The central tree property and some average case complexity results for algorithmic problems in free groups

Enric Ventura

Departament de Matemàtiques Universitat Politècnica de Catalunya

New York Group Theory Seminar

Complexity Day

(joint work with M. Roy and P. Weil)

December 8th, 2023.

Outline

- Complexity of algorithms
- 2 On Whitehead's algorithm
- The Central Tree Property

Outline

- Complexity of algorithms
- 2 On Whitehead's algorithm
- The Central Tree Property

Decision problems

Definition

A decision problem \mathcal{P} is determined by a well-defined set of inputs I, and a YES/NO property $P \subseteq I$ you want to know about each of them:

- Given $u \in I$,
- Decide whether u satisfies P (i.e., $u \in P$).

Typically, the set I comes with a notion of size (or length), $\ell \colon I \to \mathbb{N}$ such that, for every $n \geqslant 0$, $|\{u \in I \mid \ell(u) \leqslant n\}| < \infty$.

Definition

A decision problem is solvable when there exists an algorithm A (i.e., a Turing machine) answering correctly for each given input $u \in I$.

Decision problems

Definition

A decision problem \mathcal{P} is determined by a well-defined set of inputs I, and a YES/NO property $P \subseteq I$ you want to know about each of them:

- Given $u \in I$,
- Decide whether u satisfies P (i.e., $u \in P$).

Typically, the set I comes with a notion of size (or length), $\ell: I \to \mathbb{N}$, such that, for every $n \ge 0$, $|\{u \in I \mid \ell(u) \le n\}| < \infty$.

Definition

A decision problem is solvable when there exists an algorithm A (i.e., a Turing machine) answering correctly for each given input $u \in I$.

Decision problems

Definition

A decision problem \mathcal{P} is determined by a well-defined set of inputs I, and a YES/NO property $P \subseteq I$ you want to know about each of them:

- Given $u \in I$,
- Decide whether u satisfies P (i.e., $u \in P$).

Typically, the set I comes with a notion of size (or length), $\ell: I \to \mathbb{N}$, such that, for every $n \ge 0$, $|\{u \in I \mid \ell(u) \le n\}| < \infty$.

Definition

A decision problem is solvable when there exists an algorithm \mathcal{A} (i.e., a Turing machine) answering correctly for each given input $u \in I$.

Definition

Suppose algorithm A solves a decision problem P.

- Given $u \in I$, we denote by t(u) the time (i.e., number of steps) taken by A to give the correct answer for input u.
- The worst case complexity of A is the function $wc_A : \mathbb{N} \to \mathbb{N}$, $n \mapsto wc_A(n) = \max_{\{u \in I \mid \ell(u) \leqslant n\}} t(u)$.
- The average case complexity of \mathcal{A} is the function $\operatorname{ac}_{\mathcal{A}} \colon \mathbb{N} \to \mathbb{N}$, $n \mapsto \operatorname{ac}_{\mathcal{A}}(n) = \frac{\sum_{\{u \in I \mid \ell(u) \leq n\}} \operatorname{t}(u)}{\|\{u \in I \mid \ell(u) \leq n\}\|}$.
- These functions are only interesting up to asymptotic equivalence.

Observation

Definition

Suppose algorithm A solves a decision problem P.

- Given $u \in I$, we denote by t(u) the time (i.e., number of steps) taken by A to give the correct answer for input u.
- The worst case complexity of A is the function $wc_A : \mathbb{N} \to \mathbb{N}$, $n \mapsto wc_A(n) = \max_{\{u \in \mathcal{U}(u) \leq n\}} \pm (u)$.
- The average case complexity of \mathcal{A} is the function $\mathtt{ac}_{\mathcal{A}} \colon \mathbb{N} \to \mathbb{N}$, $\sum_{\{u \in ||f(u) \leq n\}} t(u)$
- These functions are only interesting up to asymptotic equivalence.

Observation

Definition

Suppose algorithm A solves a decision problem P.

- Given $u \in I$, we denote by t(u) the time (i.e., number of steps) taken by A to give the correct answer for input u.
- The worst case complexity of \mathcal{A} is the function $wc_{\mathcal{A}} \colon \mathbb{N} \to \mathbb{N}$, $n \mapsto wc_{\mathcal{A}}(n) = \max_{\{u \in I \mid \ell(u) \leqslant n\}} t(u)$.
- The average case complexity of \mathcal{A} is the function $\operatorname{ac}_{\mathcal{A}} \colon \mathbb{N} \to \mathbb{N}$, $n \mapsto \operatorname{ac}_{\mathcal{A}}(n) = \frac{\sum_{\{u \in I \mid \ell(u) \leq n\}} \operatorname{t}^{\iota}(u)}{|\{u \in I \mid \ell(u) \leq n\}|}$.
- These functions are only interesting up to asymptotic equivalence.

Observation

Definition

Suppose algorithm A solves a decision problem P.

- Given $u \in I$, we denote by t(u) the time (i.e., number of steps) taken by A to give the correct answer for input u.
- The worst case complexity of \mathcal{A} is the function $wc_{\mathcal{A}} \colon \mathbb{N} \to \mathbb{N}$, $n \mapsto wc_{\mathcal{A}}(n) = \max_{\{u \in I \mid \ell(u) \leq n\}} t(u)$.
- The average case complexity of $\mathcal A$ is the function $\mathtt{ac}_{\mathcal A} \colon \mathbb N \to \mathbb N$, $n \mapsto \mathtt{ac}_{\mathcal A}(n) = \frac{\sum_{\{u \in I \mid \ell(u) \leqslant n\}} \mathtt{t}(u)}{|\{u \in I \mid \ell(u) \leqslant n\}|}.$
- These functions are only interesting up to asymptotic equivalence.

Observation

Definition

Suppose algorithm A solves a decision problem P.

- Given $u \in I$, we denote by t(u) the time (i.e., number of steps) taken by A to give the correct answer for input u.
- The worst case complexity of \mathcal{A} is the function $wc_{\mathcal{A}} \colon \mathbb{N} \to \mathbb{N}$, $n \mapsto wc_{\mathcal{A}}(n) = \max_{\{u \in I \mid \ell(u) \leqslant n\}} t(u)$.
- The average case complexity of \mathcal{A} is the function $\mathtt{ac}_{\mathcal{A}} \colon \mathbb{N} \to \mathbb{N}$, $n \mapsto \mathtt{ac}_{\mathcal{A}}(n) = \frac{\sum_{\{u \in I \mid \ell(u) \leq n\}} \mathtt{t}^{\iota}(u)}{|\{u \in I \mid \ell(u) \leq n\}|}$.
- These functions are only interesting up to asymptotic equivalence.

Observation

Definition

Suppose algorithm A solves a decision problem P.

- Given $u \in I$, we denote by t(u) the time (i.e., number of steps) taken by A to give the correct answer for input u.
- The worst case complexity of \mathcal{A} is the function $wc_{\mathcal{A}} \colon \mathbb{N} \to \mathbb{N}$, $n \mapsto wc_{\mathcal{A}}(n) = \max_{\{u \in I \mid \ell(u) \leqslant n\}} t(u)$.
- The average case complexity of $\mathcal A$ is the function $\mathtt{ac}_{\mathcal A} \colon \mathbb N \to \mathbb N$, $n \mapsto \mathtt{ac}_{\mathcal A}(n) = \frac{\sum_{\{u \in I \mid \ell(u) \leqslant n\}} {}^{\mathsf t}(u)}{|\{u \in I \mid \ell(u) \leqslant n\}|}.$
- These functions are only interesting up to asymptotic equivalence.

