Deciding endofixedness in free groups

Enric Ventura

Departament de Matemàtica Aplicada III

Universitat Politècnica de Catalunya

Newcastle, April 12, 2010

Outline

- Some history
- Algorithmic results
- Needed tools
- 4 The proof

Outline

- Some history
- Algorithmic results
- Needed tools
- 4 The proof

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \text{Mono}(F_n) \subseteq \text{End}(F_n)$.
- Let endomorphisms $\phi: F_n \to F_n$ act on the right, $x \mapsto x\phi$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n$.
- If $S \subseteq \operatorname{End}(F_n)$ then $\operatorname{Fix}(S) = \{x \in F_n \mid x\phi = x \ \forall \phi \in S\} = \cap_{\phi \in S} \operatorname{Fix}(\phi) \leqslant F_n$

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \text{Mono}(F_n) \subseteq \text{End}(F_n)$.
- Let endomorphisms $\phi: F_n \to F_n$ act on the right, $x \mapsto x\phi$.
- $\bullet \ \operatorname{Fix}(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n.$
- If $S \subseteq \operatorname{End}(F_n)$ then $\operatorname{Fix}(S) = \{x \in F_n \mid x\phi = x \ \forall \phi \in S\} = \cap_{\phi \in S} \operatorname{Fix}(\phi) \leqslant F_n$

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \text{Mono}(F_n) \subseteq \text{End}(F_n)$.
- Let endomorphisms $\phi: F_n \to F_n$ act on the right, $x \mapsto x\phi$.
- $\bullet \ \operatorname{Fix}(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n.$
- If $S \subseteq \operatorname{End}(F_n)$ then $\operatorname{Fix}(S) = \{x \in F_n \mid x\phi = x \ \forall \phi \in S\} = \cap_{\phi \in S} \operatorname{Fix}(\phi) \leqslant F_n$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \text{Mono}(F_n) \subseteq \text{End}(F_n)$.
- Het endomorphisms $\phi \colon F_n \to F_n$ act on the right, $x \mapsto x\phi$.
- $\bullet \ \operatorname{Fix}(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n.$
- If $S \subseteq \operatorname{End}(F_n)$ then $\operatorname{Fix}(S) = \{x \in F_n \mid x\phi = x \ \forall \phi \in S\} = \cap_{\phi \in S} \operatorname{Fix}(\phi) \leqslant F_n$

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \text{Mono}(F_n) \subseteq \text{End}(F_n)$.
- I let endomorphisms $\phi \colon F_n \to F_n$ act on the right, $x \mapsto x\phi$.
- $\bullet \ \operatorname{Fix}\left(\phi\right)=\left\{ x\in F_{n}\mid x\phi=x\right\} \leqslant F_{n}.$
- If $S \subseteq \operatorname{End}(F_n)$ then $\operatorname{Fix}(S) = \{x \in F_n \mid x\phi = x \ \forall \phi \in S\} = \cap_{\phi \in S} \operatorname{Fix}(\phi) \leqslant F_n$

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \text{Mono}(F_n) \subseteq \text{End}(F_n)$.
- I let endomorphisms $\phi \colon F_n \to F_n$ act on the right, $x \mapsto x\phi$.
- $Fix(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n$.
- If $S \subseteq \operatorname{End}(F_n)$ then $\operatorname{Fix}(S) = \{x \in F_n \mid x\phi = x \ \forall \phi \in S\} = \cap_{\phi \in S} \operatorname{Fix}(\phi) \leqslant F_n$

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \text{Mono}(F_n) \subseteq \text{End}(F_n)$.
- I let endomorphisms $\phi \colon F_n \to F_n$ act on the right, $x \mapsto x\phi$.
- $\bullet \ \mathsf{Fix}\,(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n.$
- If $S \subseteq \operatorname{End}(F_n)$ then $\operatorname{Fix}(S) = \{x \in F_n \mid x\phi = x \ \forall \phi \in S\} = \cap_{\phi \in S} \operatorname{Fix}(\phi) \leqslant F_n$.

```
c \mapsto ca^2
```

```
Fix \phi = \langle a, bab^{-1}, cac^{-1} \rangle
```

```
\varphi \colon F_3 \to F_3
a \mapsto a
b \mapsto ba
c \mapsto ca^2
\varphi \colon F_4 \to F_4
a \mapsto dac
b \mapsto c^{-1}a^{-1}d^{-1}ac
c \mapsto c^{-1}a^{-1}b^{-1}ac
d \mapsto c^{-1}a^{-1}bc
Fix \varphi = \langle w \rangle, \text{ where ...}
```

 $w = c^{-1}a^{-1}bd^{-1}c^{-1}a^{-1}d^{-1}ad^{-1}c^{-1}b^{-1}$ acdadacdcdbcda $^{-1}a^{-1}d^{-1}$ $a^{-1}d^{-1}c^{-1}a^{-1}d^{-1}c^{-1}b^{-1}d^{-1}c^{-1}$ daabcdaccdb $^{-1}a^{-1}$.

```
\varphi : F_3 \longrightarrow F_3
a \mapsto a
b \mapsto ba
c \mapsto ca^2
\varphi : F_4 \longrightarrow F_4
a \mapsto dac
b \mapsto c^{-1}a^{-1}d^{-1}ac
c \mapsto c^{-1}a^{-1}b^{-1}ac
d \mapsto c^{-1}a^{-1}bc
Fix \varphi = \langle w \rangle, \text{ where...}
```

 $w = c^{-1}a^{-1}bd^{-1}c^{-1}a^{-1}d^{-1}ad^{-1}c^{-1}b^{-1}$ acdadacdcdbcda $^{-1}a^{-1}d^{-1}$ $a^{-1}d^{-1}c^{-1}a^{-1}d^{-1}c^{-1}b^{-1}d^{-1}c^{-1}$ daabcdaccdb $^{-1}a^{-1}$.

```
\phi \colon F_3 \to F_3
                                                             Fix \phi = \langle a, bab^{-1}, cac^{-1} \rangle
       \varphi \colon F_4 \to F_4
            a \mapsto dac
             b \mapsto c^{-1}a^{-1}d^{-1}ac
                                                             Fix \varphi = \langle w \rangle, where...
             c \mapsto c^{-1}a^{-1}b^{-1}ac
             d \mapsto c^{-1}a^{-1}bc
w = c^{-1}a^{-1}bd^{-1}c^{-1}a^{-1}d^{-1}ad^{-1}c^{-1}b^{-1}acdadacdcdbcda^{-1}a^{-1}d^{-1}
a^{-1}d^{-1}c^{-1}a^{-1}d^{-1}c^{-1}h^{-1}d^{-1}c^{-1}d^{-1}c^{-1} daabcdaccdb^{-1}a^{-1}.
```

Theorem (Dyer-Scott, 75)

Let $G \le Aut(F_n)$ be a finite group of automorphisms of F_n . Then, $Fix(G) \le_{ff} F_n$; in particular, $r(Fix(G)) \le n$.

