
1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

The central tree property and some average
case complexity results for algorithmic

problems in free groups

Enric Ventura
Departament de Matemàtiques

Universitat Politècnica de Catalunya

New York Group Theory Seminar

Complexity Day

(joint work with M. Roy and P. Weil)

December 8th, 2023.

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Outline

1 Complexity of algorithms

2 On Whitehead’s algorithm

3 The Central Tree Property

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Outline

1 Complexity of algorithms

2 On Whitehead’s algorithm

3 The Central Tree Property

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Decision problems

Definition
A decision problem P is determined by a well-defined set of inputs I,
and a YES/NO property P ⊆ I you want to know about each of them:

• Given u ∈ I,
• Decide whether u satisfies P (i.e., u ∈ P).

Typically, the set I comes with a notion of size (or length), ` : I → N,
such that, for every n > 0, |{u ∈ I | `(u) 6 n}| <∞.

Definition
A decision problem is solvable when there exists an algorithm A (i.e.,
a Turing machine) answering correctly for each given input u ∈ I.

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Decision problems

Definition
A decision problem P is determined by a well-defined set of inputs I,
and a YES/NO property P ⊆ I you want to know about each of them:

• Given u ∈ I,
• Decide whether u satisfies P (i.e., u ∈ P).

Typically, the set I comes with a notion of size (or length), ` : I → N,
such that, for every n > 0, |{u ∈ I | `(u) 6 n}| <∞.

Definition
A decision problem is solvable when there exists an algorithm A (i.e.,
a Turing machine) answering correctly for each given input u ∈ I.

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Decision problems

Definition
A decision problem P is determined by a well-defined set of inputs I,
and a YES/NO property P ⊆ I you want to know about each of them:

• Given u ∈ I,
• Decide whether u satisfies P (i.e., u ∈ P).

Typically, the set I comes with a notion of size (or length), ` : I → N,
such that, for every n > 0, |{u ∈ I | `(u) 6 n}| <∞.

Definition
A decision problem is solvable when there exists an algorithm A (i.e.,
a Turing machine) answering correctly for each given input u ∈ I.

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Complexity of algorithms

Definition
Suppose algorithm A solves a decision problem P.

• Given u ∈ I, we denote by t(u) the time (i.e., number of steps)
taken by A to give the correct answer for input u.
• The worst case complexity of A is the function wcA : N→ N,
n 7→ wcA(n) = max{u∈I|`(u)6n} t(u).
• The average case complexity of A is the function acA : N→ N,
n 7→ acA(n) =

∑
{u∈I|`(u)6n} t(u)
|{u∈I|`(u)6n}| .

• These functions are only interesting up to asymptotic equivalence.

Observation

Clearly, acA(n) 6 wcA(n). But ... there are cases where acA(n) is
much smaller than wcA(n) ...

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Complexity of algorithms

Definition
Suppose algorithm A solves a decision problem P.

• Given u ∈ I, we denote by t(u) the time (i.e., number of steps)
taken by A to give the correct answer for input u.
• The worst case complexity of A is the function wcA : N→ N,
n 7→ wcA(n) = max{u∈I|`(u)6n} t(u).
• The average case complexity of A is the function acA : N→ N,
n 7→ acA(n) =

∑
{u∈I|`(u)6n} t(u)
|{u∈I|`(u)6n}| .

• These functions are only interesting up to asymptotic equivalence.

Observation

Clearly, acA(n) 6 wcA(n). But ... there are cases where acA(n) is
much smaller than wcA(n) ...

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Complexity of algorithms

Definition
Suppose algorithm A solves a decision problem P.

• Given u ∈ I, we denote by t(u) the time (i.e., number of steps)
taken by A to give the correct answer for input u.
• The worst case complexity of A is the function wcA : N→ N,
n 7→ wcA(n) = max{u∈I|`(u)6n} t(u).
• The average case complexity of A is the function acA : N→ N,
n 7→ acA(n) =

∑
{u∈I|`(u)6n} t(u)
|{u∈I|`(u)6n}| .

• These functions are only interesting up to asymptotic equivalence.

Observation

Clearly, acA(n) 6 wcA(n). But ... there are cases where acA(n) is
much smaller than wcA(n) ...

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Complexity of algorithms

Definition
Suppose algorithm A solves a decision problem P.

• Given u ∈ I, we denote by t(u) the time (i.e., number of steps)
taken by A to give the correct answer for input u.
• The worst case complexity of A is the function wcA : N→ N,
n 7→ wcA(n) = max{u∈I|`(u)6n} t(u).
• The average case complexity of A is the function acA : N→ N,
n 7→ acA(n) =

∑
{u∈I|`(u)6n} t(u)
|{u∈I|`(u)6n}| .

• These functions are only interesting up to asymptotic equivalence.

Observation

Clearly, acA(n) 6 wcA(n). But ... there are cases where acA(n) is
much smaller than wcA(n) ...

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Complexity of algorithms

Definition
Suppose algorithm A solves a decision problem P.

• Given u ∈ I, we denote by t(u) the time (i.e., number of steps)
taken by A to give the correct answer for input u.
• The worst case complexity of A is the function wcA : N→ N,
n 7→ wcA(n) = max{u∈I|`(u)6n} t(u).
• The average case complexity of A is the function acA : N→ N,
n 7→ acA(n) =

∑
{u∈I|`(u)6n} t(u)
|{u∈I|`(u)6n}| .

• These functions are only interesting up to asymptotic equivalence.

Observation

Clearly, acA(n) 6 wcA(n). But ... there are cases where acA(n) is
much smaller than wcA(n) ...

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Complexity of algorithms

Definition
Suppose algorithm A solves a decision problem P.

• Given u ∈ I, we denote by t(u) the time (i.e., number of steps)
taken by A to give the correct answer for input u.
• The worst case complexity of A is the function wcA : N→ N,
n 7→ wcA(n) = max{u∈I|`(u)6n} t(u).
• The average case complexity of A is the function acA : N→ N,
n 7→ acA(n) =

∑
{u∈I|`(u)6n} t(u)
|{u∈I|`(u)6n}| .

• These functions are only interesting up to asymptotic equivalence.

Observation

Clearly, acA(n) 6 wcA(n). But ... there are cases where acA(n) is
much smaller than wcA(n) ...

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Average case complexity

A general idea to improve the average case complexity of A:

• Find a variant A′ of A running ‘fast’ on a ‘big’ subset E ⊆ I;
• Consider the new algorithm A′′:

Given u ∈ I, if u ∈ E run A′ on u; otherwise run A on u.

