prime}$			
$*$	$\sim \cdots \sim$	X	\mapsto	g	$\sim \cdots \sim u_{r+1}^{\prime}$			

$\left\{u_{m+1}^{\prime}, \ldots, u_{r+1}^{\prime}\right\}$ is a free basis for $\operatorname{Im}\left(\varphi_{g}\right)=\langle H, g\rangle$. Therefore, $\operatorname{ker}\left(\varphi_{g}\right)=\ll w_{1}(X), \ldots, w_{m}(X) \gg \leqslant H\langle X\rangle$.

Note that $m=r+1-\mathrm{rk}(\langle H, g\rangle)$.

Outline

(1) Equations, dependence, dependence closure
(2) Main results
(3) Stallings graphs

4 Back to equations

Stallings automata

Definition

A Stallings automaton over A is a finite A-graph (V, E, q_{0}), such that:
1- it is connected,
2- it is trim, (no vertex of degree 1 except possibly q_{0}),
3- it is deterministic (no two edges with the same label go out of (or into) the same vertex).

Stallings automata

Definition

A Stallings automaton over A is a finite A-graph (V, E, q_{0}), such that:
1- it is connected,
2- it is trim, (no vertex of degree 1 except possibly q_{0}),
3- it is deterministic (no two edges with the same label go out of (or into) the same vertex).

Stallings automata

Definition

A Stallings automaton over A is a finite A-graph (V, E, q_{0}), such that:
1- it is connected,
2- it is trim, (no vertex of degree 1 except possibly q_{0}),
3- it is deterministic (no two edges with the same label go out of (or into) the same vertex).

Stallings automata

In the influent paper
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of $F(A)$ and Stallings automata:

$$
\text { \{f.g. subgroups of } F(A)\} \longleftrightarrow \quad\{\text { Stallings automata over } A\} \text {, }
$$

which is crucial for the modern understanding of the lattice of subgroups of $F(A)$, and for many algorithmic issues about free groups.

Stallings automata

In the influent paper
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of $F(A)$ and Stallings automata:
\{f.g. subgroups of $F(A)\} \quad \longleftrightarrow \quad\{$ Stallings automata over $A\}$,
which is crucial for the modern understanding of the lattice of subgroups of $F(A)$, and for many algorithmic issues about free groups.

Stallings automata

In the influent paper
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of $F(A)$ and Stallings automata:
\{f.g. subgroups of $F(A)\} \quad \longleftrightarrow \quad\{$ Stallings automata over $A\}$,
which is crucial for the modern understanding of the lattice of subgroups of $F(A)$, and for many algorithmic issues about free groups.

$\pi\left(\mathcal{A}, q_{0}\right)$ and $L(\mathcal{A})$

Definition

Given $\mathcal{A}=\left(V, E, q_{0}\right)$, its fundamental group and its language are: $\pi\left(\mathcal{A}, q_{0}\right)=\left\{\right.$ closed paths at q_{0} mod. cancel. $\} \simeq F_{1-|V \mathcal{A}|+|E \mathcal{A}|}$, $L(\mathcal{A})=\left\{\right.$ labels of closed paths at $\left.q_{0}\right\} \leqslant F(A)$.

Proposition
For every Stallings automaton $\mathcal{A}=\left(V, E, q_{0}\right)$, and every maximal tree T, the group $L(\mathcal{A})$ is free with free basis

$$
\left\{x_{e}=\ell\left(T\left[q_{0}, \iota e\right] \cdot e \cdot T\left[\tau e, q_{0}\right]\right) \in L(\mathcal{A}) \mid e \in E X-E T\right\}
$$

\square
where $T[p, q]$ denotes the geodesic in T from p to q, and $\ell(\gamma) \in F(A)$ stands for the label of the path γ. Thus, $\operatorname{rk}(L(\mathcal{A}))=1-|V|+|E|$

Corollary
The 'label' morphism $\ell: \pi\left(\mathcal{A}, q_{0}\right) \rightarrow L(\mathcal{A}) \leqslant F(A), \gamma \mapsto \ell(\gamma)$, is onto;
and injective when \mathcal{A} is a Stallings automaton.

