(Un)Realizable k-configs.
 00000000

4. The free case

Open question

6. Quotient-saturated groups

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

On the existence of finitely presented intersection-saturated groups

Enric Ventura

Departament de Matemàtiques Universitat Politècnica de Catalunya

Groups in Madrid 2023

ICMAT

(joint work with J. Delgado and M. Roy)

October 26th, 2023.

	000000	0000000	00000	0	000
Outline)				

- Pree-times-free-abelian groups
- 3 Realizable / unrealizable k-configurations
- 4 The free case
- Open questions
- Quotient-saturated groups

1. Main results	2. <i>⊾</i> _{<i>n</i>} × <i>ℤ^m</i> 000000	3. (Un)Realizable <i>k</i> -configs.	4. The free case	5. Open questions O	6. Quotient-saturated groups
Outline)				

- Pree-times-free-abelian groups
- Realizable / unrealizable k-configurations
- 4 The free case
- Open questions
- Quotient-saturated groups

 $H \leqslant \mathbb{F}_n \quad \Rightarrow \quad H \text{ is free}$

but not necessarily of rank $\leq n$.

Example

Consider $\mathbb{F}_2 = \langle x, y \mid \rangle$ and the normal closure of *x*,

 $\ll x \gg = \langle \dots, y^2 x y^{-2}, y x y^{-1}, x, y^{-1} x y, y^{-2} x y^2, \dots \rangle$

Looking at its Stallings graph

we see these generators are a free basis; so, $\mathbb{F}_{\aleph_0} \leqslant \mathbb{F}_2$.

 $H \leqslant \mathbb{F}_n \quad \Rightarrow \quad H \text{ is free}$

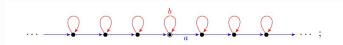
but not necessarily of rank $\leq n$.

Example

Consider $\mathbb{F}_2 = \langle x, y \mid \rangle$ and the normal closure of *x*,

$$\ll x \gg = \langle \dots, y^2 x y^{-2}, y x y^{-1}, x, y^{-1} x y, y^{-2} x y^2, \dots \rangle$$

Looking at its Stallings graph



we see these generators are a free basis; so, $\mathbb{F}_{\aleph_0} \leqslant \mathbb{F}_2$.

 $H \leqslant \mathbb{F}_n \quad \Rightarrow \quad H \text{ is free}$

but not necessarily of rank $\leq n$.

Example

Consider $\mathbb{F}_2 = \langle x, y \mid \rangle$ and the normal closure of *x*,

$$\ll x \gg = \langle \dots, y^2 x y^{-2}, y x y^{-1}, x, y^{-1} x y, y^{-2} x y^2, \dots \rangle$$

Looking at its Stallings graph

we see these generators are a free basis; so, $\mathbb{F}_{\aleph_0} \leqslant \mathbb{F}_2$.

Free a	roune				
 Main results ●0000 	2. ⊮ _n × ℤ ^m 000000	 (Un)Realizable k-configs. 00000000 	4. The free case	 Open questions O 	 Quotient-saturated groups OOO

 $H \leqslant \mathbb{F}_n \quad \Rightarrow \quad H \text{ is free}$

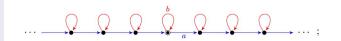
but not necessarily of rank $\leq n$.

Example

Consider $\mathbb{F}_2 = \langle x, y \mid \rangle$ and the normal closure of *x*,

$$\ll x \gg = \langle \dots, y^2 x y^{-2}, y x y^{-1}, x, y^{-1} x y, y^{-2} x y^2, \dots \rangle$$

Looking at its Stallings graph



we see these generators are a free basis; so, $\mathbb{F}_{\aleph_0} \leq \mathbb{F}_2$.

 1. Main results
 2. F_n × Z^m
 3. (Un)Realizable k-configs.
 4. The free case
 5. Open questions
 6. Quotient-saturated groups

 0 ● 000
 0 00000
 0 00000
 0 00000
 0 0000
 0 0000

 The Howson property

Definition

A group G is Howson if, for any finitely generated $H, K \leq_{fg} G$, the intersection $H \cap K$ is, again, finitely generated.

Theorem (Howson, 1954)

Free groups are Howson.

In other words... the configuration

\Diamond

is not realizable in a free group (○ *means f.g. and* ● *means non-f.g.*).

Observation

 1. Main results
 2. F_n × Z^m
 3. (Un)Realizable k-configs.
 4. The free case 00000
 5. Open questions 00000
 6. Quotient-saturated groups 0000

 The Howson property

Definition

A group G is Howson if, for any finitely generated $H, K \leq_{fg} G$, the intersection $H \cap K$ is, again, finitely generated.

Theorem (Howson, 1954)

Free groups are Howson.

In other words... the configuration

\Diamond

is not realizable in a free group (○ *means f.g. and* ● *means non-f.g.*).

Observation

 1. Main results
 2. F_n × Z^m
 3. (Un)Realizable k-configs.
 4. The free case
 5. Open questions
 6. Quotient-saturated groups

 0 ● 000
 0 00000
 0 00000
 0 00000
 0 0000
 0 0000

 The Howson property

Definition

A group G is Howson if, for any finitely generated $H, K \leq_{fg} G$, the intersection $H \cap K$ is, again, finitely generated.

Theorem (Howson, 1954)

Free groups are Howson.

In other words... the configuration

is not realizable in a free group (o means f.g. and • means non-f.g.).

Observation

 1. Main results
 2. F_n × Z^m
 3. (Un)Realizable k-configs.
 4. The free case
 5. Open questions
 6. Quotient-saturated groups

 0 ● 000
 0 00000
 0 00000
 0 00000
 0 0000
 0 0000

 The Howson property

Definition

A group G is Howson if, for any finitely generated $H, K \leq_{fg} G$, the intersection $H \cap K$ is, again, finitely generated.

Theorem (Howson, 1954)

Free groups are Howson.

In other words... the configuration

is not realizable in a free group (o means f.g. and • means non-f.g.).

Observation

 1. Main results
 2. F_n × Z^m
 3. (Un)Realizable k-configs.
 4. The free case occord
 5. Open questions
 6. Quotient-saturated groups occord

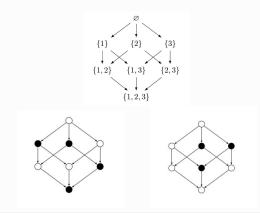
 00000
 000000
 000000
 00000
 00000
 00000

 Intersection configurations

Question

What about configurations with $k \ge 2$ subgroups (k-configurations)?

Using this convention, what about the following 3-configurations?

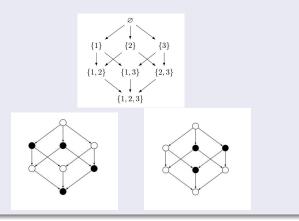


Interse	ction co	onfigurations	3		
 Main results OO●OO 	2. F _n × ℤ ^m 000000	 (Un)Realizable k-configs. 00000000 	4. The free case	 Open questions O 	 Quotient-saturated groups OOO

Question

What about configurations with $k \ge 2$ subgroups (k-configurations)?

Using this convention, what about the following 3-configurations?



1. Main results 000●0	2. ⊮ _n × ℤ ^m 000000	3. (Un)Realizable k-configs.	4. The free case	5. Open questions O	6. Quotient-saturated groups
Our ma	ain resu	ults			

Theorem (Delgado-Roy-V., '22)

A k-configuration is realizable in \mathbb{F}_n , $n \ge 2$, \Leftrightarrow it respects the Howson property.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Delgado–Roy–V. '22)

There exist finitely presented intersection-saturated groups.

1. Main results 000●0	2. <i>⊾</i> _{<i>n</i>} × <i>ℤ</i> ^{<i>m</i>} 000000	3. (Un)Realizable <i>k</i> -configs.	4. The free case	5. Open questions O	6. Quotient-saturated groups
Our ma	ain resu	ılts			

Theorem (Delgado-Roy-V., '22)

A k-configuration is realizable in \mathbb{F}_n , $n \ge 2$, \Leftrightarrow it respects the Howson property.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem (Delgado-Roy-V. '22)

There exist finitely presented intersection-saturated groups.

Formal	definiti	ions			
 Main results 0000● 	2. F _n × ℤ ^m 000000	 (Un)Realizable k-configs. 00000000 	4. The free case	 Open questions O 	 Quotient-saturated groups OOO

A (intersection) k-configuration is a map $\chi : \mathcal{P}([k]) \setminus \{\emptyset\} \to \{0, 1\}$. If $\mathcal{I} = (1)\chi^{-1}$ is the support of χ , we write $\chi = \chi_{\mathcal{I}}$. Notation:

- $\mathbf{0} = \chi_{\emptyset}$ is the zero-configuration;
- **1** = $\chi_{\mathcal{P}([k]) \setminus \{\emptyset\}}$ is the one-configuration;
- $\chi_{\mathcal{I}}$ is an almost-zero k-configuration if $\mathcal{I} = \{I\}$.

Definition

A k-configuration χ is realizable in a group G if there exists subgroups $H_1, \ldots, H_k \leq G$ such that, for every $\emptyset \neq I \subseteq [k]$, $H_I = \bigcap_{i \in I} H_i$ if f.g. $\Leftrightarrow (I)\chi = 0$. Note that $H_{I \cup J} = H_I \cap H_J$.

Definition

A group G is intersection-saturated if every k-configuration is realizable in G.

Eormo	l definit	ione			
 Main results 00000 	2. ⊮ _n × ℤ ^m 000000	 (Un)Realizable k-configs. 	4. The free case	5. Open questions	 Quotient-saturated groups

A (intersection) k-configuration is a map $\chi : \mathcal{P}([k]) \setminus \{\emptyset\} \to \{0, 1\}$. If $\mathcal{I} = (1)\chi^{-1}$ is the support of χ , we write $\chi = \chi_{\mathcal{I}}$. Notation: • $\mathbf{0} = \chi_{\emptyset}$ is the zero-configuration; • $1 = \chi_{\mathcal{P}([k]) \setminus \{\emptyset\}}$ is the one-configuration; • $\chi_{\mathcal{I}}$ is an almost-zero k-configuration if $\mathcal{I} = \{I\}$.

Definition

A k-configuration χ is realizable in a group G if there exists subgroups $H_1, \ldots, H_k \leq G$ such that, for every $\emptyset \neq I \subseteq [k]$, $H_l = \bigcap_{i \in I} H_i$ if f.g. $\Leftrightarrow (I)\chi = 0$. Note that $H_{I \cup J} = H_l \cap H_J$.

Definition

A group G is intersection-saturated if every k-configuration is realizable in G.

Eormo	l definit	ione			
 Main results 00000 	2. ⊮ _n × ℤ ^m 000000	 (Un)Realizable k-configs. 	4. The free case	5. Open questions	 Quotient-saturated groups

A (intersection) k-configuration is a map $\chi : \mathcal{P}([k]) \setminus \{\emptyset\} \to \{0, 1\}$. If $\mathcal{I} = (1)\chi^{-1}$ is the support of χ , we write $\chi = \chi_{\mathcal{I}}$. Notation:

- **0** = χ_{\emptyset} is the zero-configuration;
- **1** = $\chi_{\mathcal{P}([k]) \setminus \{\emptyset\}}$ is the one-configuration;

• $\chi_{\mathcal{I}}$ is an almost-zero k-configuration if $\mathcal{I} = \{I\}$.

Definition

A k-configuration χ is realizable in a group G if there exists subgroups $H_1, \ldots, H_k \leq G$ such that, for every $\emptyset \neq I \subseteq [k]$, $H_I = \bigcap_{i \in I} H_i$ if f.g. $\Leftrightarrow (I)\chi = 0$. Note that $H_{I \cup J} = H_I \cap H_J$.

Definition

A group G is intersection-saturated if every k-configuration is realizable in G.

・ コット (雪) (小田) (コット 日)

	definit		00000	0	000
 Main results 	2. $\mathbb{F}_n \times \mathbb{Z}^m$	 (Un)Realizable k-configs. 	4. The free case	 Open questions 	 Quotient-saturated groups

A (intersection) k-configuration is a map $\chi: \mathcal{P}([k]) \setminus \{\emptyset\} \to \{0,1\}$. If

- $\mathcal{I} = (1)\chi^{-1}$ is the support of χ , we write $\chi = \chi_{\mathcal{I}}$. Notation:
- **0** = χ_{\emptyset} is the zero-configuration;
- **1** = $\chi_{\mathcal{P}([k]) \setminus \{\emptyset\}}$ is the one-configuration;
- $\chi_{\mathcal{I}}$ is an almost-zero k-configuration if $\mathcal{I} = \{I\}$.

Definition

A k-configuration χ is realizable in a group G if there exists subgroups $H_1, \ldots, H_k \leq G$ such that, for every $\emptyset \neq I \subseteq [k]$, $H_I = \bigcap_{i \in I} H_i$ if f.g. $\Leftrightarrow (I)\chi = 0$. Note that $H_{I \cup J} = H_I \cap H_J$.

Definition

A group G is intersection-saturated if every k-configuration is realizable in G.

00000	000000		00000	0	000				
Formal definitions									

A (intersection) k-configuration is a map $\chi : \mathcal{P}([k]) \setminus \{\emptyset\} \to \{0, 1\}$. If

 $\mathcal{I} = (1)\chi^{-1}$ is the support of χ , we write $\chi = \chi_{\mathcal{I}}$. Notation:

- **0** = χ_{\emptyset} is the zero-configuration;
- **1** = $\chi_{\mathcal{P}([k]) \setminus \{\emptyset\}}$ is the one-configuration;
- $\chi_{\mathcal{I}}$ is an almost-zero k-configuration if $\mathcal{I} = \{I\}$.

Definition

A k-configuration χ is realizable in a group G if there exists subgroups $H_1, \ldots, H_k \leq G$ such that, for every $\emptyset \neq I \subseteq [k]$, $H_I = \bigcap_{i \in I} H_i$ if f.g. $\Leftrightarrow (I)\chi = 0$. Note that $H_{I \cup J} = H_I \cap H_J$.

Definition

A group G is intersection-saturated if every k-configuration is realizable in G.

・ コット (雪) (小田) (コット 日)

1. Main results 0000●	000000	 (Un)Realizable k-configs. 00000000 	4. The free case	5. Open questions O	6. Quotient-saturated groups
Forma	I definit	ions			

A (intersection) k-configuration is a map $\chi : \mathcal{P}([k]) \setminus \{\emptyset\} \to \{0, 1\}$. If

 $\mathcal{I} = (1)\chi^{-1}$ is the support of χ , we write $\chi = \chi_{\mathcal{I}}$. Notation:

- **0** = χ_{\emptyset} is the zero-configuration;
- $\mathbf{1} = \chi_{\mathcal{P}([k]) \setminus \{\emptyset\}}$ is the one-configuration;
- $\chi_{\mathcal{I}}$ is an almost-zero k-configuration if $\mathcal{I} = \{I\}$.

Definition

A k-configuration χ is realizable in a group G if there exists subgroups $H_1, \ldots, H_k \leq G$ such that, for every $\emptyset \neq I \subseteq [k]$, $H_I = \bigcap_{i \in I} H_i$ if f.g. $\Leftrightarrow (I)\chi = 0$. Note that $H_{I \cup J} = H_I \cap H_J$.

Definition

A group G is intersection-saturated if every k-configuration is realizable in G.

1. Main results	2. $\mathbb{F}_n \times \mathbb{Z}^m$	 (Un)Realizable k-configs. 00000000 	4. The free case	5. Open questions O	6. Quotient-saturated groups
Outline					

- Our main results
- Pree-times-free-abelian groups
- 3 Realizable / unrealizable k-configurations
- 4 The free case
- Open questions
- 6 Quotient-saturated groups

Free-times-free-abelian groups

 $\mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m = \langle x_1, \ldots, x_n, t_1, \ldots, t_m \mid [x_i, t_j] = 1, [t_i, t_k] = 1 \rangle.$

Normal form: $\forall g \in \mathbb{G}$, $g = w(x_1, \dots, x_n)t_1^{a_1} \cdots t_m^{a_m} = wt^a$, where $\mathbf{a} = (a_1, \dots, a_m) \in \mathbb{Z}^m$. This way, $(ut^a)(vt^b) = uvt^{a+b}$.

Observation

These groups sit in a split short exact sequence; and, for $H \leq \mathbb{G}$,

$$1 \to \mathbb{Z}^m \stackrel{\iota}{\hookrightarrow} \mathbb{G} \stackrel{\pi}{\twoheadrightarrow} \mathbb{F}_n \to 1,$$

$$1 \to L_H = H \cap \mathbb{Z}^m \hookrightarrow H \twoheadrightarrow H\pi \to 1.$$

Moreover, H is finitely generated \Leftrightarrow H π is so.

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

1. Main results $2. \mathbb{F}_n \times \mathbb{Z}^m$ 3. (Un)Realizable *k*-configs. 4. The free case 5. Open questions 6. Quotient-saturated groups 00000 00000 00000 00000 00000 00000 000000

Free-times-free-abelian groups

 $\mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m = \langle x_1, \ldots, x_n, t_1, \ldots, t_m \mid [x_i, t_j] = 1, [t_i, t_k] = 1 \rangle.$

Normal form: $\forall g \in \mathbb{G}, g = w(x_1, \dots, x_n)t_1^{a_1} \cdots t_m^{a_m} = wt^a$, where $\mathbf{a} = (a_1, \dots, a_m) \in \mathbb{Z}^m$. This way, $(ut^a)(vt^b) = uvt^{a+b}$.

