The central tree property and some average case complexity results for algorithmic problems in free groups

Enric Ventura

Departament de Matemàtiques
Universitat Politècnica de Catalunya
New York Group Theory Seminar
Complexity Day
(joint work with M. Roy and P. Weil)
December 8th, 2023.

Outline

(1) Complexity of algorithms
(2) On Whitehead's algorithm
(3) The Central Tree Property

Outline

(1) Complexity of algorithms

(2) On Whitehead's algorithm
(3) The Central Tree Property

Decision problems

Definition

A decision problem \mathcal{P} is determined by a well-defined set of inputs I, and a YES/NO property $P \subseteq I$ you want to know about each of them:

- Given $u \in I$,
- Decide whether u satisfies P (i.e., $u \in P$).

Typically, the set I comes with a notion of size (or length), $\ell: I \rightarrow \mathbb{N}$, such that, for every $n \geqslant 0$,

Definition
A decision problem is solvable when there exists an algorithm \mathcal{A} (i.e., a Turing machine) answering correctly for each given input $u \in I$.

Decision problems

Definition

A decision problem \mathcal{P} is determined by a well-defined set of inputs I, and a YES/NO property $P \subseteq I$ you want to know about each of them:

- Given $u \in I$,
- Decide whether u satisfies P (i.e., $u \in P$).

Typically, the set I comes with a notion of size (or length), $\ell: I \rightarrow \mathbb{N}$, such that, for every $n \geqslant 0,|\{u \in I \mid \ell(u) \leqslant n\}|<\infty$.

Definition
A decision problem is solvable when there exists an algorithm \mathcal{A} (i.e. a Turing machine) answering correctly for each given input $u \in I$.

Decision problems

Definition

A decision problem \mathcal{P} is determined by a well-defined set of inputs I, and a YES/NO property $P \subseteq I$ you want to know about each of them:

- Given $u \in I$,
- Decide whether u satisfies P (i.e., $u \in P$).

Typically, the set I comes with a notion of size (or length), $\ell: I \rightarrow \mathbb{N}$, such that, for every $n \geqslant 0,|\{u \in I \mid \ell(u) \leqslant n\}|<\infty$.

Definition

A decision problem is solvable when there exists an algorithm \mathcal{A} (i.e., a Turing machine) answering correctly for each given input $u \in I$.

Complexity of algorithms

Definition

Suppose algorithm \mathcal{A} solves a decision problem \mathcal{P}.

- Given $u \in I$, we denote by $t(u)$ the time (i.e., number of steps) taken by \mathcal{A} to give the correct answer for input u.
- The worst case complexity of \mathcal{A} is the function $\mathrm{wc}_{\mathcal{A}}: \mathbb{N} \rightarrow \mathbb{N}$,
$n \mapsto \mathrm{wc}_{\mathcal{A}}(n)=\max _{\{u \in \| \ell(u) \leqslant n\}} t(u)$.
- The average case complexity of \mathcal{A} is the function ac $\mathcal{A}: \mathbb{N} \rightarrow \mathbb{N}$,
$n \mapsto \operatorname{acA}(n)=\frac{\sum_{\{u \in l e(u)<n\}} t(u)}{\{u \in /(u) \leqslant n\}}$
- These functions are only interesting up to asymptotic equivalence.

Observation

Clearly, $\operatorname{ac}_{\mathcal{A}}(n) \leqslant \operatorname{wc}_{\mathcal{A}}(n)$. But ... there are cases where $\operatorname{ac}_{\mathcal{A}}(n)$ is much smaller than wc_A (n)

Complexity of algorithms

Definition

Suppose algorithm \mathcal{A} solves a decision problem \mathcal{P}.

- Given $u \in I$, we denote by $t(u)$ the time (i.e., number of steps) taken by \mathcal{A} to give the correct answer for input u.
$n \mapsto \mathrm{wc}_{\mathcal{A}}(n)=\max _{\{u \in \| \ell(u) \leqslant n\}} t(u)$
- The average case complexity of \mathcal{A} is the function ac $\mathcal{A}: \mathbb{N} \rightarrow \mathbb{N}$, $n \mapsto \operatorname{ac}\left(\mathcal{A}(n)=\frac{\sum_{\{u \in \| \ell(u) \leqslant n\}} t(u)}{\{u \in \Pi \ell(u) \leq n\}}\right.$ - These functions are only interesting up to asymptotic equivalence.

Observation

Clearly, aça $(n) \leqslant \operatorname{wc}_{\mathcal{A}}(n)$. But ... there are cases where $\operatorname{ac}_{\mathcal{A}}(n)$ is
much smaller than wc.A (n)

Complexity of algorithms

Definition

Suppose algorithm \mathcal{A} solves a decision problem \mathcal{P}.

- Given $u \in I$, we denote by $t(u)$ the time (i.e., number of steps) taken by \mathcal{A} to give the correct answer for input u.
- The worst case complexity of \mathcal{A} is the function wc $\mathcal{A}_{\mathcal{A}}: \mathbb{N} \rightarrow \mathbb{N}$, $n \mapsto \mathrm{wc}_{\mathcal{A}}(n)=\max _{\{u \in \| \ell(u) \leqslant n\}} \mathrm{t}(u)$.
- The average case complexity of \mathcal{A} is the function acA: $\mathbb{N} \rightarrow \mathbb{1}$ $n \mapsto \operatorname{ac} \mathcal{A}(n)=\frac{\sum_{\{u \in \| \ell(u) \leqslant n\}} t(u)}{|\{u \in \| \ell(u) \leqslant n\}|}$
- These functions are only interesting up to asymptotic equivalence.

Observation
Clearly, ac. $(n) \leqslant w_{\mathcal{A}}(n)$. But ... there are cases where $\operatorname{acA}_{\mathcal{A}}(n)$ is
much smaller than $w \mathcal{A}_{\mathcal{A}}(n)$

Complexity of algorithms

Definition

Suppose algorithm \mathcal{A} solves a decision problem \mathcal{P}.

- Given $u \in I$, we denote by $t(u)$ the time (i.e., number of steps) taken by \mathcal{A} to give the correct answer for input u.
- The worst case complexity of \mathcal{A} is the function $\mathrm{wc}_{\mathcal{A}}: \mathbb{N} \rightarrow \mathbb{N}$, $n \mapsto \mathrm{wc}_{\mathcal{A}}(n)=\max _{\{u \in \| \ell(u) \leqslant n\}} \mathrm{t}(u)$.
- The average case complexity of \mathcal{A} is the function ac $\mathcal{A}_{\mathcal{A}}: \mathbb{N} \rightarrow \mathbb{N}$, $n \mapsto \operatorname{ac}_{\mathcal{A}}(n)=\frac{\sum_{\{u \in I \mid \ell(u) \leqslant n\}} t(u)}{|\{u \in I \mid \ell(u) \leqslant n\}|}$.
- These functions are only interesting up to asymptotic equivalence.

Observation
Clearly, acA $(n) \leqslant \operatorname{wc}_{\mathcal{A}}(n)$. But ... there are cases where $\operatorname{acA}_{\mathcal{A}}(n)$ is
much smaller than wcA(n)

Complexity of algorithms

Definition

Suppose algorithm \mathcal{A} solves a decision problem \mathcal{P}.

- Given $u \in I$, we denote by $t(u)$ the time (i.e., number of steps) taken by \mathcal{A} to give the correct answer for input u.
- The worst case complexity of \mathcal{A} is the function $\mathrm{wc}_{\mathcal{A}}: \mathbb{N} \rightarrow \mathbb{N}$, $n \mapsto \mathrm{wc}_{\mathcal{A}}(n)=\max _{\{u \in \| \ell(u) \leqslant n\}} \mathrm{t}(u)$.
- The average case complexity of \mathcal{A} is the function $\operatorname{ac}_{\mathcal{A}}: \mathbb{N} \rightarrow \mathbb{N}$, $n \mapsto \operatorname{ac\mathcal {A}}_{\mathcal{A}}(n)=\frac{\sum_{\{u \in \mid \ell(u) \leq n\}} t(u)}{\{\{u \in \| \ell(u) \leqslant n\} \mid}$.
- These functions are only interesting up to asymptotic equivalence.

