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@ A claim due to Gromov

9 Arzhantseva-Ol'shanskii’s proof

e A new point of view

e Stallings’ graphs

e Counting Stallings’ graphs: partial injections

@ Most groups are trivial
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@ A claim due to Gromov

Most groups are hypel or trivial ? It depends on



GromovV’s claim

Claim (Gromov '87)

Most finite presentations of groups, present an hyperbolic infinite group.
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GromovV’s claim

Claim (Gromov '87)

Most finite presentations of groups, present an hyperbolic infinite group.

@ Stated in his influential paper on hyperbolic groups:
“Essays in group theory”, 75-263, Springer, 1987,

@ no proof, only the idea,
@ the meaning of “most” is not precise,
@ statement made precise and proved, later by other authors.
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The meaning of “most”

Let X be an infinite set. What is the meaning of sentences like “most
elements in X have property P” ?
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Let X be an infinite set. What is the meaning of sentences like “most
elements in X have property P” ?

@ Define a notion of size, |-|: X — N, with finite preimages.
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The meaning of “most”

Let X be an infinite set. What is the meaning of sentences like “most
elements in X have property P” ?

@ Define a notion of size, |-|: X — N, with finite preimages.

@ Define the balls: B(n) = {x € X'| |x| < n} (which are finite).

® Count the proportion p, = HxEB0fcssistes P IFE8

@ Define the density of P as p =lim,oo pn (€ [0, 1] if it exists).
@ P is generic (or generically many elements satisfy P) if p = 1.
@ P is negligible if p = 0.

Of course, everything depends on the chosen size function, i.e. on the
direction to infinity inside X.
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Classical example: visible points

Definition

A point (x1,...,xx) € ZK is visible ifged(xy, ..., X) = 1.
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A point (x1,...,xx) € ZK is visible ifged(xy, ..., X) = 1.

Theorem (Mertens, 1874 (case k = 2))
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Classical example: visible points

Definition
A point (x1,...,xx) € ZK is visible ifged(xy, ..., X) = 1.

Theorem (Mertens, 1874 (case k = 2))

The density of visible points in Z¥ is 1/{(k), where {(k) = >, & is the
Riemann zeta-function (with respect to ||-|| o )-

In particular, visible points in the plane have density %.

With artificial definitions of size, one can force it to be any « € [0, 1].
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9 Arzhantseva-Ol'shanskii’s proof
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Arzhantseva-Ol'shanskii’s proof

@ Fixr>2and k > 1.

Enric Ventura (UPC) Most groups are hyperbolic... or trivial ? It depends on January 16th, 2013 8/46



Arzhantseva-Ol'shanskii’s proof

@ Fixr>2and k > 1.
@ Consider the free group Fa = (ay,...,ar | —).

Enric Ventura (UPC) Most groups are hyperbolic... or trivial ? It depends on January 16th, 2013 8/46



Arzhantseva-Ol'shanskii’s proof

@ Fixr>2and k > 1.
@ Consider the free group Fa = (ay,...,ar | —).
@ In F4 we have the natural notion of size and balls.

Enric Ventura (UPC) Most groups are hyperbolic... or trivial ? It depends on January 16th, 2013 8/46



Arzhantseva-Ol'shanskii’s proof

@ Fixr>2and k > 1.

@ Consider the free group Fa = (ay,...,ar | —).

@ In F4 we have the natural notion of size and balls.

@ Forwy,...,.wx e Falet G, . w, =(a1,....ar | Wq,..., W).
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Arzhantseva-Ol'shanskii’s proof

@ Fixr>2and k > 1.

@ Consider the free group Fa = (ay,...,ar | —).

@ In F4 we have the natural notion of size and balls.

@ Forwy,...,.wx e Falet G, . w, =(a1,....ar | Wq,..., W).

Theorem (Arzhantseva-Ol'shanskii, '96)

3 im {(wi,...,wk) € B(n)X| Gy, ..., Is infinite hyperbolic }| _

S Bn)F "
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Arzhantseva-Ol'shanskii’s proof

@ Fixr>2and k > 1.

