The conjugacy and isomorphism problems for automaton groups

Enric Ventura

Departament de Matemàtica Aplicada III
Universitat Politècnica de Catalunya
IX Encuentro en Teoria de Grupos
June 22nd, 2012.

Outline

(9) Algorithmic problems

2 Automaton groups
(3) Mihailova's construction and orbit undecidability

4 Unsolvability of IP

Outline

(9) Algorithmic problems

2 Automaton groups

3 Mihailova's construction and orbit undecidability

4 Unsolvability of IP

The three Dehn problems

Let $G=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation.

- Word Problem (WP): Given a word $w\left(x_{1}, \ldots, x_{n}\right)$ decide whether $w=a 1$.
- Conjugacy Problem (CP): Given two words $u\left(x_{1}, \ldots, x_{n}\right)$ and $v\left(x_{1}, \ldots, x_{n}\right)$, decide whether $u \sim_{G} v$.
- Isomorphism Problem (IP): Given two finite presentations like above, G_{1} and G_{2}, decide whether $G_{1} \simeq G_{2}$.

The three of them are known to be unsolvable in general.

Theorem (Novikov 1955, Boone 1957)

There exists a finitely presented group with unsolvable WP.

The three Dehn problems

Let $G=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation.

- Word Problem (WP): Given a word $w\left(x_{1}, \ldots, x_{n}\right)$ decide whether $w=a 1$.
- Conjugacy Problem (CP): Given two words $u\left(x_{1}, \ldots, x_{n}\right)$ and $v\left(x_{1}, \ldots, x_{n}\right)$, decide whether $u \sim_{G} v$.
- Isomorphism Problem (IP): Given two finite presentations like above, G_{1} and G_{2}, decide whether $G_{1} \simeq G_{2}$.

The three of them are known to be unsolvable in general.

Theorem (Novikov 1955, Boone 1957)

There exists a finitely presented group with unsolvable WP.

The three Dehn problems

Let $G=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation.

- Word Problem (WP): Given a word $w\left(x_{1}, \ldots, x_{n}\right)$ decide whether $w=a 1$.
- Conjugacy Problem (CP): Given two words $u\left(x_{1}, \ldots, x_{n}\right)$ and $v\left(x_{1}, \ldots, x_{n}\right)$, decide whether $u \sim_{G} v$.
- Isomorphism Problem (IP): Given two finite presentations like above, G_{1} and G_{2}, decide whether $G_{1} \simeq G_{2}$.

The three of them are known to be unsolvable in general.

Theorem (Novikov 1955, Boone 1957)

There exists a finitely presented group with unsolvable WP.

The three Dehn problems

Let $G=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation.

- Word Problem (WP): Given a word $w\left(x_{1}, \ldots, x_{n}\right)$ decide whether $w=a 1$.
- Conjugacy Problem (CP): Given two words $u\left(x_{1}, \ldots, x_{n}\right)$ and $v\left(x_{1}, \ldots, x_{n}\right)$, decide whether $u \sim_{G} v$.
- Isomorphism Problem (IP): Given two finite presentations like above, G_{1} and G_{2}, decide whether $G_{1} \simeq G_{2}$.

The three of them are known to be unsolvable in general.

Theorem (Novikov 1955, Boone 1957)
There exists a finitely presented group with unsolvable WP.

The three Dehn problems

Let $G=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation.

- Word Problem (WP): Given a word $w\left(x_{1}, \ldots, x_{n}\right)$ decide whether $w={ }_{G} 1$.
- Conjugacy Problem (CP): Given two words $u\left(x_{1}, \ldots, x_{n}\right)$ and $v\left(x_{1}, \ldots, x_{n}\right)$, decide whether $u \sim_{G} v$.
- Isomorphism Problem (IP): Given two finite presentations like above, G_{1} and G_{2}, decide whether $G_{1} \simeq G_{2}$.

The three of them are known to be unsolvable in general.

Theorem (Novikov 1955, Boone 1957)

There exists a finitely presented group with unsolvable WP.

More algorithmic problems

- Membership problem (MP): Given G and $h, h_{1}, \ldots, h_{n} \in G$, decide whether $h \in H=\left\langle h_{1}, \ldots, h_{n}\right\rangle \leqslant G$.
- Generation problem (GP): Given G and $g_{1}, \ldots, g_{n} \in G$, decide whether $\left\langle g_{1}, \ldots, g_{n}\right\rangle=G$.

