The conjugacy and isomorphism problems for automaton groups

Enric Ventura

Departament de Matemàtica Aplicada III

Universitat Politècnica de Catalunya

IX Encuentro en Teoria de Grupos

June 22nd, 2012.

Outline

- Algorithmic problems
- 2 Automaton groups
- Mihailova's construction and orbit undecidability
- Unsolvability of IP

Outline

- Algorithmic problems
- 2 Automaton groups
- 3 Mihailova's construction and orbit undecidability
- Unsolvability of IP

Let $G = \langle x_1, \dots, x_n | r_1, \dots, r_m \rangle$ be a finite presentation.

- Word Problem (WP): Given a word $w(x_1,...,x_n)$ decide whether $w =_G 1$.
- Conjugacy Problem (CP): Given two words $u(x_1,...,x_n)$ and $v(x_1,...,x_n)$, decide whether $u \sim_G v$.
- Isomorphism Problem (IP): Given two finite presentations like above, G₁ and G₂, decide whether G₁ ≃ G₂.

The three of them are known to be unsolvable in general.

Theorem (Novikov 1955, Boone 1957)

Let $G = \langle x_1, \dots, x_n | r_1, \dots, r_m \rangle$ be a finite presentation.

- Word Problem (WP): Given a word $w(x_1,...,x_n)$ decide whether $w =_G 1$.
- Conjugacy Problem (CP): Given two words $u(x_1,...,x_n)$ and $v(x_1,...,x_n)$, decide whether $u \sim_G v$.
- Isomorphism Problem (IP): Given two finite presentations like above, G₁ and G₂, decide whether G₁ ≃ G₂.

The three of them are known to be unsolvable in general.

Theorem (Novikov 1955, Boone 1957)

Let $G = \langle x_1, \dots, x_n | r_1, \dots, r_m \rangle$ be a finite presentation.

- Word Problem (WP): Given a word $w(x_1,...,x_n)$ decide whether $w =_G 1$.
- Conjugacy Problem (CP): Given two words $u(x_1,...,x_n)$ and $v(x_1,...,x_n)$, decide whether $u \sim_G v$.
- Isomorphism Problem (IP): Given two finite presentations like above, G_1 and G_2 , decide whether $G_1 \simeq G_2$.

The three of them are known to be unsolvable in general.

Theorem (Novikov 1955, Boone 1957

Let $G = \langle x_1, \dots, x_n | r_1, \dots, r_m \rangle$ be a finite presentation.

- Word Problem (WP): Given a word $w(x_1,...,x_n)$ decide whether $w =_G 1$.
- Conjugacy Problem (CP): Given two words $u(x_1,...,x_n)$ and $v(x_1,...,x_n)$, decide whether $u \sim_G v$.
- Isomorphism Problem (IP): Given two finite presentations like above, G_1 and G_2 , decide whether $G_1 \simeq G_2$.

The three of them are known to be unsolvable in general.

Theorem (Novikov 1955, Boone 1957)

Let $G = \langle x_1, \dots, x_n | r_1, \dots, r_m \rangle$ be a finite presentation.

- Word Problem (WP): Given a word $w(x_1,...,x_n)$ decide whether $w =_G 1$.
- Conjugacy Problem (CP): Given two words $u(x_1,...,x_n)$ and $v(x_1,...,x_n)$, decide whether $u \sim_G v$.
- Isomorphism Problem (IP): Given two finite presentations like above, G_1 and G_2 , decide whether $G_1 \simeq G_2$.

The three of them are known to be unsolvable in general.

Theorem (Novikov 1955, Boone 1957)

00000

- Membership problem (MP): Given G and h, $h_1, \ldots, h_n \in G$, decide whether $h \in H = \langle h_1, \ldots, h_n \rangle \leqslant G$.

- Membership problem (MP): Given G and $h, h_1, ..., h_n \in G$, decide whether $h \in H = \langle h_1, ..., h_n \rangle \leqslant G$.
- Generation problem (GP): Given G and $g_1, \ldots, g_n \in G$, decide whether $\langle g_1, \ldots, g_n \rangle = G$.

Theorem (Mihailova 1958)

The membership problem in $F_2 \times F_2$ is unsolvable.

Theorem (Miller 1971

The generation problem in $F_2 \times F_2$ is unsolvable.

- Membership problem (MP): Given G and $h, h_1, ..., h_n \in G$, decide whether $h \in H = \langle h_1, ..., h_n \rangle \leqslant G$.
- Generation problem (GP): Given G and $g_1, \ldots, g_n \in G$, decide whether $\langle g_1, \ldots, g_n \rangle = G$.

Theorem (Mihailova 1958)

The membership problem in $F_2 \times F_2$ is unsolvable.

Theorem (Miller 1971

The generation problem in $F_2 \times F_2$ is unsolvable.

- Membership problem (MP): Given G and $h, h_1, ..., h_n \in G$, decide whether $h \in H = \langle h_1, ..., h_n \rangle \leqslant G$.
- Generation problem (GP): Given G and $g_1, \ldots, g_n \in G$, decide whether $\langle g_1, \ldots, g_n \rangle = G$.

Theorem (Mihailova 1958)

The membership problem in $F_2 \times F_2$ is unsolvable.

Theorem (Miller 1971)

The generation problem in $F_2 \times F_2$ is unsolvable.