Observation
Clearly, ac. $(n) \leqslant w_{A}(n)$. But ... there are cases where $\operatorname{acA}_{\mathcal{A}}(n)$ is
much smaller than wcA(n)

Complexity of algorithms

Definition

Suppose algorithm \mathcal{A} solves a decision problem \mathcal{P}.

- Given $u \in I$, we denote by $t(u)$ the time (i.e., number of steps) taken by \mathcal{A} to give the correct answer for input u.
- The worst case complexity of \mathcal{A} is the function $\mathrm{wc}_{\mathcal{A}}: \mathbb{N} \rightarrow \mathbb{N}$, $n \mapsto \mathrm{wc}_{\mathcal{A}}(n)=\max _{\{u \in \| \ell(u) \leqslant n\}} \mathrm{t}(u)$.
- The average case complexity of \mathcal{A} is the function ac $\mathcal{A}_{\mathcal{A}}: \mathbb{N} \rightarrow \mathbb{N}$, $n \mapsto \operatorname{ac\mathcal {A}}_{\mathcal{A}}(n)=\frac{\sum_{\{u \in \| \ell(u) \leq n\}} \mathrm{t}(u)}{\{\{u \in \| \ell(u) \leqslant n\} \mid}$.
- These functions are only interesting up to asymptotic equivalence.

Observation

Clearly $^{\operatorname{ac}} \operatorname{ach}_{\mathcal{A}}(n) \leqslant \operatorname{wc}_{\mathcal{A}}(n)$. But ... there are cases where $\operatorname{ac}_{\mathcal{A}}(n)$ is much smaller than wc $\mathcal{A}_{\mathcal{A}}(n)$...

Average case complexity

A general idea to improve the average case complexity of \mathcal{A} :

- Find a variant \mathcal{A}^{\prime} of \mathcal{A} running 'fast' on a 'big' subset $E \subseteq I$;
- Consider the new algorithm $\mathcal{A}^{\prime \prime}$:

Given $u \in I$, if $u \in E$ run \mathcal{A}^{\prime} on u; otherwise run \mathcal{A} on u.
(Except in degenerate cases,) we have wc $\mathcal{A}^{\prime \prime}(n)=w_{\mathcal{A}}(n)$ but it
could very well be that ac $\mathcal{A}^{\prime \prime}(n) \ll \operatorname{ac}_{\mathcal{A}}(n)$.

This idea was recently exploited in the paper:
V. Shpilrain, Average-case complexity of the Whitehead problem for free groups. Comm. Algebra, 51(2) (2023), 799-806.
to get the following improvement of a classical result:

Average case complexity

A general idea to improve the average case complexity of \mathcal{A} :

- Find a variant \mathcal{A}^{\prime} of \mathcal{A} running 'fast' on a 'big' subset $E \subseteq I$;
- Consider the new algorithm \mathcal{A}

Given $u \in I$, if $u \in E$ run \mathcal{A}^{\prime} on u; otherwise run \mathcal{A} on u.
(Except in degenerate cases,) we have wc $\mathcal{A}^{\prime \prime}(n)=w_{\mathcal{A}}(n)$ but it
could very well be that ac $\mathcal{A}^{\prime \prime}(n)$

This idea was recently exploited in the paper:
V. Shpilrain, Average-case complexity of the Whitehead problem for free groups. Comm. Algebra, 51(2) (2023), 799-806.
to get the following improvement of a classical result:

Average case complexity

A general idea to improve the average case complexity of \mathcal{A} :

- Find a variant \mathcal{A} ' of \mathcal{A} running 'fast' on a 'big' subset $E \subseteq I$;
- Consider the new algorithm $\mathcal{A}^{\prime \prime}$:

Given $u \in I$, if $u \in E$ run \mathcal{A}^{\prime} on u; otherwise run \mathcal{A} on u.
(Except in degenerate cases,) we have wc.A글 $(n)=w \mathcal{A}_{\mathcal{A}}(n)$ but it

This idea was recently exploited in the paper:
V. Shpilrain, Average-case complexity of the Whitehead problem for free groups. Comm. Algebra, 51(2) (2023), 799-806.
to get the following improvement of a classical result:

Average case complexity

A general idea to improve the average case complexity of \mathcal{A} :

- Find a variant \mathcal{A} ' of \mathcal{A} running 'fast' on a 'big' subset $E \subseteq I$;
- Consider the new algorithm $\mathcal{A}^{\prime \prime}$:

Given $u \in I$, if $u \in E$ run \mathcal{A}^{\prime} on u; otherwise run \mathcal{A} on u.
(Except in degenerate cases,) we have $\mathrm{wc}_{\mathcal{A}^{\prime \prime}}(n)=\mathrm{wc}_{\mathcal{A}}(n)$ but it could very well be that ac($\mathcal{A}^{\prime \prime}(n) \ll \operatorname{ac}_{\mathcal{A}}(n)$.

This idea was recently exploited in the paper:
V. Shpilrain, Average-case complexity of the Whitehead problem for free groups. Comm. Algebra, 51(2) (2023), 799-806.
to get the following improvement of a classical result:

Average case complexity

A general idea to improve the average case complexity of \mathcal{A} :

- Find a variant \mathcal{A}^{\prime} of \mathcal{A} running 'fast' on a 'big' subset $E \subseteq I$;
- Consider the new algorithm $\mathcal{A}^{\prime \prime}$: Given $u \in I$, if $u \in E$ run \mathcal{A}^{\prime} on u; otherwise run \mathcal{A} on u.
(Except in degenerate cases,) we have $\mathrm{wc}_{\mathcal{A}^{\prime \prime}}(n)=\mathrm{wc}_{\mathcal{A}}(n)$ but it could very well be that $\operatorname{ac}_{\mathcal{A}^{\prime \prime}}(n) \ll \operatorname{ac}_{\mathcal{A}}(n)$.

This idea was recently exploited in the paper:
V. Shpilrain, Average-case complexity of the Whitehead problem for free groups. Comm. Algebra, 51(2) (2023), 799-806.
to get the following improvement of a classical result:

Outline

(1) Complexity of algorithms

(2) On Whitehead's algorithm
(3) The Central Tree Property

Classical Whitehead's algorithm

Theorem (Whitehead, 1936)

There is an algorithm \mathcal{W} taking $w \in F_{r}$ as input, deciding whether w is primitive in F_{r}, and working in time $w \mathcal{W}_{\mathcal{W}}(n)=O\left(4^{r} r n^{2}\right)=O\left(n^{2}\right)$.

```
Observation
A given w}\in\mp@subsup{F}{r}{}\mathrm{ is primitive }\Leftrightarrow\mp@subsup{\operatorname{min}}{\varphi\in\operatorname{Aut}(\mp@subsup{F}{r}{})}{}|w\varphi|=
```


Definition

```
A Whiteheas automorphism of \(F_{r}=\left\langle a_{1}, \ldots, a_{r}\right\rangle\) is an automorphism
```



``` \(\epsilon_{i}=0,-1\), and \(\delta_{i}=0,1\). There are \(\sim 2 r 4^{r-1}\) many.
```


Lemma (Whitehead, 1936)

Let $w \in F_{r}$. If there exists $\varphi \in \operatorname{Aut}\left(F_{r}\right)$ with $|w \varphi|<|w|$ then there
exists a Whitehead automorphism α such that $|w \alpha|<|w|$

Classical Whitehead's algorithm

Theorem (Whitehead, 1936)

There is an algorithm \mathcal{W} taking $w \in F_{r}$ as input, deciding whether w is primitive in F_{r}, and working in time $w \mathcal{W}_{\mathcal{W}}(n)=O\left(4^{r} r n^{2}\right)=O\left(n^{2}\right)$.

Observation

A given $w \in F_{r}$ is primitive $\Leftrightarrow \min _{\varphi \in \operatorname{Aut}\left(F_{r}\right)}|w \varphi|=1$.

Definition

A Whitehead automorphism of $F_{r}=\left\langle a_{1}, \ldots, a_{r}\right\rangle$ is an automorphism
of the form $F_{r} \rightarrow F_{r}, a_{i} \mapsto a_{i}, a_{j} \mapsto a_{i}^{\eta \epsilon_{i}} a_{j} a_{i}^{\eta \delta_{i}}$, where $\eta= \pm 1$
$\epsilon_{i}=0,-1$, and $\delta_{i}=0,1$. There are $\sim 2 r 4^{r-1}$ many.