Conjecture (Scott)

For every $\phi \in Aut(F_n)$, $r(Fix(\phi)) \leqslant n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) < \infty$.

Theorem (Thomas, 88)

Let $G \leq Aut(F_n)$ be an arbitrary group of automorphisms of F_n . Then, $r(Fix(G)) < \infty$.

Theorem (Dyer-Scott, 75)

Let $G \leq Aut(F_n)$ be a finite group of automorphisms of F_n . Then, $Fix(G) \leq_{\mathrm{ff}} F_n$; in particular, $r(Fix(G)) \leq n$.

Conjecture (Scott)

For every $\phi \in Aut(F_n)$, $r(Fix(\phi)) \leqslant n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) < \infty$.

Theorem (Thomas, 88)

Let $G \leqslant Aut(F_n)$ be an arbitrary group of automorphisms of F_n . Then, $r(Fix(G)) < \infty$.

Theorem (Dyer-Scott, 75)

Let $G \leq \operatorname{Aut}(F_n)$ be a finite group of automorphisms of F_n . Then, $\operatorname{Fix}(G) \leq_{\operatorname{ff}} F_n$; in particular, $r(\operatorname{Fix}(G)) \leq n$.

Conjecture (Scott)

For every $\phi \in Aut(F_n)$, $r(Fix(\phi)) \leqslant n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) < \infty$.

Theorem (Thomas, 88)

Let $G \leq Aut(F_n)$ be an arbitrary group of automorphisms of F_n . Then, $r(Fix(G)) < \infty$.

Theorem (Dyer-Scott, 75)

Let $G \leq Aut(F_n)$ be a finite group of automorphisms of F_n . Then, $Fix(G) \leq_{ff} F_n$; in particular, $r(Fix(G)) \leq n$.

Conjecture (Scott)

For every $\phi \in Aut(F_n)$, $r(Fix(\phi)) \leqslant n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) < \infty$.

Theorem (Thomas, 88)

Let $G \leqslant Aut(F_n)$ be an arbitrary group of automorphisms of F_n . Then, $r(Fix(G)) < \infty$.

Train-tracks

Main result in this story:

Theorem (Bestvina-Handel, 88 (published 92))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) \leq n$.

introducing the theory of train-tracks for graphs.

After Bestvina-Handel, live continues ...

Theorem (Imrich-Turner, 89)

Let $\phi \in End(F_n)$. Then $r(Fix(\phi)) \leqslant n$

Theorem (Turner, 96)

Let $\phi \in End(F_n)$. If ϕ is not bijective then $r(Fix(\phi)) \leq n-1$.

Train-tracks

Main result in this story:

Theorem (Bestvina-Handel, 88 (published 92))

Let
$$\phi \in Aut(F_n)$$
. Then $r(Fix(\phi)) \leqslant n$.

introducing the theory of train-tracks for graphs.

After Bestvina-Handel, live continues ...

Theorem (Imrich-Turner, 89)

Let $\phi \in End(F_n)$. Then $r(Fix(\phi)) \leqslant n$.

Theorem (Turner, 96

Let $\phi \in End(F_n)$. If ϕ is not bijective then $r(Fix(\phi)) \leq n-1$.

Train-tracks

Main result in this story:

Theorem (Bestvina-Handel, 88 (published 92))

Let
$$\phi \in Aut(F_n)$$
. Then $r(Fix(\phi)) \leqslant n$.

introducing the theory of train-tracks for graphs.

After Bestvina-Handel, live continues ...

Theorem (Imrich-Turner, 89)

Let $\phi \in End(F_n)$. Then $r(Fix(\phi)) \leqslant n$.

Theorem (Turner, 96)

Let $\phi \in End(F_n)$. If ϕ is not bijective then $r(Fix(\phi)) \leqslant n-1$.

There are three easy ways of building fixed points:

1.Some history

There are three easy ways of building fixed points:

(Construction-1)

Let $\phi: F_n \to F_n$ be an automorphism and $Fix(\phi)$ its fixed subgroup. Then, there are many ways of extending ϕ to ϕ' : $F_n * F_m \to F_n * F_m$ such that $Fix(\phi') = Fix(\phi)$ (for example, invert all generators of F_m).

There are three easy ways of building fixed points:

(Construction-1)

Let $\phi: F_n \to F_n$ be an automorphism and $Fix(\phi)$ its fixed subgroup. Then, there are many ways of extending ϕ to $\phi': F_n * F_m \to F_n * F_m$ such that $Fix(\phi') = Fix(\phi)$ (for example, invert all generators of F_m).

(Construction-2)

Let $\phi_1: F_n \to F_n$ and $\phi_2: F_m \to F_m$ be two automorphisms and $Fix(\phi_1)$ and $Fix(\phi_2)$ their fixed subgroups. Then, $\phi_1 * \phi_2: F_n * F_m \to F_n * F_m$ has $Fix(\phi_1 * \phi_2) = Fix(\phi_1) * Fix(\phi_2)$.

(Construction-3)

Let $\phi: F_n \to F_n$ be an automorphism and $Fix(\phi)$ its fixed subgroup Let $h, h' \in F_n$ be such that $h\phi = h'hh'^{-1}$. Then, the extension $\phi': F_n * \langle z \rangle \to F_n * \langle z \rangle$ defined by $z \mapsto h'h^rz$ satisfies $Fix(\phi') = Fix(\phi) * \langle z^{-1}hz \rangle$. There are three easy ways of building fixed points:

(Construction-1)

1.Some history

Let $\phi: F_n \to F_n$ be an automorphism and $Fix(\phi)$ its fixed subgroup. Then, there are many ways of extending ϕ to $\phi': F_n * F_m \to F_n * F_m$ such that $Fix(\phi') = Fix(\phi)$ (for example, invert all generators of F_m).

(Construction-2)

Let $\phi_1: F_n \to F_n$ and $\phi_2: F_m \to F_m$ be two automorphisms and $Fix(\phi_1)$ and $Fix(\phi_2)$ their fixed subgroups. Then, $\phi_1 * \phi_2: F_n * F_m \to F_n * F_m$ has $Fix(\phi_1 * \phi_2) = Fix(\phi_1) * Fix(\phi_2)$.

(Construction-3)

Let $\phi \colon F_n \to F_n$ be an automorphism and $Fix(\phi)$ its fixed subgroup. Let $h, h' \in F_n$ be such that $h\phi = h'hh'^{-1}$. Then, the extension $\phi' \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$ defined by $z \mapsto h'h'z$ satisfies $Fix(\phi') = Fix(\phi) * \langle z^{-1}hz \rangle$.

These are essentially the only possibilities:

Observation

A cyclic subgroup $\langle w \rangle \leqslant F_n$ is the fixed subgroup of some $\phi \in Aut(F_n)$ if and only if w is not a proper power.

