On the difficulty of inverting automorphisms of free groups

Enric Ventura

Departament de Matemàtica Aplicada III
Universitat Politècnica de Catalunya

Graduate Center, New York

March 14th, 2014.

Outline

(1) Motivation
(2) Main definition
(3) Free groups

4 Lower bounds: a good enough example
(5) Upper bounds: outer space

6 The special case of rank 2

Outline

(2) Main definition

(3) Free groups

4 Lower bounds: a good enough example
(5) Upper bounds: outer space

6 The special case of rank 2

Motivation

(Joint work with P. Silva and M. Ladra.)

Natural candidate: Aut $\left(F_{n}\right)$, where $F_{r}=\left\langle a_{1}\right.$

Motivation

(Joint work with P. Silva and M. Ladra.)

Find a group G where \cdot is "easy" but ($)^{-1}$ is "difficult".

Natural candidate: Aut $\left(F_{n}\right)$, where $F_{r}=\left\langle a_{1}\right.$

Motivation

(Joint work with P. Silva and M. Ladra.)

Find a group G where \cdot is "easy" but ($)^{-1}$ is "difficult".

Natural candidate: $\operatorname{Aut}\left(F_{n}\right)$, where $F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.

Motivation

(composing)

$$
F_{3}=\langle a, b, c \mid\rangle .
$$

$$
\begin{array}{rlrll}
\phi: F_{3} & \rightarrow F_{3} & \psi: F_{3} & \rightarrow F_{3} \\
a & \mapsto a b & a & \mapsto & b c^{-1} \\
b & \mapsto a b^{2} c & b & \mapsto & a^{-1} b c \\
c & \mapsto b c^{2} & c & \mapsto c^{-1} .
\end{array}
$$

Motivation

(composing)

$$
F_{3}=\langle a, b, c \mid\rangle .
$$

$$
\left.\begin{array}{rlrll}
\phi: & \rightarrow F_{3} & \psi: F_{3} & \rightarrow F_{3} \\
a & \mapsto & a b & a & \mapsto
\end{array} c^{-1}\right)
$$

Motivation

(inverting)

$F_{3}=\langle a, b, c \mid\rangle$.

$$
\begin{array}{rlrl}
\phi: F_{3} & \rightarrow F_{3} & \phi^{-1}: F_{3} & \rightarrow F_{3} \\
a & \mapsto a b & a & \mapsto a b^{-1} a c b^{-1} a \\
b & \mapsto a b^{2} c & b & \mapsto a^{-1} b c^{-1} a^{-1} b \\
c & \mapsto b c^{2} & c & \mapsto b^{-1} a c .
\end{array}
$$

(inverting)

Motivation

(inverting)

$F_{3}=\langle a, b, c \mid\rangle$.

$$
\begin{array}{rlrl}
\phi: F_{3} & \rightarrow F_{3} & \phi^{-1}: F_{3} & \rightarrow F_{3} \\
a & \mapsto a b & a & \mapsto a b^{-1} a c b^{-1} a \\
b & \mapsto a b^{2} c & b & \mapsto a^{-1} b c^{-1} a^{-1} b \\
c & \mapsto b c^{2} & c & \mapsto b^{-1} a c .
\end{array}
$$

(inverting)

$$
\begin{array}{rlrl}
F_{5}=\langle a, b, c, d, & \rangle \\
\psi_{n}: F_{5} & \rightarrow F_{5} & \psi_{n}^{-1}: F_{4} & \rightarrow F_{4} \\
a & \mapsto a & a & \mapsto a \\
b & \mapsto a^{n} b & b & \mapsto a^{-n} b \\
c & \mapsto b^{n} c & c & \mapsto\left(b^{-1} a^{n}\right)^{n} c \\
d & \mapsto c^{n} d & d & \mapsto\left(c^{-1}\left(a^{-n} b\right)^{n}\right)^{n} d \\
& \mapsto d^{n} & & \mapsto\left(d^{-1}\left(\left(b^{-1} a^{n}\right)^{n} c\right)^{n}\right)^{n}
\end{array}
$$

Motivation

In this talk...

- we formalize the situation.
- we see that inverting in $\operatorname{Aut}\left(F_{r}\right)$ is not that bad (only "polynomially hard").
- are there groups with inversion of automorphisms exponentially hard ?

Motivation

In this talk...

- we formalize the situation.
- we see that inverting in $\operatorname{Aut}\left(F_{r}\right)$ is not that bad (only "polynomially hard").
- are there groups with inversion of automorphisms exponentially hard ?

Motivation

In this talk...

- we formalize the situation.
- we see that inverting in $\operatorname{Aut}\left(F_{r}\right)$ is not that bad (only "polynomially hard").
- are there groups with inversion of automorphisms exponentially hard?

Outline

Motivation(3) Free groups

4 Lower bounds: a good enough example
(5) Upper bounds: outer space

6 The special case of rank 2

Main definition

Definition

Let G be a group with a finite set of generators $A=\left\{a_{1}, \ldots, a_{r}\right\}$. We have the word metric: for $g \in G$,

$$
|g|=\min \left\{n \mid g=a_{i_{1}}^{\epsilon_{1}} \cdots a_{i_{n}}^{\epsilon_{n}}\right\} .
$$

Definition

For $\theta \in \operatorname{Aut}(G)$, note θ is determined by $a_{1} \theta, \ldots, a_{r} \theta$ and define

$$
\|\theta\|_{\infty}=\max \left\{\left|a_{1} \theta\right|, \ldots,\left|a_{r} \theta\right|\right\} .
$$

Observation

For every $\theta \in A$

Main definition

Definition

Let G be a group with a finite set of generators $A=\left\{a_{1}, \ldots, a_{r}\right\}$. We have the word metric: for $g \in G$,

$$
|g|=\min \left\{n \mid g=a_{i_{1}}^{\epsilon_{1}} \cdots a_{i_{n}}^{\epsilon_{n}}\right\} .
$$

Definition

For $\theta \in \operatorname{Aut}(G)$, note θ is determined by $a_{1} \theta, \ldots, a_{r} \theta$ and define

$$
\|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|,
$$

Observation
For every $\theta \in \operatorname{Aut}\left(F_{r}\right),\|\theta\|$

Main definition

Definition

Let G be a group with a finite set of generators $A=\left\{a_{1}, \ldots, a_{r}\right\}$. We have the word metric: for $g \in G$,

$$
|g|=\min \left\{n \mid g=a_{i_{1}}^{\epsilon_{1}} \cdots a_{i_{n}}^{\epsilon_{n}}\right\} .
$$

Definition

For $\theta \in \operatorname{Aut}(G)$, note θ is determined by $a_{1} \theta, \ldots, a_{r} \theta$ and define

$$
\begin{gathered}
\|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|, \\
\|\theta\|_{\infty}=\max \left\{\left|a_{1} \theta\right|, \ldots,\left|a_{r} \theta\right|\right\} .
\end{gathered}
$$

Observation
For every $\theta \in \operatorname{Aut}\left(F_{r}\right),\|\theta\|$

Main definition

Definition

Let G be a group with a finite set of generators $A=\left\{a_{1}, \ldots, a_{r}\right\}$. We have the word metric: for $g \in G$,

$$
|g|=\min \left\{n \mid g=a_{i_{1}}^{\epsilon_{1}} \cdots a_{i_{n}}^{\epsilon_{n}}\right\} .
$$

Definition

For $\theta \in \operatorname{Aut}(G)$, note θ is determined by $a_{1} \theta, \ldots, a_{r} \theta$ and define

$$
\begin{gathered}
\|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|, \\
\|\theta\|_{\infty}=\max \left\{\left|a_{1} \theta\right|, \ldots,\left|a_{r} \theta\right|\right\} .
\end{gathered}
$$

Observation

For every $\theta \in \operatorname{Aut}\left(F_{r}\right),\|\theta\|_{\infty} \leqslant\|\theta\|_{1} \leqslant r\|\theta\|_{\infty}$

Main definition

Definition

Let G be a group with a finite set of generators $A=\left\{a_{1}, \ldots, a_{r}\right\}$. We define the function:

$$
\alpha_{A}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in \operatorname{Aut}(G),\|\theta\|_{1} \leqslant n\right\} .
$$

Clearly, $\alpha_{A}(n) \leqslant \alpha_{A}(n+1)$.

The bigger is α_{A}, the more "difficult" will be to invert automorphisms of G (with respect to the given set of generators A).

Question

Determine the asymptotic growth of the function a

Main definition

Definition

Let G be a group with a finite set of generators $A=\left\{a_{1}, \ldots, a_{r}\right\}$. We define the function:

$$
\alpha_{A}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in \operatorname{Aut}(G),\|\theta\|_{1} \leqslant n\right\} .
$$

Clearly, $\alpha_{A}(n) \leqslant \alpha_{A}(n+1)$.

