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Let n > 2, and F, be the free group with basis X = {xq, ..., x,}.
Consider a finite presentation H = (x1,..., X, | R1,..., Bm).
Associated to it K.A. Mihailova in 1958 considered

M(H) = {(wy,ws) € Fp x Fp | wy =p wo} < Fp x Fp,
known as Mihailova’s subgroup of F, x Fp,.

It has two interesting properties:
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Finite generation

Observation
M(H) is generated by{(X1,X1), SRR (Xnvxn)v (1 ’ R1)a B (1 ) Rm)}

Proof. Given (wq, wo) € M(H),
@ Wy =p W2
° Wf w» is a product of conjugates of the R;’s
@ Foreveryze F,, (1,27 'Riz) = (z7',z7")(1, R)(z, 2)
o (1,w; 'wa) € ((x1,%1), ., (Xn, Xn), (1, R1), ..., (1, Rm))
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Finite generation

Observation
M(H) is generated by{(X1,X1), SRR (Xnvxn)v (1 ’ R1)a B (1 ) Rm)}

Proof. Given (wq, wo) € M(H),
@ Wy =p W2
° Wf w» is a product of conjugates of the R;’s
@ Foreveryze F,, (1,27 'Riz) = (z7',z7")(1, R)(z, 2)
° (1,W(1W2) e{(x1,%1), -y (Xn, Xn), (1, R1), ..., (1, Rm))
e and (wy, w2) = (wi, wy)(1, w; 'we). O
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Membership problem

Observation
MP(M(H), F, x F,) is solvable <— WP(H) is solvable

Proof. Obvious.

MP(M(H), F, x Fp): given (wy, wo) € F, x F, decide whether
(w1, w2) € M(H) or not. }

WP(H): given wy, wo € F, decide whether wy =y w» or not. )




1.Mihailova’s subgroup
[ee]e] Yol

M(H) is recursively presented

@ F, x Fj has solvable word problem



1.Mihailova’s subgroup
[ee]e] Yol

M(H) is recursively presented

@ F, x Fj has solvable word problem
@ so, M(H) has solvable word problem



1.Mihailova’s subgroup
[ee]e] Yol

M(H) is recursively presented

@ F, x Fj has solvable word problem
@ so, M(H) has solvable word problem
@ so, M(H) is recursively presented.



1.Mihailova’s subgroup
[ee]e] Yol

M(H) is recursively presented

@ F, x Fj has solvable word problem

@ so, M(H) has solvable word problem

@ so, M(H) is recursively presented.

@ F. Grunewald, 1978: M(H) is finitely presented < H is finite.



1.Mihailova’s subgroup
[ee]e] Yol

M(H) is recursively presented

@ F, x Fj has solvable word problem
@ so, M(H) has solvable word problem

@ so, M(H) is recursively presented.

@ F. Grunewald, 1978: M(H) is finitely presented < H is finite.
o

Later results by Baumslag-Roseblade, Short, and Bridson-Wise
also imply Grunewald’s result.



1.Mihailova’s subgroup
[ee]e] Yol

M(H) is recursively presented

@ F, x Fj has solvable word problem
@ so, M(H) has solvable word problem

@ so, M(H) is recursively presented.

@ F. Grunewald, 1978: M(H) is finitely presented < H is finite.
o

Later results by Baumslag-Roseblade, Short, and Bridson-Wise
also imply Grunewald’s result.

Question (Grigorchuk, 2005)

Find explicit presentations for Mihailova’s subgroups of F,, x F.
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Main result

Theorem (O. Boopolski, E.V.)

Let F,, be the free group on xq, . .., X, and let

H={(x1,...,x,| Ri1,..., Rm) be a finite, concise and Peiffer
aspherical presentation. Then Mihailova’s group M(H) < F, x Fp
admits the following presentation

M(H) ~ (d1,...,dn b, ... tm | [t d7 87 i d], [, root(r;)])

(1<i,j<m, de D,), where D, is the free group with basis
di,...,ds, and r; denotes the word in Dy, obtained from R; by
replacing each xy to dk.
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Conciseness

Let H= (x1,...,X,| R1,..., Rm) be an arbitrary finite presentation

(here, R; are words on x4, ..., x, which we’'ll assume reduced).

Definition

H=(x1,...,xa| B1,..., Rm) is concise if every R; is non-trivial, and
every two relations R;, R;, i # j, are not conjugate to each other or to
the inverse of each other.

Clearly, deleting some relations, every presentation admits a concise
refinement.
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Identities among relations

Definition
LetU,...,U € Fy,andR;,...,R, € {R1,..., Ry}, and suppose

(UtR U - (URUTT) =1
holds in F,. In this situation, the sequence of elements of F,
(UR U, URIUT)

is called an identity among relations of length .