Observation

These groups sit in a split short exact sequence; and, for $H \leq \mathbb{G}$,

$$1 \to \mathbb{Z}^m \stackrel{\iota}{\hookrightarrow} \mathbb{G} \stackrel{\pi}{\twoheadrightarrow} \mathbb{F}_n \to 1,$$

$$1 \to L_H = H \cap \mathbb{Z}^m \hookrightarrow H \twoheadrightarrow H\pi \to 1.$$

Moreover, H is finitely generated \Leftrightarrow H π is so.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

 $\mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m = \langle x_1, \ldots, x_n, t_1, \ldots, t_m \mid [x_i, t_j] = 1, [t_i, t_k] = 1 \rangle.$

Normal form: $\forall g \in \mathbb{G}, g = w(x_1, \dots, x_n)t_1^{a_1} \cdots t_m^{a_m} = wt^a$, where $\mathbf{a} = (a_1, \dots, a_m) \in \mathbb{Z}^m$. This way, $(ut^a)(vt^b) = uvt^{a+b}$.

Observation

These groups sit in a split short exact sequence; and, for $H \leq \mathbb{G}$,

$$1 \to \mathbb{Z}^m \stackrel{\iota}{\hookrightarrow} \mathbb{G} \stackrel{\pi}{\twoheadrightarrow} \mathbb{F}_n \to 1,$$

$$1 \to L_H = H \cap \mathbb{Z}^m \hookrightarrow H \twoheadrightarrow H\pi \to 1.$$

Moreover, H is finitely generated \Leftrightarrow H π is so.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ◆ ○ ◆ ○ ◆ ○ ◆

 $\mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m = \langle x_1, \ldots, x_n, t_1, \ldots, t_m \mid [x_i, t_j] = 1, [t_i, t_k] = 1 \rangle.$

Normal form: $\forall g \in \mathbb{G}, g = w(x_1, \dots, x_n)t_1^{a_1} \cdots t_m^{a_m} = wt^a$, where $\mathbf{a} = (a_1, \dots, a_m) \in \mathbb{Z}^m$. This way, $(ut^a)(vt^b) = uvt^{a+b}$.

Observation

These groups sit in a split short exact sequence; and, for $H \leq \mathbb{G}$,

$$1 \to \mathbb{Z}^m \stackrel{\iota}{\hookrightarrow} \mathbb{G} \stackrel{\pi}{\twoheadrightarrow} \mathbb{F}_n \to 1,$$

$$1 \to L_H = H \cap \mathbb{Z}^m \hookrightarrow H \twoheadrightarrow H\pi \to 1.$$

Moreover, H is finitely generated \Leftrightarrow H π is so.

(Un)Realizable k-configs.
 00000000

4. The free case

Open questions

Quotient-saturated groups
 OOO

Free-times-free-abelian groups

Proposition (Delgado-V. '13)

2. $\mathbb{F}_n \times \mathbb{Z}^m$

000000

Every subgroup $H \leq \mathbb{G}$ admits a (computable) basis

$$H = \langle u_1 t^{\mathbf{a}_1}, u_2 t^{\mathbf{a}_2}, \dots, u_r t^{\mathbf{a}_r}; t^{\mathbf{b}_1}, \dots, t^{\mathbf{b}_s} \rangle,$$

where $\{u_1, \ldots, u_r\}$ is a free-basis for $H\pi$, $\mathbf{a}_1, \ldots, \mathbf{a}_r \in \mathbb{Z}^m$, $0 \le r \le \infty$, $\mathbf{b}_1, \ldots, \mathbf{b}_s \in \mathbb{Z}^m$ is an abelian-basis for $L_H = H \cap \mathbb{Z}^m$, and $0 \le s \le m$.

Proposition (Moldavanski)

The groups $F_n \times \mathbb{Z}^m$, $n \ge 2$, $m \ge 1$, are not Howson.

Question

Are them intersection-saturated?... ... no... but collectively yes ...

Theorem (Delgado–Roy–V. '22)

(Un)Realizable k-configs.
 00000000

4. The free case

Open questions

6. Quotient-saturated groups

Free-times-free-abelian groups

Proposition (Delgado-V. '13)

2. $\mathbb{F}_n \times \mathbb{Z}^m$

000000

Every subgroup $H \leq \mathbb{G}$ admits a (computable) basis

$$H = \langle u_1 t^{\mathbf{a}_1}, u_2 t^{\mathbf{a}_2}, \dots, u_r t^{\mathbf{a}_r}; t^{\mathbf{b}_1}, \dots, t^{\mathbf{b}_s} \rangle,$$

where $\{u_1, \ldots, u_r\}$ is a free-basis for $H\pi$, $\mathbf{a}_1, \ldots, \mathbf{a}_r \in \mathbb{Z}^m$, $0 \le r \le \infty$, $\mathbf{b}_1, \ldots, \mathbf{b}_s \in \mathbb{Z}^m$ is an abelian-basis for $L_H = H \cap \mathbb{Z}^m$, and $0 \le s \le m$.

Proposition (Moldavanski)

The groups $F_n \times \mathbb{Z}^m$, $n \ge 2$, $m \ge 1$, are not Howson.

Question

Are them intersection-saturated?... ... no... but collectively yes ...

Theorem (Delgado–Roy–V. '22)

(Un)Realizable k-configs.
 00000000

4. The free case

Open questions

6. Quotient-saturated groups

Free-times-free-abelian groups

Proposition (Delgado-V. '13)

2. $\mathbb{F}_n \times \mathbb{Z}^m$

000000

Every subgroup $H \leq \mathbb{G}$ admits a (computable) basis

$$H = \langle u_1 t^{\mathbf{a}_1}, u_2 t^{\mathbf{a}_2}, \dots, u_r t^{\mathbf{a}_r}; t^{\mathbf{b}_1}, \dots, t^{\mathbf{b}_s} \rangle,$$

where $\{u_1, \ldots, u_r\}$ is a free-basis for $H\pi$, $\mathbf{a}_1, \ldots, \mathbf{a}_r \in \mathbb{Z}^m$, $0 \le r \le \infty$, $\mathbf{b}_1, \ldots, \mathbf{b}_s \in \mathbb{Z}^m$ is an abelian-basis for $L_H = H \cap \mathbb{Z}^m$, and $0 \le s \le m$.

Proposition (Moldavanski)

The groups $F_n \times \mathbb{Z}^m$, $n \ge 2$, $m \ge 1$, are not Howson.

Question

Are them intersection-saturated?... ... no... but collectively yes ...

Theorem (Delgado–Roy–V. '22

(Un)Realizable k-configs.
 00000000

4. The free case

Open questions

6. Quotient-saturated groups

Free-times-free-abelian groups

Proposition (Delgado-V. '13)

2. $\mathbb{F}_n \times \mathbb{Z}^m$

000000

Every subgroup $H \leq \mathbb{G}$ admits a (computable) basis

$$H = \langle u_1 t^{\mathbf{a}_1}, u_2 t^{\mathbf{a}_2}, \dots, u_r t^{\mathbf{a}_r}; t^{\mathbf{b}_1}, \dots, t^{\mathbf{b}_s} \rangle,$$

where $\{u_1, \ldots, u_r\}$ is a free-basis for $H\pi$, $\mathbf{a}_1, \ldots, \mathbf{a}_r \in \mathbb{Z}^m$, $0 \le r \le \infty$, $\mathbf{b}_1, \ldots, \mathbf{b}_s \in \mathbb{Z}^m$ is an abelian-basis for $L_H = H \cap \mathbb{Z}^m$, and $0 \le s \le m$.

Proposition (Moldavanski)

The groups $F_n \times \mathbb{Z}^m$, $n \ge 2$, $m \ge 1$, are not Howson.

Question

Are them intersection-saturated?... ... no... but collectively yes ...

Theorem (Delgado–Roy–V. '22)

(Un)Realizable k-configs.
 00000000

4. The free case

Open questions

6. Quotient-saturated groups

Free-times-free-abelian groups

Proposition (Delgado-V. '13)

2. $\mathbb{F}_n \times \mathbb{Z}^m$

000000

Every subgroup $H \leq \mathbb{G}$ admits a (computable) basis

$$H = \langle u_1 t^{\mathbf{a}_1}, u_2 t^{\mathbf{a}_2}, \dots, u_r t^{\mathbf{a}_r}; t^{\mathbf{b}_1}, \dots, t^{\mathbf{b}_s} \rangle,$$

where $\{u_1, \ldots, u_r\}$ is a free-basis for $H\pi$, $\mathbf{a}_1, \ldots, \mathbf{a}_r \in \mathbb{Z}^m$, $0 \le r \le \infty$, $\mathbf{b}_1, \ldots, \mathbf{b}_s \in \mathbb{Z}^m$ is an abelian-basis for $L_H = H \cap \mathbb{Z}^m$, and $0 \le s \le m$.

Proposition (Moldavanski)

The groups $F_n \times \mathbb{Z}^m$, $n \ge 2$, $m \ge 1$, are not Howson.

Question

Are them intersection-saturated?... ... no... but collectively yes ...

Theorem (Delgado–Roy–V. '22)

(Un)Realizable k-configs.
 00000000

4. The free case

Open questions

6. Quotient-saturated groups

Free-times-free-abelian groups

Proposition (Delgado-V. '13)

2. $\mathbb{F}_n \times \mathbb{Z}^m$

000000

Every subgroup $H \leq \mathbb{G}$ admits a (computable) basis

$$H = \langle u_1 t^{\mathbf{a}_1}, u_2 t^{\mathbf{a}_2}, \dots, u_r t^{\mathbf{a}_r}; t^{\mathbf{b}_1}, \dots, t^{\mathbf{b}_s} \rangle,$$

where $\{u_1, \ldots, u_r\}$ is a free-basis for $H\pi$, $\mathbf{a}_1, \ldots, \mathbf{a}_r \in \mathbb{Z}^m$, $0 \le r \le \infty$, $\mathbf{b}_1, \ldots, \mathbf{b}_s \in \mathbb{Z}^m$ is an abelian-basis for $L_H = H \cap \mathbb{Z}^m$, and $0 \le s \le m$.

Proposition (Moldavanski)

The groups $F_n \times \mathbb{Z}^m$, $n \ge 2$, $m \ge 1$, are not Howson.

Question

Are them intersection-saturated?... ... no... but collectively yes ...

Theorem (Delgado–Roy–V. '22)

(Un)Realizable k-configs.
 0000000

4. The free case

Open questions

6. Quotient-saturated groups

Free-times-free-abelian groups

Proposition (Delgado-V. '13)

2. $\mathbb{F}_n \times \mathbb{Z}^m$

000000

Every subgroup $H \leq \mathbb{G}$ admits a (computable) basis

$$H = \langle u_1 t^{\mathbf{a}_1}, u_2 t^{\mathbf{a}_2}, \dots, u_r t^{\mathbf{a}_r}; t^{\mathbf{b}_1}, \dots, t^{\mathbf{b}_s} \rangle,$$

where $\{u_1, \ldots, u_r\}$ is a free-basis for $H\pi$, $\mathbf{a}_1, \ldots, \mathbf{a}_r \in \mathbb{Z}^m$, $0 \le r \le \infty$, $\mathbf{b}_1, \ldots, \mathbf{b}_s \in \mathbb{Z}^m$ is an abelian-basis for $L_H = H \cap \mathbb{Z}^m$, and $0 \le s \le m$.

Proposition (Moldavanski)

The groups $F_n \times \mathbb{Z}^m$, $n \ge 2$, $m \ge 1$, are not Howson.

Question

Are them intersection-saturated?... ... no... but collectively yes ...

Theorem (Delgado–Roy–V. '22)

(Un)Realizable k-configs.
 00000000

4. The free case

Open questions

6. Quotient-saturated groups

Free-times-free-abelian groups

Theorem (Delgado-V. '13)

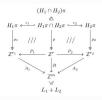
2. $\mathbb{F}_n \times \mathbb{Z}^m$

000000

There is an algorithm which, on input (a set of generators for) $H, K \leq_{fg} \mathbb{G}$, decides whether $H \cap K$ is f.g. and, if so, computes a basis for it.

(Sketch of proof)

Given (basis for) subgroups $H_1, H_2 \leq_{fg} \mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$, consider



A calculation shows that $(H_1 \cap H_2)\pi = (L_1 + L_2)R^{-1}\rho^{-1} \leq H_1\pi \cap H_2\pi$. So, $H_1 \cap H_2$ is f.g. $\Leftrightarrow \begin{cases} r = 0, 1 \text{ or} \\ r \geq 2 \text{ and } (H_1 \cap H_2)\pi \leq_{fi} H_1\pi \cap H_2\pi. \end{cases}$

200

(Un)Realizable k-configs.
 00000000

4. The free case

Open questions

6. Quotient-saturated groups

Free-times-free-abelian groups

Theorem (Delgado-V. '13)

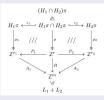
2. $\mathbb{F}_n \times \mathbb{Z}^m$

000000

There is an algorithm which, on input (a set of generators for) $H, K \leq_{fg} \mathbb{G}$, decides whether $H \cap K$ is f.g. and, if so, computes a basis for it.

(Sketch of proof)

Given (basis for) subgroups $H_1, H_2 \leqslant_{fg} \mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$, consider



A calculation shows that $(H_1 \cap H_2)\pi = (L_1 + L_2)R^{-1}\rho^{-1} \leq H_1\pi \cap H_2\pi$. So, $H_1 \cap H_2$ is f.g. $\Leftrightarrow \begin{cases} r = 0, 1 \text{ or} \\ r \geq 2 \text{ and } (H_1 \cap H_2)\pi \leq_{fi} H_1\pi \cap H_2\pi. \end{cases}$

(Un)Realizable k-configs.
 00000000

4. The free case

Open question:

6. Quotient-saturated groups

Free-times-free-abelian groups

2. $\mathbb{F}_n \times \mathbb{Z}^m$

000000

Theorem (Delgado-Roy-V. '22)

There is an algorithm which, on input (a set of generators for) $H_1, \ldots, H_k \leq_{fg} \mathbb{G}$, decides whether $H_1 \cap \cdots \cap H_k$ is f.g. and, if so, computes a basis for it.

Proposition

Let $M', M'' \leq \mathbb{F}_n$ be such that $\langle M', M'' \rangle = M' * M''$. Then, for any $H'_1, \ldots, H'_k \leq M' \leq \mathbb{F}_n$ and $H''_1, \ldots, H''_k \leq M'' \leq \mathbb{F}_n$,

$$\bigcap_{j=1}^{k} \langle H'_j, H''_j \rangle = \Big\langle \bigcap_{j=1}^{k} H'_j, \bigcap_{j=1}^{k} H''_j \Big\rangle.$$

・ロト・西ト・ヨト ・ヨー シック

(Un)Realizable k-configs.
 00000000

4. The free case

Open questions

6. Quotient-saturated groups

Free-times-free-abelian groups

2. $\mathbb{F}_n \times \mathbb{Z}^m$

000000

Theorem (Delgado-Roy-V. '22)

There is an algorithm which, on input (a set of generators for) $H_1, \ldots, H_k \leq_{fg} \mathbb{G}$, decides whether $H_1 \cap \cdots \cap H_k$ is f.g. and, if so, computes a basis for it.

Proposition

Let $M', M'' \leq \mathbb{F}_n$ be such that $\langle M', M'' \rangle = M' * M''$. Then, for any $H'_1, \ldots, H'_k \leq M' \leq \mathbb{F}_n$ and $H''_1, \ldots, H''_k \leq M'' \leq \mathbb{F}_n$,

$$\bigcap_{j=1}^{k} \langle H'_{j}, H''_{j} \rangle = \Big\langle \bigcap_{j=1}^{k} H'_{j}, \bigcap_{j=1}^{k} H''_{j} \Big\rangle.$$

・ロト・西ト・ヨト ・ヨー シック

(Un)Realizable k-configs.
 00000000

4. The free case

Open questions

6. Quotient-saturated groups

Free-times-free-abelian groups

Observation

2. $\mathbb{F}_n \times \mathbb{Z}^m$

000000

The same is not true in $\mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$, even with $M', M'' \leq \mathbb{G}$ in strongly complementary position, i.e., $\langle M'\pi, M''\pi \rangle = M'\pi * M''\pi$ and $\langle M'\tau, M''\tau \rangle = M'\tau \oplus M''\tau$.

Example

 $\begin{array}{l} \textit{Consider} \ \mathbb{G} = \mathbb{F}_4 \times \mathbb{Z}^2 = \langle x_1, x_2, x_3, x_4 \mid - \rangle \times \langle t_1, t_2 \mid [t_1, t_2] \rangle, \\ \textit{M'} = \langle x_1, x_2, t^{(1,0)} \rangle, \textit{M''} = \langle x_3, x_4, t^{(0,1)} \rangle, \textit{and the respective subgroups} \\ \bullet \ \textit{H}_1' = \langle x_1, x_2 \rangle, \quad \textit{H}_2' = \langle x_1 t^{(1,0)}, x_2 \rangle \leqslant \textit{M'}, \textit{and} \\ \bullet \ \textit{H}_1'' = \langle x_3, x_4 \rangle, \quad \textit{H}_2'' = \langle x_3 t^{(0,1)}, x_4 \rangle \leqslant \textit{M''}. \end{array}$

We have $H'_1 \cap H'_2 = \langle x_1^{-i} x_2 x_1^i, i \in \mathbb{Z} \rangle$, $H''_1 \cap H''_2 = \langle x_3^{-i} x_4 x_3^i, i \in \mathbb{Z} \rangle$, and $\langle H'_1 \cap H'_2, H''_1 \cap H''_2 \rangle = (H'_1 \cap H'_2) * (H''_1 \cap H''_2) = \langle x_1^{-i} x_2 x_1^i, x_3^{-i} x_4 x_3^i | i \in \mathbb{Z} \rangle$, which does not contain $x_2^{-1} x_2 x_3 \in \langle H'_1, H''_1 \rangle = \langle x_1, x_2, x_3, x_4 \rangle$

 $\in \langle H'_2, H''_2 \rangle = \langle x_1 t^{(1,0)}, x_2, x_3 t^{(0,1)}, x_4 \rangle.$

(Un)Realizable k-configs.
 00000000

4. The free case

Open questions

6. Quotient-saturated groups

Free-times-free-abelian groups

Observation

2. $\mathbb{F}_n \times \mathbb{Z}^m$

000000

The same is not true in $\mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$, even with $M', M'' \leq \mathbb{G}$ in strongly complementary position, i.e., $\langle M'\pi, M''\pi \rangle = M'\pi * M''\pi$ and $\langle M'\tau, M''\tau \rangle = M'\tau \oplus M''\tau$.