Theorem (Mihailova 1958)

The membership problem in $F_{2} \times F_{2}$ is unsolvable.

Theorem (Miller 1971)

The generation problem in $F_{2} \times F_{2}$ is unsolvable.

More algorithmic problems

- Membership problem (MP): Given G and $h, h_{1}, \ldots, h_{n} \in G$, decide whether $h \in H=\left\langle h_{1}, \ldots, h_{n}\right\rangle \leqslant G$.
- Generation problem (GP): Given G and $g_{1}, \ldots, g_{n} \in G$, decide whether $\left\langle g_{1}, \ldots, g_{n}\right\rangle=G$.

Theorem (Mihailova 1958)

The membership problem in $F_{2} \times F_{2}$ is unsolvable.

Theorem (Miller 1971)

The aeneration problem in $F_{2} \times F_{2}$ is unsolvable.

More algorithmic problems

- Membership problem (MP): Given G and $h, h_{1}, \ldots, h_{n} \in G$, decide whether $h \in H=\left\langle h_{1}, \ldots, h_{n}\right\rangle \leqslant G$.
- Generation problem (GP): Given G and $g_{1}, \ldots, g_{n} \in G$, decide whether $\left\langle g_{1}, \ldots, g_{n}\right\rangle=G$.

Theorem (Mihailova 1958)

The membership problem in $F_{2} \times F_{2}$ is unsolvable.

Theorem (Miller 1971)

The generation problem in $F_{2} \times F_{2}$ is unsolvable.

More algorithmic problems

- Membership problem (MP): Given G and $h, h_{1}, \ldots, h_{n} \in G$, decide whether $h \in H=\left\langle h_{1}, \ldots, h_{n}\right\rangle \leqslant G$.
- Generation problem (GP): Given G and $g_{1}, \ldots, g_{n} \in G$, decide whether $\left\langle g_{1}, \ldots, g_{n}\right\rangle=G$.

Theorem (Mihailova 1958)

The membership problem in $F_{2} \times F_{2}$ is unsolvable.

Theorem (Miller 1971)

The generation problem in $F_{2} \times F_{2}$ is unsolvable.

Orbit decidability

Definition

Let G be a f.g. group. A subgroup $\Gamma \leqslant \operatorname{Aut}(G)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $u, v \in G$, it decides whether v and $\alpha(u)$ are conjugate, for some $\alpha \in \Gamma$.

First examples: $G=\mathbb{Z}^{d}$

Observation (folklore)
The full groun $\Lambda_{\mathrm{u}} \mathrm{ut}(\mathbb{7} \mathbf{d})=G L_{d}(\mathbb{Z})$ is orbit decidable

Proof. For $u, v \in \mathbb{Z}^{d}$, there exists $A \in G L_{d}(\mathbb{Z})$ such that $v=A u$ if and only if $\operatorname{gcd}\left(u_{1}, \ldots, u_{d}\right)=\operatorname{gcd}\left(v_{1}, \ldots, v_{d}\right)$.

Orbit decidability

Definition

Let G be a f.g. group. A subgroup $\Gamma \leqslant \operatorname{Aut}(G)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $u, v \in G$, it decides whether v and $\alpha(u)$ are conjugate, for some $\alpha \in \Gamma$.

First examples: $G=\mathbb{Z}^{d}$
Observation (folklore)
The full group $\operatorname{Aut}\left(\mathbb{Z}^{d}\right)=G L_{d}(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^{d}$, there exists $A \in G L_{d}(\mathbb{Z})$ such that $v=A u$ if and only if $\operatorname{gcd}\left(u_{1}, \ldots, u_{d}\right)=\operatorname{gcd}\left(v_{1}\right.$

Orbit decidability

Definition

Let G be a f.g. group. A subgroup $\Gamma \leqslant \operatorname{Aut}(G)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $u, v \in G$, it decides whether v and $\alpha(u)$ are conjugate, for some $\alpha \in \Gamma$.

First examples: $G=\mathbb{Z}^{d}$

Observation (folklore)

The full group $\operatorname{Aut}\left(\mathbb{Z}^{d}\right)=G L_{d}(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^{d}$, there exists $A \in \mathrm{GL}_{d}(\mathbb{Z})$ such that $v=A u$ if and only if $\operatorname{gcd}\left(u_{1}, \ldots, u_{d}\right)=\operatorname{gcd}\left(v_{1}, \ldots, v_{d}\right)$.