For | = 0 we have the empty identity among relations, ().




2.Asphericity
[e]e] o]

Peiffer transformations

Define the following elementary transformations of an identity among
relations (Ui R;' Uy ,..., URU):



2.Asphericity
[e]e] o]

Peiffer transformations

Define the following elementary transformations of an identity among
relations (Ui R;' Uy ,..., URU):

« deletion/insertion: if (UpR;" Up ") - (Up11 RZ: U

p+1) =1, delete
them.



2.Asphericity
[e]e] o]

Peiffer transformations

Define the following elementary transformations of an identity among
relations (Ui R;' Uy ,..., URU):

o deletion/insertion: if (UpR*Up ') - (Up+1R71' U, ) = 1, delete
them.

e exchange: replace two consecutive terms, say
5p — Ep+t [ [—
UpR; U and Upi1R; o Up+1,

by the new ones

Up+1R6p+1U y and (Up+1H_6pHUp+1Up) *(Up Up+1F"sp+1 Up+1)
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Peiffer asphericity

Definition

The presentation H = (x1,...,Xn| Ry, ..., Rm) is Peiffer aspherical if
every identity among relations can be carried to the empty one by a
sequence of Peiffer transformations.

I. Chiswell, D. Collins, J. Huebschmann (1981): asphericity is
preserved under free products, certain HNN extensions, and Tietze
transformations.

In the literature other related concepts (diagrammatical asphericity,
topological asphericity, ...).

Theorem (Collins, Miller, 1999)

There exists a finite, concise and Peiffer aspherical presentation
H={(x1,...,x,| Ri,..., Rm) with unsolvable word problem.
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Main result

Theorem (O. Boopolski, E.V.)

Let F,, be the free group on xq, . .., X, and let

H={(x1,...,xs| Ri,..., BRm) be a finite, concise and Peiffer
aspherical presentation. Then Mihailova’s group M(H) < F, x Fj
admits the following presentation

M(H) ~ (d1,...,dn b, ... tm | [t d7 87 i d], [t root(r;)])

(1<i,j<m, de D,), where D, is the free group with basis
di,...,ds, and r; denotes the word in D, obtained from R; by
replacing each xy to dk.

Recall that M(H) = {(w1,wz) € Fy x Fp | wy =y W} < Fp x Fp,
M(H) = {(x1,%1),- .., (Xn, Xn), (1, R1),..., (1, Rm))-
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i — (1,R).

@ r is clearly onto,

o Let NV =< [t;,d "t~ "r; d], [t;, root(r;)] > <AFp.m. It remains to
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The proof

Proof. Consider Fp.; = (dy,...,0n, b, ..., tm), and the morphism

. Fn+m — M(H)
d,‘ — (X,’,X,')
i — (1,R).

@ r is clearly onto,

o Let NV =< [t;,d "t~ "r; d], [t;, root(r;)] > <AFp.m. It remains to
see that N/ = ker(r).

@ The inclusion A/ < ker(7) is an easy computation:

[4.d~"t 'ridl — [(1,R).(D,D)'(1,R")(Ri, R)(D, D)] =
=[(1,R),(D'RD, 1)] = (1,1).

[ti, root(r;)] — [(1,R:), (root(R;),root(R))] = (1,1).
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The proof

For the inclusion ker(7) < A/, use the following strategy:

to every w € ker(w) we’ll associate an identity among relations iar(w)
such that

1) if w # 1 then iar(w) is non-empty,
w o~ dar(w)
2) l e. Peiffer transf.
Iw' ~  dar(w)

suchthat w='w’ e \V.

Then, Peiffer asphericity = ker(m) < V.
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(where | > 0 and uy, ..., U1 are words in the d]s).
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Let w € ker(w) and write it as w = w4 t,f1 Up -+ u,t,f/u,H
(where | > 0 and uy, ..., U1 are words in the d]s).

Projecting 7(w) to each coordinate, we have
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3.The recursive presentation
000000

The association

Let w € ker(w) and write it as w = w4 t,f1 Up -+ u,t,f/u,H
(where | > 0 and uy, ..., U1 are words in the d]s).

Projecting 7(w) to each coordinate, we have
U1 U2 s U/+1 =1 and U1 R? U2 s U/R;-’ U/+1 =1.
Now, denote the accumulative products by U; = Ui Us - - - U;,
i=1,...,14+1 (note that U,y = 1), and we have
UiRU; - UeR2U, .- URT; =1,

And take iar(w) = (U1 R{'U; " UoR2U, ..., U;R'U; "), an identity
among relations of length /.
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The association

1) Itisclearthat w#1 = [>0 = iar(w) non-empty.