(Except in degenerate cases,) we have wcA′′(n) = wcA(n) but it
could very well be that acA′′(n)� acA(n).

This idea was recently exploited in the paper:

V. Shpilrain, Average-case complexity of the Whitehead problem for
free groups. Comm. Algebra, 51(2) (2023), 799–806.

to get the following improvement of a classical result:

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Average case complexity

A general idea to improve the average case complexity of A:

• Find a variant A′ of A running ‘fast’ on a ‘big’ subset E ⊆ I;
• Consider the new algorithm A′′:

Given u ∈ I, if u ∈ E run A′ on u; otherwise run A on u.

(Except in degenerate cases,) we have wcA′′(n) = wcA(n) but it
could very well be that acA′′(n)� acA(n).

This idea was recently exploited in the paper:

V. Shpilrain, Average-case complexity of the Whitehead problem for
free groups. Comm. Algebra, 51(2) (2023), 799–806.

to get the following improvement of a classical result:

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Average case complexity

A general idea to improve the average case complexity of A:

• Find a variant A′ of A running ‘fast’ on a ‘big’ subset E ⊆ I;
• Consider the new algorithm A′′:

Given u ∈ I, if u ∈ E run A′ on u; otherwise run A on u.

(Except in degenerate cases,) we have wcA′′(n) = wcA(n) but it
could very well be that acA′′(n)� acA(n).

This idea was recently exploited in the paper:

V. Shpilrain, Average-case complexity of the Whitehead problem for
free groups. Comm. Algebra, 51(2) (2023), 799–806.

to get the following improvement of a classical result:

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Average case complexity

A general idea to improve the average case complexity of A:

• Find a variant A′ of A running ‘fast’ on a ‘big’ subset E ⊆ I;
• Consider the new algorithm A′′:

Given u ∈ I, if u ∈ E run A′ on u; otherwise run A on u.

(Except in degenerate cases,) we have wcA′′(n) = wcA(n) but it
could very well be that acA′′(n)� acA(n).

This idea was recently exploited in the paper:

V. Shpilrain, Average-case complexity of the Whitehead problem for
free groups. Comm. Algebra, 51(2) (2023), 799–806.

to get the following improvement of a classical result:

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Average case complexity

A general idea to improve the average case complexity of A:

• Find a variant A′ of A running ‘fast’ on a ‘big’ subset E ⊆ I;
• Consider the new algorithm A′′:

Given u ∈ I, if u ∈ E run A′ on u; otherwise run A on u.

(Except in degenerate cases,) we have wcA′′(n) = wcA(n) but it
could very well be that acA′′(n)� acA(n).

This idea was recently exploited in the paper:

V. Shpilrain, Average-case complexity of the Whitehead problem for
free groups. Comm. Algebra, 51(2) (2023), 799–806.

to get the following improvement of a classical result:

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Outline

1 Complexity of algorithms

2 On Whitehead’s algorithm

3 The Central Tree Property

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Classical Whitehead’s algorithm

Theorem (Whitehead, 1936)

There is an algorithmW taking w ∈ Fr as input, deciding whether w
is primitive in Fr , and working in time wcW(n) = O(4r r n2) = O(n2).

Observation

A given w ∈ Fr is primitive⇔ minϕ∈Aut(Fr) |wϕ| = 1.

Definition

A Whitehead automorphism of Fr = 〈a1, . . . ,ar 〉 is an automorphism
of the form Fr → Fr , ai 7→ ai , aj 7→ aηεi

i aja
ηδi
i , where η = ±1,

εi = 0,−1, and δi = 0,1. There are ∼ 2r 4r−1 many.

Lemma (Whitehead, 1936)

Let w ∈ Fr . If there exists ϕ ∈ Aut(Fr) with |wϕ| < |w | then there
exists a Whitehead automorphism α such that |wα| < |w |.

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Classical Whitehead’s algorithm

Theorem (Whitehead, 1936)

There is an algorithmW taking w ∈ Fr as input, deciding whether w
is primitive in Fr , and working in time wcW(n) = O(4r r n2) = O(n2).

Observation

A given w ∈ Fr is primitive⇔ minϕ∈Aut(Fr) |wϕ| = 1.

Definition

A Whitehead automorphism of Fr = 〈a1, . . . ,ar 〉 is an automorphism
of the form Fr → Fr , ai 7→ ai , aj 7→ aηεi

i aja
ηδi
i , where η = ±1,

εi = 0,−1, and δi = 0,1. There are ∼ 2r 4r−1 many.

Lemma (Whitehead, 1936)

Let w ∈ Fr . If there exists ϕ ∈ Aut(Fr) with |wϕ| < |w | then there
exists a Whitehead automorphism α such that |wα| < |w |.

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Classical Whitehead’s algorithm

Theorem (Whitehead, 1936)

There is an algorithmW taking w ∈ Fr as input, deciding whether w
is primitive in Fr , and working in time wcW(n) = O(4r r n2) = O(n2).

Observation

A given w ∈ Fr is primitive⇔ minϕ∈Aut(Fr) |wϕ| = 1.

Definition

A Whitehead automorphism of Fr = 〈a1, . . . ,ar 〉 is an automorphism
of the form Fr → Fr , ai 7→ ai , aj 7→ aηεi

i aja
ηδi
i , where η = ±1,

εi = 0,−1, and δi = 0,1. There are ∼ 2r 4r−1 many.

Lemma (Whitehead, 1936)

Let w ∈ Fr . If there exists ϕ ∈ Aut(Fr) with |wϕ| < |w | then there
exists a Whitehead automorphism α such that |wα| < |w |.

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Classical Whitehead’s algorithm

Theorem (Whitehead, 1936)

There is an algorithmW taking w ∈ Fr as input, deciding whether w
is primitive in Fr , and working in time wcW(n) = O(4r r n2) = O(n2).

Observation

A given w ∈ Fr is primitive⇔ minϕ∈Aut(Fr) |wϕ| = 1.

Definition

A Whitehead automorphism of Fr = 〈a1, . . . ,ar 〉 is an automorphism
of the form Fr → Fr , ai 7→ ai , aj 7→ aηεi

i aja
ηδi
i , where η = ±1,

εi = 0,−1, and δi = 0,1. There are ∼ 2r 4r−1 many.

Lemma (Whitehead, 1936)

Let w ∈ Fr . If there exists ϕ ∈ Aut(Fr) with |wϕ| < |w | then there
exists a Whitehead automorphism α such that |wα| < |w |.