Observation

Clearly, $ac_{\mathcal{A}}(n) \leqslant wc_{\mathcal{A}}(n)$. But ... there are cases where $ac_{\mathcal{A}}(n)$ is much smaller than $wc_{\mathcal{A}}(n)$...

A general idea to improve the average case complexity of A:

- Find a variant A' of A running 'fast' on a 'big' subset $E \subseteq I$:
- Consider the new algorithm A":

A general idea to improve the average case complexity of A:

- Find a variant A' of A running 'fast' on a 'big' subset $E \subseteq I$;
- Consider the new algorithm A":
 Given u ∈ I, if u ∈ E run A' on u; otherwise run A on u.

(Except in degenerate cases,) we have $wc_{\mathcal{A}''}(n) = wc_{\mathcal{A}}(n)$ but it could very well be that $ac_{\mathcal{A}''}(n) \ll ac_{\mathcal{A}}(n)$.

This idea was recently exploited in the paper.

V. Shpilrain, Average-case complexity of the Whitehead problem for free groups. Comm. Algebra, 51(2) (2023), 799–806.

to get the following improvement of a classical result.

A general idea to improve the average case complexity of A:

- Find a variant A' of A running 'fast' on a 'big' subset $E \subseteq I$;
- Consider the new algorithm \mathcal{A}'' : Given $u \in I$, if $u \in E$ run \mathcal{A}' on u; otherwise run \mathcal{A} on u.

(Except in degenerate cases,) we have $wc_{\mathcal{A}''}(n) = wc_{\mathcal{A}}(n)$ but it could very well be that $ac_{\mathcal{A}''}(n) \ll ac_{\mathcal{A}}(n)$.

This idea was recently exploited in the paper.

V. Shpilrain, Average-case complexity of the Whitehead problem for free groups. Comm. Algebra, 51(2) (2023), 799–806.

to get the following improvement of a classical result.

A general idea to improve the average case complexity of A:

- Find a variant A' of A running 'fast' on a 'big' subset $E \subseteq I$;
- Consider the new algorithm \mathcal{A}'' : Given $u \in I$, if $u \in E$ run \mathcal{A}' on u; otherwise run \mathcal{A} on u.

(Except in degenerate cases,) we have $wc_{\mathcal{A}''}(n) = wc_{\mathcal{A}}(n)$ but it could very well be that $ac_{\mathcal{A}''}(n) \ll ac_{\mathcal{A}}(n)$.

This idea was recently exploited in the paper.

V. Shpilrain, Average-case complexity of the Whitehead problem for free groups. Comm. Algebra, 51(2) (2023), 799–806.

to get the following improvement of a classical result

A general idea to improve the average case complexity of A:

- Find a variant A' of A running 'fast' on a 'big' subset $E \subseteq I$;
- Consider the new algorithm \mathcal{A}'' : Given $u \in I$, if $u \in E$ run \mathcal{A}' on u; otherwise run \mathcal{A} on u.

(Except in degenerate cases,) we have $wc_{\mathcal{A}''}(n) = wc_{\mathcal{A}}(n)$ but it could very well be that $ac_{\mathcal{A}''}(n) \ll ac_{\mathcal{A}}(n)$.

This idea was recently exploited in the paper:

V. Shpilrain, Average-case complexity of the Whitehead problem for free groups. Comm. Algebra, 51(2) (2023), 799–806.

to get the following improvement of a classical result:

Outline

- Complexity of algorithms
- 2 On Whitehead's algorithm
- The Central Tree Property

Theorem (Whitehead, 1936)

There is an algorithm W taking $w \in F_r$ as input, deciding whether w is primitive in F_r , and working in time $w c_W(n) = O(4^r r n^2) = O(n^2)$.

Observation

A given $w \in F_r$ is primitive $\Leftrightarrow \min_{\varphi \in Aut(F_r)} |w\varphi| = 1$.

Definition

A Whitehead automorphism of $F_r = \langle a_1, \ldots, a_r \rangle$ is an automorphism of the form $F_r \to F_r$, $a_i \mapsto a_i$, $a_j \mapsto a_i^{\eta \epsilon_i} a_j a_i^{\eta \delta_i}$, where $\eta = \pm 1$, $\epsilon_i = 0, -1$, and $\delta_i = 0, 1$. There are $\sim 2r 4^{r-1}$ many.

Lemma (Whitehead, 1936)

Theorem (Whitehead, 1936)

There is an algorithm W taking $w \in F_r$ as input, deciding whether w is primitive in F_r , and working in time $w c_W(n) = O(4^r r n^2) = O(n^2)$.

Observation

A given $w \in F_r$ is primitive $\Leftrightarrow \min_{\varphi \in Aut(F_r)} |w\varphi| = 1$.

Definition

A Whitehead automorphism of $F_r = \langle a_1, \ldots, a_r \rangle$ is an automorphism of the form $F_r \to F_r$, $a_i \mapsto a_i$, $a_j \mapsto a_i^{\eta \epsilon_i} a_j a_i^{\eta \delta_i}$, where $\eta = \pm 1$, $\epsilon_i = 0, -1$, and $\delta_i = 0, 1$. There are $\sim 2r 4^{r-1}$ many.

Lemma (Whitehead, 1936)

Theorem (Whitehead, 1936)

There is an algorithm W taking $w \in F_r$ as input, deciding whether w is primitive in F_r , and working in time $w c_W(n) = O(4^r r n^2) = O(n^2)$.

Observation

A given $w \in F_r$ is primitive $\Leftrightarrow \min_{\varphi \in Aut(F_r)} |w\varphi| = 1$.

Definition

A Whitehead automorphism of $F_r = \langle a_1, \ldots, a_r \rangle$ is an automorphism of the form $F_r \to F_r$, $a_i \mapsto a_i$, $a_j \mapsto a_i^{\eta \epsilon_i} a_j a_i^{\eta \delta_i}$, where $\eta = \pm 1$, $\epsilon_i = 0, -1$, and $\delta_i = 0, 1$. There are $\sim 2r 4^{r-1}$ many.

Lemma (Whitehead, 1936

Theorem (Whitehead, 1936)

There is an algorithm W taking $w \in F_r$ as input, deciding whether w is primitive in F_r , and working in time $w c_W(n) = O(4^r r n^2) = O(n^2)$.

Observation

A given $w \in F_r$ is primitive $\Leftrightarrow \min_{\varphi \in Aut(F_r)} |w\varphi| = 1$.

Definition

A Whitehead automorphism of $F_r = \langle a_1, \ldots, a_r \rangle$ is an automorphism of the form $F_r \to F_r$, $a_i \mapsto a_i$, $a_j \mapsto a_i^{\eta \epsilon_i} a_j a_i^{\eta \delta_i}$, where $\eta = \pm 1$, $\epsilon_i = 0, -1$, and $\delta_i = 0, 1$. There are $\sim 2r 4^{r-1}$ many.

Lemma (Whitehead, 1936)

Definition

Let $w = a_{i_n}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n} \in F_r$ be a cyclically reduced word. The Whitehead (unoriented) graph of w, denoted Wh(w), is: $V = \{a_1^{\pm 1}, \dots, a_r^{\pm 1}\}$ and $E = \{\{a_{i_1}^{\epsilon_j}, a_{i_{j+1}}^{-\epsilon_{j+1}}\} \mid j = 1, \dots, n \pmod{n}\}.$

Theorem (Whitehead's cut vertex lemma

If $w \in F_r$ is primitive then Wh(w) is either disconnected or has a cut vertex.

