Most groups are hyperbolic... or trivial? It depends on the glasses in use...

Enric Ventura

Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya

Algebra seminar Moscow State University

January 16th, 2013.

Outline

- A claim due to Gromov
- Arzhantseva-Ol'shanskii's proof
- A new point of view
- Stallings' graphs
- 5 Counting Stallings' graphs: partial injections
- Most groups are trivial

Outline

- A claim due to Gromov
- Arzhantseva-Ol'shanskii's proof
- A new point of view
- Stallings' graphs
- 5 Counting Stallings' graphs: partial injections
- Most groups are trivial

Claim (Gromov '87)

- Stated in his influential paper on hyperbolic groups: "Essays in group theory", 75-263, Springer, 1987,
- no proof, only the idea,
- the meaning of "most" is not precise;
- statement made precise and proved, later by other authors.

Claim (Gromov '87)

- Stated in his influential paper on hyperbolic groups: "Essays in group theory", 75-263, Springer, 1987,
- o no proof, only the idea,
- the meaning of "most" is not precise,
- statement made precise and proved, later by other authors.

Claim (Gromov '87)

- Stated in his influential paper on hyperbolic groups: "Essays in group theory", 75-263, Springer, 1987,
- no proof, only the idea,
- the meaning of "most" is not precise,
- statement made precise and proved, later by other authors.

Claim (Gromov '87)

- Stated in his influential paper on hyperbolic groups: "Essays in group theory", 75-263, Springer, 1987,
- no proof, only the idea,
- the meaning of "most" is not precise,
- statement made precise and proved, later by other authors.

Claim (Gromov '87)

- Stated in his influential paper on hyperbolic groups: "Essays in group theory", 75-263, Springer, 1987,
- no proof, only the idea,
- the meaning of "most" is not precise,
- statement made precise and proved, later by other authors.

Let X be an infinite set. What is the meaning of sentences like "most elements in X have property \mathcal{P} "?

- Define a notion of size, $|\cdot|: X \to \mathbb{N}$, with finite preimages.
- Define the balls: $B(n) = \{x \in X \mid |x| \le n\}$ (which are finite).
- Count the proportion $\rho_n = \frac{|\{x \in B(n) | x \text{ satisfies } \mathcal{P}\}|}{|B(n)|} = \frac{|\mathcal{P} \cap B(n)|}{|B(n)|}$.
- Define the density of \mathcal{P} as $\rho = \lim_{n \to \infty} \rho_n$ ($\in [0, 1]$ if it exists).
- \mathcal{P} is generic (or generically many elements satisfy \mathcal{P}) if $\rho = 1$.
- \mathcal{P} is negligible if $\rho = 0$.

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside X.

Let X be an infinite set. What is the meaning of sentences like "most elements in X have property \mathcal{P} "?

- Define a notion of size, $|\cdot| : X \to \mathbb{N}$, with finite preimages.
- Define the balls: $B(n) = \{x \in X \mid |x| \le n\}$ (which are finite).
- Count the proportion $\rho_n = \frac{|\{x \in B(n) | x \text{ satisfies } \mathcal{P}\}|}{|B(n)|} = \frac{|\mathcal{P} \cap B(n)|}{|B(n)|}$.
- Define the density of \mathcal{P} as $\rho = \lim_{n \to \infty} \rho_n$ ($\in [0, 1]$ if it exists).
- \mathcal{P} is generic (or generically many elements satisfy \mathcal{P}) if $\rho = 1$.
- \mathcal{P} is negligible if $\rho = 0$.

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside X.

5 / 46

Let X be an infinite set. What is the meaning of sentences like "most elements in X have property \mathcal{P} "?

- Define a notion of size, $|\cdot| : X \to \mathbb{N}$, with finite preimages.
- Define the balls: $B(n) = \{x \in X \mid |x| \le n\}$ (which are finite).
- Count the proportion $\rho_n = \frac{|\{x \in B(n) | x \text{ satisfies } \mathcal{P}\}|}{|B(n)|} = \frac{|\mathcal{P} \cap B(n)|}{|B(n)|}$.
- Define the density of \mathcal{P} as $\rho = \lim_{n \to \infty} \rho_n$ ($\in [0, 1]$ if it exists).
- \mathcal{P} is generic (or generically many elements satisfy \mathcal{P}) if $\rho = 1$.
- \mathcal{P} is negligible if $\rho = 0$.

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside X.

Let X be an infinite set. What is the meaning of sentences like "most elements in X have property \mathcal{P} "?

- Define a notion of size, $|\cdot|: X \to \mathbb{N}$, with finite preimages.
- Define the balls: $B(n) = \{x \in X \mid |x| \le n\}$ (which are finite).
- Count the proportion $\rho_n = \frac{|\{x \in B(n) | x \text{ satisfies } \mathcal{P}\}|}{|B(n)|} = \frac{|\mathcal{P} \cap B(n)|}{|B(n)|}$.
- Define the density of \mathcal{P} as $\rho = \lim_{n \to \infty} \rho_n$ $(\in [0, 1]$ if it exists)
- \mathcal{P} is generic (or generically many elements satisfy \mathcal{P}) if $\rho = 1$.
- \mathcal{P} is negligible if $\rho = 0$.

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside X.

Let X be an infinite set. What is the meaning of sentences like "most elements in X have property \mathcal{P} "?

- Define a notion of size, $|\cdot| : X \to \mathbb{N}$, with finite preimages.
- Define the balls: $B(n) = \{x \in X \mid |x| \le n\}$ (which are finite).
- Count the proportion $\rho_n = \frac{|\{x \in B(n) | x \text{ satisfies } \mathcal{P}\}|}{|B(n)|} = \frac{|\mathcal{P} \cap B(n)|}{|B(n)|}$.
- Define the density of \mathcal{P} as $\rho = \lim_{n \to \infty} \rho_n$ (\in [0, 1] if it exists).
- \mathcal{P} is generic (or generically many elements satisfy \mathcal{P}) if $\rho = 1$.
- \mathcal{P} is negligible if $\rho = 0$.

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside X.

5 / 46

Let X be an infinite set. What is the meaning of sentences like "most elements in X have property \mathcal{P} "?

- Define a notion of size, $|\cdot| : X \to \mathbb{N}$, with finite preimages.
- Define the balls: $B(n) = \{x \in X \mid |x| \le n\}$ (which are finite).
- Count the proportion $\rho_n = \frac{|\{x \in B(n) | x \text{ satisfies } \mathcal{P}\}|}{|B(n)|} = \frac{|\mathcal{P} \cap B(n)|}{|B(n)|}$.
- Define the density of \mathcal{P} as $\rho = \lim_{n \to \infty} \rho_n$ ($\in [0, 1]$ if it exists).
- ullet ${\cal P}$ is generic (or generically many elements satisfy ${\cal P}$) if $\rho=1$.
- \mathcal{P} is negligible if $\rho = 0$.

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside X.

Let X be an infinite set. What is the meaning of sentences like "most elements in X have property \mathcal{P} "?

- Define a notion of size, $|\cdot| : X \to \mathbb{N}$, with finite preimages.
- Define the balls: $B(n) = \{x \in X \mid |x| \le n\}$ (which are finite).
- Count the proportion $\rho_n = \frac{|\{x \in B(n) | x \text{ satisfies } \mathcal{P}\}|}{|B(n)|} = \frac{|\mathcal{P} \cap B(n)|}{|B(n)|}$.
- Define the density of \mathcal{P} as $\rho = \lim_{n \to \infty} \rho_n$ (\in [0, 1] if it exists).
- \mathcal{P} is generic (or generically many elements satisfy \mathcal{P}) if $\rho = 1$.
- \mathcal{P} is negligible if $\rho = 0$.

