
Whitehead’s classical algorithm and a modern
version in polynomial time

Enric Ventura
Departament de Matemàtica Aplicada III

Universitat Politècnica de Catalunya

&

CRM-Montreal

McGill seminar, Montreal

Sep. 30th, 2010.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 1 / 19

Outline

1 The classical Whitehead algorithm

2 Let’s do it in polynomial time

3 An application

4 An example

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 2 / 19

Outline

1 The classical Whitehead algorithm

2 Let’s do it in polynomial time

3 An application

4 An example

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 3 / 19

Definitions and notation

A = {a1, . . . , ak} is a finite alphabet (n letters).
A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , ak , a−1
k }.

Usually, A = {a, b, c}.
(A±1)∗ the free monoid on A±1 (words on A±1).
FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo reduction).
Every w ∈ A∗ has a unique reduced form,
1 denotes the empty word, and | · | the (shortest) length in FA:
|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.
‖ · ‖ denotes the (shortest) length in the conjugacy class (i.e. cyclically):
‖abbb−1a−1‖ = 1.
Aut(FA) and End(FA) as usual.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 4 / 19

Definitions and notation

A = {a1, . . . , ak} is a finite alphabet (n letters).
A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , ak , a−1
k }.

Usually, A = {a, b, c}.
(A±1)∗ the free monoid on A±1 (words on A±1).
FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo reduction).
Every w ∈ A∗ has a unique reduced form,
1 denotes the empty word, and | · | the (shortest) length in FA:
|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.
‖ · ‖ denotes the (shortest) length in the conjugacy class (i.e. cyclically):
‖abbb−1a−1‖ = 1.
Aut(FA) and End(FA) as usual.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 4 / 19

Definitions and notation

A = {a1, . . . , ak} is a finite alphabet (n letters).
A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , ak , a−1
k }.

Usually, A = {a, b, c}.
(A±1)∗ the free monoid on A±1 (words on A±1).
FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo reduction).
Every w ∈ A∗ has a unique reduced form,
1 denotes the empty word, and | · | the (shortest) length in FA:
|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.
‖ · ‖ denotes the (shortest) length in the conjugacy class (i.e. cyclically):
‖abbb−1a−1‖ = 1.
Aut(FA) and End(FA) as usual.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 4 / 19

Definitions and notation

A = {a1, . . . , ak} is a finite alphabet (n letters).
A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , ak , a−1
k }.

Usually, A = {a, b, c}.
(A±1)∗ the free monoid on A±1 (words on A±1).
FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo reduction).
Every w ∈ A∗ has a unique reduced form,
1 denotes the empty word, and | · | the (shortest) length in FA:
|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.
‖ · ‖ denotes the (shortest) length in the conjugacy class (i.e. cyclically):
‖abbb−1a−1‖ = 1.
Aut(FA) and End(FA) as usual.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 4 / 19

Definitions and notation

A = {a1, . . . , ak} is a finite alphabet (n letters).
A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , ak , a−1
k }.

Usually, A = {a, b, c}.
(A±1)∗ the free monoid on A±1 (words on A±1).
FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo reduction).
Every w ∈ A∗ has a unique reduced form,
1 denotes the empty word, and | · | the (shortest) length in FA:
|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.
‖ · ‖ denotes the (shortest) length in the conjugacy class (i.e. cyclically):
‖abbb−1a−1‖ = 1.
Aut(FA) and End(FA) as usual.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 4 / 19

Definitions and notation

A = {a1, . . . , ak} is a finite alphabet (n letters).
A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , ak , a−1
k }.

Usually, A = {a, b, c}.
(A±1)∗ the free monoid on A±1 (words on A±1).
FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo reduction).
Every w ∈ A∗ has a unique reduced form,
1 denotes the empty word, and | · | the (shortest) length in FA:
|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.
‖ · ‖ denotes the (shortest) length in the conjugacy class (i.e. cyclically):
‖abbb−1a−1‖ = 1.
Aut(FA) and End(FA) as usual.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 4 / 19

Definitions and notation

A = {a1, . . . , ak} is a finite alphabet (n letters).
A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , ak , a−1
k }.