@ Consider the free group Fa = (ay,...,ar | —).

@ In F4 we have the natural notion of size and balls.

@ Forwy,...,.wx e Falet G, . w, =(a1,....ar | Wq,..., W).

Theorem (Arzhantseva-Ol'shanskii, '96)

3 im {(wi,...,wk) € B(n)X| Gy, ..., Is infinite hyperbolic }| _

s EQK "

@ Hence, generically many presentations present an infinite hyperbolic
group.

Enric Ventura (UPC) Most groups are hyperbolic... or trivial ? It depends on January 16th, 2013 8/46



Arzhantseva-Ol'shanskii’s proof

@ Fixr>2and k > 1.

@ Consider the free group Fa = (ay,...,ar | —).

@ In F4 we have the natural notion of size and balls.

@ Forwy,...,.wx e Falet G, . w, =(a1,....ar | Wq,..., W).

Theorem (Arzhantseva-Ol'shanskii, '96)

3 im {(wi,...,wk) € B(n)X| Gy, ..., Is infinite hyperbolic }| _

s EQK "

@ Hence, generically many presentations present an infinite hyperbolic
group.
@ The proof is a detailed counting, using the notion of small cancelation.
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Comments

@ This fits the algebraic intuition: the longer the relations are, the closest
will the group be to a free group.
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@ maybe different k-tuples (ws, ..., wk) # (wy, ..., w;) generate the same
subgroup (wy, ..., wx) = (Wy,..., w).
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closure ((wy,...,wk)) = (W], ..., w)).
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Comments

This fits the algebraic intuition: the longer the relations are, the closest
will the group be to a free group.

Problem-1: this counts r-generated, k-related groups, with r and k fixed.

@ Problem-2: this counts presentations, not really groups !
@ maybe different k-tuples (ws, ..., wk) # (wy, ..., w;) generate the same

subgroup (wy, ..., wx) = (Wy,..., w).

maybe (wq,..., wx) # (wy, ..., w,), but they have the same normal
closure <<w17.. W) = ((w , wi)). .

maybe even ((W1,... Wi)) # <<W1,..., ), but

(@y....ar | Wi, .., w) ~(ay,.. a,\w1,...,w,’(>.
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A new point of view

Observation
LetN = (wy,...,wx) < Fa. Then,

<a1,...,a,\W1,...,Wk>:<a1,...,a,|N).
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and let us count f.g. subgroups N of F4, instead of counting k-tuples of words.
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A new point of view

Observation
LetN = (wy,...,wx) < Fa. Then,

<a1,...,a,\W1,...,Wk>:<a1,...,a,|N).

and let us count f.g. subgroups N of F4, instead of counting k-tuples of words.

Advantages:

@ r still fixed, but not k.
@ less redundancy.
@ it will be an equally natural way of counting.

... but with very different results... this is a very different direction to infinity.
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Outline

e Stallings’ graphs
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Stallings automata

A Stallings automaton is a finite A-labeled oriented graph with a distinguished
vertex, (X, v), such that:

1- X is connected,

2- no vertex of degree 1 except possibly v (X is a core-graph),
3- no two edges with the same label go out of (or in to) the same vertex.
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Stallings automata

A Stallings automaton is a finite A-labeled oriented graph with a distinguished
vertex, (X, v), such that:

1- X is connected,

2- no vertex of degree 1 except possibly v (X is a core-graph),
3- no two edges with the same label go out of (or in to) the same vertex.

NO . Q
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Stallings automata

A Stallings automaton is a finite A-labeled oriented graph with a distinguished
vertex, (X, v), such that:

1- X is connected,

2- no vertex of degree 1 except possibly v (X is a core-graph),
3- no two edges with the same label go out of (or in to) the same vertex.