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside \boldsymbol{X} .

Let X be an infinite set. What is the meaning of sentences like "most elements in X have property \mathcal{P} "?

- Define a notion of size, $|\cdot| : X \to \mathbb{N}$, with finite preimages.
- Define the balls: $B(n) = \{x \in X \mid |x| \le n\}$ (which are finite).
- Count the proportion $\rho_n = \frac{|\{x \in B(n) | x \text{ satisfies } \mathcal{P}\}|}{|B(n)|} = \frac{|\mathcal{P} \cap B(n)|}{|B(n)|}$.
- Define the density of \mathcal{P} as $\rho = \lim_{n \to \infty} \rho_n$ (\in [0, 1] if it exists).
- \mathcal{P} is generic (or generically many elements satisfy \mathcal{P}) if $\rho = 1$.
- \mathcal{P} is negligible if $\rho = 0$.

Of course, everything depends on the chosen size function, i.e. on the direction to infinity inside X.

Definition

A point $(x_1, \ldots, x_k) \in \mathbb{Z}^k$ is visible if $gcd(x_1, \ldots, x_k) = 1$.

Theorem (Mertens, 1874 (case k = 2))

The density of visible points in \mathbb{Z}^k is $1/\zeta(k)$, where $\zeta(k) = \sum_{n=1}^{\infty} \frac{1}{n^k}$ is the Riemann zeta-function (with respect to $||\cdot||_{\infty}$).

In particular, visible points in the plane have density $\frac{6}{\pi^2}$.

Definition

A point $(x_1, \ldots, x_k) \in \mathbb{Z}^k$ is visible if $gcd(x_1, \ldots, x_k) = 1$.

Theorem (Mertens, 1874 (case k = 2))

The density of visible points in \mathbb{Z}^k is $1/\zeta(k)$, where $\zeta(k) = \sum_{n=1}^{\infty} \frac{1}{n^k}$ is the Riemann zeta-function (with respect to $||\cdot||_{\infty}$).

In particular, visible points in the plane have density $\frac{6}{\pi^2}$.

Definition

A point $(x_1, \ldots, x_k) \in \mathbb{Z}^k$ is visible if $gcd(x_1, \ldots, x_k) = 1$.

Theorem (Mertens, 1874 (case k = 2))

The density of visible points in \mathbb{Z}^k is $1/\zeta(k)$, where $\zeta(k) = \sum_{n=1}^{\infty} \frac{1}{n^k}$ is the Riemann zeta-function (with respect to $||\cdot||_{\infty}$).

In particular, visible points in the plane have density $\frac{6}{\pi^2}$.

Definition

A point $(x_1, \ldots, x_k) \in \mathbb{Z}^k$ is visible if $gcd(x_1, \ldots, x_k) = 1$.

Theorem (Mertens, 1874 (case k = 2))

The density of visible points in \mathbb{Z}^k is $1/\zeta(k)$, where $\zeta(k) = \sum_{n=1}^{\infty} \frac{1}{n^k}$ is the Riemann zeta-function (with respect to $||\cdot||_{\infty}$).

In particular, visible points in the plane have density $\frac{6}{\pi^2}$.

Outline

- A claim due to Gromov
- Arzhantseva-Ol'shanskii's proof
- A new point of view
- Stallings' graphs
- Counting Stallings' graphs: partial injections
- Most groups are trivial

- Fix $r \ge 2$ and $k \ge 1$.
- Consider the free group $F_A = \langle a_1, \dots, a_r \mid \rangle$.
- In F_A we have the natural notion of size and balls.
- For $w_1, ..., w_k \in F_A$, let $G_{w_1, ..., w_k} = \langle a_1, ..., a_r \mid w_1, ..., w_k \rangle$.

$$\exists \quad \lim_{n \to \infty} \frac{|\{(w_1, \dots, w_k) \in B(n)^k \mid G_{w_1, \dots, w_k} \text{ is infinite hyperbolic }\}|}{|B(n)|^k} = 1.$$

- Hence, generically many presentations present an infinite hyperbolic group.
- The proof is a detailed counting, using the notion of small cancelation.

- Fix $r \ge 2$ and $k \ge 1$.
- Consider the free group $F_A = \langle a_1, \dots, a_r \mid \rangle$.
- In F_A we have the natural notion of size and balls.
- For $w_1, ..., w_k \in F_A$, let $G_{w_1,...,w_k} = \langle a_1, ..., a_r \mid w_1, ..., w_k \rangle$.

$$\exists \quad \lim_{n \to \infty} \frac{|\{(w_1, \dots, w_k) \in B(n)^k \mid G_{w_1, \dots, w_k} \text{ is infinite hyperbolic }\}|}{|B(n)|^k} = 1.$$

- Hence, generically many presentations present an infinite hyperbolic group.
- The proof is a detailed counting, using the notion of small cancelation.

- Fix $r \ge 2$ and $k \ge 1$.
- Consider the free group $F_A = \langle a_1, \dots, a_r \mid \rangle$.
- In F_A we have the natural notion of size and balls.
- For $w_1, ..., w_k \in F_A$, let $G_{w_1,...,w_k} = \langle a_1, ..., a_r \mid w_1, ..., w_k \rangle$.

$$\exists \quad \lim_{n \to \infty} \frac{|\{(w_1, \dots, w_k) \in B(n)^k \mid G_{w_1, \dots, w_k} \text{ is infinite hyperbolic }\}|}{|B(n)|^k} = 1.$$

- Hence, generically many presentations present an infinite hyperbolic group.
- The proof is a detailed counting, using the notion of small cancelation.

- Fix $r \ge 2$ and $k \ge 1$.
- Consider the free group $F_A = \langle a_1, \dots, a_r \mid \rangle$.
- In F_A we have the natural notion of size and balls.
- For $w_1, \ldots, w_k \in F_A$, let $G_{w_1, \ldots, w_k} = \langle a_1, \ldots, a_r \mid w_1, \ldots, w_k \rangle$.

$$\exists \lim_{n\to\infty} \frac{|\{(w_1,\ldots,w_k)\in B(n)^k\mid G_{w_1,\ldots,w_k} \text{ is infinite hyperbolic }\}|}{|B(n)|^k}=1.$$

- Hence, generically many presentations present an infinite hyperbolic group.
- The proof is a detailed counting, using the notion of small cancelation.

- Fix $r \ge 2$ and $k \ge 1$.
- Consider the free group $F_A = \langle a_1, \dots, a_r \mid \rangle$.
- In F_A we have the natural notion of size and balls.
- For $w_1, \ldots, w_k \in F_A$, let $G_{w_1, \ldots, w_k} = \langle a_1, \ldots, a_r \mid w_1, \ldots, w_k \rangle$.

$$\exists \quad \lim_{n \to \infty} \frac{|\{(w_1, \dots, w_k) \in B(n)^k \mid G_{w_1, \dots, w_k} \text{ is infinite hyperbolic }\}|}{|B(n)|^k} = 1.$$

- Hence, generically many presentations present an infinite hyperbolic group.
- The proof is a detailed counting, using the notion of small cancelation.

