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Notation

A = {a1, . . . ,an} is a finite alphabet (n letters).

Ã = A ∪ A−1 = {a1,a−1
1 , . . . ,an,a−1

n }.
Usually, A = {a,b, c}.
Ã∗ the free monoid on Ã (words on A±1).
1 denotes the empty word, and | · | the length of words.
∼ is the eq. rel. generated by aia−1

i ∼ a−1
i ai ∼ 1.

RA = { reduced words } ⊆ Ã∗.
w is the reduced word for w .
FA = Ã∗/ ∼ is the free group on A (words on A±1 modulo ∼).

π : Ã∗ � FA the natural projection (a morphisms of monoids).
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Ã∗ the free monoid on Ã (words on A±1).
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1 denotes the empty word, and | · | the length of words.
∼ is the eq. rel. generated by aia−1

i ∼ a−1
i ai ∼ 1.

RA = { reduced words } ⊆ Ã∗.
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Stallings automata

Definition
A Stallings automata is a finite A-labeled oriented graph with a distinguished
vertex, (X , v), such that:

1- X is connected,
2- no vertex of degree 1 except possibly v (X is a core-graph),
3- no two edges with the same label go out of (or in to) the same vertex.

NO : •

a

��

b

��
• c // •

a
** •

b

XX

c

jj

YES : •

a

��

b

��
•

a
** •

b

XX

c

jj
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Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),
551-565,

Stallings (building on previous works) gave a bijection between finitely
generated subgroups of FA and Stallings automata:

{f.g. subgroups of FA} ←→ {Stallings automata},

which is crucial for the modern understanding of the lattice of subgroups of FA.
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Reading the subgroup from the automata

Definition
To any given (Stallings) automaton (X , v), we associate its fundamental
group:

π(X , v) = { labels of closed paths at v} 6 FA,

clearly, a subgroup of FA.

•

a

��

X= b

��
•

a
** •

b

XX

c

jj

π(X , •) = {1, a, a−1, bab, bc−1b,
babab−1cb−1, . . .}

π(X , •) 63 bc−1bcaa

Membership problem in π(X , •) is solvable.
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Constructing the automata from the subgroup

In any automaton containing the following situation, for x ∈ A±1,

• x //

x
&&

u

v

we can fold and identify vertices u and v to obtain

• x // u = v .

This operation, (X , v) (X ′, v), is called a Stallings folding.
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Constructing the automata from the subgroup

Lemma (Stallings)
If (X , v) (X ′, v ′) is a Stallings folding then π(X , v) = π(X ′, v ′).

Given a f.g. subgroup H = 〈w1, . . . ,wm〉 6 FA (we assume wi are reduced
words), do the following:

1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton,

denoted Γ(H).

Well defined?
Need to see that the output does not depend on the process...
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Example: H = 〈baba−1,aba−1,aba2〉

• a // •

b

��
• a // •

b

OO

a //

a

��

a

��

a

��

•

•

a

??

•
b

oo • •
b

oo

Flower(H)
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Example: H = 〈baba−1,aba−1,aba2〉

• a //
b

.. •

a

��

b
pp

•

a

OO

Folding #3. Γ(H)

By Stallings Lemma, π(Γ(H), •) = 〈baba−1,aba−1,aba2〉
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b
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•

a

OO

Folding #3. Γ(H)

By Stallings Lemma, π(Γ(H), •) = 〈baba−1,aba−1,aba2〉
= 〈b,aba−1,a3〉
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The bijection

Lemma
The automaton Γ(H) does not depend on the sequence of foldings.

Lemma
The automaton Γ(H) does not depend on the generators of H.

Theorem
The following is a bijection between f.g subgroups and Stallings automata:

{f.g. subgroups of FA} ←→ {Stallings automata}
H → Γ(H)

π(X , v) ← (X , v)

Enric Ventura (UPC) Stallings sections and virtually free groups December 7th, 2012 18 / 41



The bijection

Lemma
The automaton Γ(H) does not depend on the sequence of foldings.