NO . Q Q

YES: °
b b b b
a a
— T — T
.*C>O ° ° °
~ror ~—ror)
c
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Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),
551-565,

Enric Ventura (UPC) Most groups are hyperbolic... or trivial ? It depends on January 16th, 2013 14 /46



Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),
551-565,

Stallings (building on previous works) gave a bijection between finitely
generated subgroups of F4 and Stallings automata:

{f.g. subgroups of F4} +— {Stallings automata over A},
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Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),
551-565,

Stallings (building on previous works) gave a bijection between finitely
generated subgroups of F4 and Stallings automata:

{f.g. subgroups of F4} +— {Stallings automata over A},

which is crucial for the modern understanding of the lattice of subgroups of Fa.
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Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental
group:

m(X,v) = { labels of closed paths at v} < Fa,
clearly, a subgroup of F.
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Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental
group:

m(X,v) = { labels of closed paths at v} < Fa,
clearly, a subgroup of F.

n(X,*) = {1,a a ', bab, bc™ b,
@ babab~'cb~',.. .}

n(X,*) # bc'bcaa

X= b b Membership problem in 7(X, ¢) is solvable.
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A basis for 7(X, v)

Proposition

For every Stallings automaton (X, v), the group =(X, v) is free of rank
rk(m(X,v)) =1—|VX| + |EX]|.
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A basis for 7(X, v)

Proposition

For every Stallings automaton (X, v), the group =(X, v) is free of rank
rk(m(X,v)) =1—|VX| + |EX]|.

Proof:
@ Take a maximal tree T in X.
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For every Stallings automaton (X, v), the group =(X, v) is free of rank
rk(m(X,v)) =1—|VX| + |EX]|.

Proof:
@ Take a maximal tree T in X.
@ Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p
to q.
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A basis for 7(X, v)

Proposition

For every Stallings automaton (X, v), the group =(X, v) is free of rank
rk(m(X,v)) =1—|VX| + |EX]|.

Proof:
@ Take a maximal tree T in X.
@ Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p
to q.
@ Forevery ee EX — ET, x, = label(T[v,.e] - e- T[re, v]) belongs to
(X, V).
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A basis for 7(X, v)

Proposition

For every Stallings automaton (X, v), the group =(X, v) is free of rank
rk(m(X,v)) =1—|VX| + |EX]|.

Proof:
@ Take a maximal tree T in X.
@ Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p
to q.
@ Forevery ec EX — ET, xo = label(T[v, €] - e- T[re, v]) belongs to
(X, V).
@ Not difficult to see that {x, | e € EX — ET} is a basis for 7(X, v).
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A basis for 7(X, v)

Proposition

For every Stallings automaton (X, v), the group =(X, v) is free of rank
rk(m(X,v)) =1—|VX| + |EX]|.

Proof:
@ Take a maximal tree T in X.
@ Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p

to q.

@ Forevery ec EX — ET, xo = label(T[v, €] - e- T[re, v]) belongs to
(X, V).

@ Not difficult to see that {x, | e € EX — ET} is a basis for 7(X, v).

@ And, |EX—-ET| = |EX|—|ET]

= |EX|— (JVT|—1)=1—|VX| + |EX|. O

January 16th, 2013 16/46
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Example

H = (a, bab,
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Example

a
[ ]
/N
/A
/ \
b, \b
\
/ \
¥ a \
[ ] [ ]

H = (a, bab, b="cb~1)
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Example

a
[ )
/N
/N
/ \
b, \b
\

/ 2 \
y__—
) [}
~k?r0
[

H = (a, bab, b="cb~1)
rk(H)=1-3+5=3.
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Example-2

Fyy~H={(.., b2ab’ b 'ab, a, bab—"', b?ab=2,...) < F.
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Constructing the automata from the subgroup

In any automaton containing the following situation, for x ¢ A*",
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Constructing the automata from the subgroup

In any automaton containing the following situation, for x ¢ A*",

e ——>
\

we can fold and identify vertices u and v to obtain

v

X
e —— = UU=V.
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Constructing the automata from the subgroup

In any automaton containing the following situation, for x € A*!

o — ——> U
\

we can fold and identify vertices u and v to obtain

v

X
e ———————— > UU=V.