The bigger is α_{A}, the more "difficult" will be to invert automorphisms of G (with respect to the given set of generators A).

Main definition

Definition

Let G be a group with a finite set of generators $A=\left\{a_{1}, \ldots, a_{r}\right\}$. We define the function:

$$
\alpha_{A}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in \operatorname{Aut}(G),\|\theta\|_{1} \leqslant n\right\} .
$$

Clearly, $\alpha_{A}(n) \leqslant \alpha_{A}(n+1)$.

The bigger is α_{A}, the more "difficult" will be to invert automorphisms of G (with respect to the given set of generators A).

Question

Determine the asymptotic growth of the function α_{G}.

Independence from A

Proposition

Let G be a group and $A=\left\{a_{1}, \ldots, a_{r}\right\}$ and $B=\left\{b_{1}, \ldots, b_{s}\right\}$ be two finite sets of generators. Then, $\exists C>0$ s.t. $\forall \theta \in \operatorname{Aut}(G)$

$$
\frac{1}{C}\|\theta\|_{B} \leqslant\|\theta\|_{A} \leqslant C\|\theta\|_{B}
$$

Proof. Take $\left|b_{i}\right|_{A} \leqslant M,\left|a_{i}\right|_{B} \leqslant N$ and let $C=M N r s$.

$$
\begin{aligned}
\|\theta\|_{B} & =\left|b_{1} \theta\right|_{B}+\cdots+\left|b_{S} \theta\right|_{B} \\
& \leqslant\left|b_{1} \theta\right|_{A} N+\cdots+\left|b_{S} \theta\right|_{A} N \\
& \leqslant N\left(\left.\left|b_{1}\right|\right|_{A}\|\theta\|_{A}+\cdots+\left|b_{S}\right|_{A}\|\theta\|_{A}\right) \\
& \leqslant N M s\|\theta\|_{A} \leqslant C\|\theta\|_{A} .
\end{aligned}
$$

Independence from A

Proposition

Let G be a group and $A=\left\{a_{1}, \ldots, a_{r}\right\}$ and $B=\left\{b_{1}, \ldots, b_{s}\right\}$ be two finite sets of generators. Then, $\exists C>0$ s. $t . \forall \theta \in \operatorname{Aut}(G)$

$$
\frac{1}{C}\|\theta\|_{B} \leqslant\|\theta\|_{A} \leqslant C\|\theta\|_{B}
$$

Proof. Take $\left|b_{i}\right|_{A} \leqslant M,\left|a_{i}\right|_{B} \leqslant N$ and let $C=M N r s$.

Independence from A

Proposition

Let G be a group and $A=\left\{a_{1}, \ldots, a_{r}\right\}$ and $B=\left\{b_{1}, \ldots, b_{s}\right\}$ be two finite sets of generators. Then, $\exists C>0$ s. $t . \forall \theta \in \operatorname{Aut}(G)$

$$
\frac{1}{C}\|\theta\|_{B} \leqslant\|\theta\|_{A} \leqslant C\|\theta\|_{B}
$$

Proof. Take $\left|b_{i}\right|_{A} \leqslant M,\left|a_{i}\right|_{B} \leqslant N$ and let $C=M N r s$.

$$
\begin{aligned}
\|\theta\|_{B} & =\left|b_{1} \theta\right|_{B}+\cdots+\left|b_{s} \theta\right|_{B} \\
& \leqslant\left|b_{1} \theta\right|_{A} N+\cdots+\left|b_{S} \theta\right|_{A} N \\
& \leqslant N\left(\left|b_{1}\right|_{A}\|\theta\|_{A}+\cdots+\left|b_{S}\right|_{A}\|\theta\|_{A}\right) \\
& \leqslant N M s\|\theta\|_{A} \leqslant C\|\theta\|_{A} .
\end{aligned}
$$

Independence from A

Proposition

Let G be a group and $A=\left\{a_{1}, \ldots, a_{r}\right\}$ and $B=\left\{b_{1}, \ldots, b_{s}\right\}$ be two finite sets of generators. Then, $\exists C>0$ s. $t . \forall \theta \in \operatorname{Aut}(G)$

$$
\frac{1}{C}\|\theta\|_{B} \leqslant\|\theta\|_{A} \leqslant C\|\theta\|_{B}
$$

Proof. Take $\left|b_{i}\right|_{A} \leqslant M,\left|a_{i}\right|_{B} \leqslant N$ and let $C=M N r s$.

$$
\begin{aligned}
\|\theta\|_{B} & =\left|b_{1} \theta\right|_{B}+\cdots+\left|b_{s} \theta\right|_{B} \\
& \leqslant\left|b_{1} \theta\right|_{A} N+\cdots+\left|b_{S} \theta\right|_{A} N \\
& \leqslant N\left(\left|b_{1}\right|_{A}\|\theta\|_{A}+\cdots+\left|b_{S}\right|_{A}\|\theta\|_{A}\right) \\
& \leqslant N M s\|\theta\|_{A} \leqslant C\|\theta\|_{A} .
\end{aligned}
$$

By symmetry, $\quad\|\theta\|_{A} \leqslant C\|\theta\|_{B}$, so $\quad \frac{1}{C}\|\theta\|_{B} \leqslant\|\theta\|_{A}$.

Independence from A

Corollary

$$
\frac{1}{C} \cdot \alpha_{B}\left(\frac{n}{C}\right) \leqslant \alpha_{A}(n) \leqslant C \cdot \alpha_{B}(C n) .
$$

Proof.

$$
\begin{aligned}
\alpha_{A}(n) & =\max \left\{\left\|\theta^{-1}\right\|_{A} \mid \theta \in \operatorname{Aut}(G),\|\theta\|_{A} \leqslant n\right\} \\
& \leqslant \max \left\{\left\|\theta^{-1}\right\|_{A} \mid \theta \in \operatorname{Aut}(G),\|\theta\|_{B} \leqslant C n\right\} \\
& \leqslant \max \left\{C\left\|\theta^{-1}\right\|_{B} \mid \theta \in \operatorname{Aut}(G),\|\theta\|_{B} \leqslant C n\right\} \\
& =C \cdot \max \left\{\left\|\theta^{-1}\right\|_{B} \mid \theta \in \operatorname{Aut}(G),\|\theta\|_{B} \leqslant C n\right\} \\
& =C \cdot \alpha_{B}(C n) .
\end{aligned}
$$

Independence from A

Corollary

$$
\frac{1}{C} \cdot \alpha_{B}\left(\frac{n}{C}\right) \leqslant \alpha_{A}(n) \leqslant C \cdot \alpha_{B}(C n)
$$

Proof.

$$
\begin{aligned}
\alpha_{A}(n) & =\max \left\{\left\|\theta^{-1}\right\|_{A} \mid \theta \in \operatorname{Aut}(G),\|\theta\|_{A} \leqslant n\right\} \\
& \leqslant \max \left\{\left\|\theta^{-1}\right\|_{A} \mid \theta \in \operatorname{Aut}(G),\|\theta\|_{B} \leqslant C n\right\} \\
& \leqslant \max \left\{C\left\|\theta^{-1}\right\|_{B} \mid \theta \in \operatorname{Aut}(G),\|\theta\|_{B} \leqslant C n\right\} \\
& =C \cdot \max \left\{\left\|\theta^{-1}\right\|_{B} \mid \theta \in \operatorname{Aut}(G),\|\theta\|_{B} \leqslant C n\right\} \\
& =C \cdot \alpha_{B}(C n) .
\end{aligned}
$$

Independence from A

Corollary

$$
\frac{1}{C} \cdot \alpha_{B}\left(\frac{n}{C}\right) \leqslant \alpha_{A}(n) \leqslant C \cdot \alpha_{B}(C n)
$$

Proof.

$$
\begin{aligned}
\alpha_{A}(n) & =\max \left\{\left\|\theta^{-1}\right\|_{A} \mid \theta \in \operatorname{Aut}(G),\|\theta\|_{A} \leqslant n\right\} \\
& \leqslant \max \left\{\left\|\theta^{-1}\right\|_{A} \mid \theta \in \operatorname{Aut}(G),\|\theta\|_{B} \leqslant C n\right\} \\
& \leqslant \max \left\{C\left\|\theta^{-1}\right\|_{B} \mid \theta \in \operatorname{Aut}(G),\|\theta\|_{B} \leqslant C n\right\} \\
& =C \cdot \max \left\{\left\|\theta^{-1}\right\|_{B} \mid \theta \in \operatorname{Aut}(G),\|\theta\|_{B} \leqslant C n\right\} \\
& =C \cdot \alpha_{B}(C n) .
\end{aligned}
$$

By symmetry, $\quad \alpha_{B}(n) \leqslant C \cdot \alpha_{A}(C n)$, so $\quad \frac{1}{C} \cdot \alpha_{B}\left(\frac{n}{C}\right) \leqslant \alpha_{A}(n)$.