Theorem (Martino-V., 04)

Every automorphism $\phi: F_n \to F_n$ and its fixed subgroup $Fix(\phi)$ can be built from finitely many automorphisms $\phi_i: F_{m_i} \to F_{m_i}$ ($m_i \le n$), $i = 1, \ldots, r$, with cyclic fixed subgroup, $r(Fix(\phi_i)) = 1$, by finitely many applications of Constructions 1, 2 and 3.

These are essentially the only possibilities:

Observation

A cyclic subgroup $\langle w \rangle \leqslant F_n$ is the fixed subgroup of some $\phi \in Aut(F_n)$ if and only if w is not a proper power.

Theorem (Martino-V., 04)

Every automorphism $\phi: F_n \to F_n$ and its fixed subgroup $Fix(\phi)$ car be built from finitely many automorphisms $\phi_i: F_{m_i} \to F_{m_i}$ $(m_i \le n)$, $i = 1, \ldots, r$, with cyclic fixed subgroup, $r(Fix(\phi_i)) = 1$, by finitely many applications of Constructions 1, 2 and 3.

These are essentially the only possibilities:

Observation

A cyclic subgroup $\langle w \rangle \leqslant F_n$ is the fixed subgroup of some $\phi \in Aut(F_n)$ if and only if w is not a proper power.

Theorem (Martino-V., 04)

Every automorphism $\phi \colon F_n \to F_n$ and its fixed subgroup $Fix(\phi)$ can be built from finitely many automorphisms $\phi_i \colon F_{m_i} \to F_{m_i}$ $(m_i \leqslant n)$, $i=1,\ldots,r$, with cyclic fixed subgroup, $r(Fix(\phi_i))=1$, by finitely many applications of Constructions 1, 2 and 3.

Definition

A subgroup $H \leqslant F_n$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_n$.

Theorem (Dicks-V, 96)

Let $G \subseteq Mon(F_n)$ be an arbitrary set of monomorphisms of F_n . Then, Fix(G) is inert; in particular, $r(Fix(G)) \leq n$.

Theorem (Bergman, 99)

Let $G \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then, $r(Fix(G)) \leq n$.

Conjecture (V.)

Let $\phi \in End(F_n)$. Then $Fix(\phi)$ is inert.

Definition

A subgroup $H \leqslant F_n$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_n$.

Theorem (Dicks-V, 96)

Let $G \subseteq Mon(F_n)$ be an arbitrary set of monomorphisms of F_n . Then, Fix(G) is inert; in particular, $r(Fix(G)) \leq n$.

Theorem (Bergman, 99

Let $G \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then, $r(Fix(G)) \leq n$.

Conjecture (V.)

Let $\phi \in End(F_n)$. Then $Fix(\phi)$ is inert

Definition

A subgroup $H \leqslant F_n$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_n$.

Theorem (Dicks-V, 96)

Let $G \subseteq Mon(F_n)$ be an arbitrary set of monomorphisms of F_n . Then, Fix(G) is inert; in particular, $r(Fix(G)) \leq n$.

Theorem (Bergman, 99)

Let $G \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then, $r(Fix(G)) \leqslant n$.

Conjecture (V.)

Let $\phi \in End(F_n)$. Then $Fix(\phi)$ is inert

Definition

A subgroup $H \leqslant F_n$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_n$.

Theorem (Dicks-V, 96)

Let $G \subseteq Mon(F_n)$ be an arbitrary set of monomorphisms of F_n . Then, Fix(G) is inert; in particular, $r(Fix(G)) \leq n$.

Theorem (Bergman, 99)

Let $G \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then, $r(Fix(G)) \leq n$.

Conjecture (V.)

Let $\phi \in End(F_n)$. Then $Fix(\phi)$ is inert.

The four families

Definition

A subgroup $H \leqslant F_n$ is said to be

- 1-auto-fixed if $H = Fix(\phi)$ for some $\phi \in Aut(F_n)$,
- 1-endo-fixed if $H = Fix(\phi)$ for some $\phi \in End(F_n)$,
- auto-fixed if H = Fix(S) for some $S \subseteq Aut(F_n)$,
- endo-fixed if H = Fix(S) for some $S \subseteq End(F_n)$,

Easy to see that 1-mono-fixed = 1-auto-fixed.

The four families

Definition

A subgroup $H \leqslant F_n$ is said to be

- 1-auto-fixed if $H = Fix(\phi)$ for some $\phi \in Aut(F_n)$,
- 1-endo-fixed if $H = Fix(\phi)$ for some $\phi \in End(F_n)$,
- auto-fixed if H = Fix(S) for some $S \subseteq Aut(F_n)$,
- endo-fixed if H = Fix(S) for some $S \subseteq End(F_n)$,

Easy to see that 1-mono-fixed = 1-auto-fixed.

The four families

Definition

A subgroup $H \leq F_n$ is said to be

- 1-auto-fixed if $H = Fix(\phi)$ for some $\phi \in Aut(F_n)$,
- 1-endo-fixed if $H = Fix(\phi)$ for some $\phi \in End(F_n)$,
- auto-fixed if H = Fix(S) for some $S \subseteq Aut(F_n)$,
- endo-fixed if H = Fix(S) for some $S \subseteq End(F_n)$,

Easy to see that 1-mono-fixed = 1-auto-fixed.

The four families

Definition

A subgroup $H \leqslant F_n$ is said to be

- 1-auto-fixed if $H = Fix(\phi)$ for some $\phi \in Aut(F_n)$,
- 1-endo-fixed if $H = Fix(\phi)$ for some $\phi \in End(F_n)$,
- auto-fixed if H = Fix(S) for some $S \subseteq Aut(F_n)$,
- endo-fixed if H = Fix(S) for some $S \subseteq End(F_n)$,

Easy to see that 1-mono-fixed = 1-auto-fixed.

The four families

Definition

A subgroup $H \leqslant F_n$ is said to be

- 1-auto-fixed if $H = Fix(\phi)$ for some $\phi \in Aut(F_n)$,
- 1-endo-fixed if $H = Fix(\phi)$ for some $\phi \in End(F_n)$,
- auto-fixed if H = Fix(S) for some $S \subseteq Aut(F_n)$,
- endo-fixed if H = Fix(S) for some $S \subseteq End(F_n)$,

Easy to see that 1-mono-fixed = 1-auto-fixed.

Example (Martino-V., 03; Ciobanu-Dicks, 06)

Let $F_3 = \langle a, b, c \rangle$ and $H = \langle b, cacbab^{-1}c^{-1} \rangle \leqslant F_3$. Then, $H = Fix(a \mapsto 1, b \mapsto b, c \mapsto cacbab^{-1}c^{-1})$, but H is NOT the fixed subgroup of any set of automorphism of F_3 .

$$\begin{array}{c|c}
\boxed{1 - auto - fixed} & \stackrel{\subseteq}{\neq} & \boxed{1 - endo - fixed} \\
& \cap | \parallel? & & \cap | \parallel? \\
\hline
auto - fixed & \stackrel{\subseteq}{\neq} & \boxed{endo - fixed}
\end{array}$$

Conjecture

For every $S \subseteq End(F_n)$ ($S \subseteq Aut(F_n)$) there exists $\phi \in End(F_n)$ ($\phi \in End(F_n)$) such that $Fix(S) = Fix(\phi)$.