Lemma
The automaton Γ(H) does not depend on the generators of H.

Theorem
The following is a bijection between f.g subgroups and Stallings automata:

{f.g. subgroups of FA} ←→ {Stallings automata}
H → Γ(H)

π(X , v) ← (X , v)

Enric Ventura (UPC) Stallings sections and virtually free groups December 7th, 2012 18 / 41



The bijection

Lemma
The automaton Γ(H) does not depend on the sequence of foldings.

Lemma
The automaton Γ(H) does not depend on the generators of H.

Theorem
The following is a bijection between f.g subgroups and Stallings automata:

{f.g. subgroups of FA} ←→ {Stallings automata}
H → Γ(H)

π(X , v) ← (X , v)

Enric Ventura (UPC) Stallings sections and virtually free groups December 7th, 2012 18 / 41



Outline

1 The bijection between subgroups of FA and Stallings automata

2 Many applications

3 Moving out of free groups

4 Stallings sections

5 Virtually free groups

Enric Ventura (UPC) Stallings sections and virtually free groups December 7th, 2012 19 / 41



Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)
Every subgroup of FA is free.

We have proved the finitely generated case, but everything extends easily
to the general case.

The original proof (1920’s) is combinatorial and much more technical.

Everything now is nicely algorithmic.
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Membership & containment

(Membership)
Does w belong to H = 〈w1, . . . ,wm〉 ?

Construct Γ(H),
Check whether w is readable as a closed path in Γ(H) (at the basepoint).

(Containment)
Given H = 〈w1, . . . ,wm〉 and K = 〈v1, . . . , vn〉, is H 6 K ?

Construct Γ(K ),
Check whether all the wi ’s are readable as closed paths in Γ(H) (at the
basepoint).
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Basis & conjugacy

(Computing a basis)
Given H = 〈w1, . . . ,wm〉, find a basis for H.

Construct Γ(H),
Choose a maximal tree,
Read the corresponding basis.

(Conjugacy)
Given H = 〈w1, . . . ,wm〉 and K = 〈v1, . . . , vn〉, are they conjugate (i.e. Hx = K
for some x ∈ FA) ?

Construct Γ(H) and Γ(K ),
Check whether the are “equal" up to the basepoint.
Every path between the two basepoints spells a valid x .
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Finite index subgroups

(Finite index)
Given H = 〈w1, . . . ,wm〉, we can decide whether H 6f .i. FA; and, if yes,
compute a set of coset representatives.

(Schreier index formula)
If H 6f .i. FA is of index [F : H], then r(H) = 1 + [F : H] · (r(FA)− 1).

Theorem (M. Hall)
Every f.g. subgroup H 6fg FA is a free factor of a finite index one,
H 6ff H ∗ L 6f .i. FA.
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Intersection of subgroups

Theorem (Howson)
The intersection of finitely generated subgroups of FA is again finitely
generated.

Theorem
We can effectively compute a basis for H ∩ K from a set of generators for H
and from K .

Theorem (H. Neumann)
r̃(H ∩ K ) 6 2r̃(H)r̃(K ), where r̃(H) = max{0, r(H)− 1}.
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Outline

1 The bijection between subgroups of FA and Stallings automata

2 Many applications

3 Moving out of free groups

4 Stallings sections

5 Virtually free groups
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Our goal

Can we extend this to other families of groups G = 〈A | R〉 ?

• f.g. subgroups H 6 G are not free in general,
• there exist subgroups H 6 F2 × F2 with unsolvable membership problem,
• ... for general G this is asking too much.

(Goal 1)
Put conditions to the presentation G = 〈A | R〉 to recreate the bijection with
f.g. subgroups and the membership problem, algorithmically.