Usually, A = {a, b, c}.
(A±1)∗ the free monoid on A±1 (words on A±1).
FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo reduction).
Every w ∈ A∗ has a unique reduced form,
1 denotes the empty word, and | · | the (shortest) length in FA:
|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.
‖ · ‖ denotes the (shortest) length in the conjugacy class (i.e. cyclically):
‖abbb−1a−1‖ = 1.
Aut(FA) and End(FA) as usual.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 4 / 19

Definitions and notation

A = {a1, . . . , ak} is a finite alphabet (n letters).
A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , ak , a−1
k }.

Usually, A = {a, b, c}.
(A±1)∗ the free monoid on A±1 (words on A±1).
FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo reduction).
Every w ∈ A∗ has a unique reduced form,
1 denotes the empty word, and | · | the (shortest) length in FA:
|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.
‖ · ‖ denotes the (shortest) length in the conjugacy class (i.e. cyclically):
‖abbb−1a−1‖ = 1.
Aut(FA) and End(FA) as usual.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 4 / 19

Definitions and notation

A = {a1, . . . , ak} is a finite alphabet (n letters).
A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , ak , a−1
k }.

Usually, A = {a, b, c}.
(A±1)∗ the free monoid on A±1 (words on A±1).
FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo reduction).
Every w ∈ A∗ has a unique reduced form,
1 denotes the empty word, and | · | the (shortest) length in FA:
|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.
‖ · ‖ denotes the (shortest) length in the conjugacy class (i.e. cyclically):
‖abbb−1a−1‖ = 1.
Aut(FA) and End(FA) as usual.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 4 / 19

Whitehead problem

Whitehead Problem
For a group G, find an algorithm s.t. given u, v ∈ G decides whether there
exists ϕ ∈ Aut(G) such that ϕ(u) = v.

Theorem (Whitehead, 30’s)
Whitehead problem is solvable in FA.

“Proof":
First part: reduce ‖u‖ and ‖v‖ as much as possible by applying autos:

u → u1 → u2 → · · · → u′,

v → v1 → v2 → · · · → v ′.

Second part: analyze who is image of who by some auto, in the (finite!)
sphere of given radius n, Sn = {w ∈ Fk | ‖w‖ = n}. �

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 5 / 19

Whitehead problem

Whitehead Problem
For a group G, find an algorithm s.t. given u, v ∈ G decides whether there
exists ϕ ∈ Aut(G) such that ϕ(u) = v.

Theorem (Whitehead, 30’s)
Whitehead problem is solvable in FA.

“Proof":
First part: reduce ‖u‖ and ‖v‖ as much as possible by applying autos:

u → u1 → u2 → · · · → u′,

v → v1 → v2 → · · · → v ′.

Second part: analyze who is image of who by some auto, in the (finite!)
sphere of given radius n, Sn = {w ∈ Fk | ‖w‖ = n}. �

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 5 / 19

Whitehead problem

Whitehead Problem
For a group G, find an algorithm s.t. given u, v ∈ G decides whether there
exists ϕ ∈ Aut(G) such that ϕ(u) = v.

Theorem (Whitehead, 30’s)
Whitehead problem is solvable in FA.

“Proof":
First part: reduce ‖u‖ and ‖v‖ as much as possible by applying autos:

u → u1 → u2 → · · · → u′,

v → v1 → v2 → · · · → v ′.

Second part: analyze who is image of who by some auto, in the (finite!)
sphere of given radius n, Sn = {w ∈ Fk | ‖w‖ = n}. �

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 5 / 19

Whitehead problem

Whitehead Problem
For a group G, find an algorithm s.t. given u, v ∈ G decides whether there
exists ϕ ∈ Aut(G) such that ϕ(u) = v.

