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1. Free groups Stallings’ graphs Applications to free groups Applications to Zm -by-free groups

Free group: the construction

Definition

• Let A = {a1, . . . , ar} be a finite alphabet, and consider (formally)
Ã = {a1, . . . , ar , a−1

1 , . . . , a−1
r }.

• A word on A is a finite sequence of symbols w = aε1
i1 · · · a

εn
in ,

where aij ∈ A and εj = ±1. The length of w is `(w) = n.
• The empty word is the only one with zero letters, denoted 1;
`(1) = 0.

• The collection of all words on A is denoted Ã∗.
• Operation of concatenation in Ã∗: u · v = uv; `(uv) = `(u) + `(v).

Definition

• Two consecutive letters in w ∈ Ã∗ of the form aia−1
i or a−1

i ai are
called a cancellation. A word w is called reduced if it has no
cancellations. Denote R(A) ⊆ Ã∗ the set of reduced words.

• The reduction is the equivalence relation ∼ generated by
ua εi a−εi v ∼ uv .
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• The reduction is the equivalence relation ∼ generated by
ua εi a−εi v ∼ uv .



1. Free groups Stallings’ graphs Applications to free groups Applications to Zm -by-free groups

Free group: the construction

Definition

• Let A = {a1, . . . , ar} be a finite alphabet, and consider (formally)
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• The reduction is the equivalence relation ∼ generated by
ua εi a−εi v ∼ uv .



1. Free groups Stallings’ graphs Applications to free groups Applications to Zm -by-free groups

Free group: the construction

Definition

• Let A = {a1, . . . , ar} be a finite alphabet, and consider (formally)
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• Operation of concatenation in Ã∗: u · v = uv; `(uv) = `(u) + `(v).

Definition

• Two consecutive letters in w ∈ Ã∗ of the form aia−1
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Free group: the construction

Definition

• The free group on A is F (A) = Ã∗/ ∼ with the operation of
concatenation (i.e. concatenation + reduction).

• The neutral element is 1, and the inverse of w = aε1
i1 · · · a

εn
in is

w−1 = (aε1
i1 · · · a

εn
in )−1 = a−εn

in · · · a−ε1
i1 .

• Of course, (a−1
i )−1 = ai .

Lemma

For every w ∈ Ã∗, there is a unique w ∈ R(A), s.t. w = w in F (A).

This allows us to “forget" the ∼, and work in F (A) by just manipulating
words (and reducing every time it is possible).

Definition

The length of an element w ∈ F (A) is |w | = `(w).
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For every w ∈ Ã∗, there is a unique w ∈ R(A), s.t. w = w in F (A).

This allows us to “forget" the ∼, and work in F (A) by just manipulating
words (and reducing every time it is possible).

Definition

The length of an element w ∈ F (A) is |w | = `(w).



1. Free groups Stallings’ graphs Applications to free groups Applications to Zm -by-free groups

Free group: the construction

Definition

• The free group on A is F (A) = Ã∗/ ∼ with the operation of
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Membership problem

Definition
Let G be a group. The membership problem in G consists on finding
an algorithm which, on

input: g0,g1, . . . ,gn ∈ G;

decides whether g0 ∈ 〈g1, . . . ,gn〉 6 G, or not.

Proposition

(i) Finite groups have solvable membership problem.
(ii) Zn and Qn have solvable membership problem.
(iii) There are groups G with UNSOLVABLE membership problem.
(iv) What about Fr ?
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Intersection problem

Definition
A group G has the Howson property if the intersection of any two
finitely generate subgroups is again finitely generated.

Definition
Let G be a group. The intersection problem in G consists on finding
an algorithm which, on

input: u1, . . . ,un, v1, . . . , vm ∈ G;

decides whether 〈u1, . . . ,un〉 ∩ 〈v1, . . . , vm〉 is finitely generated or not
and, if yes, computes a set of generators w1, . . . ,wp for it.

Proposition

(i) Finite groups are Howson, and have solvable intersection
problem.

(ii) Zn is Howson, and has solvable intersection problem.
(iii) What about Fr ?
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A first example

Theorem (Howson, 50’s)

Free groups are Howson.