Lemma (Whitehead, 1936)

Let $w \in F_{r}$. If there exists $\infty \in \operatorname{Aut}\left(F_{r}\right)$ with $|w \varphi|<|W|$ then there
exists a Whitehead automorphism a such that $|W \alpha|<|W|$

Classical Whitehead's algorithm

Theorem (Whitehead, 1936)

There is an algorithm \mathcal{W} taking $w \in F_{r}$ as input, deciding whether w is primitive in F_{r}, and working in time $\mathrm{wcw}_{\mathcal{W}}(n)=O\left(4^{r} r n^{2}\right)=O\left(n^{2}\right)$.

Observation

A given $w \in F_{r}$ is primitive $\Leftrightarrow \min _{\varphi \in \operatorname{Aut}\left(F_{r}\right)}|w \varphi|=1$.

Definition

A Whitehead automorphism of $F_{r}=\left\langle a_{1}, \ldots, a_{r}\right\rangle$ is an automorphism of the form $F_{r} \rightarrow F_{r}, a_{i} \mapsto a_{i}, a_{j} \mapsto a_{i}^{\eta \epsilon_{i}} a_{j} a_{i}^{\eta \delta_{i}}$, where $\eta= \pm 1$, $\epsilon_{i}=0,-1$, and $\delta_{i}=0,1$. There are $\sim 2 r 4^{r-1}$ many .

Lemma (Whitehead, 1936)
Let $w \in F_{r}$. If there exists $\varphi \in \operatorname{Aut}\left(F_{r}\right)$ with $|w \varphi|<|w|$ then there exists a Whitehead automorphism α such that $|w \alpha|<|w|$

Classical Whitehead's algorithm

Theorem (Whitehead, 1936)

There is an algorithm \mathcal{W} taking $w \in F_{r}$ as input, deciding whether w is primitive in F_{r}, and working in time $\mathrm{wc}_{\mathcal{W}}(n)=O\left(4^{r} r n^{2}\right)=O\left(n^{2}\right)$.

Observation

A given $w \in F_{r}$ is primitive $\Leftrightarrow \min _{\varphi \in \operatorname{Aut}\left(F_{r}\right)}|w \varphi|=1$.

Definition

A Whitehead automorphism of $F_{r}=\left\langle a_{1}, \ldots, a_{r}\right\rangle$ is an automorphism of the form $F_{r} \rightarrow F_{r}, a_{i} \mapsto a_{i}, a_{j} \mapsto a_{i}^{\eta \epsilon_{i}} a_{j} a_{i}^{\eta \delta_{i}}$, where $\eta= \pm 1$, $\epsilon_{i}=0,-1$, and $\delta_{i}=0,1$. There are $\sim 2 r 4^{r-1}$ many.

Lemma (Whitehead, 1936)

Let $w \in F_{r}$. If there exists $\varphi \in \operatorname{Aut}\left(F_{r}\right)$ with $|w \varphi|<|w|$ then there exists a Whitehead automorphism α such that $|w \alpha|<|w|$.

Whitehead cut vertex lemma

> Definition
> Let $w=a_{i_{1}}^{\epsilon_{1}} \cdots a_{i_{n}}^{\epsilon_{n}} \in F_{r}$ be a cyclically reduced word. The Whitehead (unoriented) graph of w, denoted $W h(w)$, is: $V=\left\{a_{1}^{ \pm 1}, \ldots, a_{r}^{ \pm 1}\right\}$ and $E=\left\{\left\{a_{i_{j}}^{\epsilon_{j}}, a_{i_{j+1}}^{-\epsilon_{j+1}}\right\} \mid j=1, \ldots, n(\bmod n)\right\}$.

Theorem (Whitehead's cut vertex lemma)
If $w \in F_{r}$ is primitive then $W h(w)$ is either disconnected or has a cut vertex.

Modern proofs/variations given by Heusener-Weidmann and by Wilton.

Proposition (Roig-Weil-V., '07)

Let $w \in F_{r}$. In view of $W h(w)$, one can construct (one of the)
Whitehead automorphisms decreasing $|w|$ as much as possible, in polynomial time w.r.t. both $n=|w|$ and $r=\operatorname{rk}\left(F_{r}\right)$.

Whitehead cut vertex lemma

Definition

Let $w=a_{i_{1}}^{\epsilon_{1}} \cdots a_{i_{n}}^{\epsilon_{n}} \in F_{r}$ be a cyclically reduced word. The Whitehead (unoriented) graph of w, denoted $W h(w)$, is: $V=\left\{a_{1}^{ \pm 1}, \ldots, a_{r}^{ \pm 1}\right\}$ and $E=\left\{\left\{a_{i j}^{\epsilon_{j}}, a_{i_{j+1}}^{-\epsilon_{j+1}}\right\} \mid j=1, \ldots, n(\bmod n)\right\}$.

Theorem (Whitehead's cut vertex lemma)

If $w \in F_{r}$ is primitive then $W h(w)$ is either disconnected or has a cut vertex.

Modern proofs/variations given by Heusener-Weidmann and by Wilton.

Proposition (Roig-Weil-V., '07)

Let $w \in F_{r}$. In view of $W h(w)$, one can construct (one of the) Whitehead automorphisms decreasing $|w|$ as much as possible in polynomial time w.r.t. both $n=|w|$ and $r=\operatorname{rk}\left(F_{r}\right)$.

Whitehead cut vertex lemma

Definition

Let $w=a_{i_{1}}^{\epsilon_{1}} \cdots a_{i_{n}}^{\epsilon_{n}} \in F_{r}$ be a cyclically reduced word. The Whitehead (unoriented) graph of w, denoted $W h(w)$, is: $V=\left\{a_{1}^{ \pm 1}, \ldots, a_{r}^{ \pm 1}\right\}$ and $E=\left\{\left\{a_{i j}^{\epsilon_{j}}, a_{i_{j+1}}^{-\epsilon_{j+1}}\right\} \mid j=1, \ldots, n(\bmod n)\right\}$.

Theorem (Whitehead's cut vertex lemma)

If $w \in F_{r}$ is primitive then $W h(w)$ is either disconnected or has a cut vertex.

Modern proofs/variations given by Heusener-Weidmann and by Wilton.

Proposition (Roig-Wei-V., 07)
Let $w \in F_{r}$. In view of $W h(w)$, one can construct (one of the) Whitehead automorphisms decreasing $|w|$ as much as possible, in polynomial time w.r.t. both $n=|w|$ and $r=\frac{r k}{}\left(F_{r}\right)$.

Whitehead cut vertex lemma

Definition

Let $w=a_{i_{1}}^{\epsilon_{1}} \cdots a_{i_{n}}^{\epsilon_{n}} \in F_{r}$ be a cyclically reduced word. The Whitehead (unoriented) graph of w, denoted $W h(w)$, is: $V=\left\{a_{1}^{ \pm 1}, \ldots, a_{r}^{ \pm 1}\right\}$ and $E=\left\{\left\{a_{i j}^{\epsilon_{j}}, a_{i_{j+1}}^{-\epsilon_{j+1}}\right\} \mid j=1, \ldots, n(\bmod n)\right\}$.

Theorem (Whitehead's cut vertex lemma)

If $w \in F_{r}$ is primitive then $W h(w)$ is either disconnected or has a cut vertex.

Modern proofs/variations given by Heusener-Weidmann and by Wilton.