Theorem (Whitehead, 30’s)
Whitehead problem is solvable in FA.

“Proof":
First part: reduce ‖u‖ and ‖v‖ as much as possible by applying autos:

u → u1 → u2 → · · · → u′,

v → v1 → v2 → · · · → v ′.

Second part: analyze who is image of who by some auto, in the (finite!)
sphere of given radius n, Sn = {w ∈ Fk | ‖w‖ = n}. �

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 5 / 19

Whitehead minimization problem
Let us concentrate in the first part:

Whitehead Minimization Problem (WMP)
Given u ∈ FA, find ϕ ∈ Aut(FA) such that ‖ϕ(u)‖ is minimal.

Lemma (Whitehead)
Let u ∈ FA. If ∃ϕ ∈ Aut(FA) such that ‖ϕ(u)‖ < ‖u‖ then ∃ a Whitehead
automorphism α such that ‖α(u)‖ < ‖u‖.

Definition
Whitehead automorphisms are those of the form:

FA → FA
ai 7→ ai (the multiplier)

ai 6= aj 7→ aεj
i aj aδj

i

where εj = 0,−1 and δj = 0, 1 (there are ∼ k · 4k many, where k = |A|).

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 6 / 19

Whitehead minimization problem
Let us concentrate in the first part:

Whitehead Minimization Problem (WMP)
Given u ∈ FA, find ϕ ∈ Aut(FA) such that ‖ϕ(u)‖ is minimal.

Lemma (Whitehead)
Let u ∈ FA. If ∃ϕ ∈ Aut(FA) such that ‖ϕ(u)‖ < ‖u‖ then ∃ a Whitehead
automorphism α such that ‖α(u)‖ < ‖u‖.

Definition
Whitehead automorphisms are those of the form:

FA → FA
ai 7→ ai (the multiplier)

ai 6= aj 7→ aεj
i aj aδj

i

where εj = 0,−1 and δj = 0, 1 (there are ∼ k · 4k many, where k = |A|).

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 6 / 19

Whitehead minimization problem
Let us concentrate in the first part:

Whitehead Minimization Problem (WMP)
Given u ∈ FA, find ϕ ∈ Aut(FA) such that ‖ϕ(u)‖ is minimal.

Lemma (Whitehead)
Let u ∈ FA. If ∃ϕ ∈ Aut(FA) such that ‖ϕ(u)‖ < ‖u‖ then ∃ a Whitehead
automorphism α such that ‖α(u)‖ < ‖u‖.

Definition
Whitehead automorphisms are those of the form:

FA → FA
ai 7→ ai (the multiplier)

ai 6= aj 7→ aεj
i aj aδj

i

where εj = 0,−1 and δj = 0, 1 (there are ∼ k · 4k many, where k = |A|).

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 6 / 19

Classical Whitehead’s algorithm (first part)

Classical whitehead algorithm is:

Keep applying whitehead automorphisms to given u until finding one that
decreases its cyclic length.
Repeat until all whiteheads are non-decreasing.

This is polynomial on ‖u‖, but exponential on the ambient rank, k .

There are several recent results (theoretical, heuristic, probabilistic)
suggesting that Whitehead algorithm is faster in practice.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 7 / 19

Classical Whitehead’s algorithm (first part)

Classical whitehead algorithm is:

Keep applying whitehead automorphisms to given u until finding one that
decreases its cyclic length.
Repeat until all whiteheads are non-decreasing.

This is polynomial on ‖u‖, but exponential on the ambient rank, k .

There are several recent results (theoretical, heuristic, probabilistic)
suggesting that Whitehead algorithm is faster in practice.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 7 / 19

Classical Whitehead’s algorithm (first part)

Classical whitehead algorithm is:

Keep applying whitehead automorphisms to given u until finding one that
decreases its cyclic length.
Repeat until all whiteheads are non-decreasing.

This is polynomial on ‖u‖, but exponential on the ambient rank, k .