Orbit decidability

Definition

Let G be a f.g. group. A subgroup $\Gamma \leqslant \operatorname{Aut}(G)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $u, v \in G$, it decides whether v and $\alpha(u)$ are conjugate, for some $\alpha \in \Gamma$.

First examples: $G = \mathbb{Z}^c$

Observation (folklore)

The full group $\operatorname{Aut}(\mathbb{Z}^d) = \operatorname{GL}_d(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^d$, there exists $A \in GL_d(\mathbb{Z})$ such that v = Au if and only if $gcd(u_1, \dots, u_d) = gcd(v_1, \dots, v_d)$.

Orbit decidability

Definition

Let G be a f.g. group. A subgroup $\Gamma \leq \operatorname{Aut}(G)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $u, v \in G$, it decides whether v and $\alpha(u)$ are conjugate, for some $\alpha \in \Gamma$.

First examples: $G = \mathbb{Z}^d$

Observation (folklore)

The full group $\operatorname{Aut}(\mathbb{Z}^d) = \operatorname{GL}_d(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^d$, there exists $A \in GL_d(\mathbb{Z})$ such that v = Au if and only if $gcd(u_1, \dots, u_d) = gcd(v_1, \dots, v_d)$.

Orbit decidability

Definition

Let G be a f.g. group. A subgroup $\Gamma \leq \operatorname{Aut}(G)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $u, v \in G$, it decides whether v and $\alpha(u)$ are conjugate, for some $\alpha \in \Gamma$.

First examples: $G = \mathbb{Z}^d$

Observation (folklore)

The full group $\operatorname{Aut}(\mathbb{Z}^d) = \operatorname{GL}_d(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^d$, there exists $A \in GL_d(\mathbb{Z})$ such that v = Au if and only if $gcd(u_1, \dots, u_d) = gcd(v_1, \dots, v_d)$.

OD subgroups in $GL_d(\mathbb{Z})$...

Proposition (linear algebra)

For $A \in GL_d(\mathbb{Z})$, the subgroup $\langle A \rangle \leqslant GL_d(\mathbb{Z})$ is O.D.

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of $GL_d(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

OD subgroups in $GL_d(\mathbb{Z})$...

Proposition (linear algebra)

For $A \in GL_d(\mathbb{Z})$, the subgroup $\langle A \rangle \leqslant GL_d(\mathbb{Z})$ is O.D.

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of $GL_d(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D

OD subgroups in $GL_d(\mathbb{Z})$...

Proposition (linear algebra)

For $A \in GL_d(\mathbb{Z})$, the subgroup $\langle A \rangle \leqslant GL_d(\mathbb{Z})$ is O.D.

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of $GL_d(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

... and orbit undecidable ones

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Question

Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$?

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$.

... and orbit undecidable ones

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Question

Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$?

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$.

... and orbit undecidable ones

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Question

Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$?

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$.

Outline

- Algorithmic problems
- 2 Automaton groups
- 3 Mihailova's construction and orbit undecidability
- Unsolvability of IP

Main results

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Easy: the word problem is solvable for all such groups.

Theorem (Sunic-V.

Main results

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Easy: the word problem is solvable for all such groups.

Theorem (Sunic-V.)

Main results

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Easy: the word problem is solvable for all such groups.

Theorem (Sunic-V.)

Tree automorphisms

Let X be an alphabet on k letters, and let X^* be the free monoid on X, thought as a rooted k-ary tree:

Every tree automorphism g decomposes as a root permutation

$$g(xw) = \pi_g(x)g|_{X}(w)$$

Tree automorphisms

1. Algorithmic problems

Let X be an alphabet on k letters, and let X^* be the free monoid on X, thought as a rooted k-ary tree:

Definition

 Every tree automorphism g decomposes as a root permutation $\pi_q: X \to X$, and k sections $g|_X$, for $X \in X$:

$$g(xw) = \pi_g(x)g|_{X}(w).$$

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group G(A) of tree automorphisms generated by an automaton A is called an automaton group.

$$\alpha = \sigma(1,1), \quad \beta = 1(\alpha, \gamma), \quad \gamma = 1(\alpha, \delta), \quad \delta = 1(1, \beta)$$

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group G(A) of tree automorphisms generated by an automaton A is called an automaton group.

$$\alpha = \sigma(1,1), \quad \beta = 1(\alpha, \gamma), \quad \gamma = 1(\alpha, \delta), \quad \delta = 1(1, \beta)$$

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group G(A) of tree automorphisms generated by an automaton A is called an automaton group.

$$\alpha = \sigma(1,1), \quad \beta = 1(\alpha, \gamma), \quad \gamma = 1(\alpha, \delta), \quad \delta = 1(1, \beta)$$

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group G(A) of tree automorphisms generated by an automaton A is called an automaton group.

$$\alpha = \sigma(1,1), \quad \beta = 1(\alpha, \gamma), \quad \gamma = 1(\alpha, \delta), \quad \delta = 1(1, \beta).$$

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group G(A) of tree automorphisms generated by an automaton A is called an automaton group.

$$\alpha = \sigma(1,1), \quad \beta = 1(\alpha, \gamma), \quad \gamma = 1(\alpha, \delta), \quad \delta = 1(1, \beta).$$

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Theorem (Sunic-V.)

