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Definitions and notation

A = {a1, . . . , ak} is a finite alphabet (n letters).
A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , ak , a−1
k }.

Usually, A = {a, b, c}.
(A±1)∗ the free monoid on A±1 (words on A±1).
FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo reduction).
Every w ∈ A∗ has a unique reduced form,
1 denotes the empty word, and | · | the (shortest) length in FA:
|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.
‖ · ‖ denotes the (shortest) length in the conjugacy class (i.e. cyclically):
‖abbb−1a−1‖ = 1.
Aut(FA) and End(FA) as usual.
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Whitehead problem

Whitehead Problem
For a group G, find an algorithm s.t. given u, v ∈ G decides whether there
exists ϕ ∈ Aut(G) such that ϕ(u) = v.

Theorem (Whitehead, 30’s)
Whitehead problem is solvable in FA.

“Proof":
First part: reduce ‖u‖ and ‖v‖ as much as possible by applying autos:

u → u1 → u2 → · · · → u′,

v → v1 → v2 → · · · → v ′.

Second part: analyze who is image of who by some auto, in the (finite!)
sphere of given radius n, Sn = {w ∈ Fk | ‖w‖ = n}. �
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Whitehead minimization in polynomial time

Definition
Whitehead automorphisms are those of the form:

FA → FA
ai 7→ ai (the multiplier)

ai 6= aj 7→ aεj
i aj aδj

i

where εj = 0,−1 and δj = 0, 1 (there are ∼ k · 4k many, where k = |A|).

Theorem (Roig, V., Weil, 2007)
There is an algorithm which solves Whitehead Minimization Problem for Fk in
time O(n2 k3).
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Gersten’s paper

S. Gersten, On Whitehead’s algorithm, Bull. Am. Math. Soc. 10 (1984)
281-284.

Exactly the same can be done for finitely generated subgroups...
... and the proof will appear somewhere else.

Theorem (Roig, V., Weil, 2007)
There is an algorithm which solves Whitehead Minimization Problem for
subgroups H 6 Fk , in time O((n2k4 + n3k2) log(nk)), where n = ‖H‖.
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Stallings automata

Definition
A Stallings automaton is a finite A-labeled oriented graph with a distinguished
vertex, (X , v), such that:

1- X is connected,
2- no vertex of degree 1 except possibly v (X is a core-graph),
3- no two edges with the same label go out of (or in to) the same vertex.

NO : •

a

��

b

����
��
��
��
��
��
�

• c // •
a

** •

b

XX0000000000000

c

jj

YES : •

a

��

b

����
��
��
��
��
��
�

•
a

** •

b

XX0000000000000

c

jj
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Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),
551-565,

Stallings (building on previous works) gave a bijection between finitely
generated subgroups of FA and Stallings automata:

{f.g. subgroups of FA} ←→ {Stallings automata},

which is crucial for the modern understanding of the lattice of subgroups of FA.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Oct. 20th, 2010 10 / 39



Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),
551-565,

Stallings (building on previous works) gave a bijection between finitely
generated subgroups of FA and Stallings automata:

{f.g. subgroups of FA} ←→ {Stallings automata},

which is crucial for the modern understanding of the lattice of subgroups of FA.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Oct. 20th, 2010 10 / 39



Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),
551-565,

Stallings (building on previous works) gave a bijection between finitely
generated subgroups of FA and Stallings automata:

{f.g. subgroups of FA} ←→ {Stallings automata},

which is crucial for the modern understanding of the lattice of subgroups of FA.

Enric Ventura (UPC) Whitehead’s algorithm in polynomial time Oct. 20th, 2010 10 / 39



Reading the subgroup from the automata

Definition
To any given (Stallings) automaton (X , v), we associate its fundamental
group:

π(X , v) = { labels of closed paths at v} 6 FA,

clearly, a subgroup of FA.

•

a

��

X= b

����
��
��
��
��
��
�

•
a

** •

b

XX0000000000000

c

jj

π(X , •) = {1, a, a−1, bab, bc−1b,
babab−1cb−1, . . .}

π(X , •) 63 bc−1bcaa

Membership problem in π(X , •) is solvable.
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A basis for π(X , v)

Proposition
For every Stallings automaton (X , v), the group π(X , v) is free of rank
rk(π(X , v)) = 1− |VX |+ |EX |.