There are several recent results (theoretical, heuristic, probabilistic)
suggesting that Whitehead algorithm is faster in practice.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 7 / 19

Classical Whitehead’s algorithm (first part)

Classical whitehead algorithm is:

Keep applying whitehead automorphisms to given u until finding one that
decreases its cyclic length.
Repeat until all whiteheads are non-decreasing.

This is polynomial on ‖u‖, but exponential on the ambient rank, k .

There are several recent results (theoretical, heuristic, probabilistic)
suggesting that Whitehead algorithm is faster in practice.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 7 / 19

Outline

1 The classical Whitehead algorithm

2 Let’s do it in polynomial time

3 An application

4 An example

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 8 / 19

Improvement

Theorem (Roig, V., Weil, 2007)
There is an algorithm which solves Whitehead Minimization Problem for Fk in
time O(n2 k3).

main idea: given u ∈ Fk , we find in polynomial time one of the whiteheads
that decreases ‖u‖ the most possible.

Key point: How does a given Whitehead automorphism α affect the length of
a given word u ?

Three ingredients:
1) Codify u as its Whitehead’s graph (classic in Group Theory),
2) Codify α as a cut in this graph (≈ classic in Group Theory),
3) Use max-flow min-cut algorithm (classic in Computer Science),
4) ... put together and mix (new!).

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 9 / 19

Improvement

Theorem (Roig, V., Weil, 2007)
There is an algorithm which solves Whitehead Minimization Problem for Fk in
time O(n2 k3).

main idea: given u ∈ Fk , we find in polynomial time one of the whiteheads
that decreases ‖u‖ the most possible.

Key point: How does a given Whitehead automorphism α affect the length of
a given word u ?

Three ingredients:
1) Codify u as its Whitehead’s graph (classic in Group Theory),
2) Codify α as a cut in this graph (≈ classic in Group Theory),
3) Use max-flow min-cut algorithm (classic in Computer Science),
4) ... put together and mix (new!).

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 9 / 19

Improvement

Theorem (Roig, V., Weil, 2007)
There is an algorithm which solves Whitehead Minimization Problem for Fk in
time O(n2 k3).

main idea: given u ∈ Fk , we find in polynomial time one of the whiteheads
that decreases ‖u‖ the most possible.

Key point: How does a given Whitehead automorphism α affect the length of
a given word u ?

Three ingredients:
1) Codify u as its Whitehead’s graph (classic in Group Theory),
2) Codify α as a cut in this graph (≈ classic in Group Theory),
3) Use max-flow min-cut algorithm (classic in Computer Science),
4) ... put together and mix (new!).

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 9 / 19

Improvement

Theorem (Roig, V., Weil, 2007)
There is an algorithm which solves Whitehead Minimization Problem for Fk in
time O(n2 k3).

main idea: given u ∈ Fk , we find in polynomial time one of the whiteheads
that decreases ‖u‖ the most possible.

Key point: How does a given Whitehead automorphism α affect the length of
a given word u ?

Three ingredients:
1) Codify u as its Whitehead’s graph (classic in Group Theory),
2) Codify α as a cut in this graph (≈ classic in Group Theory),
3) Use max-flow min-cut algorithm (classic in Computer Science),
4) ... put together and mix (new!).

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 9 / 19

Improvement

Theorem (Roig, V., Weil, 2007)
There is an algorithm which solves Whitehead Minimization Problem for Fk in
time O(n2 k3).

main idea: given u ∈ Fk , we find in polynomial time one of the whiteheads
that decreases ‖u‖ the most possible.

Key point: How does a given Whitehead automorphism α affect the length of
a given word u ?

Three ingredients:
1) Codify u as its Whitehead’s graph (classic in Group Theory),
2) Codify α as a cut in this graph (≈ classic in Group Theory),
3) Use max-flow min-cut algorithm (classic in Computer Science),
4) ... put together and mix (new!).