This operation, (X, v) ~ (X', v), is called a Stallings folding.
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Constructing the automata from the subgroup

Lemma (Stallings)
If(X,v) ~ (X', V') is a Stallings folding then w(X, v) = n(X’, V).
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Constructing the automata from the subgroup

Lemma (Stallings)
If(X,v) ~ (X', V') is a Stallings folding then w(X, v) = n(X’, V).

Given a f.g. subgroup H = (wy, ... wn) < Fa (we assume w; are reduced
words), do the following:

1- Draw the flower automaton,
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Constructing the automata from the subgroup

Lemma (Stallings)
If(X,v) ~ (X', V') is a Stallings folding then w(X, v) = n(X’, V).

Given a f.g. subgroup H = (wy, ... wn) < Fa (we assume w; are reduced
words), do the following:

1- Draw the flower automaton,

2- Perform successive foldings until obtaining a Stallings automaton,
denoted I (H).
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Example: H = (baba™ ', aba ', aba?)

a
o —————> 0

a
[ ]
/ / a
a
O <—— 0
b

o <—0

Flower(H)
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Example: H = (baba™ ', aba ', aba?)

.a.@.
R

Flower(H)
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Example: H = (baba™ ', aba ', aba?)

Folding #1
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Folding #1.
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Example: H = (baba™ ', aba ', aba?)

Folding #2.
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Folding #2.
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Example: H = (baba™ ', aba ', aba?)

Folding #3. r(H)
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Example: H = (baba™ ', aba ', aba?)

a
a
[ ]
Folding #3. r(H)
By Stallings Lemma, =(I(H),») = (baba ', aba ', aba?)
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Example: H = (baba™ ', aba ', aba?)

Folding #3. I(H)

By Stallings Lemma, =(I(H),s) = (baba ' aba ', aba?)
(b,aba~1, a%)

Enric Ventura (UPC) Most groups are hyperbolic... or trivial ? It depends on

January 16th, 2013

32/46



Local confluence

It can be shown that
Proposition
The automaton ' (H) does not depend on the sequence of foldings.
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Proposition
The automaton ' (H) does not depend on the sequence of foldings.

Proposition
The automaton ' (H) does not depend on the generators of H.
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Local confluence

It can be shown that

Proposition
The automaton ' (H) does not depend on the sequence of foldings.

Proposition
The automaton ' (H) does not depend on the generators of H.

Theorem
The following is a bijection:

{f.g. subgroups of F4} <+— {Stallings automata}
H — T(H)
m(X,v) <« (X,v)
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Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)
Every subgroup of F4 is free.
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Corollary (Nielsen-Schreier)
Every subgroup of F4 is free.

@ Finite automata work for the finitely generated case, but everything
extends easily to the general case (using infinite graphs).
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Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)
Every subgroup of F4 is free.

@ Finite automata work for the finitely generated case, but everything
extends easily to the general case (using infinite graphs).

@ The original proof (1920’s) is combinatorial and much more technical.
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e Counting Stallings’ graphs: partial injections
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Counting Stallings graphs

From now on, let us think presentations as
(at,...,ar | T),

where T is a Stallings graph.
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Counting Stallings graphs

From now on, let us think presentations as

<a1,...,ar|r>,

where T is a Stallings graph.

The natural size function to consider is the number of vertices:

| - |: {Stallings graphs} — N,
I #VI.

Enric Ventura (UPC)

Most groups are hyperbolic... or trivial ? It depends on

January 16th, 2013



Counting Stallings graphs

From now on, let us think presentations as
(at,...,ar | T),

where T is a Stallings graph.

The natural size function to consider is the number of vertices:

| - |: {Stallings graphs} — N,
[ #VT.