Example

Consider F2 and the subgroups H = 〈a,b2,bab−1〉 and K = 〈b2,ba2〉.
Can you find generators for H ∩ K ?

Clearly, b2 ∈ H ∩ K ...
Less obvious but still easy, a−2b2a2 ∈ H ∩ K because

a−2b2a2 = (a)−2(b2)(a)2 ∈ H,

a−2b2a2 = (ba2)−1(b2)(ba2) ∈ K .

Something else? H ∩ K = 〈b2,a−2b2a2, . . . (?) . . .〉
How to be sure you found everything ?
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Stallings automata

Definition

A Stallings automaton over A is a finite A-graph (V ,E ,q0), such that:
1- it is connected,
2- it is trim, (no vertex of degree 1 except possibly q0),
3- it is deterministic (no two edges with the same label go out of (or

into) the same vertex).

NO : •

a

��

b

��
• c // •

a
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b
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YES : •
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Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),
551-565,

Stallings (building on previous works) gave a bijection between finitely
generated subgroups of F (A) and Stallings automata:

{f.g. subgroups of F (A)} ←→ {Stallings automata over A},

which is crucial for the modern understanding of the lattice of
subgroups of F (A), and for many algorithmic issues about free
groups.



1. Free groups Stallings’ graphs Applications to free groups Applications to Zm -by-free groups

Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),
551-565,

Stallings (building on previous works) gave a bijection between finitely
generated subgroups of F (A) and Stallings automata:

{f.g. subgroups of F (A)} ←→ {Stallings automata over A},

which is crucial for the modern understanding of the lattice of
subgroups of F (A), and for many algorithmic issues about free
groups.



1. Free groups Stallings’ graphs Applications to free groups Applications to Zm -by-free groups

Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),
551-565,

Stallings (building on previous works) gave a bijection between finitely
generated subgroups of F (A) and Stallings automata:

{f.g. subgroups of F (A)} ←→ {Stallings automata over A},

which is crucial for the modern understanding of the lattice of
subgroups of F (A), and for many algorithmic issues about free
groups.



1. Free groups Stallings’ graphs Applications to free groups Applications to Zm -by-free groups

Reading the subgroup from the automata

Definition

To any given Stallings automaton A = (V ,E ,q0), we associate its
language:

L(A) = { labels of closed paths at q0} 6 F (A).

•

a

��

A= b

��
•

a
** •

b

XX

c

jj

L(A) = {1, a, a−1, bab, bc−1b,
babab−1cb−1, . . .}

L(A) 63 bc−1bcaa

Membership problem in L(A) is solvable.
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1. Free groups Stallings’ graphs Applications to free groups Applications to Zm -by-free groups

Determinism is crucial

A = •

a

��

b

��

b

��
•

a
** •

c

jj

a ∈ L(A)

bab−1 ∈ L(A)

But ba2cb−1 ∈ L(A), because ba2cb−1 = bab−1bacb−1 ∈ L(A).



1. Free groups Stallings’ graphs Applications to free groups Applications to Zm -by-free groups

Determinism is crucial

A = •

a

��

b

��

b

��
•

a
** •

c

jj

a ∈ L(A)

bab−1 ∈ L(A)

But ba2cb−1 ∈ L(A), because ba2cb−1 = bab−1bacb−1 ∈ L(A).



1. Free groups Stallings’ graphs Applications to free groups Applications to Zm -by-free groups

Determinism is crucial

A = •

a

��

b

��

b

��
•

a
** •

c

jj

a ∈ L(A)

bab−1 ∈ L(A)

But ba2cb−1 ∈ L(A), because ba2cb−1 = bab−1bacb−1 ∈ L(A).



1. Free groups Stallings’ graphs Applications to free groups Applications to Zm -by-free groups

A basis for L(A)

Proposition

For every Stallings automaton A = (V ,E ,q0), and every maximal tree
T , the group L(A) is free with free basis

{xe = label(T [q0, ιe] · e · T [τe,q0]) ∈ L(A) | e ∈ EX − ET},

where T [p,q] denotes the geodesic in T from p to q. In particular,
rk(L(A)) = 1− |V |+ |E |.
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Constructing the automaton from the subgroup

Given H = 〈w1, . . . ,wn〉 ∈ F (A), construct the flower automaton,
denoted F(H).