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 9 / 19

Improvement

Theorem (Roig, V., Weil, 2007)
There is an algorithm which solves Whitehead Minimization Problem for Fk in
time O(n2 k3).

main idea: given u ∈ Fk , we find in polynomial time one of the whiteheads
that decreases ‖u‖ the most possible.

Key point: How does a given Whitehead automorphism α affect the length of
a given word u ?

Three ingredients:
1) Codify u as its Whitehead’s graph (classic in Group Theory),
2) Codify α as a cut in this graph (≈ classic in Group Theory),
3) Use max-flow min-cut algorithm (classic in Computer Science),
4) ... put together and mix (new!).

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 9 / 19

Improvement

Theorem (Roig, V., Weil, 2007)
There is an algorithm which solves Whitehead Minimization Problem for Fk in
time O(n2 k3).

main idea: given u ∈ Fk , we find in polynomial time one of the whiteheads
that decreases ‖u‖ the most possible.

Key point: How does a given Whitehead automorphism α affect the length of
a given word u ?

Three ingredients:
1) Codify u as its Whitehead’s graph (classic in Group Theory),
2) Codify α as a cut in this graph (≈ classic in Group Theory),
3) Use max-flow min-cut algorithm (classic in Computer Science),
4) ... put together and mix (new!).

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 9 / 19

Whitehead’s graph

First ingredient: Whitehead’s graph of a word.

Definition
Given u ∈ Fk (cyclically reduced), its (unoriented) Whitehead graph, denoted
Wh(u), is:

vertices: A±1,
edges: for every pair of (cycl.) consecutive letters u = · · · xy · · · put an
edge between x and y−1.

Example

u = aba−1c−1bbabc−1, a

EE
EE

EE
EE

E

EE
EE

EE
EE

E b

yy
yy

yy
yy

y
c

lllllllllllllllll

a−1 b−1 c−1

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 10 / 19

Whitehead’s graph

First ingredient: Whitehead’s graph of a word.

Definition
Given u ∈ Fk (cyclically reduced), its (unoriented) Whitehead graph, denoted
Wh(u), is:

vertices: A±1,
edges: for every pair of (cycl.) consecutive letters u = · · · xy · · · put an
edge between x and y−1.

Example

u = aba−1c−1bbabc−1, a

EE
EE

EE
EE

E

EE
EE

EE
EE

E b

yy
yy

yy
yy

y
c

lllllllllllllllll

a−1 b−1 c−1

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 10 / 19

Cut in a graph

Second ingredient: Cut in a graph.

Definition
Given a Whitehead’s automorphism α, we represent it as the (a, a−1)-cut

(T = {a} ∪ {letters that go multiplied on the right by a}, a)

of the set A±1.

Example

α : 〈a, b, c〉 = F3 → F3
a 7→ ab
b 7→ b
c 7→ b−1cb

a b c

a−1 b−1 c−1

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 11 / 19

Cut in a graph

Second ingredient: Cut in a graph.

Definition
Given a Whitehead’s automorphism α, we represent it as the (a, a−1)-cut

(T = {a} ∪ {letters that go multiplied on the right by a}, a)

of the set A±1.

Example

α : 〈a, b, c〉 = F3 → F3
a 7→ ab
b 7→ b
c 7→ b−1cb

a b c

a−1 b−1 c−1

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 11 / 19

ventura
Lápiz

Rephrasement of Wh. Lemma

Lemma (Whitehead)
Given a word u ∈ Fk and a Whitehead automorphism α, think α as a cut in
Wh(u), say α = (T , a), and then

‖α(u)‖ − ‖u‖ = cap(T)− deg(a).

Proof: Analyzing combinatorial cases (see Lyndon-Schupp).

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 12 / 19

Rephrasement of Wh. Lemma

Lemma (Whitehead)
Given a word u ∈ Fk and a Whitehead automorphism α, think α as a cut in
Wh(u), say α = (T , a), and then

‖α(u)‖ − ‖u‖ = cap(T)− deg(a).