Theorem (Martino-V., 00)

Let $S \subseteq End(F_n)$. Then, $\exists \phi \in \langle S \rangle$ such that $Fix(S) \leqslant_{\mathrm{ff}} Fix(\phi)$.

But... free factors of 1-endo-fixed (1-auto-fixed) subgroups need not be even endo-fixed (auto-fixed).

$$\begin{array}{c|c}
1 - auto - fixed & \stackrel{\subseteq}{\neq} & 1 - endo - fixed \\
 & \cap | \parallel? & & \cap | \parallel? \\
\hline
 & auto - fixed & \stackrel{\subseteq}{\neq} & endo - fixed
\end{array}$$

Conjecture

For every $S \subseteq End(F_n)$ ($S \subseteq Aut(F_n)$) there exists $\phi \in End(F_n)$ ($\phi \in End(F_n)$) such that $Fix(S) = Fix(\phi)$.

Theorem (Martino-V., 00)

Let $S \subseteq End(F_n)$. Then, $\exists \phi \in \langle S \rangle$ such that $Fix(S) \leqslant_{\mathrm{ff}} Fix(\phi)$.

But... free factors of 1-endo-fixed (1-auto-fixed) subgroups need not be even endo-fixed (auto-fixed).

Outline

- Some history
- Algorithmic results
- Needed tools
- 4 The proof

Computing fixed subgroups

Proposition (Turner, 86)

There exists a pseudo-algorithm to compute fix of an endo.

Easy but is not an algorithm...

Theorem (Maslakova, 03)

Fixed subgroups of automorphisms of F_n are computable.

Difficult but it is an algorithm!

Conjecture

Fixed subgroups of endomorphisms of F_n are computable.

Computing fixed subgroups

Proposition (Turner, 86)

There exists a pseudo-algorithm to compute fix of an endo.

Easy but is not an algorithm...

Theorem (Maslakova, 03)

Fixed subgroups of automorphisms of F_n are computable.

Difficult but it is an algorithm!

Conjecture

Fixed subgroups of endomorphisms of F_n are computable.

Computing fixed subgroups

Proposition (Turner, 86)

There exists a pseudo-algorithm to compute fix of an endo.

Easy but is not an algorithm...

Theorem (Maslakova, 03)

Fixed subgroups of automorphisms of F_n are computable.

Difficult but it is an algorithm!

Conjecture

Fixed subgroups of endomorphisms of F_n are computable.

Deciding fixedness

In this talk, I'll solve the two dual problems:

Theorem

Given $H \leq_{fg} F_n$, one can algorithmically decide whether

- i) H is auto-fixed or not,
- ii) H is endo-fixed or not,

and in the affirmative case, find a finite family, $S = \{\phi_1, \dots, \phi_m\}$, of automorphisms (endomorphisms) of F_n such that Fix(S) = H.

Conjecture

Given $H \leq_{fg} F_n$, one can algorithmically decide whether

- i) H is 1-auto-fixed or not,
- ii) H is 1-endo-fixed or not,

and in the affirmative case, find one automorphism (endomorphism) ϕ of F_n such that $Fix(\phi) = H$.

Deciding fixedness

In this talk, I'll solve the two dual problems:

Theorem

Given $H \leq_{fg} F_n$, one can algorithmically decide whether

- i) H is auto-fixed or not,
- ii) H is endo-fixed or not,

and in the affirmative case, find a finite family, $S = \{\phi_1, ..., \phi_m\}$, of automorphisms (endomorphisms) of F_n such that Fix(S) = H.

Conjecture

Given $H \leq_{fg} F_n$, one can algorithmically decide whether

- i) H is 1-auto-fixed or not
- ii) H is 1-endo-fixed or not,

and in the affirmative case, find one automorphism (endomorphism) ϕ of F_n such that $Fix(\phi) = H$.

Deciding fixedness

In this talk, I'll solve the two dual problems:

Theorem

Given $H \leq_{fg} F_n$, one can algorithmically decide whether

- i) H is auto-fixed or not,
- ii) H is endo-fixed or not,

and in the affirmative case, find a finite family, $S = \{\phi_1, \dots, \phi_m\}$, of automorphisms (endomorphisms) of F_n such that Fix(S) = H.

Conjecture

Given $H \leq_{fg} F_n$, one can algorithmically decide whether

- i) H is 1-auto-fixed or not,
- ii) H is 1-endo-fixed or not,

and in the affirmative case, find one automorphism (endomorphism) ϕ of F_n such that $Fix(\phi) = H$.

Outline

- Some history
- Algorithmic results
- Needed tools
- 4 The proof

Fixed closures

Definition

Given $H \leqslant_{\mathrm{fg}} F_n$, we define the (auto- and endo-) stabilizer of H, respectively, as

$$Aut_H(F_n) = \{\phi \in Aut(F_n) \mid H \leqslant Fix(\phi)\} \leqslant Aut(F_n)$$

and

$$End_{H}(F_{n}) = \{\phi \in End(F_{n}) \mid H \leqslant Fix(\phi)\} \leqslant End(F_{n})$$

Definitior

Given $H \leqslant F_n$, we define the auto-closure and endo-closure of H as

$$a$$
- $CI(H) = Fix(Aut_H(F_n)) \geqslant H$

and

$$e$$
- $CI(H) = Fix(End_H(F_n)) \geqslant F$

Fixed closures

Definition

Given $H \leq_{fg} F_n$, we define the (auto- and endo-) stabilizer of H, respectively, as

$$Aut_H(F_n) = \{\phi \in Aut(F_n) \mid H \leqslant Fix(\phi)\} \leqslant Aut(F_n)$$

and

$$End_{H}(F_{n}) = \{\phi \in End(F_{n}) \mid H \leqslant Fix(\phi)\} \leqslant End(F_{n})$$

Definition

Given $H \leq F_n$, we define the auto-closure and endo-closure of H as

$$a$$
- $CI(H) = Fix(Aut_H(F_n)) \geqslant H$

and

$$e$$
- $CI(H) = Fix(End_H(F_n)) \geqslant H$

Main result

Theorem

For every $H \leq_{\mathrm{fg}} F_n$, a-CI(H) and e-CI(H) are finitely generated and one can algorithmically compute bases for them.

Corollary

Auto-fixedness and endo-fixedness are decidable.

Observe that e- $Cl(H) \le a$ -Cl(H) but, in general, they are not equal.