Goal: Count (estimate) the number of Stallings graphs with < n vertices,
satisfying a certain property P. J
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Stallings’ graphs as partial injections

Definition

LetT be a Stallings graph. Every letter in A determines a partial injection of
the set of vertices VT : a(i) =j iff i—2j.
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Stallings’ graphs as partial injections

Definition
LetT be a Stallings graph. Every letter in A determines a partial injection of
the set of vertices VT : a(i) =j iff i—2j.

ﬂ aVvV — V
1 = 1
2 — 3
3
r= b b
a
o -
[
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Stallings’ graphs as partial injections

LetT be a Stallings graph. Every letter in A determines a partial injection of
the set of vertices VT : a(i) =j iff i—2j.

ﬂ aVvV —- V bV — V
1 = 1 1 = 2
2 — 3 2
3 3 — 1
r= b b
a
CE—
[
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Stallings’ graphs as partial injections

LetT be a Stallings graph. Every letter in A determines a partial injection of
the set of vertices VT : a(i) =j iff i—2j.

ﬂ aV - VvV bV - V ¢V — V
1 = 1 1 = 2 1
2 — 3 2 2
3 3 — 1 3 — 2
r= b b
a
o -
[
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Stallings’ graphs as partial injections

LetT be a Stallings graph. Every letter in A determines a partial injection of
the set of vertices VT : a(i) =j iff i—2j.

A\

ﬂ aV - VvV bV - V ¢V — V
1 — 1 1 — 2 1
2 — 3 2 2
3 3 — 1 3 —» 2
r= b b
a
S
[
Observation
And the r partial injections ay, . . ., a, determine back the graphT.
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Stallings’ graphs as partial injections

Definition

Let I, be the set of partial injections of [n] = {1,2, ..., n} (this is a monoid
containing the symmetric group Sp).
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Stallings’ graphs as partial injections

Definition
Let I, be the set of partial injections of [n] = {1,2, ..., n} (this is a monoid
containing the symmetric group Sp).

4

A Stallings graph (over A) with n vertices can be thought as a r-tuple of partial
injections on the set [n] (taking 1 as the base-point), o € I}, such that
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Let I, be the set of partial injections of [n] = {1,2, ..., n} (this is a monoid
containing the symmetric group Sp).

4

A Stallings graph (over A) with n vertices can be thought as a r-tuple of partial
injections on the set [n] (taking 1 as the base-point), o € I}, such that

@ the corresponding graph T (o) is connected,
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Stallings’ graphs as partial injections

Definition
Let I, be the set of partial injections of [n] = {1,2, ..., n} (this is a monoid
containing the symmetric group Sp).

4

A Stallings graph (over A) with n vertices can be thought as a r-tuple of partial
injections on the set [n] (taking 1 as the base-point), o € I}, such that

@ the corresponding graph T (o) is connected,
@ and without degree 1 vertices, except possibly the base-point.
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Stallings’ graphs as partial injections

Definition
Let I, be the set of partial injections of [n] = {1,2, ..., n} (this is a monoid
containing the symmetric group Sp).

4

A Stallings graph (over A) with n vertices can be thought as a r-tuple of partial
injections on the set [n] (taking 1 as the base-point), o € I}, such that

@ the corresponding graph T (o) is connected,
@ and without degree 1 vertices, except possibly the base-point.

Observation
There are at most |I,|" Stallings graphs with n vertices (over A).
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Stallings’ graphs as partial injections

Theorem (Bassino, Nicaud, Weil, 2008)

a) W tends to 1.
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Stallings’ graphs as partial injections

Theorem (Bassino, Nicaud, Weil, 2008)

a) W tends to 1.

b) {och" | r(al)lnriftconnected}\ _ (9( n'1—‘ )

el | T h deg. 1 { bspt.
c) {oeh" | T(o) aSﬁnlfg vertex # bspt. }| =o(1).
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Stallings’ graphs as partial injections

Theorem (Bassino, Nicaud, Weil, 2008)

a) w tends to 1.

b) {oel" | r(al)lnrlvintconnected}\ _ (’)( 1 )

el | T h deg. 1 { bspt.
c) {oeh" | T(o) asialnlfg vertex # bspt. }| =o(1).

