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Definitions and notation

A = {a1, . . . , ak} is a finite alphabet (n letters).
A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , ak , a−1
k }.

Usually, A = {a, b, c}.
(A±1)∗ the free monoid on A±1 (words on A±1).
FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo reduction).
Every w ∈ A∗ has a unique reduced form,
1 denotes the empty word, and | · | the (shortest) length in FA:
|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.
‖ · ‖ denotes the (shortest) length in the conjugacy class (i.e. cyclically):
‖abbb−1a−1‖ = 1.
Aut(FA) and End(FA) as usual.
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Whitehead problem

Whitehead Problem
For a group G, find an algorithm s.t. given u, v ∈ G decides whether there
exists ϕ ∈ Aut(G) such that ϕ(u) = v.

Theorem (Whitehead, 30’s)
Whitehead problem is solvable in FA.

“Proof":
First part: reduce ‖u‖ and ‖v‖ as much as possible by applying autos:

u → u1 → u2 → · · · → u′,

v → v1 → v2 → · · · → v ′.

Second part: analyze who is image of who by some auto, in the (finite!)
sphere of given radius n, Sn = {w ∈ Fk | ‖w‖ = n}. �
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Whitehead minimization problem
Let us concentrate in the first part:

Whitehead Minimization Problem (WMP)
Given u ∈ FA, find ϕ ∈ Aut(FA) such that ‖ϕ(u)‖ is minimal.

Lemma (Whitehead)
Let u ∈ FA. If ∃ϕ ∈ Aut(FA) such that ‖ϕ(u)‖ < ‖u‖ then ∃ a Whitehead
automorphism α such that ‖α(u)‖ < ‖u‖.

Definition
Whitehead automorphisms are those of the form:

FA → FA
ai 7→ ai (the multiplier)

ai 6= aj 7→ aεj
i aj aδj

i

where εj = 0,−1 and δj = 0, 1 (there are ∼ k · 4k many, where k = |A|).
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Classical Whitehead’s algorithm (first part)

Classical whitehead algorithm is:

Keep applying whitehead automorphisms to given u until finding one that
decreases its cyclic length.
Repeat until all whiteheads are non-decreasing.

This is polynomial on ‖u‖, but exponential on the ambient rank, k .

There are several recent results (theoretical, heuristic, probabilistic)
suggesting that Whitehead algorithm is faster in practice.
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Improvement

Theorem (Roig, V., Weil, 2007)
There is an algorithm which solves Whitehead Minimization Problem for Fk in
time O(n2 k3).

main idea: given u ∈ Fk , we find in polynomial time one of the whiteheads
that decreases ‖u‖ the most possible.

Key point: How does a given Whitehead automorphism α affect the length of
a given word u ?

Three ingredients:
1) Codify u as its Whitehead’s graph (classic in Group Theory),
2) Codify α as a cut in this graph (≈ classic in Group Theory),
3) Use max-flow min-cut algorithm (classic in Computer Science),
4) ... put together and mix ( new! ).
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Whitehead’s graph

First ingredient: Whitehead’s graph of a word.

Definition
Given u ∈ Fk (cyclically reduced), its (unoriented) Whitehead graph, denoted
Wh(u), is:

vertices: A±1,
edges: for every pair of (cycl.) consecutive letters u = · · · xy · · · put an
edge between x and y−1.

Example

u = aba−1c−1bbabc−1, a

EE
EE

EE
EE

E

EE
EE

EE
EE

E b

yy
yy

yy
yy

y
c

lllllllllllllllll

a−1 b−1 c−1
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Cut in a graph

Second ingredient: Cut in a graph.

Definition
Given a Whitehead’s automorphism α, we represent it as the (a, a−1)-cut

(T = {a} ∪ {letters that go multiplied on the right by a}, a)

of the set A±1.

Example

α : 〈a, b, c〉 = F3 → F3
a 7→ ab
b 7→ b
c 7→ b−1cb

a b c

a−1 b−1 c−1
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Rephrasement of Wh. Lemma

Lemma (Whitehead)
Given a word u ∈ Fk and a Whitehead automorphism α, think α as a cut in
Wh(u), say α = (T , a), and then

‖α(u)‖ − ‖u‖ = cap(T )− deg(a).