Modern proofs/variations given by Heusener–Weidmann and by Wilton.

Proposition (Roig-Weil-V., '07'

Let $w \in F_r$. In view of Wh(w), one can construct (one of the) Whitehead automorphisms decreasing |w| as much as possible, in polynomial time w.r.t. both n = |w| and $r = \frac{1}{\operatorname{rk}(F_r)}$.

Definition

Let $w=a_{i_1}^{\epsilon_1}\cdots a_{i_n}^{\epsilon_n}\in F_r$ be a cyclically reduced word. The Whitehead (unoriented) graph of w, denoted Wh(w), is: $V=\{a_1^{\pm 1},\ldots,a_r^{\pm 1}\}$ and $E=\{\{a_{i_j}^{\epsilon_j},\,a_{i_{j+1}}^{-\epsilon_{j+1}}\}\mid j=1,\ldots,n\pmod{n}\}.$

Theorem (Whitehead's cut vertex lemma)

If $w \in F_r$ is primitive then Wh(w) is either disconnected or has a cut vertex.

Modern proofs/variations given by Heusener–Weidmann and by Wilton.

Proposition (Roig-Weil-V., '07'

Let $w \in F_r$. In view of Wh(w), one can construct (one of the) Whitehead automorphisms decreasing |w| as much as possible, in polynomial time w.r.t. both n = |w| and $r = \operatorname{rk}(F_r)$.

Definition

Let $w=a_{i_1}^{\epsilon_1}\cdots a_{i_n}^{\epsilon_n}\in F_r$ be a cyclically reduced word. The Whitehead (unoriented) graph of w, denoted Wh(w), is: $V=\{a_1^{\pm 1},\ldots,a_r^{\pm 1}\}$ and $E=\{\{a_{i_j}^{\epsilon_j},\,a_{i_{j+1}}^{-\epsilon_{j+1}}\}\mid j=1,\ldots,n\pmod{n}\}.$

Theorem (Whitehead's cut vertex lemma)

If $w \in F_r$ is primitive then Wh(w) is either disconnected or has a cut vertex.

Modern proofs/variations given by Heusener–Weidmann and by Wilton.

Proposition (Roig-Weil-V., '07'

Let $w \in F_r$. In view of Wh(w), one can construct (one of the) Whitehead automorphisms decreasing |w| as much as possible, in polynomial time w.r.t. both n = |w| and $r = \operatorname{rk}(F_r)$.

Definition

Let $w=a_{i_1}^{\epsilon_1}\cdots a_{i_n}^{\epsilon_n}\in F_r$ be a cyclically reduced word. The Whitehead (unoriented) graph of w, denoted Wh(w), is: $V=\{a_1^{\pm 1},\ldots,a_r^{\pm 1}\}$ and $E=\{\{a_{i_j}^{\epsilon_j},\,a_{i_{j+1}}^{-\epsilon_{j+1}}\}\mid j=1,\ldots,n\pmod{n}\}.$

Theorem (Whitehead's cut vertex lemma)

If $w \in F_r$ is primitive then Wh(w) is either disconnected or has a cut vertex.

Modern proofs/variations given by Heusener–Weidmann and by Wilton.

Proposition (Roig-Weil-V., '07)

Let $w \in F_r$. In view of Wh(w), one can construct (one of the) Whitehead automorphisms decreasing |w| as much as possible, in polynomial time w.r.t. both n = |w| and $r = \overline{\operatorname{rk}(F_r)}$.

So, here is a truly polynomial algorithm for checking primitivity:

```
Algorithm W: • Given a cyclically reduced w \in F_r with |w| = n; • [1]: -If |w| = 1, answer YES and STOP;
```

- -Construct Wh(w) and check whether it is connected and has no cut vertex; if so, answer NO and STOP;
- -Otherwise, construct the best possible Whitehead auto φ for we and repeat Step 1 with $w\varphi$ replacing w.

Theorem (Roig-Weil-V., '07)

The algorithm W above works in time $wc_{\mathcal{W}}(n) = O(r^3n^2)$.

So, here is a truly polynomial algorithm for checking primitivity:

Algorithm W: • Given a cyclically reduced $w \in F_r$ with |w| = n;

•[1]: -If |w| = 1, answer YES and STOP;

- -Construct Wh(w) and check whether it is connected and has no cut vertex; if so, answer NO and STOP;
- -Otherwise, construct the best possible Whitehead auto φ for w and repeat Step 1 with $w\varphi$ replacing w.

Theorem (Roig-Weil-V., '07)

The algorithm W above works in time $wc_{\mathcal{W}}(n) = O(r^3n^2)$.

So, here is a truly polynomial algorithm for checking primitivity:

Algorithm \mathcal{W} : • Given a cyclically reduced $w \in F_r$ with |w| = n; • [1]: -If |w| = 1, answer YES and STOP;

- -Construct Wh(w) and check whether it is connected and has no cut vertex; if so, answer NO and STOP;
- -Otherwise, construct the best possible Whitehead auto φ for w and repeat Step 1 with $w\varphi$ replacing w.

Theorem (Roig-Weil-V., '07)

The algorithm W above works in time $wc_{\mathcal{W}}(n) = O(r^3n^2)$.

So, here is a truly polynomial algorithm for checking primitivity:

```
<u>Algorithm</u> \mathcal{W}: • Given a cyclically reduced w \in F_r with |w| = n;
```

- $\overline{\bullet[1]: -lf|w|} = 1$, answer YES and STOP;
 - -Construct Wh(w) and check whether it is connected and has no cut vertex; if so, answer NO and STOP;
 - -Otherwise, construct the best possible Whitehead auto φ for w and repeat Step 1 with $w\varphi$ replacing w.

Theorem (Roig-Weil-V., '07)

The algorithm W above works in time $wc_W(n) = O(r^3n^2)$.

So, here is a truly polynomial algorithm for checking primitivity:

```
<u>Algorithm</u> \mathcal{W}: • Given a cyclically reduced w \in F_r with |w| = n;
```

- \bullet [1]: -If |w| = 1, answer YES and STOP;
 - -Construct Wh(w) and check whether it is connected and has no cut vertex; if so, answer NO and STOP;
 - -Otherwise, construct the best possible Whitehead auto φ for w, and repeat Step 1 with $w\varphi$ replacing w.

Theorem (Roia-Weil-V., '07)

The algorithm W above works in time $wc_W(n) = O(r^3n^2)$.

So, here is a truly polynomial algorithm for checking primitivity:

```
Algorithm W: • Given a cyclically reduced w \in F_r with |w| = n;
```

- \bullet [1]: -If |w| = 1, answer YES and STOP;
 - -Construct Wh(w) and check whether it is connected and has no cut vertex; if so, answer NO and STOP;
 - -Otherwise, construct the best possible Whitehead auto φ for w, and repeat Step 1 with $w\varphi$ replacing w.

Theorem (Roig-Weil-V., '07)

The algorithm W above works in time $wc_W(n) = O(r^3n^2)$.

