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Mihailova’s subgroup

Let n > 2, and Fn be the free group with basis X = {x1, . . . , xn}.

Consider a finite presentation H = 〈x1, . . . , xn | R1, . . . , Rm〉.

Associated to it K.A. Mihailova in 1958 considered

M(H) = {(w1, w2) ∈ Fn × Fn | w1 =H w2} 6 Fn × Fn,

known as Mihailova’s subgroup of Fn × Fn.

It has two interesting properties:
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Finite generation

Observation

M(H) is generated by {(x1, x1), . . . , (xn, xn), (1, R1), . . . , (1, Rm)}.

Proof. Given (w1, w2) ∈ M(H),
w1 =H w2

w−1
1 w2 is a product of conjugates of the Rj ’s

For every z ∈ Fn, (1, z−1Rjz) = (z−1, z−1)(1, Rj)(z, z)

(1, w−1
1 w2) ∈ 〈(x1, x1), . . . , (xn, xn), (1, R1), . . . , (1, Rm)〉

and (w1, w2) = (w1, w1)(1, w−1
1 w2). �
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Membership problem

Observation

MP(M(H), Fn × Fn) is solvable ⇐⇒ WP(H) is solvable

Proof. Obvious.

MP(M(H), Fn × Fn): given (w1, w2) ∈ Fn × Fn decide whether
(w1, w2) ∈ M(H) or not.

WP(H): given w1, w2 ∈ Fn decide whether w1 =H w2 or not.
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M(H) is recursively presented

Fn × Fn has solvable word problem
so, M(H) has solvable word problem
so, M(H) is recursively presented.
F. Grunewald, 1978: M(H) is finitely presented ⇐⇒ H is finite.
Later results by Baumslag-Roseblade, Short, and Bridson-Wise
also imply Grunewald’s result.

Question (Grigorchuk, 2005)

Find explicit presentations for Mihailova’s subgroups of Fn × Fn.
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Main result

Theorem (O. Boopolski, E.V.)

Let Fn be the free group on x1, . . . , xn, and let
H = 〈x1, . . . , xn |R1, . . . , Rm〉 be a finite, concise and Peiffer
aspherical presentation. Then Mihailova’s group M(H) 6 Fn × Fn
admits the following presentation

M(H) '
〈
d1, . . . , dn, t1, . . . , tm | [tj , d−1t−1

i ri d ], [ti , root(ri)]
〉

(1 6 i , j 6 m, d ∈ Dn), where Dn is the free group with basis
d1, . . . , dn, and ri denotes the word in Dn obtained from Ri by
replacing each xk to dk .
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Conciseness

Let H = 〈x1, . . . , xn |R1, . . . , Rm〉 be an arbitrary finite presentation

(here, Rj are words on x1, . . . , xn which we’ll assume reduced).

Definition

H = 〈x1, . . . , xn |R1, . . . , Rm〉 is concise if every Rj is non-trivial, and
every two relations Ri , Rj , i 6= j , are not conjugate to each other or to
the inverse of each other.

Clearly, deleting some relations, every presentation admits a concise
refinement.
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Identities among relations

Definition

Let U1, . . . , Ul ∈ Fn, and Ri1 , . . . , Ril ∈ {R1, . . . , Rn}, and suppose

(U1Rε1
i1 U−1

1 ) · · · (UlRεl
il U−1

l ) = 1

holds in Fn. In this situation, the sequence of elements of Fn

(U1Rε1
i1 U−1

1 , . . . , UlRεl
il U−1

l )

is called an identity among relations of length l.

For l = 0 we have the empty identity among relations, ( ).
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Peiffer transformations

Define the following elementary transformations of an identity among
relations (U1Rε1

i1 U−1
1 , . . . , UlRεl

il U−1
l ):

• deletion/insertion: if (UpRεp
ip U−1

p ) · (Up+1Rεp+1
ip+1

U−1
p+1) = 1, delete

them.

• exchange: replace two consecutive terms, say

UpRεp
ip U−1

p and Up+1Rεp+1
ip+1

U−1
p+1,

by the new ones

Up+1Rεp+1
ip+1

U−1
p+1 and (Up+1R−εp+1

ip+1
U−1

p+1Up)R
εp
ip (U−1

p Up+1Rεp+1
ip+1

U−1
p+1).
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Peiffer asphericity

Definition

The presentation H = 〈x1, . . . , xn |R1, . . . , Rm〉 is Peiffer aspherical if
every identity among relations can be carried to the empty one by a
sequence of Peiffer transformations.

I. Chiswell, D. Collins, J. Huebschmann (1981): asphericity is
preserved under free products, certain HNN extensions, and Tietze
transformations.

In the literature other related concepts (diagrammatical asphericity,
topological asphericity, ...).

Theorem (Collins, Miller, 1999)

There exists a finite, concise and Peiffer aspherical presentation
H = 〈x1, . . . , xn |R1, . . . , Rm〉 with unsolvable word problem.
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Main result

Theorem (O. Boopolski, E.V.)

Let Fn be the free group on x1, . . . , xn, and let
H = 〈x1, . . . , xn |R1, . . . , Rm〉 be a finite, concise and Peiffer
aspherical presentation. Then Mihailova’s group M(H) 6 Fn × Fn
admits the following presentation

M(H) '
〈
d1, . . . , dn, t1, . . . , tm | [tj , d−1t−1

i ri d ], [ti , root(ri)]
〉

(1 6 i , j 6 m, d ∈ Dn), where Dn is the free group with basis
d1, . . . , dn, and ri denotes the word in Dn obtained from Ri by
replacing each xk to dk .