Generically, a Stallings graph (over A) with n vertices is just a r-tuple of partial
injections on [n], o € I,".
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Stallings’ graphs as partial injections

Theorem (Bassino, Nicaud, Weil, 2008)
o€’}

a) @)

,'n‘ tends to 1.

b) {oel" | r(al)lnrlvintconnected}\ _ (’)( 1 )

el | T h deg. 1 { bspt.
c) {oeh" | T(o) asialnlfg vertex # bspt. }| =o(1).

Generically, a Stallings graph (over A) with n vertices is just a r-tuple of partial
injections on [n], o € I,".

Hence, counting Stallings graphs reduces to count partial injections: a purely
combinatorial matter. J

Enric Ventura (UPC) Most groups are hyperbolic... or trivial ? It depends on January 16th, 2013 39/46



Malnormality

With the word-based distribution malnormality is exponentially generic ...

Proposition

T im {(wy, ..., wx) € B(m¥ | (wy, ..., wg) is malnormal in F(A)}|

o EQR =

exponentially fast.
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Malnormality

With the word-based distribution malnormality is exponentially generic ...

Proposition

T im {(wy, ..., wx) € B(m¥ | (wy, ..., wg) is malnormal in F(A)}|

o EQR =

exponentially fast.

... but in the graph-based distribution it is (exponentially?) negligible ...

Proposition
{o € Il | n(T(0)) is malnormal in F(A)}|

- =0(n"?).
| 15|
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Outline

@ Most groups are trivial
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Permutations and fragmented permutations

Observation

Any partial injection o € |, decomposes in orbits of two types: closed and
open (i.e. cycles and segments).
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Permutations and fragmented permutations

Any partial injection o € |, decomposes in orbits of two types: closed and
open (i.e. cycles and segments).

| A\

Definition
A partial injection o € I, is called a
@ permutation if all its orbits are closed,
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Permutations and fragmented permutations

Any partial injection o € |, decomposes in orbits of two types: closed and
open (i.e. cycles and segments).

| A\

Definition
A partial injection o € I, is called a
@ permutation if all its orbits are closed,
@ fragmented permutation if all its orbits are open.
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Permutations and fragmented permutations

Any partial injection o € |, decomposes in orbits of two types: closed and
open (i.e. cycles and segments).

| \

Definition
A partial injection o € I, is called a
@ permutation if all its orbits are closed,
@ fragmented permutation if all its orbits are open.

Let S, and J,, resp., be the sets of permutations and fragmented
permutations in I,.
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Permutations and fragmented permutations

Any partial injection o € |, decomposes in orbits of two types: closed and
open (i.e. cycles and segments).

Definition
A partial injection o € I, is called a
@ permutation if all its orbits are closed,
@ fragmented permutation if all its orbits are open.

Let S, and J,, resp., be the sets of permutations and fragmented
permutations in I,.

| \

Observation

Every partial injection is the disjoint union of a permutation and a fragmented
permutation. In particular, | In| = Y=¢_o (§)|SkllJn—k| = Xk—o 72yl In—kl-
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Permutations and fragmented permutations

a) The EGS for partial injections: I(z) = S°° , Ll 20,

n=0 n!
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Permutations and fragmented permutations

a) The EGS for partial injections: I(z) = "7 |,'7",|z"
b) The EGS for permutations: S(z) = Y o0 Srlzn = 57 /70 = 1
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Permutations and fragmented permutations

Definition

a) The EGS for partial injections: I(z) = "7 |,'7",|z"

b) The EGS for permutations: S(z) = Y o0 Srlzn = 57 /70 = 1
c) The EGS for fragmented permutations: J(z) = Y2, ",’,",‘ z".
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Permutations and fragmented permutations

a) The EGS for partial injections: 1(z) = 12, %z” .
b) The EGS for permutations: S(z) = Y o0 Srlzn = 57 /70 = 1
c) The EGS for fragmented permutations: J(z) = Y2, %z”.