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Whitehead cut vertex lemma

Definition

Let w = aε1
i1 · · · a

εn
in ∈ Fr be a cyclically reduced word. The Whitehead

(unoriented) graph of w, denoted Wh(w), is: V = {a±1
1 , . . . ,a±1

r } and
E = {{aεj

ij , a−εj+1
ij+1
} | j = 1, . . . ,n (mod n)}.

Theorem (Whitehead’s cut vertex lemma)

If w ∈ Fr is primitive then Wh(w) is either disconnected or has a cut
vertex.

Modern proofs/variations given by Heusener–Weidmann and by
Wilton.

Proposition (Roig–Weil–V., ’07)

Let w ∈ Fr . In view of Wh(w), one can construct (one of the)
Whitehead automorphisms decreasing |w | as much as possible, in
polynomial time w.r.t. both n = |w | and r = rk(Fr).

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Whitehead cut vertex lemma

Definition

Let w = aε1
i1 · · · a

εn
in ∈ Fr be a cyclically reduced word. The Whitehead

(unoriented) graph of w, denoted Wh(w), is: V = {a±1
1 , . . . ,a±1

r } and
E = {{aεj

ij , a−εj+1
ij+1
} | j = 1, . . . ,n (mod n)}.

Theorem (Whitehead’s cut vertex lemma)

If w ∈ Fr is primitive then Wh(w) is either disconnected or has a cut
vertex.

Modern proofs/variations given by Heusener–Weidmann and by
Wilton.

Proposition (Roig–Weil–V., ’07)

Let w ∈ Fr . In view of Wh(w), one can construct (one of the)
Whitehead automorphisms decreasing |w | as much as possible, in
polynomial time w.r.t. both n = |w | and r = rk(Fr).

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Whitehead cut vertex lemma

Definition

Let w = aε1
i1 · · · a

εn
in ∈ Fr be a cyclically reduced word. The Whitehead

(unoriented) graph of w, denoted Wh(w), is: V = {a±1
1 , . . . ,a±1

r } and
E = {{aεj

ij , a−εj+1
ij+1
} | j = 1, . . . ,n (mod n)}.

Theorem (Whitehead’s cut vertex lemma)

If w ∈ Fr is primitive then Wh(w) is either disconnected or has a cut
vertex.

Modern proofs/variations given by Heusener–Weidmann and by
Wilton.

Proposition (Roig–Weil–V., ’07)

Let w ∈ Fr . In view of Wh(w), one can construct (one of the)
Whitehead automorphisms decreasing |w | as much as possible, in
polynomial time w.r.t. both n = |w | and r = rk(Fr).

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Whitehead cut vertex lemma

Definition

Let w = aε1
i1 · · · a

εn
in ∈ Fr be a cyclically reduced word. The Whitehead

(unoriented) graph of w, denoted Wh(w), is: V = {a±1
1 , . . . ,a±1

r } and
E = {{aεj

ij , a−εj+1
ij+1
} | j = 1, . . . ,n (mod n)}.

Theorem (Whitehead’s cut vertex lemma)

If w ∈ Fr is primitive then Wh(w) is either disconnected or has a cut
vertex.

Modern proofs/variations given by Heusener–Weidmann and by
Wilton.

Proposition (Roig–Weil–V., ’07)

Let w ∈ Fr . In view of Wh(w), one can construct (one of the)
Whitehead automorphisms decreasing |w | as much as possible, in
polynomial time w.r.t. both n = |w | and r = rk(Fr).

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Roig–Weil–V. ’s improvement

So, here is a truly polynomial algorithm for checking primitivity:

AlgorithmW: • Given a cyclically reduced w ∈ Fr with |w | = n;
•[1]: -If |w | = 1, answer YES and STOP;

-Construct Wh(w) and check whether it is connected and has
no cut vertex; if so, answer NO and STOP;

-Otherwise, construct the best possible Whitehead auto ϕ for w,
and repeat Step 1 with wϕ replacing w.

Theorem (Roig–Weil–V., ’07)

The algorithmW above works in time wcW(n) = O(r3n2).

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Roig–Weil–V. ’s improvement

So, here is a truly polynomial algorithm for checking primitivity:

AlgorithmW: • Given a cyclically reduced w ∈ Fr with |w | = n;
•[1]: -If |w | = 1, answer YES and STOP;

-Construct Wh(w) and check whether it is connected and has
no cut vertex; if so, answer NO and STOP;

-Otherwise, construct the best possible Whitehead auto ϕ for w,
and repeat Step 1 with wϕ replacing w.

Theorem (Roig–Weil–V., ’07)

The algorithmW above works in time wcW(n) = O(r3n2).

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Roig–Weil–V. ’s improvement

So, here is a truly polynomial algorithm for checking primitivity:

AlgorithmW: • Given a cyclically reduced w ∈ Fr with |w | = n;
•[1]: -If |w | = 1, answer YES and STOP;

-Construct Wh(w) and check whether it is connected and has
no cut vertex; if so, answer NO and STOP;

-Otherwise, construct the best possible Whitehead auto ϕ for w,
and repeat Step 1 with wϕ replacing w.

Theorem (Roig–Weil–V., ’07)

The algorithmW above works in time wcW(n) = O(r3n2).

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Roig–Weil–V. ’s improvement

So, here is a truly polynomial algorithm for checking primitivity:

AlgorithmW: • Given a cyclically reduced w ∈ Fr with |w | = n;
•[1]: -If |w | = 1, answer YES and STOP;

-Construct Wh(w) and check whether it is connected and has
no cut vertex; if so, answer NO and STOP;

-Otherwise, construct the best possible Whitehead auto ϕ for w,
and repeat Step 1 with wϕ replacing w.

Theorem (Roig–Weil–V., ’07)

The algorithmW above works in time wcW(n) = O(r3n2).

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Roig–Weil–V. ’s improvement

So, here is a truly polynomial algorithm for checking primitivity:

AlgorithmW: • Given a cyclically reduced w ∈ Fr with |w | = n;
•[1]: -If |w | = 1, answer YES and STOP;

-Construct Wh(w) and check whether it is connected and has
no cut vertex; if so, answer NO and STOP;

-Otherwise, construct the best possible Whitehead auto ϕ for w,
and repeat Step 1 with wϕ replacing w.

Theorem (Roig–Weil–V., ’07)

The algorithmW above works in time wcW(n) = O(r3n2).

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Roig–Weil–V. ’s improvement

So, here is a truly polynomial algorithm for checking primitivity:

AlgorithmW: • Given a cyclically reduced w ∈ Fr with |w | = n;
•[1]: -If |w | = 1, answer YES and STOP;

-Construct Wh(w) and check whether it is connected and has
no cut vertex; if so, answer NO and STOP;

-Otherwise, construct the best possible Whitehead auto ϕ for w,
and repeat Step 1 with wϕ replacing w.