OD subgroups in $G L_{d}(\mathbb{Z})$...

Proposition (linear algebra)
For $A \in G L_{d}(\mathbb{Z})$, the subgroup $\langle A\rangle \leqslant G L_{d}(\mathbb{Z})$ is O.D.

Proposition (Bogopolski-Martino-V., 08)

Finite index subaroups of $G L_{d}(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely qenerated subaroup of $G L_{2}(\mathbb{Z})$ is O.D.

OD subgroups in $G L_{d}(\mathbb{Z})$...

Proposition (linear algebra)

For $A \in G L_{d}(\mathbb{Z})$, the subgroup $\langle A\rangle \leqslant G L_{d}(\mathbb{Z})$ is O.D.

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of $G L_{d}(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely qenerated subaroup of $G L_{2}(\mathbb{Z})$ is O.D.

OD subgroups in $G L_{d}(\mathbb{Z})$...

Proposition (linear algebra)

For $A \in G L_{d}(\mathbb{Z})$, the subgroup $\langle A\rangle \leqslant G L_{d}(\mathbb{Z})$ is O.D.

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of $G L_{d}(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

... and orbit undecidable ones

Proposition (Bogopolski-Martino-V., 08)
Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

Question

Does there ϵ xist an orbit undecidable subgroup of GL3 (Z) ?

Proposition (Bogopolski-Martino-V., 08)

For $d \geqslant 4$, there exist f.a., orbit undecidable, subgroups $\left\lceil\leqslant G L_{d}(\mathbb{Z})\right.$

... and orbit undecidable ones

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

Question

Does there exist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Proposition (Bogopolski-Martino-V., 08)

For $d \geqslant 4$, there exist f.a., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$

... and orbit undecidable ones

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

Question

Does there exist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Proposition (Bogopolski-Martino-V., 08)
For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

Outline

(1) Algorithmic problems

2 Automaton groups

(3) Mihailova's construction and orbit undecidability

4 Unsolvability of IP

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Easy: the word problem is solvable for all such groups.

Theorem (Sunic-V.)

The isomorphism problem is unsolvable within the family of
automaton groups.

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Easy: the word problem is solvable for all such groups.

Theorem (Sunic-V.)

The isomorphism problem is unsolvable within the family of
automaton groups.

Main results

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Easy: the word problem is solvable for all such groups.

Theorem (Sunic-V.)

The isomorphism problem is unsolvable within the family of automaton groups.

Tree automorphisms

Let X be an alphabet on k letters, and let X^{*} be the free monoid on X, thought as a rooted k-ary tree:

Definition

- Every tree automorphism g decomposes as a root permutation $\pi_{g}: X \rightarrow X$, and k sections $\left.g\right|_{x}$, for $x \in X$

Tree automorphisms

Let X be an alphabet on k letters, and let X^{*} be the free monoid on X, thought as a rooted k-ary tree:

Definition

- Every tree automorphism g decomposes as a root permutation $\pi_{g}: X \rightarrow X$, and k sections $\left.g\right|_{x}$, for $x \in X$:

$$
g(x w)=\left.\pi_{g}(x) g\right|_{x}(w)
$$

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The aroux $G(A)$ of tree automorphisms generated by an automaton \mathcal{A} is called an automaton group.

The Grigorchuk group: $\mathbf{G}=\langle\alpha, \beta, \gamma, \delta\rangle$, where

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group $G(\mathcal{A})$ of tree automorphisms generated by an
automaton \mathcal{A} is called an automaton group.

The Grigorchuk group: $\mathcal{G}=\langle\alpha, \beta, \gamma, \delta\rangle$, where

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group $G(\mathcal{A})$ of tree automorphisms generated by an automaton \mathcal{A} is called an automaton group.

The Grigorchuk group: $\mathbf{G}=\langle\alpha, \beta, \gamma, \delta\rangle$, where

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group $G(\mathcal{A})$ of tree automorphisms generated by an automaton \mathcal{A} is called an automaton group.