The isomorphism problem is unsolvable within the family of automaton groups.

Both results come from...

Theorem (Sunic-V.)

Let $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$ be f.g. Then, $\mathbb{Z}^d \rtimes \Gamma$ is an automaton group.

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Theorem (Sunic-V.)

The isomorphism problem is unsolvable within the family of automaton groups.

Both results come from

Theorem (Sunic-V.)

Let $\Gamma \leq \operatorname{GL}_d(\mathbb{Z})$ be f.g. Then, $\mathbb{Z}^d \times \Gamma$ is an automaton group.

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Theorem (Sunic-V.)

The isomorphism problem is unsolvable within the family of automaton groups.

Both results come from...

Theorem (Sunic-V.)

Let $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$ be f.g. Then, $\mathbb{Z}^d \rtimes \Gamma$ is an automaton group.

Theorem (Sunic-V.)

There exists $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$ f.g. such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable conjugacy problem.

Theorem (Sunic-V.)

Given Γ , $\Delta \leqslant GL_d(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^d \rtimes \Gamma \simeq \mathbb{Z}^d \rtimes \Delta$.

Corollary (Sunic-V.

There exist automaton groups with unsolvable conjugacy problem.

Corollary (Sunic-V.)

Reduction to matrices

Theorem (Sunic-V.)

There exists $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$ f.g. such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable conjugacy problem.

Theorem (Sunic-V.)

Given Γ , $\Delta \leqslant GL_d(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^d \rtimes \Gamma \simeq \mathbb{Z}^d \rtimes \Delta$.

Corollary (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Corollary (Sunic-V.)

The isomorphism problem is unsolvable within the family of automaton groups.

Outline

- Algorithmic problems
- Automaton groups
- Mihailova's construction and orbit undecidability
- Unsolvability of IP

Definition

Let $U = \langle x_1, \dots, x_n | r_1, \dots, r_m \rangle$ be a finite presentation. The Mihailova group corresponding to U is

$$M(U) = \{(v, w) \in F_n \times F_n \mid v =_U w\} =$$

$$=\langle (x_1,x_1),\ldots,(x_n,x_n),(1,r_1),\ldots,(1,r_m)\rangle\leqslant F_n\times F_n$$

Theorem (Mihailova 1958

The membership problem in $F_2 \times F_2$ is unsolvable

Theorem (Grunewald 1978

M(U) is finitely presented if and only if U is finite

Definition

Let $U = \langle x_1, \dots, x_n \, | \, r_1, \dots, r_m \rangle$ be a finite presentation. The Mihailova group corresponding to U is

$$M(U) = \{(v, w) \in F_n \times F_n \mid v =_U w\} =$$

$$=\langle (x_1,x_1),\ldots,(x_n,x_n),(1,r_1),\ldots,(1,r_m)\rangle\leqslant F_n\times F_n.$$

Theorem (Mihailova 1958)

The membership problem in $F_2 \times F_2$ is unsolvable

Theorem (Grunewald 1978

M(U) is finitely presented if and only if U is finite

Definition

Let $U = \langle x_1, \dots, x_n \, | \, r_1, \dots, r_m \rangle$ be a finite presentation. The Mihailova group corresponding to U is

$$M(U) = \{(v, w) \in F_n \times F_n \mid v =_U w\} =$$

$$=\langle (x_1,x_1),\ldots,(x_n,x_n),(1,r_1),\ldots,(1,r_m)\rangle\leqslant F_n\times F_n.$$

Theorem (Mihailova 1958)

The membership problem in $F_2 \times F_2$ is unsolvable.

Theorem (Grunewald 1978

M(U) is finitely presented if and only if U is finite

Definition

Let $U = \langle x_1, \dots, x_n | r_1, \dots, r_m \rangle$ be a finite presentation. The Mihailova group corresponding to U is

$$M(U) = \{(v, w) \in F_n \times F_n \mid v =_U w\} =$$

$$=\langle (x_1,x_1),\ldots,(x_n,x_n),(1,r_1),\ldots,(1,r_m)\rangle \leqslant F_n \times F_n.$$

Theorem (Mihailova 1958)

The membership problem in $F_2 \times F_2$ is unsolvable.

Theorem (Grunewald 1978)

M(U) is finitely presented if and only if U is finite.

Proposition (Bogopolski-Martino-V. 2008)

Let G be a group, and let $A \leq B \leq \operatorname{Aut}(G)$ and $v \in G$ be such that $B \cap Stab^*(v) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

Mihailova's construction

$$\{\phi \in B \mid v\phi = w\} = B \cap (Stab(v) \cdot \varphi) = (B \cap Stab(v)) \cdot \varphi = \{\varphi\}.$$

$$\{\phi \in B \mid v\phi \sim w\} = B \cap (\mathit{Stab}^*(v) \cdot \varphi) = (B \cap \mathit{Stab}^*(v)) \cdot \varphi = \{\varphi\}.$$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A.

$$OD(A) \Rightarrow MP(A, B).\Box$$

Proposition (Bogopolski-Martino-V. 2008)

Let G be a group, and let $A \leq B \leq \operatorname{Aut}(G)$ and $v \in G$ be such that $B \cap Stab^*(v) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