Main result

Theorem

For every $H \leq_{\mathrm{fg}} F_n$, a-CI(H) and e-CI(H) are finitely generated and one can algorithmically compute bases for them.

Corollary

Auto-fixedness and endo-fixedness are decidable.

Observe that e- $Cl(H) \le a$ -Cl(H) but, in general, they are not equal.

Main result

Theorem

For every $H \leq_{\mathrm{fg}} F_n$, a-CI(H) and e-CI(H) are finitely generated and one can algorithmically compute bases for them.

Corollary

Auto-fixedness and endo-fixedness are decidable.

Observe that e- $Cl(H) \le a$ -Cl(H) but, in general, they are not equal.

Retracts

Definition

A subgroup $H \leqslant F_n$ is a retract if there exists a retraction, i.e. a morphism $\rho \colon F_n \to H$ which restricts to the identity of H.

Free factors are retracts, but there are more.

Observatior

If $H \leqslant F_n$ is a retract then $r(H) \leqslant n$ (and, $r(H) = n \Leftrightarrow H = F_n$).

Observation (Turner)

It is algorithmically decidable whether a given $H \leqslant F_n$ is a retract or not.

Retracts

Definition

A subgroup $H \leq F_n$ is a retract if there exists a retraction, i.e. a morphism $\rho \colon F_n \to H$ which restricts to the identity of H.

Free factors are retracts, but there are more.

Observation

If $H \leqslant F_n$ is a retract then $r(H) \leqslant n$ (and, $r(H) = n \Leftrightarrow H = F_n$).

Observation (Turner

It is algorithmically decidable whether a given $H \leqslant F_n$ is a retract of not.

Retracts

Definition

A subgroup $H \leq F_n$ is a retract if there exists a retraction, i.e. a morphism $\rho \colon F_n \to H$ which restricts to the identity of H.

Free factors are retracts, but there are more.

Observation

If $H \leqslant F_n$ is a retract then $r(H) \leqslant n$ (and, $r(H) = n \Leftrightarrow H = F_n$).

Observation (Turner)

It is algorithmically decidable whether a given $H \leqslant F_n$ is a retract or not.

The stable image

Definition

Let $\phi \in End(F_n)$. The stable image of ϕ is $F_n\phi^{\infty} = \bigcap_{i=1}^{\infty} F_n\phi^i$.

Theorem (Imrich-Turner, 89)

For every endomorphism $\phi \colon F_n \to F_n$,

- i) $F_n \phi^{\infty}$ is ϕ -invariant,
- ii) the restriction $\phi \colon F_n \phi^\infty \to F_n \phi^\infty$ is an isomorphism,
- iii) $F_n \phi^{\infty}$ is a retract.
- iv) $Fix(\phi) \leqslant F_n \phi^{\infty}$.

Example: For
$$\phi: F_2 \to F_2$$
, $a \mapsto a$, $b \mapsto b^2$, we have $F_2 \phi = \langle a, b^2 \rangle$, $F_2 \phi^2 = \langle a, b^4 \rangle$, $F_2 \phi^3 = \langle a, b^8 \rangle$, So, $F_2 \phi^{\infty} = \langle a \rangle \leqslant_{\rm ff} F_2$.

The stable image

Definition

Let $\phi \in End(F_n)$. The stable image of ϕ is $F_n\phi^{\infty} = \bigcap_{i=1}^{\infty} F_n\phi^i$.

Theorem (Imrich-Turner, 89)

For every endomorphism $\phi \colon F_n \to F_n$,

- i) $F_n\phi^{\infty}$ is ϕ -invariant,
- ii) the restriction $\phi \colon F_n \phi^{\infty} \to F_n \phi^{\infty}$ is an isomorphism,
- iii) $F_n\phi^{\infty}$ is a retract.
- iv) $Fix(\phi) \leqslant F_n \phi^{\infty}$.

Example: For
$$\phi: F_2 \to F_2$$
, $a \mapsto a$, $b \mapsto b^2$, we have $F_2 \phi = \langle a, b^2 \rangle$, $F_2 \phi^2 = \langle a, b^4 \rangle$, $F_2 \phi^3 = \langle a, b^8 \rangle$, So, $F_2 \phi^{\infty} = \langle a \rangle \leqslant_{\rm ff} F_2$.

The stable image

Definition

Let $\phi \in End(F_n)$. The stable image of ϕ is $F_n\phi^{\infty} = \bigcap_{i=1}^{\infty} F_n\phi^i$.

Theorem (Imrich-Turner, 89)

For every endomorphism $\phi \colon F_n \to F_n$,

- i) $F_n\phi^{\infty}$ is ϕ -invariant,
- ii) the restriction $\phi \colon F_n \phi^{\infty} \to F_n \phi^{\infty}$ is an isomorphism,
- iii) $F_n\phi^{\infty}$ is a retract.
- iv) $Fix(\phi) \leqslant F_n \phi^{\infty}$.

Example: For $\phi \colon F_2 \to F_2$, $a \mapsto a$, $b \mapsto b^2$, we have $F_2 \phi = \langle a, b^2 \rangle$, $F_2 \phi^2 = \langle a, b^4 \rangle$, $F_2 \phi^3 = \langle a, b^8 \rangle$, So, $F_2 \phi^{\infty} = \langle a \rangle \leqslant_{\text{ff}} F_2$.

Stallings' graphs and intersections

Theorem (Stallings, 83)

For any free group $F_n = F(A)$, there is an effectively computable bijection

 $\{f.g. \ subgroups \ of \ F_n\} \longleftrightarrow \{finite \ A-labeled \ core \ graphs\}$

Theorem

Given sets of generators for $H, K \leq_{fg} F_n$, one can algorithmically compute a basis for $H \cap K$.

Stallings' graphs and intersections

Theorem (Stallings, 83)

For any free group $F_n = F(A)$, there is an effectively computable bijection

 $\{f.g. \text{ subgroups of } F_n\} \longleftrightarrow \{finite A-labeled \text{ core graphs}\}$

Theorem

Given sets of generators for $H, K \leq_{fg} F_n$, one can algorithmically compute a basis for $H \cap K$.

Algebraic extensions

Definition

An extension of subgroups $H \leqslant K \leqslant F_n$ is called algebraic, denoted $H \leqslant_{alg} K$, if H is not contained in any proper free factor of K. Write

$$\mathcal{AE}(H) = \{K \leqslant F_n \mid H \leqslant_{\text{alg }} K\}.$$

Theorem (Takahasi, 51

If $H \leq_{fg} F_n$ then $\mathcal{AE}(H)$ is finite and computable (i.e. H has finitely many algebraic extensions, all of them are finitely generated, and bases are computable from H).

Theorem

Every extension of subgroups $H \leq K \leq F_n$ factors in a unique way as $H \leq_{\text{alg}} L \leq_{\text{ff}} K \leq F_n$.

