Whitehead's classical algorithm and a modern version in polynomial time

Enric Ventura

Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya

r

CRM-Montreal

McGill seminar, Montreal

Sep. 30th, 2010.

Outline

- 1 The classical Whitehead algorithm
- Let's do it in polynomial time
- An application
- 4 An example

Outline

- The classical Whitehead algorithm
- Let's do it in polynomial time
- An application
- An example

- $A = \{a_1, \dots, a_k\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_k, a_k^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^*/\sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.
- $\|\cdot\|$ denotes the (shortest) length in the conjugacy class (i.e. cyclically): $\|abbb^{-1}a^{-1}\|=1$.
- $Aut(F_A)$ and $End(F_A)$ as usual.

- $A = \{a_1, \dots, a_k\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_k, a_k^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^*/\sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.
- $\|\cdot\|$ denotes the (shortest) length in the conjugacy class (i.e. cyclically): $\|abbb^{-1}a^{-1}\|=1$.
- $Aut(F_A)$ and $End(F_A)$ as usual.

- $A = \{a_1, \dots, a_k\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_k, a_k^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^*/\sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.
- $\|\cdot\|$ denotes the (shortest) length in the conjugacy class (i.e. cyclically): $\|abbb^{-1}a^{-1}\|=1$.
- $Aut(F_A)$ and $End(F_A)$ as usual.

- $A = \{a_1, \dots, a_k\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_k, a_k^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.
- $\|\cdot\|$ denotes the (shortest) length in the conjugacy class (i.e. cyclically): $\|abbb^{-1}a^{-1}\|=1$.
- $Aut(F_A)$ and $End(F_A)$ as usual.

- $A = \{a_1, \dots, a_k\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_k, a_k^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^*/\sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.
- $\|\cdot\|$ denotes the (shortest) length in the conjugacy class (i.e. cyclically): $\|abbb^{-1}a^{-1}\|=1$.
- $Aut(F_A)$ and $End(F_A)$ as usual.

- $A = \{a_1, \dots, a_k\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_k, a_k^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.
- $\|\cdot\|$ denotes the (shortest) length in the conjugacy class (i.e. cyclically): $\|abbb^{-1}a^{-1}\|=1$.
- $Aut(F_A)$ and $End(F_A)$ as usual.

- $A = \{a_1, \dots, a_k\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_k, a_k^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.
- $\|\cdot\|$ denotes the (shortest) length in the conjugacy class (i.e. cyclically): $\|abbb^{-1}a^{-1}\|=1$.
- $Aut(F_A)$ and $End(F_A)$ as usual.

- $A = \{a_1, \dots, a_k\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_k, a_k^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.
- $\|\cdot\|$ denotes the (shortest) length in the conjugacy class (i.e. cyclically): $\|abbb^{-1}a^{-1}\|=1$.
- $Aut(F_A)$ and $End(F_A)$ as usual.

- $A = \{a_1, \dots, a_k\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_k, a_k^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.
- $\|\cdot\|$ denotes the (shortest) length in the conjugacy class (i.e. cyclically): $\|abbb^{-1}a^{-1}\|=1$.
- $Aut(F_A)$ and $End(F_A)$ as usual.

Whitehead Problem

For a group G, find an algorithm s.t. given $u, v \in G$ decides whether there exists $\varphi \in Aut(G)$ such that $\varphi(u) = v$.

Theorem (Whitehead, 30's)

Whitehead problem is solvable in F_A

"Proof":

First part: reduce ||u|| and ||v|| as much as possible by applying autos:

$$U \rightarrow U_1 \rightarrow U_2 \rightarrow \cdots \rightarrow U',$$

$$V \longrightarrow V_1 \longrightarrow V_2 \longrightarrow \cdots \longrightarrow V'.$$

Whitehead Problem

For a group G, find an algorithm s.t. given $u, v \in G$ decides whether there exists $\varphi \in Aut(G)$ such that $\varphi(u) = v$.

Theorem (Whitehead, 30's)

Whitehead problem is solvable in F_A .