- Fix $r \ge 2$ and $k \ge 1$.
- Consider the free group $F_A = \langle a_1, \dots, a_r \mid \rangle$.
- In F_A we have the natural notion of size and balls.
- For $w_1, \ldots, w_k \in F_A$, let $G_{w_1, \ldots, w_k} = \langle a_1, \ldots, a_r \mid w_1, \ldots, w_k \rangle$.

$$\exists \quad \lim_{n \to \infty} \frac{|\{(w_1, \dots, w_k) \in B(n)^k \mid G_{w_1, \dots, w_k} \text{ is infinite hyperbolic }\}|}{|B(n)|^k} = 1.$$

- Hence, generically many presentations present an infinite hyperbolic group.
- The proof is a detailed counting, using the notion of small cancelation.

- Fix $r \ge 2$ and $k \ge 1$.
- Consider the free group $F_A = \langle a_1, \dots, a_r \mid \rangle$.
- In F_A we have the natural notion of size and balls.
- For $w_1, ..., w_k \in F_A$, let $G_{w_1, ..., w_k} = \langle a_1, ..., a_r \mid w_1, ..., w_k \rangle$.

$$\exists \quad \lim_{n \to \infty} \frac{|\{(w_1, \dots, w_k) \in B(n)^k \mid G_{w_1, \dots, w_k} \text{ is infinite hyperbolic }\}|}{|B(n)|^k} = 1.$$

- Hence, generically many presentations present an infinite hyperbolic group.
- The proof is a detailed counting, using the notion of small cancelation.

- This fits the algebraic intuition: the longer the relations are, the closest will the group be to a free group.
- Problem-1: this counts *r*-generated, *k*-related groups, with *r* and *k* fixed.
- Problem-2: this counts presentations, not really groups!
- maybe different k-tuples $(w_1, \ldots, w_k) \neq (w'_1, \ldots, w'_k)$ generate the same subgroup $\langle w_1, \ldots, w_k \rangle = \langle w'_1, \ldots, w'_k \rangle$.
- maybe $\langle w_1, \dots, w_k \rangle \neq \langle w_1', \dots, w_k' \rangle$, but they have the same normal closure $\langle \langle w_1, \dots, w_k \rangle \rangle = \langle \langle w_1', \dots, w_k' \rangle \rangle$.
- maybe even $\langle \langle w_1, \dots, w_k \rangle \rangle \neq \langle \langle w'_1, \dots, w'_k \rangle \rangle$, but $\langle a_1, \dots, a_r \mid w_1, \dots, w_k \rangle \simeq \langle a_1, \dots, a_r \mid w'_1, \dots, w'_k \rangle$.

9/46

- This fits the algebraic intuition: the longer the relations are, the closest will the group be to a free group.
- Problem-1: this counts *r*-generated, *k*-related groups, with *r* and *k* fixed.
- Problem-2: this counts presentations, not really groups!
- maybe different k-tuples $(w_1, \ldots, w_k) \neq (w'_1, \ldots, w'_k)$ generate the same subgroup $\langle w_1, \ldots, w_k \rangle = \langle w'_1, \ldots, w'_k \rangle$.
- maybe $\langle w_1, \dots, w_k \rangle \neq \langle w'_1, \dots, w'_k \rangle$, but they have the same normal closure $\langle \langle w_1, \dots, w_k \rangle \rangle = \langle \langle w'_1, \dots, w'_k \rangle \rangle$.
- maybe even $\langle \langle w_1, \dots, w_k \rangle \rangle \neq \langle \langle w'_1, \dots, w'_k \rangle \rangle$, but $\langle a_1, \dots, a_r \mid w_1, \dots, w_k \rangle \simeq \langle a_1, \dots, a_r \mid w'_1, \dots, w'_k \rangle$.

- This fits the algebraic intuition: the longer the relations are, the closest will the group be to a free group.
- Problem-1: this counts *r*-generated, *k*-related groups, with *r* and *k* fixed.
- Problem-2: this counts presentations, not really groups!
- maybe different k-tuples $(w_1, \ldots, w_k) \neq (w'_1, \ldots, w'_k)$ generate the same subgroup $\langle w_1, \ldots, w_k \rangle = \langle w'_1, \ldots, w'_k \rangle$.
- maybe $\langle w_1, \dots, w_k \rangle \neq \langle w_1', \dots, w_k' \rangle$, but they have the same normal closure $\langle \langle w_1, \dots, w_k \rangle \rangle = \langle \langle w_1', \dots, w_k' \rangle \rangle$.
- maybe even $\langle \langle w_1, \dots, w_k \rangle \rangle \neq \langle \langle w'_1, \dots, w'_k \rangle \rangle$, but $\langle a_1, \dots, a_r \mid w_1, \dots, w_k \rangle \simeq \langle a_1, \dots, a_r \mid w'_1, \dots, w'_k \rangle$.

9/46

- This fits the algebraic intuition: the longer the relations are, the closest will the group be to a free group.
- Problem-1: this counts *r*-generated, *k*-related groups, with *r* and *k* fixed.
- Problem-2: this counts presentations, not really groups!
- maybe different k-tuples $(w_1, \ldots, w_k) \neq (w'_1, \ldots, w'_k)$ generate the same subgroup $\langle w_1, \ldots, w_k \rangle = \langle w'_1, \ldots, w'_k \rangle$.
- maybe $\langle w_1, \dots, w_k \rangle \neq \langle w_1', \dots, w_k' \rangle$, but they have the same normal closure $\langle \langle w_1, \dots, w_k \rangle \rangle = \langle \langle w_1', \dots, w_k' \rangle \rangle$.
- maybe even $\langle \langle w_1, \dots, w_k \rangle \rangle \neq \langle \langle w'_1, \dots, w'_k \rangle \rangle$, but $\langle a_1, \dots, a_r \mid w_1, \dots, w_k \rangle \simeq \langle a_1, \dots, a_r \mid w'_1, \dots, w'_k \rangle$.

9/46

- This fits the algebraic intuition: the longer the relations are, the closest will the group be to a free group.
- Problem-1: this counts *r*-generated, *k*-related groups, with *r* and *k* fixed.
- Problem-2: this counts presentations, not really groups!
- maybe different k-tuples $(w_1, \ldots, w_k) \neq (w'_1, \ldots, w'_k)$ generate the same subgroup $\langle w_1, \ldots, w_k \rangle = \langle w'_1, \ldots, w'_k \rangle$.
- maybe $\langle w_1, \dots, w_k \rangle \neq \langle w_1', \dots, w_k' \rangle$, but they have the same normal closure $\langle \langle w_1, \dots, w_k \rangle \rangle = \langle \langle w_1', \dots, w_k' \rangle \rangle$.
- maybe even $\langle \langle w_1, \dots, w_k \rangle \rangle \neq \langle \langle w'_1, \dots, w'_k \rangle \rangle$, but $\langle a_1, \dots, a_r \mid w_1, \dots, w_k \rangle \simeq \langle a_1, \dots, a_r \mid w'_1, \dots, w'_k \rangle$.

- This fits the algebraic intuition: the longer the relations are, the closest will the group be to a free group.
- Problem-1: this counts *r*-generated, *k*-related groups, with *r* and *k* fixed.
- Problem-2: this counts presentations, not really groups!
- maybe different k-tuples $(w_1, \ldots, w_k) \neq (w'_1, \ldots, w'_k)$ generate the same subgroup $\langle w_1, \ldots, w_k \rangle = \langle w'_1, \ldots, w'_k \rangle$.
- maybe $\langle w_1, \dots, w_k \rangle \neq \langle w_1', \dots, w_k' \rangle$, but they have the same normal closure $\langle \langle w_1, \dots, w_k \rangle \rangle = \langle \langle w_1', \dots, w_k' \rangle \rangle$.
- maybe even $\langle \langle w_1, \dots, w_k \rangle \rangle \neq \langle \langle w'_1, \dots, w'_k \rangle \rangle$, but $\langle a_1, \dots, a_r \mid w_1, \dots, w_k \rangle \simeq \langle a_1, \dots, a_r \mid w'_1, \dots, w'_k \rangle$.