The Grigorchuk group: $\mathcal{G}=\langle\alpha, \beta, \gamma, \delta\rangle$, where

$$
\alpha=\sigma(1,1), \quad \beta=1(\alpha, \gamma), \quad \gamma=1(\alpha, \delta), \quad \delta=1(1, \beta)
$$

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group $G(\mathcal{A})$ of tree automorphisms generated by an automaton \mathcal{A} is called an automaton group.

The Grigorchuk group: $G=\langle 1, \alpha, \beta, \gamma, \delta\rangle$, where

$$
\alpha=\sigma(1,1), \quad \beta=1(\alpha, \gamma), \quad \gamma=1(\alpha, \delta), \quad \delta=1(1, \beta) .
$$

Reduction to matrices

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Theorem (Sunic-V.)
 The isomorphism problem is unsolvable within the family of automaton groups.

Both results come from...

Theorem (Sunic-V.)

Let $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ be f.a. Then, $\mathbb{Z}^{d} \times \Gamma$ is an automaton group.

Reduction to matrices

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Theorem (Sunic-V.)

The isomorphism problem is unsolvable within the family of automaton groups.

Both results come from.

Theorem (Sunic-V.)
 Let $\Gamma \leqslant \mathrm{Gl}_{d}(\mathbb{T})$ be f . a. Then, $\mathbb{Z}^{d} \times \Gamma$ is an automaton group

Reduction to matrices

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Theorem (Sunic-V.)

The isomorphism problem is unsolvable within the family of automaton groups.

Both results come from...

Theorem (Sunic-V.)

Let $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ be f.g. Then, $\mathbb{Z}^{d} \rtimes \Gamma$ is an automaton group.

Reduction to matrices

Theorem (Sunic-V.)

There exists $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g. such that $\mathbb{Z}^{d} \rtimes \Gamma$ has unsolvable conjugacy problem.

Theorem (Sunic-V.)

Given $\Gamma, \Delta \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^{d} \rtimes \Gamma \simeq \mathbb{Z}^{d} \rtimes \Delta$.

Corollary (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Corollary (Sunic-V.)

The isomorphism problem is unsolvable within the family of
automaton groups.

Reduction to matrices

Theorem (Sunic-V.)

There exists $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g. such that $\mathbb{Z}^{d} \rtimes \Gamma$ has unsolvable conjugacy problem.

Theorem (Sunic-V.)

Given $\Gamma, \Delta \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^{d} \rtimes \Gamma \simeq \mathbb{Z}^{d} \rtimes \Delta$.

Corollary (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Corollary (Sunic-V.)

The isomorphism problem is unsolvable within the family of automaton groups.

Outline

(1) Algorithmic problems

2 Automaton groups

3 Mihailova's construction and orbit undecidability
4. Unsolvability of IP

Mihailova's subgroup

Definition

Let $U=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation. The Mihailova group corresponding to U is

$$
M(U)=\left\{(v, w) \in F_{n} \times F_{n} \mid v=u w\right\}=
$$

Theorem (Mihailova 1958)

The membership problem in $F_{2} \times F_{2}$ is unsolvable.

Theorem (Grunewald 1978)
$M(U)$ is finitely presented if and only if U is finite.

Mihailova's subgroup

Definition

Let $U=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation. The Mihailova group corresponding to U is

$$
\begin{gathered}
M(U)=\left\{(v, w) \in F_{n} \times F_{n} \mid v=u w\right\}= \\
=\left\langle\left(x_{1}, x_{1}\right), \ldots,\left(x_{n}, x_{n}\right),\left(1, r_{1}\right), \ldots,\left(1, r_{m}\right)\right\rangle \leqslant F_{n} \times F_{n} .
\end{gathered}
$$

Theorem (Mihailova 1958)

The membership problem in $F_{2} \times F_{2}$ is unsolvable.

Theorem (Grunewald 1978)
$M(U)$ is finitely presented if and only if U is finite.

Mihailova's subgroup

Definition

Let $U=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation. The Mihailova group corresponding to U is

$$
\begin{gathered}
M(U)=\left\{(v, w) \in F_{n} \times F_{n} \mid v=u w\right\}= \\
=\left\langle\left(x_{1}, x_{1}\right), \ldots,\left(x_{n}, x_{n}\right),\left(1, r_{1}\right), \ldots,\left(1, r_{m}\right)\right\rangle \leqslant F_{n} \times F_{n} .
\end{gathered}
$$

Theorem (Mihailova 1958)

The membership problem in $F_{2} \times F_{2}$ is unsolvable.