"Proof":

First part: reduce ||u|| and ||v|| as much as possible by applying autos:

$$U \rightarrow U_1 \rightarrow U_2 \rightarrow \cdots \rightarrow U'$$

$$V \longrightarrow V_1 \longrightarrow V_2 \longrightarrow \cdots \longrightarrow V'.$$

Whitehead Problem

For a group G, find an algorithm s.t. given $u, v \in G$ decides whether there exists $\varphi \in Aut(G)$ such that $\varphi(u) = v$.

Theorem (Whitehead, 30's)

Whitehead problem is solvable in F_A .

"Proof":

First part: reduce ||u|| and ||v|| as much as possible by applying autos:

$$u \rightarrow u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u'$$

$$v \to v_1 \to v_2 \to \cdots \to v'.$$

Whitehead Problem

For a group G, find an algorithm s.t. given $u, v \in G$ decides whether there exists $\varphi \in Aut(G)$ such that $\varphi(u) = v$.

Theorem (Whitehead, 30's)

Whitehead problem is solvable in F_A .

"Proof":

First part: reduce ||u|| and ||v|| as much as possible by applying autos:

$$u \rightarrow u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u'$$

$$V \rightarrow V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V'$$
.

Whitehead minimization problem

Let us concentrate in the first part:

Whitehead Minimization Problem (WMP)

Given $u \in F_A$, find $\varphi \in Aut(F_A)$ such that $\|\varphi(u)\|$ is minimal.

Lemma (Whitehead)

Let $u \in F_A$. If $\exists \varphi \in Aut(F_A)$ such that $\|\varphi(u)\| < \|u\|$ then \exists a Whitehead automorphism α such that $\|\alpha(u)\| < \|u\|$.

Definition

Whitehead automorphisms are those of the form:

$$egin{array}{cccc} F_A &
ightarrow & F_A \ a_i & \mapsto & a_i & (ext{the multiplier}) \ a_i
eq a_i & \mapsto & a_i^{\epsilon_j} a_i \, a_i^{\delta_j} \end{array}$$

where $\epsilon_i = 0, -1$ and $\delta_i = 0, 1$ (there are $\sim k \cdot 4^k$ many, where k = |A|).

Whitehead minimization problem

Let us concentrate in the first part:

Whitehead Minimization Problem (WMP)

Given $u \in F_A$, find $\varphi \in Aut(F_A)$ such that $\|\varphi(u)\|$ is minimal.

Lemma (Whitehead)

Let $u \in F_A$. If $\exists \varphi \in Aut(F_A)$ such that $\|\varphi(u)\| < \|u\|$ then \exists a Whitehead automorphism α such that $\|\alpha(u)\| < \|u\|$.

Definition

Whitehead automorphisms are those of the form:

$$egin{array}{cccc} F_A &
ightarrow & F_A \ a_i & \mapsto & a_i & (ext{the multiplier}) \ a_i
eq a_i & \mapsto & a_i^{\epsilon_j} a_i \, a_i^{\delta_j} \end{array}$$

where $\epsilon_j = 0, -1$ and $\delta_j = 0, 1$ (there are $\sim k \cdot 4^k$ many, where k = |A|).

Whitehead minimization problem

Let us concentrate in the first part:

Whitehead Minimization Problem (WMP)

Given $u \in F_A$, find $\varphi \in Aut(F_A)$ such that $\|\varphi(u)\|$ is minimal.

Lemma (Whitehead)

Let $u \in F_A$. If $\exists \varphi \in Aut(F_A)$ such that $\|\varphi(u)\| < \|u\|$ then \exists a Whitehead automorphism α such that $\|\alpha(u)\| < \|u\|$.

Definition

Whitehead automorphisms are those of the form:

$$egin{array}{ccccc} F_A &
ightarrow & F_A \ a_i & \mapsto & a_i \ a_i
eq a_j & \mapsto & a_i^{\epsilon_j} a_j \ a_i^{\delta_j} \end{array}$$
 (the multiplier)

where $\epsilon_i = 0, -1$ and $\delta_i = 0, 1$ (there are $\sim k \cdot 4^k$ many, where k = |A|).