Proof: Analyzing combinatorial cases (see Lyndon-Schupp).

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 12 / 19

Example

Example
Consider u = aba−1c−1bbabc−1 and α : F3 → F3

a 7→ ab
b 7→ b
c 7→ b−1cb

like before. We

have α(u) = aba−1b−1c−1bbbabc−1b. Furthermore,

a

EE
EE

EE
EE

E

EE
EE

EE
EE

E b

yy
yy

yy
yy

y
c

lllllllllllllllll

a−1 b−1 c−1

and, in fact,

12 − 9 = ‖α(u)‖ − ‖u‖ = cap(T)− deg(b) = 7 − 4.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 13 / 19

Example

Example
Consider u = aba−1c−1bbabc−1 and α : F3 → F3

a 7→ ab
b 7→ b
c 7→ b−1cb

like before. We

have α(u) = aba−1b−1c−1bbbabc−1b. Furthermore,

a

EE
EE

EE
EE

E

EE
EE

EE
EE

E b

yy
yy

yy
yy

y
c

lllllllllllllllll

a−1 b−1 c−1

and, in fact,

12 − 9 = ‖α(u)‖ − ‖u‖ = cap(T)− deg(b) = 7 − 4.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 13 / 19

Example

Example
Consider u = aba−1c−1bbabc−1 and α : F3 → F3

a 7→ ab
b 7→ b
c 7→ b−1cb

like before. We

have α(u) = aba−1b−1c−1bbbabc−1b. Furthermore,

a

EE
EE

EE
EE

E

EE
EE

EE
EE

E b

yy
yy

yy
yy

y
c

lllllllllllllllll

a−1 b−1 c−1

and, in fact,

12 − 9 = ‖α(u)‖ − ‖u‖ = cap(T)− deg(b) = 7 − 4.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 13 / 19

ventura
Lápiz

Example

Example
Consider u = aba−1c−1bbabc−1 and α : F3 → F3

a 7→ ab
b 7→ b
c 7→ b−1cb

like before. We

have α(u) = aba−1b−1c−1bbbabc−1b. Furthermore,

a

EE
EE

EE
EE

E

EE
EE

EE
EE

E b

yy
yy

yy
yy

y
c

lllllllllllllllll

a−1 b−1 c−1

and, in fact,

12 − 9 = ‖α(u)‖ − ‖u‖ = cap(T)− deg(b) = 7 − 4.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 13 / 19

ventura
Lápiz

Max-flow min-cut algorithm

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead’s Minimization Problem reduces to:

run over all possible multipliers, say a, (there are 2k),
find an (a, a−1)-cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm ...

...which works in polynomial time w.r.t. the number of edges of the graph
(= ‖u‖) and the number of vertices (= 2k).

Theorem (Roig, V., Weil, 2007)
There is an algorithm which solves Whitehead Minimization Problem for Fk in
time O(n2 k3).

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 14 / 19

Max-flow min-cut algorithm

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead’s Minimization Problem reduces to:

run over all possible multipliers, say a, (there are 2k),
find an (a, a−1)-cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm ...

...which works in polynomial time w.r.t. the number of edges of the graph
(= ‖u‖) and the number of vertices (= 2k).

Theorem (Roig, V., Weil, 2007)
There is an algorithm which solves Whitehead Minimization Problem for Fk in
time O(n2 k3).

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 14 / 19

Max-flow min-cut algorithm

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead’s Minimization Problem reduces to:

run over all possible multipliers, say a, (there are 2k),
find an (a, a−1)-cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm ...

...which works in polynomial time w.r.t. the number of edges of the graph
(= ‖u‖) and the number of vertices (= 2k).

Theorem (Roig, V., Weil, 2007)
There is an algorithm which solves Whitehead Minimization Problem for Fk in
time O(n2 k3).