Algebraic extensions

Definition

An extension of subgroups $H \leq K \leq F_n$ is called algebraic, denoted $H \leq_{\text{alg}} K$, if H is not contained in any proper free factor of K. Write

$$\mathcal{AE}(H) = \{K \leqslant F_n \mid H \leqslant_{\text{alg }} K\}.$$

Theorem (Takahasi, 51)

If $H \leq_{fg} F_n$ then $\mathcal{AE}(H)$ is finite and computable (i.e. H has finitely many algebraic extensions, all of them are finitely generated, and bases are computable from H).

Theorem

Every extension of subgroups $H \leq K \leq F_n$ factors in a unique way as $H \leq_{\text{alg}} L \leq_{\text{ff}} K \leq F_n$.

Algebraic extensions

Definition

An extension of subgroups $H \leqslant K \leqslant F_n$ is called algebraic, denoted $H \leqslant_{\text{alg}} K$, if H is not contained in any proper free factor of K. Write

$$\mathcal{AE}(H) = \{ K \leqslant F_n \mid H \leqslant_{\text{alg}} K \}.$$

Theorem (Takahasi, 51)

If $H \leq_{fg} F_n$ then $\mathcal{AE}(H)$ is finite and computable (i.e. H has finitely many algebraic extensions, all of them are finitely generated, and bases are computable from H).

Theorem

Every extension of subgroups $H \leqslant K \leqslant F_n$ factors in a unique way as $H \leqslant_{\operatorname{alg}} L \leqslant_{\operatorname{ff}} K \leqslant F_n$.

Outline

- Some history
- Algorithmic results
- Needed tools
- 4 The proof

The automorphism case

Theorem (McCool)

Let $H \leq_{fg} F_n$. Then $Aut_H(F_n)$ is finitely generated (in fact, finitely presented) and a finite set of generators (and relations) is algorithmically computable from H.

Theorem

For every $H \leq_{\mathrm{fg}} F_n$, a-CI(H) is finitely generated and algorithmically computable.

Proof.
$$a\text{-}Cl(H) = \operatorname{Fix}(\operatorname{Aut}_H(F_n))$$

= $\operatorname{Fix}(\langle \phi_1, \dots, \phi_m \rangle)$
= $\operatorname{Fix}(\phi_1) \cap \dots \cap \operatorname{Fix}(\phi_m)$.

The automorphism case

Theorem (McCool)

Let $H \leq_{fg} F_n$. Then $Aut_H(F_n)$ is finitely generated (in fact, finitely presented) and a finite set of generators (and relations) is algorithmically computable from H.

Theorem

For every $H \leq_{\mathrm{fg}} F_n$, a-Cl(H) is finitely generated and algorithmically computable.

```
Proof. a\text{-}Cl(H) = \operatorname{Fix}(\operatorname{Aut}_H(F_n))
= \operatorname{Fix}(\langle \phi_1, \dots, \phi_m \rangle)
= \operatorname{Fix}(\phi_1) \cap \dots \cap \operatorname{Fix}(\phi_m).
```

The automorphism case

Theorem (McCool)

Let $H \leq_{\text{fg}} F_n$. Then $Aut_H(F_n)$ is finitely generated (in fact, finitely presented) and a finite set of generators (and relations) is algorithmically computable from H.

Theorem

For every $H \leq_{\mathrm{fg}} F_n$, a-Cl(H) is finitely generated and algorithmically computable.

Proof.
$$a\text{-}CI(H) = \operatorname{Fix}(\operatorname{Aut}_H(F_n))$$

= $\operatorname{Fix}(\langle \phi_1, \dots, \phi_m \rangle)$
= $\operatorname{Fix}(\phi_1) \cap \dots \cap \operatorname{Fix}(\phi_m)$. \square

The endomorphism case

For the endomorphism case, a similar approach does not work because:

we don't know how to compute fix subgroups of endomorphisms

 H ≤_{fg} F_n does not imply that End_H(F_n) is finitely generated as submonoid of End (F_n)

The endomorphism case

For the endomorphism case, a similar approach does not work because:

we don't know how to compute fix subgroups of endomorphisms

• $H \leq_{fg} F_n$ does not imply that $End_H(F_n)$ is finitely generated as submonoid of $End(F_n)$

For the endomorphism case, a similar approach does not work because:

we don't know how to compute fix subgroups of endomorphisms

• $H \leq_{\text{fg}} F_n$ does not imply that $\text{End}_H(F_n)$ is finitely generated as submonoid of $\text{End}(F_n)$

Example (Ciobanu-Dicks, 06)

Consider $F_3 = \langle a, b, c \rangle$, the element $d = ba[c^2, b]a^{-1}$, and the subgroup $H = \langle a, d \rangle \leqslant F_3$. Clearly, the morphisms

$$\psi \colon F_3 \to F_3 \quad \phi \colon F_3 \to F_3 \quad \phi^n \psi \colon F_3 \to F_3$$
 $a \mapsto a \quad a \mapsto a \quad a \mapsto a$
 $b \mapsto d \quad b \mapsto b \quad b \mapsto d$
 $c \mapsto 1 \quad c \mapsto cb \quad c \mapsto d$

satisfy $H \leqslant Fix(\phi^n \psi)$ for every $n \in \mathbb{Z}$. With some computations, it can be shown that

$$End_{H}(F_{3}) = \{Id, \, \phi^{n}\psi \mid n \in \mathbb{Z}\}$$

But, $\phi^m \psi \cdot \phi^n \psi = \phi^m \psi$. Hence, End_H(F₃) is not finitely generated.

Furthermore, $a\text{-}CI(H) = \text{Fix}(Id) = F_3$ and $e\text{-}CI(H) = \text{Fix}(\psi) = H$.

Example (Ciobanu-Dicks, 06)

Consider $F_3 = \langle a, b, c \rangle$, the element $d = ba[c^2, b]a^{-1}$, and the subgroup $H = \langle a, d \rangle \leqslant F_3$. Clearly, the morphisms

satisfy $H \leqslant Fix(\phi^n \psi)$ for every $n \in \mathbb{Z}$.

With some computations, it can be shown that

$$End_H(F_3) = \{Id, \phi^n \psi \mid n \in \mathbb{Z}\}$$

But, $\phi^m \psi \cdot \phi^n \psi = \phi^m \psi$. Hence, End_H(F₃) is not finitely generated.

Furthermore, a- $CI(H) = Fix(Id) = F_3$ and e- $CI(H) = Fix(\psi) = H$

Example (Ciobanu-Dicks, 06)

Consider $F_3 = \langle a, b, c \rangle$, the element $d = ba[c^2, b]a^{-1}$, and the subgroup $H = \langle a, d \rangle \leqslant F_3$. Clearly, the morphisms

satisfy $H \leqslant Fix(\phi^n \psi)$ for every $n \in \mathbb{Z}$. With some computations, it can be shown that

$$End_{H}(F_{3}) = \{Id, \phi^{n}\psi \mid n \in \mathbb{Z}\}.$$

But, $\phi^m \psi \cdot \phi^n \psi = \phi^m \psi$. Hence, End_H(F₃) is not finitely generated.