Classical whitehead algorithm is:

- Keep applying whitehead automorphisms to given u until finding one that decreases its cyclic length.
- Repeat until all whiteheads are non-decreasing.

This is polynomial on ||u||, but exponential on the ambient rank, k.

There are several recent results (theoretical, heuristic, probabilistic) suggesting that Whitehead algorithm is faster in practice.

Classical whitehead algorithm is:

- Keep applying whitehead automorphisms to given u until finding one that decreases its cyclic length.
- Repeat until all whiteheads are non-decreasing.

This is polynomial on ||u||, but exponential on the ambient rank, k.

There are several recent results (theoretical, heuristic, probabilistic) suggesting that Whitehead algorithm is faster in practice.

Classical whitehead algorithm is:

- Keep applying whitehead automorphisms to given u until finding one that decreases its cyclic length.
- Repeat until all whiteheads are non-decreasing.

This is polynomial on ||u||, but exponential on the ambient rank, k.

There are several recent results (theoretical, heuristic, probabilistic) suggesting that Whitehead algorithm is faster in practice.

Classical whitehead algorithm is:

- Keep applying whitehead automorphisms to given u until finding one that decreases its cyclic length.
- Repeat until all whiteheads are non-decreasing.

This is polynomial on ||u||, but exponential on the ambient rank, k.

There are several recent results (theoretical, heuristic, probabilistic) suggesting that Whitehead algorithm is faster in practice.

Outline

- 1 The classical Whitehead algorithm
- Let's do it in polynomial time
- An application
- An example

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

main idea: given $u \in F_k$, we find in polynomial time one of the whiteheads that decreases ||u|| the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u?

- 1) Codify *u* as its Whitehead's graph (classic in Group Theory),
- 2) Codify α as a cut in this graph (\approx classic in Group Theory)
- 3) Use max-flow min-cut algorithm (classic in Computer Science),
- 4) ... put together and mix (new!).

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

main idea: given $u \in F_k$, we find in polynomial time one of the whiteheads that decreases ||u|| the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u?

- 1) Codify *u* as its Whitehead's graph (classic in Group Theory),
- 2) Codify α as a cut in this graph (\approx classic in Group Theory),
- 3) Use max-flow min-cut algorithm (classic in Computer Science),
- 4) ... put together and mix (new!).

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

main idea: given $u \in F_k$, we find in polynomial time one of the whiteheads that decreases ||u|| the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u?

- 1) Codify *u* as its Whitehead's graph (classic in Group Theory),
- 2) Codify α as a cut in this graph (\approx classic in Group Theory),
- 3) Use max-flow min-cut algorithm (classic in Computer Science).
- 4) ... put together and mix (new!).

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

main idea: given $u \in F_k$, we find in polynomial time one of the whiteheads that decreases ||u|| the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u?

- 1) Codify *u* as its Whitehead's graph (classic in Group Theory),
- 2) Codify α as a cut in this graph (\approx classic in Group Theory),
- 3) Use max-flow min-cut algorithm (classic in Computer Science),
- 4) ... put together and mix (new!).

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

main idea: given $u \in F_k$, we find in polynomial time one of the whiteheads that decreases ||u|| the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u?

- 1) Codify *u* as its Whitehead's graph (classic in Group Theory),
- 2) Codify α as a cut in this graph (\approx classic in Group Theory),
- 3) Use max-flow min-cut algorithm (classic in Computer Science).
- 4) ... put together and mix (new!).

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

main idea: given $u \in F_k$, we find in polynomial time one of the whiteheads that decreases ||u|| the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u?

- 1) Codify *u* as its Whitehead's graph (classic in Group Theory),
- 2) Codify α as a cut in this graph (\approx classic in Group Theory),
- 3) Use max-flow min-cut algorithm (classic in Computer Science),
- 4) ... put together and mix (new!).

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

main idea: given $u \in F_k$, we find in polynomial time one of the whiteheads that decreases ||u|| the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u?

- 1) Codify *u* as its Whitehead's graph (classic in Group Theory),
- 2) Codify α as a cut in this graph (\approx classic in Group Theory),
- 3) Use max-flow min-cut algorithm (classic in Computer Science),
- 4) ... put together and mix (new!).