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 14 / 19

Max-flow min-cut algorithm

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead’s Minimization Problem reduces to:

run over all possible multipliers, say a, (there are 2k),
find an (a, a−1)-cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm ...

...which works in polynomial time w.r.t. the number of edges of the graph
(= ‖u‖) and the number of vertices (= 2k).

Theorem (Roig, V., Weil, 2007)
There is an algorithm which solves Whitehead Minimization Problem for Fk in
time O(n2 k3).

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 14 / 19

Max-flow min-cut algorithm

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead’s Minimization Problem reduces to:

run over all possible multipliers, say a, (there are 2k),
find an (a, a−1)-cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm ...

...which works in polynomial time w.r.t. the number of edges of the graph
(= ‖u‖) and the number of vertices (= 2k).

Theorem (Roig, V., Weil, 2007)
There is an algorithm which solves Whitehead Minimization Problem for Fk in
time O(n2 k3).

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 14 / 19

Outline

1 The classical Whitehead algorithm

2 Let’s do it in polynomial time

3 An application

4 An example

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 15 / 19

Primitivity

Theorem (Roig, V., Weil, 2007)
There is an algorithm which solves Whitehead Minimization Problem for Fk in
time O(n2 k3).

Observation
u is primitive ⇔ the orbit of u contains a ⇔ bottom of the orbit has length 1.

Corollary (Roig, V., Weil, 2007)
Given a word u ∈ Fk , one can check whether u is primitive in Fk in time
O(n2k3), where n = ‖u‖.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 16 / 19

Primitivity

Theorem (Roig, V., Weil, 2007)
There is an algorithm which solves Whitehead Minimization Problem for Fk in
time O(n2 k3).

Observation
u is primitive ⇔ the orbit of u contains a ⇔ bottom of the orbit has length 1.

Corollary (Roig, V., Weil, 2007)
Given a word u ∈ Fk , one can check whether u is primitive in Fk in time
O(n2k3), where n = ‖u‖.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 16 / 19

Primitivity

Theorem (Roig, V., Weil, 2007)
There is an algorithm which solves Whitehead Minimization Problem for Fk in
time O(n2 k3).

Observation
u is primitive ⇔ the orbit of u contains a ⇔ bottom of the orbit has length 1.

Corollary (Roig, V., Weil, 2007)
Given a word u ∈ Fk , one can check whether u is primitive in Fk in time
O(n2k3), where n = ‖u‖.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 16 / 19

Deciding free-factorness

Observation
A given subgroup H 6 Fk with basis {h1, . . . , hr} (r(H) = r 6 k) is a free factor
of Fk if and only if bottom of the orbit of (h1, . . . , hr) has length 1+

r· · · +1 = r .

Corollary (Roig, V., Weil, 2007)
Given a f.g. subgroup H 6 Fk , one can check whether H is a free factor of Fk
in time O((n2k4 + n3k2) log(nk)), where n = ‖H‖.

Corollary (Roig, V., Weil, 2007)
Given f.g. subgroups H 6 K 6 Fk , one can check whether H is a free factor of
K in polynomial time w.r.t. the given generators of H and K .

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 17 / 19

Deciding free-factorness

Observation
A given subgroup H 6 Fk with basis {h1, . . . , hr} (r(H) = r 6 k) is a free factor
of Fk if and only if bottom of the orbit of (h1, . . . , hr) has length 1+

r· · · +1 = r .

Corollary (Roig, V., Weil, 2007)
Given a f.g. subgroup H 6 Fk , one can check whether H is a free factor of Fk
in time O((n2k4 + n3k2) log(nk)), where n = ‖H‖.

Corollary (Roig, V., Weil, 2007)
Given f.g. subgroups H 6 K 6 Fk , one can check whether H is a free factor of
K in polynomial time w.r.t. the given generators of H and K .