Shpilrain's idea for fast primitivity checking is as follows:

Algorithm S: • Given a cyclically reduced $w \in F_r$ with |w| = n,

- keep constructing Wh(w), edge by edge;
- If at some step, the actual graph is connected and has no cut vertex, answer NO and STOP;
- ullet Otherwise, apply ${\mathcal W}$ to decide whether w is primitive; STOP.

Theorem (Shpilrain, '23)

The above algorithm S works in time $ac_S(n) = O(1)$.

... However, this constant depends on the ambient rank r ...

Proposition (Roy-Weil-V.)

Shpilrain's idea for fast primitivity checking is as follows:

Algorithm S: • Given a cyclically reduced $w \in F_r$ with |w| = n,

- keep constructing Wh(w), edge by edge;
- If at some step, the actual graph is connected and has no cut vertex, answer NO and STOP;
- ullet Otherwise, apply ${\mathcal W}$ to decide whether w is primitive; STOP.

Theorem (Shpilrain, '23)

The above algorithm S works in time $ac_S(n) = O(1)$.

... However, this constant depends on the ambient rank r ...

Proposition (Roy-Weil-V.)

Shpilrain's idea for fast primitivity checking is as follows:

Algorithm S: • Given a cyclically reduced $w \in F_r$ with |w| = n,

- keep constructing Wh(w), edge by edge;
- If at some step, the actual graph is connected and has no cut vertex, answer NO and STOP;
- Otherwise, apply W to decide whether w is primitive; STOP.

Theorem (Shpilrain, '23)

The above algorithm S works in time $ac_S(n) = O(1)$.

... However, this constant depends on the ambient rank r ...

Proposition (Roy-Weil-V.)

Shpilrain's idea for fast primitivity checking is as follows:

Algorithm S: • Given a cyclically reduced $w \in F_r$ with |w| = n,

- keep constructing Wh(w), edge by edge;
- If at some step, the actual graph is connected and has no cut vertex, answer NO and STOP;
- ullet Otherwise, apply ${\mathcal W}$ to decide whether w is primitive; STOP.

Theorem (Shpilrain, '23)

The above algorithm S works in time $ac_S(n) = O(1)$.

... However, this constant depends on the ambient rank r ...

Proposition (Roy-Weil-V.)

Shpilrain's idea for fast primitivity checking is as follows:

Algorithm S: • Given a cyclically reduced $w \in F_r$ with |w| = n,

- keep constructing Wh(w), edge by edge;
- If at some step, the actual graph is connected and has no cut vertex, answer NO and STOP;
- ullet Otherwise, apply ${\mathcal W}$ to decide whether ${\mathsf w}$ is primitive; STOP.

Theorem (Shpilrain, '23)

The above algorithm S works in time $ac_S(n) = O(1)$.

... However, this constant depends on the ambient rank r ...

Proposition (Roy–Weil–V.)

Let $r \geqslant 2$. There is $0 < \beta(r) < 1 - \frac{1}{2}r^{-2}$ such that S works in time $\text{ac}_S(n) = O\left(\left(\frac{r}{1-\beta(r)}\right)^2 + r^3\right) = O(r^6)$.

Shpilrain's idea for fast primitivity checking is as follows:

Algorithm S: • Given a cyclically reduced $w \in F_r$ with |w| = n,

- keep constructing Wh(w), edge by edge;
- If at some step, the actual graph is connected and has no cut vertex, answer NO and STOP;
- ullet Otherwise, apply ${\mathcal W}$ to decide whether w is primitive; STOP.

Theorem (Shpilrain, '23)

The above algorithm S works in time $ac_S(n) = O(1)$.

... However, this constant depends on the ambient rank r ...

Proposition (Roy-Weil-V.)

Let $r \geqslant 2$. There is $0 < \beta(r) < 1 - \frac{1}{2}r^{-2}$ such that S works in time $ac_S(n) = O\left(\left(\frac{r}{1-\beta(r)}\right)^2 + r^3\right) = O(r^6)$.

Shpilrain's idea for fast primitivity checking is as follows:

Algorithm S: • Given a cyclically reduced $w \in F_r$ with |w| = n,

- keep constructing Wh(w), edge by edge;
- If at some step, the actual graph is connected and has no cut vertex, answer NO and STOP;
- ullet Otherwise, apply ${\mathcal W}$ to decide whether w is primitive; STOP.

Theorem (Shpilrain, '23)

The above algorithm S works in time $ac_S(n) = O(1)$.

... However, this constant depends on the ambient rank r ...

Proposition (Roy–Weil–V.)

Let $r \geqslant 2$. There is $0 < \beta(r) < 1 - \frac{1}{2}r^{-2}$ such that S works in time $\text{ac}_S(n) = O\left(\left(\frac{r}{1-\beta(r)}\right)^2 + r^3\right) = O(r^6)$.

Shpilrain's idea for fast primitivity checking is as follows:

Algorithm S: • Given a cyclically reduced $w \in F_r$ with |w| = n,

- keep constructing Wh(w), edge by edge;
- If at some step, the actual graph is connected and has no cut vertex, answer NO and STOP;
- ullet Otherwise, apply ${\mathcal W}$ to decide whether ${\mathsf w}$ is primitive; STOP.

Theorem (Shpilrain, '23)

The above algorithm S works in time $ac_S(n) = O(1)$.

... However, this constant depends on the ambient rank r ...

Proposition (Roy-Weil-V.)

Let $r \geqslant 2$. There is $0 < \beta(r) < 1 - \frac{1}{2}r^{-2}$ such that $\mathcal S$ works in time $\operatorname{ac}_{\mathcal S}(n) = O\left(\left(\frac{r}{1-\beta(r)}\right)^2 + r^3\right) = O(r^6)$.

Outline

- Complexity of algorithms
- 2 On Whitehead's algorithm
- The Central Tree Property

Definition (Relative Primitivity Problem)

- Given $w_0, w_1, \ldots, w_k \in F_r$;
- Decide if w_0 (belongs to and) is primitive in $H = \langle w_1, \dots, w_k \rangle \leqslant F_r$.

Definition (Uniform Membership Problem)

- Given $w_0, w_1, ..., w_k \in F_r$;
- Decide if w_0 belongs to $H = \langle w_1, \dots, w_k \rangle \leqslant F_r$; in this case, write w_0 in terms of some basis for H.

We consider the size of the input as $|w_0| + |w_1| + \cdots + |w_k|$, with ...

- *k constant:* $I = F_r^{k+1}$ and $|(w_0, w_1, \dots, w_r)| = m + \sum_{i=1}^k |w_i|$, or
- $k \le f(n)$: $I = \{(w_0, w_1, \dots, w_k) \in F_r^{k+1} \mid k \le f(n), n = \max_{i=1}^k |w_i|\}$ and $|(w_0, w_1, \dots, w_r)| = m + \sum_{i=1}^k |w_i| \le m + nf(n),$

where
$$m = |w_0|$$
.

Definition (Relative Primitivity Problem)

- Given $w_0, w_1, \ldots, w_k \in F_r$;
- Decide if w_0 (belongs to and) is primitive in $H = \langle w_1, \dots, w_k \rangle \leqslant F_r$.

Definition (Uniform Membership Problem)

- Given $w_0, w_1, ..., w_k \in F_r$;
- Decide if w_0 belongs to $H = \langle w_1, \dots, w_k \rangle \leqslant F_r$; in this case, write w_0 in terms of some basis for H.

We consider the size of the input as $|w_0| + |w_1| + \cdots + |w_k|$, with ...