Mihailova's construction

Proof. Given $\varphi \in B \leq \operatorname{Aut}(G)$, let $w = v\varphi$ and

$$\{\phi \in B \mid v\phi = w\} = B \cap (Stab(v) \cdot \varphi) = (B \cap Stab(v)) \cdot \varphi = \{\varphi\}.$$

$$\{\phi \in B \mid v\phi \sim w\} = B \cap (Stab^*(v) \cdot \varphi) = (B \cap Stab^*(v)) \cdot \varphi = \{\varphi\}.$$

$$OD(A) \Rightarrow MP(A, B).\square$$

Proposition (Bogopolski-Martino-V. 2008)

Let G be a group, and let $A \leq B \leq \operatorname{Aut}(G)$ and $v \in G$ be such that $B \cap Stab^*(v) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

Mihailova's construction

Proof. Given $\varphi \in B \leq \operatorname{Aut}(G)$, let $w = v\varphi$ and

$$\{\phi \in B \mid v\phi = w\} = B \cap (Stab(v) \cdot \varphi) = (B \cap Stab(v)) \cdot \varphi = \{\varphi\}.$$

$$\{\phi \in B \mid v\phi \sim w\} = B \cap (Stab^*(v) \cdot \varphi) = (B \cap Stab^*(v)) \cdot \varphi = \{\varphi\}.$$

$$OD(A) \Rightarrow MP(A, B).\Box$$

Proposition (Bogopolski-Martino-V. 2008)

Let G be a group, and let $A \leq B \leq \operatorname{Aut}(G)$ and $v \in G$ be such that $B \cap Stab^*(v) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

Mihailova's construction

Proof. Given $\varphi \in B \leq \operatorname{Aut}(G)$, let $w = v\varphi$ and

$$\{\phi \in B \mid v\phi = w\} = B \cap (Stab(v) \cdot \varphi) = (B \cap Stab(v)) \cdot \varphi = \{\varphi\}.$$

$$\{\phi \in B \mid v\phi \sim w\} = B \cap (Stab^*(v) \cdot \varphi) = (B \cap Stab^*(v)) \cdot \varphi = \{\varphi\}.$$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A. Hence.

$$OD(A) \Rightarrow MP(A, B).\Box$$

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$.

Mihailova's construction

Proof. Consider
$$F_2 \simeq \langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$
, $Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \rangle \leq_{24} GL_2(\mathbb{Z})$.

- $Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & +1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$
- $\langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle$.
- Choose a free subgroup $F_2 \simeq \langle P', Q' \rangle < \langle P, Q \rangle$ such that $\langle P', Q' \rangle \cap Stab(1,0) = \{I\}$ and consider

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$.

Mihailova's construction

$$\textit{Proof. Consider } F_2 \simeq \langle P = \left(\begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array} \right), \; Q = \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right) \rangle \leq_{24} GL_2(\mathbb{Z}).$$

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$$

•
$$\langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle$$
.

• Choose a free subgroup $F_2 \simeq \langle P', Q' \rangle < \langle P, Q \rangle$ such that

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$.

Proof. Consider
$$F_2\simeq \langle P=\left(\begin{array}{cc}1&1\\1&2\end{array}\right),\ Q=\left(\begin{array}{cc}2&1\\1&1\end{array}\right)
angle \leq_{24} GL_2(\mathbb{Z}).$$

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$$

•
$$\langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle$$
.

• Choose a free subgroup $F_2 \simeq \langle P', Q' \rangle < \langle P, Q \rangle$ such that

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$.

Proof. Consider
$$F_2\simeq \langle P=\left(\begin{array}{cc}1&1\\1&2\end{array}\right),\ Q=\left(\begin{array}{cc}2&1\\1&1\end{array}\right)
angle \leq_{24} GL_2(\mathbb{Z}).$$

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$$

•
$$\langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle$$
.

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$.

Mihailova's construction

Proof. Consider
$$F_2 \simeq \langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$
, $Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \rangle \leq_{24} GL_2(\mathbb{Z})$.

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$$

•
$$\langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle$$
.

• Choose a free subgroup $F_2 \simeq \langle P', Q' \rangle \leq \langle P, Q \rangle$ such that $\langle P', Q' \rangle \cap Stab(1,0) = \{I\}$ and consider

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$.

Proof. Consider
$$F_2 \simeq \langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$
, $Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \rangle \leq_{24} GL_2(\mathbb{Z})$.

- $Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & +1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$
- $\langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle$.
- Choose a free subgroup $F_2 \simeq \langle P', Q' \rangle \leq \langle P, Q \rangle$ such that $\langle P', Q' \rangle \cap Stab(1,0) = \{I\}$ and consider

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

- Write v = (1, 0, 1, 0). By construction, $B \cap Stab(v) = \{I\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, A ≤ GL₄(Z) is orbit undecidable.
- Similarly for $A \leq \operatorname{GL}_d(\mathbb{Z})$, $d \geq 4$. \square

Question

- Write v = (1, 0, 1, 0). By construction, $B \cap Stab(v) = \{I\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, A ≤ GL₄(Z) is orbit undecidable.
- Similarly for $A \leq \operatorname{GL}_d(\mathbb{Z})$, $d \geq 4$. \square

Question

- Write v = (1, 0, 1, 0). By construction, $B \cap Stab(v) = \{I\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leq GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq GL_d(\mathbb{Z}), d \geq 4$. \square