$\pi\left(\mathcal{A}, q_{0}\right)$ and $L(\mathcal{A})$

Definition

Given $\mathcal{A}=\left(V, E, q_{0}\right)$, its fundamental group and its language are: $\pi\left(\mathcal{A}, q_{0}\right)=\left\{\right.$ closed paths at q_{0} mod. cancel. $\} \simeq F_{1-|V \mathcal{A}|+|E \mathcal{A}|}$, $L(\mathcal{A})=\left\{\right.$ labels of closed paths at $\left.q_{0}\right\} \leqslant F(A)$.

Proposition

For every Stallings automaton $\mathcal{A}=\left(V, E, q_{0}\right)$, and every maximal tree T, the group $L(\mathcal{A})$ is free with free basis

$$
\left\{x_{e}=\ell\left(T\left[q_{0}, \iota e\right] \cdot e \cdot T\left[\tau e, q_{0}\right]\right) \in L(\mathcal{A}) \mid e \in E X-E T\right\}
$$

where $T[p, q]$ denotes the geodesic in T from p to q, and $\ell(\gamma) \in F(A)$ stands for the label of the path γ. Thus, $\operatorname{rk}(L(\mathcal{A}))=1-|V|+|E|$.

Gorollary

The 'label' morphism
$F(A), \gamma \mapsto \ell(\gamma)$, is onto;
and injective when \mathcal{A} is a Stallings automaton.

$\pi\left(\mathcal{A}, q_{0}\right)$ and $L(\mathcal{A})$

Definition

Given $\mathcal{A}=\left(V, E, q_{0}\right)$, its fundamental group and its language are: $\pi\left(\mathcal{A}, q_{0}\right)=\left\{\right.$ closed paths at q_{0} mod. cancel. $\} \simeq F_{1-|V \mathcal{A}|+|E \mathcal{A}|}$, $L(\mathcal{A})=\left\{\right.$ labels of closed paths at $\left.q_{0}\right\} \leqslant F(A)$.

Proposition

For every Stallings automaton $\mathcal{A}=\left(V, E, q_{0}\right)$, and every maximal tree T, the group $L(\mathcal{A})$ is free with free basis

$$
\left\{x_{e}=\ell\left(T\left[q_{0}, \iota e\right] \cdot e \cdot T\left[\tau e, q_{0}\right]\right) \in L(\mathcal{A}) \mid e \in E X-E T\right\}
$$

where $T[p, q]$ denotes the geodesic in T from p to q, and $\ell(\gamma) \in F(A)$ stands for the label of the path γ. Thus, $\operatorname{rk}(L(\mathcal{A}))=1-|V|+|E|$.

Corollary

The 'label' morphism $\ell: \pi\left(\mathcal{A}, q_{0}\right) \rightarrow L(\mathcal{A}) \leqslant F(A), \gamma \mapsto \ell(\gamma)$, is onto; and injective when \mathcal{A} is a Stallings automaton.

Constructing the automaton from the subgroup

Given generators $\left\{g_{1}, \ldots, g_{n}\right\}$ for $H \leqslant F(A)$ (as reduced words), construct the flower automaton, denoted $\mathcal{F}\left(\left\{g_{1}, \ldots, g_{n}\right\}\right)$.

Clearly, $\mathcal{F}\left(\left\{g_{1}, \ldots, g_{n}\right\}\right)$ is trim, and $L\left(\mathcal{F}\left(\left\{g_{1}, \ldots, g_{n}\right\}\right)\right)=H$, ... but $\mathcal{F}\left(\left\{g_{1}, \ldots, g_{n}\right\}\right)$ is not in general deterministic...

In any automaton \mathcal{A} containing the situation
for $a \in A^{ \pm 1}$, we can fold the two edges into one and obtain

Constructing the automaton from the subgroup

Given generators $\left\{g_{1}, \ldots, g_{n}\right\}$ for $H \leqslant F(A)$ (as reduced words), construct the flower automaton, denoted $\mathcal{F}\left(\left\{g_{1}, \ldots, g_{n}\right\}\right)$.

Clearly, $\mathcal{F}\left(\left\{g_{1}, \ldots, g_{n}\right\}\right)$ is trim, and $L\left(\mathcal{F}\left(\left\{g_{1}, \ldots, g_{n}\right\}\right)\right)=H$, ... but $\mathcal{F}\left(\left\{g_{1}, \ldots, g_{n}\right\}\right)$ is not in general deterministic...