Outline

- A claim due to Gromov
- Arzhantseva-Ol'shanskii's proof
- A new point of view
- Stallings' graphs
- Counting Stallings' graphs: partial injections
- Most groups are trivial

A new point of view

Observation

Let
$$N=\langle w_1,\ldots,w_k
angle\leqslant F_A$$
. Then,
$$\langle a_1,\ldots,a_r\mid w_1,\ldots,w_k
angle\simeq \langle a_1,\ldots,a_r\mid N
angle.$$

and let us count f.g. subgroups N of F_A , instead of counting k-tuples of words.

Advantages

- r still fixed, but not k.
- less redundancy.
- it will be an equally natural way of counting.

.. but with very different results... this is a very different direction to infinity.

Observation

Let
$$N=\langle w_1,\ldots,w_k
angle\leqslant F_A$$
. Then,
$$\langle a_1,\ldots,a_r\mid w_1,\ldots,w_k
angle\simeq \langle a_1,\ldots,a_r\mid N
angle.$$

and let us count f.g. subgroups N of F_A , instead of counting k-tuples of words.

Advantages

- r still fixed, but not k.
- less redundancy.
- it will be an equally natural way of counting.

Observation

Let
$$N=\langle w_1,\ldots,w_k
angle\leqslant F_A$$
. Then,
$$\langle a_1,\ldots,a_r\mid w_1,\ldots,w_k
angle\simeq \langle a_1,\ldots,a_r\mid N
angle.$$

and let us count f.g. subgroups N of F_A , instead of counting k-tuples of words.

Advantages:

- r still fixed, but not k.
- less redundancy.
- it will be an equally natural way of counting.

Observation

Let
$$N=\langle w_1,\ldots,w_k
angle\leqslant F_A$$
. Then,
$$\langle a_1,\ldots,a_r\mid w_1,\ldots,w_k
angle\simeq \langle a_1,\ldots,a_r\mid N
angle.$$

and let us count f.g. subgroups N of F_A , instead of counting k-tuples of words.

Advantages:

- r still fixed, but not k.
- less redundancy.
- it will be an equally natural way of counting.

Observation

Let
$$N=\langle w_1,\ldots,w_k
angle\leqslant F_A$$
. Then,
$$\langle a_1,\ldots,a_r\mid w_1,\ldots,w_k
angle\simeq \langle a_1,\ldots,a_r\mid N
angle.$$

and let us count f.g. subgroups N of F_A , instead of counting k-tuples of words.

Advantages:

- r still fixed, but not k.
- less redundancy.
- it will be an equally natural way of counting.

Observation

Let
$$N=\langle w_1,\ldots,w_k
angle\leqslant F_A$$
. Then,
$$\langle a_1,\ldots,a_r\mid w_1,\ldots,w_k
angle\simeq \langle a_1,\ldots,a_r\mid N
angle.$$

and let us count f.g. subgroups N of F_A , instead of counting k-tuples of words.

Advantages:

- r still fixed, but not k.
- less redundancy.
- it will be an equally natural way of counting.

Observation

Let
$$N=\langle w_1,\ldots,w_k
angle\leqslant F_A$$
. Then,
$$\langle a_1,\ldots,a_r\mid w_1,\ldots,w_k
angle\simeq \langle a_1,\ldots,a_r\mid N
angle.$$

and let us count f.g. subgroups N of F_A , instead of counting k-tuples of words.

Advantages:

- r still fixed, but not k.
- less redundancy.
- it will be an equally natural way of counting.

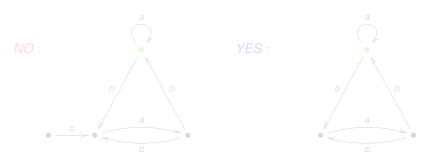
Outline

- A claim due to Gromov
- Arzhantseva-Ol'shanskii's proof
- A new point of view
- 4 Stallings' graphs
- Counting Stallings' graphs: partial injections
- Most groups are trivial

Definition

A Stallings automaton is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:

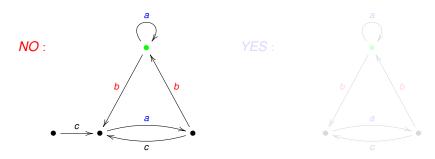
- 1- X is connected,
- 2- no vertex of degree 1 except possibly v (X is a core-graph),
- 3- no two edges with the same label go out of (or in to) the same vertex.



Definition

A Stallings automaton is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:

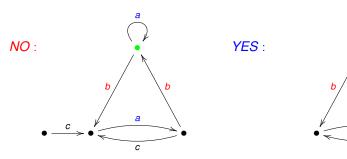
- 1- X is connected,
- 2- no vertex of degree 1 except possibly v (X is a core-graph),
- 3- no two edges with the same label go out of (or in to) the same vertex.



Definition

A Stallings automaton is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:

- 1- X is connected,
- 2- no vertex of degree 1 except possibly v (X is a core-graph),
- 3- no two edges with the same label go out of (or in to) the same vertex.



In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

```
\{f.g. \text{ subgroups of } F_A\} \longleftrightarrow \{Stallings \text{ automata over } A\}
```

which is crucial for the modern understanding of the lattice of subgroups of $F_{\!A^{\circ}}$

In the influent paper

```
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565.
```

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

```
\{f.g. \text{ subgroups of } F_A\} \longleftrightarrow \{\text{Stallings automata over } A\},
```

which is crucial for the modern understanding of the lattice of subgroups of $F_{\!A^{\prime}}$

In the influent paper

```
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565.
```

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

```
\{f.g. \text{ subgroups of } F_A\} \longleftrightarrow \{\text{Stallings automata over } A\},
```

which is crucial for the modern understanding of the lattice of subgroups of F_A .

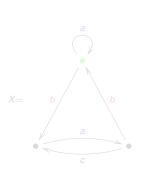
Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .



$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Membership problem in $\pi(X, \bullet)$ is solvable.

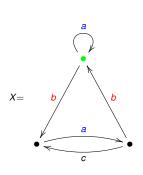
Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .



$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Membership problem in $\pi(X, \bullet)$ is solvable.

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|.

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|.

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|.

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|.

Proposition

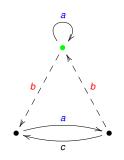
For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, \nu)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|.

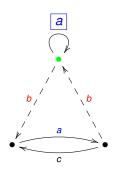
Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

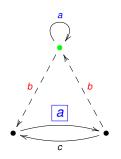
- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, \nu)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|. \square



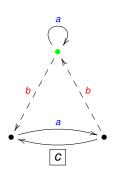
$$H = \langle \rangle$$



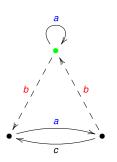
$$H = \langle \mathbf{a}, \rangle$$



$$H = \langle \mathbf{a}, \mathbf{bab}, \rangle$$

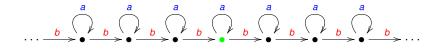


$$H = \langle a, bab, b^{-1}cb^{-1} \rangle$$



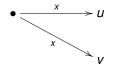
$$H = \langle a, bab, b^{-1}cb^{-1} \rangle$$

 $rk(H) = 1 - 3 + 5 = 3.$



$$F_{\aleph_0} \simeq H = \langle \dots, \, b^{-2}ab^2, \, b^{-1}ab, \, a, \, bab^{-1}, \, b^2ab^{-2}, \, \dots \rangle \leqslant F_2.$$

In any automaton containing the following situation, for $x \in A^{\pm 1}$,

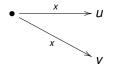


we can fold and identify vertices *u* and *v* to obtain

$$\bullet \xrightarrow{X} U = V$$
.