Clearly, L(F(H)) = H.

... But F(H) is not in general deterministic...
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Constructing the automaton from the subgroup

In any automaton A containing the following situation, for a ∈ A±1,

• a //

a
&&

u

v

we can fold and identify vertices u and v to obtain

• a // u = v .

This operation, A A′, is called a Stallings folding.
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Constructing the automata from the subgroup

Lemma (Stallings)

If A A′ is a Stallings folding then L(A) = L(A′).

Given a f.g. subgroup H = 〈w1, . . . ,wn〉 6 FA (we assume wi are
reduced words), do the following:

1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings

automaton, denoted Γ(H).
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Folding #3. Γ(H)

By Stallings Lemma, L(Γ(H)) = H = 〈baba−1,aba−1,aba2〉
= 〈b,aba−1,a3〉
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Local confluence

It can be shown that

Proposition

The automaton Γ(H) does not depend on the sequence of foldings.

Proposition

The automaton Γ(H) does not depend on the generators of H.

Theorem
The following is a well defined bijection:

{f.g. subgroups of FA} ←→ {Stallings automata}
H → Γ(H)

L(A) ← A
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Nielsen–Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of FA is free.

Finite automata work for the finitely generated case, but
everything extends easily to the general case (using infinite
graphs).

The original proof (1920’s) is combinatorial and much more
technical.
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Membership problem

Theorem
Free groups have solvable membership problem.

Proof:
Given w0 and H = 〈w1, . . . ,wn〉 in Fm,
Construct the flower automaton F(H),
Fold to obtain Γ(H),
Check whether w0 is readable as a loop in Γ(H) at the basepoint.
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Intersection problem

Theorem
Free groups have solvable intersection problem.

Proof:
Given H = 〈u1, . . . ,un〉 and K = 〈v1, . . . , vm〉,
Construct the Stallings graphs Γ(H) and Γ(K ),
Construct the pull-back graph Γ(H)×A Γ(K ),
Take the connected component of the basepoint and trim it,
This is, precisely, Γ(H ∩ K ), (hence, free groups are Howson)
Choose a maximal tree and compute a basis for H ∩ K . �



1. Free groups Stallings’ graphs Applications to free groups Applications to Zm -by-free groups

Intersection problem

Theorem
Free groups have solvable intersection problem.

Proof:
Given H = 〈u1, . . . ,un〉 and K = 〈v1, . . . , vm〉,
Construct the Stallings graphs Γ(H) and Γ(K ),
Construct the pull-back graph Γ(H)×A Γ(K ),
Take the connected component of the basepoint and trim it,
This is, precisely, Γ(H ∩ K ), (hence, free groups are Howson)
Choose a maximal tree and compute a basis for H ∩ K . �



1. Free groups Stallings’ graphs Applications to free groups Applications to Zm -by-free groups

Intersection problem

Theorem
Free groups have solvable intersection problem.

Proof:
Given H = 〈u1, . . . ,un〉 and K = 〈v1, . . . , vm〉,
Construct the Stallings graphs Γ(H) and Γ(K ),
Construct the pull-back graph Γ(H)×A Γ(K ),
Take the connected component of the basepoint and trim it,
This is, precisely, Γ(H ∩ K ), (hence, free groups are Howson)
Choose a maximal tree and compute a basis for H ∩ K . �



1. Free groups Stallings’ graphs Applications to free groups Applications to Zm -by-free groups

Intersection problem

Theorem
Free groups have solvable intersection problem.

Proof:
Given H = 〈u1, . . . ,un〉 and K = 〈v1, . . . , vm〉,
Construct the Stallings graphs Γ(H) and Γ(K ),
Construct the pull-back graph Γ(H)×A Γ(K ),
Take the connected component of the basepoint and trim it,
This is, precisely, Γ(H ∩ K ), (hence, free groups are Howson)
Choose a maximal tree and compute a basis for H ∩ K . �



1. Free groups Stallings’ graphs Applications to free groups Applications to Zm -by-free groups

Intersection problem

Theorem
Free groups have solvable intersection problem.