Independence from A

Hence, $\alpha_{A}(n)$ is independent from A (up to a multiplicative constant in the domain and in the range).

Denote it by $\alpha_{G}(n)$.

Question

Are there aroups G with ag(n) linear ? quadratic?

Independence from A

Hence, $\alpha_{A}(n)$ is independent from A (up to a multiplicative constant in the domain and in the range).

Denote it by $\alpha_{G}(n)$.

Question

Are there aroups G with ag(n) linear ? quadratic?

Independence from A

Hence, $\alpha_{A}(n)$ is independent from A (up to a multiplicative constant in the domain and in the range).

Denote it by $\alpha_{G}(n)$.

Question

Are there groups G with $\alpha_{G}(n)$ linear ? quadratic? ... exponential?

The same for outer autos

Definition

For $\Theta \in \operatorname{Out}(G)$, define

$$
\|\Theta\|_{1}=\min \left\{\|\theta\|_{1} \mid \theta \in \Theta\right\},
$$

Definition

For a finitely generated group G,

We have the corresponding same properties.

The same for outer autos

Definition

For $\Theta \in \operatorname{Out}(G)$, define

$$
\begin{aligned}
& \|\Theta\|_{1}=\min \left\{\|\theta\|_{1} \mid \theta \in \Theta\right\} \\
& \|\Theta\|_{\infty}=\min \left\{\|\theta\|_{\infty} \mid \theta \in \Theta\right\}
\end{aligned}
$$

Definition
For a finitely generated group G,

We have the corresponding same properties.

The same for outer autos

Definition

For $\Theta \in \operatorname{Out}(G)$, define

$$
\begin{aligned}
& \|\Theta\|_{1}=\min \left\{\|\theta\|_{1} \mid \theta \in \Theta\right\} \\
& \|\Theta\|_{\infty}=\min \left\{\|\theta\|_{\infty} \mid \theta \in \Theta\right\}
\end{aligned}
$$

Definition

For a finitely generated group G,

$$
\beta(n)=\max \left\{\left\|\Theta^{-1}\right\|_{1} \mid \Theta \in \operatorname{Out}(G),\|\Theta\|_{1} \leqslant n\right\} .
$$

We have the corresponding same properties.

The same for outer autos

Definition

For $\Theta \in \operatorname{Out}(G)$, define

$$
\begin{aligned}
& \|\Theta\|_{1}=\min \left\{\|\theta\|_{1} \mid \theta \in \Theta\right\} \\
& \|\Theta\|_{\infty}=\min \left\{\|\theta\|_{\infty} \mid \theta \in \Theta\right\}
\end{aligned}
$$

Definition

For a finitely generated group G,

$$
\beta(n)=\max \left\{\left\|\Theta^{-1}\right\|_{1} \mid \Theta \in \operatorname{Out}(G),\|\Theta\|_{1} \leqslant n\right\} .
$$

We have the corresponding same properties.

Outline

Motivation
2. Main definition

(3) Free groups

4 Lower bounds: a good enough example
(5) Upper bounds: outer space

6 The special case of rank 2

Free group case

For the rest of the talk, $G=F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.
For every $w \in F_{r},|w|$ is its free length.
$|v w| \leqslant|v|+|w|$,
$w^{n}|\leqslant|n|| w \mid$.

For $\theta \in \operatorname{Aut}\left(F_{r}\right)$ and $\Theta \in \operatorname{Out}\left(F_{r}\right)$,

$$
\begin{array}{ll}
\|0\|_{1}=\left\{a _ { 1 } \left|+\ldots+\left|a_{r} 0\right|\right.\right. & \|\theta\|_{\infty}=\max \left\{\left|a_{1} \theta\right|, \ldots,\left|a_{r} \theta\right|\right\} \\
\|\Theta\|_{1}=\min \left\{\|\theta\|_{1} \mid \theta \in \Theta\right\} & \|\Theta\|_{\infty}=\min \left\{\|\theta\|_{\infty} \mid \theta \in \Theta\right\}
\end{array}
$$

$\alpha_{r}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in\right.$ Aut $\left.F_{r},\|\theta\|_{1} \leqslant n\right\}$,

Free group case

For the rest of the talk, $G=F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.
For every $w \in F_{r},|w|$ is its free length.

For $\theta \in \operatorname{Aut}\left(F_{r}\right)$ and $\Theta \in \operatorname{Out}\left(F_{r}\right)$,

$\alpha_{r}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in\right.$ Aut $\left._{r},\|\theta\|_{1} \leqslant n\right\}$,

Free group case

For the rest of the talk, $G=F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.
For every $w \in F_{r},|w|$ is its free length.
$|v w| \leqslant|v|+|w|$,

For $\theta \in \operatorname{Aut}\left(F_{r}\right)$ and $\Theta \in \operatorname{Out}\left(F_{r}\right)$,

$\alpha_{r}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in\right.$ Aut $\left.F_{r},\|\theta\|_{1} \leqslant n\right\}$,

Free group case

For the rest of the talk, $G=F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.
For every $w \in F_{r},|w|$ is its free length.
$|v w| \leqslant|v|+|w|$,
$\left|w^{n}\right| \leqslant|n||w|$.

For $\theta \in \operatorname{Aut}\left(F_{r}\right)$ and $\Theta \in \operatorname{Out}\left(F_{r}\right)$,

$\alpha_{r}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in\right.$ Aut $\left.F_{r},\|\theta\|_{1} \leqslant n\right\}$,

Free group case

For the rest of the talk, $G=F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.
For every $w \in F_{r},|w|$ is its free length.

$$
\begin{aligned}
& |v w| \leqslant|v|+|w|, \\
& \left|w^{n}\right| \leqslant|n||w| .
\end{aligned}
$$

For $\theta \in \operatorname{Aut}\left(F_{r}\right)$ and $\Theta \in \operatorname{Out}\left(F_{r}\right)$,

$$
\|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|
$$

Free group case

For the rest of the talk, $G=F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.
For every $w \in F_{r},|w|$ is its free length.

$$
\begin{aligned}
& |v w| \leqslant|v|+|w|, \\
& \left|w^{n}\right| \leqslant|n||w| .
\end{aligned}
$$

For $\theta \in \operatorname{Aut}\left(F_{r}\right)$ and $\Theta \in \operatorname{Out}\left(F_{r}\right)$,

$$
\begin{array}{ll}
\|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|, & \|\theta\|_{\infty}=\max \left\{\left|a_{1} \theta\right|, \ldots,\left|a_{r} \theta\right|\right\} \\
\|\Theta\|_{1}=\min \left\{\|\theta\|_{1} \mid \theta \in \Theta\right\} & \Theta \|_{\infty}=\min \{|\theta| \theta \mid \theta \in \Theta
\end{array}
$$

Free group case

For the rest of the talk, $G=F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.
For every $w \in F_{r},|w|$ is its free length.

$$
\begin{aligned}
& |v w| \leqslant|v|+|w|, \\
& \left|w^{n}\right| \leqslant|n||w| .
\end{aligned}
$$

For $\theta \in \operatorname{Aut}\left(F_{r}\right)$ and $\Theta \in \operatorname{Out}\left(F_{r}\right)$,

$$
\begin{array}{ll}
\|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|, & \|\theta\|_{\infty}=\max \left\{\left|a_{1} \theta\right|, \ldots,\left|a_{r} \theta\right|\right\} \\
\|\Theta\|_{1}=\min \left\{\|\theta\|_{1} \mid \theta \in \Theta\right\} & \|\Theta\|_{\infty}=\min \left\{\|\theta\|_{\infty} \mid \theta \in \Theta\right\} .
\end{array}
$$

Free group case

For the rest of the talk, $G=F_{r}=\left\langle a_{1}, \ldots, a_{r} \mid\right\rangle$.
For every $w \in F_{r},|w|$ is its free length.

$$
\begin{aligned}
& |v w| \leqslant|v|+|w|, \\
& \left|w^{n}\right| \leqslant|n||w| .
\end{aligned}
$$

For $\theta \in \operatorname{Aut}\left(F_{r}\right)$ and $\Theta \in \operatorname{Out}\left(F_{r}\right)$,

$$
\begin{array}{ll}
\|\theta\|_{1}=\left|a_{1} \theta\right|+\cdots+\left|a_{r} \theta\right|, & \|\theta\|_{\infty}=\max \left\{\left|a_{1} \theta\right|, \ldots,\left|a_{r} \theta\right|\right\} \\
\|\Theta\|_{1}=\min \left\{\|\theta\|_{1} \mid \theta \in \Theta\right\} & \|\Theta\|_{\infty}=\min \left\{\|\theta\|_{\infty} \mid \theta \in \Theta\right\} .
\end{array}
$$

For $r \geqslant 2$,

$$
\begin{gathered}
\alpha_{r}(n)=\max \left\{\left\|\theta^{-1}\right\|_{1} \mid \theta \in \text { Aut } F_{r},\|\theta\|_{1} \leqslant n\right\}, \\
\beta_{r}(n)=\max \left\{\left\|\Theta^{-1}\right\|_{1} \mid \Theta \in \text { Out } F_{r},\|\Theta\|_{1} \leqslant n\right\} .
\end{gathered}
$$

Main results

Theorem

For rank $r=2$ we have
(i) for $n \geqslant 4, \quad \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) for $n \geqslant n_{0}, \frac{n^{2}}{16} \leqslant \alpha_{2}(n)$,
(iii) for $n \geqslant 1, \quad \beta_{2}(n)=n$.