Example

 $\begin{array}{l} \textit{Consider } \mathbb{G} = \mathbb{F}_4 \times \mathbb{Z}^2 = \langle x_1, x_2, x_3, x_4 \mid - \rangle \times \langle t_1, t_2 \mid [t_1, t_2] \rangle, \\ \textit{M'} = \langle x_1, x_2, t^{(1,0)} \rangle, \textit{M''} = \langle x_3, x_4, t^{(0,1)} \rangle, \textit{and the respective subgroups} \\ \bullet \textit{H'}_1 = \langle x_1, x_2 \rangle, \textit{H'}_2 = \langle x_1 t^{(1,0)}, x_2 \rangle \leqslant \textit{M'}, \textit{and} \\ \bullet \textit{H'}_1 = \langle x_3, x_4 \rangle, \textit{H'}_2 = \langle x_3 t^{(0,1)}, x_4 \rangle \leqslant \textit{M''}. \end{array}$

We have $H'_1 \cap H'_2 = \langle x_1^{-i}x_2x_1^i, i \in \mathbb{Z} \rangle$, $H''_1 \cap H''_2 = \langle x_3^{-i}x_4x_3^i, i \in \mathbb{Z} \rangle$, and

 $\langle H'_1 \cap H'_2, \ H''_1 \cap H''_2 \rangle = (H'_1 \cap H'_2) * (H''_1 \cap H''_2) = \langle x_1^{-i} x_2 x_1^i, \ x_3^{-i} x_4 x_3^i \mid i \in \mathbb{Z} \rangle,$

which does not contain $x_3^{-1}x_2x_3 \in \langle H'_1, H''_1 \rangle = \langle x_1, x_2, x_3, x_4 \rangle$ $\in \langle H'_0, H''_0 \rangle = \langle x_1t^{(1,0)}, x_2, x_3t^{(0,1)}, t_1 \rangle$

(Un)Realizable k-configs.
 00000000

4. The free case

Open questions

6. Quotient-saturated groups

Free-times-free-abelian groups

Observation

2. $\mathbb{F}_n \times \mathbb{Z}^m$

000000

The same is not true in $\mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$, even with $M', M'' \leq \mathbb{G}$ in strongly complementary position, i.e., $\langle M'\pi, M''\pi \rangle = M'\pi * M''\pi$ and $\langle M'\tau, M''\tau \rangle = M'\tau \oplus M''\tau$.

Example

Consider $\mathbb{G} = \mathbb{F}_4 \times \mathbb{Z}^2 = \langle x_1, x_2, x_3, x_4 \mid - \rangle \times \langle t_1, t_2 \mid [t_1, t_2] \rangle$, $M' = \langle x_1, x_2, t^{(1,0)} \rangle$, $M'' = \langle x_3, x_4, t^{(0,1)} \rangle$, and the respective subgroups • $H'_1 = \langle x_1, x_2 \rangle$, $H'_2 = \langle x_1 t^{(1,0)}, x_2 \rangle \leqslant M'$, and • $H''_1 = \langle x_3, x_4 \rangle$, $H''_2 = \langle x_3 t^{(0,1)}, x_4 \rangle \leqslant M''$.

We have $H'_1 \cap H'_2 = \langle x_1^{-i} x_2 x_1^i, i \in \mathbb{Z} \rangle$, $H''_1 \cap H''_2 = \langle x_3^{-i} x_4 x_3^i, i \in \mathbb{Z} \rangle$, and

 $\langle H'_1 \cap H'_2, \ H''_1 \cap H''_2 \rangle = (H'_1 \cap H'_2) * (H''_1 \cap H''_2) = \langle x_1^{-i} x_2 x_1^i, \ x_3^{-i} x_4 x_3^i \mid i \in \mathbb{Z} \rangle.$

which does not contain $x_3^{-1}x_2x_3 \in \langle H'_1, H''_1 \rangle = \langle x_1, x_2, x_3, x_4 \rangle$ $\in \langle H'_2, H''_2 \rangle = \langle x_1t^{(1,0)}, x_2, x_3t^{(0,1)}, t_2 \rangle$

(Un)Realizable k-configs.
 00000000

4. The free case

Open questions

6. Quotient-saturated groups

Free-times-free-abelian groups

Observation

2. $\mathbb{F}_n \times \mathbb{Z}^m$

000000

The same is not true in $\mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$, even with $M', M'' \leq \mathbb{G}$ in strongly complementary position, i.e., $\langle M'\pi, M''\pi \rangle = M'\pi * M''\pi$ and $\langle M'\tau, M''\tau \rangle = M'\tau \oplus M''\tau$.

Example

$$\begin{array}{l} \textit{Consider} \ \mathbb{G} = \mathbb{F}_4 \times \mathbb{Z}^2 = \langle x_1, x_2, x_3, x_4 \mid - \rangle \times \langle t_1, t_2 \mid [t_1, t_2] \rangle, \\ \textit{M'} = \langle x_1, x_2, t^{(1,0)} \rangle, \textit{M''} = \langle x_3, x_4, t^{(0,1)} \rangle, \textit{and the respective subgroups} \\ \bullet \ \textit{H}_1' = \langle x_1, x_2 \rangle, \quad \textit{H}_2' = \langle x_1 t^{(1,0)}, x_2 \rangle \leqslant \textit{M'}, \textit{and} \\ \bullet \ \textit{H}_1'' = \langle x_3, x_4 \rangle, \quad \textit{H}_2'' = \langle x_3 t^{(0,1)}, x_4 \rangle \leqslant \textit{M''}. \end{array}$$

We have $H'_1 \cap H'_2 = \langle x_1^{-i} x_2 x_1^i, i \in \mathbb{Z} \rangle$, $H''_1 \cap H''_2 = \langle x_3^{-i} x_4 x_3^i, i \in \mathbb{Z} \rangle$, and $\langle H'_1 \cap H'_2, H''_1 \cap H''_2 \rangle = (H'_1 \cap H'_2) * (H''_1 \cap H''_2) = \langle x_1^{-i} x_2 x_1^i, x_3^{-i} x_4 x_3^i | i \in \mathbb{Z} \rangle$, which does not contain $x_3^{-1} x_2 x_3 \in \langle H'_1, H''_1 \rangle = \langle x_1, x_2, x_3, x_4 \rangle$ $\in \langle H'_2, H''_2 \rangle = \langle x_1 t^{(1,0)}, x_2, x_3 t^{(0,1)}, x_4 \rangle$.

(Un)Realizable k-configs.
 00000000

4. The free case

Open questions

6. Quotient-saturated groups

Free-times-free-abelian groups

Observation

2. $\mathbb{F}_n \times \mathbb{Z}^m$

000000

The same is not true in $\mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$, even with $M', M'' \leq \mathbb{G}$ in strongly complementary position, i.e., $\langle M'\pi, M''\pi \rangle = M'\pi * M''\pi$ and $\langle M'\tau, M''\tau \rangle = M'\tau \oplus M''\tau$.

Example

$$\begin{array}{l} \textit{Consider} \ \mathbb{G} = \mathbb{F}_4 \times \mathbb{Z}^2 = \langle x_1, x_2, x_3, x_4 \mid - \rangle \times \langle t_1, t_2 \mid [t_1, t_2] \rangle, \\ \textit{M'} = \langle x_1, x_2, t^{(1,0)} \rangle, \textit{M''} = \langle x_3, x_4, t^{(0,1)} \rangle, \textit{ and the respective subgroups} \\ \bullet \ \textit{H}_1' = \langle x_1, x_2 \rangle, \quad \textit{H}_2' = \langle x_1 t^{(1,0)}, x_2 \rangle \leqslant \textit{M', and} \\ \bullet \ \textit{H}_1'' = \langle x_3, x_4 \rangle, \quad \textit{H}_2'' = \langle x_3 t^{(0,1)}, x_4 \rangle \leqslant \textit{M''}. \end{array}$$

We have $H'_1 \cap H'_2 = \langle x_1^{-i}x_2x_1^i, i \in \mathbb{Z} \rangle$, $H''_1 \cap H''_2 = \langle x_3^{-i}x_4x_3^i, i \in \mathbb{Z} \rangle$, and

 $\langle H'_1 \cap H'_2, \ H''_1 \cap H''_2 \rangle = (H'_1 \cap H'_2) * (H''_1 \cap H''_2) = \langle x_1^{-i} x_2 x_1^i, \ x_3^{-i} x_4 x_3^i \mid i \in \mathbb{Z} \rangle$

which does not contain $x_3^{-1}x_2x_3 \in \langle H'_1, H''_1 \rangle = \langle x_1, x_2, x_3, x_4 \rangle$ $\in \langle H'_2, H''_2 \rangle = \langle x_1 t^{(1,0)} x_2, x_2 t^{(0,1)} \rangle$

(Un)Realizable k-configs.
 00000000

4. The free case

Open questions

6. Quotient-saturated groups

Free-times-free-abelian groups

Observation

2. $\mathbb{F}_n \times \mathbb{Z}^m$

000000

The same is not true in $\mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$, even with $M', M'' \leq \mathbb{G}$ in strongly complementary position, i.e., $\langle M'\pi, M''\pi \rangle = M'\pi * M''\pi$ and $\langle M'\tau, M''\tau \rangle = M'\tau \oplus M''\tau$.

Example

$$\begin{array}{l} \textit{Consider} \ \mathbb{G} = \mathbb{F}_4 \times \mathbb{Z}^2 = \langle x_1, x_2, x_3, x_4 \mid - \rangle \times \langle t_1, t_2 \mid [t_1, t_2] \rangle, \\ \textit{M'} = \langle x_1, x_2, t^{(1,0)} \rangle, \textit{M''} = \langle x_3, x_4, t^{(0,1)} \rangle, \textit{ and the respective subgroups} \\ \bullet \ \textit{H}_1' = \langle x_1, x_2 \rangle, \quad \textit{H}_2' = \langle x_1 t^{(1,0)}, x_2 \rangle \leqslant \textit{M', and} \\ \bullet \ \textit{H}_1'' = \langle x_3, x_4 \rangle, \quad \textit{H}_2'' = \langle x_3 t^{(0,1)}, x_4 \rangle \leqslant \textit{M''}. \end{array}$$

We have $H'_1 \cap H'_2 = \langle x_1^{-i} x_2 x_1^i, i \in \mathbb{Z} \rangle$, $H''_1 \cap H''_2 = \langle x_3^{-i} x_4 x_3^i, i \in \mathbb{Z} \rangle$, and

 $\langle H'_1 \cap H'_2, \ H''_1 \cap H''_2 \rangle = (H'_1 \cap H'_2) * (H''_1 \cap H''_2) = \langle x_1^{-i} x_2 x_1^i, \ x_3^{-i} x_4 x_3^i \mid i \in \mathbb{Z} \rangle,$

which does not contain $x_3^{-1}x_2x_3 \in \langle H'_1, H''_1 \rangle = \langle x_1, x_2, x_3, x_4 \rangle$ $\in \langle H'_2, H''_2 \rangle = \langle x_1t^{(1,0)}, x_2, x_3t^{(0,1)}, x_4 \rangle$

(Un)Realizable k-configs.
 00000000

4. The free case

Open questions

 Quotient-saturated groups 000

Free-times-free-abelian groups

Observation

2. $\mathbb{F}_n \times \mathbb{Z}^m$

000000

The same is not true in $\mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$, even with $M', M'' \leq \mathbb{G}$ in strongly complementary position, i.e., $\langle M'\pi, M''\pi \rangle = M'\pi * M''\pi$ and $\langle M'\tau, M''\tau \rangle = M'\tau \oplus M''\tau$.

Example

$$\begin{array}{l} \textit{Consider} \ \mathbb{G} = \mathbb{F}_4 \times \mathbb{Z}^2 = \langle x_1, x_2, x_3, x_4 \mid - \rangle \times \langle t_1, t_2 \mid [t_1, t_2] \rangle, \\ \textit{M'} = \langle x_1, x_2, t^{(1,0)} \rangle, \textit{M''} = \langle x_3, x_4, t^{(0,1)} \rangle, \textit{and the respective subgroups} \\ \bullet \ \textit{H}_1' = \langle x_1, x_2 \rangle, \quad \textit{H}_2' = \langle x_1 t^{(1,0)}, x_2 \rangle \leqslant \textit{M'}, \textit{and} \\ \bullet \ \textit{H}_1'' = \langle x_3, x_4 \rangle, \quad \textit{H}_2'' = \langle x_3 t^{(0,1)}, x_4 \rangle \leqslant \textit{M''}. \end{array}$$

We have $H'_1 \cap H'_2 = \langle x_1^{-i} x_2 x_1^i, i \in \mathbb{Z} \rangle$, $H''_1 \cap H''_2 = \langle x_3^{-i} x_4 x_3^i, i \in \mathbb{Z} \rangle$, and $\langle H'_1 \cap H'_2, H''_1 \cap H''_2 \rangle = (H'_1 \cap H'_2) * (H''_1 \cap H''_2) = \langle x_1^{-i} x_2 x_1^i, x_3^{-i} x_4 x_3^i | i \in \mathbb{Z} \rangle$,

which does not contain $x_3^{-1}x_2x_3 \in \langle H'_1, H''_1 \rangle = \langle x_1, x_2, x_3, x_4 \rangle$ $\in \langle H'_2, H''_2 \rangle = \langle x_1t^{(1,0)}, x_2, x_3t^{(0,1)}, x_4 \rangle.$

(Un)Realizable k-configs.
 00000000

4. The free case

Open questions

6. Quotient-saturated groups

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Free-times-free-abelian groups

Theorem

2. $\mathbb{F}_n \times \mathbb{Z}^m$

00000

Let $H'_1, \ldots, H'_k \leq \mathbb{G}' = \mathbb{F}_{n'} \times \mathbb{Z}^{m'}$ and $H''_1, \ldots, H''_k \leq \mathbb{G}'' = \mathbb{F}_{n''} \times \mathbb{Z}^{m''}$ be $k \geq 2$ subgroups of G' and G'', resp. Write $r' = \operatorname{rk} \left(\bigcap_{j=1}^k H'_j \pi \right)$, $r'' = \operatorname{rk} \left(\bigcap_{j=1}^k H''_j \pi \right)$, and consider $\langle H'_1, H''_1 \rangle, \ldots, \langle H'_k, H''_k \rangle \leq \mathbb{G}' \circledast \mathbb{G}'' =$ $= (\mathbb{F}_{n'} * \mathbb{F}_{n''}) \times (\mathbb{Z}^{m'} \oplus \mathbb{Z}^{m''})$. Then, if $\min(r', r'') \neq 1$:

 $\bigcap_{j=1}^{k} \langle H'_{j}, H''_{j} \rangle$ is f.g. \Leftrightarrow both $\bigcap_{j=1}^{k} H'_{j}$ and $\bigcap_{j=1}^{k} H''_{j}$ are f.g.

Observation

Again, not true without the hypothesis $min(r', r'') \neq 1$.

(Un)Realizable k-configs.
 00000000

4. The free case

Open questions

Quotient-saturated groups
 OOO

(日) (日) (日) (日) (日) (日) (日)

Free-times-free-abelian groups

Theorem

2. $\mathbb{F}_n \times \mathbb{Z}^m$

00000

Let $H'_1, \ldots, H'_k \leq \mathbb{G}' = \mathbb{F}_{n'} \times \mathbb{Z}^{m'}$ and $H''_1, \ldots, H''_k \leq \mathbb{G}'' = \mathbb{F}_{n''} \times \mathbb{Z}^{m''}$ be $k \geq 2$ subgroups of G' and G'', resp. Write $r' = \operatorname{rk} \left(\bigcap_{j=1}^k H'_j \pi \right)$, $r'' = \operatorname{rk} \left(\bigcap_{j=1}^k H''_j \pi \right)$, and consider $\langle H'_1, H''_1 \rangle, \ldots, \langle H'_k, H''_k \rangle \leq \mathbb{G}' \circledast \mathbb{G}'' =$ $= (\mathbb{F}_{n'} * \mathbb{F}_{n''}) \times (\mathbb{Z}^{m'} \oplus \mathbb{Z}^{m''})$. Then, if $\min(r', r'') \neq 1$:

 $\bigcap_{j=1}^{k} \langle H'_{j}, H''_{j} \rangle$ is f.g. \Leftrightarrow both $\bigcap_{j=1}^{k} H'_{j}$ and $\bigcap_{j=1}^{k} H''_{j}$ are f.g.

Observation

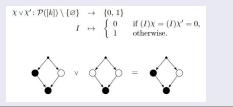
Again, not true without the hypothesis $min(r', r'') \neq 1$.