Theorem (Roig–Weil–V., ’07)

The algorithmW above works in time wcW(n) = O(r3n2).

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Shpilrain’s improvement

Shpilrain’s idea for fast primitivity checking is as follows:

Algorithm S: • Given a cyclically reduced w ∈ Fr with |w | = n,
• keep constructing Wh(w), edge by edge;
• If at some step, the actual graph is connected and has no cut
vertex, answer NO and STOP;
• Otherwise, applyW to decide whether w is primitive; STOP.

Theorem (Shpilrain, ’23)

The above algorithm S works in time acS(n) = O(1).

... However, this constant depends on the ambient rank r ...

Proposition (Roy–Weil–V.)

Let r > 2. There is 0 < β(r) < 1− 1
2 r−2 such that S works in time

acS(n) = O
((r

1−β(r)
)2

+ r3
)

= O(r6).

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Shpilrain’s improvement

Shpilrain’s idea for fast primitivity checking is as follows:

Algorithm S: • Given a cyclically reduced w ∈ Fr with |w | = n,
• keep constructing Wh(w), edge by edge;
• If at some step, the actual graph is connected and has no cut
vertex, answer NO and STOP;
• Otherwise, applyW to decide whether w is primitive; STOP.

Theorem (Shpilrain, ’23)

The above algorithm S works in time acS(n) = O(1).

... However, this constant depends on the ambient rank r ...

Proposition (Roy–Weil–V.)

Let r > 2. There is 0 < β(r) < 1− 1
2 r−2 such that S works in time

acS(n) = O
((r

1−β(r)
)2

+ r3
)

= O(r6).

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Shpilrain’s improvement

Shpilrain’s idea for fast primitivity checking is as follows:

Algorithm S: • Given a cyclically reduced w ∈ Fr with |w | = n,
• keep constructing Wh(w), edge by edge;
• If at some step, the actual graph is connected and has no cut
vertex, answer NO and STOP;
• Otherwise, applyW to decide whether w is primitive; STOP.

Theorem (Shpilrain, ’23)

The above algorithm S works in time acS(n) = O(1).

... However, this constant depends on the ambient rank r ...

Proposition (Roy–Weil–V.)

Let r > 2. There is 0 < β(r) < 1− 1
2 r−2 such that S works in time

acS(n) = O
((r

1−β(r)
)2

+ r3
)

= O(r6).

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Shpilrain’s improvement

Shpilrain’s idea for fast primitivity checking is as follows:

Algorithm S: • Given a cyclically reduced w ∈ Fr with |w | = n,
• keep constructing Wh(w), edge by edge;
• If at some step, the actual graph is connected and has no cut
vertex, answer NO and STOP;
• Otherwise, applyW to decide whether w is primitive; STOP.

Theorem (Shpilrain, ’23)

The above algorithm S works in time acS(n) = O(1).

... However, this constant depends on the ambient rank r ...

Proposition (Roy–Weil–V.)

Let r > 2. There is 0 < β(r) < 1− 1
2 r−2 such that S works in time

acS(n) = O
((r

1−β(r)
)2

+ r3
)

= O(r6).

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Shpilrain’s improvement

Shpilrain’s idea for fast primitivity checking is as follows:

Algorithm S: • Given a cyclically reduced w ∈ Fr with |w | = n,
• keep constructing Wh(w), edge by edge;
• If at some step, the actual graph is connected and has no cut
vertex, answer NO and STOP;
• Otherwise, applyW to decide whether w is primitive; STOP.

Theorem (Shpilrain, ’23)

The above algorithm S works in time acS(n) = O(1).

... However, this constant depends on the ambient rank r ...

Proposition (Roy–Weil–V.)

Let r > 2. There is 0 < β(r) < 1− 1
2 r−2 such that S works in time

acS(n) = O
((r

1−β(r)
)2

+ r3
)

= O(r6).

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Shpilrain’s improvement

Shpilrain’s idea for fast primitivity checking is as follows:

Algorithm S: • Given a cyclically reduced w ∈ Fr with |w | = n,
• keep constructing Wh(w), edge by edge;
• If at some step, the actual graph is connected and has no cut
vertex, answer NO and STOP;
• Otherwise, applyW to decide whether w is primitive; STOP.

Theorem (Shpilrain, ’23)

The above algorithm S works in time acS(n) = O(1).

... However, this constant depends on the ambient rank r ...

Proposition (Roy–Weil–V.)

Let r > 2. There is 0 < β(r) < 1− 1
2 r−2 such that S works in time

acS(n) = O
((r

1−β(r)
)2

+ r3
)

= O(r6).

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Shpilrain’s improvement

Shpilrain’s idea for fast primitivity checking is as follows:

Algorithm S: • Given a cyclically reduced w ∈ Fr with |w | = n,
• keep constructing Wh(w), edge by edge;
• If at some step, the actual graph is connected and has no cut
vertex, answer NO and STOP;
• Otherwise, applyW to decide whether w is primitive; STOP.

Theorem (Shpilrain, ’23)

The above algorithm S works in time acS(n) = O(1).

... However, this constant depends on the ambient rank r ...

Proposition (Roy–Weil–V.)

Let r > 2. There is 0 < β(r) < 1− 1
2 r−2 such that S works in time

acS(n) = O
((r

1−β(r)
)2

+ r3
)

= O(r6).

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Shpilrain’s improvement

Shpilrain’s idea for fast primitivity checking is as follows:

Algorithm S: • Given a cyclically reduced w ∈ Fr with |w | = n,
• keep constructing Wh(w), edge by edge;
• If at some step, the actual graph is connected and has no cut
vertex, answer NO and STOP;
• Otherwise, applyW to decide whether w is primitive; STOP.

Theorem (Shpilrain, ’23)

The above algorithm S works in time acS(n) = O(1).

... However, this constant depends on the ambient rank r ...

Proposition (Roy–Weil–V.)

Let r > 2. There is 0 < β(r) < 1− 1
2 r−2 such that S works in time

acS(n) = O
((r

1−β(r)
)2

+ r3
)

= O(r6).

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Outline

1 Complexity of algorithms

2 On Whitehead’s algorithm

3 The Central Tree Property

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Relative Primitivity

Definition (Relative Primitivity Problem)

• Given w0,w1, . . . ,wk ∈ Fr ;
• Decide if w0 (belongs to and) is primitive in H = 〈w1, . . . ,wk 〉 6 Fr .