Question

- Write v = (1, 0, 1, 0). By construction, $B \cap Stab(v) = \{I\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq \operatorname{GL}_d(\mathbb{Z}), d \geq 4$. \square

Question

- Write v = (1, 0, 1, 0). By construction, $B \cap Stab(v) = \{I\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leq GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \operatorname{GL}_d(\mathbb{Z}), d \geqslant 4$. \square

Question

Connection to semidirect products

Observation (B-M-V)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $G = H \times \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like

$$(h_1, \gamma_1) \cdot (h_2, \gamma_2) = (h_1 \gamma_1(h_2), \gamma_1 \gamma_2)$$

$$(h, \gamma)^{-1} = (\gamma^{-1}(h^{-1}), \gamma^{-1}).$$

For $h_1, h_2 \in H \leqslant G$, we have $h_1 \sim_G h_2 \Leftrightarrow \exists (h, \gamma) \in H \rtimes \Gamma$ s.t.

$$(h_2, Id) = (h, \gamma)^{-1} \cdot (h_1, Id) \cdot (h, \gamma) (\gamma^{-1}(h^{-1}), \gamma^{-1}) \cdot (h_1 h, \gamma) (\gamma^{-1}(h^{-1}h_1 h), Id).$$

Hence, $h_1 \sim_G h_2 \Leftrightarrow \exists \gamma \in \Gamma \text{ and } h \in H \text{ s.t. } h_1 = h_{\gamma}(h_2)h^{-1}$. \square

Connection to semidirect products

Observation (B-M-V)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $G = H \rtimes \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like

$$(h_1, \gamma_1) \cdot (h_2, \gamma_2) = (h_1 \gamma_1(h_2), \gamma_1 \gamma_2)$$

$$(h, \gamma)^{-1} = (\gamma^{-1}(h^{-1}), \gamma^{-1}).$$

For $h_1, h_2 \in H \leqslant G$, we have $h_1 \sim_G h_2 \Leftrightarrow \exists (h, \gamma) \in H \rtimes \Gamma$ s.t.

$$(h_2, Id) = (h, \gamma)^{-1} \cdot (h_1, Id) \cdot (h, \gamma)$$

$$(\gamma^{-1}(h^{-1}), \gamma^{-1}) \cdot (h_1 h, \gamma)$$

$$(\gamma^{-1}(h^{-1} h_1 h), Id).$$

Hence, $h_1 \sim_G h_2 \Leftrightarrow \exists \gamma \in \Gamma$ and $h \in H$ s.t. $h_1 = h\gamma(h_2)h^{-1}$. \square

Connection to semidirect products

Observation (B-M-V)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $G = H \rtimes \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like

$$(h_1, \gamma_1) \cdot (h_2, \gamma_2) = (h_1 \gamma_1 (h_2), \gamma_1 \gamma_2)$$

 $(h, \gamma)^{-1} = (\gamma^{-1} (h^{-1}), \gamma^{-1}).$

For $h_1, h_2 \in H \leq G$, we have $h_1 \sim_G h_2 \Leftrightarrow \exists (h, \gamma) \in H \rtimes \Gamma$ s.t.

$$(h_2, Id) = (h, \gamma)^{-1} \cdot (h_1, Id) \cdot (h, \gamma) (\gamma^{-1}(h^{-1}), \gamma^{-1}) \cdot (h_1 h, \gamma) (\gamma^{-1}(h^{-1}h_1 h), Id).$$

Hence, $h_1 \sim_G h_2 \Leftrightarrow \exists \gamma \in \Gamma$ and $h \in H$ s.t. $h_1 = h\gamma(h_2)h^{-1}$. \Box

Observation (B-M-V)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $G = H \rtimes \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like

$$(h_1, \gamma_1) \cdot (h_2, \gamma_2) = (h_1 \gamma_1(h_2), \gamma_1 \gamma_2)$$

$$(h, \gamma)^{-1} = (\gamma^{-1}(h^{-1}), \gamma^{-1}).$$

For $h_1, h_2 \in H \leqslant G$, we have $h_1 \sim_G h_2 \Leftrightarrow \exists (h, \gamma) \in H \rtimes \Gamma$ s.t.

$$(h_2, Id) = (h, \gamma)^{-1} \cdot (h_1, Id) \cdot (h, \gamma) (\gamma^{-1}(h^{-1}), \gamma^{-1}) \cdot (h_1 h, \gamma) (\gamma^{-1}(h^{-1}h_1 h), Id).$$

Hence, $h_1 \sim_G h_2 \Leftrightarrow \exists \gamma \in \Gamma$ and $h \in H$ s.t. $h_1 = h\gamma(h_2)h^{-1}$. \square

unsolvable CP

Corollary (Sunic-V.)

There exists $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$ f.g. such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable conjugacy problem.

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

unsolvable CP

Corollary (Sunic-V.)

There exists $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$ f.g. such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable conjugacy problem.