1. Main results	2. F _n × ℤ ^m 000000	3. (Un)Realizable k-configs.	4. The free case	5. Open questions O	 Quotient-saturated groups OOO
Outline	e				

- Our main results
- 2 Free-times-free-abelian groups
- 3 Realizable / unrealizable k-configurations
- 4 The free case
- Open questions
- 6 Quotient-saturated groups

Definition

Define the join of two k-configurations χ and χ' as



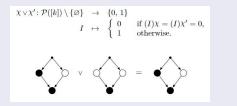
Proposition

Let χ' (resp. χ'') be k-config. realized by $H'_1, \ldots, H'_k \leq \mathbb{G}' = \mathbb{F}_{n'} \times \mathbb{Z}^{m'}$ (resp. $H''_1, \ldots, H''_k \leq \mathbb{G}'' = \mathbb{F}_{n''} \times \mathbb{Z}^{m''}$) with $r'_l = \operatorname{rk}\left(\bigcap_{i \in I} H'_i \pi\right) \neq 1$ (resp. $r''_l \neq 1$) $\forall I \subseteq [k]$ with $|I| \geq 2$. Then, $\chi' \vee \chi''$ is realizable in $\mathbb{G}' \circledast \mathbb{G}'' = \mathbb{F}_{n'+n''} \times \mathbb{Z}^{m'+m''}$ by $H_1 = \langle H'_1, H''_1 \rangle, \ldots, H_k = \langle H'_k, H''_k \rangle$, again satisfying $r_l \neq 1 \forall I \subseteq [k]$ with $|I| \geq 2$.

1. Main results	2. ⊮ _n × ℤ ^m 000000	3. (Un)Realizable k-configs. ●0000000	4. The free case	5. Open questions O	6. Quotient-saturated groups		
Positiv	Positive results						

Definition

Define the join of two k-configurations χ and χ' as



Proposition

Let χ' (resp. χ'') be k-config. realized by $H'_1, \ldots, H'_k \leq \mathbb{G}' = \mathbb{F}_{n'} \times \mathbb{Z}^{m'}$ (resp. $H''_1, \ldots, H''_k \leq \mathbb{G}'' = \mathbb{F}_{n''} \times \mathbb{Z}^{m''}$) with $r'_l = \operatorname{rk} \left(\bigcap_{i \in I} H'_i \pi \right) \neq 1$ (resp. $r''_l \neq 1$) $\forall I \subseteq [k]$ with $|I| \geq 2$. Then, $\chi' \vee \chi''$ is realizable in $\mathbb{G}' \circledast \mathbb{G}'' = \mathbb{F}_{n'+n''} \times \mathbb{Z}^{m'+m''}$ by $H_1 = \langle H'_1, H''_1 \rangle, \ldots, H_k = \langle H'_k, H''_k \rangle$, again satisfying $r_l \neq 1 \forall I \subseteq [k]$ with $|I| \geq 2$.

Positiv	o roculi	e			
1. Main results 00000	2. $\mathbb{F}_n \times \mathbb{Z}^m$ 000000	 (Un)Realizable k-configs. 	4. The free case	5. Open questions O	 Quotient-saturated groups OOO

Proposition

The k-config. $\chi_{[k]}$ is realizable in $\mathbb{F}_n \times \mathbb{Z}^{k-1}$.

(Sketch of proof)

$$H_{1} = \langle x, y; t^{\mathbf{e}_{2}}, \dots, t^{\mathbf{e}_{k-1}} \rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1},$$

$$H_{2} = \langle x, y; t^{\mathbf{e}_{1}}, t^{\mathbf{e}_{3}}, \dots, t^{\mathbf{e}_{k-1}} \rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1},$$

$$\vdots$$

$$H_{k-1} = \langle x, y; t^{\mathbf{e}_{1}}, \dots, t^{\mathbf{e}_{k-2}} \rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1},$$

$$H_{k} = \langle x, yt^{\mathbf{e}_{1}}; t^{\mathbf{e}_{2}-\mathbf{e}_{1}}, \dots, t^{\mathbf{e}_{k-1}-\mathbf{e}_{1}} \rangle = \langle x, yt^{\mathbf{e}_{1}}, \dots, yt^{\mathbf{e}_{k-1}} \rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1}$$

Corollary

Any almost-zero k-config. χ_{l_0} is realizable in $\mathbb{F}_n \times \mathbb{Z}^{|l_0|-1}$ by subgroups H_1, \ldots, H_k further satisfying rk $(\bigcap_{i \in I} H_i \pi) \neq 1$, for every $\emptyset \neq I \subseteq [k]$.

	e result		00000	U	000
1. Main results	2. ⊮ _n × ℤ ^m 000000	 Un)Realizable k-configs. 	4. The free case	5. Open questions	6. Quotient-saturated groups

Proposition

The k-config. $\chi_{[k]}$ is realizable in $\mathbb{F}_n \times \mathbb{Z}^{k-1}$.

(Sketch of proof)

$$\begin{aligned} H_1 &= \langle x, y; t^{\mathbf{e}_2}, \dots, t^{\mathbf{e}_{k-1}} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^{k-1}, \\ H_2 &= \langle x, y; t^{\mathbf{e}_1}, t^{\mathbf{e}_3}, \dots, t^{\mathbf{e}_{k-1}} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^{k-1}, \\ &\vdots \\ H_{k-1} &= \langle x, y; t^{\mathbf{e}_1}, \dots, t^{\mathbf{e}_{k-2}} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^{k-1}, \\ H_k &= \langle x, yt^{\mathbf{e}_1}; t^{\mathbf{e}_2 - \mathbf{e}_1}, \dots, t^{\mathbf{e}_{k-1} - \mathbf{e}_1} \rangle = \langle x, yt^{\mathbf{e}_1}, \dots, yt^{\mathbf{e}_{k-1}} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^{k-1} \end{aligned}$$

Corollary

Any almost-zero k-config. χ_{l_0} is realizable in $\mathbb{F}_n \times \mathbb{Z}^{|l_0|-1}$ by subgroups H_1, \ldots, H_k further satisfying rk $(\bigcap_{i \in I} H_i \pi) \neq 1$, for every $\emptyset \neq I \subseteq [k]$.

	e result		00000	U	000
1. Main results	2. ⊮ _n × ℤ ^m 000000	 Un)Realizable k-configs. 	4. The free case	5. Open questions	6. Quotient-saturated groups

Proposition

The k-config. $\chi_{[k]}$ is realizable in $\mathbb{F}_n \times \mathbb{Z}^{k-1}$.

(Sketch of proof)

$$\begin{aligned} H_1 &= \langle x, y; t^{\mathbf{e}_2}, \dots, t^{\mathbf{e}_{k-1}} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^{k-1}, \\ H_2 &= \langle x, y; t^{\mathbf{e}_1}, t^{\mathbf{e}_3}, \dots, t^{\mathbf{e}_{k-1}} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^{k-1}, \\ &\vdots \\ H_{k-1} &= \langle x, y; t^{\mathbf{e}_1}, \dots, t^{\mathbf{e}_{k-2}} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^{k-1}, \\ H_k &= \langle x, yt^{\mathbf{e}_1}; t^{\mathbf{e}_2 - \mathbf{e}_1}, \dots, t^{\mathbf{e}_{k-1} - \mathbf{e}_1} \rangle = \langle x, yt^{\mathbf{e}_1}, \dots, yt^{\mathbf{e}_{k-1}} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^{k-1} \end{aligned}$$

Corollary

Any almost-zero k-config. χ_{I_0} is realizable in $\mathbb{F}_n \times \mathbb{Z}^{|I_0|-1}$ by subgroups H_1, \ldots, H_k further satisfying rk $(\bigcap_{i \in I} H_i \pi) \neq 1$, for every $\emptyset \neq I \subseteq [k]$.

1. Main results	2. F _n × ℤ ^m 000000	3. (Un)Realizable k-configs. 00●00000	4. The free case	 Open questions O 	 Quotient-saturated groups OOO
Positiv	e result	S			

Every k-configuration $\chi_{\mathcal{I}}$ is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$, for $n \ge 2$ and $m \ge \sum_{l \in \mathcal{I}} (|l| - 1)$.

(proof)

• Decompose $\chi_{\mathcal{I}} = \chi_{l_1} \vee \cdots \vee \chi_{l_r}$, where $\mathcal{I} = \{l_1, \dots, l_r\}$;

• realize each χ_{I_i} in $\mathbb{F}_2 \times \mathbb{Z}^{|I_i|-1}$, $j = 1, \ldots, r$;

• put together in a strongly complementary way.

Example

Consider $\chi = \chi_{\mathcal{I}}$, where $\mathcal{I} = \{\{1\}, \{2,3\}, \{1,3,4\}, \{2,3,4\}\}$. Let us realize it in $\mathbb{F}_2 \times \mathbb{Z}^m$ for m = 0 + 1 + 2 + 2 = 5. Decomposing χ , we have

 $\chi = \chi_{\{1\}} \lor \chi_{\{2,3\}} \lor \chi_{\{1,3,4\}} \lor \chi_{\{2,3,4\}}.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1. Main results 00000	2. <i>⊾</i> n × <i>ℤ</i> ^m 000000	 (Un)Realizable k-configs. ○○●○○○○○○ 	4. The free case	5. Open questions O	6. Quotient-saturated groups		
Positiv	Positive results						

Every k-configuration $\chi_{\mathcal{I}}$ is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$, for $n \ge 2$ and $m \ge \sum_{l \in \mathcal{I}} (|l| - 1)$.

(proof)

Decompose *χ_I* = *χ_{l₁}* ∨ · · · ∨ *χ_{l_r}*, where *I* = {*l*₁, . . . , *l_r*};
 realize each *χ_{l_i}* in 𝔽₂ × ℤ^{|*l_j*|-1}, *j* = 1, . . . , *r*;

• put together in a strongly complementary way.

Example

Consider $\chi = \chi_{\mathcal{I}}$, where $\mathcal{I} = \{\{1\}, \{2,3\}, \{1,3,4\}, \{2,3,4\}\}$. Let us realize it in $\mathbb{F}_2 \times \mathbb{Z}^m$ for m = 0 + 1 + 2 + 2 = 5. Decomposing χ , we have

 $\chi = \chi_{\{1\}} \lor \chi_{\{2,3\}} \lor \chi_{\{1,3,4\}} \lor \chi_{\{2,3,4\}}.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1. Main results	2. F _n × ℤ ^m 000000	3. (Un)Realizable k-configs. 00●00000	4. The free case	 Open questions O 	 Quotient-saturated groups OOO
Positiv	e result	S			

Every k-configuration $\chi_{\mathcal{I}}$ is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$, for $n \ge 2$ and $m \ge \sum_{l \in \mathcal{I}} (|l| - 1)$.

(proof)

- Decompose $\chi_{\mathcal{I}} = \chi_{l_1} \vee \cdots \vee \chi_{l_r}$, where $\mathcal{I} = \{l_1, \dots, l_r\}$;
- realize each χ_{I_i} in $\mathbb{F}_2 \times \mathbb{Z}^{|I_i|-1}$, $j = 1, \ldots, r$;
- put together in a strongly complementary way.

Example

Consider $\chi = \chi_{\mathcal{I}}$, where $\mathcal{I} = \{\{1\}, \{2,3\}, \{1,3,4\}, \{2,3,4\}\}$. Let us realize it in $\mathbb{F}_2 \times \mathbb{Z}^m$ for m = 0 + 1 + 2 + 2 = 5. Decomposing χ , we have

 $\chi = \chi_{\{1\}} \lor \chi_{\{2,3\}} \lor \chi_{\{1,3,4\}} \lor \chi_{\{2,3,4\}}.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1. Main results 00000	2. <i>⊾</i> n × <i>ℤ</i> ^m 000000	 (Un)Realizable k-configs. ○○●○○○○○○ 	4. The free case	5. Open questions O	6. Quotient-saturated groups		
Positiv	Positive results						

Every k-configuration $\chi_{\mathcal{I}}$ is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$, for $n \ge 2$ and $m \ge \sum_{l \in \mathcal{I}} (|l| - 1)$.

(proof)

- Decompose $\chi_{\mathcal{I}} = \chi_{l_1} \vee \cdots \vee \chi_{l_r}$, where $\mathcal{I} = \{l_1, \dots, l_r\}$;
- realize each χ_{I_i} in $\mathbb{F}_2 \times \mathbb{Z}^{|I_i|-1}$, $j = 1, \ldots, r$;
- put together in a strongly complementary way.

Example

Consider $\chi = \chi_{\mathcal{I}}$, where $\mathcal{I} = \{\{1\}, \{2, 3\}, \{1, 3, 4\}, \{2, 3, 4\}\}$. Let us realize it in $\mathbb{F}_2 \times \mathbb{Z}^m$ for m = 0 + 1 + 2 + 2 = 5. Decomposing χ , we have

 $\chi = \chi_{\{1\}} \lor \chi_{\{2,3\}} \lor \chi_{\{1,3,4\}} \lor \chi_{\{2,3,4\}}.$

1. Main results 00000	2.	3. (Un)Realizable k-configs.	4. The free case	5. Open questions O	 Quotient-saturated groups OOO
Positiv	o roculi	e			

In $\mathbb{F}_2 = \langle x, y \mid - \rangle$ take the freely independent words $u_i = y^{-j} x y^j \in \mathbb{F}_2$, $j \in \mathbb{Z}$. Let $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, \mathbf{e_4}, \mathbf{e_5}\}$ be the canonical basis for \mathbb{Z}^5 . Realize: • $\chi_{\{1\}}$ as $H'_1 = \langle \dots, u_{-2}, u_{-1} \rangle$, $H'_2 = \{1\}$, $H'_3 = \{1\}$, $H'_4 = \{1\}$, all • $\chi_{\{2,3\}}$ as $H_1'' = \{1\}, H_2'' = \langle u_0, u_1 \rangle, H_3'' = \langle u_0, u_1 t^{e_1} \rangle, H_4'' = \{1\}, all$ • $\chi_{\{1,3,4\}}$ as $H_1''' = \langle u_2, u_3; t^{e_3} \rangle$, $H_2''' = \{1\}$, $H_2''' = \langle u_2, u_3; t^{e_2} \rangle$, $H_{4}^{\prime\prime\prime} = \langle u_{2}, u_{3}t^{\mathbf{e}_{2}}; t^{\mathbf{e}_{3}-\mathbf{e}_{2}} \rangle$, all inside $G^{\prime\prime\prime} = \langle u_{2}, u_{3}; t^{\mathbf{e}_{2}}, t^{\mathbf{e}_{3}} \rangle \leq \mathbb{F}_{2} \times \mathbb{Z}^{5}$: • $\chi_{\{2,3,4\}}$ as $H_1'''' = \{1\}, H_2''' = \langle u_4, u_5; t^{e_5} \rangle, H_3''' = \langle u_4, u_5; t^{e_4} \rangle,$ $H_{\Lambda}^{\prime\prime\prime\prime} = \langle u_4, u_5 t^{\mathbf{e}_4}; t^{\mathbf{e}_5 - \mathbf{e}_4} \rangle$, all inside $G^{\prime\prime\prime\prime} = \langle u_4, u_5; t^{\mathbf{e}_4}, t^{\mathbf{e}_5} \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^5$.

In $\mathbb{F}_2 = \langle x, y \mid - \rangle$ take the freely independent words $u_i = y^{-j} x y^j \in \mathbb{F}_2$, $j \in \mathbb{Z}$. Let $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, \mathbf{e_4}, \mathbf{e_5}\}$ be the canonical basis for \mathbb{Z}^5 . Realize: • $\chi_{\{1\}}$ as $H'_1 = \langle \dots, u_{-2}, u_{-1} \rangle$, $H'_2 = \{1\}$, $H'_3 = \{1\}$, $H'_4 = \{1\}$, all inside $G' = \langle ..., u_{-2}, u_{-1}; - \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^5$: • $\chi_{\{2,3\}}$ as $H_1'' = \{1\}, H_2'' = \langle u_0, u_1 \rangle, H_3'' = \langle u_0, u_1 t^{e_1} \rangle, H_4'' = \{1\}, all$ • $\chi_{\{1,3,4\}}$ as $H_1''' = \langle u_2, u_3; t^{e_3} \rangle$, $H_2''' = \{1\}$, $H_2''' = \langle u_2, u_3; t^{e_2} \rangle$, $H_{4}^{\prime\prime\prime} = \langle u_{2}, u_{3}t^{\mathbf{e}_{2}}; t^{\mathbf{e}_{3}-\mathbf{e}_{2}} \rangle$, all inside $G^{\prime\prime\prime} = \langle u_{2}, u_{3}; t^{\mathbf{e}_{2}}, t^{\mathbf{e}_{3}} \rangle \leq \mathbb{F}_{2} \times \mathbb{Z}^{5}$: • $\chi_{\{2,3,4\}}$ as $H_1'''' = \{1\}, H_2''' = \langle u_4, u_5; t^{e_5} \rangle, H_3''' = \langle u_4, u_5; t^{e_4} \rangle,$ $H_{4}^{\prime\prime\prime\prime} = \langle u_4, u_5 t^{\mathbf{e}_4}; t^{\mathbf{e}_5 - \mathbf{e}_4} \rangle$, all inside $G^{\prime\prime\prime\prime} = \langle u_4, u_5; t^{\mathbf{e}_4}, t^{\mathbf{e}_5} \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^5$.