Proof:
Take a maximal tree T in X .
Write T [p, q] for the geodesic (i.e. the unique reduced path) in T from p
to q.
For every e ∈ EX − ET , xe = label(T [v , ιe] · e · T [τe, v ]) belongs to
π(X , v).
Not difficult to see that {xe | e ∈ EX − ET} is a basis for π(X , v).
And, |EX − ET | = |EX | − |ET |

= |EX | − (|VT | − 1) = 1− |VX |+ |EX |. �
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Example

•

a

��

b

���
�
�
�
�
�
�

•
a

** •

b

XX0
0
0
0
0
0
0

c

jj

H = 〈 〉
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** •

b

XX0
0
0
0
0
0
0

c

jj

H = 〈a, 〉
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Example
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a
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b
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�
�

•
a

** •

b

XX0
0
0
0
0
0
0

c

jj

H = 〈a, bab, 〉
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Example

•

a

��

b

���
�
�
�
�
�
�

•
a

** •

b

XX0
0
0
0
0
0
0

c

jj

H = 〈a, bab, b−1cb−1〉
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Example

•

a

��

b

���
�
�
�
�
�
�

•
a

** •

b

XX0
0
0
0
0
0
0

c

jj

H = 〈a, bab, b−1cb−1〉
rk(H) = 1− 3 + 5 = 3.
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Example-2

· · · b // • b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
· · ·

Fℵ0 ' H = 〈. . . , b−2ab2, b−1ab, a, bab−1, b2ab−2, . . .〉 6 F2.
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Constructing the automata from the subgroup

In any automaton containing the following situation, for x ∈ A±1,

• x //

x
&&NNNNNNNNNNNNN u

v

we can fold and identify vertices u and v to obtain

• x // u = v .

This operation, (X , v) (X ′, v), is called a Stallings folding.
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Constructing the automata from the subgroup

Lemma (Stallings)
If (X , v) (X ′, v ′) is a Stallings folding then π(X , v) = π(X ′, v ′).

Given a f.g. subgroup H = 〈w1, . . . , wm〉 6 FA (we assume wi are reduced
words), do the following:

1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton,

denoted Γ(H).
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Example: H = 〈baba−1, aba−1, aba2〉

• a // •

b

��
• a // •

b

OO

a //

a

��?
??

??
??

??
??

??
??

?

a

��

a

����
��

��
��

��
��

��
��

•

•

a

??����������������
•

b
oo • •

b
oo

Flower(H)
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Example: H = 〈baba−1, aba−1, aba2〉

• a // •

b

��
•

b

OO

a // •

b

��

b
pp

•

a

OO

•
a

oo

Folding #1
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Example: H = 〈baba−1, aba−1, aba2〉

• a // •

b

��
•

b

OO

a // •

b

��

b
pp

•

a

OO

•
a

oo

Folding #1.
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Example: H = 〈baba−1, aba−1, aba2〉

•

a

��?
??

??
??

??
??

??
??

?

•

b

OO

a // •

a

����
��

��
��

��
��

��
��

b
pp

•

a

OO

Folding #2.
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Example: H = 〈baba−1, aba−1, aba2〉

•

a

��?
??

??
??

??
??

??
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?

•

b
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Example: H = 〈baba−1, aba−1, aba2〉

• a //
b

.. •

a

����
��

��
��

��
��

��
��

b
pp

•

a

OO

Folding #3. Γ(H)

By Stallings Lemma, π(Γ(H), •) = 〈baba−1, aba−1, aba2〉
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Example: H = 〈baba−1, aba−1, aba2〉

• a //
b

.. •

a

����
��

��
��

��
��

��
��

b
pp

•

a

OO

Folding #3. Γ(H)

By Stallings Lemma, π(Γ(H), •) = 〈baba−1, aba−1, aba2〉
= 〈b, aba−1, a3〉
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Local confluence

It can be shown that

Proposition
The automaton Γ(H) does not depend on the sequence of foldings

Proposition
The automaton Γ(H) does not depend on the generators of H.

Theorem
The following is a bijection:

{f.g. subgroups of FA} ←→ {Stallings automata}
H → Γ(H)

π(X , v) ← (X , v)
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Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)
Every subgroup of FA is free.

Finite automata work for the finitely generated case, but everything
extends easily to the general case (using infinite graphs).