Proposition (Roig-Weil-V., '07)

Let $w \in F_{r}$. In view of $W h(w)$, one can construct (one of the) Whitehead automorphisms decreasing $|w|$ as much as possible, in polynomial time w.r.t. both $n=|w|$ and $r=\overline{\operatorname{rk}\left(F_{r}\right) \text {. }}$

Roig-Weil-V. 's improvement

So, here is a truly polynomial algorithm for checking primitivity:

```
Algorithm \mathcal{W : Given a cyclically reduced w }\in\mp@subsup{F}{r}{}\mathrm{ with }|w|=n\mathrm{ ;}
-[1]:-If }|w|=1, answer YES and STOP
    -Construct Wh(w) and check whether it is connected and has
    no cut vertex; if so, answer NO and STOP;
    -Otherwise, construct the best possible White head auto \varphi for w,
    and repeat Step }1\mathrm{ with w
```


Theorem (Roig-Weil-V., '07)

The algorithm 'w above works in time waw $(n)=O\left(r^{3} n^{2}\right)$

Roig-Weil-V. 's improvement

So, here is a truly polynomial algorithm for checking primitivity:
Algorithm W : • Given a cyclically reduced $w \in F_{r}$ with $|w|=n$;

- Construct Wh(w) and check whether it is connected and has no cut vertex; if so, answer NO and STOP;
-Otherwise, construct the best possible Whitehead auto φ for w, and repeat Step it with w φ replacing w.

Theorem (Roig-Weil-V., '07)

The algorithm \mathcal{W} above works in time wcw $(n)=O\left(r^{3} n^{2}\right)$

Roig-Weil-V. 's improvement

So, here is a truly polynomial algorithm for checking primitivity:
Algorithm \mathcal{W} : • Given a cyclically reduced $w \in F_{r}$ with $|w|=n$; $\cdot[1]:-|f| w \mid=1$, answer YES and STOP;
> -Construct Wh(w) and check whether it is connected and has no cut vertex; if so, answer no and STOP; -Otherwise, construct the best possible Whitehead auto φ for w, and repeat Step 1 with w φ replacing w.

Theorem (Roig-Wei-V., 07)

The algorithm \mathcal{W} above works in time wcw $_{\mathcal{W}}(n)=O\left(r^{3} n^{2}\right)$

Roig-Weil-V. 's improvement

So, here is a truly polynomial algorithm for checking primitivity:
Algorithm \mathcal{W} : • Given a cyclically reduced $w \in F_{r}$ with $|w|=n$;
$\cdot[1]:-|f| w \mid=1$, answer YES and STOP;
-Construct Wh(w) and check whether it is connected and has no cut vertex; if so, answer NO and STOP;
-Otherwise, construct the best possible Whitehead auto φ for w and repeat Step 1 with $w \varphi$ replacing w.

Theorem (Roig-Weil-V., '07)

The algorithm \mathcal{W} above works in time

Roig-Weil-V. 's improvement

So, here is a truly polynomial algorithm for checking primitivity:
Algorithm W : • Given a cyclically reduced $w \in F_{r}$ with $|w|=n$;
$\cdot[1]:-|f| w \mid=1$, answer Yes and STOP;
-Construct Wh(w) and check whether it is connected and has no cut vertex; if so, answer NO and STOP;
-Otherwise, construct the best possible Whitehead auto φ for w, and repeat Step 1 with wφ replacing w.

Theorem (Roig-Weil-V., '07)
The algorithm \mathcal{W} above works in time wcw $(n)=O\left(r^{3} n^{2}\right)$.

Roig-Weil-V. 's improvement

So, here is a truly polynomial algorithm for checking primitivity:
Algorithm W : • Given a cyclically reduced $w \in F_{r}$ with $|w|=n$;
-[1]: - $|f| w \mid=1$, answer YES and STOP;
-Construct Wh(w) and check whether it is connected and has no cut vertex; if so, answer NO and STOP;
-Otherwise, construct the best possible Whitehead auto φ for w, and repeat Step 1 with $w \varphi$ replacing w.

Theorem (Roig-Weil-V., '07)

The algorithm \mathcal{W} above works in time $\mathrm{wc} \mathcal{W}(n)=O\left(r^{3} n^{2}\right)$.

Shpilrain's improvement

Shpilrain's idea for fast primitivity checking is as follows:
Algorithm S : • Given a cyclically reduced $w \in F_{r}$ with $|w|=n$,

- keep constructing Wh(w), edge by edge;
- If at some step, the actual graph is connected and has no cut vertex, answer No and STOP;
- Otherwise, apply \mathcal{W} to decide whether w is primitive; sTop.

Theorem (Shpilrain, '23)

The above algorithm \mathcal{S} works in time acs $(n)=O(1)$.

However, this constant depends on the ambient rank r

Proposition (Roy-Wei-V.)

Let $r \geqslant 2$. There is $0<\beta(r)<1-\frac{1}{2} r^{-2}$ such that \mathcal{S} works in time

Shpilrain's improvement

Shpilrain's idea for fast primitivity checking is as follows:
Algorithm S: • Given a cyclically reduced $w \in F_{r}$ with $|w|=n$, - keep constructing Wh(w), edge by edge;

- If at some step, the actual graph is connected and has no cut vertex, answer no and STOP;
- Otherwise, apply \mathcal{W} to decide whether w is primitive; SIOP

Theorem (Shpilrain, '23)
 The above algorithm \mathcal{S} works in time acs $(n)=O(1)$

However, this constant depends on the ambient rank r

Proposition (Roy-Weil-V.)

Let $r \geqslant 2$. There is $0<\beta(r)<1-\frac{1}{2} r^{-2}$ such that \mathcal{S} works in time

Shpilrain's improvement

Shpilrain's idea for fast primitivity checking is as follows:
Algorithm S : • Given a cyclically reduced $w \in F_{r}$ with $|w|=n$, - keep constructing Wh(w), edge by edge;

- If at some step, the actual graph is connected and has no cut
vertex, answer no and STOP;
- Otherwise, apply \mathcal{W} to decide whether w is primitive; STOP

Theorem (Shpilrain, 23)
 The above algorithm \mathcal{S} works in time acs $(n)=O(1)$

However, this constant depends on the ambient rank r
Proposition (Roy-Weil-V.)
Let $r \geqslant 2$. There is $0<\beta(r)<1-\frac{1}{2} r^{-2}$ such that \mathcal{S} works in time

Shpilrain's improvement

Shpilrain's idea for fast primitivity checking is as follows:
Algorithm S: • Given a cyclically reduced $w \in F_{r}$ with $|w|=n$,

- keep constructing Wh(w), edge by edge;
- If at some step, the actual graph is connected and has no cut vertex, answer NO and STOP;
- Otherwise, apply \mathcal{W} to decide whether w is primitive;

Theorem (Shpilrain, '23)
 The above algorithm \mathcal{S} works in time

However, this constant depends on the ambient rank r

Proposition (Roy-Weil-V.)
Let $r \geqslant 2$. There is $0<\beta(r)<1-\frac{1}{2} r^{-2}$ such that S works in time

Shpilrain's improvement

Shpilrain's idea for fast primitivity checking is as follows:
Algorithm S: • Given a cyclically reduced $w \in F_{r}$ with $|w|=n$,

- keep constructing Wh(w), edge by edge;
- If at some step, the actual graph is connected and has no cut vertex, answer no and STOP;
- Otherwise, apply \mathcal{W} to decide whether w is primitive; STOP.

Theorem (Shpirain, '23)
 The above algorithm \mathcal{S} works in time
 However, this constant depends on the ambient rank r

Proposition (Roy-Weil-V.)
\square

Shpilrain's improvement

Shpilrain's idea for fast primitivity checking is as follows:
Algorithm S: • Given a cyclically reduced $w \in F_{r}$ with $|w|=n$,

- keep constructing Wh(w), edge by edge;
- If at some step, the actual graph is connected and has no cut vertex, answer no and STOP;
- Otherwise, apply \mathcal{W} to decide whether w is primitive; STOP.

Theorem (Shpilrain, '23)

The above algorithm \mathcal{S} works in time acs $(n)=O(1)$.

However, this constant depends on the ambient rank r
Proposition (Roy-Weil-V.)
Let $r \geqslant 2$. There is $0<\beta(r)<1-\frac{1}{2} r^{-2}$ such that S works in time

Shpilrain's improvement

Shpilrain's idea for fast primitivity checking is as follows:
Algorithm S: • Given a cyclically reduced $w \in F_{r}$ with $|w|=n$,

- keep constructing Wh(w), edge by edge;
- If at some step, the actual graph is connected and has no cut vertex, answer no and STOP;
- Otherwise, apply \mathcal{W} to decide whether w is primitive; STOP.