Proof:
Given H = 〈u1, . . . ,un〉 and K = 〈v1, . . . , vm〉,
Construct the Stallings graphs Γ(H) and Γ(K ),
Construct the pull-back graph Γ(H)×A Γ(K ),
Take the connected component of the basepoint and trim it,
This is, precisely, Γ(H ∩ K ), (hence, free groups are Howson)
Choose a maximal tree and compute a basis for H ∩ K . �



1. Free groups Stallings’ graphs Applications to free groups Applications to Zm -by-free groups

Intersection problem

Theorem
Free groups have solvable intersection problem.

Proof:
Given H = 〈u1, . . . ,un〉 and K = 〈v1, . . . , vm〉,
Construct the Stallings graphs Γ(H) and Γ(K ),
Construct the pull-back graph Γ(H)×A Γ(K ),
Take the connected component of the basepoint and trim it,
This is, precisely, Γ(H ∩ K ), (hence, free groups are Howson)
Choose a maximal tree and compute a basis for H ∩ K . �



1. Free groups Stallings’ graphs Applications to free groups Applications to Zm -by-free groups

Intersection problem

Theorem
Free groups have solvable intersection problem.

Proof:
Given H = 〈u1, . . . ,un〉 and K = 〈v1, . . . , vm〉,
Construct the Stallings graphs Γ(H) and Γ(K ),
Construct the pull-back graph Γ(H)×A Γ(K ),
Take the connected component of the basepoint and trim it,
This is, precisely, Γ(H ∩ K ), (hence, free groups are Howson)
Choose a maximal tree and compute a basis for H ∩ K . �



1. Free groups Stallings’ graphs Applications to free groups Applications to Zm -by-free groups

Computing intersections: the previous example

Let H = 〈a,b2,bab−1〉 and K = 〈b2,ba2〉 be subgroups of F2.
To compute a basis for H ∩ K :

• a // •
b
(( •

b
hh

a
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b
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•a
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b

GG

H ∩ K =? Clear that b2 ∈ H ∩ K , but.... something else?
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(Free-abelian)-by-free groups

Definition

Consider {tv | v ∈ Zm} (i.e., Zm in multiplicative notation), let
A1, . . . ,An ∈ GLm(Z) acting as Ai : tv 7→ tvAi , and consider the group

G = Fn nA1,...,An Zm = 〈a1, . . . ,an, t1, . . . , tm | [ti , tj ] = 1, a−1
i tv ai = tvAi 〉

Observation
We have the split short exact sequence

1→ Zm → G→ Fn → 1,

and normal forms w(~a)tv for the elements of G (where v ∈ Zm and
w ∈ F ({a1, . . . ,an})), computable using tv ai = ai tvAi . Furthermore,

tv w(~a) = w(~a)tvW ,

where W = W (A1, . . . ,An) ∈ GLm(Z).
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tv w(~a) = w(~a)tvW ,

where W = W (A1, . . . ,An) ∈ GLm(Z).
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(Free-abelian)-by-free groups

Proposition

For every subgroup H 6 G = Fn nA1,...,An Zm, the sub- short exact
sequence

1 → Zm → G π→ Fn → 1
∨ ∨ ∨

1 → L = H ∩ Zm → H π→ Hπ → 1

also splits and so, H ' Hπ nA L, where A is the restriction of the
defining action Fn → Aut(Zm) to A : Hπ → Aut(L).

In particular, every H 6 Fn nA1,...,An Zm, n > 2, is of the form
H ' Fn′ nA′

1,...,A
′
n′
Zm′

for some n′ ∈ N ∪ {∞} and m′ 6 m.
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Stallings graphs with vectors

Definition
Let us consider now, vectored A-automata, i.e., A-graphs with vectors
assigned at the heads and tails of the edges,

• u1 a u2// • ,

reading t−u1atu2 = atu2−u1A (and the inverse if traversed backwards).
... plus a subspace L 6 Zm attached to the basepoint (corresponding
to the purely abelian elements).