Whitehead's graph

First ingredient: Whitehead's graph of a word.

Definition

Given $u \in F_k$ (cyclically reduced), its (unoriented) Whitehead graph, denoted Wh(u), is:

- vertices: $A^{\pm 1}$,
- edges: for every pair of (cycl.) consecutive letters $u = \cdots xy \cdots$ put an edge between x and y^{-1} .

Example

$$u = aba^{-1}c^{-1}bbabc^{-1}$$

Whitehead's graph

First ingredient: Whitehead's graph of a word.

Definition

Given $u \in F_k$ (cyclically reduced), its (unoriented) Whitehead graph, denoted Wh(u), is:

- vertices: $A^{\pm 1}$,
- edges: for every pair of (cycl.) consecutive letters $u = \cdots xy \cdots$ put an edge between x and y^{-1} .

Example

$$u = aba^{-1}c^{-1}bbabc^{-1}$$
,

Cut in a graph

Second ingredient: Cut in a graph.

Definition

Given a Whitehead's automorphism α , we represent it as the (a, a^{-1}) -cut

 $(T = \{a\} \cup \{\text{letters that go multiplied on the right by } a\}, a)$

of the set $A^{\pm 1}$.

Example

$$lpha : \langle a,b,c \rangle = F_3 \longrightarrow F_3$$
 $a b c$
 $a \mapsto ab$
 $b \mapsto b$
 $c \mapsto b^{-1}cb$ a^{-1}

Cut in a graph

Second ingredient: Cut in a graph.

Definition

Given a Whitehead's automorphism α , we represent it as the (a, a^{-1}) -cut

 $(T = \{a\} \cup \{\text{letters that go multiplied on the right by } a\}, a)$

of the set $A^{\pm 1}$.

Example

$$\alpha \colon \langle a, b, c \rangle = F_3 \quad \rightarrow \quad F_3$$

$$a \quad \mapsto \quad ab$$

$$b \quad \mapsto \quad b$$

$$c \quad \mapsto \quad b^{-1}cb$$

Rephrasement of Wh. Lemma

Lemma (Whitehead)

Given a word $u \in F_k$ and a Whitehead automorphism α , think α as a cut in Wh(u), say $\alpha = (T, a)$, and then

$$\|\alpha(u)\| - \|u\| = \operatorname{cap}(T) - \operatorname{deg}(a).$$

Proof: Analyzing combinatorial cases (see Lyndon-Schupp).

Rephrasement of Wh. Lemma

Lemma (Whitehead)

Given a word $u \in F_k$ and a Whitehead automorphism α , think α as a cut in Wh(u), say $\alpha = (T, a)$, and then

$$\|\alpha(u)\| - \|u\| = \operatorname{cap}(T) - \operatorname{deg}(a).$$

Proof: Analyzing combinatorial cases (see Lyndon-Schupp).

Example

Consider
$$u=aba^{-1}c^{-1}bbabc^{-1}$$
 and $\alpha\colon F_3\to F_3$ like before. We
$$\begin{array}{ccc} a&\mapsto&ab\\ b&\mapsto&b\\ c&\mapsto&b^{-1}cb \end{array}$$

have $\alpha(u) = aba^{-1}b^{-1}c^{-1}bbbabc^{-1}b$. Furthermore,

and, in fact,

$$12 - 9 = \|\alpha(u)\| - \|u\| = \operatorname{cap}(T) - \operatorname{deg}(b) = 7 - 4.$$

Example

Consider
$$u=aba^{-1}c^{-1}bbabc^{-1}$$
 and $\alpha\colon F_3\to F_3$ like before. We
$$\begin{array}{ccc} a&\mapsto&ab\\ b&\mapsto&b\\ c&\mapsto&b^{-1}cb \end{array}$$

have $\alpha(u) = aba^{-1}b^{-1}c^{-1}bbbabc^{-1}b$. Furthermore,

and, in fact,

$$12 - 9 = \|\alpha(u)\| - \|u\| = \operatorname{cap}(T) - \operatorname{deg}(b) = 7 - 4.$$