This operation, $(X, v) \rightsquigarrow (X', v)$, is called a Stallings folding.

In any automaton containing the following situation, for $x \in A^{\pm 1}$,



we can fold and identify vertices u and v to obtain

$$\bullet \xrightarrow{X} U = V.$$

This operation, $(X, v) \rightsquigarrow (X', v)$, is called a Stallings folding.

23 / 46

In any automaton containing the following situation, for $x \in A^{\pm 1}$,



we can fold and identify vertices u and v to obtain

$$\bullet \xrightarrow{X} U = V.$$

This operation, $(X, v) \rightsquigarrow (X', v)$, is called a Stallings folding.

Lemma (Stallings)

If $(X, v) \rightsquigarrow (X', v')$ is a Stallings folding then $\pi(X, v) = \pi(X', v')$.

Given a f.g. subgroup $H = \langle w_1, \dots w_m \rangle \leqslant F_A$ (we assume w_i are reduced words), do the following:

- 1- Draw the flower automaton,
- 2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Lemma (Stallings)

If $(X, v) \rightsquigarrow (X', v')$ is a Stallings folding then $\pi(X, v) = \pi(X', v')$.

Given a f.g. subgroup $H = \langle w_1, \dots w_m \rangle \leqslant F_A$ (we assume w_i are reduced words), do the following:

- 1- Draw the flower automaton,
- 2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

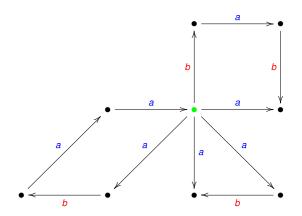
Lemma (Stallings)

If $(X, v) \rightsquigarrow (X', v')$ is a Stallings folding then $\pi(X, v) = \pi(X', v')$.

Given a f.g. subgroup $H = \langle w_1, \dots w_m \rangle \leqslant F_A$ (we assume w_i are reduced words), do the following:

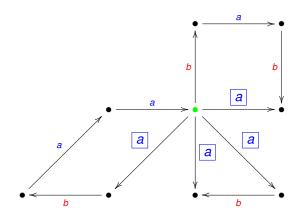
- 1- Draw the flower automaton,
- 2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$



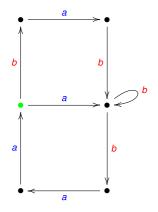
Flower(H)

Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$

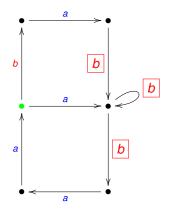


Flower(H)

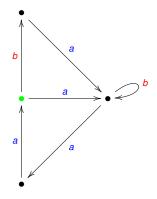
Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$



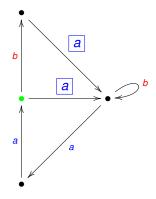
Folding #1



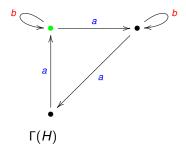
Folding #1.



Folding #2.

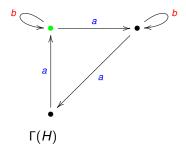


Folding #2.



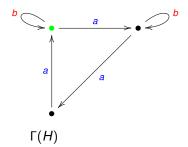
Folding #3.

By Stallings Lemma,
$$\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$$



Folding #3.

By Stallings Lemma, $\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$



By Stallings Lemma,
$$\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^{-1}, aba^2 \rangle = \langle b, aba^{-1}, a^3 \rangle$$

32 / 46

Local confluence

It can be shown that

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings.

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H

Theorem

The following is a bijection:

```
\{f.g. \ subgroups \ of \ F_A\} \ \longleftrightarrow \ \{Stallings \ automata\} \ H \ 	o \ \Gamma(H) \ \pi(X,v) \ \leftarrow \ (X,v)
```

Local confluence

It can be shown that

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings.

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection:

$$\{f.g. \ subgroups \ of \ F_A\} \ \longleftrightarrow \ \{Stallings \ automata\} \ H \ \to \ \Gamma(H) \ \pi(X,v) \ \leftarrow \ (X,v)$$

Local confluence

It can be shown that

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings.

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection:

```
 \begin{array}{cccc} \{\textit{f.g. subgroups of F}_A\} & \longleftrightarrow & \{\textit{Stallings automata}\} \\ & & H & \to & \Gamma(H) \\ & & \pi(X,v) & \leftarrow & (X,v) \end{array}
```

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of F_A is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of F_A is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of F_A is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.

Outline

- A claim due to Gromov
- Arzhantseva-Ol'shanskii's proof
- A new point of view
- Stallings' graphs
- 5 Counting Stallings' graphs: partial injections
- Most groups are trivial

Counting Stallings graphs

From now on, let us think presentations as

$$\langle a_1,\ldots,a_r\mid\Gamma\rangle$$
,

where Γ is a Stallings graph.

The natural size function to consider is the number of vertices:

$$|\cdot|: \{ \textit{Stallings graphs} \} \rightarrow \mathbb{N}, \ \Gamma \mapsto \#V\Gamma.$$

Goal: Count (estimate) the number of Stallings graphs with \leq n vertices, satisfying a certain property \mathcal{P} .

Counting Stallings graphs

From now on, let us think presentations as

$$\langle a_1,\ldots,a_r\mid\Gamma\rangle$$
,

where Γ is a Stallings graph.

The natural size function to consider is the number of vertices:

$$|\cdot|$$
: {Stallings graphs} $\rightarrow \mathbb{N}$, $\Gamma \mapsto \#V\Gamma$.

Goal: Count (estimate) the number of Stallings graphs with \leqslant n vertices, satisfying a certain property \mathcal{P} .

Counting Stallings graphs

From now on, let us think presentations as

$$\langle a_1,\ldots,a_r\mid\Gamma\rangle$$
,

where Γ is a Stallings graph.

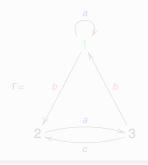
The natural size function to consider is the number of vertices:

$$|\cdot|$$
: {Stallings graphs} $\rightarrow \mathbb{N}$, $\Gamma \mapsto \#V\Gamma$.

Goal: Count (estimate) the number of Stallings graphs with \leq n vertices, satisfying a certain property \mathcal{P} .

Definition

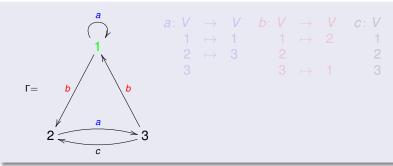
Let Γ be a Stallings graph. Every letter in A determines a partial injection of the set of vertices $V\Gamma$: a(i) = j iff $i \xrightarrow{a} j$.



Observation

Definition

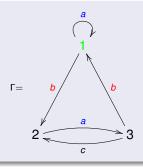
Let Γ be a Stallings graph. Every letter in A determines a partial injection of the set of vertices $V\Gamma$: a(i) = j iff $i \xrightarrow{a} j$.



Observation

Definition

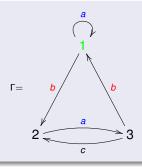
Let Γ be a Stallings graph. Every letter in A determines a partial injection of the set of vertices $V\Gamma$: a(i) = j iff $i \xrightarrow{a} j$.