Definition (Uniform Membership Problem)

• Given w0,w1, . . . ,wk ∈ Fr ;
• Decide if w0 belongs to H = 〈w1, . . . ,wk 〉 6 Fr ; in this case, write w0
in terms of some basis for H.

We consider the size of the input as |w0|+ |w1|+ · · ·+ |wk |, with ...

• k constant: I = F k+1
r and |(w0,w1, . . . ,wr)| = m +

∑k
i=1 |wi |, or

• k 6 f (n): I = {(w0,w1, . . . ,wk) ∈ F k+1
r | k 6 f (n), n = maxk

i=1 |wi |}
and |(w0,w1, . . . ,wr)| = m +

∑k
i=i |wi | 6 m + nf (n),

where m = |w0|.

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Relative Primitivity

Definition (Relative Primitivity Problem)

• Given w0,w1, . . . ,wk ∈ Fr ;
• Decide if w0 (belongs to and) is primitive in H = 〈w1, . . . ,wk 〉 6 Fr .

Definition (Uniform Membership Problem)

• Given w0,w1, . . . ,wk ∈ Fr ;
• Decide if w0 belongs to H = 〈w1, . . . ,wk 〉 6 Fr ; in this case, write w0
in terms of some basis for H.

We consider the size of the input as |w0|+ |w1|+ · · ·+ |wk |, with ...

• k constant: I = F k+1
r and |(w0,w1, . . . ,wr)| = m +

∑k
i=1 |wi |, or

• k 6 f (n): I = {(w0,w1, . . . ,wk) ∈ F k+1
r | k 6 f (n), n = maxk

i=1 |wi |}
and |(w0,w1, . . . ,wr)| = m +

∑k
i=i |wi | 6 m + nf (n),

where m = |w0|.

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Relative Primitivity

Definition (Relative Primitivity Problem)

• Given w0,w1, . . . ,wk ∈ Fr ;
• Decide if w0 (belongs to and) is primitive in H = 〈w1, . . . ,wk 〉 6 Fr .

Definition (Uniform Membership Problem)

• Given w0,w1, . . . ,wk ∈ Fr ;
• Decide if w0 belongs to H = 〈w1, . . . ,wk 〉 6 Fr ; in this case, write w0
in terms of some basis for H.

We consider the size of the input as |w0|+ |w1|+ · · ·+ |wk |, with ...

• k constant: I = F k+1
r and |(w0,w1, . . . ,wr)| = m +

∑k
i=1 |wi |, or

• k 6 f (n): I = {(w0,w1, . . . ,wk) ∈ F k+1
r | k 6 f (n), n = maxk

i=1 |wi |}
and |(w0,w1, . . . ,wr)| = m +

∑k
i=i |wi | 6 m + nf (n),

where m = |w0|.

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Relative Primitivity

Definition (Relative Primitivity Problem)

• Given w0,w1, . . . ,wk ∈ Fr ;
• Decide if w0 (belongs to and) is primitive in H = 〈w1, . . . ,wk 〉 6 Fr .

Definition (Uniform Membership Problem)

• Given w0,w1, . . . ,wk ∈ Fr ;
• Decide if w0 belongs to H = 〈w1, . . . ,wk 〉 6 Fr ; in this case, write w0
in terms of some basis for H.

We consider the size of the input as |w0|+ |w1|+ · · ·+ |wk |, with ...

• k constant: I = F k+1
r and |(w0,w1, . . . ,wr)| = m +

∑k
i=1 |wi |, or

• k 6 f (n): I = {(w0,w1, . . . ,wk) ∈ F k+1
r | k 6 f (n), n = maxk

i=1 |wi |}
and |(w0,w1, . . . ,wr)| = m +

∑k
i=i |wi | 6 m + nf (n),

where m = |w0|.

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Relative Primitivity

Definition (Relative Primitivity Problem)

• Given w0,w1, . . . ,wk ∈ Fr ;
• Decide if w0 (belongs to and) is primitive in H = 〈w1, . . . ,wk 〉 6 Fr .

Definition (Uniform Membership Problem)

• Given w0,w1, . . . ,wk ∈ Fr ;
• Decide if w0 belongs to H = 〈w1, . . . ,wk 〉 6 Fr ; in this case, write w0
in terms of some basis for H.

We consider the size of the input as |w0|+ |w1|+ · · ·+ |wk |, with ...

• k constant: I = F k+1
r and |(w0,w1, . . . ,wr)| = m +

∑k
i=1 |wi |, or

• k 6 f (n): I = {(w0,w1, . . . ,wk) ∈ F k+1
r | k 6 f (n), n = maxk

i=1 |wi |}
and |(w0,w1, . . . ,wr)| = m +

∑k
i=i |wi | 6 m + nf (n),

where m = |w0|.

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Uniform Membership

Uniform Membership can be nicely solved using Stallings graphs ...

AlgorithmMP: • Given w0,w1, . . . ,wk ∈ Fr ;
• Construct the Stallings graph Γ(H) for H = 〈w1, . . . ,wk 〉 6 Fr ;
• If w0 spells the label of a closed path at the basepoint of Γ(H)
answer YES; otherwise answer NO;
• In the affirmative case, construct a maximal tree T in Γ(H),
construct the corresponding basis B for H, and keep track of the visits
of the above closed path to the edges outside T ; STOP.

Theorem (Touikan, ’06)

The algorithmMP runs in time wcMP(n) = O(kn log∗(kn) + m),
where n = maxi=1,...,k |wi | and m = |w0|.

To solve these problems with low average case complexity, the
Central Tree Property will be essential ...

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Uniform Membership

Uniform Membership can be nicely solved using Stallings graphs ...

AlgorithmMP: • Given w0,w1, . . . ,wk ∈ Fr ;
• Construct the Stallings graph Γ(H) for H = 〈w1, . . . ,wk 〉 6 Fr ;
• If w0 spells the label of a closed path at the basepoint of Γ(H)
answer YES; otherwise answer NO;
• In the affirmative case, construct a maximal tree T in Γ(H),
construct the corresponding basis B for H, and keep track of the visits
of the above closed path to the edges outside T ; STOP.

Theorem (Touikan, ’06)

The algorithmMP runs in time wcMP(n) = O(kn log∗(kn) + m),
where n = maxi=1,...,k |wi | and m = |w0|.

To solve these problems with low average case complexity, the
Central Tree Property will be essential ...

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Uniform Membership

Uniform Membership can be nicely solved using Stallings graphs ...