- *k constant:* $I = F_r^{k+1}$ and $|(w_0, w_1, \dots, w_r)| = m + \sum_{i=1}^k |w_i|$, or
- $k \le f(n)$: $I = \{(w_0, w_1, \dots, w_k) \in F_r^{k+1} \mid k \le f(n), n = \max_{i=1}^k |w_i|\}$ and $|(w_0, w_1, \dots, w_r)| = m + \sum_{i=1}^k |w_i| \le m + nf(n),$

where
$$m = |w_0|$$
.

Definition (Relative Primitivity Problem)

- Given $w_0, w_1, \ldots, w_k \in F_r$;
- Decide if w_0 (belongs to and) is primitive in $H = \langle w_1, \dots, w_k \rangle \leqslant F_r$.

Definition (Uniform Membership Problem)

- Given $w_0, w_1, ..., w_k \in F_r$;
- Decide if w_0 belongs to $H = \langle w_1, \dots, w_k \rangle \leqslant F_r$; in this case, write w_0 in terms of some basis for H.

We consider the size of the input as $|\mathbf{w}_0| + |\mathbf{w}_1| + \cdots + |\mathbf{w}_k|$, with ...

- *k constant*: $I = F_r^{k+1}$ and $|(w_0, w_1, ..., w_r)| = m + \sum_{i=1}^k |w_i|$, or
- $k \le f(n)$: $I = \{(w_0, w_1, \dots, w_k) \in F_r^{k+1} \mid k \le f(n), n = \max_{i=1}^k |w_i|\}$ and $|(w_0, w_1, \dots, w_r)| = m + \sum_{i=1}^k |w_i| \le m + nf(n),$

where $m = |w_0|$.

Definition (Relative Primitivity Problem)

- Given $w_0, w_1, \ldots, w_k \in F_r$;
- Decide if w_0 (belongs to and) is primitive in $H = \langle w_1, \dots, w_k \rangle \leqslant F_r$.

Definition (Uniform Membership Problem)

- Given $w_0, w_1, ..., w_k \in F_r$;
- Decide if w_0 belongs to $H = \langle w_1, \dots, w_k \rangle \leqslant F_r$; in this case, write w_0 in terms of some basis for H.

We consider the size of the input as $|\mathbf{w}_0| + |\mathbf{w}_1| + \cdots + |\mathbf{w}_k|$, with ...

- *k constant*: $I = F_r^{k+1}$ and $|(w_0, w_1, ..., w_r)| = m + \sum_{i=1}^k |w_i|$, or
- $k \le f(n)$: $I = \{(w_0, w_1, \dots, w_k) \in F_r^{k+1} \mid k \le f(n), n = \max_{i=1}^k |w_i|\}$ and $|(w_0, w_1, \dots, w_r)| = m + \sum_{i=1}^k |w_i| \le m + nf(n),$

where $m = |w_0|$.

Definition (Relative Primitivity Problem)

- Given $w_0, w_1, \ldots, w_k \in F_r$;
- Decide if w_0 (belongs to and) is primitive in $H = \langle w_1, \dots, w_k \rangle \leqslant F_r$.

Definition (Uniform Membership Problem)

- Given $w_0, w_1, \ldots, w_k \in F_r$;
- Decide if w_0 belongs to $H = \langle w_1, \dots, w_k \rangle \leqslant F_r$; in this case, write w_0 in terms of some basis for H.

We consider the size of the input as $|\mathbf{w}_0| + |\mathbf{w}_1| + \cdots + |\mathbf{w}_k|$, with ...

- *k constant:* $I = F_r^{k+1}$ and $|(w_0, w_1, ..., w_r)| = m + \sum_{i=1}^k |w_i|$, or
- $k \le f(n)$: $I = \{(w_0, w_1, \dots, w_k) \in F_r^{k+1} \mid k \le f(n), n = \max_{i=1}^k |w_i|\}$ and $|(w_0, w_1, \dots, w_r)| = m + \sum_{i=1}^k |w_i| \le m + nf(n),$

where
$$m = |w_0|$$
.

Uniform Membership can be nicely solved using Stallings graphs ...

```
Algorithm \mathcal{MP}: • Given w_0, w_1, \ldots, w_k \in F_r;
```

- Construct the Stallings graph $\Gamma(H)$ for $H = \langle w_1, \dots, w_k \rangle \leqslant F_r$;
- If w_0 spells the label of a closed path at the basepoint of $\Gamma(H)$ answer YES; otherwise answer NO;
- In the affirmative case, construct a maximal tree T in $\Gamma(H)$, construct the corresponding basis B for H, and keep track of the visits of the above closed path to the edges outside T; STOP.

Theorem (Touikan, '06)

The algorithm \mathcal{MP} runs in time $wc_{\mathcal{MP}}(n) = O(kn \log^*(kn) + m)$, where $n = \max_{i=1,\dots,k} |w_i|$ and $m = |w_0|$.

Uniform Membership can be nicely solved using Stallings graphs ...

Algorithm \mathcal{MP} : • Given $w_0, w_1, \ldots, w_k \in F_r$;

- Construct the Stallings graph $\Gamma(H)$ for $H = \langle w_1, \dots, w_k \rangle \leqslant F_r$;
- If w_0 spells the label of a closed path at the basepoint of $\Gamma(H)$ answer YES; otherwise answer NO;
- In the affirmative case, construct a maximal tree T in $\Gamma(H)$, construct the corresponding basis B for H, and keep track of the visits of the above closed path to the edges outside T; STOP.

Theorem (Touikan, '06)

The algorithm \mathcal{MP} runs in time $wc_{\mathcal{MP}}(n) = O(kn \log^*(kn) + m)$, where $n = \max_{i=1,...,k} |w_i|$ and $m = |w_0|$.

Uniform Membership can be nicely solved using Stallings graphs ...

```
Algorithm \mathcal{MP}: • Given w_0, w_1, \ldots, w_k \in F_r;
```

- Construct the Stallings graph $\Gamma(H)$ for $H = \langle w_1, \dots, w_k \rangle \leqslant F_r$;
- If w_0 spells the label of a closed path at the basepoint of $\Gamma(H)$ answer YES; otherwise answer NO;
- In the affirmative case, construct a maximal tree T in $\Gamma(H)$, construct the corresponding basis B for H, and keep track of the visits of the above closed path to the edges outside T; STOP.

Theorem (Touikan, '06)

The algorithm \mathcal{MP} runs in time $wc_{\mathcal{MP}}(n) = O(kn \log^*(kn) + m)$, where $n = \max_{i=1,\dots,k} |w_i|$ and $m = |w_0|$.

Uniform Membership can be nicely solved using Stallings graphs ...

```
Algorithm \mathcal{MP}: • Given w_0, w_1, \ldots, w_k \in F_r;
```

- Construct the Stallings graph $\Gamma(H)$ for $H = \langle w_1, \dots, w_k \rangle \leqslant F_r$;
- If w_0 spells the label of a closed path at the basepoint of $\Gamma(H)$ answer YES; otherwise answer NO;
- In the affirmative case, construct a maximal tree T in $\Gamma(H)$, construct the corresponding basis B for H, and keep track of the visits of the above closed path to the edges outside T; STOP.

Theorem (Touikan, '06)

The algorithm \mathcal{MP} runs in time $wc_{\mathcal{MP}}(n) = O(kn \log^*(kn) + m)$, where $n = \max_{i=1}^{n} \frac{1}{k_i} |w_i|$ and $m = |w_0|$.