Theorem

For $r \geqslant 3$ there exist $K=K(r), K^{\prime}=K^{\prime}(r)$, and $M=M(r)$ such that, for $n \geqslant 1$,
(i) $K n^{r} \leqslant \alpha_{r}(n)$
(ii) $K n^{r-1} \leqslant \beta_{r}(n) \leqslant K^{\prime} n^{M}$.

Main results

Theorem

For rank $r=2$ we have
(i) for $n \geqslant 4, \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) for $n \geqslant n_{0}, \frac{n^{2}}{16} \leqslant \alpha_{2}(n)$,
(iii) for $n \geqslant 1, \beta_{2}(n)=n$.

Theorem

For $r \geqslant 3$ there exist $K=K(r), K^{\prime}=K^{\prime}(r)$, and $M=M(r)$ such that, for $n \geqslant 1$,
(i) $K n^{r} \leqslant \alpha_{r}(n)$,
(ii) $K n^{r-1} \leqslant \beta_{r}(n) \leqslant K^{\prime} n^{M}$.

Main results

Theorem

For rank $r=2$ we have
(i) for $n \geqslant 4, \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) for $n \geqslant n_{0}, \frac{n^{2}}{16} \leqslant \alpha_{2}(n)$,
(iii) for $n \geqslant 1, \beta_{2}(n)=n$.

Theorem

For $r \geqslant 3$ there exist $K=K(r), K^{\prime}=K^{\prime}(r)$, and $M=M(r)$ such that, for $n \geqslant 1$,
(i) $K n^{r} \leqslant \alpha_{r}(n)$,
(ii) $K n^{r-1} \leqslant \beta_{r}(n) \leqslant K^{\prime} n^{M}$.

Main results

Theorem

For rank $r=2$ we have
(i) for $n \geqslant 4, \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) for $n \geqslant n_{0}, \frac{n^{2}}{16} \leqslant \alpha_{2}(n)$,
(iii) for $n \geqslant 1, \beta_{2}(n)=n$.

Theorem

For $r \geqslant 3$ there exist $K=K(r), K^{\prime}=K^{\prime}(r)$, and $M=M(r)$ such that, for $n \geqslant 1$,
(i) $K n^{r} \leqslant \alpha_{r}(n)$,

Main results

Theorem

For rank $r=2$ we have
(i) for $n \geqslant 4, \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) for $n \geqslant n_{0}, \frac{n^{2}}{16} \leqslant \alpha_{2}(n)$,
(iii) for $n \geqslant 1, \beta_{2}(n)=n$.

Theorem

For $r \geqslant 3$ there exist $K=K(r), K^{\prime}=K^{\prime}(r)$, and $M=M(r)$ such that, for $n \geqslant 1$,
(i) $K n^{r} \leqslant \alpha_{r}(n)$,
(ii) $K n^{r-1} \leqslant \beta_{r}(n) \leqslant K^{\prime} n^{M}$.

Outline

Motivation

2 Main definition

(3) Free groups

4 Lower bounds: a good enough example
(5) Upper bounds: outer space

6 The special case of rank 2

A lower bound for β_{r}

Theorem

For $r \geqslant 2$, and $n \geqslant n_{0}$, we have $\frac{1}{2 r^{r-1}} n^{r-1} \leqslant \beta_{r}(n)$.
Proof: For $r \geqslant 2$ and $n \geqslant 1$, consider

$\psi_{r, n}:$	F_{r}	\rightarrow	F_{r}	$\psi_{r, n}^{-1}:$	F_{r}
a_{1}	\mapsto	\rightarrow	F_{r}		
a_{2}	\mapsto	$a_{1}^{n} a_{2}$	a_{1}	\mapsto	a_{1}
a_{3}	\mapsto	$a_{2}^{n} a_{3}$	a_{2}	\mapsto	$a_{1}^{-n} a_{2}$
	\vdots			\vdots	
a_{r}	\mapsto	$a_{r-1}^{n} a_{r}$		a_{i}	\mapsto

A straightforward calculation shows that $\left\|\psi_{r, n}\right\|_{1}=(r-1) n+r$, and $\left\|\psi_{r, n}^{-1}\right\|_{1}=n^{r-1}+2 n^{r-2}+\cdots+(r-1) n+r \geqslant n^{r-1}$.
An detailed argument shows that these are $\left\|\left[\psi_{r, n}\right]\right\|_{1}$ and $\left\|\left[\psi_{r, n}^{-1}\right]\right\|_{1}$.

A lower bound for β_{r}

Theorem

For $r \geqslant 2$, and $n \geqslant n_{0}$, we have $\frac{1}{2 r^{r-1}} n^{r-1} \leqslant \beta_{r}(n)$.
Proof: For $r \geqslant 2$ and $n \geqslant 1$, consider

$$
\begin{array}{rlrll}
\psi_{r, n}: & F_{r} & \rightarrow F_{r} & \psi_{r, n}^{-1}: F_{r} & \rightarrow \\
a_{1} & \mapsto & a_{1} & F_{r} \\
a_{2} & \mapsto a_{1}^{n} a_{2} & & \mapsto & a_{1} \\
a_{3} & \mapsto & a_{2}^{n} a_{3} & & \\
& \vdots & & & \vdots \\
a_{1} & & & \\
a_{r} & \mapsto & a_{r-1}^{n} a_{r} & & a_{i} \\
& & \mapsto & \left(a_{i-1}^{-n}\right) \psi_{r, n}^{-1} \cdot a_{i} \\
a_{r} & & (2 \leqslant i \leqslant r)
\end{array}
$$

A straightforward calculation shows that $\left\|\psi_{r, n}\right\|_{1}=(r-1) n+r$, and

An detailed argument shows that these are $\left\|\left[\psi_{r, n}\right]\right\|_{1}$ and $\left\|\left[\psi_{r, n}^{-1}\right]\right\|_{1}$.

A lower bound for β_{r}

Theorem

For $r \geqslant 2$, and $n \geqslant n_{0}$, we have $\frac{1}{2 r^{r-1}} n^{r-1} \leqslant \beta_{r}(n)$.
Proof: For $r \geqslant 2$ and $n \geqslant 1$, consider

$$
\begin{array}{rlrll}
\psi_{r, n}: & F_{r} & \rightarrow F_{r} & \psi_{r, n}^{-1}: F_{r} & \rightarrow \\
a_{1} & \mapsto & a_{1} & F_{r} \\
a_{2} & \mapsto a_{1}^{n} a_{2} & \mapsto & a_{1} \\
a_{3} & \mapsto a_{2}^{n} a_{3} & a_{2} & \mapsto & a_{1}^{-n} a_{2} \\
& \vdots & & & \vdots \\
\\
a_{r} & \mapsto & a_{r-1}^{n} a_{r} & & a_{i} \\
& \mapsto & \left(a_{i-1}^{-n}\right) \psi_{r, n}^{-1} \cdot a_{i} \\
& & (2 \leqslant i \leqslant r)
\end{array}
$$

A straightforward calculation shows that $\left\|\psi_{r, n}\right\|_{1}=(r-1) n+r$, and $\left\|\psi_{r, n}^{-1}\right\|_{1}=n^{r-1}+2 n^{r-2}+\cdots+(r-1) n+r \geqslant n^{r-1}$.
An detailed argument shows that these are $\left\|\left[\psi_{r, n}\right]\right\|_{1}$ and $\left\|\left[\psi_{r, n}^{-1}\right]\right\|_{1}$

A lower bound for β_{r}

Theorem

For $r \geqslant 2$, and $n \geqslant n_{0}$, we have $\frac{1}{2 r^{r-1}} n^{r-1} \leqslant \beta_{r}(n)$.
Proof: For $r \geqslant 2$ and $n \geqslant 1$, consider

$$
\begin{array}{rlrll}
\psi_{r, n}: & F_{r} & \rightarrow F_{r} & \psi_{r, n}^{-1}: & F_{r} \\
a_{1} & \mapsto & \rightarrow & F_{r} \\
a_{2} & \mapsto a_{1} & a_{1} a_{2} & \mapsto & a_{1} \\
& & a_{2} & \mapsto & a_{1}^{-n} a_{2} \\
a_{3} & \mapsto a_{2}^{n} a_{3} & & \vdots & \\
& \vdots & & & \\
a_{r} & \mapsto & a_{r-1}^{n} a_{r} & & \\
& & & \left(a_{i-1}^{-n}\right) \psi_{r, n}^{-1} \cdot a_{i} \\
& & & (\leqslant i \leqslant r)
\end{array}
$$

A straightforward calculation shows that $\left\|\psi_{r, n}\right\|_{1}=(r-1) n+r$, and $\left\|\psi_{r, n}^{-1}\right\|_{1}=n^{r-1}+2 n^{r-2}+\cdots+(r-1) n+r \geqslant n^{r-1}$.
An detailed argument shows that these are $\left\|\left[\psi_{r, n}\right]\right\|_{1}$ and $\left\|\left[\psi_{r, n}^{-1}\right]\right\|_{1}$.