Example

Consider
$$u=aba^{-1}c^{-1}bbabc^{-1}$$
 and $\alpha\colon F_3\to F_3$ like before. We
$$\begin{array}{ccc} a&\mapsto&ab\\ b&\mapsto&b\\ c&\mapsto&b^{-1}cb \end{array}$$

have $\alpha(u) = aba^{-1}b^{-1}c^{-1}bbbabc^{-1}b$. Furthermore,

and, in fact,

 $12 - 9 = \|\alpha(u)\| - \|u\| = \operatorname{cap}(T) - \operatorname{deg}(b) = 7 - 4.$

Example

Consider
$$u=aba^{-1}c^{-1}bbabc^{-1}$$
 and $\alpha\colon F_3\to F_3$ like before. We
$$\begin{array}{ccc} a&\mapsto&ab\\ b&\mapsto&b\\ c&\mapsto&b^{-1}cb \end{array}$$

have $\alpha(u) = aba^{-1}b^{-1}c^{-1}bbbabc^{-1}b$. Furthermore,

and, in fact,

$$12 - 9 = \|\alpha(u)\| - \|u\| = \operatorname{cap}(T) - \operatorname{deg}(\mathbf{b}) = 7 - 4.$$

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead's Minimization Problem reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a^{-1}) -cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm ...

...which works in polynomial time w.r.t. the number of edges of the graph (= ||u||) and the number of vertices (= 2k).

Theorem (Roig, V., Weil, 2007)

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead's Minimization Problem reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a^{-1}) -cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm ...

...which works in polynomial time w.r.t. the number of edges of the graph (= ||u||) and the number of vertices (= 2k).

Theorem (Roig, V., Weil, 2007)

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead's Minimization Problem reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a^{-1}) -cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm ...

...which works in polynomial time w.r.t. the number of edges of the graph (= ||u||) and the number of vertices (= 2k).

Theorem (Roig, V., Weil, 2007)

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead's Minimization Problem reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a^{-1}) -cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm ...

...which works in polynomial time w.r.t. the number of edges of the graph $(= \|u\|)$ and the number of vertices (= 2k).

Theorem (Roig, V., Weil, 2007)

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead's Minimization Problem reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a^{-1}) -cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm ...

...which works in polynomial time w.r.t. the number of edges of the graph (= ||u||) and the number of vertices (= 2k).

Theorem (Roig, V., Weil, 2007)

Outline

- The classical Whitehead algorithm
- Let's do it in polynomial time
- An application
- 4 An example

15 / 19

Primitivity

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

Observation

u is primitive \Leftrightarrow the orbit of u contains a \Leftrightarrow bottom of the orbit has length 1.

Corollary (Roig, V., Weil, 2007)

Given a word $u \in F_k$, one can check whether u is primitive in F_k in time $O(n^2k^3)$, where n = ||u||.

Primitivity

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

Observation

u is primitive \Leftrightarrow the orbit of u contains $a \Leftrightarrow bottom$ of the orbit has length 1.

Corollary (Roig, V., Weil, 2007)

Given a word $u \in F_k$, one can check whether u is primitive in F_k in time $O(n^2k^3)$, where n = ||u||.

Primitivity

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

Observation

u is primitive \Leftrightarrow the orbit of u contains $a \Leftrightarrow bottom$ of the orbit has length 1.

Corollary (Roig, V., Weil, 2007)

Given a word $u \in F_k$, one can check whether u is primitive in F_k in time $O(n^2k^3)$, where n = ||u||.

Deciding free-factorness

Observation

A given subgroup $H \leq F_k$ with basis $\{h_1, \ldots, h_r\}$ $(r(H) = r \leq k)$ is a free factor of F_k if and only if bottom of the orbit of (h_1, \ldots, h_r) has length $1 + \cdots + 1 = r$.

Corollary (Roig, V., Weil, 2007)

Given a f.g. subgroup $H \leq F_k$, one can check whether H is a free factor of F_k in time $O((n^2k^4 + n^3k^2)\log(nk))$, where n = ||H||.