Theorem (Shpilrain, '23)

The above algorithm \mathcal{S} works in time acs $(n)=O(1)$.
... However, this constant depends on the ambient rank r ...

Shpilrain's improvement

Shpilrain's idea for fast primitivity checking is as follows:
Algorithm S: • Given a cyclically reduced $w \in F_{r}$ with $|w|=n$,

- keep constructing Wh(w), edge by edge;
- If at some step, the actual graph is connected and has no cut vertex, answer no and STOP;
- Otherwise, apply \mathcal{W} to decide whether w is primitive; STOP.

Theorem (Shpilrain, '23)

The above algorithm \mathcal{S} works in time acs $(n)=O(1)$.
... However, this constant depends on the ambient rank r ...

Proposition (Roy-Weil-V.)

Let $r \geqslant 2$. There is $0<\beta(r)<1-\frac{1}{2} r^{-2}$ such that \mathcal{S} works in time $\operatorname{ac\mathcal {S}}_{\mathcal{S}}(n)=O\left(\left(\frac{r}{1-\beta(r)}\right)^{2}+r^{3}\right)=O\left(r^{6}\right)$.

Outline

(1) Complexity of algorithms

(2) On Whitehead's algorithm
(3) The Central Tree Property

Relative Primitivity

Definition (Relative Primitivity Problem)

- Given $w_{0}, w_{1}, \ldots, w_{k} \in F_{r}$;
- Decide if w_{0} (belongs to and) is primitive in $H=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{r}$.

Definition (Uniform Membership Problem)

- Given w_{0}, w_{1}
- Decide if w_{0} belongs to $H=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{r}$; in this case, write w_{0} in terms of some basis for H.

We consider the size of the input as $\left|w_{0}\right|+\left|w_{1}\right|+\cdots+\left|w_{k}\right|$, with

- k constant: $I=F_{r}^{k+1}$ and $\left|\left(w_{0}, w_{1}, \ldots, w_{r}\right)\right|=m+\sum_{i=1}^{k}\left|w_{i}\right|$, or
$\bullet k \leqslant f(n): I=\left\{\left(w_{0}, w_{1}, \ldots, w_{k}\right) \in F_{r}^{k+1}\left|k \leqslant f(n), n=\max _{i=1}^{k}\right| w_{i} \mid\right\}$
and $\left|\left(w_{0}, w_{1}, \ldots, w_{r}\right)\right|=m+\sum_{i=i}^{k}\left|w_{i}\right| \leqslant m+n f(n)$,
where $m=\left|w_{0}\right|$.

Relative Primitivity

Definition (Relative Primitivity Problem)

- Given $w_{0}, w_{1}, \ldots, w_{k} \in F_{r}$;
- Decide if w_{0} (belongs to and) is primitive in $H=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{r}$.

Definition (Uniform Membership Problem)

- Given $w_{0}, w_{1}, \ldots, w_{k} \in F_{r}$;
- Decide if w_{0} belongs to $H=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{r}$; in this case, write w_{0} in terms of some basis for H .

We consider the size of the input as $\left|w_{0}\right|+\left|w_{1}\right|+\cdots+\left|w_{k}\right|$, with

where $m=\left|w_{0}\right|$.

Relative Primitivity

Definition (Relative Primitivity Problem)

- Given $w_{0}, w_{1}, \ldots, w_{k} \in F_{r}$;
- Decide if w_{0} (belongs to and) is primitive in $H=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{r}$.

Definition (Uniform Membership Problem)

- Given $w_{0}, w_{1}, \ldots, w_{k} \in F_{r}$;
- Decide if w_{0} belongs to $H=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{r}$; in this case, write w_{0} in terms of some basis for H .

We consider the size of the input as $\left|w_{0}\right|+\left|w_{1}\right|+\cdots+\left|w_{k}\right|$, with ...

where $m=\left|w_{0}\right|$.

Relative Primitivity

Definition (Relative Primitivity Problem)

- Given $w_{0}, w_{1}, \ldots, w_{k} \in F_{r}$;
- Decide if w_{0} (belongs to and) is primitive in $H=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{r}$.

Definition (Uniform Membership Problem)

- Given $w_{0}, w_{1}, \ldots, w_{k} \in F_{r}$;
- Decide if w_{0} belongs to $H=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{r}$; in this case, write w_{0} in terms of some basis for H .

We consider the size of the input as $\left|w_{0}\right|+\left|w_{1}\right|+\cdots+\left|w_{k}\right|$, with ...

- k constant: $I=F_{r}^{k+1}$ and $\left|\left(w_{0}, w_{1}, \ldots, w_{r}\right)\right|=m+\sum_{i=1}^{k}\left|w_{i}\right|$, or
and $\left|\left(w_{0}, w_{1}, \ldots, w_{r}\right)\right|=m+\sum_{i=i}^{k}\left|w_{i}\right| \leqslant m+n f(n)$
where $m=\left|w_{0}\right|$

Relative Primitivity

Definition (Relative Primitivity Problem)

- Given $w_{0}, w_{1}, \ldots, w_{k} \in F_{r}$;
- Decide if w_{0} (belongs to and) is primitive in $H=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{r}$.

Definition (Uniform Membership Problem)

- Given $w_{0}, w_{1}, \ldots, w_{k} \in F_{r}$;
- Decide if w_{0} belongs to $H=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{r}$; in this case, write w_{0} in terms of some basis for H .

We consider the size of the input as $\left|w_{0}\right|+\left|w_{1}\right|+\cdots+\left|w_{k}\right|$, with ...

- k constant: $I=F_{r}^{k+1}$ and $\left|\left(w_{0}, w_{1}, \ldots, w_{r}\right)\right|=m+\sum_{i=1}^{k}\left|w_{i}\right|$, or
- $k \leqslant f(n): I=\left\{\left(w_{0}, w_{1}, \ldots, w_{k}\right) \in F_{r}^{k+1}\left|k \leqslant f(n), n=\max _{i=1}^{k}\right| w_{i} \mid\right\}$ and $\left|\left(w_{0}, w_{1}, \ldots, w_{r}\right)\right|=m+\sum_{i=i}^{k}\left|w_{i}\right| \leqslant m+n f(n)$,
where $m=\left|w_{0}\right|$.

Uniform Membership

Uniform Membership can be nicely solved using Stallings graphs ...

```
Algorithm MP: - Given wo, w
- Construct the Stallings graph \Gamma(H) for H=\langle\mp@subsup{w}{1}{},\ldots,\mp@subsup{w}{k}{}\rangle\leqslant\mp@subsup{F}{r}{};
- If wo spells the label of a closed path at the basepoint of Г(H)
answer YES; otherwise answer NO;
- In the affirmative case, construct a maximal tree T in \Gamma(H),
construct the corresponding basis B for H, and keep track of the visits
of the above closed path to the edges outside T; STOP.
```

Theorem (Touikan, '06)
The algorithm $\mathcal{M P}$ runs in time $w \operatorname{Mp}(n)=O\left(k n \log ^{*}(k n)+m\right)$,
where $n=\max _{i=1, \ldots, k}\left|w_{i}\right|$ and $m=\left|w_{0}\right|$

To solve these problems with low average case complexity, the Central Tree Property will be essential .

Uniform Membership

Uniform Membership can be nicely solved using Stallings graphs ...

Algorithm $\mathcal{M P}: \bullet$ Given $w_{0}, w_{1}, \ldots, w_{k} \in F_{r}$;

```
- Construct the Stallings graph \Gamma(H) for H = \langleww
- If wo spells the label of a closed path at the basepoint of Г(H)
answer YES; otherwise answer nO;
- In the affirmative case, construct a maximal tree T in \Gamma(H),
construct the corresponding basis B for H, and keep track of the visits
of the above closed path to the edges outside T; STOP
```

Theorem (Touikan, '06)
The algorithm $\mathcal{M P}$ runs in time wc $\mathcal{M P}(n)=O\left(k n \log ^{*}(k n)+m\right)$
where $n=\max _{i=1} \quad$ k $\left|w_{i}\right|$ and $m=\left|w_{0}\right|$

To solve these problems with low average case complexity, the Central Tree Property will be essential

Uniform Membership

Uniform Membership can be nicely solved using Stallings graphs ...