A lower bound for β_{r}

Hence, for $n \geqslant r$,

$$
\beta_{r}(r n) \geqslant \beta_{r}((r-1) n+r) \geqslant n^{r-1} .
$$

Now, for n big enough, take the closest multiple of r below,

Finally, conjugating by an appropriate element, we shall win an extra unit in the exponent.

A lower bound for β_{r}

Hence, for $n \geqslant r$,

$$
\beta_{r}(r n) \geqslant \beta_{r}((r-1) n+r) \geqslant n^{r-1} .
$$

Now, for n big enough, take the closest multiple of r below,

$$
n \geqslant r m>n-r,
$$

and
$\beta_{r}(n) \geqslant \beta_{r}(r m) \geqslant m^{r-1}>\left(\frac{n-r}{r}\right)^{r-1}=\left(\frac{n}{r}-1\right)^{r-1} \geqslant \frac{1}{2 r^{r-1}} n^{r-1} . \square$
Finally, conjugating by an appropriate element, we shall win an extra
unit in the exponent.

A lower bound for β_{r}

Hence, for $n \geqslant r$,

$$
\beta_{r}(r n) \geqslant \beta_{r}((r-1) n+r) \geqslant n^{r-1} .
$$

Now, for n big enough, take the closest multiple of r below,

$$
n \geqslant r m>n-r,
$$

and
$\beta_{r}(n) \geqslant \beta_{r}(r m) \geqslant m^{r-1}>\left(\frac{n-r}{r}\right)^{r-1}=\left(\frac{n}{r}-1\right)^{r-1} \geqslant \frac{1}{2 r^{r-1}} n^{r-1}$.
Finally, conjugating by an appropriate element, we shall win an extra unit in the exponent.

A lower bound for α_{r}

Theorem

For $r \geqslant 2$, and $n \geqslant n_{0}$, we have $\frac{(r-1)^{r-1}}{2 r^{2 r-1}} n^{r} \leqslant \alpha_{r}(n)$.
Proof: For $r \geqslant 2$ and $n \geqslant 1$, consider $\psi_{r, n} \gamma_{a_{r}^{-m}} a_{1}^{-1}$, where $m=\left\lceil\frac{n}{2 r-2}\right\rceil$ Writing $N=\left\|\psi_{r, n} \gamma_{a_{r}^{-m}} a_{1}^{-1}\right\|_{1}$, straightforward calculations show that, for $n \geqslant n_{0}$,

Hence, $\frac{(r-1)^{r-1}}{2 r^{2 r-1}} n^{r} \leqslant \alpha_{r}(n)$.

A lower bound for α_{r}

Theorem

For $r \geqslant 2$, and $n \geqslant n_{0}$, we have $\frac{(r-1)^{r-1}}{2 r^{2 r-1}} n^{r} \leqslant \alpha_{r}(n)$.
Proof: For $r \geqslant 2$ and $n \geqslant 1$, consider $\psi_{r, n} \gamma_{a_{r}^{-m} a_{1}^{-1}}$, where $m=\left\lceil\frac{n}{2 r-2}\right\rceil$. Writing $N=\left\|\psi_{r, n} \gamma_{a_{r}^{-m}} a_{1}^{-1}\right\|_{1}$, straightforward calculations show that, for $n \geqslant n_{0}$,

$$
\left\|\gamma_{a_{1} a_{r}^{m}} \psi_{r, n}^{-1}\right\|_{1}=\left\|\psi_{r, n}^{-1} \gamma_{\left(a_{1} a_{r}^{m}\right) \psi_{r, n}^{-,}}\right\|_{1} \geqslant \frac{(r-1)^{r-1}}{2 r^{2 r-1}} N^{r}
$$

A lower bound for α_{r}

Theorem

For $r \geqslant 2$, and $n \geqslant n_{0}$, we have $\frac{(r-1)^{r-1}}{2 r^{2 r-1}} n^{r} \leqslant \alpha_{r}(n)$.
Proof: For $r \geqslant 2$ and $n \geqslant 1$, consider $\psi_{r, n} \gamma_{a_{r}^{-m} a_{1}^{-1}}$, where $m=\left\lceil\frac{n}{2 r-2}\right\rceil$. Writing $N=\left\|\psi_{r, n} \gamma_{a_{r}^{-m} a_{1}^{-1}}\right\|_{1}$, straightforward calculations show that, for $n \geqslant n_{0}$,

$$
\left\|\gamma_{a_{1} a_{r}^{m}} \psi_{r, n}^{-1}\right\|_{1}=\left\|\psi_{r, n}^{-1} \gamma_{\left(a_{1} a_{r}^{m}\right) \psi_{r, n}^{-,}}\right\|_{1} \geqslant \frac{(r-1)^{r-1}}{2 r^{2 r-1}} N^{r}
$$

Hence, $\frac{(r-1)^{r-1}}{2 r^{2 r-1}} n^{r} \leqslant \alpha_{r}(n)$.

Outline

Motivation

Main definition(3) Free groups

4 Lower bounds: a good enough example
(5) Upper bounds: outer space

6 The special case of rank 2

Outer space

To prove the upper bound
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
we'll need to use the recently discovered metric in the outer space \mathcal{X}_{r}.

Definition

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on 「 is a map $\ell: E \Gamma \rightarrow[0,1]$ such that $\sum_{e \in E \Gamma} \ell(e)=1$, and $\{e \in E \Gamma \mid \ell(e)=0\}$ is a forest.
- For a graph $\Gamma, \Sigma_{\Gamma}=\{$ metrics on $\Gamma\}=$ a simplex with missing faces.
- If $\Gamma^{\prime}=\Gamma /$ forest, then we identify points in $\Sigma_{\Gamma^{\prime}}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_{r} \rightarrow \Gamma$.

Outer space

To prove the upper bound
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
we'll need to use the recently discovered metric in the outer space \mathcal{X}_{r}.

Definition

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.

Outer space

To prove the upper bound
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
we'll need to use the recently discovered metric in the outer space \mathcal{X}_{r}.

Definition

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell: E \Gamma \rightarrow[0,1]$ such that $\sum_{e \in E \Gamma} \ell(e)=1$, and $\{e \in E \Gamma \mid \ell(e)=0\}$ is a forest.
- For a graph $\Gamma, \Sigma_{\Gamma}=\{$ metrics on $\Gamma\}=$ a simplex with missing faces.
- If $\Gamma^{\prime}=\Gamma /$ forest, then we identify points in $\Sigma_{\Gamma^{\prime}}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_{r} \rightarrow \Gamma$.

Outer space

To prove the upper bound
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
we'll need to use the recently discovered metric in the outer space \mathcal{X}_{r}.

Definition

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell: E \Gamma \rightarrow[0,1]$ such that $\sum_{e \in E \Gamma} \ell(e)=1$, and $\{e \in E \Gamma \mid \ell(e)=0\}$ is a forest.
- For a graph $\Gamma, \Sigma_{\Gamma}=\{$ metrics on $\Gamma\}=$ a simplex with missing faces.
- If $\Gamma^{\prime}=\Gamma /$ forest, then we identify points in $\Sigma_{\Gamma^{\prime}}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_{r} \rightarrow \Gamma$.

Outer space

To prove the upper bound
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
we'll need to use the recently discovered metric in the outer space \mathcal{X}_{r}.

Definition

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell: E \Gamma \rightarrow[0,1]$ such that $\sum_{e \in E \Gamma} \ell(e)=1$, and $\{e \in E \Gamma \mid \ell(e)=0\}$ is a forest.
- For a graph $\Gamma, \Sigma_{\Gamma}=\{$ metrics on $\Gamma\}=$ a simplex with missing faces.
- If $\Gamma^{\prime}=\Gamma$ /forest, then we identify points in $\Sigma_{\Gamma^{\prime}}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Г is a homotopy equivalence f

Outer space

To prove the upper bound
(ii) $\beta_{r}(n) \leqslant K n^{M}$,
we'll need to use the recently discovered metric in the outer space \mathcal{X}_{r}.