AlgorithmMP: • Given w0,w1, . . . ,wk ∈ Fr ;
• Construct the Stallings graph Γ(H) for H = 〈w1, . . . ,wk 〉 6 Fr ;
• If w0 spells the label of a closed path at the basepoint of Γ(H)
answer YES; otherwise answer NO;
• In the affirmative case, construct a maximal tree T in Γ(H),
construct the corresponding basis B for H, and keep track of the visits
of the above closed path to the edges outside T ; STOP.

Theorem (Touikan, ’06)

The algorithmMP runs in time wcMP(n) = O(kn log∗(kn) + m),
where n = maxi=1,...,k |wi | and m = |w0|.

To solve these problems with low average case complexity, the
Central Tree Property will be essential ...

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Uniform Membership

Uniform Membership can be nicely solved using Stallings graphs ...

AlgorithmMP: • Given w0,w1, . . . ,wk ∈ Fr ;
• Construct the Stallings graph Γ(H) for H = 〈w1, . . . ,wk 〉 6 Fr ;
• If w0 spells the label of a closed path at the basepoint of Γ(H)
answer YES; otherwise answer NO;
• In the affirmative case, construct a maximal tree T in Γ(H),
construct the corresponding basis B for H, and keep track of the visits
of the above closed path to the edges outside T ; STOP.

Theorem (Touikan, ’06)

The algorithmMP runs in time wcMP(n) = O(kn log∗(kn) + m),
where n = maxi=1,...,k |wi | and m = |w0|.

To solve these problems with low average case complexity, the
Central Tree Property will be essential ...

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Uniform Membership

Uniform Membership can be nicely solved using Stallings graphs ...

AlgorithmMP: • Given w0,w1, . . . ,wk ∈ Fr ;
• Construct the Stallings graph Γ(H) for H = 〈w1, . . . ,wk 〉 6 Fr ;
• If w0 spells the label of a closed path at the basepoint of Γ(H)
answer YES; otherwise answer NO;
• In the affirmative case, construct a maximal tree T in Γ(H),
construct the corresponding basis B for H, and keep track of the visits
of the above closed path to the edges outside T ; STOP.

Theorem (Touikan, ’06)

The algorithmMP runs in time wcMP(n) = O(kn log∗(kn) + m),
where n = maxi=1,...,k |wi | and m = |w0|.

To solve these problems with low average case complexity, the
Central Tree Property will be essential ...

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Uniform Membership

Uniform Membership can be nicely solved using Stallings graphs ...

AlgorithmMP: • Given w0,w1, . . . ,wk ∈ Fr ;
• Construct the Stallings graph Γ(H) for H = 〈w1, . . . ,wk 〉 6 Fr ;
• If w0 spells the label of a closed path at the basepoint of Γ(H)
answer YES; otherwise answer NO;
• In the affirmative case, construct a maximal tree T in Γ(H),
construct the corresponding basis B for H, and keep track of the visits
of the above closed path to the edges outside T ; STOP.

Theorem (Touikan, ’06)

The algorithmMP runs in time wcMP(n) = O(kn log∗(kn) + m),
where n = maxi=1,...,k |wi | and m = |w0|.

To solve these problems with low average case complexity, the
Central Tree Property will be essential ...

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Uniform Membership

Uniform Membership can be nicely solved using Stallings graphs ...

AlgorithmMP: • Given w0,w1, . . . ,wk ∈ Fr ;
• Construct the Stallings graph Γ(H) for H = 〈w1, . . . ,wk 〉 6 Fr ;
• If w0 spells the label of a closed path at the basepoint of Γ(H)
answer YES; otherwise answer NO;
• In the affirmative case, construct a maximal tree T in Γ(H),
construct the corresponding basis B for H, and keep track of the visits
of the above closed path to the edges outside T ; STOP.

Theorem (Touikan, ’06)

The algorithmMP runs in time wcMP(n) = O(kn log∗(kn) + m),
where n = maxi=1,...,k |wi | and m = |w0|.

To solve these problems with low average case complexity, the
Central Tree Property will be essential ...

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

The Central Tree Property

Definition

Let d > 1. We say that the k-tuple w = (w1, . . . ,wk) ∈ F k
r has the

d-central tree property (d-CTP) if mink
i=1 |wi | > 2d + 1, and the 2d

prefixes of length d of the w±1
i ’s,

wi = prd (wi) ·mfd (wi) · prd (w−1
i)−1,

are pairwise distinct. We say that w has the CTP if it has the d-CTP
for some 1 6 d < n/2, where n = mink

i=1 |wi |.

Observation

Let w = (w1, . . . ,wk) and H = 〈w1, . . . ,wk 〉 6 Fr . If w has the CTP
then the Stallings graph Γ(H) consists on the ‘tree of prefixes’ plus k
arcs connecting their leaves; in particular, rk(H) = k and {w1, . . . ,wk}
is a free basis for H.

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

The Central Tree Property

Definition

Let d > 1. We say that the k-tuple w = (w1, . . . ,wk) ∈ F k
r has the

d-central tree property (d-CTP) if mink
i=1 |wi | > 2d + 1, and the 2d

prefixes of length d of the w±1
i ’s,

wi = prd (wi) ·mfd (wi) · prd (w−1
i)−1,

are pairwise distinct. We say that w has the CTP if it has the d-CTP
for some 1 6 d < n/2, where n = mink

i=1 |wi |.

Observation

Let w = (w1, . . . ,wk) and H = 〈w1, . . . ,wk 〉 6 Fr . If w has the CTP
then the Stallings graph Γ(H) consists on the ‘tree of prefixes’ plus k
arcs connecting their leaves; in particular, rk(H) = k and {w1, . . . ,wk}
is a free basis for H.

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Membership Problem solved fast

Lemma

Let d(n) be a non-decreasing function with d(n) < n/2. A random
k-tuple of words in Fr of length up to n fails the d(n)-CTP with
probability O(k2(2r − 1)−d(n/2)).

For an increasing function d(n) with d(n) < n/2, consider
AlgorithmMPd : • Given w0,w1, . . . ,wk ∈ Fr ;
•[1] -Compute n = maxk

i=1 |wi |.
-Construct the tree of d(n)-prefixes Γd(n)(w);
-If w has the d(n)-CTP and mink

i=1 |wi | > n/2 go to Step 2;
otherwise, runMP to decide whether w0 ∈ H and find an
expression for it in some basis for H; STOP;

•[2] Γ(H) equals Γd(n)(w) plus k arcs labeled mfd(n)(wi);
-Start reading w0 in Γ(H) from the basepoint, and keeping track
of the sequence of arcs fully crossed;

-If the reading cannot be completed to a closed path answer NO;
otherwise, answer YES and output the expression of w0 in the
free basis {w1, . . . ,wk} for H; STOP.