The original proof (1920’s) is combinatorial and much more technical.
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Outline

1 The classical Whitehead algorithm

2 The bijection between subgroups and automata

3 Whitehead algorithm for subgroups

4 Whitehead minimization for subgroups in polynomial time
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Peak reduction for subgroups

Definition
For H 6 FA, we define ‖H‖ = #V (Γ′(H)).

For a cyclic word w, it is clear that ‖w‖ = ‖〈w〉‖.

Definition
A peak in FA is a trio (H, σ, τ) where H 6fg FA, σ, τ ∈WI ∪WII , such that
‖σ(H)‖ 6 ‖H‖ and ‖τ(H)‖ 6 ‖H‖ with at least one inequality strict.

Lemma (Peak reduction for subgroups)
For every peak (H, σ, τ) there exists s > 1 and ρ1, . . . , ρs ∈WI ∪WII such that

τσ−1 = ρs · · · ρ1,
‖ρi · · · ρ1(H)‖ < ‖H‖ for every 0 < i < s.
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Whitehead algorithm for subgroups

Then all the arguments and algorithms extend naturally to this more general
context...

Theorem (“Gersten", 1984)
Given two subgroups H, K 6fg FA, it is decidable whether there exists
ϕ ∈ Aut(FA) such that ϕ(H) = K .

Theorem (“Gersten", 1984)
Given a subgroup H 6fg FA, one can algorithmically find ϕ ∈ Aut(FA) such
that ‖ϕ(H)‖ is the smallest possible.

Let’s do the corresponding improvement with “max-flow min-cut" techniques,
to obtain a polynomial time algorithm in this last case ...
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1 The classical Whitehead algorithm

2 The bijection between subgroups and automata

3 Whitehead algorithm for subgroups

4 Whitehead minimization for subgroups in polynomial time
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Whitehead’s hypergraph
Thinking a cyclically reduced word w as the circle Γ′(〈w〉), its Whitehead
graph Wh(u) just describes the in-links of the vertices.

Definition
Let H 6 Fk be a f.g. subgroup, and let Γ′(H) be its core graph. We define the
Whitehead hyper-graph of H, denoted Wh(H), as:

vertices: A±1,
hyper-edges: for every vertex v in Γ′(H), put a hyper-edge consisting on
the in-link of v.

Lemma (Roig, V., Weil, 2007)
Given a f.g. subgroup H 6 Fk and a Whitehead automorphism α, think α as a
cut in Wh(H), say α = (T , a), and then

‖α(H)‖ − ‖H‖ = cap(T )− deg(a),

where cap(T ) is the number of hyper-edges with at least one vertex in T and
one outside T .
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Whitehead’s hypergraph

Consider H = 〈b,aba−1,aca〉 6 F3. Its core graph Γ(H), and Whitehead
hyper-graph Wh(H) are:

• a //
b

.. •

c
wwppppppppppppp

b
pp

•

a

OO a b c

a−1 b−1 c−1

In fact, α(H) = 〈b,aba−1,acbab〉 and then

Γ(α(H)) = • a //
b

.. •
c

��

b
pp

•

a

OO

•
b

oo

and so, 4− 3 = ‖α(H)‖ − ‖H‖ = 3− 2.
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Minimizing capacities in hyper-graphs

So, Whitehead’s Minimization Problem for subgroups reduces to:

run over all possible multipliers, say a, (there are 2k),
find an (a, a−1)-cut with minimal possible capacity in the given
hyper-graph.

Unfortunately, there is no analog of max-flow min-cut algorithm for
hyper-graphs ...

...but it is still possible to find minimal cuts in polynomial time because of
sub-modularity:

Observation
For every f.g. H 6 Fk , let W = Wh(H) and then the map P(A±1)→ N,
T 7→ capW (T ) is sub-modular.
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Sub-modularity

Definition
A map f : P(V )→ N is called sub-modular if, for every A, B ⊆ V,
f (A ∪ B) + f (A ∩ B) 6 f (A) + f (B).

Efficient minimization of sub-modular functions is an active research topic in
computer science. One of the classical results is the following

Proposition
There exists a algorithm which, given a sub-modular function f : P(V )→ N
computes its minimum with a number of queries to evaluate f bounded above
by a polynomial on |V |.

Corollary
There is an algorithm which solves Whitehead Minimization Problem for
subgroups H 6 Fk , in time O((n2k4 + n3k2) log(nk)), where n = ‖H‖.
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THANKS
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