Furthermore, a- $CI(H) = Fix(Id) = F_3$ and e- $CI(H) = Fix(<math>\psi$) = H

Example (Ciobanu-Dicks, 06)

Consider $F_3 = \langle a, b, c \rangle$, the element $d = ba[c^2, b]a^{-1}$, and the subgroup $H = \langle a, d \rangle \leqslant F_3$. Clearly, the morphisms

satisfy $H \leqslant Fix(\phi^n \psi)$ for every $n \in \mathbb{Z}$. With some computations, it can be shown that

$$End_{H}(F_{3}) = \{Id, \phi^{n}\psi \mid n \in \mathbb{Z}\}.$$

But, $\phi^m \psi \cdot \phi^n \psi = \phi^m \psi$. Hence, $End_H(F_3)$ is not finitely generated.

Furthermore, a- $CI(H) = Fix(Id) = F_3$ and e- $CI(H) = Fix(\psi) = H$

Example (Ciobanu-Dicks, 06)

Consider $F_3 = \langle a, b, c \rangle$, the element $d = ba[c^2, b]a^{-1}$, and the subgroup $H = \langle a, d \rangle \leqslant F_3$. Clearly, the morphisms

satisfy $H \leqslant Fix(\phi^n \psi)$ for every $n \in \mathbb{Z}$. With some computations, it can be shown that

$$End_{H}(F_{3}) = \{Id, \phi^{n}\psi \mid n \in \mathbb{Z}\}.$$

But, $\phi^m \psi \cdot \phi^n \psi = \phi^m \psi$. Hence, $End_H(F_3)$ is not finitely generated.

Furthermore, a- $CI(H) = Fix(Id) = F_3$ and e- $CI(H) = Fix(\psi) = H$.

Theorem

For every $H \leq_{\mathrm{fg}} F_n$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given *H* (in generators),

- Compute $\mathcal{AE}(H) = \{H_1, H_2, \dots, H_q\}.$
- Select those which are retracts, $\mathcal{AE}_{ret}(H) = \{H_1, \dots, H_r\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_i 's, i = 1, ..., r.
- Compute bases for a- $Cl_{H_1}(H), \dots, a$ - $Cl_{H_r}(H)$.
- Compute a basis for a- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H)$.

$$a\text{-}CI_{H_1}(H)\cap\cdots\cap a\text{-}CI_{H_r}(H)=e\text{-}CI(H).$$

Theorem

For every $H \leq_{\mathrm{fg}} F_n$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given *H* (in generators),

- Compute $AE(H) = \{H_1, H_2, ..., H_q\}.$
- Select those which are retracts, $\mathcal{AE}_{ret}(H) = \{H_1, \dots, H_r\}$ $(1 \le r \le q)$.
- Write the generators of H as words on the generators of each one of these H_i 's, i = 1, ..., r.
- Compute bases for a- $Cl_{H_1}(H), \dots, a$ - $Cl_{H_r}(H)$.
- Compute a basis for a- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H)$.

$$a-Cl_{H_1}(H)\cap\cdots\cap a-Cl_{H_r}(H)=e-Cl(H).$$

Theorem

For every $H \leq_{\mathrm{fg}} F_n$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given *H* (in generators),

- Compute $AE(H) = \{H_1, H_2, ..., H_q\}.$
- Select those which are retracts, $\mathcal{AE}_{ret}(H) = \{H_1, \dots, H_r\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_i 's, $i = 1, \ldots, r$.
- Compute bases for a- $Cl_{H_1}(H), \dots, a$ - $Cl_{H_r}(H)$.
- Compute a basis for a- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H)$.

$$a\text{-}CI_{H_1}(H)\cap\cdots\cap a\text{-}CI_{H_r}(H)=e\text{-}CI(H).$$

Theorem

For every $H \leq_{\mathrm{fg}} F_n$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given *H* (in generators),

- Compute $AE(H) = \{H_1, H_2, ..., H_q\}.$
- Select those which are retracts, $\mathcal{AE}_{ret}(H) = \{H_1, \dots, H_r\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_i's, i = 1,...,r.
- Compute bases for a- $Cl_{H_1}(H), \ldots, a$ - $Cl_{H_r}(H)$.
- Compute a basis for a- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H)$.

$$a-Cl_{H_1}(H)\cap\cdots\cap a-Cl_{H_r}(H)=e-Cl(H).$$

Theorem

For every $H \leq_{\mathrm{fg}} F_n$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given *H* (in generators),

- Compute $AE(H) = \{H_1, H_2, ..., H_q\}.$
- Select those which are retracts, $\mathcal{AE}_{ret}(H) = \{H_1, \dots, H_r\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_i's, i = 1,...,r.
- Compute bases for a- $Cl_{H_1}(H), \dots, a$ - $Cl_{H_r}(H)$.
- Compute a basis for a- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H)$.

$$a-Cl_{H_1}(H)\cap\cdots\cap a-Cl_{H_r}(H)=e-Cl(H).$$

Theorem

For every $H \leq_{\mathrm{fg}} F_n$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given *H* (in generators),

- Compute $\mathcal{AE}(H) = \{H_1, H_2, ..., H_q\}.$
- Select those which are retracts, $\mathcal{AE}_{ret}(H) = \{H_1, \dots, H_r\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_i's, i = 1,...,r.
- Compute bases for a- $Cl_{H_1}(H), \dots, a$ - $Cl_{H_r}(H)$.
- Compute a basis for a- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H)$.

Claim

 $a\text{-}CI_{H_1}(H)\cap\cdots\cap a\text{-}CI_{H_r}(H)=e\text{-}CI(H).$

Theorem

For every $H \leq_{\mathrm{fg}} F_n$, e-Cl(H) is finitely generated and algorithmically computable.

Proof. Given *H* (in generators),

- Compute $AE(H) = \{H_1, H_2, ..., H_q\}.$
- Select those which are retracts, $\mathcal{AE}_{ret}(H) = \{H_1, \dots, H_r\}$ $(1 \leqslant r \leqslant q)$.
- Write the generators of H as words on the generators of each one of these H_i's, i = 1,...,r.
- Compute bases for a- $Cl_{H_1}(H), \dots, a$ - $Cl_{H_r}(H)$.
- Compute a basis for $a\text{-}Cl_{H_1}(H) \cap \cdots \cap a\text{-}Cl_{H_r}(H)$.

$$a$$
- $CI_{H_1}(H) \cap \cdots \cap a$ - $CI_{H_r}(H) = e$ - $CI(H)$.