In any automaton \mathcal{A} containing the situation
\mathcal{A} :

for $a \in A^{ \pm 1}$, we can fold the two edges into one and obtain

Constructing the automaton from the subgroup

Given generators $\left\{g_{1}, \ldots, g_{n}\right\}$ for $H \leqslant F(A)$ (as reduced words), construct the flower automaton, denoted $\mathcal{F}\left(\left\{g_{1}, \ldots, g_{n}\right\}\right)$.

Clearly, $\mathcal{F}\left(\left\{g_{1}, \ldots, g_{n}\right\}\right)$ is trim, and $L\left(\mathcal{F}\left(\left\{g_{1}, \ldots, g_{n}\right\}\right)\right)=H$, ... but $\mathcal{F}\left(\left\{g_{1}, \ldots, g_{n}\right\}\right)$ is not in general deterministic...

In any automaton \mathcal{A} containing the situation
\mathcal{A} :

for $\mathrm{a} \in A^{ \pm 1}$, we can fold the two edges into one and obtain

$$
\mathcal{A}^{\prime}: \quad \bullet \xrightarrow{a} u=v .
$$

Constructing the automaton from the subgroup

Definition

This operation, $\mathcal{A} \stackrel{\varphi}{\sim} \mathcal{A}^{\prime}$, is called an elementary Stallings folding. It is said to be open if $u \neq v$ and closed if $u=v$.
Note that it induces an epimorphism $\varphi: \pi\left(\mathcal{A}, q_{0}\right) \rightarrow \pi\left(\mathcal{A}^{\prime}, q_{0}\right)$, which
is an isomorphism (of free groups) iff the folding is open.
Lemma (Stallings)
If $\mathcal{A} \stackrel{\varphi}{\sim} \mathcal{A}^{\prime}$ is a Stallings folding then $L(\mathcal{A})=L\left(\mathcal{A}^{\prime}\right)$; also, $\varphi \ell=\ell$

Given a f.g. subgroup $H=\left\langle g_{1}, \ldots, g_{n}\right\rangle \leqslant F_{A}$ (we assume the g_{i} are reduced words), do the following:

1- draw the flower automaton, $\mathcal{F}=\mathcal{F}\left(\left\{g_{1}, \ldots, g_{n}\right\}\right)$,
2- perform successive foldings until obtaining a Stallings automaton, denoted Γ_{H},

Constructing the automaton from the subgroup

Definition

This operation, $\mathcal{A} \stackrel{\varphi}{\sim} \mathcal{A}^{\prime}$, is called an elementary Stallings folding. It is said to be open if $u \neq v$ and closed if $u=v$.
Note that it induces an epimorphism $\varphi: \pi\left(\mathcal{A}, q_{0}\right) \rightarrow \pi\left(\mathcal{A}^{\prime}, q_{0}\right)$, which is an isomorphism (of free groups) iff the folding is open.

Lemma (Stallings)
If $\mathcal{A} \stackrel{\varphi}{\sim} \rightarrow \mathcal{A}^{\prime}$ is a Stallings folding then $L(\mathcal{A})=L\left(\mathcal{A}^{\prime}\right)$; also,

Given a f.g. subgroup $H=\left\langle g_{1}, \ldots, g_{n}\right\rangle \leqslant F_{A}$ (we assume the g_{i} are reduced words), do the following:
1- draw the flower automaton, $\mathcal{F}=\mathcal{F}\left(\left\{g_{1}, \ldots, g_{n}\right\}\right)$,
2- perform successive foldings until obtaining a Stallings automaton, denoted Γ_{H},

Constructing the automaton from the subgroup

Definition

This operation, $\mathcal{A} \xrightarrow[\sim]{\varphi} \mathcal{A}^{\prime}$, is called an elementary Stallings folding. It is said to be open if $u \neq v$ and closed if $u=v$.
Note that it induces an epimorphism $\varphi: \pi\left(\mathcal{A}, q_{0}\right) \rightarrow \pi\left(\mathcal{A}^{\prime}, q_{0}\right)$, which is an isomorphism (of free groups) iff the folding is open.

Lemma (Stallings)

If $\mathcal{A} \stackrel{\varphi}{\leadsto} \mathcal{A}^{\prime}$ is a Stallings folding then $L(\mathcal{A})=L\left(\mathcal{A}^{\prime}\right)$; also, $\varphi \ell=\ell$.