Proof: Analyzing combinatorial cases (see Lyndon-Schupp).
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Example

Example
Consider u = aba−1c−1bbabc−1 and α : F3 → F3

a 7→ ab
b 7→ b
c 7→ b−1cb

like before. We

have α(u) = aba−1b−1c−1bbbabc−1b. Furthermore,

a

EE
EE

EE
EE

E

EE
EE

EE
EE

E b

yy
yy

yy
yy

y
c

lllllllllllllllll

a−1 b−1 c−1

and, in fact,

12 − 9 = ‖α(u)‖ − ‖u‖ = cap(T )− deg(b) = 7 − 4.
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Max-flow min-cut algorithm

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead’s Minimization Problem reduces to:

run over all possible multipliers, say a, (there are 2k),
find an (a, a−1)-cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm ...

...which works in polynomial time w.r.t. the number of edges of the graph
(= ‖u‖) and the number of vertices (= 2k ).

Theorem (Roig, V., Weil, 2007)
There is an algorithm which solves Whitehead Minimization Problem for Fk in
time O(n2 k3).
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Primitivity

Theorem (Roig, V., Weil, 2007)
There is an algorithm which solves Whitehead Minimization Problem for Fk in
time O(n2 k3).

Observation
u is primitive ⇔ the orbit of u contains a ⇔ bottom of the orbit has length 1.

Corollary (Roig, V., Weil, 2007)
Given a word u ∈ Fk , one can check whether u is primitive in Fk in time
O(n2k3), where n = ‖u‖.
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Deciding free-factorness

Observation
A given subgroup H 6 Fk with basis {h1, . . . , hr} (r(H) = r 6 k) is a free factor
of Fk if and only if bottom of the orbit of (h1, . . . , hr ) has length 1+

r· · · +1 = r .

Corollary (Roig, V., Weil, 2007)
Given a f.g. subgroup H 6 Fk , one can check whether H is a free factor of Fk
in time O((n2k4 + n3k2) log(nk)), where n = ‖H‖.

Corollary (Roig, V., Weil, 2007)
Given f.g. subgroups H 6 K 6 Fk , one can check whether H is a free factor of
K in polynomial time w.r.t. the given generators of H and K .
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Third ingredient: max-flow min-cut algorithm.

Given a graph X (unoriented and with weights

on edges), and two vertices s, t ∈ V X, find the

max flow from s to t:

s• 2

1

AA
AA

AA
AA

AA
AA

AA
AA

AA
AA

AA

cap. 3

ggggggggggggggggggggggggggggggggggggg

•

1 1

??
??

??
??

??
??

??
??

??
??

? •

7

• 5 • 4

cap. 4
�����������

• 50

3

~~~~~~~~~~~~~~~~~~~~~~

•t

Observation:

maximal (s→ t)-flow ≤ cap. of any (s, t)-cut.

Theorem:

max. (s→ t)-flow = cap. of min. (s, t)-cut,

and it is possible to find both in polynomial

time w.r.t. the size of the graph.



Example: Find one of the best Whitehead
autos for u = bab a b a ababa.

Wh. graph =

a oo 1 //
OO

1

��

bb

4
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1

��

b
||

4

<<yyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

b

• Choose first multiplier, say a;
• Choose an augmenting path from a to a:

a 1 // a ;

• Total flow: residual graph:

a 1 // a

b b

a oo 2
OO

1

��

bb

4
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1

��

b
||

4

<<yyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

b

• Choose another augm. path from a to a:

a 1 // b 1 // a ;



• Total flow: residual graph:

a 1 //

1
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a

b
||
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<<yyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

b
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b

• Choose another augm. path from a to a:

a 1 // b
1 // a ;

• Total flow: residual graph:

a 1 //

1
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1
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b

1

<<yyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

b

1

OO a oo 2
OO

2
3
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EE
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• No paths from a to a, so STOP.



The total flow carried from a to a is 3 and
corresponds to the cut

Y = {v | ∃ path a→ v in res. graph}.

a oo 1 //
OO

1

��

bb

4

""EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE aOO

1

��

b ee

4

UU

b

; cap({a, b}) = 3.

So, the Whitehead auto

Y = {a, b} ≡ a
α7→ a

b 7→ ab

satisfies ‖uα‖ − ‖u‖ = 3− 6 = −3.

• Repeat for multiplier b (and get less).

u = bab a b a ababa 7→ (6 ab)a(b6 a)6 a(b6 a)6 a a(ab)6 a(6 ab)6 a
∼ bab ba abb

‖u‖ = 11 , ‖uα‖ = 8.
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THANKS

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 19 / 19


	Montreal-30-9-10
	Páginas desdeLumini--2-07