Definition

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell: E \Gamma \rightarrow[0,1]$ such that $\sum_{e \in E \Gamma} \ell(e)=1$, and $\{e \in E \Gamma \mid \ell(e)=0\}$ is a forest.
- For a graph $\Gamma, \Sigma_{\Gamma}=\{$ metrics on $\Gamma\}=$ a simplex with missing faces.
- If $\Gamma^{\prime}=\Gamma /$ forest, then we identify points in $\Sigma_{\Gamma^{\prime}}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_{r} \rightarrow \Gamma$.

Outer space

Definition

The outer space \mathcal{X}_{r} is

$$
\mathcal{X}_{r}=\{(\Gamma, f, \ell)\} / \sim
$$

(where \sim is an equivalence relation).

Definition

There is a natural action of $\operatorname{Aut}\left(F_{r}\right)$ on \mathcal{X}_{r}, given by
(thinking $\phi: R_{r} \rightarrow R_{r}$). In fact, this is an action of Out $\left(F_{r}\right)$.

Outer space

Definition

The outer space \mathcal{X}_{r} is

$$
\mathcal{X}_{r}=\{(\Gamma, f, \ell)\} / \sim
$$

(where \sim is an equivalence relation).

Definition

There is a natural action of $\operatorname{Aut}\left(F_{r}\right)$ on \mathcal{X}_{r}, given by

$$
\phi \cdot(\Gamma, f, \ell)=(\Gamma, \phi f, \ell),
$$

(thinking $\phi: R_{r} \rightarrow R_{r}$). In fact, this is an action of $\operatorname{Out}\left(F_{r}\right)$.

Metric on \mathcal{X}_{r}

Definition

Let $x, x^{\prime} \in \mathcal{X}_{r}, x=(\Gamma, f, \ell), x^{\prime}=\left(\Gamma^{\prime}, f^{\prime}, \ell^{\prime}\right)$. A difference of markings is a map $\alpha: \Gamma \rightarrow \Gamma^{\prime}$, which is linear over edges and $f \alpha \simeq f^{\prime}$.
For such an α, define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

\mathcal{X}_{r} admits the following "metric":
$d\left(x, x^{\prime}\right)=\min \{\log (\sigma(\alpha)) \mid \alpha$ diff. markings $\}$
This minimum is achieved by Arzela-Ascoli's theorem.
This is Bestvina-AlgomKfir version of Martino-Francaviglia's original metric.

Metric on \mathcal{X}_{r}

Definition

Let $x, x^{\prime} \in \mathcal{X}_{r}, x=(\Gamma, f, \ell), x^{\prime}=\left(\Gamma^{\prime}, f^{\prime}, \ell^{\prime}\right)$. A difference of markings is a map $\alpha: \Gamma \rightarrow \Gamma^{\prime}$, which is linear over edges and $f \alpha \simeq f^{\prime}$. For such an α, define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

\mathcal{X}_{r} admits the following "metric":
$d\left(x, x^{\prime}\right)=\min \{\log (\sigma(\alpha)) \mid \alpha$ diff. markings $\}$
This minimum is achieved by Arzela-Ascoli's theorem.
This is Bestvina-AlgomKfir version of Martino-Francaviglia's original metric.

Metric on \mathcal{X}_{r}

Definition

Let $x, x^{\prime} \in \mathcal{X}_{r}, x=(\Gamma, f, \ell), x^{\prime}=\left(\Gamma^{\prime}, f^{\prime}, \ell^{\prime}\right)$. A difference of markings is a map $\alpha: \Gamma \rightarrow \Gamma^{\prime}$, which is linear over edges and $f \alpha \simeq f^{\prime}$. For such an α, define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

\mathcal{X}_{r} admits the following "metric":

$$
d\left(x, x^{\prime}\right)=\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} .
$$

This minimum is achieved by Arzela-Ascoli's theorem.
This is Bestvina-AlgomKfir version of Martino-Francaviglia's original metric.

Metric on \mathcal{X}_{r}

Definition

Let $x, x^{\prime} \in \mathcal{X}_{r}, x=(\Gamma, f, \ell), x^{\prime}=\left(\Gamma^{\prime}, f^{\prime}, \ell^{\prime}\right)$. A difference of markings is a map $\alpha: \Gamma \rightarrow \Gamma^{\prime}$, which is linear over edges and $f \alpha \simeq f^{\prime}$. For such an α, define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

\mathcal{X}_{r} admits the following "metric":

$$
d\left(x, x^{\prime}\right)=\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} .
$$

This minimum is achieved by Arzela-Ascoli's theorem.
This is Bestvina-AlgomKfir version of Martino-Francaviglia's original metric.

Metric on \mathcal{X}_{r}

Proposition

(i) $d(x, y) \geqslant 0$, and $=0 \Leftrightarrow x=y$.

$$
\text { (ii) } d(x, z) \leqslant d(x, y)+d(y, z) \text {. }
$$

(iii) Out $\left(F_{r}\right)$ acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y)=d(x, y)$.
(iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

For $\epsilon>0$, the ϵ-thick part of \mathcal{X}_{r} is

$$
\mathcal{X}_{r}(\epsilon)=\left\{(\Gamma, f, \ell) \in \mathcal{X}_{r} \mid \ell(p) \geqslant \epsilon \forall \text { closed path } p \neq 1\right\}
$$

Metric on \mathcal{X}_{r}

Proposition

(i) $d(x, y) \geqslant 0$, and $=0 \Leftrightarrow x=y$.
(ii) $d(x, z) \leqslant d(x, y)+d(y, z)$.
(iii) Out $\left(F_{r}\right)$ acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y)=d(x, y)$.
(iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

For $\epsilon>0$, the ϵ-thick part of \mathcal{X}_{r} is

Metric on \mathcal{X}_{r}

Proposition

(i) $d(x, y) \geqslant 0$, and $=0 \Leftrightarrow x=y$.
(ii) $d(x, z) \leqslant d(x, y)+d(y, z)$.
(iii) $\operatorname{Out}\left(F_{r}\right)$ acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y)=d(x, y)$.
(iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

For $\epsilon>0$, the ϵ-thick part of \mathcal{X}_{r} is

Metric on \mathcal{X}_{r}

Proposition

(i) $d(x, y) \geqslant 0$, and $=0 \Leftrightarrow x=y$.
(ii) $d(x, z) \leqslant d(x, y)+d(y, z)$.
(iii) $\operatorname{Out}\left(F_{r}\right)$ acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y)=d(x, y)$.
(iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

For $\epsilon>0$, the ϵ-thick part of \mathcal{X}_{r} is

Metric on \mathcal{X}_{r}

Proposition

(i) $d(x, y) \geqslant 0$, and $=0 \Leftrightarrow x=y$.
(ii) $d(x, z) \leqslant d(x, y)+d(y, z)$.
(iii) $\operatorname{Out}\left(F_{r}\right)$ acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y)=d(x, y)$.
(iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

For $\epsilon>0$, the ϵ-thick part of \mathcal{X}_{r} is

$$
\mathcal{X}_{r}(\epsilon)=\left\{(\Gamma, f, \ell) \in \mathcal{X}_{r} \mid \ell(p) \geqslant \epsilon \forall \text { closed path } p \neq 1\right\}
$$

Bestvina-AlgomKfir theorem

Theorem (Bestvina-AlgomKfir)

For any $\epsilon>0$ there is constant $M=M(r, \epsilon)$ such that for all $x, y \in \mathcal{X}_{r}(\epsilon)$,

$$
d(x, y) \leqslant M \cdot d(y, x) .
$$

Corollary

For $r \geqslant 2$, there exists $M=M(r)$ such that

Bestvina-AlgomKfir theorem

Theorem (Bestvina-AlgomKfir)

For any $\epsilon>0$ there is constant $M=M(r, \epsilon)$ such that for all $x, y \in \mathcal{X}_{r}(\epsilon)$,

$$
d(x, y) \leqslant M \cdot d(y, x)
$$

Corollary
For $r \geqslant 2$, there exists $M=M(r)$ such that

$$
\beta_{r}(n) \leqslant r n^{M} .
$$

Proof

$$
\text { Remind } \beta_{r}(n)=\max \left\{\left\|\Theta^{-1}\right\|_{1} \mid \theta \in \text { Aut } F_{r},\|\Theta\|_{1} \leqslant n\right\} .
$$

Proof. Given $\theta \in \Theta \in \operatorname{Out}\left(F_{r}\right)$, consider $x=\left(R_{r}, i d, \ell_{0}\right) \in \mathcal{X}_{r}$, and $\theta \cdot x=\left(R_{r}, \theta, \ell_{0}\right) \in \mathcal{X}_{r}$, where ℓ_{0} is the uniform metric.