Given a f.g. subgroup $H=\left\langle g_{1}, \ldots, g_{n}\right\rangle \leqslant F_{A}$ (we assume the g_{i} are reduced words), do the following:
draw the flower automaton, $\mathcal{F}=\mathcal{F}\left(\left\{g_{1}, \ldots, g_{n}\right\}\right)$,
2- perform successive foldings until obtaining a Stallings automaton, denoted Γ_{H},

Constructing the automaton from the subgroup

Definition

This operation, $\mathcal{A} \stackrel{\varphi}{\sim} \mathcal{A}^{\prime}$, is called an elementary Stallings folding. It is said to be open if $u \neq v$ and closed if $u=v$.
Note that it induces an epimorphism $\varphi: \pi\left(\mathcal{A}, q_{0}\right) \rightarrow \pi\left(\mathcal{A}^{\prime}, q_{0}\right)$, which is an isomorphism (of free groups) iff the folding is open.

Lemma (Stallings)

If $\mathcal{A} \stackrel{\varphi}{\sim} \mathcal{A}^{\prime}$ is a Stallings folding then $L(\mathcal{A})=L\left(\mathcal{A}^{\prime}\right)$; also, $\varphi \ell=\ell$.

Given a f.g. subgroup $H=\left\langle g_{1}, \ldots, g_{n}\right\rangle \leqslant F_{A}$ (we assume the g_{i} are reduced words), do the following:
1- draw the flower automaton, $\mathcal{F}=\mathcal{F}\left(\left\{g_{1}, \ldots, g_{n}\right\}\right)$,
perform successive foldings until obtaining a Stallings
automaton, denoted Γ_{H},

Constructing the automaton from the subgroup

Definition

This operation, $\mathcal{A} \stackrel{\varphi}{\sim} \mathcal{A}^{\prime}$, is called an elementary Stallings folding. It is said to be open if $u \neq v$ and closed if $u=v$.
Note that it induces an epimorphism $\varphi: \pi\left(\mathcal{A}, q_{0}\right) \rightarrow \pi\left(\mathcal{A}^{\prime}, q_{0}\right)$, which is an isomorphism (of free groups) iff the folding is open.

Lemma (Stallings)

If $\mathcal{A} \stackrel{\varphi}{\sim} \mathcal{A}^{\prime}$ is a Stallings folding then $L(\mathcal{A})=L\left(\mathcal{A}^{\prime}\right)$; also, $\varphi \ell=\ell$.

Given a f.g. subgroup $H=\left\langle g_{1}, \ldots, g_{n}\right\rangle \leqslant F_{A}$ (we assume the g_{i} are reduced words), do the following:
1- draw the flower automaton, $\mathcal{F}=\mathcal{F}\left(\left\{g_{1}, \ldots, g_{n}\right\}\right)$,
2- perform successive foldings until obtaining a Stallings automaton, denoted Γ_{H},

$$
\mathcal{F} \rightsquigarrow \mathcal{A}_{1} \rightsquigarrow \cdots \rightsquigarrow \mathcal{A}_{t}=\Gamma_{H} .
$$

Local confluence

It can be shown that

Proposition

The automaton Γ_{H} does not depend on the sequence of foldings.

Proposition

The automaton Γ_{H} does not depend on the generators of H .

Theorem

The following is a well defined bijection:

Local confluence

It can be shown that

Proposition

The automaton Γ_{H} does not depend on the sequence of foldings.

Proposition

The automaton Γ_{H} does not depend on the generators of H.

Theorem
The following is a well defined bijection:

$$
\left\{\text { f.g. subgroups of } F_{A}\right\} \quad \longleftrightarrow \quad\{\text { Stallings automata }\}
$$

Local confluence

It can be shown that

Proposition

The automaton Γ_{H} does not depend on the sequence of foldings.

Proposition

The automaton Γ_{H} does not depend on the generators of H.

Theorem

The following is a well defined bijection:

$$
\begin{aligned}
\left\{\text { f.g. subgroups of } F_{A}\right\} & \longleftrightarrow\{\text { Stallings automata }\} \\
H & \rightarrow \Gamma_{H} \\
L(\mathcal{A}) & \leftarrow \mathcal{A}
\end{aligned}
$$

Outline

(1) Equations, dependence, dependence closure
(2) Main results

3 Stallings graphs

4 Back to equations

An easy free factor result

Proposition (Miasnikov-V.-Weil, 07; Rosenmann, 01)

Let $H \leqslant F$ be free groups, and $g \in F$. The following are equivalent:
(a) the morphism $\varphi_{g}: H *\langle X\rangle \rightarrow F$ is injective;
(b) $\operatorname{ker}\left(\varphi_{g}\right)=1$, i.e., no nontrivial equation satisfied by g;
(c) H is a proper free factor of $\langle H, g\rangle$;
(d) H is contained in a proper free factor of $\langle H, g\rangle$.