In $\mathbb{F}_2 = \langle x, y \mid - \rangle$ take the freely independent words $u_i = y^{-j} x y^j \in \mathbb{F}_2$, $j \in \mathbb{Z}$. Let $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, \mathbf{e_4}, \mathbf{e_5}\}$ be the canonical basis for \mathbb{Z}^5 . Realize: • $\chi_{\{1\}}$ as $H'_1 = \langle \dots, u_{-2}, u_{-1} \rangle$, $H'_2 = \{1\}$, $H'_3 = \{1\}$, $H'_4 = \{1\}$, all inside $G' = \langle ..., u_{-2}, u_{-1}; - \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^5$: • $\chi_{\{2,3\}}$ as $H_1'' = \{1\}, H_2'' = \langle u_0, u_1 \rangle, H_3'' = \langle u_0, u_1 t^{e_1} \rangle, H_4'' = \{1\}, all$ inside $G'' = \langle u_0, u_1; t^{\mathbf{e}_1} \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^5$: • $\chi_{\{1,3,4\}}$ as $H_1''' = \langle u_2, u_3; t^{e_3} \rangle$, $H_2''' = \{1\}$, $H_2''' = \langle u_2, u_3; t^{e_2} \rangle$, $H_{4}^{\prime\prime\prime} = \langle u_2, u_3 t^{\mathbf{e}_2}; t^{\mathbf{e}_3 - \mathbf{e}_2} \rangle$, all inside $G^{\prime\prime\prime} = \langle u_2, u_3; t^{\mathbf{e}_2}, t^{\mathbf{e}_3} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$: • $\chi_{\{2,3,4\}}$ as $H_1'''' = \{1\}, H_2''' = \langle u_4, u_5; t^{e_5} \rangle, H_3''' = \langle u_4, u_5; t^{e_4} \rangle,$ $H_{4}^{''''} = \langle u_4, u_5; t^{e_4}; t^{e_5-e_4} \rangle$, all inside $G^{'''} = \langle u_4, u_5; t^{e_4}, t^{e_5} \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^5$.

Positiv	o rocult	te			
1. Main results 00000	2. F _n × ℤ ^m 000000	 (Un)Realizable k-configs. 000●0000 	4. The free case	5. Open questions O	 Quotient-saturated groups OOO

In $\mathbb{F}_2 = \langle x, y \mid - \rangle$ take the freely independent words $u_i = y^{-j} x y^j \in \mathbb{F}_2$, $j \in \mathbb{Z}$. Let $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, \mathbf{e_4}, \mathbf{e_5}\}$ be the canonical basis for \mathbb{Z}^5 . Realize: • $\chi_{\{1\}}$ as $H'_1 = \langle \dots, u_{-2}, u_{-1} \rangle$, $H'_2 = \{1\}$, $H'_3 = \{1\}$, $H'_4 = \{1\}$, all inside $G' = \langle ..., u_{-2}, u_{-1}; - \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^5$: • $\chi_{\{2,3\}}$ as $H_1'' = \{1\}, H_2'' = \langle u_0, u_1 \rangle, H_3'' = \langle u_0, u_1 t^{e_1} \rangle, H_4'' = \{1\}, all$ inside $G'' = \langle u_0, u_1; t^{\mathbf{e}_1} \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^5$; • $\chi_{\{1,3,4\}}$ as $H_1^{\prime\prime\prime} = \langle u_2, u_3; t^{\mathbf{e}_3} \rangle$, $H_2^{\prime\prime\prime} = \{1\}$, $H_3^{\prime\prime\prime} = \langle u_2, u_3; t^{\mathbf{e}_2} \rangle$, $H_{4}^{\prime\prime\prime} = \langle u_{2}, u_{3} t^{\mathbf{e}_{2}}; t^{\mathbf{e}_{3}-\mathbf{e}_{2}} \rangle$, all inside $G^{\prime\prime\prime} = \langle u_{2}, u_{3}; t^{\mathbf{e}_{2}}, t^{\mathbf{e}_{3}} \rangle \leq \mathbb{F}_{2} \times \mathbb{Z}^{5};$ • $\chi_{\{2,3,4\}}$ as $H_1^{\prime\prime\prime\prime\prime} = \{1\}, H_2^{\prime\prime\prime\prime\prime} = \langle u_4, u_5; t^{e_5} \rangle, H_3^{\prime\prime\prime\prime\prime} = \langle u_4, u_5; t^{e_4} \rangle,$ $H_{4}^{''''} = \langle u_4, u_5; t^{e_4}; t^{e_5-e_4} \rangle$, all inside $G^{'''} = \langle u_4, u_5; t^{e_4}, t^{e_5} \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^5$.

Positiv	o rocult	te			
1. Main results 00000	2. F _n × ℤ ^m 000000	 (Un)Realizable k-configs. 000●0000 	4. The free case	5. Open questions O	 Quotient-saturated groups OOO

In $\mathbb{F}_2 = \langle x, y \mid - \rangle$ take the freely independent words $u_i = y^{-j} x y^j \in \mathbb{F}_2$, $j \in \mathbb{Z}$. Let $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, \mathbf{e_4}, \mathbf{e_5}\}$ be the canonical basis for \mathbb{Z}^5 . Realize: • $\chi_{\{1\}}$ as $H'_1 = \langle \dots, u_{-2}, u_{-1} \rangle$, $H'_2 = \{1\}$, $H'_3 = \{1\}$, $H'_4 = \{1\}$, all inside $G' = \langle ..., u_{-2}, u_{-1}; - \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^5$: • $\chi_{\{2,3\}}$ as $H_1'' = \{1\}, H_2'' = \langle u_0, u_1 \rangle, H_3'' = \langle u_0, u_1 t^{e_1} \rangle, H_4'' = \{1\}, all$ inside $G'' = \langle u_0, u_1; t^{\mathbf{e}_1} \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^5$; • $\chi_{\{1,3,4\}}$ as $H_1^{\prime\prime\prime} = \langle u_2, u_3; t^{\mathbf{e}_3} \rangle$, $H_2^{\prime\prime\prime} = \{1\}$, $H_3^{\prime\prime\prime} = \langle u_2, u_3; t^{\mathbf{e}_2} \rangle$, $H_{4}^{\prime\prime\prime} = \langle u_{2}, u_{3} t^{e_{2}}; t^{e_{3}-e_{2}} \rangle$, all inside $G^{\prime\prime\prime} = \langle u_{2}, u_{3}; t^{e_{2}}, t^{e_{3}} \rangle \leq \mathbb{F}_{2} \times \mathbb{Z}^{5};$ • $\chi_{\{2,3,4\}}$ as $H_1^{\prime\prime\prime\prime} = \{1\}, H_2^{\prime\prime\prime\prime} = \langle u_4, u_5; t^{e_5} \rangle, H_3^{\prime\prime\prime\prime} = \langle u_4, u_5; t^{e_4} \rangle,$ $H_{A}^{\prime\prime\prime\prime\prime} = \langle u_4, u_5 t^{\mathbf{e}_4}; t^{\mathbf{e}_5 - \mathbf{e}_4} \rangle$, all inside $G^{\prime\prime\prime\prime\prime} = \langle u_4, u_5; t^{\mathbf{e}_4}, t^{\mathbf{e}_5} \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^5$.

Positiv	o rocult	te			
1. Main results 00000	2. F _Π × Z ^M 000000	 (Un)Realizable k-configs. 000●0000 	4. The free case	5. Open questions O	 Quotient-saturated groups OOO

In $\mathbb{F}_2 = \langle x, y \mid - \rangle$ take the freely independent words $u_i = y^{-j} x y^j \in \mathbb{F}_2$, $j \in \mathbb{Z}$. Let $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, \mathbf{e_4}, \mathbf{e_5}\}$ be the canonical basis for \mathbb{Z}^5 . Realize: • $\chi_{\{1\}}$ as $H'_1 = \langle \dots, u_{-2}, u_{-1} \rangle$, $H'_2 = \{1\}$, $H'_3 = \{1\}$, $H'_4 = \{1\}$, all inside $G' = \langle ..., u_{-2}, u_{-1}; - \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^5$: • $\chi_{\{2,3\}}$ as $H_1'' = \{1\}, H_2'' = \langle u_0, u_1 \rangle, H_3'' = \langle u_0, u_1 t^{e_1} \rangle, H_4'' = \{1\}, all$ inside $G'' = \langle u_0, u_1; t^{\mathbf{e}_1} \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^5$; • $\chi_{\{1,3,4\}}$ as $H_1^{\prime\prime\prime} = \langle u_2, u_3; t^{\mathbf{e}_3} \rangle$, $H_2^{\prime\prime\prime} = \{1\}$, $H_3^{\prime\prime\prime} = \langle u_2, u_3; t^{\mathbf{e}_2} \rangle$, $H_{4}^{\prime\prime\prime} = \langle u_{2}, u_{3} t^{\mathbf{e}_{2}}; t^{\mathbf{e}_{3}-\mathbf{e}_{2}} \rangle$, all inside $G^{\prime\prime\prime} = \langle u_{2}, u_{3}; t^{\mathbf{e}_{2}}, t^{\mathbf{e}_{3}} \rangle \leq \mathbb{F}_{2} \times \mathbb{Z}^{5};$ • $\chi_{\{2,3,4\}}$ as $H_1^{\prime\prime\prime\prime} = \{1\}, H_2^{\prime\prime\prime\prime} = \langle u_4, u_5; t^{e_5} \rangle, H_3^{\prime\prime\prime\prime} = \langle u_4, u_5; t^{e_4} \rangle,$ $H_{4}^{\prime\prime\prime\prime\prime} = \langle u_{4}, u_{5} t^{\mathbf{e}_{4}}; t^{\mathbf{e}_{5}-\mathbf{e}_{4}} \rangle, \text{ all inside } G^{\prime\prime\prime\prime\prime} = \langle u_{4}, u_{5}; t^{\mathbf{e}_{4}}, t^{\mathbf{e}_{5}} \rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{5}.$ And note that $\operatorname{rk}(\bigcap_{i \in I} H'_i \pi) \neq 1$, $\operatorname{rk}(\bigcap_{i \in I} H''_i \pi) \neq 1$, $\operatorname{rk}(\bigcap_{i \in I} H_i'''\pi) \neq 1$, and $\operatorname{rk}(\bigcap_{i \in I} H_i'''\pi) \neq 1$. Therefore, we can

Positiv	o rocult	te			
1. Main results 00000	2. F _Π × Z ^M 000000	 (Un)Realizable k-configs. 000●0000 	4. The free case	5. Open questions O	 Quotient-saturated groups OOO

In $\mathbb{F}_2 = \langle x, y \mid - \rangle$ take the freely independent words $u_i = y^{-j} x y^j \in \mathbb{F}_2$, $j \in \mathbb{Z}$. Let $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, \mathbf{e_4}, \mathbf{e_5}\}$ be the canonical basis for \mathbb{Z}^5 . Realize: • $\chi_{\{1\}}$ as $H'_1 = \langle \dots, u_{-2}, u_{-1} \rangle$, $H'_2 = \{1\}$, $H'_3 = \{1\}$, $H'_4 = \{1\}$, all inside $G' = \langle ..., u_{-2}, u_{-1}; - \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^5$: • $\chi_{\{2,3\}}$ as $H_1'' = \{1\}, H_2'' = \langle u_0, u_1 \rangle, H_3'' = \langle u_0, u_1 t^{e_1} \rangle, H_4'' = \{1\}, all$ inside $G'' = \langle u_0, u_1; t^{\mathbf{e}_1} \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^5$; • $\chi_{\{1,3,4\}}$ as $H_1^{\prime\prime\prime} = \langle u_2, u_3; t^{\mathbf{e}_3} \rangle$, $H_2^{\prime\prime\prime} = \{1\}$, $H_3^{\prime\prime\prime} = \langle u_2, u_3; t^{\mathbf{e}_2} \rangle$, $H_{4}^{\prime\prime\prime} = \langle u_{2}, u_{3} t^{\mathbf{e}_{2}}; t^{\mathbf{e}_{3}-\mathbf{e}_{2}} \rangle$, all inside $G^{\prime\prime\prime} = \langle u_{2}, u_{3}; t^{\mathbf{e}_{2}}, t^{\mathbf{e}_{3}} \rangle \leq \mathbb{F}_{2} \times \mathbb{Z}^{5};$ • $\chi_{\{2,3,4\}}$ as $H_1^{\prime\prime\prime\prime} = \{1\}, H_2^{\prime\prime\prime\prime} = \langle u_4, u_5; t^{e_5} \rangle, H_3^{\prime\prime\prime\prime} = \langle u_4, u_5; t^{e_4} \rangle,$ $H_{A}^{\prime\prime\prime\prime\prime} = \langle u_4, u_5 t^{\mathbf{e}_4}; t^{\mathbf{e}_5 - \mathbf{e}_4} \rangle$, all inside $G^{\prime\prime\prime\prime\prime} = \langle u_4, u_5; t^{\mathbf{e}_4}, t^{\mathbf{e}_5} \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^5$. And note that $\operatorname{rk}(\bigcap_{i \in I} H'_i \pi) \neq 1$, $\operatorname{rk}(\bigcap_{i \in I} H''_i \pi) \neq 1$, rk $(\bigcap_{i \in I} H_i'''\pi) \neq 1$, and rk $(\bigcap_{i \in I} H_i'''\pi) \neq 1$. Therefore, we can realize χ by the following subgroups

Positiv	ve result	te			
1. Main results	2. ⊮ _n × ℤ ^m 000000	 (Un)Realizable k-configs. 0000●000 	4. The free case	5. Open questions O	6. Quotient-saturated groups

$$\begin{split} H_1 &= \langle \dots, U_{-2}, U_{-1}, U_2, U_3; t^{\mathbf{e}_3} \rangle, \\ H_2 &= \langle U_0, U_1, U_4, U_5; t^{\mathbf{e}_5} \rangle, \\ H_3 &= \langle U_0, U_1 t^{\mathbf{e}_1}, U_2, U_3, U_4, U_5; t^{\mathbf{e}_2}, t^{\mathbf{e}_4} \rangle, \\ H_4 &= \langle U_2, U_3 t^{\mathbf{e}_2}, U_4, U_5 t^{\mathbf{e}_4}; t^{\mathbf{e}_3 - \mathbf{e}_2}, t^{\mathbf{e}_5 - \mathbf{e}_4} \rangle. \end{split}$$

of $G' \circledast G'' \circledast G''' \circledast G'''' \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$.

Corollary

 $\mathbb{F}_{2} \times (\bigoplus_{\aleph_{0}} \mathbb{Z})$ is intersection-saturated.

Theorem (Delgado–Roy–V. '22)

There exist finitely presented intersection-saturated groups.

イロト イポト イヨト イヨト 三日

Positiv	e result	te			
1. Main results 00000	2.	 (Un)Realizable k-configs. 0000●000 	4. The free case	5. Open questions O	 Quotient-saturated groups OOO

$$\begin{split} H_1 &= \langle \dots, u_{-2}, u_{-1}, u_2, u_3; t^{\mathbf{e}_3} \rangle, \\ H_2 &= \langle u_0, u_1, u_4, u_5; t^{\mathbf{e}_5} \rangle, \\ H_3 &= \langle u_0, u_1 t^{\mathbf{e}_1}, u_2, u_3, u_4, u_5; t^{\mathbf{e}_2}, t^{\mathbf{e}_4} \rangle, \\ H_4 &= \langle u_2, u_3 t^{\mathbf{e}_2}, u_4, u_5 t^{\mathbf{e}_4}; t^{\mathbf{e}_3 - \mathbf{e}_2}, t^{\mathbf{e}_5 - \mathbf{e}_4} \rangle. \end{split}$$

of $G' \circledast G'' \circledast G''' \circledast G'''' \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$.

Corollary

 $\mathbb{F}_2 \times (\oplus_{\aleph_0} \mathbb{Z})$ is intersection-saturated.

Theorem (Delgado–Roy–V. '22)

There exist finitely presented intersection-saturated groups.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Positiv	e result	te			
1. Main results 00000	2.	 (Un)Realizable k-configs. 0000●000 	4. The free case	5. Open questions O	 Quotient-saturated groups OOO

$$\begin{split} H_1 &= \langle \dots, u_{-2}, u_{-1}, u_2, u_3; t^{\mathbf{e}_3} \rangle, \\ H_2 &= \langle u_0, u_1, u_4, u_5; t^{\mathbf{e}_5} \rangle, \\ H_3 &= \langle u_0, u_1 t^{\mathbf{e}_1}, u_2, u_3, u_4, u_5; t^{\mathbf{e}_2}, t^{\mathbf{e}_4} \rangle, \\ H_4 &= \langle u_2, u_3 t^{\mathbf{e}_2}, u_4, u_5 t^{\mathbf{e}_4}; t^{\mathbf{e}_3 - \mathbf{e}_2}, t^{\mathbf{e}_5 - \mathbf{e}_4} \rangle. \end{split}$$

of $G' \circledast G'' \circledast G''' \circledast G'''' \leqslant \mathbb{F}_2 \times \mathbb{Z}^5$.

Corollary

 $\mathbb{F}_2 \times (\oplus_{\aleph_0} \mathbb{Z})$ is intersection-saturated.

Theorem (Delgado-Roy-V. '22)

There exist finitely presented intersection-saturated groups.

	oooooo oo recult		00000	0	000
1. Main results	2.	 (Un)Realizable k-configs. 	4. The free case	 Open questions 	 Quotient-saturated groups

There exist finitely presented intersection-saturated groups.

(Proof 1)

- Consider Thomson's group F;
- it is well know to be finitely presented and to contain $\oplus_{\aleph_0}\mathbb{Z}$;
- therefore, $\mathbb{F}_2 \times F$ is intersection-saturated.
- (Need to take $\mathbb{F}_2 \times$ because F does not contain \mathbb{F}_2 .)

(Proof 2)

• Consider $G = (\bigoplus_{\aleph_0} \mathbb{Z}) \rtimes_{\alpha} \mathbb{Z}$, where α is the automorphism given by right translation of generators;

• G is recursively presented so, it embeds in a finitely presented group, $G \hookrightarrow G'$;

• $\mathbb{F}_2 \times G'$ is finitely presented and intersection-saturated.

			00000	<u> </u>	
1. Main results	2. $\mathbb{F}_n \times \mathbb{Z}^m$	 (Un)Realizable k-configs. 	4. The free case	5. Open questions	 Quotient-saturated groups

There exist finitely presented intersection-saturated groups.