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Outline

- Algorithmic problems
- 2 Automaton groups
- Mihailova's construction and orbit undecidability
- Unsolvability of IP

A construction due to Gordon

Let
$$X = \{x_1, \dots, x_n\}$$
 and $U = \langle X | R \rangle$ be a finite presentation. For $w = w(x_1, \dots, x_n)$ consider

$$H_{w} = \left\langle X, a, b, c \mid R \right.$$

$$a^{-1}ba = c^{-1}b^{-1}cbc$$

$$a^{-2}b^{-1}aba^{2} = c^{-2}b^{-1}cbc^{2}$$

$$a^{-3}[w, b]a^{3} = c^{-3}bc^{3}$$

$$a^{-(3+i)}x_{i}ba^{3+i} = c^{-(3+i)}bc^{3+i}, i \ge 1$$

Lemma

- 1) If $w \neq_U 1$ then U embeds in H_w .
- 2) If $w =_U 1$ then $H_w = 1$.

Theorem

The isomorphism problem, the triviality problem, the finite problem are all unsolvable

A construction due to Gordon

Let $X = \{x_1, \dots, x_n\}$ and $U = \langle X \mid R \rangle$ be a finite presentation. For $w = w(x_1, \ldots, x_n)$ consider

$$H_{w} = \left\langle X, a, b, c \mid R \\ a^{-1}ba = c^{-1}b^{-1}cbc \\ a^{-2}b^{-1}aba^{2} = c^{-2}b^{-1}cbc^{2} \\ a^{-3}[w, b]a^{3} = c^{-3}bc^{3} \\ a^{-(3+i)}x_{i}ba^{3+i} = c^{-(3+i)}bc^{3+i}, i \ge 1 \right.$$

Lemma

- 1) If $w \neq_U 1$ then U embeds in H_w .
- 2) If $w =_U 1$ then $H_w = 1$.

A construction due to Gordon

Let $X = \{x_1, \dots, x_n\}$ and $U = \langle X \mid R \rangle$ be a finite presentation. For $w = w(x_1, \ldots, x_n)$ consider

$$H_{w} = \left\langle X, a, b, c \mid R \right.$$

$$a^{-1}ba = c^{-1}b^{-1}cbc$$

$$a^{-2}b^{-1}aba^{2} = c^{-2}b^{-1}cbc^{2}$$

$$a^{-3}[w, b]a^{3} = c^{-3}bc^{3}$$

$$a^{-(3+i)}x_{i}ba^{3+i} = c^{-(3+i)}bc^{3+i}, i \geqslant 1$$

Lemma

- 1) If $w \neq_U 1$ then U embeds in H_w .
- 2) If $w =_U 1$ then $H_w = 1$.

Theorem

The isomorphism problem, the triviality problem, the finite problem are all unsolvable.

Take U with unsolvable WP (in particular $|U| = \infty$), consider the presentations H_w as above, and consider the Mihailova group corresponding to H_w :

$$L_w = M(H_w) = \{(u,v) \in F_{n+3} \times F_{n+3} \mid u =_{H_w} v\} \leqslant F_{n+3} \times F_{n+3}.$$

Observe that

$$\begin{array}{lll} L_w = F_{n+3} \times F_{n+3} & \Leftrightarrow & u =_{H_w} v & \forall u, v \in F_{n+3} \\ & \Leftrightarrow & H_w = \{1\} \\ & \Leftrightarrow & w =_U 1. \end{array}$$

Theorem (Miller 1971

The generation problem in $F_2 \times F_2$ is unsolvable

Take U with unsolvable WP (in particular $|U| = \infty$), consider the presentations H_w as above, and consider the Mihailova group corresponding to H_w :

$$L_w = M(H_w) = \{(u,v) \in F_{n+3} \times F_{n+3} \mid u =_{H_w} v\} \leqslant F_{n+3} \times F_{n+3}.$$

Observe that

$$\begin{array}{lll} L_w = F_{n+3} \times F_{n+3} & \Leftrightarrow & u =_{H_w} v & \forall u, v \in F_{n+3} \\ & \Leftrightarrow & H_w = \{1\} \\ & \Leftrightarrow & w =_U 1. \end{array}$$

Theorem (Miller 1971

The generation problem in $F_2 \times F_2$ is unsolvable.

Take U with unsolvable WP (in particular $|U| = \infty$), consider the presentations H_w as above, and consider the Mihailova group corresponding to H_w :

$$L_w = \textit{M}(\textit{H}_w) = \{(\textit{u}, \textit{v}) \in \textit{F}_{\textit{n}+3} \times \textit{F}_{\textit{n}+3} \mid \textit{u} =_{\textit{H}_w} \textit{v}\} \leqslant \textit{F}_{\textit{n}+3} \times \textit{F}_{\textit{n}+3}.$$

Observe that

$$L_{w} = F_{n+3} \times F_{n+3} \quad \Leftrightarrow \quad u =_{H_{w}} v \quad \forall u, v \in F_{n+3}$$
$$\Leftrightarrow \quad H_{w} = \{1\}$$
$$\Leftrightarrow \quad w =_{U} 1.$$

Theorem (Miller 1971

The generation problem in $F_2 \times F_2$ is unsolvable.