Uniform Membership can be nicely solved using Stallings graphs ...

```
Algorithm \mathcal{MP}: • Given w_0, w_1, \ldots, w_k \in F_r;
```

- Construct the Stallings graph $\Gamma(H)$ for $H = \langle w_1, \dots, w_k \rangle \leqslant F_r$;
- If w_0 spells the label of a closed path at the basepoint of $\Gamma(H)$ answer YES; otherwise answer NO;
- In the affirmative case, construct a maximal tree T in $\Gamma(H)$, construct the corresponding basis B for H, and keep track of the visits of the above closed path to the edges outside T; STOP.

Theorem (Touikan, '06)

The algorithm \mathcal{MP} runs in time $wc_{\mathcal{MP}}(n) = O(kn \log^*(kn) + m)$, where $n = \max_{i=1,\dots,k} |w_i|$ and $m = |w_0|$.

Uniform Membership can be nicely solved using Stallings graphs ...

```
Algorithm \mathcal{MP}: • Given w_0, w_1, \ldots, w_k \in F_r;
```

- Construct the Stallings graph $\Gamma(H)$ for $H = \langle w_1, \dots, w_k \rangle \leqslant F_r$;
- If w_0 spells the label of a closed path at the basepoint of $\Gamma(H)$ answer YES; otherwise answer NO;
- In the affirmative case, construct a maximal tree T in $\Gamma(H)$, construct the corresponding basis B for H, and keep track of the visits of the above closed path to the edges outside T; STOP.

Theorem (Touikan, '06)

The algorithm \mathcal{MP} runs in time $wc_{\mathcal{MP}}(n) = O(kn \log^*(kn) + m)$, where $n = \max_{i=1}^{n} \frac{1}{k} |w_i|$ and $m = |w_0|$.

Uniform Membership can be nicely solved using Stallings graphs ...

```
Algorithm \mathcal{MP}: • Given w_0, w_1, \ldots, w_k \in F_r;
```

- Construct the Stallings graph $\Gamma(H)$ for $H = \langle w_1, \dots, w_k \rangle \leqslant F_r$;
- If w_0 spells the label of a closed path at the basepoint of $\Gamma(H)$ answer YES; otherwise answer NO;
- In the affirmative case, construct a maximal tree T in $\Gamma(H)$, construct the corresponding basis B for H, and keep track of the visits of the above closed path to the edges outside T; STOP.

Theorem (Touikan, '06)

The algorithm \mathcal{MP} runs in time $wc_{\mathcal{MP}}(n) = O(kn \log^*(kn) + m)$, where $n = \max_{i=1,...,k} |w_i|$ and $m = |w_0|$.

The Central Tree Property

Definition

Let $d \ge 1$. We say that the k-tuple $\mathbf{w} = (w_1, \dots, w_k) \in F_r^k$ has the d-central tree property (d-CTP) if $\min_{i=1}^k |w_i| \ge 2d + 1$, and the 2d prefixes of length d of the $w_i^{\pm 1}$'s,

$$w_i = pr_d(w_i) \cdot mf_d(w_i) \cdot pr_d(w_i^{-1})^{-1},$$

are pairwise distinct. We say that **w** has the CTP if it has the d-CTP for some $1 \le d < n/2$, where $n = \min_{i=1}^{k} |w_i|$.

Observation

Let $\mathbf{w} = (w_1, \dots, w_k)$ and $H = \langle w_1, \dots, w_k \rangle \leqslant F_r$. If \mathbf{w} has the CTP then the Stallings graph $\Gamma(H)$ consists on the 'tree of prefixes' plus k arcs connecting their leaves; in particular, $\operatorname{rk}(H) = k$ and $\{w_1, \dots, w_k \text{ is a free basis for } H$.

The Central Tree Property

Definition

Let $d \ge 1$. We say that the k-tuple $\mathbf{w} = (w_1, \dots, w_k) \in F_r^k$ has the d-central tree property (d-CTP) if $\min_{i=1}^k |w_i| \ge 2d + 1$, and the 2d prefixes of length d of the $w_i^{\pm 1}$'s,

$$w_i = pr_d(w_i) \cdot mf_d(w_i) \cdot pr_d(w_i^{-1})^{-1},$$

are pairwise distinct. We say that **w** has the CTP if it has the d-CTP for some $1 \le d < n/2$, where $n = \min_{i=1}^{k} |w_i|$.

Observation

Let $\mathbf{w} = (w_1, \dots, w_k)$ and $H = \langle w_1, \dots, w_k \rangle \leqslant F_r$. If \mathbf{w} has the CTP then the Stallings graph $\Gamma(H)$ consists on the 'tree of prefixes' plus k arcs connecting their leaves; in particular, $\mathrm{rk}(H) = k$ and $\{w_1, \dots, w_k\}$ is a free basis for H.

Lemma

Let d(n) be a non-decreasing function with d(n) < n/2. A random k-tuple of words in F_r of length up to n fails the d(n)-CTP with probability $O(k^2(2r-1)^{-d(n/2)})$.

For an increasing function d(n) with d(n) < n/2, consider Algorithm \mathcal{MP}_d : • Given $w_0, w_1, \ldots, w_k \in F_r$;

- •[1] -Compute $n = \max_{i=1}^{k} |w_i|$.
 - -Construct the tree of d(n)-prefixes $\Gamma_{d(n)}(\mathbf{w})$;
 - -If **w** has the d(n)-CTP and $\min_{i=1}^k |w_i| > n/2$ go to Step 2; otherwise, run \mathcal{MP} to decide whether $w_0 \in H$ and find an expression for it in some basis for H; STOP;
- •[2] $\Gamma(H)$ equals $\Gamma_{d(n)}(\mathbf{w})$ plus k arcs labeled $mf_{d(n)}(w_i)$;
 - -Start reading w_0 in $\Gamma(H)$ from the basepoint, and keeping track of the sequence of arcs fully crossed;
 - -If the reading cannot be completed to a closed path answer NO, otherwise, answer YES and output the expression of w_0 in the free basis $\{w_1, \dots, w_k\}$ for H: STOP.

Lemma

Let d(n) be a non-decreasing function with d(n) < n/2. A random k-tuple of words in F_r of length up to n fails the d(n)-CTP with probability $O(k^2(2r-1)^{-d(n/2)})$.

```
For an increasing function d(n) with d(n) < n/2, consider Algorithm \mathcal{MP}_d: • Given w_0, w_1, \ldots, w_k \in F_r;
```

- •[1] -Compute $n = \max_{i=1}^{k} |w_i|$.
 - -Construct the tree of d(n)-prefixes $\Gamma_{d(n)}(\mathbf{w})$;
 - -If **w** has the d(n)-CTP and $\min_{i=1}^{k} |w_i| > n/2$ go to Step 2; otherwise, run \mathcal{MP} to decide whether $w_0 \in H$ and find an expression for it in some basis for H; STOP;
- •[2] $\Gamma(H)$ equals $\Gamma_{d(n)}(\mathbf{w})$ plus k arcs labeled $mf_{d(n)}(w_i)$;
 - -Start reading w_0 in $\Gamma(H)$ from the basepoint, and keeping track of the sequence of arcs fully crossed;
 - of the reading cannot be completed to a closed path answer NO; otherwise, answer YES and output the expression of wo in the

Lemma

Let d(n) be a non-decreasing function with d(n) < n/2. A random k-tuple of words in F_r of length up to n fails the d(n)-CTP with probability $O(k^2(2r-1)^{-d(n/2)})$.