Recall that M(H) = {(w1, w2) ∈ Fn × Fn | w1 =H w2} 6 Fn × Fn,

M(H) = 〈(x1, x1), . . . , (xn, xn), (1, R1), . . . , (1, Rm)〉.
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The proof

Proof. Consider Fn+m = 〈d1, . . . , dn, t1, . . . , tm〉, and the morphism

π : Fn+m → M(H)
di 7→ (xi , xi)
tj 7→ (1, Rj).

π is clearly onto,
Let N =� [tj , d−1t−1

i ri d ], [ti , root(ri)] � EFn+m. It remains to
see that N = ker(π).
The inclusion N 6 ker(π) is an easy computation:

[tj , d−1t−1
i ri d ] 7→ [(1, Rj), (D, D)−1(1, R−1

i )(Ri , Ri)(D, D)] =
= [(1, Rj), (D−1RiD, 1)] = (1, 1).

[ti , root(ri)] 7→ [(1, Ri), (root(Ri), root(Ri))] = (1, 1).
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The proof

For the inclusion ker(π) 6 N , use the following strategy:

to every w ∈ ker(π) we’ll associate an identity among relations iar(w)
such that

1) if w 6= 1 then iar(w) is non-empty,

2)
w  iar(w)

↓
iar(w)′

e. Peiffer transf.
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The association

Let w ∈ ker(π) and write it as w = u1tε1
i1 u2 · · ·ul tεl

il ul+1
(where l > 0 and u1, . . . , ul+1 are words in the d ′

i s).

Projecting π(w) to each coordinate, we have

U1U2 · · ·Ul+1 = 1 and U1Rε1
i1 U2 · · ·UlRεl

il Ul+1 = 1.

Now, denote the accumulative products by Ui = U1U2 · · ·Ui ,
i = 1, . . . , l + 1 (note that Ul+1 = 1), and we have

U1Rεl
i1 U−1

1 · U2Rε2
i2 U−1

2 · . . . · UlRεl
il U−1

l = 1.

And take iar(w) = (U1Rεl
i1 U−1

1 , U2Rε2
i2 U−1

2 , . . . , UlRεl
il U−1

l ), an identity
among relations of length l .
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The association

1) It is clear that w 6= 1 ⇒ l > 0 ⇒ iar(w) non-empty.

2) With a bit of technical work, one can show property (2) for an
insertion, a deletion, and an exchange.

Hence, ker(π) 6 N . �
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Theorem (Bogopolski-Martino-V., 2008)

Let
1 −→ F α−→ G β−→ H −→ 1

be an algorithmic short exact sequence of groups such that
(i) TCP(F ) is solvable,
(ii) CP(H) is solvable,
(iii) there is an algorithm which, given an input 1 6= h ∈ H, computes

a finite set of elements zh,1, . . . , zh,th ∈ H such that

CH(h) = 〈h〉zh,1 t · · · t 〈h〉zh,th .

Then,

CP(G) is solvable ⇐⇒
AG =

{
γg : F → F

x 7→ g−1xg

∣∣∣∣ g ∈ G
}

6 Aut(F ) is orbit decidable.
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Definition

A subgroup A 6 Aut (F ) is said to be orbit decidable (O.D.) if ∃ an
algorithm s.t., given u, v ∈ F decides whether v ∼ uα for some α ∈ A.

Particularizing to the case where F and H are free, we obtain:

Theorem

CP(Fn oϕ1,...,ϕm Fm) is solvable ⇔ 〈ϕ1, . . . , ϕm〉 6 Aut (Fn) is O.D.

Fn oϕ1,...,ϕm Fm = 〈x1, . . . , xn, t1, . . . , tm | t−1
j xi tj = xiϕj〉.
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But...

Theorem (Miller, 70’s)

There are free-by-free groups with unsolvable conjugacy problem.

So, there must be orbit undecidable subgroups in Aut (Fn), for n > 3.
Where are them ?

Proposition (Bogopolski-Martino-V., 2008)

Let F be a group, and let A 6 B 6 Aut (F ) and w ∈ F be such that
B ∩ Stab∗(w) = 1. Then,

OD(A) solvable ⇒ MP(A, B) solvable.
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Corollary

Let F be a group, and let A 6 B 6 Aut (F ) and w ∈ F be such that
B ∩ Stab∗(w) = 1. If B ' F2 × F2 and A is the Mihailova subgroup
corresponding to a group with unsolvable word problem then,
A 6 Aut (F ) is orbit undecidable.

Well, with the embedding F2 × F2 −→ Aut (F3)
(u, v) 7→ uθv : F3 → F3

q 7→ u−1qv
a 7→ a
b 7→ b

,

(and w = qaqbq) one obtains precisely the orbit undecidable
subgroups corresponding to Miller’s examples.

Question
Does there exists finitely presented orbit undecidable subgroups in
Aut (Fn) ?
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But this is more general: any other way of embedding F2 × F2 in
Aut (F3) will provide new examples of orbit undecidability, i.e. of
free-by-free groups with unsolvable CP.

And also interesting for other groups apart from free:

Take F = Zn with n > 4.

F2 × F2 6 GL2(Z)×GL2(Z) 6 GL4(Z) 6 GLn(Z)
(and TCP(Z4) is solvable).

Corollary (Bogopolski-Martino-V., 2008)

There exists Z4-by-free groups with unsolvable conjugacy problem.
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There exists Z4-by-free groups with unsolvable conjugacy problem.
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