(Proof 1)

- Consider Thomson's group F;
- it is well know to be finitely presented and to contain $\bigoplus_{\aleph_0} \mathbb{Z}$;
- therefore, $\mathbb{F}_2 \times F$ is intersection-saturated.
- (Need to take $\mathbb{F}_2 \times$ because F does not contain \mathbb{F}_2 .)

(Proof 2)

• Consider $G = (\bigoplus_{\aleph_0} \mathbb{Z}) \rtimes_{\alpha} \mathbb{Z}$, where α is the automorphism given by right translation of generators;

• G is recursively presented so, it embeds in a finitely presented group, $G \hookrightarrow G'$;

• $\mathbb{F}_2 \times G'$ is finitely presented and intersection-saturated.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへぐ

1. Main results 00000	2. F _n × ℤ ^m 000000	3. (Un)Realizable k-configs.	4. The free case	5. Open questions O	 Quotient-saturated groups OOO
Positiv	o recult	te			

There exist finitely presented intersection-saturated groups.

(Proof 1)

- Consider Thomson's group F;
- it is well know to be finitely presented and to contain $\oplus_{\aleph_0}\mathbb{Z}$;
- therefore, $\mathbb{F}_2 \times F$ is intersection-saturated.
- (Need to take 𝔽₂× because 𝓕 does not contain 𝔽₂.)

(Proof 2)

• Consider $G = (\bigoplus_{\aleph_0} \mathbb{Z}) \rtimes_{\alpha} \mathbb{Z}$, where α is the automorphism given by right translation of generators;

• G is recursively presented so, it embeds in a finitely presented group, $G \hookrightarrow G'$;

• $\mathbb{F}_2 \times G'$ is finitely presented and intersection-saturated.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ���

00000	000000	00000000	00000	0	000			
Positive results								

There exist finitely presented intersection-saturated groups.

(Proof 1)

- Consider Thomson's group F;
- it is well know to be finitely presented and to contain $\oplus_{\aleph_0}\mathbb{Z}$;
- therefore, $\mathbb{F}_2 \times F$ is intersection-saturated.
- (Need to take $\mathbb{F}_2 \times$ because F does not contain \mathbb{F}_2 .)

(Proof 2)

• Consider $G = (\bigoplus_{\aleph_0} \mathbb{Z}) \rtimes_{\alpha} \mathbb{Z}$, where α is the automorphism given by right translation of generators;

• G is recursively presented so, it embeds in a finitely presented group, $G \hookrightarrow G'$;

• $\mathbb{F}_2 \times G'$ is finitely presented and intersection-saturated.

00000	000000	00000000	00000	0	000			
Positive results								

There exist finitely presented intersection-saturated groups.

(Proof 1)

- Consider Thomson's group F;
- it is well know to be finitely presented and to contain $\oplus_{\aleph_0}\mathbb{Z}$;
- therefore, $\mathbb{F}_2 \times F$ is intersection-saturated.
- (Need to take $\mathbb{F}_2 \times$ because F does not contain \mathbb{F}_2 .)

(Proof 2)

• Consider $G = (\bigoplus_{\aleph_0} \mathbb{Z}) \rtimes_{\alpha} \mathbb{Z}$, where α is the automorphism given by right translation of generators;

• G is recursively presented so, it embeds in a finitely presented group, $G \hookrightarrow G'$;

• $\mathbb{F}_2 \times G'$ is finitely presented and intersection-saturated.

00000	000000	00000000	00000	0	000
Positive results					

There exist finitely presented intersection-saturated groups.

(Proof 1)

- Consider Thomson's group F;
- it is well know to be finitely presented and to contain $\oplus_{\aleph_0}\mathbb{Z}$;
- therefore, $\mathbb{F}_2 \times F$ is intersection-saturated.
- (Need to take $\mathbb{F}_2 \times$ because F does not contain \mathbb{F}_2 .)

(Proof 2)

• Consider $G = (\bigoplus_{\aleph_0} \mathbb{Z}) \rtimes_{\alpha} \mathbb{Z}$, where α is the automorphism given by right translation of generators;

G is recursively presented so, it embeds in a finitely presented group, G → G';
 F₂ × G' is finitely presented and intersection-saturated.

00000	000000	00000000	00000	0	000			
Positive results								

Theorem (Delgado-Roy-V. '22)

There exist finitely presented intersection-saturated groups.

(Proof 1)

- Consider Thomson's group F;
- it is well know to be finitely presented and to contain $\oplus_{\aleph_0}\mathbb{Z}$;
- therefore, $\mathbb{F}_2 \times F$ is intersection-saturated.
- (Need to take $\mathbb{F}_2 \times$ because F does not contain \mathbb{F}_2 .)

(Proof 2)

• Consider $G = (\bigoplus_{\aleph_0} \mathbb{Z}) \rtimes_{\alpha} \mathbb{Z}$, where α is the automorphism given by right translation of generators;

• G is recursively presented so, it embeds in a finitely presented group, $G \hookrightarrow G'$;

• $\mathbb{F}_2 \times G'$ is finitely presented and intersection-saturated.

00000	000000	00000000	00000	0	000			
Positive results								

Theorem (Delgado-Roy-V. '22)

There exist finitely presented intersection-saturated groups.

(Proof 1)

- Consider Thomson's group F;
- it is well know to be finitely presented and to contain $\oplus_{\aleph_0}\mathbb{Z}$;
- therefore, $\mathbb{F}_2 \times F$ is intersection-saturated.
- (Need to take $\mathbb{F}_2 \times$ because F does not contain \mathbb{F}_2 .)

(Proof 2)

• Consider $G = (\bigoplus_{\aleph_0} \mathbb{Z}) \rtimes_{\alpha} \mathbb{Z}$, where α is the automorphism given by right translation of generators;

• G is recursively presented so, it embeds in a finitely presented group, $G \hookrightarrow G'$;

• $\mathbb{F}_2 \times G'$ is finitely presented and intersection-saturated.

	struction				
1. Main results	2. F _n × ℤ ^m 000000	 (Un)Realizable k-configs. 	4. The free case	5. Open questions	 Quotient-saturated groups

Lemma

Let $H_1, \ldots, H_k \leq \mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$. Suppose that, for $\emptyset \neq I, J \subseteq [k]$, H_I and H_J are f.g. whereas $H_{I \cup J} = H_I \cap H_J$ is not. Then, $\exists i \in I, \exists j \in J$ s.t. $L_i = H_i \cap \mathbb{Z}^m$ and $L_j = H_j \cap \mathbb{Z}^m$ both have rank strictly smaller than m.

Proposition

Let χ be a k-config. and $\emptyset \neq I_1, \ldots, I_r \subseteq [k]$ be $r \geq 2$ subsets s.t. $\forall j \in [r], (I_1 \cup \cdots \cup \widehat{I_j} \cup \cdots \cup I_r)\chi = 0$, but $(I_1 \cup \cdots \cup I_r)\chi = 1$. Then χ is not realizable in $\mathbb{F}_n \times \mathbb{Z}^{r-2}$.

Corollary

The 3-configurations

are not realizable in $\mathbb{F}_n \times \mathbb{Z}$.

An obe	struction	2			
1. Main results	2. F _n × ℤ ^m 000000	 Un)Realizable k-configs. 	4. The free case	5. Open questions	6. Quotient-saturated groups

Lemma

Let $H_1, \ldots, H_k \leq \mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$. Suppose that, for $\emptyset \neq I, J \subseteq [k]$, H_I and H_J are f.g. whereas $H_{I \cup J} = H_I \cap H_J$ is not. Then, $\exists i \in I, \exists j \in J$ s.t. $L_i = H_i \cap \mathbb{Z}^m$ and $L_j = H_j \cap \mathbb{Z}^m$ both have rank strictly smaller than m.

Proposition

Let χ be a k-config. and $\emptyset \neq I_1, \ldots, I_r \subseteq [k]$ be $r \geq 2$ subsets s.t. $\forall j \in [r], (I_1 \cup \cdots \cup \widehat{I_j} \cup \cdots \cup I_r)\chi = 0$, but $(I_1 \cup \cdots \cup I_r)\chi = 1$. Then χ is not realizable in $\mathbb{F}_n \times \mathbb{Z}^{r-2}$.

Corollary

The 3-configurations

are not realizable in $\mathbb{F}_n \times \mathbb{Z}$.

	struction				
1. Main results	2. F _n × ℤ ^m 000000	 (Un)Realizable k-configs. 	4. The free case	5. Open questions	 Quotient-saturated groups

Lemma

Let $H_1, \ldots, H_k \leq \mathbb{G} = \mathbb{F}_n \times \mathbb{Z}^m$. Suppose that, for $\emptyset \neq I, J \subseteq [k]$, H_I and H_J are f.g. whereas $H_{I \cup J} = H_I \cap H_J$ is not. Then, $\exists i \in I, \exists j \in J$ s.t. $L_i = H_i \cap \mathbb{Z}^m$ and $L_j = H_j \cap \mathbb{Z}^m$ both have rank strictly smaller than m.

Proposition

Let χ be a k-config. and $\emptyset \neq I_1, \ldots, I_r \subseteq [k]$ be $r \geq 2$ subsets s.t. $\forall j \in [r], (I_1 \cup \cdots \cup \widehat{I_j} \cup \cdots \cup I_r)\chi = 0$, but $(I_1 \cup \cdots \cup I_r)\chi = 1$. Then χ is not realizable in $\mathbb{F}_n \times \mathbb{Z}^{r-2}$.

Corollary

The 3-configurations

are not realizable in $\mathbb{F}_n \times \mathbb{Z}$.

1. Main results	2.	 (Un)Realizable k-configs. 0000000● 	4. The free case	5. Open questions O	6. Quotient-saturated groups
An obs	structio	า			

Proposition

The k-configuration $\chi_{[k]}$ is realizable in $\mathbb{F}_n \times \mathbb{Z}^{k-1}$, but not in $\mathbb{F}_n \times \mathbb{Z}^{k-2}$. Hence, the set of configurations realizable in $\mathbb{F}_n \times \mathbb{Z}^m$ increases strictly with m.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1. Main results 00000	2. F _n × ℤ ^m 000000	 (Un)Realizable k-configs. 00000000 	4. The free case	5. Open questions O	 Quotient-saturated groups OOO
Outline	e				

- Our main results
- 2 Free-times-free-abelian groups
- 3 Realizable / unrealizable *k*-configurations
- 4 The free case
- 5 Open questions
- Ouotient-saturated groups

1. Main results	2. F _n × ℤ ^m 000000	3. (Un)Realizable k-configs.	4. The free case ●0000	5. Open questions O	6. Quotient-saturated groups
More c	on confi	gurations			

Definition

Let χ be a k-config. and let $i \in [k]$. Its restriction to $\hat{i} = [k] \setminus \{i\}$ is the (k-1)-configuration

$$\begin{array}{rcl} \chi_{\mid \widehat{i}} \colon \mathcal{P}([k] \setminus \{i\}) \setminus \{\varnothing\} & \to & \{\mathbf{0}, \, \mathbf{1}\} \\ I & \mapsto & (I)\chi \, . \end{array}$$

Definition

Given two k-configurations χ , χ' and $\delta \in \{0, 1\}$, we define

$$egin{array}{rcl} \chi \boxplus_{\delta} \chi' \colon \mathcal{P}([k+1]) \setminus \{ arnothing \} & o & \{ 0,1 \} \ & & I & \mapsto & egin{cases} (I)\chi & & I \ (I \setminus \{ k+1 \})\chi' & & I \ \delta & & I \end{array}$$

a(k+1)-configuration.

1. Main results	2. $\mathbb{F}_n \times \mathbb{Z}^m$ 000000	3. (Un)Realizable k-configs.	4. The free case ●0000	5. Open questions O	6. Quotient-saturated groups
More of	on confi	gurations			

Definition

Let χ be a k-config. and let $i \in [k]$. Its restriction to $\hat{i} = [k] \setminus \{i\}$ is the (k-1)-configuration

$$\begin{array}{rcl} \chi_{\mid \widehat{i}} \colon \mathcal{P}([k] \setminus \{i\}) \setminus \{\varnothing\} & \to & \{\mathbf{0}, \, \mathbf{1}\} \\ I & \mapsto & (I)\chi \, . \end{array}$$

Definition

Given two k-configurations χ , χ' and $\delta \in \{0, 1\}$, we define

$$\begin{split} \chi \boxplus_{\delta} \chi' \colon \mathcal{P}([k+1]) \setminus \{ \varnothing \} &\to \{ 0, 1 \} \\ I &\mapsto \begin{cases} (I)\chi & \text{if } k+1 \notin I, \\ (I \setminus \{k+1\})\chi' & \text{if } \{k+1\} \subseteq I, \\ \delta & \text{if } \{k+1\} = I, \end{cases} \end{split}$$

a(k+1)-configuration.

(Un)Realizable k-configs.
 00000000

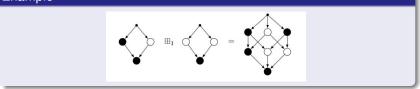
The free case
 O●OOO

Open question:

 Quotient-saturated groups 000

More on cofigurations

Example



Definition

Let χ be a k-configuration, and $i \in [k]$. The index i is said to be *0*-monochromatic (in χ) if (I) $\chi = 0 \forall I \subseteq [k]$ containing i; i.e., if $\chi = \chi_{|\widehat{I}|} \boxplus_0 0$. Similarly, the index i is said to be 1-monochromatic (in χ) if $\chi = \chi_{|\widehat{I}|} \boxplus_1 1$.

Lemma

If a k-configuration χ is realizable in \mathbb{F}_n with $n \ge 2$, then the (k + 1)-configurations $\chi \boxplus_0 \mathbf{0}, \chi \boxplus_1 \mathbf{1}, \chi \boxplus_0 \chi$, and $\chi \boxplus_1 \chi$ are also realizable in \mathbb{F}_n .

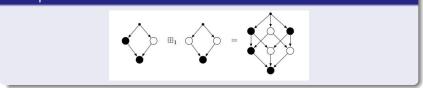
(Un)Realizable k-configs.
 00000000

4. The free case 0●000 Open question

6. Quotient-saturated groups

More on cofigurations

Example



Definition

Let χ be a k-configuration, and $i \in [k]$. The index *i* is said to be *0-monochromatic (in* χ) if (*I*) $\chi = 0 \forall I \subseteq [k]$ containing *i*; i.e., if $\chi = \chi_{|\hat{i}|} \boxplus_0 0$. Similarly, the index *i* is said to be 1-monochromatic (in χ) if $\chi = \chi_{|\hat{i}|} \boxplus_1 1$.

_emma

If a k-configuration χ is realizable in \mathbb{F}_n with $n \ge 2$, then the (k + 1)-configurations $\chi \boxplus_0 \mathbf{0}, \chi \boxplus_1 \mathbf{1}, \chi \boxplus_0 \chi$, and $\chi \boxplus_1 \chi$ are also realizable in \mathbb{F}_n .

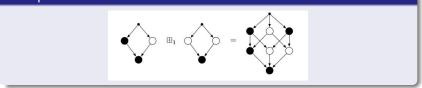
(Un)Realizable k-configs.
 00000000

4. The free case 0●000 Open question

6. Quotient-saturated groups

More on cofigurations

Example



Definition

Let χ be a k-configuration, and $i \in [k]$. The index *i* is said to be *0-monochromatic* (in χ) if (I) $\chi = 0 \forall I \subseteq [k]$ containing *i*; i.e., if $\chi = \chi_{|\widehat{I}} \boxplus_0 0$. Similarly, the index *i* is said to be 1-monochromatic (in χ) if $\chi = \chi_{|\widehat{I}} \boxplus_1 1$.

Lemma

If a k-configuration χ is realizable in \mathbb{F}_n with $n \ge 2$, then the (k + 1)-configurations $\chi \boxplus_0 \mathbf{0}, \chi \boxplus_1 \mathbf{1}, \chi \boxplus_0 \chi$, and $\chi \boxplus_1 \chi$ are also realizable in \mathbb{F}_n .

 1. Main results
 2. $\mathbb{F}_n \times \mathbb{Z}^m$ 3. (Un)Realizable k-configs.
 4. The free case of the case of

Characterization for the free case

(Proof)

Let $\mathbb{F}_2 * \mathbb{F}_{\aleph_0} \simeq W * U = \langle w_1, w_2, \ldots \rangle * \langle u, v \rangle \leqslant \mathbb{F}_n$, and take $H_1, \ldots, H_k \leqslant W \leqslant \mathbb{F}_n$ realizing χ . Now, in order to realize:

- $\chi \boxplus_0 \mathbf{0}$, take $\widetilde{H}_1 = H_1, \dots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = \{1\}$;
- $\chi \boxplus_1 \mathbf{1}$, take $\widetilde{H}_1 = H_1 * \langle u, v \rangle, \dots, \widetilde{H}_k = H_k * \langle u, v \rangle$ and $\widetilde{H}_{k+1} = \ll u \gg_U : \widetilde{H}_1, \dots, \widetilde{H}_k$ realize $\chi \lor \mathbf{0} = \chi$ and, for every $i \neq k+1$, $\widetilde{H}_{k+1} \cap \widetilde{H}_i = \widetilde{H}_{k+1}$ which is non-f.g.;
- $\chi \boxplus_0 \chi$, take $\widetilde{H}_1 = H_1, \dots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = \mathbb{F}_n$;
- $\chi \boxplus_1 \chi$, take $\widetilde{H}_1 = H_1, \ldots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = W$.