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Membership Problem solved fast

Lemma

Let d(n) be a non-decreasing function with d(n) < n/2. A random
k-tuple of words in Fr of length up to n fails the d(n)-CTP with
probability O(k2(2r − 1)−d(n/2)).

For an increasing function d(n) with d(n) < n/2, consider
AlgorithmMPd : • Given w0,w1, . . . ,wk ∈ Fr ;
•[1] -Compute n = maxk

i=1 |wi |.
-Construct the tree of d(n)-prefixes Γd(n)(w);
-If w has the d(n)-CTP and mink

i=1 |wi | > n/2 go to Step 2;
otherwise, runMP to decide whether w0 ∈ H and find an
expression for it in some basis for H; STOP;

•[2] Γ(H) equals Γd(n)(w) plus k arcs labeled mfd(n)(wi);
-Start reading w0 in Γ(H) from the basepoint, and keeping track
of the sequence of arcs fully crossed;

-If the reading cannot be completed to a closed path answer NO;
otherwise, answer YES and output the expression of w0 in the
free basis {w1, . . . ,wk} for H; STOP.

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Membership Problem solved fast

Lemma

Let d(n) be a non-decreasing function with d(n) < n/2. A random
k-tuple of words in Fr of length up to n fails the d(n)-CTP with
probability O(k2(2r − 1)−d(n/2)).

For an increasing function d(n) with d(n) < n/2, consider
AlgorithmMPd : • Given w0,w1, . . . ,wk ∈ Fr ;
•[1] -Compute n = maxk

i=1 |wi |.
-Construct the tree of d(n)-prefixes Γd(n)(w);
-If w has the d(n)-CTP and mink

i=1 |wi | > n/2 go to Step 2;
otherwise, runMP to decide whether w0 ∈ H and find an
expression for it in some basis for H; STOP;

•[2] Γ(H) equals Γd(n)(w) plus k arcs labeled mfd(n)(wi);
-Start reading w0 in Γ(H) from the basepoint, and keeping track
of the sequence of arcs fully crossed;

-If the reading cannot be completed to a closed path answer NO;
otherwise, answer YES and output the expression of w0 in the
free basis {w1, . . . ,wk} for H; STOP.

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Membership Problem solved fast

Lemma

Let d(n) be a non-decreasing function with d(n) < n/2. A random
k-tuple of words in Fr of length up to n fails the d(n)-CTP with
probability O(k2(2r − 1)−d(n/2)).

For an increasing function d(n) with d(n) < n/2, consider
AlgorithmMPd : • Given w0,w1, . . . ,wk ∈ Fr ;
•[1] -Compute n = maxk

i=1 |wi |.
-Construct the tree of d(n)-prefixes Γd(n)(w);
-If w has the d(n)-CTP and mink

i=1 |wi | > n/2 go to Step 2;
otherwise, runMP to decide whether w0 ∈ H and find an
expression for it in some basis for H; STOP;

•[2] Γ(H) equals Γd(n)(w) plus k arcs labeled mfd(n)(wi);
-Start reading w0 in Γ(H) from the basepoint, and keeping track
of the sequence of arcs fully crossed;

-If the reading cannot be completed to a closed path answer NO;
otherwise, answer YES and output the expression of w0 in the
free basis {w1, . . . ,wk} for H; STOP.

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Membership Problem solved fast

Theorem (Roy–Weil–V.)

Consider the algorithmMPd with input a word of length m and a
k(n)-tuple of words of length at most n in Fr . If
(i) k(n) is constant then acMPd (n) = O

(
log n + mn− log(2r−1)

)
, while

wcMPd (n) = O
(
n log∗ n + m

)
;

(ii) k(n) = nβ , β > 0, then acMPd (n) = O
(
nβ+γ + mn2β(2r − 1)−nγ

)
for any 0 < γ < 1, while wcMPd (n) = O

(
nβ+1 log∗ n + m

)
;

(iii) k(n) = (2r − 1)βn, 0 < β < 1
18 then, for 0 < ε < 1

8 −
9β
4 ,

acMPd (n) = O
(
n(2r − 1)βn + m(2r − 1)(

9
4β−

1
8+ε)n

)
, while

wcMPd (n) = O
(
n(2r − 1)βn log∗ n + m).

And combined with the relative version of algorithm S, we can solve
the Relative Primitivity Problem fast:

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Membership Problem solved fast

Theorem (Roy–Weil–V.)

Consider the algorithmMPd with input a word of length m and a
k(n)-tuple of words of length at most n in Fr . If
(i) k(n) is constant then acMPd (n) = O

(
log n + mn− log(2r−1)

)
, while

wcMPd (n) = O
(
n log∗ n + m

)
;

(ii) k(n) = nβ , β > 0, then acMPd (n) = O
(
nβ+γ + mn2β(2r − 1)−nγ

)
for any 0 < γ < 1, while wcMPd (n) = O

(
nβ+1 log∗ n + m

)
;

(iii) k(n) = (2r − 1)βn, 0 < β < 1
18 then, for 0 < ε < 1

8 −
9β
4 ,

acMPd (n) = O
(
n(2r − 1)βn + m(2r − 1)(

9
4β−

1
8+ε)n

)
, while

wcMPd (n) = O
(
n(2r − 1)βn log∗ n + m).

And combined with the relative version of algorithm S, we can solve
the Relative Primitivity Problem fast:

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Membership Problem solved fast

Theorem (Roy–Weil–V.)

Consider the algorithmMPd with input a word of length m and a
k(n)-tuple of words of length at most n in Fr . If
(i) k(n) is constant then acMPd (n) = O

(
log n + mn− log(2r−1)

)
, while

wcMPd (n) = O
(
n log∗ n + m

)
;

(ii) k(n) = nβ , β > 0, then acMPd (n) = O
(
nβ+γ + mn2β(2r − 1)−nγ

)
for any 0 < γ < 1, while wcMPd (n) = O

(
nβ+1 log∗ n + m

)
;

(iii) k(n) = (2r − 1)βn, 0 < β < 1
18 then, for 0 < ε < 1

8 −
9β
4 ,

acMPd (n) = O
(
n(2r − 1)βn + m(2r − 1)(

9
4β−

1
8+ε)n

)
, while

wcMPd (n) = O
(
n(2r − 1)βn log∗ n + m).

And combined with the relative version of algorithm S, we can solve
the Relative Primitivity Problem fast:

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Membership Problem solved fast

Theorem (Roy–Weil–V.)