(Goal 2)
Identify which are the groups admitting such a presentation.
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The Schreier graph

Definition
The Schreier graph Γ(G,H,A) of a subgroup H 6 G = 〈A | R〉 w.r.t. A is:
• vertices: left cosets of G modulo H, V = {Hg | g ∈ G},
• edges: Hg a−→ Hga, for g ∈ G and a ∈ A,
• basepoint: H · 1.

Note that Γ(G,H,A) is finite if and only if H 6f .i. G.

Definition
The core of a graph (Γ, v) is the smallest subgraph containing v and having
the same fundamental group; i.e. c(Γ) is Γ after deletion of all "pending trees".
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The key observation

Observation
Γ(H) is the core of the Schreier graph Γ(FA,H,A), for H 6 FA.

(Key observation)
In the free case, Γ(H) is the “central" part of Γ(FA,H,A), i.e. it is a part of
Γ(FA,H,A) such that
• it is finite,
• it is computable from a set of generators for H,
• it is big enough to remember H.

(Finite groups)
If G = 〈A | R〉 is finite and H 6 G, then we can take Γ(H) to be the whole
Γ(G,H,A)...
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The key observation

For all the talk, G = 〈A | R〉 and π : Ã∗ � G.

Definition
A section of π is a subset S ⊆ Ã∗ such that Sπ = G and S−1 = S.

Definition
Given a section S ⊆ Ã∗ and H 6f .g. G, define Γ(G,H,A) u S to be the
smallest subgraph of Γ(G,H,A) where you can read all w ∈ S as closed paths
at the basepoint.

Observation
In the free case, π : Ã∗ � FA, S = RA is a section, and Γ(FA,H,A)uS = Γ(H).
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Outline

1 The bijection between subgroups of FA and Stallings automata

2 Many applications

3 Moving out of free groups

4 Stallings sections
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Stallings sections

G = 〈A | R〉 and π : Ã∗ � G.

Definition
A section S ⊆ Ã∗ is a Stallings section if

(S0) S is a regular language and effectively computable,
(S1) ∀ g ∈ G, Sg = gπ−1 ∩ S is rational and effectively computable,

(S2) ∀ g,h ∈ G, Sgh ⊆ SgSh.

Observation
If A is an automaton and L ⊆ Ã∗ is regular and effectively computable then
A u L is effectively computable too.
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Definition
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A section S ⊆ Ã∗ is a Stallings section if

(S0) S is a regular language and effectively computable,
(S1) ∀ g ∈ G, Sg = gπ−1 ∩ S is rational and effectively computable,

(S2) ∀ g,h ∈ G, Sgh ⊆ SgSh.

Observation
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Free groups

Proposition
For the free group FA = 〈A | −〉, S = RA is a Stallings section.

Proof. RAπ = FA and R−1
A = RA.

(S0) RA is rational and effectively computable by

Theorem (Benois)

L ⊆ Ã∗ rational⇒ L ⊆ Ã∗ is rational and effectively computable.

(S1) ∀g ∈ FA, Sg = {g} rational and effectively computable.

(S2) Sgh = {gh} = {g h} = SgSh. �
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Finite groups

G = 〈A | R〉 finite, and π : Ã∗ � G.

Proposition
For a finite group G = 〈A | R〉, S = RA is a Stallings section.

Proof. RAπ = G and R−1
A = RA.

(S0) RA is rational and effectively computable by Benois Theorem.
(S1) ∀g ∈ G, Sg = gπ−1 ∩ RA = gπ−1 is rational (because |G| <∞) and

effectively computable.

(S2) for u ∈ Sgh, take v ∈ Sh and we have u = uv−1v = uv−1 v ∈ SgSh. �
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(S2) for u ∈ Sgh, take v ∈ Sh and we have u = uv−1v = uv−1 v ∈ SgSh. �
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Independence of the presentation

Proposition
Suppose 〈A | R〉 ' G ' 〈A′ | R′〉. Then, there exists a Stallings section for
π : Ã∗ � G if and only if there exists a Stallings section for π′ : Ã′

∗
� G.