Take U with unsolvable WP (in particular $|U| = \infty$), consider the presentations H_w as above, and consider the Mihailova group corresponding to H_w :

$$L_w = M(H_w) = \{(u,v) \in F_{n+3} \times F_{n+3} \mid u =_{H_w} v\} \leqslant F_{n+3} \times F_{n+3}.$$

Observe that

$$\begin{array}{lll} L_w = F_{n+3} \times F_{n+3} & \Leftrightarrow & u =_{H_w} v & \forall u, v \in F_{n+3} \\ & \Leftrightarrow & H_w = \left\{1\right\} \\ & \Leftrightarrow & w =_U 1. \end{array}$$

Theorem (Miller 1971

The generation problem in $F_2 \times F_2$ is unsolvable

Take U with unsolvable WP (in particular $|U| = \infty$), consider the presentations H_w as above, and consider the Mihailova group corresponding to H_w :

$$L_w = M(H_w) = \{(u,v) \in F_{n+3} \times F_{n+3} \mid u =_{H_w} v\} \leqslant F_{n+3} \times F_{n+3}.$$

Observe that

$$\begin{array}{lll} L_w = F_{n+3} \times F_{n+3} & \Leftrightarrow & u =_{H_w} v & \forall u, v \in F_{n+3} \\ & \Leftrightarrow & H_w = \{1\} \\ & \Leftrightarrow & w =_U 1. \end{array}$$

Theorem (Miller 1971)

The generation problem in $F_2 \times F_2$ is unsolvable.

- take F_{n+3} ≤ GL₂(ℤ), and $F_{n+3} \times F_{n+3} \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z}).$
- Take $L_w \leq F_{n+3} \times F_{n+3} \leq GL_4(\mathbb{Z})$.

$$w =_U 1 \Rightarrow L_w = F_{n+3} \times F_{n+3} \Rightarrow L_w \text{ f.p.} \Rightarrow G_w = G_1 \text{ f.p.}$$

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

- take F_{n+3} ≤ GL₂(ℤ), and $F_{n+3} \times F_{n+3} \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z}).$
- Take $L_w \leqslant F_{n+3} \times F_{n+3} \leqslant GL_4(\mathbb{Z})$.

$$w =_U 1 \Rightarrow L_w = F_{n+3} \times F_{n+3} \Rightarrow L_w \text{ f.p.} \Rightarrow G_w = G_1 \text{ f.p.}$$

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

- take F_{n+3} ≤ GL₂(ℤ), and $F_{n+3} \times F_{n+3} \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z}).$
- Take $L_w \leqslant F_{n+3} \times F_{n+3} \leqslant GL_4(\mathbb{Z})$.
- Consider $G_1 = \mathbb{Z}^4 \rtimes (F_{n+3} \times F_{n+3})$ and $G_w = \mathbb{Z}^d \rtimes L_w$.

$$w =_U 1 \Rightarrow L_w = F_{n+3} \times F_{n+3} \Rightarrow L_w \text{ f.p.} \Rightarrow G_w = G_1 \text{ f.p.}$$

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

- take F_{n+3} ≤ GL₂(ℤ), and $F_{n+3} \times F_{n+3} \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z}).$
- Take $L_w \leqslant F_{n+3} \times F_{n+3} \leqslant GL_4(\mathbb{Z})$.
- Consider $G_1 = \mathbb{Z}^4 \rtimes (F_{n+3} \times F_{n+3})$ and $G_w = \mathbb{Z}^d \rtimes L_w$.
- Observe that

$$\mathbf{w} =_{\mathbf{U}} \mathbf{1} \Rightarrow L_{\mathbf{w}} = F_{n+3} \times F_{n+3} \Rightarrow L_{\mathbf{w}} \text{ f.p.} \Rightarrow G_{\mathbf{w}} = G_1 \text{ f.p.}$$

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

- take F_{n+3} ≤ GL₂(ℤ), and $F_{n+3} \times F_{n+3} \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z}).$
- Take $L_w \leqslant F_{n+3} \times F_{n+3} \leqslant GL_4(\mathbb{Z})$.
- Consider $G_1 = \mathbb{Z}^4 \rtimes (F_{n+3} \times F_{n+3})$ and $G_w = \mathbb{Z}^d \rtimes L_w$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_{n+3} \times F_{n+3} \Rightarrow L_w \text{ f.p.} \Rightarrow G_w = G_1 \text{ f.p.}$$

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

- take F_{n+3} ≤ GL₂(ℤ), and $F_{n+3} \times F_{n+3} \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z}).$
- Take $L_w \leqslant F_{n+3} \times F_{n+3} \leqslant GL_4(\mathbb{Z})$.
- Consider $G_1 = \mathbb{Z}^4 \rtimes (F_{n+3} \times F_{n+3})$ and $G_w = \mathbb{Z}^d \rtimes L_w$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_{n+3} \times F_{n+3} \Rightarrow L_w \text{ f.p.} \Rightarrow G_w = G_1 \text{ f.p.}$$

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

- take F_{n+3} ≤ GL₂(ℤ), and $F_{n+3} \times F_{n+3} \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z}).$
- Take $L_w \leqslant F_{n+3} \times F_{n+3} \leqslant GL_4(\mathbb{Z})$.
- Consider $G_1 = \mathbb{Z}^4 \rtimes (F_{n+3} \times F_{n+3})$ and $G_w = \mathbb{Z}^d \rtimes L_w$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_{n+3} \times F_{n+3} \Rightarrow L_w \text{ f.p.} \Rightarrow G_w = G_1 \text{ f.p.}$$