Corollary (Roig, V., Weil, 2007)

Given f.g. subgroups $H \le K \le F_k$, one can check whether H is a free factor of K in polynomial time w.r.t. the given generators of H and K.

Deciding free-factorness

Observation

A given subgroup $H \leq F_k$ with basis $\{h_1, \ldots, h_r\}$ $(r(H) = r \leq k)$ is a free factor of F_k if and only if bottom of the orbit of (h_1, \ldots, h_r) has length $1 + \cdots + 1 = r$.

Corollary (Roig, V., Weil, 2007)

Given a f.g. subgroup $H \le F_k$, one can check whether H is a free factor of F_k in time $O((n^2k^4 + n^3k^2)\log(nk))$, where $n = \|H\|$.

Corollary (Roig, V., Weil, 2007)

Given f.g. subgroups $H \le K \le F_k$, one can check whether H is a free factor of K in polynomial time w.r.t. the given generators of H and K.

Deciding free-factorness

Observation

A given subgroup $H \leqslant F_k$ with basis $\{h_1, \ldots, h_r\}$ $(r(H) = r \leqslant k)$ is a free factor of F_k if and only if bottom of the orbit of (h_1, \ldots, h_r) has length $1 + \cdots + 1 = r$.

Corollary (Roig, V., Weil, 2007)

Given a f.g. subgroup $H \leq F_k$, one can check whether H is a free factor of F_k in time $O((n^2k^4 + n^3k^2)\log(nk))$, where n = ||H||.

Corollary (Roig, V., Weil, 2007)

Given f.g. subgroups $H \leq K \leq F_k$, one can check whether H is a free factor of K in polynomial time w.r.t. the given generators of H and K.

Outline

- 1 The classical Whitehead algorithm
- Let's do it in polynomial time
- An application
- 4 An example

Third ingredient: max-flow min-cut algorithm.

Given a graph X (unoriented and with weights on edges), and two vertices $s, t \in VX$, find the max flow from s to t:

Observation:

maximal $(s \to t)$ -flow \leq cap. of any (s, t)-cut.

Theorem:

max. $(s \rightarrow t)$ -flow = cap. of min. (s,t)-cut,

and it is possible to find both in polynomial time w.r.t. the size of the graph.

Example: Find one of the best Whitehead autos for $u = ba\bar{b}\,\bar{a}\,\bar{b}\,\bar{a}\,\bar{b}aba$.

Wh. graph
$$= \begin{pmatrix} a & 1 & \overline{a} \\ 1 & 4 & 4 \end{pmatrix}$$

- Choose first multiplier, say a;
- Choose an augmenting path from a to \overline{a} :

$$a \xrightarrow{1} \overline{a}$$
;

• Total flow: residual graph:

1

• Choose another augm. path from a to \overline{a} :

$$a \xrightarrow{1} b \xrightarrow{1} \overline{a}$$
;

Total flow:

residual graph:

• Choose another augm. path from a to \overline{a} :

• Total flow:

residual graph:

• No paths from a to \overline{a} , so STOP.

The total flow carried from a to \overline{a} is 3 and corresponds to the cut

 $Y = \{v \mid \exists \text{ path } a \rightarrow v \text{ in res. graph}\}.$

So, the Whitehead auto

$$Y = \{ \mathbf{a}, \, \overline{b} \} \quad \equiv \quad \begin{array}{ccc} a & \stackrel{\alpha}{\mapsto} & a \\ b & \mapsto & \overline{a}b \end{array}$$

satisfies $||u\alpha|| - ||u|| = 3 - 6 = -3$.

Repeat for multiplier b (and get less).

$$u = ba\overline{b}\,\overline{a}\,\overline{b}\,\overline{a}\,\overline{a}baba \quad \mapsto \quad (\overline{a}b)a(\overline{b}a)\overline{a}(\overline{b}a)\overline{a}(\overline{b}a)\overline{a}(\overline{a}b)\underline{a}(\overline{b}b)\underline{a}$$

$$\sim \quad ba\overline{b}\,\overline{b}\overline{a}\,\overline{a}bb$$

$$||u|| = 11 \quad , \quad ||u\alpha|| = 8.$$

THANKS

19/19