For an increasing function d(n) with d(n) < n/2, consider Algorithm \mathcal{MP}_d : • Given $w_0, w_1, \dots, w_k \in F_r$;

- •[1] -Compute $n = \max_{i=1}^k |w_i|$.
 - -Construct the tree of d(n)-prefixes $\Gamma_{d(n)}(\mathbf{w})$;
 - -If **w** has the d(n)-CTP and $\min_{i=1}^k |w_i| > n/2$ go to Step 2; otherwise, run \mathcal{MP} to decide whether $w_0 \in H$ and find an expression for it in some basis for H; STOP;
- •[2] $\Gamma(H)$ equals $\Gamma_{d(n)}(\mathbf{w})$ plus k arcs labeled $mf_{d(n)}(w_i)$;
 - -Start reading w_0 in $\Gamma(H)$ from the basepoint, and keeping track of the sequence of arcs fully crossed:
 - otherwise, answer YES and output the expression of w₀ in the

Lemma

Let d(n) be a non-decreasing function with d(n) < n/2. A random k-tuple of words in F_r of length up to n fails the d(n)-CTP with probability $O(k^2(2r-1)^{-d(n/2)})$.

For an increasing function d(n) with d(n) < n/2, consider Algorithm \mathcal{MP}_d : • Given $w_0, w_1, \dots, w_k \in F_r$;

- •[1] -Compute $n = \max_{i=1}^k |w_i|$.
 - -Construct the tree of d(n)-prefixes $\Gamma_{d(n)}(\mathbf{w})$;
 - -If **w** has the d(n)-CTP and $\min_{i=1}^{k} |w_i| > n/2$ go to Step 2; otherwise, run \mathcal{MP} to decide whether $w_0 \in H$ and find an expression for it in some basis for H; STOP;
- •[2] $\Gamma(H)$ equals $\Gamma_{d(n)}(\mathbf{w})$ plus k arcs labeled $mf_{d(n)}(w_i)$;
 - -Start reading w_0 in $\Gamma(H)$ from the basepoint, and keeping track of the sequence of arcs fully crossed;
 - -If the reading cannot be completed to a closed path answer NO; otherwise, answer YES and output the expression of w_0 in the free basis $\{w_1, \dots, w_k\}$ for H: STOP.

Theorem (Roy–Weil–V.)

Consider the algorithm \mathcal{MP}_d with input a word of length m and a k(n)-tuple of words of length at most n in F_r . If

(i) k(n) is constant then $ac_{\mathcal{MP}_d}(n) = O(\log n + mn^{-\log(2r-1)})$, while $wc_{\mathcal{MP}_d}(n) = O(n\log^* n + m)$;

(ii)
$$k(n) = n^{\beta}$$
, $\beta > 0$, then $ac_{\mathcal{MP}_d}(n) = O(n^{\beta+\gamma} + mn^{2\beta}(2r-1)^{-n^{\gamma}})$ for any $0 < \gamma < 1$, while $wc_{\mathcal{MP}_d}(n) = O(n^{\beta+1} \log^* n + m)$;

ac_{MPd}(n) =
$$O(n(2r-1)^{\beta n} + m(2r-1)^{(\frac{9}{4}\beta - \frac{1}{8} + \epsilon)n})$$
, while

And combined with the relative version of algorithm \mathcal{S} , we can solve

Theorem (Roy-Weil-V.)

Consider the algorithm \mathcal{MP}_d with input a word of length m and a k(n)-tuple of words of length at most n in F_r . If

(i)
$$k(n)$$
 is constant then $ac_{\mathcal{MP}_d}(n) = O(\log n + mn^{-\log(2r-1)})$, while $wc_{\mathcal{MP}_d}(n) = O(n\log^* n + m)$;

(ii)
$$k(n) = n^{\beta}$$
, $\beta > 0$, then $ac_{\mathcal{MP}_d}(n) = O(n^{\beta+\gamma} + mn^{2\beta}(2r-1)^{-n^{\gamma}})$ for any $0 < \gamma < 1$, while $wc_{\mathcal{MP}_d}(n) = O(n^{\beta+1} \log^* n + m)$;

$$ac_{\mathcal{MP}_d}(n) = (2r-1)^{\beta n}, 0 < \beta < \frac{1}{18} \text{ then, for } 0 < \epsilon < \frac{1}{8} - \frac{1}{4}$$

$$ac_{\mathcal{MP}_d}(n) = O(n(2r-1)^{\beta n} + m(2r-1)^{(\frac{9}{4}\beta - \frac{1}{8} + \epsilon)n}), \text{ while}$$

$$wc_{\mathcal{MP}_d}(n) = O(n(2r-1)^{\beta n} \log^* n + m).$$

And combined with the relative version of algorithm *S*, we can solve the Relative Primitivity Problem fast:

Theorem (Roy-Weil-V.)

Consider the algorithm \mathcal{MP}_d with input a word of length m and a k(n)-tuple of words of length at most n in F_r . If (i) k(n) is constant then $\mathrm{ac}_{\mathcal{MP}_d}(n) = O(\log n + mn^{-\log(2r-1)})$, while $\mathrm{wc}_{\mathcal{MP}_d}(n) = O(n\log^* n + m)$; (ii) $k(n) = n^\beta$, $\beta > 0$, then $\mathrm{ac}_{\mathcal{MP}_d}(n) = O(n^{\beta+\gamma} + mn^{2\beta}(2r-1)^{-n^\gamma})$ for any $0 < \gamma < 1$, while $\mathrm{wc}_{\mathcal{MP}_d}(n) = O(n^{\beta+1}\log^* n + m)$; (iii) $k(n) = (2r-1)^{\beta n}$, $0 < \beta < \frac{1}{18}$ then, for $0 < \epsilon < \frac{1}{8} - \frac{9\beta}{4}$, $\mathrm{ac}_{\mathcal{MP}_d}(n) = O(n(2r-1)^{\beta n} + m(2r-1)^{(\frac{9}{4}\beta - \frac{1}{8} + \epsilon)n})$, while $\mathrm{wc}_{\mathcal{MP}_d}(n) = O(n(2r-1)^{\beta n}\log^* n + m)$.

And combined with the relative version of algorithm *S*, we can solve the Relative Primitivity Problem fast:

 $\text{WC}_{\mathcal{MP}_d}(n) = O(n(2r-1)^{\beta n} \log^* n + m).$

Theorem (Roy-Weil-V.)