Consider the algorithmMPd with input a word of length m and a
k(n)-tuple of words of length at most n in Fr . If
(i) k(n) is constant then acMPd (n) = O

(
log n + mn− log(2r−1)

)
, while

wcMPd (n) = O
(
n log∗ n + m

)
;

(ii) k(n) = nβ , β > 0, then acMPd (n) = O
(
nβ+γ + mn2β(2r − 1)−nγ

)
for any 0 < γ < 1, while wcMPd (n) = O

(
nβ+1 log∗ n + m

)
;

(iii) k(n) = (2r − 1)βn, 0 < β < 1
18 then, for 0 < ε < 1

8 −
9β
4 ,

acMPd (n) = O
(
n(2r − 1)βn + m(2r − 1)(

9
4β−

1
8+ε)n

)
, while

wcMPd (n) = O
(
n(2r − 1)βn log∗ n + m).

And combined with the relative version of algorithm S, we can solve
the Relative Primitivity Problem fast:

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Relative Primitivity Problem solved fast

For an increasing function d(n) with d(n) < n/2, consider
Algorithm RPd : • Given w0,w1, . . . ,wk ∈ Fr ;
•[1] -Compute n = maxk

i=1 |wi |.
-Construct the tree of d(n)-prefixes Γd(n)(w);
-If w has the d(n)-CTP and mink

i=1 |wi | > n/2 go to Step 2;
otherwise, runMP to decide whether w0 ∈ H and find an
expression for it in some basis for H; then run S to check
whether w0 is primitive in H; STOP;

•[2] Γ(H) equals Γd(n)(w) plus k arcs labeled mfd(n)(wi);
-Start reading w0 in Γ(H) from the basepoint, keeping track of the
sequence of arcs fully crossed, and constructing the graph
Wh(w) (w.r.t. {w1, . . . ,wk}) edge by edge;

-If it cannot be completed to a closed path answer NO; STOP;
-If the actual portion of Wh(w) is connected and has no cut
vertex, answer NO; STOP;

-Otherwise, applyW to check whether the element w ∈ H is
primitive in H; STOP.

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Relative Primitivity Problem solved fast

For an increasing function d(n) with d(n) < n/2, consider
Algorithm RPd : • Given w0,w1, . . . ,wk ∈ Fr ;
•[1] -Compute n = maxk

i=1 |wi |.
-Construct the tree of d(n)-prefixes Γd(n)(w);
-If w has the d(n)-CTP and mink

i=1 |wi | > n/2 go to Step 2;
otherwise, runMP to decide whether w0 ∈ H and find an
expression for it in some basis for H; then run S to check
whether w0 is primitive in H; STOP;

•[2] Γ(H) equals Γd(n)(w) plus k arcs labeled mfd(n)(wi);
-Start reading w0 in Γ(H) from the basepoint, keeping track of the
sequence of arcs fully crossed, and constructing the graph
Wh(w) (w.r.t. {w1, . . . ,wk}) edge by edge;

-If it cannot be completed to a closed path answer NO; STOP;
-If the actual portion of Wh(w) is connected and has no cut
vertex, answer NO; STOP;

-Otherwise, applyW to check whether the element w ∈ H is
primitive in H; STOP.

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Relative Primitivity Problem solved fast

For an increasing function d(n) with d(n) < n/2, consider
Algorithm RPd : • Given w0,w1, . . . ,wk ∈ Fr ;
•[1] -Compute n = maxk

i=1 |wi |.
-Construct the tree of d(n)-prefixes Γd(n)(w);
-If w has the d(n)-CTP and mink

i=1 |wi | > n/2 go to Step 2;
otherwise, runMP to decide whether w0 ∈ H and find an
expression for it in some basis for H; then run S to check
whether w0 is primitive in H; STOP;

•[2] Γ(H) equals Γd(n)(w) plus k arcs labeled mfd(n)(wi);
-Start reading w0 in Γ(H) from the basepoint, keeping track of the
sequence of arcs fully crossed, and constructing the graph
Wh(w) (w.r.t. {w1, . . . ,wk}) edge by edge;

-If it cannot be completed to a closed path answer NO; STOP;
-If the actual portion of Wh(w) is connected and has no cut
vertex, answer NO; STOP;

-Otherwise, applyW to check whether the element w ∈ H is
primitive in H; STOP.

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Relative Primitivity Problem solved fast

Theorem (Roy–Weil–V.)

Consider the algorithm RPd with input a word of length m and a
k(n)-tuple of words of length at most n in Fr . If
(i) k(n) is constant then acRPd (n) = O

(
log n + mn− log(2r−1)

)
;

(ii) k(n) = nβ , β > 0, then for any 0 < γ < 1,
acRPd (n) = O

(
nβ+γ + n2β(2r − 1)−nγm + n6β

(2
2r−1

)m);
(iii) k(n) = (2r − 1)βn, 0 < β < 1

58 then,

acRPd (n) = O
(
n(2r − 1)βn + (2r − 1)−5βnm + (2r − 1)6βn− 1−58β

1−56βm).

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Relative Primitivity Problem solved fast

Theorem (Roy–Weil–V.)

Consider the algorithm RPd with input a word of length m and a
k(n)-tuple of words of length at most n in Fr . If
(i) k(n) is constant then acRPd (n) = O

(
log n + mn− log(2r−1)

)
;

(ii) k(n) = nβ , β > 0, then for any 0 < γ < 1,
acRPd (n) = O

(
nβ+γ + n2β(2r − 1)−nγm + n6β

(2
2r−1

)m);
(iii) k(n) = (2r − 1)βn, 0 < β < 1

58 then,

acRPd (n) = O
(
n(2r − 1)βn + (2r − 1)−5βnm + (2r − 1)6βn− 1−58β

1−56βm).

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

Relative Primitivity Problem solved fast

Theorem (Roy–Weil–V.)

Consider the algorithm RPd with input a word of length m and a
k(n)-tuple of words of length at most n in Fr . If
(i) k(n) is constant then acRPd (n) = O

(
log n + mn− log(2r−1)

)
;

(ii) k(n) = nβ , β > 0, then for any 0 < γ < 1,
acRPd (n) = O

(
nβ+γ + n2β(2r − 1)−nγm + n6β

(2
2r−1

)m);
(iii) k(n) = (2r − 1)βn, 0 < β < 1

58 then,

acRPd (n) = O
(
n(2r − 1)βn + (2r − 1)−5βnm + (2r − 1)6βn− 1−58β

1−56βm).

1. Complexity of algorithms 2. On Whitehead’s algorithm 3. The Central Tree Property

THANKS

	Complexity of algorithms
	

	On Whitehead's algorithm
	

	The Central Tree Property
	