Now, using Bestvina-AlgomKfir theorem,
$\left.\log ^{(}\left\|\theta^{-1}\right\|_{1}\right) \sim d\left(x, \theta^{-1} \cdot x\right)=d(\theta \cdot x, x) \leq M d(x, \theta \cdot x) \sim M \log \left(\|\Theta\|_{1}\right)$
Hence, for every $\Theta \in \operatorname{Out}\left(F_{r}\right),\left\|\Theta^{-1}\right\|_{1} \leqslant r\|\Theta\|_{1}^{M} . \square$

Proof

$$
\text { Remind } \beta_{r}(n)=\max \left\{\left\|\Theta^{-1}\right\|_{1} \mid \theta \in \operatorname{Aut} F_{r},\|\Theta\|_{1} \leqslant n\right\} .
$$

Proof. Given $\theta \in \Theta \in \operatorname{Out}\left(F_{r}\right)$, consider $x=\left(R_{r}, i d, \ell_{0}\right) \in \mathcal{X}_{r}$, and $\theta \cdot x=\left(R_{r}, \theta, \ell_{0}\right) \in \mathcal{X}_{r}$, where ℓ_{0} is the uniform metric.

$$
\begin{aligned}
d(x, \theta \cdot x) & =\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} \\
& =\log \left(\min \left\{\sigma\left(\theta \gamma_{w} \gamma_{p}\right) \mid w \in F_{r}, p=\text { "half petal" }\right\}\right) \\
& \sim \log \left(\min \left\{\sigma\left(\theta \gamma_{w}\right) \mid w \in F_{r}\right\}\right) \\
& =\log \left(\min \left\{\left\|\theta \gamma_{w}\right\|_{\infty} \mid w \in F_{r}\right\}\right) \\
& =\log \left(\|\Theta\|_{\infty}\right) \\
& \sim \log \left(\|\Theta\|_{1}\right) .
\end{aligned}
$$

Now, using Bestvina-AlgomKfir theorem,

$\log \left(\left\|\Theta^{-1}\right\|_{1}\right) \sim d\left(x, \theta^{-1} \cdot x\right)=d(\theta \cdot x, x) \leqslant M d(x, \theta \cdot x) \sim M \log \left(\|\Theta\|_{1}\right)$

Proof

Remind $\beta_{r}(n)=\max \left\{\left\|\Theta^{-1}\right\|_{1} \mid \theta \in\right.$ Aut $\left.F_{r},\|\Theta\|_{1} \leqslant n\right\}$.
Proof. Given $\theta \in \Theta \in \operatorname{Out}\left(F_{r}\right)$, consider $x=\left(R_{r}, i d, \ell_{0}\right) \in \mathcal{X}_{r}$, and $\theta \cdot x=\left(R_{r}, \theta, \ell_{0}\right) \in \mathcal{X}_{r}$, where ℓ_{0} is the uniform metric.

$$
\begin{aligned}
d(x, \theta \cdot x) & =\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} \\
& =\log \left(\min \left\{\sigma\left(\theta \gamma_{w} \gamma_{p}\right) \mid w \in F_{r}, p=\text { "half petal" }\right\}\right) \\
& \sim \log \left(\min \left\{\sigma\left(\theta \gamma_{w}\right) \mid w \in F_{r}\right\}\right) \\
& =\log \left(\min \left\{\left\|\theta \gamma_{w}\right\|_{\infty} \mid w \in F_{r}\right\}\right) \\
& =\log \left(\|\Theta\|_{\infty}\right) \\
& \sim \log \left(\|\Theta\|_{1}\right) .
\end{aligned}
$$

Now, using Bestvina-AlgomKfir theorem,
$\log \left(\left\|\Theta^{-1}\right\|_{1}\right) \sim d\left(x, \theta^{-1} \cdot x\right)=d(\theta \cdot x, x) \leqslant M d(x, \theta \cdot x) \sim M \log \left(\|\Theta\|_{1}\right)$.
Hence, for every Θ

Proof

Remind $\beta_{r}(n)=\max \left\{\left\|\Theta^{-1}\right\|_{1} \mid \theta \in\right.$ Aut $\left.F_{r},\|\Theta\|_{1} \leqslant n\right\}$.

Proof. Given $\theta \in \Theta \in \operatorname{Out}\left(F_{r}\right)$, consider $x=\left(R_{r}, i d, \ell_{0}\right) \in \mathcal{X}_{r}$, and $\theta \cdot x=\left(R_{r}, \theta, \ell_{0}\right) \in \mathcal{X}_{r}$, where ℓ_{0} is the uniform metric.

$$
\begin{aligned}
d(x, \theta \cdot x) & =\min \{\log (\sigma(\alpha)) \mid \alpha \text { diff. markings }\} \\
& =\log \left(\min \left\{\sigma\left(\theta \gamma_{w} \gamma_{p}\right) \mid w \in F_{r}, p=\text { "half petal" }\right\}\right) \\
& \sim \log \left(\min \left\{\sigma\left(\theta \gamma_{w}\right) \mid w \in F_{r}\right\}\right) \\
& =\log \left(\min \left\{\left\|\theta \gamma_{w}\right\|_{\infty} \mid w \in F_{r}\right\}\right) \\
& =\log \left(\|\Theta\|_{\infty}\right) \\
& \sim \log \left(\|\Theta\|_{1}\right) .
\end{aligned}
$$

Now, using Bestvina-AlgomKfir theorem,
$\log \left(\left\|\Theta^{-1}\right\|_{1}\right) \sim d\left(x, \theta^{-1} \cdot x\right)=d(\theta \cdot x, x) \leqslant M d(x, \theta \cdot x) \sim M \log \left(\|\Theta\|_{1}\right)$.
Hence, for every $\Theta \in \operatorname{Out}\left(F_{r}\right),\left\|\Theta^{-1}\right\|_{1} \leqslant r\|\Theta\|_{1}^{M} . \square$

Outline

Motivation

Main definition(3) Free groups

4 Lower bounds: a good enough example
(5) Upper bounds: outer space

6 The special case of rank 2

The rank 2 case

These functions for Aut $\left(F_{2}\right)$ are much easier to understand due to the following technical lemmas.

Lemma

Let $\varphi \in \operatorname{Aut}\left(F_{2}\right)$ be positive. Then φ^{-1} is cyclically reduced and

Lemma

For everv $\theta \in \operatorname{Aut}\left(F_{2}\right)$, there exist two letter permuting autos $\psi_{1}, \psi_{2} \in \operatorname{Aut}\left(F_{2}\right)$, a positive one $\varphi \in \operatorname{Aut}^{+}\left(F_{2}\right)$, and an element $g \in$

The rank 2 case

These functions for Aut $\left(F_{2}\right)$ are much easier to understand due to the following technical lemmas.

Lemma
Let $\varphi \in \operatorname{Aut}\left(F_{2}\right)$ be positive. Then φ^{-1} is cyclically reduced and $\left\|\varphi^{-1}\right\|_{1}=\|\varphi\|_{1}$.

Lemma

For everv $\theta \in \operatorname{Aut}\left(F_{2}\right)$, there exist two letter permuting autos $\psi_{1}, \psi_{2} \in \operatorname{Aut}\left(F_{2}\right)$, a positive one $\varphi \in \operatorname{Aut}^{+}\left(F_{2}\right)$, and an element $g \in F_{2}$, such that $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$ and \mid

The rank 2 case

These functions for Aut $\left(F_{2}\right)$ are much easier to understand due to the following technical lemmas.

Lemma

Let $\varphi \in \operatorname{Aut}\left(F_{2}\right)$ be positive. Then φ^{-1} is cyclically reduced and $\left\|\varphi^{-1}\right\|_{1}=\|\varphi\|_{1}$.

Lemma

For every $\theta \in \operatorname{Aut}\left(F_{2}\right)$, there exist two letter permuting autos $\psi_{1}, \psi_{2} \in \operatorname{Aut}\left(F_{2}\right)$, a positive one $\varphi \in$ Aut $^{+}\left(F_{2}\right)$, and an element $g \in F_{2}$, such that $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$ and $\|\varphi\|_{1}+2|g| \leqslant\|\theta\|_{1}$.

The rank 2 case: β_{2}

Theorem
For every $\theta \in \operatorname{Aut}\left(F_{2}\right),\left\|\left[\theta^{-1}\right]\right\|_{1}=\|[\theta]\|_{1}$. Hence, $\beta_{2}(n)=n$.

Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then,

$$
\|\left[\theta\left\|_{1}\right\|_{1}=\|\left[L_{2} / /_{1} \varphi\left\|_{2} \lambda_{1}\right\|_{1}=\|\left[2 / \alpha_{1} \varphi \varphi_{1}\left\|_{2}\right\|_{1}=\|\varphi\|_{1} .\right.\right.\right.
$$

On the other hand,

The rank 2 case: β_{2}

Theorem
For every $\theta \in \operatorname{Aut}\left(F_{2}\right),\left\|\left[\theta^{-1}\right]\right\|_{1}=\|[\theta]\|_{1}$. Hence, $\beta_{2}(n)=n$.

Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$.

$$
\|[\theta]\|_{1}=\left\|\left[\psi_{1} \varphi \psi_{2} \lambda_{g}\right]\right\|_{1}=\left\|\left[\psi_{1} \varphi \psi_{2}\right]\right\|_{1}=\|\varphi\|_{1} .
$$

On the other hand,

The rank 2 case: β_{2}

Theorem

For every $\theta \in \operatorname{Aut}\left(F_{2}\right),\left\|\left[\theta^{-1}\right]\right\|_{1}=\|[\theta]\|_{1}$. Hence, $\beta_{2}(n)=n$.

Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then,

$$
\|[\theta]\|_{1}=\left\|\left[\psi_{1} \varphi \psi_{2} \lambda_{g}\right]\right\|_{1}=\left\|\left[\psi_{1} \varphi \psi_{2}\right]\right\|_{1}=\|\varphi\|_{1} .
$$

On the other hand,

The rank 2 case: β_{2}

Theorem

For every $\theta \in \operatorname{Aut}\left(F_{2}\right),\left\|\left[\theta^{-1}\right]\right\|_{1}=\|[\theta]\|_{1}$. Hence, $\beta_{2}(n)=n$.

Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then,

$$
\|[\theta]\|_{1}=\left\|\left[\psi_{1} \varphi \psi_{2} \lambda_{g}\right]\right\|_{1}=\left\|\left[\psi_{1} \varphi \psi_{2}\right]\right\|_{1}=\|\varphi\|_{1} .
$$

On the other hand,

$$
\begin{gathered}
\left\|\left[\theta^{-1}\right]\right\|_{1}=\left\|\left[\lambda_{g^{-1}} \psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}\right]\right\|_{1}=\left\|\left[\psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}\right]\right\|_{1}= \\
=\left\|\left[\varphi^{-1}\right]\right\|_{1}=\|[\varphi]\|_{1} . \quad \square
\end{gathered}
$$

The rank 2 case: α_{2}

Theorem

For $n \geqslant 4$ we have $\alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$.
Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then, $\theta^{-1}=\lambda_{g^{-1}} \psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}$ and

$$
\left\|\theta^{-1}\right\|_{1} \leqslant 4|g| \cdot\left\|\psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}\right\| \infty=4|g| \cdot\left\|\varphi^{-1}\right\| \infty
$$

$$
4|g|\left(\left\|\varphi^{-1}\right\|_{1}-1\right)=4|g|\left(\|\varphi\| \|_{1}-1\right) .
$$

Now from $\|\varphi\|_{1}+2|g| \leqslant\|\theta\|_{1}=n$, we deduce $|g| \leqslant \frac{n-\|\varphi\|_{1}}{2}$ and so,

$$
\left\|\theta^{-1}\right\|_{1} \leqslant 2\left(n-\|\varphi\|_{1}\right)\left(\|\varphi\|_{1}-1\right) .
$$

Finally, the parabola $f(x)=2(n-x)(x-1)$ takes its maximum at $x=\frac{n+1}{2}$ and so,

The rank 2 case: α_{2}

Theorem

For $n \geqslant 4$ we have $\alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$.
Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$.

Now from $\|\varphi\|_{1}+2|g| \leqslant\|\theta\|_{1}=n$, we deduce $|g| \leqslant \frac{n-\|\varphi\|_{1}}{2}$ and so,

$$
\left\|\theta^{-1}\right\|_{\uparrow} \leqslant 2\left(n-\|\varphi\|_{1}\right)\left(\left\|\varphi_{1}\right\|_{1}-1\right)
$$

Finally, the parabola $f(x)=2(n-x)(x-1)$ takes its maximum at $x=\frac{n+1}{2}$ and so,

The rank 2 case: α_{2}

Theorem

For $n \geqslant 4$ we have $\alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$.
Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then, $\theta^{-1}=\lambda_{g^{-1}} \psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}$ and

$$
\begin{gathered}
\left\|\theta^{-1}\right\|_{1} \leqslant 4|g| \cdot\left\|\psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}\right\|_{\infty}=4|g| \cdot\left\|\varphi^{-1}\right\|_{\infty} \leqslant \\
\leqslant 4|g|\left(\left\|\varphi^{-1}\right\|_{1}-1\right)=4|g|\left(\|\varphi\|_{1}-1\right) .
\end{gathered}
$$

Now from $\|\varphi\|_{1}+2|g| \leqslant\|\theta\|_{1}=n$, we deduce $|g| \leqslant \frac{n-\mid \varphi \|_{1}}{2}$ and so,

Finally, the parabola $f(x)=2(n-x)(x-1)$ takes its maximum at $x=\frac{n+1}{2}$ and so,

The rank 2 case: α_{2}

Theorem

For $n \geqslant 4$ we have $\alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$.
Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then, $\theta^{-1}=\lambda_{g^{-1}} \psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}$ and

$$
\begin{gathered}
\left\|\theta^{-1}\right\|_{1} \leqslant 4|g| \cdot\left\|\psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}\right\|_{\infty}=4|g| \cdot\left\|\varphi^{-1}\right\|_{\infty} \leqslant \\
\leqslant 4|g|\left(\left\|\varphi^{-1}\right\|_{1}-1\right)=4|g|\left(\|\varphi\|_{1}-1\right) .
\end{gathered}
$$

Now from $\|\varphi\|_{1}+2|g| \leqslant\|\theta\|_{1}=n$, we deduce $|g| \leqslant \frac{n-\|\varphi\|_{1}}{2}$ and so,

$$
\left\|\theta^{-1}\right\|_{1} \leqslant 2\left(n-\|\varphi\|_{1}\right)\left(\|\varphi\|_{1}-1\right)
$$

Finally, the parabola $f(x)=2(n-x)(x-1)$ takes its maximum at $x=\frac{n+1}{2}$ and so,

The rank 2 case: α_{2}

Theorem

For $n \geqslant 4$ we have $\alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$.
Proof. Let $\theta \in \operatorname{Aut}\left(F_{2}\right)$, decomposed as above, $\theta=\psi_{1} \varphi \psi_{2} \lambda_{g}$. Then, $\theta^{-1}=\lambda_{g^{-1}} \psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}$ and

$$
\begin{gathered}
\left\|\theta^{-1}\right\|_{1} \leqslant 4|g| \cdot\left\|\psi_{2}^{-1} \varphi^{-1} \psi_{1}^{-1}\right\|_{\infty}=4|g| \cdot\left\|\varphi^{-1}\right\|_{\infty} \leqslant \\
\leqslant 4|g|\left(\left\|\varphi^{-1}\right\|_{1}-1\right)=4|g|\left(\|\varphi\|_{1}-1\right) .
\end{gathered}
$$

Now from $\|\varphi\|_{1}+2|g| \leqslant\|\theta\|_{1}=n$, we deduce $|g| \leqslant \frac{n-\|\varphi\|_{1}}{2}$ and so,

$$
\left\|\theta^{-1}\right\|_{1} \leqslant 2\left(n-\|\varphi\|_{1}\right)\left(\|\varphi\|_{1}-1\right)
$$

Finally, the parabola $f(x)=2(n-x)(x-1)$ takes its maximum at $x=\frac{n+1}{2}$ and so,

$$
\left\|\theta^{-1}\right\|_{1} \leqslant 2\left(n-\|\varphi\|_{1}\right)\left(\|\varphi\|_{1}-1\right) \leqslant 2\left(n-\frac{n+1}{2}\right)\left(\frac{n+1}{2}-1\right)=\frac{(n-1)^{2}}{2}
$$

Summarizing

Theorem

For rank $r=2$ we have
(i) for $n \geqslant 4, \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) for $n \geqslant n_{0}, \frac{n^{2}}{16} \leqslant \alpha_{2}(n)$,
(iii) for $n \geqslant 1, \beta_{2}(n)=n$.

Theorem

For $r \geqslant 3$ there exist $K=K(r), K^{\prime}=K^{\prime}(r)$, and $M=M(r)$ such that, for $n \geqslant 1$,
(i) $K n^{r} \leqslant \alpha_{r}(n)$,
(ii) $K n^{r-1} \leqslant \beta_{r}(n) \leqslant K^{\prime} n^{M}$

Summarizing

Theorem

For rank $r=2$ we have
(i) for $n \geqslant 4, \alpha_{2}(n) \leqslant \frac{(n-1)^{2}}{2}$,
(ii) for $n \geqslant n_{0}, \frac{n^{2}}{16} \leqslant \alpha_{2}(n)$,
(iii) for $n \geqslant 1, \beta_{2}(n)=n$.

Theorem

For $r \geqslant 3$ there exist $K=K(r), K^{\prime}=K^{\prime}(r)$, and $M=M(r)$ such that, for $n \geqslant 1$,
(i) $K n^{r} \leqslant \alpha_{r}(n)$,
(ii) $K n^{r-1} \leqslant \beta_{r}(n) \leqslant K^{\prime} n^{M}$.

THANKS