Example

For a f. g. subgroup H = 〈w1tu1 , . . . ,wr tur , tv1 , . . . , tvs〉 of
G = Fn nA1,...,An Zm, we can also construct the flower automaton.
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Abelian moves

Definition
We need now some extra operations to allow moving abelian mass
arround:
• edge moves,
• vertex moves,
• vertex moves at the basepoint,
• open foldings,
• closed foldings,
• increase L to its closure by the labels of all closed paths at •.

Definition
A vectored Stallings A-automata is a connected and trim vectored
A-automata satisfying:
(i) A′ is deterministic,
(ii) L′ is invariant by the labels of all closed paths at •,
(iii) vectors are zero everywhere except, maybe, at the heads of
edges outside a maximal tree T .
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Main results

Proposition

With repeated use of the above operations, any vectored A-automata
A can be converted into a Stallings vectored A-automata A′.

Theorem (Delgado–V., 2016)

(i) A′ with the above conditions is uniquely determined by the
subgroup H (modulo the choice of the maximal tree, and with all
vectors around being viewed ‘modulo’ L).
(ii) The membership problem is solvable in (free-abelian)-by-free
groups.
(iii) The intersection problem is solvable in (free-abelian)-by-free
groups.

But...
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Example of intersection

Observation
F2 × Z is NOT Howson.

Example

In F2 × Z2, consider the subgroups

H = 〈at (1,0),b2,bab−1t (1,2), t (1,1)〉,

K = 〈b2,ba2t (2,1), t (1,5), t (2,6)〉.

After some computations...

(4,4)−(4,2) = (0,2) 6∈ LH+LK = 〈(1,1), (1,5), (2,6)〉 = 〈(1,1), (0,4)〉,

But... H ∩ K is f.g. because

2((4,4)− (4,2)) = 2(0,2) = (0,4) = −(1,1) + (1,5) ∈ LH + LK ,

so, (8,8) + (1,1) = (9,9) = (8,4) + (1,5) corrects the pull-back.
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Example of intersection

Example

H ∩ K = 〈b2, a−2b2a2, (ba2)b2(ba2)−1,

(ba2)2b2(ba2)−2, (ba2)4t (9,9), t (1,1)〉.

In fact, b2 ∈ H ∩ K ,

a−2b2a2 = (at (1,0))−2b2(at (1,0))2 ∈ H

a−2b2a2 = (ba2t (2,1))−1b2(ba2t (2,1)) ∈ K

(ba2)b2(ba2)−1 = (bab−1t (1,2))2b2(bab−1t (1,2))−2 ∈ H

(ba2)b2(ba2)−1 = (ba2t (2,1))2b2(ba2t (2,1))−1 ∈ K
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Example of intersection

Example

(ba2)2b2(ba2)−2 = (bab−1t (1,2))2b2(at (1,0))2b2(at (1,0))−2b−2·
· (bab−1t (1,2))−2 ∈ H

(ba2)2b2(ba2)−2 = (ba2t (2,1))2b2(ba2t (2,1))−2 ∈ K

(ba2)4t (9,9) = (bab−1t (1,2))2b2(at (1,0))2(bab−1t (1,2))2b2(at (1,0))2t (1,1) ∈ H

(ba2)4t (9,9) = (ba2t (2,1))4t (1,5) ∈ K

LH ∩ LK = 〈(1,1)〉 ∩ 〈(1,5), (2,6)〉 = 〈(1,1)〉.
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Example of intersection

Example

Note that (ba2)2 ∈ Hπ ∩ Kπ:

(bab−1t (1,2))2b2(at (1,0))2 = (ba2)2t (4,4) ∈ H

(ba2t (2,1))2 = (ba2)2t (4,2) ∈ K

But ... (ba2)2 6∈ (H ∩ K )π because

((4,4) + LH) ∩ ((4,2) + LK ) = ∅

However, (ba2)4 ∈ (H ∩ K )π since

(ba2)4t (9,9) ∈ H ∩ K

corresponding to the fact that

(9,9) ∈ (2(4,4) + LH) ∩ (2(4,2) + LK ) 6= ∅.
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