Consider the algorithm \mathcal{MP}_d with input a word of length m and a k(n)-tuple of words of length at most n in F_r . If (i) k(n) is constant then $ac_{\mathcal{MP}_d}(n) = O(\log n + mn^{-\log(2r-1)})$, while $wc_{\mathcal{MP}_d}(n) = O(n\log^* n + m)$; (ii) $k(n) = n^\beta$, $\beta > 0$, then $ac_{\mathcal{MP}_d}(n) = O(n^{\beta+\gamma} + mn^{2\beta}(2r-1)^{-n^\gamma})$ for any $0 < \gamma < 1$, while $wc_{\mathcal{MP}_d}(n) = O(n^{\beta+1}\log^* n + m)$; (iii) $k(n) = (2r-1)^{\beta n}$, $0 < \beta < \frac{1}{18}$ then, for $0 < \epsilon < \frac{1}{8} - \frac{9\beta}{4}$, $ac_{\mathcal{MP}_d}(n) = O(n(2r-1)^{\beta n} + m(2r-1)^{(\frac{9}{4}\beta - \frac{1}{8} + \epsilon)n})$, while

And combined with the relative version of algorithm S, we can solve the Relative Primitivity Problem fast:

```
For an increasing function d(n) with d(n) < n/2, consider Algorithm \mathcal{RP}_d: • Given w_0, w_1, \ldots, w_k \in F_r;
•[1] -Compute n = \max_{i=1}^k |w_i|.
-Construct the tree of d(n)-prefixes \Gamma_{d(n)}(\mathbf{w});
```

- -If **w** has the d(n)-CTP and $\min_{i=1}^k |w_i| > n/2$ go to Step 2; otherwise, run \mathcal{MP} to decide whether $w_0 \in H$ and find an expression for it in some basis for H; then run \mathcal{S} to check whether w_0 is primitive in H; STOP;
- •[2] $\Gamma(H)$ equals $\Gamma_{d(n)}(\mathbf{w})$ plus k arcs labeled $mf_{d(n)}(w_i)$;
 - -Start reading w_0 in $\Gamma(H)$ from the basepoint, keeping track of the sequence of arcs fully crossed, and constructing the graph Wh(w) (w.r.t. $\{w_1, \ldots, w_k\}$) edge by edge;
 - -If it cannot be completed to a closed path answer NO; STOP
 - -If the actual portion of Wh(w) is connected and has no cut vertex, answer NO; STOP;
 - -Otherwise, apply W to check whether the element $w \in H$ is primitive in H: STOP.

```
For an increasing function d(n) with d(n) < n/2, consider Algorithm \mathcal{RP}_d: • Given w_0, w_1, \ldots, w_k \in F_r;
```

- •[1] -Compute $n = \max_{i=1}^k |w_i|$.
 - -Construct the tree of d(n)-prefixes $\Gamma_{d(n)}(\mathbf{w})$;
 - -If **w** has the d(n)-CTP and $\min_{i=1}^k |w_i| > n/2$ go to Step 2; otherwise, run \mathcal{MP} to decide whether $w_0 \in H$ and find an expression for it in some basis for H; then run \mathcal{S} to check whether w_0 is primitive in H; STOP;
- •[2] $\Gamma(H)$ equals $\Gamma_{d(n)}(\mathbf{w})$ plus k arcs labeled $mf_{d(n)}(w_i)$;
 - -Start reading w_0 in $\Gamma(H)$ from the basepoint, keeping track of the sequence of arcs fully crossed, and constructing the graph Wh(w) (w.r.t. $\{w_1, \ldots, w_k\}$) edge by edge;
 - -If it cannot be completed to a closed path answer NO; STOP
 - -If the actual portion of Wh(w) is connected and has no cut vertex, answer NO; STOP;
 - -Otherwise, apply W to check whether the element $w \in H$ is primitive in H: STOP.

For an increasing function d(n) with d(n) < n/2, consider Algorithm \mathcal{RP}_d : • Given $w_0, w_1, \ldots, w_k \in F_r$;

- •[1] -Compute $n = \max_{i=1}^k |w_i|$.
 - -Construct the tree of d(n)-prefixes $\Gamma_{d(n)}(\mathbf{w})$;
 - -If **w** has the d(n)-CTP and $\min_{i=1}^k |w_i| > n/2$ go to Step 2; otherwise, run \mathcal{MP} to decide whether $w_0 \in H$ and find an expression for it in some basis for H; then run \mathcal{S} to check whether w_0 is primitive in H; STOP;
- •[2] $\Gamma(H)$ equals $\Gamma_{d(n)}(\mathbf{w})$ plus k arcs labeled $mf_{d(n)}(w_i)$;
 - -Start reading w_0 in $\Gamma(H)$ from the basepoint, keeping track of the sequence of arcs fully crossed, and constructing the graph Wh(w) (w.r.t. $\{w_1, \ldots, w_k\}$) edge by edge;
 - -If it cannot be completed to a closed path answer NO; STOP;
 - -If the actual portion of Wh(w) is connected and has no cut vertex, answer NO; STOP;
 - -Otherwise, apply W to check whether the element $w \in H$ is primitive in H; STOP.

Theorem (Roy-Weil-V.)

Consider the algorithm \mathcal{RP}_d with input a word of length m and a k(n)-tuple of words of length at most n in F_r . If

(i)
$$k(n)$$
 is constant then $ac_{\mathcal{RP}_d}(n) = O(\log n + mn^{-\log(2r-1)});$

(ii)
$$k(n) = n^{\beta}$$
, $\beta > 0$, then for any $0 < \gamma < 1$,

$$ac_{\mathcal{RP}_d}(n) = O(n^{\beta+\gamma} + n^{2\beta}(2r-1)^{-n^{\gamma}}m + n^{6\beta}(\frac{2}{2r-1})^m);$$

(iii)
$$k(n) = (2r-1)^{\beta n}$$
, $0 < \beta < \frac{1}{58}$ then,

$$ac_{\mathcal{RP}_d}(n) = O(n(2r-1)^{\beta n} + (2r-1)^{-5\beta n}m + (2r-1)^{6\beta n - \frac{1-58\beta}{1-56\beta}m})$$

Theorem (Roy-Weil-V.)

Consider the algorithm \mathcal{RP}_d with input a word of length m and a k(n)-tuple of words of length at most n in F_r . If (i) k(n) is constant then $ac_{\mathcal{RP}_d}(n) = O(\log n + mn^{-\log(2r-1)})$; (ii) $k(n) = n^{\beta}$, $\beta > 0$, then for any $0 < \gamma < 1$,

$$ac_{\mathcal{RP}_{d}}(n) = O(n^{\beta+\gamma} + n^{2\beta}(2r-1)^{-n^{\gamma}}m + n^{6\beta}(\frac{2}{2r-1})^{m});$$

(iii) $k(n) = (2r-1)^{\beta n}$, $0 < \beta < \frac{1}{58}$ then,

$$ac_{\mathcal{RP}_d}(n) = O(n(2r-1)^{\beta n} + (2r-1)^{-5\beta n}m + (2r-1)^{6\beta n - \frac{1-58\beta}{1-56\beta}m})$$

Theorem (Roy-Weil-V.)

Consider the algorithm \mathcal{RP}_d with input a word of length m and a k(n)-tuple of words of length at most n in F_r . If (i) k(n) is constant then $\mathrm{ac}_{\mathcal{RP}_d}(n) = O(\log n + mn^{-\log(2r-1)})$; (ii) $k(n) = n^\beta$, $\beta > 0$, then for any $0 < \gamma < 1$, $\mathrm{ac}_{\mathcal{RP}_d}(n) = O(n^{\beta+\gamma} + n^{2\beta}(2r-1)^{-n^\gamma}m + n^{6\beta}\left(\frac{2}{2r-1}\right)^m)$; (iii) $k(n) = (2r-1)^{\beta n}$, $0 < \beta < \frac{1}{58}$ then, $\mathrm{ac}_{\mathcal{RP}_d}(n) = O(n(2r-1)^{\beta n} + (2r-1)^{-5\beta n}m + (2r-1)^{6\beta n - \frac{1-58\beta}{1-66\beta}m})$.

THANKS