Observation

Definition

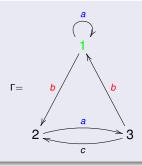
Let Γ be a Stallings graph. Every letter in A determines a partial injection of the set of vertices $V\Gamma$: a(i) = j iff $i \xrightarrow{a} j$.



Observation

Definition

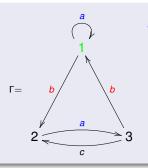
Let Γ be a Stallings graph. Every letter in A determines a partial injection of the set of vertices $V\Gamma$: a(i) = j iff $i \xrightarrow{a} j$.



Observation

Definition

Let Γ be a Stallings graph. Every letter in A determines a partial injection of the set of vertices $V\Gamma$: a(i) = j iff $i \xrightarrow{a} j$.



Observation

Definition

Let I_n be the set of partial injections of $[n] = \{1, 2, ..., n\}$ (this is a monoid containing the symmetric group S_n).

A Stallings graph (over A) with n vertices can be thought as a r-tuple of partial injections on the set [n] (taking 1 as the base-point), $\sigma \in I_n^r$, such that

- the corresponding graph $\Gamma(\sigma)$ is connected,
- and without degree 1 vertices, except possibly the base-point.

Observation

Definition

Let I_n be the set of partial injections of $[n] = \{1, 2, ..., n\}$ (this is a monoid containing the symmetric group S_n).

A Stallings graph (over A) with n vertices can be thought as a r-tuple of partial injections on the set [n] (taking 1 as the base-point), $\sigma \in I_n^r$, such that

- the corresponding graph $\Gamma(\sigma)$ is connected,
- and without degree 1 vertices, except possibly the base-point.

Observation

Definition

Let I_n be the set of partial injections of $[n] = \{1, 2, ..., n\}$ (this is a monoid containing the symmetric group S_n).

A Stallings graph (over A) with n vertices can be thought as a r-tuple of partial injections on the set [n] (taking 1 as the base-point), $\sigma \in I_n^r$, such that

- the corresponding graph $\Gamma(\sigma)$ is connected,
- and without degree 1 vertices, except possibly the base-point.

Observation

Definition

Let I_n be the set of partial injections of $[n] = \{1, 2, ..., n\}$ (this is a monoid containing the symmetric group S_n).

A Stallings graph (over A) with n vertices can be thought as a r-tuple of partial injections on the set [n] (taking 1 as the base-point), $\sigma \in I_n^r$, such that

- the corresponding graph $\Gamma(\sigma)$ is connected,
- and without degree 1 vertices, except possibly the base-point.

Observation

Definition

Let I_n be the set of partial injections of $[n] = \{1, 2, ..., n\}$ (this is a monoid containing the symmetric group S_n).

A Stallings graph (over A) with n vertices can be thought as a r-tuple of partial injections on the set [n] (taking 1 as the base-point), $\sigma \in I_n^r$, such that

- the corresponding graph $\Gamma(\sigma)$ is connected,
- and without degree 1 vertices, except possibly the base-point.

Observation

Theorem (Bassino, Nicaud, Weil, 2008)

- a) $\frac{|\{\Gamma(\sigma) \mid \sigma \in I_n'\}|}{|I_n|^r}$ tends to 1.
- b) $\frac{|\{\sigma \in I_n^r \mid \Gamma(\sigma) \text{ not connected }\}|}{|I_n|^r} = \mathcal{O}(\frac{1}{n^{r-1}}).$
- $c) \frac{|\{\sigma \in I_{n'} \mid \Gamma(\sigma) \text{ has a deg. 1 vertex} \neq bspt.\}|}{|I_n|^r} = o(1).$

Corollary

Generically, a Stallings graph (over A) with n vertices is just a r-tuple of partial injections on [n], $\sigma \in I_n^r$.

Theorem (Bassino, Nicaud, Weil, 2008)

- a) $\frac{|\{\Gamma(\sigma) \mid \sigma \in I_n^r\}|}{|I_n|^r}$ tends to 1.
- b) $\frac{|\{\sigma\in I_n{}^r\ |\ \Gamma(\sigma)\ not\ connected\ \}|}{|I_n|^r}=\mathcal{O}(\frac{1}{n^{r-1}}).$
- $c)^{rac{|\{\sigma\in I_{n'}\mid \ \Gamma(\sigma)\ has\ a\ deg.\ 1\ vertex
 eq bspt.\}|}{|I_{n}|^{r}}=o(1).$

Corollary

Generically, a Stallings graph (over A) with n vertices is just a r-tuple of partial injections on [n], $\sigma \in I_n^r$.

Theorem (Bassino, Nicaud, Weil, 2008)

- a) $\frac{|\{\Gamma(\sigma) \mid \sigma \in I_n^r\}|}{|I_n|^r}$ tends to 1.
- b) $\frac{|\{\sigma \in I_n^r \mid \Gamma(\sigma) \text{ not connected }\}|}{|I_n|^r} = \mathcal{O}(\frac{1}{n^{r-1}}).$
- c) $\frac{|\{\sigma \in I_n^r \mid \Gamma(\sigma) \text{ has a deg. 1 vertex } \neq \text{bspt.}\}|}{|I_n|^r} = o(1).$

Corollary

Generically, a Stallings graph (over A) with n vertices is just a r-tuple of partial injections on [n], $\sigma \in I_n^r$.

Theorem (Bassino, Nicaud, Weil, 2008)

- a) $\frac{|\{\Gamma(\sigma) \mid \sigma \in I_n^r\}|}{|I_n|^r}$ tends to 1.
- b) $\frac{|\{\sigma \in I_n^r \mid \Gamma(\sigma) \text{ not connected }\}|}{|I_n|^r} = \mathcal{O}(\frac{1}{n^{r-1}}).$
- c) $\frac{|\{\sigma \in I_n^r \mid \Gamma(\sigma) \text{ has a deg. 1 vertex } \neq \text{bspt.}\}|}{|I_n|^r} = o(1).$

Corollary

Generically, a Stallings graph (over A) with n vertices is just a r-tuple of partial injections on [n], $\sigma \in I_n^r$.

Theorem (Bassino, Nicaud, Weil, 2008)

- a) $\frac{|\{\Gamma(\sigma) \mid \sigma \in I_n^r\}|}{|I_n|^r}$ tends to 1.
- b) $\frac{|\{\sigma \in I_n^r \mid \Gamma(\sigma) \text{ not connected }\}|}{|I_n|^r} = \mathcal{O}(\frac{1}{n^{r-1}}).$
- c) $\frac{|\{\sigma \in I_n^r \mid \Gamma(\sigma) \text{ has a deg. 1 vertex } \neq \text{ bspt.}\}|}{|I_n|^r} = o(1).$

Corollary

Generically, a Stallings graph (over A) with n vertices is just a r-tuple of partial injections on [n], $\sigma \in I_n^r$.

Malnormality

With the word-based distribution malnormality is exponentially generic ...

Proposition

$$\exists \quad \lim_{n \to \infty} \frac{|\{(w_1, \dots, w_k) \in B(n)^k \mid \langle w_1, \dots, w_k \rangle \text{ is malnormal in } F(A)\}|}{|B(n)|^k} = 1$$

exponentially fast.

.. but in the graph-based distribution it is (exponentially?) negligible ...

Proposition

$$\frac{|\{\sigma \in I_n^r \mid \pi(\Gamma(\sigma)) \text{ is malnormal in } F(A)\}|}{|I_n^k|} = \mathcal{O}(n^{-r/2}).$$

Malnormality

With the word-based distribution malnormality is exponentially generic ...