Claim

$$a-Cl_{H_1}(H)\cap\cdots\cap a-Cl_{H_r}(H)=e-Cl(H).$$

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_{i}) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_{n}) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $\beta \in \text{End}(F_n)$ with $H \leqslant \text{Fix}(\beta)$.
- $\exists i = 1, ..., r$ such that $H \leq_{\text{alg}} H_i \leq_{\text{ff}} F\beta^{\infty} \leq_{\text{ret}} F$.
- Now, β restricts to an automorphism $\alpha \colon H_i \to H_i$.
- And, clearly, $H \leq \operatorname{Fix}(\alpha) \leq \operatorname{Fix}(\beta)$.
- Hence, we have "≤".

Claim

$$a-Cl_{H_1}(H)\cap\cdots\cap a-Cl_{H_r}(H)=e-Cl(H).$$

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_i) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_n) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $\beta \in \text{End}(F_n)$ with $H \leqslant \text{Fix}(\beta)$.
- $\exists i = 1, ..., r$ such that $H \leq_{\text{alg}} H_i \leq_{\text{ff}} F \beta^{\infty} \leq_{\text{ret}} F$.
- Now, β restricts to an automorphism $\alpha \colon H_i \to H_i$.
- And, clearly, $H \leq \text{Fix}(\alpha) \leq \text{Fix}(\beta)$.
- Hence, we have "≤".

Claim

$$a-Cl_{H_1}(H)\cap\cdots\cap a-Cl_{H_r}(H)=e-Cl(H).$$

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_{i}) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_{n}) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $\beta \in \text{End}(F_n)$ with $H \leqslant \text{Fix}(\beta)$.
- $\exists i = 1, ..., r$ such that $H \leqslant_{\text{alg}} H_i \leqslant_{\text{ff}} F \beta^{\infty} \leqslant_{\text{ret}} F$.
- Now, β restricts to an automorphism $\alpha \colon H_i \to H_i$.
- And, clearly, $H \leq \text{Fix}(\alpha) \leq \text{Fix}(\beta)$.
- Hence, we have "≤".

Claim

$$a-Cl_{H_1}(H)\cap\cdots\cap a-Cl_{H_r}(H)=e-Cl(H).$$

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \text{Aut}(H_i) \\ H \leqslant \text{Fix}(\alpha)}} \text{Fix}(\alpha) = \bigcap_{\substack{\beta \in \text{End}(F_n) \\ H \leqslant \text{Fix}(\beta)}} \text{Fix}(\beta).$$

- Take $\beta \in \text{End}(F_n)$ with $H \leqslant \text{Fix}(\beta)$.
- $\exists i = 1, ..., r$ such that $H \leqslant_{\text{alg}} H_i \leqslant_{\text{ff}} F \beta^{\infty} \leqslant_{\text{ret}} F$.
- Now, β restricts to an automorphism $\alpha \colon H_i \to H_i$.
- And, clearly, $H \leq \text{Fix}(\alpha) \leq \text{Fix}(\beta)$.
- Hence, we have "≤".

Claim

$$a-Cl_{H_1}(H)\cap\cdots\cap a-Cl_{H_r}(H)=e-Cl(H).$$

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_{i}) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_{n}) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $\beta \in \text{End}(F_n)$ with $H \leqslant \text{Fix}(\beta)$.
- $\exists i = 1, ..., r$ such that $H \leqslant_{\text{alg}} H_i \leqslant_{\text{ff}} F \beta^{\infty} \leqslant_{\text{ret}} F$.
- Now, β restricts to an automorphism $\alpha \colon H_i \to H_i$.
- And, clearly, $H \leq \text{Fix}(\alpha) \leq \text{Fix}(\beta)$.
- Hence, we have "≤".

Claim

$$a-Cl_{H_1}(H)\cap\cdots\cap a-Cl_{H_r}(H)=e-Cl(H).$$

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_{i}) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_{n}) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $\beta \in \text{End}(F_n)$ with $H \leqslant \text{Fix}(\beta)$.
- $\exists i = 1, ..., r$ such that $H \leqslant_{\text{alg}} H_i \leqslant_{\text{ff}} F \beta^{\infty} \leqslant_{\text{ret}} F$.
- Now, β restricts to an automorphism $\alpha \colon H_i \to H_i$.
- And, clearly, $H \leq \text{Fix}(\alpha) \leq \text{Fix}(\beta)$.
- Hence, we have "≤".

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_i) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_n) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $H_i \in \mathcal{AE}_{ret}(H)$, and $\alpha \in \text{Aut}(H_i)$ with $H \leq \text{Fix}(\alpha)$.
- Let $\rho \colon F \to H_i$ be a retraction, and consider the endomorphism,
- Clearly, $H \leq \operatorname{Fix}(\alpha) = \operatorname{Fix}(\beta)$.
- Hence, we have "≥".

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_{i}) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_{n}) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $H_i \in \mathcal{AE}_{ret}(H)$, and $\alpha \in Aut(H_i)$ with $H \leqslant Fix(\alpha)$.
- Let $\rho \colon F \to H_i$ be a retraction, and consider the endomorphism, $\beta \colon F_n \stackrel{\rho}{\to} H_i \stackrel{\alpha}{\to} H_i \stackrel{\iota}{\hookrightarrow} F_n$.
- Clearly, $H \leq \text{Fix}(\alpha) = \text{Fix}(\beta)$.
- Hence, we have "≥". □

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_{i}) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_{n}) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $H_i \in \mathcal{AE}_{ret}(H)$, and $\alpha \in Aut(H_i)$ with $H \leqslant Fix(\alpha)$.
- Let $\rho: F \to H_i$ be a retraction, and consider the endomorphism, $\beta: F_n \stackrel{\rho}{\to} H_i \stackrel{\alpha}{\to} H_i \stackrel{\iota}{\hookrightarrow} F_n$.
- Clearly, $H \leq \operatorname{Fix}(\alpha) = \operatorname{Fix}(\beta)$.
- Hence, we have "≥". □

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_{i}) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_{n}) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $H_i \in \mathcal{AE}_{ret}(H)$, and $\alpha \in Aut(H_i)$ with $H \leqslant Fix(\alpha)$.
- Let $\rho: F \to H_i$ be a retraction, and consider the endomorphism, $\beta: F_n \stackrel{\rho}{\to} H_i \stackrel{\alpha}{\to} H_i \stackrel{\iota}{\hookrightarrow} F_n$.
- Clearly, $H \leq \operatorname{Fix}(\alpha) = \operatorname{Fix}(\beta)$.
- Hence, we have "≥".

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_{i}) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_{n}) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $H_i \in \mathcal{AE}_{ret}(H)$, and $\alpha \in Aut(H_i)$ with $H \leqslant Fix(\alpha)$.
- Let $\rho: F \to H_i$ be a retraction, and consider the endomorphism, $\beta: F_n \stackrel{\rho}{\to} H_i \stackrel{\alpha}{\to} H_i \stackrel{\iota}{\hookrightarrow} F_n$.
- Clearly, $H \leq \operatorname{Fix}(\alpha) = \operatorname{Fix}(\beta)$.
- Hence, we have "≥". □

THANKS