Algorithm $\mathcal{M P}$: • Given $w_{0}, w_{1}, \ldots, w_{k} \in F_{r}$;

- Construct the Stallings graph $\Gamma(H)$ for $H=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{r}$;
- If w_{0} spells the label of a closed path at the basepoint of $\Gamma(H)$ answer YES; otherwise answer NO;
- In the affirmative case, construct a maximal tree T in $\Gamma(H)$, construct the corresponding basis B for H, and keep track of the visits of the above closed path to the edges outside T; STOP

Theorem (Touikan, '06)
The algorithm $\mathcal{M P}$ runs in time $w c_{\mathcal{M P}}(n)=O\left(k n \log ^{*}(k n)+m\right)$
where $n=\max _{i=1, \ldots, k}\left|w_{i}\right|$ and $m=\left|w_{0}\right|$

To solve these problems with low average case complexity, the Central Tree Property will be essential

Uniform Membership

Uniform Membership can be nicely solved using Stallings graphs ...

Algorithm $\mathcal{M P}$: • Given $w_{0}, w_{1}, \ldots, w_{k} \in F_{r}$;

- Construct the Stallings graph $\Gamma(H)$ for $H=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{r}$;
- If w_{0} spells the label of a closed path at the basepoint of $\Gamma(H)$ answer YES; otherwise answer NO;
- In the affirmative case, construct a maximal tree T in $\Gamma(H)$, construct the corresponding basis B for H, and keep track of the visits of the above closed path to the edges outside T

Theorem (Touikan, '06)
The algorithm $\mathcal{M P}$ runs in time $\mathrm{wc}_{\mathcal{M P}}(n)=O\left(k n \log ^{*}(k n)+m\right)$
where $n=\max _{i=1, \ldots, k}\left|w_{i}\right|$ and $m=\left|w_{0}\right|$

To solve these problems with low average case complexity, the
Central Tree Property will be essential

Uniform Membership

Uniform Membership can be nicely solved using Stallings graphs ...

Algorithm $\mathcal{M P}$: • Given $w_{0}, w_{1}, \ldots, w_{k} \in F_{r}$;

- Construct the Stallings graph $\Gamma(H)$ for $H=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{r}$;
- If w_{0} spells the label of a closed path at the basepoint of $\Gamma(H)$ answer Yes; otherwise answer no;
- In the affirmative case, construct a maximal tree T in $\Gamma(H)$, construct the corresponding basis B for H, and keep track of the visits of the above closed path to the edges outside T; STOP.

Theorem (Touikan, '06)
The algorithm $\mathcal{M P}$ runs in time $\mathrm{wc}_{\mathcal{M P}}(n)=O\left(k n \log ^{*}(k n)+m\right)$
where $n=\max _{i=1, \ldots, k}\left|w_{i}\right|$ and $m=\left|w_{0}\right|$

To solve these problems with low average case complexity, the
Central Tree Property will be essential

Uniform Membership

Uniform Membership can be nicely solved using Stallings graphs ...

Algorithm MP: • Given $w_{0}, w_{1}, \ldots, w_{k} \in F_{r}$;

- Construct the Stallings graph $\Gamma(H)$ for $H=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{r}$;
- If w_{0} spells the label of a closed path at the basepoint of $\Gamma(H)$ answer Yes; otherwise answer no;
- In the affirmative case, construct a maximal tree T in $\Gamma(H)$, construct the corresponding basis B for H, and keep track of the visits of the above closed path to the edges outside T; STOP.

Theorem (Touikan, '06)

The algorithm $\mathcal{M P}$ runs in time $\mathrm{wc}_{\mathcal{M P}}(n)=O\left(k n \log ^{*}(k n)+m\right)$, where $n=\max _{i=1, \ldots, k}\left|w_{i}\right|$ and $m=\left|w_{0}\right|$.

To solve these problems with low average case complexity, the Central Tree Property will be essential

Uniform Membership

Uniform Membership can be nicely solved using Stallings graphs ...

Algorithm $\mathcal{M P}$: • Given $w_{0}, w_{1}, \ldots, w_{k} \in F_{r}$;

- Construct the Stallings graph $\Gamma(H)$ for $H=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{r}$;
- If w_{0} spells the label of a closed path at the basepoint of $\Gamma(H)$ answer Yes; otherwise answer no;
- In the affirmative case, construct a maximal tree T in $\Gamma(H)$, construct the corresponding basis B for H, and keep track of the visits of the above closed path to the edges outside T; STOP.

Theorem (Touikan, '06)

The algorithm $\mathcal{M P}$ runs in time $\mathrm{wc}_{\mathcal{M P}}(n)=O\left(k n \log ^{*}(k n)+m\right)$, where $n=\max _{i=1, \ldots, k}\left|w_{i}\right|$ and $m=\left|w_{0}\right|$.

To solve these problems with low average case complexity, the Central Tree Property will be essential ...

The Central Tree Property

Definition

Let $d \geqslant 1$. We say that the k-tuple $\mathbf{w}=\left(w_{1}, \ldots, w_{k}\right) \in F_{r}^{k}$ has the d-central tree property ($d-C T P$) if $\min _{i=1}^{k}\left|w_{i}\right| \geqslant 2 d+1$, and the $2 d$ prefixes of length d of the $w_{i}^{ \pm 1}$'s,

$$
w_{i}=p r_{d}\left(w_{i}\right) \cdot m f_{d}\left(w_{i}\right) \cdot p r_{d}\left(w_{i}^{-1}\right)^{-1}
$$

are pairwise distinct. We say that \mathbf{w} has the CTP if it has the d-CTP for some $1 \leqslant d<n / 2$, where $n=\min _{i=1}^{k}\left|w_{i}\right|$.

Observation

Let $\mathbf{w}=\left(w_{1}, \ldots, w_{k}\right)$ and $H=\left\langle w_{1}\right.$,
then the Stallings graph $\Gamma(H)$ consists on the 'tree of prefixes' plus k
arcs connecting their leaves; in particular, $r k(H)=k$ and $\left\{w_{1}\right.$
is a free basis for H.

The Central Tree Property

Definition

Let $d \geqslant 1$. We say that the k-tuple $\mathbf{w}=\left(w_{1}, \ldots, w_{k}\right) \in F_{r}^{k}$ has the d-central tree property (d-CTP) if $\min _{i=1}^{k}\left|w_{i}\right| \geqslant 2 d+1$, and the $2 d$ prefixes of length d of the $w_{i}^{ \pm 1}$'s,

$$
w_{i}=p r_{d}\left(w_{i}\right) \cdot m f_{d}\left(w_{i}\right) \cdot p r_{d}\left(w_{i}^{-1}\right)^{-1}
$$

are pairwise distinct. We say that \mathbf{w} has the CTP if it has the $d-C T P$ for some $1 \leqslant d<n / 2$, where $n=\min _{i=1}^{k}\left|w_{i}\right|$.

Observation

Let $\mathbf{w}=\left(w_{1}, \ldots, w_{k}\right)$ and $H=\left\langle w_{1}, \ldots, w_{k}\right\rangle \leqslant F_{r}$. If \mathbf{w} has the CTP then the Stallings graph $\Gamma(H)$ consists on the 'tree of prefixes' plus k arcs connecting their leaves; in particular, $\mathrm{rk}(H)=k$ and $\left\{w_{1}, \ldots, w_{k}\right\}$ is a free basis for H.

Membership Problem solved fast

Lemma

Let $d(n)$ be a non-decreasing function with $d(n)<n / 2$. A random k-tuple of words in F_{r} of length up to n fails the $d(n)$-CTP with probability $O\left(k^{2}(2 r-1)^{-d(n / 2)}\right)$.