Proposition

$$\exists \quad \lim_{n \to \infty} \frac{|\{(w_1, \dots, w_k) \in B(n)^k \mid \langle w_1, \dots, w_k \rangle \text{ is malnormal in } F(A)\}|}{|B(n)|^k} = 1$$

exponentially fast.

... but in the graph-based distribution it is (exponentially?) negligible ...

Proposition

$$\frac{|\{\sigma\in I_n^r\mid \pi(\Gamma(\sigma)) \text{ is malnormal in } F(A)\}|}{|I_n^k|}=\mathcal{O}(n^{-r/2}).$$

Outline

- A claim due to Gromov
- Arzhantseva-Ol'shanskii's proof
- A new point of view
- Stallings' graphs
- Counting Stallings' graphs: partial injections
- Most groups are trivial

Permutations and fragmented permutations

Observation

Any partial injection $\sigma \in I_n$ decomposes in orbits of two types: closed and open (i.e. cycles and segments).

Definition

A partial injection $\sigma \in I_n$ is called a

- permutation if all its orbits are closed,
- fragmented permutation if all its orbits are open.

Let S_n and J_n , resp., be the sets of permutations and fragmented permutations in I_n .

Observation

Every partial injection is the disjoint union of a permutation and a fragmented permutation. In particular, $|I_n| = \sum_{k=0}^n \binom{n}{k} |S_k| |J_{n-k}| = \sum_{k=0}^n \frac{n!}{(n-k)!} |J_{n-k}|$.

Observation

Any partial injection $\sigma \in I_n$ decomposes in orbits of two types: closed and open (i.e. cycles and segments).

Definition

A partial injection $\sigma \in I_n$ is called a

- permutation if all its orbits are closed,
- fragmented permutation if all its orbits are open.

Let S_n and J_n , resp., be the sets of permutations and fragmented permutations in I_n .

Observation

Every partial injection is the disjoint union of a permutation and a fragmented permutation. In particular, $|I_n| = \sum_{k=0}^n \binom{n}{k} |S_k| |J_{n-k}| = \sum_{k=0}^n \frac{n!}{(n-k)!} |J_{n-k}|$.

Observation

Any partial injection $\sigma \in I_n$ decomposes in orbits of two types: closed and open (i.e. cycles and segments).

Definition

A partial injection $\sigma \in I_n$ is called a

- permutation if all its orbits are closed,
- fragmented permutation if all its orbits are open.

Let S_n and J_n , resp., be the sets of permutations and fragmented permutations in I_n .

Observation

Every partial injection is the disjoint union of a permutation and a fragmented permutation. In particular, $|I_n| = \sum_{k=0}^n \binom{n}{k} |S_k| |J_{n-k}| = \sum_{k=0}^n \frac{n!}{(n-k)!} |J_{n-k}|$.

Observation

Any partial injection $\sigma \in I_n$ decomposes in orbits of two types: closed and open (i.e. cycles and segments).

Definition

A partial injection $\sigma \in I_n$ is called a

- permutation if all its orbits are closed,
- fragmented permutation if all its orbits are open.

Let S_n and J_n , resp., be the sets of permutations and fragmented permutations in I_n .

Observation

Every partial injection is the disjoint union of a permutation and a fragmented permutation. In particular, $|I_n| = \sum_{k=0}^n \binom{n}{k} |S_k| |J_{n-k}| = \sum_{k=0}^n \frac{n!}{(n-k)!} |J_{n-k}|$.

Observation

Any partial injection $\sigma \in I_n$ decomposes in orbits of two types: closed and open (i.e. cycles and segments).

Definition

A partial injection $\sigma \in I_n$ is called a

- permutation if all its orbits are closed,
- fragmented permutation if all its orbits are open.

Let S_n and J_n , resp., be the sets of permutations and fragmented permutations in I_n .

Observation

Every partial injection is the disjoint union of a permutation and a fragmented permutation. In particular, $|I_n| = \sum_{k=0}^n \binom{n}{k} |S_k| |J_{n-k}| = \sum_{k=0}^n \frac{n!}{(n-k)!} |J_{n-k}|$.

Most groups are hyperbolic... or trivial? It depends on

Definition

- a) The EGS for partial injections: $I(z) = \sum_{n=0}^{\infty} \frac{|I_n|}{n!} z^n$.
- b) The EGS for permutations: $S(z) = \sum_{n=0}^{\infty} \frac{|S_n|}{n!} z^n = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$.
- c) The EGS for fragmented permutations: $J(z) = \sum_{n=0}^{\infty} \frac{|J_n|}{n!} z^n$.

Theorem

a)
$$I(z) = \frac{1}{1-z}e^{\frac{z}{1-z}} = 1 + 2z + \frac{7}{2}z^2 + \frac{17}{3}z^3 + \cdots$$

b)
$$\frac{|I_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi e}} n^{-\frac{1}{4}} (1 + o(1)).$$

a)
$$J(z) = e^{\frac{z}{1-z}} = 1 + z + \frac{3}{2}z^2 + \frac{13}{6}z^3 + \cdots$$

b)
$$\frac{|J_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi e}} n^{-\frac{3}{4}} (1 + o(1)).$$

Hence,
$$\frac{|J_n|}{|I_n|} = \mathcal{O}(\frac{1}{n^{1/2}})$$

Definition

- a) The EGS for partial injections: $I(z) = \sum_{n=0}^{\infty} \frac{|I_n|}{n!} z^n$.
- b) The EGS for permutations: $S(z) = \sum_{n=0}^{\infty} \frac{|S_n|}{n!} z^n = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$.
- c) The EGS for fragmented permutations: $J(z) = \sum_{n=0}^{\infty} \frac{|J_n|}{n!} z^n$

Theorem

a)
$$I(z) = \frac{1}{1-z}e^{\frac{z}{1-z}} = 1 + 2z + \frac{7}{2}z^2 + \frac{17}{3}z^3 + \cdots$$

b)
$$\frac{|I_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi e}} n^{-\frac{1}{4}} (1 + o(1)).$$

a)
$$J(z) = e^{\frac{z}{1-z}} = 1 + z + \frac{3}{2}z^2 + \frac{13}{6}z^3 + \cdots$$

b)
$$\frac{|J_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi e}} n^{-\frac{3}{4}} (1 + o(1)).$$

Definition

- a) The EGS for partial injections: $I(z) = \sum_{n=0}^{\infty} \frac{|I_n|}{n!} z^n$.
- b) The EGS for permutations: $S(z) = \sum_{n=0}^{\infty} \frac{|S_n|}{n!} z^n = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$.
- c) The EGS for fragmented permutations: $J(z) = \sum_{n=0}^{\infty} \frac{|J_n|}{n!} z^n$.

Theorem

a)
$$I(z) = \frac{1}{1-z}e^{\frac{z}{1-z}} = 1 + 2z + \frac{7}{2}z^2 + \frac{17}{3}z^3 + \cdots$$

b)
$$\frac{|I_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi e}} n^{-\frac{1}{4}} (1 + o(1)).$$

a)
$$J(z) = e^{\frac{z}{1-z}} = 1 + z + \frac{3}{2}z^2 + \frac{13}{6}z^3 + \cdots$$

b)
$$\frac{|J_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi e}} n^{-\frac{3}{4}} (1 + o(1)).$$

Definition

- a) The EGS for partial injections: $I(z) = \sum_{n=0}^{\infty} \frac{|I_n|}{n!} z^n$.
- b) The EGS for permutations: $S(z) = \sum_{n=0}^{\infty} \frac{|S_n|}{n!} z^n = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$.
- c) The EGS for fragmented permutations: $J(z) = \sum_{n=0}^{\infty} \frac{|J_n|}{n!} z^n$.