If, in addition, H is f.g., then these are further equivalent to:
(e) $\mathrm{rk}(\langle H, g\rangle)=\operatorname{rk}(H)+1$;
(f) $\operatorname{rk}(\langle H, g\rangle)>\operatorname{rk}(H)$.

Folding down to ${ }^{\langle }\langle, g\rangle$

Hence, no non-tuvial equations satisfied by g
case $2 g_{c}=1$ then

$$
g=g_{+} g^{-1}
$$

Elevating the elementary paths

Fold $\Gamma_{H} /(p=q)$ down to $\Gamma_{\langle H, g\rangle}$ doing first the open foldings, and the closed ones at the end. Choose a maximal tree T in Γ_{0} and

Elevate each $\xi_{i}, i=1, \ldots, m$, from Γ_{0} up to $\Gamma_{n / p=q}$:

$$
\begin{aligned}
& \hat{\xi}_{i} \leftarrow \cdots \ldots, \xi_{i}=\frac{a}{\frac{a}{2}} \frac{1}{a} \quad i=1, \ldots, m \\
& \hat{\xi}_{i} \neq 1 \text { but } l\left(\hat{\xi}_{i}\right)=l\left(\xi_{i}\right)=1 \Rightarrow \text { it must }
\end{aligned}
$$

Looking at each such $\widehat{\xi}$ in Γ_{H}, it is a closed path with several (≥ 1) $p-q$ and/or $q-p$ discontinuities:

Hence, g is a solution of $w(x)=h_{0} X h_{1} X h_{2} x^{-1} h_{4}$.

We have them all

Collect equations $w_{1}(X), \ldots, w_{m}(X)$ from the $m \geqslant 0$ closed foldings above and...

Glaim
$W_{1}(X)$
$w_{m}(X) \gg=\operatorname{ker} \varphi_{g}$

Proof.
From the pair of edges at the i-th closed folding, choose a primary
and a secondary one, $\left\{e_{1}^{i}, e_{2}^{i}\right\}$, with $e_{2}^{i} \notin E T$ (of course,
$\left.\ell\left(e_{1}^{i}\right)=\ell\left(e_{2}^{i}\right)\right)$.
Let $w(X)$ be an H-equation s.t. $w(g)=1$; let us show that
$w(X) \in \ll w_{1}(X), \ldots, w_{m}(X)$
It determines a closed path $\widehat{\xi}$ with discontinuities in Γ_{H}, which projects
down to a closed path ξ in Γ_{0}.
Let's do induction on the number of visits to secondary edges:

We have them all

Collect equations $w_{1}(X), \ldots, w_{m}(X)$ from the $m \geqslant 0$ closed foldings above and...

Claim

$\ll w_{1}(X), \ldots, w_{m}(X) \gg=\operatorname{ker} \varphi_{g}$.

Proof.
From the pair of edges at the i-th closed folding, choose a primary and a secondary one, $\left\{e_{1}^{i}, e_{2}^{i}\right\}$, with $e_{2}^{i} \notin E T$ (of course,
$\left.\ell\left(e_{1}^{i}\right)=\ell\left(e_{2}^{i}\right)\right)$.
Let $w(X)$ be an H-equation s.t. $w(g)=1$; let us show that
$w(X) \in \ll w_{1}(X), \ldots, w_{m}(X)$
It determines a closed path $\widehat{\xi}$ with discontinuities in Γ_{H}, which projects down to a closed path ξ in Γ_{0}.
Let's do induction on the number of visits to secondary edges:

We have them all

Collect equations $w_{1}(X), \ldots, w_{m}(X)$ from the $m \geqslant 0$ closed foldings above and...

Claim

$\ll w_{1}(X), \ldots, w_{m}(X) \gg=\operatorname{ker} \varphi_{g}$.

Proof.