For an increasing function $d(n)$ with $d(n)<n / 2$, consider

Algorithm $\mathcal{M} \mathcal{P}_{d}: \bullet$ Given $w_{0}, w_{1}, \ldots, w_{k} \in F_{r}$;

-[1] -Compute $n=\max _{i=1}^{k}\left|w_{i}\right|$.
-Construct the tree of $d(n)$-prefixes $\Gamma_{d(n)}(\mathbf{w})$;
-If \mathbf{w} has the $d(n)-C T P$ and $\min _{i=1}^{k}\left|w_{i}\right|>n / 2$ go to Step 2; otherwise, run $\mathcal{M P}$ to decide whether $w_{0} \in H$ and find an expression for it in some basis for H; STOP;

- [2] $\Gamma(H)$ equals $\Gamma_{d(n)}(\mathbf{w})$ plus k arcs labeled $m f_{d(n)}\left(w_{i}\right)$;
-Start reading w_{0} in $\Gamma(H)$ from the basepoint, and keeping track of the sequence of arcs fully crossed;
-If the reading cannot be completed to a closed path answer No; otherwise, answer Yes and output the expression of w_{0} in the free basis $\left\{w_{1}\right.$
$\left.W_{k}\right\}$ for H; STOP

Membership Problem solved fast

Lemma

Let $d(n)$ be a non-decreasing function with $d(n)<n / 2$. A random k-tuple of words in F_{r} of length up to n fails the $d(n)$-CTP with probability $O\left(k^{2}(2 r-1)^{-d(n / 2)}\right)$.

For an increasing function $d(n)$ with $d(n)<n / 2$, consider Algorithm $\mathcal{M} \mathcal{P}_{d}: \bullet$ Given $w_{0}, w_{1}, \ldots, w_{k} \in F_{r}$;

-Construct the tree of $d(n)$-prefixes $\Gamma_{d(n)}(\mathbf{w})$,
-If \mathbf{w} has the $d(n)-C T P$ and $\min _{i-1}^{k}\left|w_{i}\right|>n / 2$ go to Step 2; otherwise, run $\mathcal{M P}$ to decide whether $w_{0} \in H$ and find an expression for it in some basis for H;

- [2] $\Gamma(H)$ equals $\Gamma_{d(n)}(\mathbf{w})$ plus k arcs labeled $m f_{d(n)}\left(w_{i}\right)$
-Start reading w_{0} in $\Gamma(H)$ from the basepoint, and keeping track
of the sequence of arcs fully crossed;
-If the reading cannot be completed to a closed path answer no otherwise, answer YES and output the expression of w_{0} in the free basis $\left\{w_{1}\right.$

Membership Problem solved fast

Lemma

Let $d(n)$ be a non-decreasing function with $d(n)<n / 2$. A random k-tuple of words in F_{r} of length up to n fails the $d(n)$-CTP with probability $O\left(k^{2}(2 r-1)^{-d(n / 2)}\right)$.

For an increasing function $d(n)$ with $d(n)<n / 2$, consider Algorithm $\mathcal{M} \mathcal{P}_{d}: \bullet$ Given $w_{0}, w_{1}, \ldots, w_{k} \in F_{r}$;
-[1] -Compute $n=\max _{i=1}^{k}\left|w_{i}\right|$.
-Construct the tree of $d(n)$-prefixes $\Gamma_{d(n)}(\mathbf{w})$;
-If \mathbf{w} has the $d(n)$-CTP and $\min _{i=1}^{k}\left|w_{i}\right|>n / 2$ go to Step 2; otherwise, run $\mathcal{M P}$ to decide whether $w_{0} \in H$ and find an expression for it in some basis for H ; STOP;
-Start reading w_{0} in $\Gamma(H)$ from the basepoint, and keeping track
of the sequence of arcs fully crossed;
If the reading cannot be completed to a closed path answer No otherwise, answer YEs and output the expression of wo in the free basis $\left\{W_{1} \ldots\right.$

Membership Problem solved fast

Lemma

Let $d(n)$ be a non-decreasing function with $d(n)<n / 2$. A random k-tuple of words in F_{r} of length up to n fails the $d(n)$-CTP with probability $O\left(k^{2}(2 r-1)^{-d(n / 2)}\right)$.

For an increasing function $d(n)$ with $d(n)<n / 2$, consider Algorithm $\mathcal{M} \mathcal{P}_{d}$: • Given $w_{0}, w_{1}, \ldots, w_{k} \in F_{r}$;
-[1] -Compute $n=\max _{i=1}^{k}\left|w_{i}\right|$.
-Construct the tree of $d(n)$-prefixes $\Gamma_{d(n)}(\mathbf{w})$;
-If \mathbf{w} has the $d(n)$-CTP and $\min _{i=1}^{k}\left|w_{i}\right|>n / 2$ go to Step 2; otherwise, run $\mathcal{M P}$ to decide whether $w_{0} \in H$ and find an expression for it in some basis for H ; STOP;
$\bullet[2] \Gamma(H)$ equals $\Gamma_{d(n)}(\mathbf{w})$ plus k arcs labeled $m f_{d(n)}\left(w_{i}\right)$;
-Start reading w_{0} in $\Gamma(H)$ from the basepoint, and keeping track of the sequence of arcs fully crossed;
-If the reading cannot be completed to a closed path answer no; otherwise, answer YES and output the expression of w_{0} in the free basis $\left\{w_{1}, \ldots . w_{k}\right\}$ for H : STOP.

Membership Problem solved fast

Theorem (Roy-Weil-V.)

Consider the algorithm $\mathcal{M} \mathcal{P}_{d}$ with input a word of length m and a $k(n)$-tuple of words of length at most n in F_{r}. If
(i) $k(n)$ is constant then acM($\mathcal{M}_{d}(n)=O\left(\log n+m n^{-\log (2 r-1)}\right)$, while $\mathrm{wc}_{\mathcal{M} \mathcal{P}_{d}}(n)=O\left(n \log ^{*} n+m\right)$;

And combined with the relative version of algorithm \mathcal{S}, we can solve the Relative Primitivity Problem fast:

Membership Problem solved fast

Theorem (Roy-Weil-V.)

Consider the algorithm $\mathcal{M} \mathcal{P}_{d}$ with input a word of length m and a $k(n)$-tuple of words of length at most n in F_{r}. If
(i) $k(n)$ is constant then $\operatorname{acM}_{\mathcal{M}}^{d}\left(~(n)=O\left(\log n+m n^{-\log (2 r-1)}\right)\right.$, while $\mathrm{wcMP}_{d}(n)=O\left(n \log ^{*} n+m\right)$;
(ii) $k(n)=n^{\beta}, \beta>0$, then $\operatorname{acM}_{\mathcal{M}}^{d}(n)=O\left(n^{\beta+\gamma}+m n^{2 \beta}(2 r-1)^{-n^{\gamma}}\right)$ for any $0<\gamma<1$, while wc $_{\mathcal{M} \mathcal{P}_{d}}(n)=O\left(n^{\beta+1} \log ^{*} n+m\right)$;

And combined with the relative version of algorithm \mathcal{S}, we can solve the Relative Primitivity Problem fast:

Membership Problem solved fast

Theorem (Roy-Weil-V.)

Consider the algorithm $\mathcal{M} \mathcal{P}_{d}$ with input a word of length m and a $k(n)$-tuple of words of length at most n in F_{r}. If
(i) $k(n)$ is constant then $\operatorname{acM}_{\mathcal{M}}^{d}\left(~(n)=O\left(\log n+m n^{-\log (2 r-1)}\right)\right.$, while $\mathrm{wcMP}_{d}(n)=O\left(n \log ^{*} n+m\right)$;
(ii) $k(n)=n^{\beta}, \beta>0$, then acMp $\mathcal{P}_{d}(n)=O\left(n^{\beta+\gamma}+m n^{2 \beta}(2 r-1)^{-n^{\gamma}}\right)$ for any $0<\gamma<1$, while $\mathrm{wc}_{\mathcal{M} \mathcal{P}_{d}}(n)=O\left(n^{\beta+1} \log ^{*} n+m\right)$; (iii) $k(n)=(2 r-1)^{\beta n}, 0<\beta<\frac{1}{18}$ then, for $0<\epsilon<\frac{1}{8}-\frac{9 \beta}{4}$, $\operatorname{acM}_{\mathcal{M} \mathcal{P}_{d}}(n)=O\left(n(2 r-1)^{\beta n}+m(2 r-1)^{\left(\frac{9}{4} \beta-\frac{1}{8}+\epsilon\right) n}\right)$, while $\mathrm{wc}_{\mathcal{M} \mathcal{P}_{d}}(n)=O\left(n(2 r-1)^{\beta n} \log ^{*} n+m\right)$.