2) With a bit of technical work, one can show property (2) for an
insertion, a deletion, and an exchange.

Hence, ker(r) < V. O
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Theorem (Bogopolski-Martino-V., 2008)
Let

1—F-%GLH—1

be an algorithmic short exact sequence of groups such that
(i) TCP(F) is solvable,
(i) CP(H) is solvable,
(iii) there is an algorithm which, given an input1 # h € H, computes
a finite set of elements zp 1, ..., zny, € H such that

CH(h) = <h>Zh’1 [S[R=F-R-418] <h>zh,th~

Then,

A { vg:F — F ‘g c G}
= —9
CP(QG) is solvable < x — 99X

< Aut(F) is orbit decidable.
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Definition

A subgroup A < Aut(F) is said to be orbit decidable (O.D.) if 3 an
algorithm s.t., given u, v € F decides whether v ~ ua for some o € A.
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Definition

A subgroup A < Aut(F) is said to be orbit decidable (O.D.) if 3 an
algorithm s.t., given u, v € F decides whether v ~ ua for some o € A.

Particularizing to the case where F and H are free, we obtain:

on Fm) is solvable < (1., om) < Aut(F,) is O.D.

.....

—1
Fn >44P1;~-~7§0m Fm = <X1,. .., Xn, t17. . tm | tj X,'tj = X,'(pj>.
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But...

Theorem (Miller, 70’s)
There are free-by-free groups with unsolvable conjugacy problem.

So, there must be orbit undecidable subgroups in Aut (F,), for n > 3.
Where are them ?

Proposition (Bogopolski-Martino-V., 2008)

Let F be a group, and let A < B < Aut(F) and w € F be such that
BN Stab*(w) = 1. Then,

OD(A) solvable = MP(A, B) solvable.
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Let F be a group, and let A < B < Aut(F) and w € F be such that
Bn Stab*(w) = 1. If B~ F, x F, and A is the Mihailova subgroup
corresponding to a group with unsolvable word problem then,

A < Aut(F) is orbit undecidable.
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Let F be a group, and let A < B < Aut(F) and w € F be such that
Bn Stab*(w) = 1. If B~ F, x F, and A is the Mihailova subgroup
corresponding to a group with unsolvable word problem then,

A < Aut(F) is orbit undecidable.

Well, with the embedding F x F, — Aut (F3) ,
(U7 V) — by F3 — F3
q — ulqv
a — a
b — b
(and w = gagbq) one obtains precisely the orbit undecidable
subgroups corresponding to Miller’s examples.
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Let F be a group, and let A < B < Aut(F) and w € F be such that
Bn Stab*(w) = 1. If B~ F, x F, and A is the Mihailova subgroup
corresponding to a group with unsolvable word problem then,

A < Aut(F) is orbit undecidable.

Well, with the embedding F x F, — Aut (F3) ,
(U7 V) — by F3 — F3
q — ulqv
a +— a
b — b
(and w = gagbq) one obtains precisely the orbit undecidable
subgroups corresponding to Miller’s examples.

Does there exists finitely presented orbit undecidable subgroups in
Aut(Fn) ?
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But this is more general: any other way of embedding F> x F» in
Aut (F3) will provide new examples of orbit undecidability, i.e. of
free-by-free groups with unsolvable CP.
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But this is more general: any other way of embedding F> x F» in
Aut (F3) will provide new examples of orbit undecidability, i.e. of
free-by-free groups with unsolvable CP.

And also interesting for other groups apart from free:

Take F = Z" with n > 4.

F2 X F2 < GLQ(Z) X GLZ(Z) < GL4(Z) < GLn(Z)
(and TCP(Z*) is solvable).
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But this is more general: any other way of embedding F> x F» in
Aut (F3) will provide new examples of orbit undecidability, i.e. of
free-by-free groups with unsolvable CP.

And also interesting for other groups apart from free:

Take F = Z" with n > 4.

F2 X Fg < GLQ(Z) X GLZ(Z) < GL4(Z) < GLn(Z)
(and TCP(Z*) is solvable).

Corollary (Bogopolski-Martino-V., 2008)

There exists 7.*-by-free groups with unsolvable conjugacy problem.
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Take F = Thompson’s group.

Fo x F» < Aut(F) (and TCP(F) is solvable).

Corollary (Burillo-Matucci-V.)

There exists F-by-free groups with unsolvable conjugacy problem.
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