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 17 / 19

Deciding free-factorness

Observation
A given subgroup H 6 Fk with basis {h1, . . . , hr} (r(H) = r 6 k) is a free factor
of Fk if and only if bottom of the orbit of (h1, . . . , hr) has length 1+

r· · · +1 = r .

Corollary (Roig, V., Weil, 2007)
Given a f.g. subgroup H 6 Fk , one can check whether H is a free factor of Fk
in time O((n2k4 + n3k2) log(nk)), where n = ‖H‖.

Corollary (Roig, V., Weil, 2007)
Given f.g. subgroups H 6 K 6 Fk , one can check whether H is a free factor of
K in polynomial time w.r.t. the given generators of H and K .

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 17 / 19

Outline

1 The classical Whitehead algorithm

2 Let’s do it in polynomial time

3 An application

4 An example

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 18 / 19

Third ingredient: max-flow min-cut algorithm.

Given a graph X (unoriented and with weights

on edges), and two vertices s, t ∈ V X, find the

max flow from s to t:

s• 2

1

AA
AA

AA
AA

AA
AA

AA
AA

AA
AA

AA

cap. 3

ggggggggggggggggggggggggggggggggggggg

•

1 1

??
??

??
??

??
??

??
??

??
??

? •

7

• 5 • 4

cap. 4
�����������

• 50

3

~~~~~~~~~~~~~~~~~~~~~~

•t

Observation:

maximal (s→ t)-flow ≤ cap. of any (s, t)-cut.

Theorem:

max. (s→ t)-flow = cap. of min. (s, t)-cut,

and it is possible to find both in polynomial

time w.r.t. the size of the graph.



Example: Find one of the best Whitehead
autos for u = bab a b a ababa.

Wh. graph =

a oo 1 //
OO

1

��

bb

4

""EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE aOO

1

��

b
||

4

<<yyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

b

• Choose first multiplier, say a;
• Choose an augmenting path from a to a:

a 1 // a ;

• Total flow: residual graph:

a 1 // a

b b

a oo 2
OO

1

��

bb

4

""EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE aOO

1

��

b
||

4

<<yyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

b

• Choose another augm. path from a to a:

a 1 // b 1 // a ;



• Total flow: residual graph:

a 1 //

1

��

a

b
||

1

<<yyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

b

a oo 2
OO

2

bb

4

""EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE aOO

1

��

b

3yyyyyyyyyyyyyyyyyyyyy

<<yyyyyyy

||

5yyyyyyyyyyyyyyyyyyy

yyyyyyyyy

b

• Choose another augm. path from a to a:

a 1 // b
1 // a ;

• Total flow: residual graph:

a 1 //

1

��

1

""EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE a

b

1

<<yyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

b

1

OO a oo 2
OO

2
3

EE
EE

EE
EE

E

""EEEEEEEEEEEEEEEEEEE

bb

5
EE

EE
EE

EE
E

EEEEEEEEEEEEEEEEEEE

a

2

��

b

3yyyyyyyyyyyyyyyyyyyyy

<<yyyyyyy

||

5yyyyyyyyyyyyyyyyyyy

yyyyyyyyy

b

• No paths from a to a, so STOP.



The total flow carried from a to a is 3 and
corresponds to the cut

Y = {v | ∃ path a→ v in res. graph}.

a oo 1 //
OO

1

��

bb

4

""EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE aOO

1

��

b ee

4

UU

b

; cap({a, b}) = 3.

So, the Whitehead auto

Y = {a, b} ≡ a
α7→ a

b 7→ ab

satisfies ‖uα‖ − ‖u‖ = 3− 6 = −3.

• Repeat for multiplier b (and get less).

u = bab a b a ababa 7→ (6 ab)a(b6 a)6 a(b6 a)6 a a(ab)6 a(6 ab)6 a
∼ bab ba abb

‖u‖ = 11 , ‖uα‖ = 8.

ventura
Lápiz



THANKS

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Sep. 30th, 2010 19 / 19


	Montreal-30-9-10
	Páginas desdeLumini--2-07