Theorem

a)
$$I(z) = \frac{1}{1-z}e^{\frac{z}{1-z}} = 1 + 2z + \frac{7}{2}z^2 + \frac{17}{3}z^3 + \cdots$$

b)
$$\frac{|I_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi e}} n^{-\frac{1}{4}} (1 + o(1)).$$

a)
$$J(z) = e^{\frac{z}{1-z}} = 1 + z + \frac{3}{2}z^2 + \frac{13}{6}z^3 + \cdots$$

b)
$$\frac{|J_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi e}} n^{-\frac{3}{4}} (1 + o(1)).$$

Definition

- a) The EGS for partial injections: $I(z) = \sum_{n=0}^{\infty} \frac{|I_n|}{n!} z^n$.
- b) The EGS for permutations: $S(z) = \sum_{n=0}^{\infty} \frac{|S_n|}{n!} z^n = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$.
- c) The EGS for fragmented permutations: $J(z) = \sum_{n=0}^{\infty} \frac{|J_n|}{n!} z^n$.

Theorem

a)
$$I(z) = \frac{1}{1-z}e^{\frac{z}{1-z}} = 1 + 2z + \frac{7}{2}z^2 + \frac{17}{3}z^3 + \cdots$$

b)
$$\frac{|I_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi e}} n^{-\frac{1}{4}} (1 + o(1)).$$

a)
$$J(z) = e^{\frac{z}{1-z}} = 1 + z + \frac{3}{2}z^2 + \frac{13}{6}z^3 + \cdots$$

b)
$$\frac{|J_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi e}} n^{-\frac{3}{4}} (1 + o(1)).$$

Definition

- a) The EGS for partial injections: $I(z) = \sum_{n=0}^{\infty} \frac{|I_n|}{n!} z^n$.
- b) The EGS for permutations: $S(z) = \sum_{n=0}^{\infty} \frac{|S_n|}{n!} z^n = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$.
- c) The EGS for fragmented permutations: $J(z) = \sum_{n=0}^{\infty} \frac{|J_n|}{n!} z^n$.

Theorem

a)
$$I(z) = \frac{1}{1-z}e^{\frac{z}{1-z}} = 1 + 2z + \frac{7}{2}z^2 + \frac{17}{3}z^3 + \cdots$$

b)
$$\frac{|I_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi e}} n^{-\frac{1}{4}} (1 + o(1)).$$

a)
$$J(z) = e^{\frac{z}{1-z}} = 1 + z + \frac{3}{2}z^2 + \frac{13}{6}z^3 + \cdots$$

b)
$$\frac{|J_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi e}} n^{-\frac{3}{4}} (1 + o(1))$$

Definition

- a) The EGS for partial injections: $I(z) = \sum_{n=0}^{\infty} \frac{|I_n|}{n!} z^n$.
- b) The EGS for permutations: $S(z) = \sum_{n=0}^{\infty} \frac{|S_n|}{n!} z^n = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$.
- c) The EGS for fragmented permutations: $J(z) = \sum_{n=0}^{\infty} \frac{|J_n|}{n!} z^n$.

Theorem

a)
$$I(z) = \frac{1}{1-z}e^{\frac{z}{1-z}} = 1 + 2z + \frac{7}{2}z^2 + \frac{17}{3}z^3 + \cdots$$

b)
$$\frac{|I_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi e}} n^{-\frac{1}{4}} (1 + o(1)).$$

a)
$$J(z) = e^{\frac{z}{1-z}} = 1 + z + \frac{3}{2}z^2 + \frac{13}{6}z^3 + \cdots$$

b)
$$\frac{|J_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi e}} n^{-\frac{3}{4}} (1 + o(1)).$$

Definition

- a) The EGS for partial injections: $I(z) = \sum_{n=0}^{\infty} \frac{|I_n|}{n!} z^n$.
- b) The EGS for permutations: $S(z) = \sum_{n=0}^{\infty} \frac{|S_n|}{n!} z^n = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$.
- c) The EGS for fragmented permutations: $J(z) = \sum_{n=0}^{\infty} \frac{|J_n|}{n!} z^n$.

Theorem

a)
$$I(z) = \frac{1}{1-z}e^{\frac{z}{1-z}} = 1 + 2z + \frac{7}{2}z^2 + \frac{17}{3}z^3 + \cdots$$

b)
$$\frac{|I_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi e}} n^{-\frac{1}{4}} (1 + o(1)).$$

a)
$$J(z) = e^{\frac{z}{1-z}} = 1 + z + \frac{3}{2}z^2 + \frac{13}{6}z^3 + \cdots$$

b)
$$\frac{|J_n|}{n!} = \frac{e^{2\sqrt{n}}}{2\sqrt{\pi e}} n^{-\frac{3}{4}} (1 + o(1)).$$

Hence,
$$\frac{|J_n|}{|I_n|} = \mathcal{O}(\frac{1}{n^{1/2}})$$
.

Definition

Let $\sigma \in I_n$. Define $\gcd(\sigma)$ as the gcd of the lengths of the closed orbits of σ (if $\sigma \in J_n$, put $\gcd(\sigma) = \infty$).

Key observation

- if $gcd(\sigma_i) = 1$ then $a_i = 1$ in G,
- if $gcd(\sigma_1) = \cdots = gcd(\sigma_r) = 1$ then G = 1.

Definition

Let $\sigma \in I_n$. Define $\gcd(\sigma)$ as the \gcd of the lengths of the closed orbits of σ (if $\sigma \in J_n$, put $\gcd(\sigma) = \infty$).

Key observation

- if $gcd(\sigma_i) = 1$ then $a_i = 1$ in G,
- if $gcd(\sigma_1) = \cdots = gcd(\sigma_r) = 1$ then G = 1.

Definition

Let $\sigma \in I_n$. Define $\gcd(\sigma)$ as the \gcd of the lengths of the closed orbits of σ (if $\sigma \in J_n$, put $\gcd(\sigma) = \infty$).

Key observation

- if $gcd(\sigma_i) = 1$ then $a_i = 1$ in G,
- if $gcd(\sigma_1) = \cdots = gcd(\sigma_r) = 1$ then G = 1.

Definition

Let $\sigma \in I_n$. Define $\gcd(\sigma)$ as the gcd of the lengths of the closed orbits of σ (if $\sigma \in J_n$, put $\gcd(\sigma) = \infty$).

Key observation

- if $gcd(\sigma_i) = 1$ then $a_i = 1$ in G,
- if $gcd(\sigma_1) = \cdots = gcd(\sigma_r) = 1$ then G = 1.

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

$$\frac{|\{\sigma\in I_n\mid \gcd(\sigma)>1\}|}{|I_n|}=\mathcal{O}(\frac{1}{n^{1/6}})$$

Corollary (Bassino, Martino, Nicaud, V., Weil, 2010)

$$\frac{|\{\sigma \in I_n^r \mid \Gamma(\sigma) \text{ St. gr. & } G \neq 1\}|}{|I_n^r|} = \mathcal{O}(\frac{1}{n^{1/6}}).$$

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)

$$\frac{|\{\sigma\in I_n\mid\gcd(\sigma)>1\}|}{|I_n|}=\mathcal{O}(\frac{1}{n^{1/6}})$$

Corollary (Bassino, Martino, Nicaud, V., Weil, 2010)

$$\frac{|\{\sigma\in I_n{}^r\mid \Gamma(\sigma) \text{ St. gr. \& } G\neq 1\}|}{|I_n^r|}=\mathcal{O}(\frac{1}{n^{1/6}}).$$

Thanks