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

- take F_{n+3} ≤ GL₂(ℤ), and $F_{n+3} \times F_{n+3} \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z}).$
- Take $L_w \leqslant F_{n+3} \times F_{n+3} \leqslant GL_4(\mathbb{Z})$.
- Consider $G_1 = \mathbb{Z}^4 \rtimes (F_{n+3} \times F_{n+3})$ and $G_w = \mathbb{Z}^d \rtimes L_w$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_{n+3} \times F_{n+3} \Rightarrow L_w \text{ f.p.} \Rightarrow G_w = G_1 \text{ f.p.}$$

$$\mathbf{w} \neq_{\mathbf{U}} \mathbf{1} \Rightarrow U \hookrightarrow H_{\mathbf{w}} \Rightarrow |H_{\mathbf{w}}| = \infty \Rightarrow L_{\mathbf{w}} \text{ not f.p.} \Rightarrow G_{\mathbf{w}} \text{ not f.p.}$$

- take F_{n+3} ≤ GL₂(ℤ), and $F_{n+3} \times F_{n+3} \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z}).$
- Take $L_w \leqslant F_{n+3} \times F_{n+3} \leqslant GL_4(\mathbb{Z})$.
- Consider $G_1 = \mathbb{Z}^4 \rtimes (F_{n+3} \times F_{n+3})$ and $G_w = \mathbb{Z}^d \rtimes L_w$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_{n+3} \times F_{n+3} \Rightarrow L_w \text{ f.p.} \Rightarrow G_w = G_1 \text{ f.p.}$$

$$\mathbf{w} \neq_{\mathbf{U}} \mathbf{1} \Rightarrow \mathbf{U} \hookrightarrow \mathbf{H}_{\mathbf{w}} \Rightarrow |\mathbf{H}_{\mathbf{w}}| = \infty \Rightarrow L_{\mathbf{w}} \text{ not f.p.} \Rightarrow G_{\mathbf{w}} \text{ not f.p.}$$

- take F_{n+3} ≤ GL₂(ℤ), and $F_{n+3} \times F_{n+3} \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z}).$
- Take $L_w \leqslant F_{n+3} \times F_{n+3} \leqslant GL_4(\mathbb{Z})$.
- Consider $G_1 = \mathbb{Z}^4 \rtimes (F_{n+3} \times F_{n+3})$ and $G_w = \mathbb{Z}^d \rtimes L_w$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_{n+3} \times F_{n+3} \Rightarrow L_w \text{ f.p.} \Rightarrow G_w = G_1 \text{ f.p.}$$

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

- take F_{n+3} ≤ GL₂(ℤ), and $F_{n+3} \times F_{n+3} \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z}).$
- Take $L_w \leqslant F_{n+3} \times F_{n+3} \leqslant GL_4(\mathbb{Z})$.
- Consider $G_1 = \mathbb{Z}^4 \rtimes (F_{n+3} \times F_{n+3})$ and $G_w = \mathbb{Z}^d \rtimes L_w$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_{n+3} \times F_{n+3} \Rightarrow L_w \text{ f.p.} \Rightarrow G_w = G_1 \text{ f.p.}$$

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

- take F_{n+3} ≤ GL₂(ℤ), and $F_{n+3} \times F_{n+3} \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z}).$
- Take $L_w \leqslant F_{n+3} \times F_{n+3} \leqslant GL_4(\mathbb{Z})$.
- Consider $G_1 = \mathbb{Z}^4 \rtimes (F_{n+3} \times F_{n+3})$ and $G_w = \mathbb{Z}^d \rtimes L_w$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_{n+3} \times F_{n+3} \Rightarrow L_w \text{ f.p.} \Rightarrow G_w = G_1 \text{ f.p.}$$

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

- take F_{n+3} ≤ GL₂(ℤ), and $F_{n+3} \times F_{n+3} \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z}).$
- Take $L_w \leqslant F_{n+3} \times F_{n+3} \leqslant GL_4(\mathbb{Z})$.
- Consider $G_1 = \mathbb{Z}^4 \rtimes (F_{n+3} \times F_{n+3})$ and $G_w = \mathbb{Z}^d \rtimes L_w$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_{n+3} \times F_{n+3} \Rightarrow L_w \text{ f.p.} \Rightarrow G_w = G_1 \text{ f.p.}$$

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

Theorem (Sunic-V.)

Given Γ , $\Delta \leq GL_d(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^d \rtimes \Gamma \simeq \mathbb{Z}^d \rtimes \Delta$.

- take F_{n+3} ≤ GL₂(ℤ), and $F_{n+3} \times F_{n+3} \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z}).$
- Take $L_w \leqslant F_{n+3} \times F_{n+3} \leqslant GL_4(\mathbb{Z})$.
- Consider $G_1 = \mathbb{Z}^4 \rtimes (F_{n+3} \times F_{n+3})$ and $G_w = \mathbb{Z}^d \rtimes L_w$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_{n+3} \times F_{n+3} \Rightarrow L_w \text{ f.p.} \Rightarrow G_w = G_1 \text{ f.p.}$$

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

Theorem (Sunic-V.)

Given Γ , $\Delta \leq GL_d(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^d \rtimes \Gamma \simeq \mathbb{Z}^d \rtimes \Delta$.

Corollary (Sunic-V.)

The isomorphism problem is unsolvable within the family of

THANKS