From the pair of edges at the i-th closed folding, choose a primary and a secondary one, $\left\{e_{1}^{i}, e_{2}^{i}\right\}$, with $e_{2}^{i} \notin E T$ (of course, $\left.\ell\left(e_{1}^{i}\right)=\ell\left(e_{2}^{i}\right)\right)$.
Let $w(X)$ be an H-equation s.t. $w(g)=1$; let us show that
$w(X) \in \ll w_{1}(X), \ldots, w_{m}(X)$
It determines a closed path $\widehat{\varepsilon}$ with discontinuities in Γ_{H}, which projects
down to a closed path ξ in Γ_{0}.
Let's do induction on the number of visits to secondary edges:

We have them all

Collect equations $w_{1}(X), \ldots, w_{m}(X)$ from the $m \geqslant 0$ closed foldings above and...

Claim

$\ll w_{1}(X), \ldots, w_{m}(X) \gg=\operatorname{ker} \varphi_{g}$.

Proof.

From the pair of edges at the i-th closed folding, choose a primary and a secondary one, $\left\{e_{1}^{i}, e_{2}^{i}\right\}$, with $e_{2}^{i} \notin E T$ (of course, $\left.\ell\left(e_{1}^{i}\right)=\ell\left(e_{2}^{i}\right)\right)$.
Let $w(X)$ be an H-equation s.t. $w(g)=1$; let us show that $w(X) \in \ll w_{1}(X), \ldots, w_{m}(X) \gg$.
It determines a closed path ξ with discontinuities in Γ_{H}, which projects
down to a closed path ξ in Γ_{0}
Let's do induction on the numbe of visits to secondary edges:

We have them all

Collect equations $w_{1}(X), \ldots, w_{m}(X)$ from the $m \geqslant 0$ closed foldings above and...

Claim

$\ll w_{1}(X), \ldots, w_{m}(X) \gg=\operatorname{ker} \varphi_{g}$.

Proof.

From the pair of edges at the i-th closed folding, choose a primary and a secondary one, $\left\{e_{1}^{i}, e_{2}^{i}\right\}$, with $e_{2}^{i} \notin E T$ (of course,
$\left.\ell\left(e_{1}^{i}\right)=\ell\left(e_{2}^{i}\right)\right)$.
Let $w(X)$ be an H-equation s.t. $w(g)=1$; let us show that $w(X) \in \ll w_{1}(X), \ldots, w_{m}(X) \gg$.
It determines a closed path $\widehat{\xi}$ with discontinuities in Γ_{H}, which projects down to a closed path ξ in Γ_{0}.

We have them all

Collect equations $w_{1}(X), \ldots, w_{m}(X)$ from the $m \geqslant 0$ closed foldings above and...

Claim

$\ll w_{1}(X), \ldots, w_{m}(X) \gg=\operatorname{ker} \varphi_{g}$.

Proof.

From the pair of edges at the i-th closed folding, choose a primary and a secondary one, $\left\{e_{1}^{i}, e_{2}^{i}\right\}$, with $e_{2}^{i} \notin E T$ (of course,
$\left.\ell\left(e_{1}^{i}\right)=\ell\left(e_{2}^{i}\right)\right)$.
Let $w(X)$ be an H-equation s.t. $w(g)=1$; let us show that $w(X) \in \ll w_{1}(X), \ldots, w_{m}(X) \gg$.
It determines a closed path $\widehat{\xi}$ with discontinuities in Γ_{H}, which projects down to a closed path ξ in Γ_{0}.
Let's do induction on the number of visits to secondary edges:

$$
\begin{aligned}
& w(x)=h_{0} \times h_{1} x h_{2} x^{-1} h_{3}
\end{aligned}
$$

project down to Γ_{0}, ξ, and $l(\vec{\xi})=l(\hat{\xi})=1$ because $\omega(g)=1$.
. if ξ visits no secondary edge \Rightarrow it is a closed path in $\Gamma_{\Delta t i, g\rangle} \leq \Gamma_{H}$ ending 1
$\omega(x)$ was the
trivial equation, $\Delta=\quad \hat{\xi}=1 \quad \leftarrow \xi=1$

- OTherwise, look at the first visit to a secondary edge, say $\xi=\left\{_{1} e_{2}^{i}\right\}_{2}$ (with ξ_{1} visiting no secondaries).

We have them all

We have the following decomposition and apply induction:

THANKS