Proof. Take a monoid morphism ϕ : Ã∗ → Ã′
∗

such that ϕπ′ = π.
If S is a Stallings section for π : Ã∗ � G, then Sϕ will be a Stallings section for
π′ : Ã′

∗
� G, and viceversa. �

So, existence of a Stallings section is a group property, independent of the
presentation.
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If S is a Stallings section for π : Ã∗ � G, then Sϕ will be a Stallings section for
π′ : Ã′
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Constructing Γ(G,H,A) u S

Lemma
Let S be a Stallings section for π : Ã∗ � G, let H = 〈h1, . . . ,hr 〉 6f .g. G, and let
A be an inverse automaton such that
(1) SH ⊆ L(A) ⊆ Hπ−1,

(2) there is no path p w→ q with p 6= q and wπ = 1.
Then, Γ(G,H,A) u S = A u S.

Constructing such an A is possible:

• For every letter a ∈ A: apply (S1) to obtain a finite automaton recognizing
Saπ, and then identify all terminal vertices to get a uniterminal automaton
Caπ such that Saπ ⊆ L(Caπ) ⊆ aππ−1.

• Identifying the terminal vertex of each with the initial vertex of the
following one, we get uniterminal automata Ci such that
Shi ⊆ L(Ci ) ⊆ hiπ

−1; these are the “petals".
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Constructing Γ(G,H,A) u S

• Glue all these Ci ’s together into a single initial vertex q0, to get an
automaton B0 satisfying (L(B0))π ⊆ (Sh1 ∪ · · · ∪ Shr )π ⊆ H; this is the
“bouquet" for H = 〈h1, . . . ,hr 〉.

• Identify all terminal vertices with q0 and fold, to obtain B1 satisfying (1)
SH ⊆ L(B1) ⊆ Hπ−1.

• Find all pairs of vertices p 6= q in B1 for which there is a path p w−→ q with
wπ = 1; identify all such pairs of vertices, to get B2. This new automaton
satisfies (1) and (2) there is no path p w→ q with p 6= q and wπ = 1.

Theorem
Let S be a Stallings section for π : Ã∗ � G.
For every H 6f .g. G, Γ(G,H,A) u S is effectively computable and satisfies
SH ⊆ L(Γ(G,H,A) u S) ⊆ Hπ−1.
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Membership

Corollary

Let S be a Stallings section for π : Ã∗ � G, H 6f .g. G, and g ∈ G. TFAE:
(a) g ∈ H,
(b) Sg ⊆ L(Γ(G,H,A) u S),
(c) Sg ∩ L(Γ(G,H,A) u S) 6= ∅.

Hence, the membership problem is solvable in G.

Proof.
(a)⇒ (b). If g ∈ H then Sg ⊆ SH ⊆ L(Γ(G,H,A) u S).
(b)⇒ (c). Sg 6= ∅ because S is a section.
(c)⇒ (a). Take w ∈ Sg ∩ L(Γ(G,H,A) u S) and we have g = wπ ∈ H.
The decidability comes from computability of Γ(G,H,A) u S, and intersection
of regular languages being regular and computable. �
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Amalgamation and HNN

After several quite technical computations...

Theorem
If G1 and G2 are groups with Stallings sections, and H is a finite subgroup of
both, then the amalgamated product G1 ∗H G2 also admits a Stallings section.

Theorem
If G is a group with a Stallings section and K is a finite subgroup, then the
HNN extension G∗K also admits a Stallings section.

Corollary
Virtually free groups admit Stallings sections.
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The convers

Theorem
A finitely generated group G admits a Stallings section if and only if G is
virtually free.

Proof.
• Playing with a Stallings it is possible to construct a pushdown automaton

whose language is precisely 1π−1 = WP(G).
• Hence the word problem submonoid is context-free.
• And, by Muller-Schupp Theorem, G is virtually free. �
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THANKS
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