Theorem
a)l(z)= e E=1+2z2+ 32+ A +....

| A\
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Permutations and fragmented permutations

a) The EGS for partial injections: I(z) = "7 |,'7",|z"
b) The EGS for permutations: S(z) = Y o0 Srlzn = 57 /70 = 1
c) The EGS for fragmented permutations: J(z) = Y2, ",’,", Lz,

Theorem
a)l(z) = lzeﬁ =1+2z+ 52+ 122 +...
b) bl = == n=3(1 + o(1)).

| \
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Permutations and fragmented permutations

Definition

a) The EGS for partial injections: I(z) = "7 %z” .

b) The EGS for permutations: S(z) = Y o0 Srlzn = 57 /70 = 1
c) The EGS for fragmented permutations: J(z) =2, %z”.

| \

Theorem

a)l(z)= e E=1+2z2+ 32+ A +....
2vn 1
b) Il = £ n=3(1 + o(1)).

| A\

Theorem

a)J(z)=eF=1+z+324+ 8284,
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Permutations and fragmented permutations

Definition

a) The EGS for partial injections: I(z) = "7 %z” .

b) The EGS for permutations: S(z) = Y o0 Srlzn = 57 /70 = 1
c) The EGS for fragmented permutations: J(z) =2, %z”.

| \

Theorem

a)l(z)= e E=1+2z2+ 32+ A +....
2vn 1
b) Il = £ n=3(1 + o(1)).

| \

Theorem

a)J(z)=eF=1+z+324+ 8284,

2v/n 3
b) Il = Z7=ni(1 + o(1)).
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Permutations and fragmented permutations

Definition

a) The EGS for partial injections: I(z) = 352 Il zn.

b) The EGS for permutations: S(z) = Y o0 Srlzn = 57 /70 = 1
c) The EGS for fragmented permutations: J(z) = Y52 o %2l 20,

Theorem
a)l(z)= e E=1+2z2+ 32+ A +....

z

b) el = £ n-i(1+o(1)),

Theorem

a)J(z)=eF=1+z+324+ 8284,

2\/n _3
b) Ll £=n i(1+0(1)).

J 1
Hence, Il = O(+7).

R
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Most groups are trivial

Definition

Leto € I,. Define gcd(o) as the gcd of the lengths of the closed orbits of o (if
o € Jp, putged(o) = o0).
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Most groups are trivial

Definition

Leto € I,. Define gcd(o) as the gcd of the lengths of the closed orbits of o (if
o € Jp, putged(o) = o0).

Key observation

Leto = (o1,...,00) € Iy, letT (o) be the corresponding (Stallings) graph, and
letG=(a1,...,ar | n(l[(0))). We have,
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Key observation

Leto = (o1,...,00) € Iy, letT (o) be the corresponding (Stallings) graph, and
letG=(a1,...,ar | n(l[(0))). We have,

@ ifgcd(o;) =1thena; =1inG,
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Most groups are trivial

Definition

Leto € I,. Define gcd(o) as the gcd of the lengths of the closed orbits of o (if
o € Jp, putged(o) = o0).

Key observation

Leto = (o1,...,00) € Iy, letT (o) be the corresponding (Stallings) graph, and
letG=(a1,...,ar | n(l[(0))). We have,

@ ifgcd(o;) =1thena; =1inG,
@ ifgcd(oq) =---=gcd(or) =1 then G=1.
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Most groups are trivial

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

{o € I |gcd(o) > 1} 1
o ~ i)
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Most groups are trivial

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

{o € I |gcd(o) > 1} 1
o] =)

Corollary (Bassino, Martino, Nicaud, V., Weil, 2010)

Hoel, | T(oc) St gr. & G# 1}

=0
I (

1
n1/6)'
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Thanks
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