Definition

1. Main results2. $\mathbb{F}_n \times \mathbb{Z}^m$ 3. (Un)Realizable k-configs.4. The free case5. Open questions6. Quotient-saturated groupsObserve the utilization of the transmission of the transmissio

Characterization for the free case

(Proof)

Let $\mathbb{F}_2 * \mathbb{F}_{\aleph_0} \simeq W * U = \langle w_1, w_2, \ldots \rangle * \langle u, v \rangle \leq \mathbb{F}_n$, and take $H_1, \ldots, H_k \leq W \leq \mathbb{F}_n$ realizing χ . Now, in order to realize:

- $\chi \boxplus_0 \mathbf{0}$, take $\widetilde{H}_1 = H_1, \dots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = \{1\}$;
- $\chi \boxplus_1 \mathbf{1}$, take $\widetilde{H}_1 = H_1 * \langle u, v \rangle, \dots, \widetilde{H}_k = H_k * \langle u, v \rangle$ and $\widetilde{H}_{k+1} = \ll u \gg_U : \widetilde{H}_1, \dots, \widetilde{H}_k$ realize $\chi \lor \mathbf{0} = \chi$ and, for every $i \neq k+1$, $\widetilde{H}_{k+1} \cap \widetilde{H}_i = \widetilde{H}_{k+1}$ which is non-f.g.;
- $\chi \boxplus_0 \chi$, take $\widetilde{H}_1 = H_1, \dots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = \mathbb{F}_n$;
- $\chi \boxplus_1 \chi$, take $\widetilde{H}_1 = H_1, \ldots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = W$.

Definition

(Proof)

Let $\mathbb{F}_2 * \mathbb{F}_{\aleph_0} \simeq W * U = \langle w_1, w_2, \ldots \rangle * \langle u, v \rangle \leq \mathbb{F}_n$, and take $H_1, \ldots, H_k \leq W \leq \mathbb{F}_n$ realizing χ . Now, in order to realize: • $\chi \boxplus_0 \mathbf{0}$, take $\widetilde{H}_1 = H_1, \ldots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = \{1\}$;

- $\chi \boxplus_1 \mathbf{1}$, take $\widetilde{H}_1 = H_1 * \langle u, v \rangle, \dots, \widetilde{H}_k = H_k * \langle u, v \rangle$ and $\widetilde{H}_{k+1} = \ll u \gg_U : \widetilde{H}_1, \dots, \widetilde{H}_k$ realize $\chi \lor \mathbf{0} = \chi$ and, for every $i \neq k+1$, $\widetilde{H}_{k+1} \cap \widetilde{H}_i = \widetilde{H}_{k+1}$ which is non-f.g.;
- $\chi \boxplus_0 \chi$, take $\widetilde{H}_1 = H_1, \ldots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = \mathbb{F}_n$;
- $\chi \boxplus_1 \chi$, take $\widetilde{H}_1 = H_1, \ldots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = W$.

Definition

(Proof)

Let $\mathbb{F}_2 * \mathbb{F}_{\aleph_0} \simeq W * U = \langle w_1, w_2, \ldots \rangle * \langle u, v \rangle \leq \mathbb{F}_n$, and take $H_1, \ldots, H_k \leq W \leq \mathbb{F}_n$ realizing χ . Now, in order to realize:

- $\chi \boxplus_0 \mathbf{0}$, take $\widetilde{H}_1 = H_1, \dots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = \{1\}$;
- $\chi \boxplus_1 \mathbf{1}$, take $\widetilde{H}_1 = H_1 * \langle u, v \rangle, \dots, \widetilde{H}_k = H_k * \langle u, v \rangle$ and $\widetilde{H}_{k+1} = \ll u \gg_U : \widetilde{H}_1, \dots, \widetilde{H}_k$ realize $\chi \lor \mathbf{0} = \chi$ and, for every $i \neq k+1$, $\widetilde{H}_{k+1} \cap \widetilde{H}_i = \widetilde{H}_{k+1}$ which is non-f.g.;

•
$$\chi \boxplus_0 \chi$$
, take $\widetilde{H}_1 = H_1, \dots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = \mathbb{F}_n$;

• $\chi \boxplus_1 \chi$, take $\widetilde{H}_1 = H_1, \ldots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = W$.

Definition

1. Main results 2. $\mathbb{F}_n \times \mathbb{Z}^m$ 3. (Un)Realizable k-configs. 4. The free case 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00

(Proof)

Let $\mathbb{F}_2 * \mathbb{F}_{\aleph_0} \simeq W * U = \langle w_1, w_2, \ldots \rangle * \langle u, v \rangle \leq \mathbb{F}_n$, and take $H_1, \ldots, H_k \leq W \leq \mathbb{F}_n$ realizing χ . Now, in order to realize: • $\chi \boxplus_0 \mathbf{0}$, take $\widetilde{H}_1 = H_1, \ldots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = \{1\}$; • $\chi \boxplus_1 \mathbf{1}$, take $\widetilde{H}_1 = H_1 * \langle u, v \rangle, \ldots, \widetilde{H}_k = H_k * \langle u, v \rangle$ and $\widetilde{H}_{k+1} = \ll u \gg_U$: $\widetilde{H}_1, \ldots, \widetilde{H}_k$ realize $\chi \vee \mathbf{0} = \chi$ and, for every $i \neq k+1$, $\widetilde{H}_{k+1} \cap \widetilde{H}_i = \widetilde{H}_{k+1}$ which is non-f.g.; • $\chi \boxplus_0 \chi$, take $\widetilde{H}_1 = H_1, \ldots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = \mathbb{F}_n$;

• $\chi \boxplus_1 \chi$, take $\widetilde{H}_1 = H_1, \ldots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = W$.

Definition

1. Main results 2. $\mathbb{F}_n \times \mathbb{Z}^m$ 3. (Un)Realizable k-configs. 4. The free case 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00

(Proof)

Let $\mathbb{F}_2 * \mathbb{F}_{\aleph_0} \simeq W * U = \langle w_1, w_2, \ldots \rangle * \langle u, v \rangle \leqslant \mathbb{F}_n$, and take $H_1, \ldots, H_k \leqslant W \leqslant \mathbb{F}_n$ realizing χ . Now, in order to realize: • $\chi \boxplus_0 \mathbf{0}$, take $\widetilde{H}_1 = H_1, \ldots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = \{1\}$; • $\chi \boxplus_1 \mathbf{1}$, take $\widetilde{H}_1 = H_1 * \langle u, v \rangle, \ldots, \widetilde{H}_k = H_k * \langle u, v \rangle$ and $\widetilde{H}_{k+1} = \ll u \gg_U$: $\widetilde{H}_1, \ldots, \widetilde{H}_k$ realize $\chi \lor \mathbf{0} = \chi$ and, for every

$$i \neq k + 1$$
, $\widetilde{H}_{k+1} \cap \widetilde{H}_i = \widetilde{H}_{k+1}$ which is non-f.g.;

•
$$\chi \boxplus_0 \chi$$
, take $\widetilde{H}_1 = H_1, \dots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = \mathbb{F}_n$;

• $\chi \boxplus_1 \chi$, take $\widetilde{H}_1 = H_1, \ldots, \widetilde{H}_k = H_k$, and $\widetilde{H}_{k+1} = W$.

Definition

(Un)Realizable k-configs.
 00000000

 The free case 000●0 Open questions

6. Quotient-saturated groups

Characterization for the free case

Theorem (Delgado-Roy-V., '22)

A *k*-configuration is realizable in \mathbb{F}_n , $n \ge 2 \Leftrightarrow$ it is Howson.

(Proof)

For \leftarrow , we will do induction on the cardinal of the support of χ , say s (regardless of its size k).

- If s = 0 then $\chi = 0$, clearly realizable in \mathbb{F}_2 .
- Given *χ* with | supp(*χ*)| = s and being Howson, define the cone of *χ* at vertex *I* ⊆ [*k*], denoted by c_I(*χ*), as

Now let l₁,..., l_p ⊆ [k] be the maximal elements in supp(χ) (w.r.t. inclusion). It is clear that χ = c_{l1}(χ) ∨···· ∨ c_{lp}(χ).

(Un)Realizable k-configs.
 00000000

4. The free case 000●0 Open questions

6. Quotient-saturated groups

Characterization for the free case

Theorem (Delgado-Roy-V., '22)

A *k*-configuration is realizable in \mathbb{F}_n , $n \ge 2 \Leftrightarrow$ it is Howson.

(Proof)

For \Leftarrow , we will do induction on the cardinal of the support of χ , say s (regardless of its size k).

- If s = 0 then $\chi = 0$, clearly realizable in \mathbb{F}_2 .
- Given *χ* with | supp(*χ*)| = s and being Howson, define the cone of *χ* at vertex *I* ⊆ [*k*], denoted by c_l(*χ*), as

Now let l₁,..., l_p ⊆ [k] be the maximal elements in supp(χ) (w.r.t. inclusion). It is clear that χ = c_{l₁}(χ) ∨ ··· ∨ c_{l_p}(χ).

(Un)Realizable k-configs.
 00000000

 The free case 000●0 Open questions

6. Quotient-saturated groups

Characterization for the free case

Theorem (Delgado-Roy-V., '22)

A *k*-configuration is realizable in \mathbb{F}_n , $n \ge 2 \Leftrightarrow$ it is Howson.

(Proof)

For \Leftarrow , we will do induction on the cardinal of the support of χ , say s (regardless of its size k).

• If s = 0 then $\chi = 0$, clearly realizable in \mathbb{F}_2 .

Given *χ* with | supp(*χ*)| = s and being Howson, define the cone of *χ* at vertex *I* ⊆ [*k*], denoted by c_I(*χ*), as

Now let l₁,..., l_p ⊆ [k] be the maximal elements in supp(χ) (w.r.t. inclusion). It is clear that χ = c_{l₁}(χ) ∨ ··· ∨ c_{l_p}(χ).

(Un)Realizable k-configs.
 00000000

 The free case 000●0 Open questions

6. Quotient-saturated groups

Characterization for the free case

Theorem (Delgado-Roy-V., '22)

A *k*-configuration is realizable in \mathbb{F}_n , $n \ge 2 \Leftrightarrow$ it is Howson.

(Proof)

For \Leftarrow , we will do induction on the cardinal of the support of χ , say s (regardless of its size k).

- If s = 0 then $\chi = 0$, clearly realizable in \mathbb{F}_2 .
- Given *χ* with | supp(*χ*)| = s and being Howson, define the cone of *χ* at vertex *l* ⊆ [*k*], denoted by c_l(*χ*), as

$$egin{array}{rcl} c_l(\chi)\colon \mathcal{P}([k])\setminus \{arnothing\} &
ightarrow & \{0,\,1\}\ J &\mapsto & \left\{egin{array}{cc} 0 & ext{if } J
ot \subseteq I,\ (J)\chi & ext{if } J \subseteq I. \end{array}
ight.$$

Now let l₁,..., l_p ⊆ [k] be the maximal elements in supp(χ) (w.r.t. inclusion). It is clear that χ = c_{l₁}(χ) ∨ ··· ∨ c_{l_p}(χ).

(Un)Realizable k-configs.
 00000000

 The free case 000●0 Open questions

6. Quotient-saturated groups

Characterization for the free case

Theorem (Delgado-Roy-V., '22)

A *k*-configuration is realizable in \mathbb{F}_n , $n \ge 2 \Leftrightarrow$ it is Howson.

(Proof)

For \Leftarrow , we will do induction on the cardinal of the support of χ , say s (regardless of its size k).

- If s = 0 then $\chi = 0$, clearly realizable in \mathbb{F}_2 .
- Given *χ* with | supp(*χ*)| = s and being Howson, define the cone of *χ* at vertex *l* ⊆ [*k*], denoted by c_l(*χ*), as

$$egin{array}{rcl} \mathcal{C}_l(\chi)\colon \mathcal{P}([k])\setminus \{arnothing\} &
ightarrow & \{0,\,1\}\ & J &\mapsto & \left\{egin{array}{rcl} 0 & ext{if}\ J
ot \subseteq I,\ (J)\chi & ext{if}\ J \subseteq I. \end{array}
ight.$$

Now let l₁,..., l_p ⊆ [k] be the maximal elements in supp(χ) (w.r.t. inclusion). It is clear that χ = c_{l₁}(χ) ∨··· ∨ c_{l_p}(χ).

(Un)Realizable k-configs.
 00000000

 The free case 0000● Open questions

Quotient-saturated groups
 OOO

Characterization for the free case

- If $p \ge 2$, by the induction hypothesis we can realize each of $c_{l_1}(\chi), \ldots, c_{l_p}(\chi)$ in \mathbb{F}_2 , and so, realize their join χ , in \mathbb{F}_2 as well.
- Hence, we are reduced to the case p = 1: χ is Howson and $\exists \emptyset \neq l_1 \subseteq [k]$ with $(l_1)\chi = 1$, and $(J)\chi = 0$ for every $J \not\subseteq l_1$.
- If *I*₁ ≠ [k] then any *j* ∈ [k] \ *I*₁ is 0-monochromatic, χ = χ_{|j} ⊞₀ 0, and we are reduced to realize χ_{|j}; repeating, we can assume *I*₁ = [k]. That is, χ is a Howson k-config. s.t. ([k])χ = 1.
- If $\chi = \mathbf{1}$ then it is clearly realizable in \mathbb{F}_2 .
- Otherwise, take Ø ≠ l₂ ⊆ [k] with (l₂)χ = 0 and with maximal possible cardinal.
- Since *l*₂ ≠ [*k*], ∃*j* ∉ *l*₂, and any such index is 1-monochromatic: in fact, any *j* ∈ *J* ⊆ [*k*] satisfies |*l*₂ ∪ *J*| > |*l*₂| so (*l*₂ ∪ *J*)*χ* = 1 and, since *χ* is Howson and (*l*₂)*χ* = 0, then (*J*)*χ* = 1.
- Hence, by induction hypothesis, $\chi_{|\hat{j}}$ is realizable in \mathbb{F}_2 and $\chi = \chi_{|\hat{j}} \boxplus_1 \mathbf{1}$ as well.

(Un)Realizable k-configs.
 00000000

 The free case 0000● Open questions

Quotient-saturated groups
 OOO

Characterization for the free case

- If $p \ge 2$, by the induction hypothesis we can realize each of $c_{l_1}(\chi), \ldots, c_{l_p}(\chi)$ in \mathbb{F}_2 , and so, realize their join χ , in \mathbb{F}_2 as well.
- Hence, we are reduced to the case p = 1: χ is Howson and $\exists \emptyset \neq l_1 \subseteq [k]$ with $(l_1)\chi = 1$, and $(J)\chi = 0$ for every $J \not\subseteq l_1$.
- If *I*₁ ≠ [k] then any *j* ∈ [k] \ *I*₁ is 0-monochromatic, χ = χ_{|j} ⊞₀ 0, and we are reduced to realize χ_{|j}; repeating, we can assume *I*₁ = [k]. That is, χ is a Howson k-config. s.t. ([k])χ = 1.
- If $\chi = \mathbf{1}$ then it is clearly realizable in \mathbb{F}_2 .
- Otherwise, take Ø ≠ l₂ ⊆ [k] with (l₂)χ = 0 and with maximal possible cardinal.
- Since *l*₂ ≠ [*k*], ∃*j* ∉ *l*₂, and any such index is 1-monochromatic: in fact, any *j* ∈ *J* ⊆ [*k*] satisfies |*l*₂ ∪ *J*| > |*l*₂| so (*l*₂ ∪ *J*)*χ* = 1 and, since *χ* is Howson and (*l*₂)*χ* = 0, then (*J*)*χ* = 1.
- Hence, by induction hypothesis, $\chi_{|\hat{j}}$ is realizable in \mathbb{F}_2 and $\chi = \chi_{|\hat{j}} \boxplus_1 \mathbf{1}$ as well.

 1. Main results
 2. F_Π × Z^m
 3. (Un)Realizable k-configs.
 4. The free case
 5. Open questions
 6. Quotient-saturated groups

 00000
 0000000
 00000
 00000
 00000

Characterization for the free case

- If p ≥ 2, by the induction hypothesis we can realize each of c_{l₁}(χ),..., c_{l_p}(χ) in 𝔽₂, and so, realize their join χ, in 𝔽₂ as well.
- Hence, we are reduced to the case p = 1: χ is Howson and $\exists \emptyset \neq l_1 \subseteq [k]$ with $(l_1)\chi = 1$, and $(J)\chi = 0$ for every $J \not\subseteq l_1$.
- If *I*₁ ≠ [*k*] then any *j* ∈ [*k*] \ *I*₁ is 0-monochromatic, χ = χ_{|j} ⊞₀ 0, and we are reduced to realize χ_{|j}; repeating, we can assume *I*₁ = [*k*]. That is, χ is a Howson *k*-config. s.t. ([*k*])χ = 1.
- If $\chi = \mathbf{1}$ then it is clearly realizable in \mathbb{F}_2 .
- Otherwise, take Ø ≠ l₂ ⊆ [k] with (l₂)χ = 0 and with maximal possible cardinal.
- Since *l*₂ ≠ [*k*], ∃*j* ∉ *l*₂, and any such index is 1-monochromatic: in fact, any *j* ∈ *J* ⊆ [*k*] satisfies |*l*₂ ∪ *J*| > |*l*₂| so (*l*₂ ∪ *J*)*χ* = 1 and, since *χ* is Howson and (*l*₂)*χ* = 0, then (*J*)*χ* = 1.
- Hence, by induction hypothesis, $\chi_{|\hat{j}}$ is realizable in \mathbb{F}_2 and $\chi = \chi_{|\hat{j}} \boxplus_1 \mathbf{1}$ as well.