And combined with the relative version of algorithm \mathcal{S}, we can solve the Relative Primitivity Problem fast:

Membership Problem solved fast

Theorem (Roy-Weil-V.)

Consider the algorithm $\mathcal{M} \mathcal{P}_{d}$ with input a word of length m and a $k(n)$-tuple of words of length at most n in F_{r}. If
(i) $k(n)$ is constant then $\operatorname{acM}_{\mathcal{M}}^{d}\left(~(n)=O\left(\log n+m n^{-\log (2 r-1)}\right)\right.$, while $\mathrm{wcMP}_{d}(n)=O\left(n \log ^{*} n+m\right)$;
(ii) $k(n)=n^{\beta}, \beta>0$, then acMp $\mathcal{P}_{d}(n)=O\left(n^{\beta+\gamma}+m n^{2 \beta}(2 r-1)^{-n^{\gamma}}\right)$ for any $0<\gamma<1$, while $\mathrm{wc}_{\mathcal{M} \mathcal{P}_{d}}(n)=O\left(n^{\beta+1} \log ^{*} n+m\right)$;
(iii) $k(n)=(2 r-1)^{\beta n}, 0<\beta<\frac{1}{18}$ then, for $0<\epsilon<\frac{1}{8}-\frac{9 \beta}{4}$, $\operatorname{acM}_{\mathcal{M} \mathcal{P}_{d}}(n)=O\left(n(2 r-1)^{\beta n}+m(2 r-1)^{\left(\frac{9}{4} \beta-\frac{1}{8}+\epsilon\right) n}\right)$, while $\mathrm{wc}_{\mathcal{M} \mathcal{P}_{d}}(n)=O\left(n(2 r-1)^{\beta n} \log ^{*} n+m\right)$.

And combined with the relative version of algorithm \mathcal{S}, we can solve the Relative Primitivity Problem fast:

Relative Primitivity Problem solved fast

For an increasing function $d(n)$ with $d(n)<n / 2$, consider Algorithm $\mathcal{R} \mathcal{P}_{d}$: • Given $w_{0}, w_{1}, \ldots, w_{k} \in F_{r}$;
-Construct the tree of $d(n)$-prefixes $\Gamma_{d(n)}(\mathbf{w})$; -If w has the $d(n)-C T P$ and $\min _{i-1}^{k}\left|w_{i}\right|>n / 2$ ao to Step 2; otherwise, run $\mathcal{M P}$ to decide whether $w_{0} \in H$ and find an expression for it in some basis for H; then run \mathcal{S} to check whether w_{0} is primitive in H; STOP;

- [2] Г (H) equals $\Gamma_{d(n)}(w)$ plus k arcs labeled $m f_{d(n)}\left(w_{i}\right)$;
-Start reading w_{0} in $\Gamma(H)$ from the basepoint, keeping track of the sequence of arcs fully crossed, and constructing the graph Wh(w) (w.r.t. $\left.\left\{w_{1}, \ldots, w_{k}\right\}\right)$ edge by edge; -If it cannot be completed to a closed path answer No; STOP -If the actual portion of $W h(w)$ is connected and has no cut vertex, answer NO; STOP
Otherwise, apply \mathcal{W} to check whether the element $w \in H$ is primitive in H;

Relative Primitivity Problem solved fast

For an increasing function $d(n)$ with $d(n)<n / 2$, consider Algorithm $\mathcal{R P} \mathcal{P}_{d}: \bullet$ Given $w_{0}, w_{1}, \ldots, w_{k} \in F_{r}$;
-[1] -Compute $n=\max _{i=1}^{k}\left|w_{i}\right|$.
-Construct the tree of $d(n)$-prefixes $\Gamma_{d(n)}(\mathbf{w})$;
-If \mathbf{w} has the $d(n)$-CTP and $\min _{i=1}^{k}\left|w_{i}\right|>n / 2$ go to Step 2; otherwise, run $\mathcal{M P}$ to decide whether $w_{0} \in H$ and find an expression for it in some basis for H; then run \mathcal{S} to check whether w_{0} is primitive in H; STOP;

Relative Primitivity Problem solved fast

For an increasing function $d(n)$ with $d(n)<n / 2$, consider Algorithm $\mathcal{R} \mathcal{P}_{d}$: • Given $w_{0}, w_{1}, \ldots, w_{k} \in F_{r}$;
-[1] -Compute $n=\max _{i=1}^{k}\left|w_{i}\right|$.
-Construct the tree of $d(n)$-prefixes $\Gamma_{d(n)}(\mathbf{w})$;
-If \mathbf{w} has the $d(n)$-CTP and $\min _{i=1}^{k}\left|w_{i}\right|>n / 2$ go to Step 2; otherwise, run $\mathcal{M P}$ to decide whether $w_{0} \in H$ and find an expression for it in some basis for H; then run \mathcal{S} to check whether w_{0} is primitive in H; STOP;
$\bullet[2] \Gamma(H)$ equals $\Gamma_{d(n)}(\mathbf{w})$ plus k arcs labeled $m f_{d(n)}\left(w_{i}\right)$;
-Start reading w_{0} in $\Gamma(H)$ from the basepoint, keeping track of the sequence of arcs fully crossed, and constructing the graph Wh(w) (w.r.t. $\left\{w_{1}, \ldots, w_{k}\right\}$) edge by edge;
-If it cannot be completed to a closed path answer no; STOP;
-If the actual portion of $W h(w)$ is connected and has no cut vertex, answer NO; STOP;
-Otherwise, apply \mathcal{W} to check whether the element $w \in H$ is primitive in H ; STOP.

Relative Primitivity Problem solved fast

Theorem (Roy-Weil-V.)

Consider the algorithm $\mathcal{R} \mathcal{P}_{d}$ with input a word of length m and a $k(n)$-tuple of words of length at most n in F_{r}. If
(i) $k(n)$ is constant then $\operatorname{ac}_{\mathcal{R} \mathcal{P}_{d}}(n)=O\left(\log n+m n^{-\log (2 r-1)}\right)$;

Relative Primitivity Problem solved fast

Theorem (Roy-Weil-V.)

Consider the algorithm $\mathcal{R} \mathcal{P}_{d}$ with input a word of length m and a $k(n)$-tuple of words of length at most n in F_{r}. If
(i) $k(n)$ is constant then $\operatorname{ac}_{\mathcal{R} \mathcal{P}_{d}}(n)=O\left(\log n+m n^{-\log (2 r-1)}\right)$;
(ii) $k(n)=n^{\beta}, \beta>0$, then for any $0<\gamma<1$,
$\operatorname{ac}_{\mathcal{R} \mathcal{P}_{d}}(n)=O\left(n^{\beta+\gamma}+n^{2 \beta}(2 r-1)^{-n^{\gamma}} m+n^{6 \beta}\left(\frac{2}{2 r-1}\right)^{m}\right)$;

Relative Primitivity Problem solved fast

Theorem (Roy-Weil-V.)

Consider the algorithm $\mathcal{R} \mathcal{P}_{d}$ with input a word of length m and a $k(n)$-tuple of words of length at most n in F_{r}. If
(i) $k(n)$ is constant then $\operatorname{ac}_{\mathcal{R} \mathcal{P}_{d}}(n)=O\left(\log n+m n^{-\log (2 r-1)}\right)$;
(ii) $k(n)=n^{\beta}, \beta>0$, then for any $0<\gamma<1$,
$\operatorname{ac}_{\mathcal{R} \mathcal{P}_{d}}(n)=O\left(n^{\beta+\gamma}+n^{2 \beta}(2 r-1)^{-n^{\gamma}} m+n^{6 \beta}\left(\frac{2}{2 r-1}\right)^{m}\right)$;
(iii) $k(n)=(2 r-1)^{\beta n}, 0<\beta<\frac{1}{58}$ then,
$\operatorname{ac}_{\mathcal{R}_{d}}(n)=O\left(n(2 r-1)^{\beta n}+(2 r-1)^{-5 \beta n} m+(2 r-1)^{6 \beta n-\frac{1-58 \beta}{1-56 \beta} m}\right)$.

THANKS