 1. Main results
 2. F_R × Z^m
 3. (Un)Realizable k-configs.
 4. The free case
 5. Open questions
 6. Quotient-saturated groups

 00000
 0000000
 000000
 00000
 00000

Characterization for the free case

- If p ≥ 2, by the induction hypothesis we can realize each of c_{l1}(χ),..., c_{lp}(χ) in 𝔽₂, and so, realize their join χ, in 𝔽₂ as well.
- Hence, we are reduced to the case p = 1: χ is Howson and $\exists \emptyset \neq I_1 \subseteq [k]$ with $(I_1)\chi = 1$, and $(J)\chi = 0$ for every $J \not\subseteq I_1$.
- If *I*₁ ≠ [*k*] then any *j* ∈ [*k*] \ *I*₁ is 0-monochromatic, *χ* = *χ*_{|j} ⊞₀ 0, and we are reduced to realize *χ*_{|j}; repeating, we can assume *I*₁ = [*k*]. That is, *χ* is a Howson *k*-config. s.t. ([*k*])*χ* = 1.

• If
$$\chi = \mathbf{1}$$
 then it is clearly realizable in \mathbb{F}_2 .

- Otherwise, take Ø ≠ l₂ ⊆ [k] with (l₂)χ = 0 and with maximal possible cardinal.
- Since *l*₂ ≠ [*k*], ∃*j* ∉ *l*₂, and any such index is 1-monochromatic: in fact, any *j* ∈ *J* ⊆ [*k*] satisfies |*l*₂ ∪ *J*| > |*l*₂| so (*l*₂ ∪ *J*)χ = 1 and, since χ is Howson and (*l*₂)χ = 0, then (*J*)χ = 1.
- Hence, by induction hypothesis, $\chi_{|\hat{j}}$ is realizable in \mathbb{F}_2 and $\chi = \chi_{|\hat{j}} \boxplus_1 \mathbf{1}$ as well.

 1. Main results
 2. $\mathbb{F}_n \times \mathbb{Z}^m$ 3. (Un)Realizable k-configs.
 4. The free case
 5. Open questions
 6. Quotient-saturated groups

 00000
 0000000
 000000
 00000
 00000
 00000

Characterization for the free case

- If p ≥ 2, by the induction hypothesis we can realize each of c_{l1}(χ),..., c_{lp}(χ) in 𝔽₂, and so, realize their join χ, in 𝔽₂ as well.
- Hence, we are reduced to the case p = 1: χ is Howson and $\exists \emptyset \neq l_1 \subseteq [k]$ with $(l_1)\chi = 1$, and $(J)\chi = 0$ for every $J \not\subseteq l_1$.
- If $I_1 \neq [k]$ then any $j \in [k] \setminus I_1$ is 0-monochromatic, $\chi = \chi_{|\hat{j}} \boxplus_0 \mathbf{0}$, and we are reduced to realize $\chi_{|\hat{j}}$; repeating, we can assume $I_1 = [k]$. That is, χ is a Howson k-config. s.t. $([k])\chi = 1$.
- If $\chi = \mathbf{1}$ then it is clearly realizable in \mathbb{F}_2 .
- Otherwise, take Ø ≠ l₂ ⊆ [k] with (l₂)χ = 0 and with maximal possible cardinal.
- Since *l*₂ ≠ [*k*], ∃*j* ∉ *l*₂, and any such index is 1-monochromatic: in fact, any *j* ∈ *J* ⊆ [*k*] satisfies |*l*₂ ∪ *J*| > |*l*₂| so (*l*₂ ∪ *J*)χ = 1 and, since χ is Howson and (*l*₂)χ = 0, then (*J*)χ = 1.
- Hence, by induction hypothesis, $\chi_{|\hat{j}}$ is realizable in \mathbb{F}_2 and $\chi = \chi_{|\hat{j}} \boxplus_1 \mathbf{1}$ as well.

 1. Main results
 2. $\mathbb{F}_n \times \mathbb{Z}^m$ 3. (Un)Realizable k-configs.
 4. The free case 00000

 00000
 0000000
 0000000
 00000

Characterization for the free case

(cont.)

- If p ≥ 2, by the induction hypothesis we can realize each of c_{l₁}(χ),..., c_{l_p}(χ) in 𝔽₂, and so, realize their join χ, in 𝔽₂ as well.
- Hence, we are reduced to the case p = 1: χ is Howson and $\exists \emptyset \neq I_1 \subseteq [k]$ with $(I_1)\chi = 1$, and $(J)\chi = 0$ for every $J \not\subseteq I_1$.
- If *I*₁ ≠ [*k*] then any *j* ∈ [*k*] \ *I*₁ is 0-monochromatic, *χ* = *χ*_{|j} ⊞₀ 0, and we are reduced to realize *χ*_{|j}; repeating, we can assume *I*₁ = [*k*]. That is, *χ* is a Howson *k*-config. s.t. ([*k*])*χ* = 1.

• If
$$\chi = \mathbf{1}$$
 then it is clearly realizable in \mathbb{F}_2 .

- Otherwise, take Ø ≠ l₂ ⊆ [k] with (l₂)χ = 0 and with maximal possible cardinal.
- Since $l_2 \neq [k]$, $\exists j \notin l_2$, and any such index is 1-monochromatic: in fact, any $j \in J \subseteq [k]$ satisfies $|l_2 \cup J| > |l_2|$ so $(l_2 \cup J)\chi = 1$ and, since χ is Howson and $(l_2)\chi = 0$, then $(J)\chi = 1$.

• Hence, by induction hypothesis, $\chi_{|\hat{j}}$ is realizable in \mathbb{F}_2 and $\chi = \chi_{|\hat{j}} \boxplus_1 \mathbf{1}$ as well.

(Un)Realizable k-configs.
 00000000

 The free case 0000● Open questions

Quotient-saturated groups
 000

Characterization for the free case

- If $p \ge 2$, by the induction hypothesis we can realize each of $c_{l_1}(\chi), \ldots, c_{l_p}(\chi)$ in \mathbb{F}_2 , and so, realize their join χ , in \mathbb{F}_2 as well.
- Hence, we are reduced to the case p = 1: χ is Howson and $\exists \emptyset \neq l_1 \subseteq [k]$ with $(l_1)\chi = 1$, and $(J)\chi = 0$ for every $J \not\subseteq l_1$.
- If *I*₁ ≠ [*k*] then any *j* ∈ [*k*] \ *I*₁ is 0-monochromatic, *χ* = *χ*_{|j} ⊞₀ 0, and we are reduced to realize *χ*_{|j}; repeating, we can assume *I*₁ = [*k*]. That is, *χ* is a Howson *k*-config. s.t. ([*k*])*χ* = 1.
- If $\chi = \mathbf{1}$ then it is clearly realizable in \mathbb{F}_2 .
- Otherwise, take Ø ≠ I₂ ⊆ [k] with (I₂) χ = 0 and with maximal possible cardinal.
- Since *l*₂ ≠ [*k*], ∃*j* ∉ *l*₂, and any such index is 1-monochromatic: in fact, any *j* ∈ *J* ⊆ [*k*] satisfies |*l*₂ ∪ *J*| > |*l*₂| so (*l*₂ ∪ *J*)χ = 1 and, since χ is Howson and (*l*₂)χ = 0, then (*J*)χ = 1.
- Hence, by induction hypothesis, $\chi_{|\hat{j}}$ is realizable in \mathbb{F}_2 and $\chi = \chi_{|\hat{j}} \boxplus_1 \mathbf{1}$ as well.

1. Main results 00000	2.	3. (Un)Realizable k-configs.	4. The free case	5. Open questions	6. Quotient-saturated groups
Outline	9				

- Our main results
- Pree-times-free-abelian groups
- Realizable / unrealizable k-configurations
- 4 The free case
- Open questions
- 6 Quotient-saturated groups

1. Main results 00000	2. F _n × ℤ ^m 000000	 (Un)Realizable k-configs. 00000000 	4. The free case	 Open questions 	6. Quotient-saturated groups
Open q	uestior	าร			

Can we characterize the k-configurations realizable in $\mathbb{F}_n \times \mathbb{Z}^m$, for each particular m? At least find an algorithm to decide whether a given χ is realizable in a given abelian dimension m.

Question

Is there a finitely presented intersection-saturated group G which does not contain $\mathbb{F}_2 \times \mathbb{Z}^m$, for some $m \in \mathbb{N}$?

Question

Characterize the realizable configurations in your favorite group G.

Question

1. Main results	2.	 (Un)Realizable k-configs. 00000000 	4. The free case	 Open questions 	 Quotient-saturated groups OOO
Open	questio	ns			

Can we characterize the k-configurations realizable in $\mathbb{F}_n \times \mathbb{Z}^m$, for each particular m? At least find an algorithm to decide whether a given χ is realizable in a given abelian dimension m.

Question

Is there a finitely presented intersection-saturated group G which does not contain $\mathbb{F}_2 \times \mathbb{Z}^m$, for some $m \in \mathbb{N}$?

Question

Characterize the realizable configurations in your favorite group G.

Question

1. Main results	2. $\mathbb{F}_n \times \mathbb{Z}^m$ 000000	 (Un)Realizable k-configs. 00000000 	4. The free case	 Open questions 	6. Quotient-saturated groups
Open o	questio	ns			

Can we characterize the k-configurations realizable in $\mathbb{F}_n \times \mathbb{Z}^m$, for each particular m? At least find an algorithm to decide whether a given χ is realizable in a given abelian dimension m.

Question

Is there a finitely presented intersection-saturated group G which does not contain $\mathbb{F}_2 \times \mathbb{Z}^m$, for some $m \in \mathbb{N}$?

Question

Characterize the realizable configurations in your favorite group G.

Question

1. Main results	2.	 (Un)Realizable k-configs. 00000000 	4. The free case	5. Open questions ●	 Quotient-saturated groups OOO
Open	questio	ns			

Can we characterize the k-configurations realizable in $\mathbb{F}_n \times \mathbb{Z}^m$, for each particular m? At least find an algorithm to decide whether a given χ is realizable in a given abelian dimension m.

Question

Is there a finitely presented intersection-saturated group G which does not contain $\mathbb{F}_2 \times \mathbb{Z}^m$, for some $m \in \mathbb{N}$?

Question

Characterize the realizable configurations in your favorite group G.

Question

1. Main results 00000	2. F _n × ℤ ^m 000000	 (Un)Realizable k-configs. 00000000 	4. The free case	5. Open questions O	6. Quotient-saturated groups
Outline)				

- Our main results
- 2 Free-times-free-abelian groups
- Realizable / unrealizable k-configurations
- 4 The free case
- Open questions
- Quotient-saturated groups

Oustia	at a atu	ratad area upa			
					•00
 Main results 	2. $\mathbb{F}_n \times \mathbb{Z}^m$	(Un)Realizable k-configs.	The free case	Open questions	Quotient-saturated groups

Definition

Let $\Gamma = (V, E, \iota, \tau, c)$ be a colored DAG, and let G be a group. We say that Γ is realizable in G if $\exists N_v \trianglelefteq G$ for $v \in V$, in such a way that:

(i) for any two vertices $u \neq v$, we have $N_u \neq N_v$;

- (ii) for any two vertices u, v, we have $u \le v$ if and only if $N_u \le N_v$;
- (iii) for any vertex v, the quotient group $G_v = G/N_v$ is finitely presented if and only if c(v) = 0.

A group G is said to be quotient-saturated if every finite colored DAG is realizable in G.

Remark

O ette										
00000	000000	0000000	00000		•00					
 Main results 	2. $\mathbb{F}_n \times \mathbb{Z}^m$	(Un)Realizable k-configs.	The free case	Open questions	Quotient-saturated groups					

Definition

Let $\Gamma = (V, E, \iota, \tau, c)$ be a colored DAG, and let G be a group. We say that Γ is realizable in G if $\exists N_v \trianglelefteq G$ for $v \in V$, in such a way that:

(i) for any two vertices $u \neq v$, we have $N_u \neq N_v$;

(ii) for any two vertices u, v, we have $u \le v$ if and only if $N_u \le N_v$;

(iii) for any vertex v, the quotient group $G_v = G/N_v$ is finitely presented if and only if c(v) = 0.

A group G is said to be quotient-saturated if every finite colored DAG is realizable in G.

Remark

1. Main results	2.	 (Un)Realizable k-configs. 00000000 	4. The free case	5. Open questions O	 Quotient-saturated groups OO

Definition

Let $\Gamma = (V, E, \iota, \tau, c)$ be a colored DAG, and let G be a group. We say that Γ is realizable in G if $\exists N_v \trianglelefteq G$ for $v \in V$, in such a way that:

(i) for any two vertices $u \neq v$, we have $N_u \neq N_v$;

(ii) for any two vertices u, v, we have $u \le v$ if and only if $N_u \le N_v$;

(iii) for any vertex v, the quotient group $G_v = G/N_v$ is finitely presented if and only if c(v) = 0.

A group G is said to be quotient-saturated if every finite colored DAG is realizable in G.

Remark

1. Main results 00000	2.	 (Un)Realizable k-configs. 00000000 	4. The free case	5. Open questions O	 Quotient-saturated groups OO

Definition

Let $\Gamma = (V, E, \iota, \tau, c)$ be a colored DAG, and let G be a group. We say that Γ is realizable in G if $\exists N_v \trianglelefteq G$ for $v \in V$, in such a way that:

(i) for any two vertices $u \neq v$, we have $N_u \neq N_v$;

- (ii) for any two vertices u, v, we have $u \le v$ if and only if $N_u \le N_v$;
- (iii) for any vertex v, the quotient group $G_v = G/N_v$ is finitely presented if and only if c(v) = 0.

A group G is said to be quotient-saturated if every finite colored DAG is realizable in G.

Remark

1. Main results 00000	2.	 (Un)Realizable k-configs. 00000000 	4. The free case	5. Open questions O	 Quotient-saturated groups OO

Definition

Let $\Gamma = (V, E, \iota, \tau, c)$ be a colored DAG, and let G be a group. We say that Γ is realizable in G if $\exists N_v \trianglelefteq G$ for $v \in V$, in such a way that:

(i) for any two vertices $u \neq v$, we have $N_u \neq N_v$;

- (ii) for any two vertices u, v, we have $u \le v$ if and only if $N_u \le N_v$;
- (iii) for any vertex v, the quotient group $G_v = G/N_v$ is finitely presented if and only if c(v) = 0.

A group G is said to be quotient-saturated if every finite colored DAG is realizable in G.

Remark

	a terre the all access of			
1. Main results 2. 𝑘 × 00000 00000		s. 4. The free case	5. Open questions O	 Quotient-saturated groups OO

Definition

Let $\Gamma = (V, E, \iota, \tau, c)$ be a colored DAG, and let G be a group. We say that Γ is realizable in G if $\exists N_v \trianglelefteq G$ for $v \in V$, in such a way that:

(i) for any two vertices $u \neq v$, we have $N_u \neq N_v$;

- (ii) for any two vertices u, v, we have $u \le v$ if and only if $N_u \le N_v$;
- (iii) for any vertex v, the quotient group $G_v = G/N_v$ is finitely presented if and only if c(v) = 0.

A group G is said to be quotient-saturated if every finite colored DAG is realizable in G.

Remark

		and a share share a			
1. Main results 00000	2.	 (Un)Realizable k-configs. 00000000 	4. The free case	5. Open questions O	 Quotient-saturated groups ○●○

Theorem (Delgado-Roy-V.)

Let G be a hyperbolic group. Any non-elementary, finitely presented subgroup $D \leq G$ is quotient-saturated.

Corollary

Any non-elementary hyperbolic group G is quotient-saturated.

Corollary

Any non-abelian free group \mathbb{F}_n , $n \ge 2$, is quotient-saturated.

Corollary

Non-elementary, finitely presented, non quotient-saturated groups D do not embed in any hyperbolic group G.

1. Main results 00000	2.	 (Un)Realizable k-configs. 00000000 	4. The free case	5. Open questions O	 Quotient-saturated groups O●O

Theorem (Delgado–Roy–V.)

Let G be a hyperbolic group. Any non-elementary, finitely presented subgroup $D \leq G$ is quotient-saturated.

Corollary

Any non-elementary hyperbolic group G is quotient-saturated.

Corollary

Any non-abelian free group \mathbb{F}_n , $n \ge 2$, is quotient-saturated.

Corollary

Non-elementary, finitely presented, non quotient-saturated groups D do not embed in any hyperbolic group G.

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

1. Main results	2.	3. (Un)Realizable <i>k</i> -configs.	4. The free case	5. Open questions O	 Quotient-saturated groups O●O
Quotie	nt-satu	rated groups			

3 1

Theorem (Delgado-Roy-V.)

Let G be a hyperbolic group. Any non-elementary, finitely presented subgroup $D \leqslant G$ is quotient-saturated.

Corollary

Any non-elementary hyperbolic group G is quotient-saturated.

Corollary

Any non-abelian free group \mathbb{F}_n , $n \ge 2$, is quotient-saturated.

Corollary

Non-elementary, finitely presented, non quotient-saturated groups D do not embed in any hyperbolic group G.

・ コット (雪) (小田) (コット 日)

	a ta al avec una			
2.	 (Un)Realizable k-configs. 00000000 	4. The free case	5. Open questions O	 Quotient-saturated groups O●O

Theorem (Delgado-Roy-V.)

Let G be a hyperbolic group. Any non-elementary, finitely presented subgroup $D \leq G$ is quotient-saturated.

Corollary

Any non-elementary hyperbolic group G is quotient-saturated.

Corollary

Any non-abelian free group \mathbb{F}_n , $n \ge 2$, is quotient-saturated.

Corollary

Non-elementary, finitely presented, non quotient-saturated groups D do not embed in any hyperbolic group G.

1. Main results	3. (Un)Realizable k-configs.	4. The free case	5. Open questions	6. Quotient-saturated groups
				000

GRACIAS

THANKS

▲□▶▲@▶▲臣▶▲臣▶ 臣 のへで