Theorem (Grunewald 1978)

$M(U)$ is finitely presented if and only if U is finite.

Mihailova's subgroup

Definition

Let $U=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation. The Mihailova group corresponding to U is

$$
\begin{gathered}
M(U)=\left\{(v, w) \in F_{n} \times F_{n} \mid v=u w\right\}= \\
=\left\langle\left(x_{1}, x_{1}\right), \ldots,\left(x_{n}, x_{n}\right),\left(1, r_{1}\right), \ldots,\left(1, r_{m}\right)\right\rangle \leqslant F_{n} \times F_{n} .
\end{gathered}
$$

Theorem (Mihailova 1958)

The membership problem in $F_{2} \times F_{2}$ is unsolvable.

Theorem (Grunewald 1978)

$M(U)$ is finitely presented if and only if U is finite.

Connection to orbit decidability

Proposition (Bogopolski-Martino-V. 2008)
Let G be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(G)$ and $v \in G$ be such that $B \cap \operatorname{Stab}{ }^{*}(v)=1$. Then,

$$
O D(A) \text { solvable } \Rightarrow M P(A, B) \text { solvable. }
$$

Proof. Given $\varphi \in B \leq \operatorname{Aut}(G)$, let $w=v \varphi$ and

$$
\{\phi \in B \mid v \phi \sim w\}=B \cap\left(\operatorname{Stab}^{*}(v) \cdot \varphi\right)=\left(B \cap \operatorname{Stab}^{*}(v)\right) \cdot \varphi=\{\varphi\} .
$$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A. Hence,

$$
O D(A) \quad \Rightarrow \quad M P(A, B) . \square
$$

Connection to orbit decidability

Proposition (Bogopolski-Martino-V. 2008)

Let G be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(G)$ and $v \in G$ be such that $B \cap \operatorname{Stab}^{*}(v)=1$. Then,

$$
O D(A) \text { solvable } \Rightarrow M P(A, B) \text { solvable. }
$$

Proof. Given $\varphi \in B \leq \operatorname{Aut}(G)$, let $w=v \varphi$ and

$$
\{\phi \in B \mid v \phi=w\}=B \cap(\operatorname{Stab}(v) \cdot \varphi)=(B \cap \operatorname{Stab}(v)) \cdot \varphi=\{\varphi\} .
$$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A. Hence,

Connection to orbit decidability

Proposition (Bogopolski-Martino-V. 2008)

Let G be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(G)$ and $v \in G$ be such that $B \cap \operatorname{Stab}{ }^{*}(v)=1$. Then,

$$
O D(A) \text { solvable } \Rightarrow M P(A, B) \text { solvable. }
$$

Proof. Given $\varphi \in B \leq \operatorname{Aut}(G)$, let $w=v \varphi$ and

$$
\begin{gathered}
\{\phi \in B \mid v \phi=w\}=B \cap(\operatorname{Stab}(v) \cdot \varphi)=(B \cap \operatorname{Stab}(v)) \cdot \varphi=\{\varphi\} . \\
\{\phi \in B \mid v \phi \sim w\}=B \cap\left(\operatorname{Stab}^{*}(v) \cdot \varphi\right)=\left(B \cap \operatorname{Stab}^{*}(v)\right) \cdot \varphi=\{\varphi\} .
\end{gathered}
$$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A. Hence,

Connection to orbit decidability

Proposition (Bogopolski-Martino-V. 2008)

Let G be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(G)$ and $v \in G$ be such that $B \cap \operatorname{Stab}^{*}(v)=1$. Then,

$$
O D(A) \text { solvable } \Rightarrow M P(A, B) \text { solvable. }
$$

Proof. Given $\varphi \in B \leq \operatorname{Aut}(G)$, let $w=v \varphi$ and

$$
\begin{gathered}
\{\phi \in B \mid v \phi=w\}=B \cap(\operatorname{Stab}(v) \cdot \varphi)=(B \cap \operatorname{Stab}(v)) \cdot \varphi=\{\varphi\} . \\
\{\phi \in B \mid v \phi \sim w\}=B \cap\left(\operatorname{Stab}^{*}(v) \cdot \varphi\right)=\left(B \cap \operatorname{Stab}^{*}(v)\right) \cdot \varphi=\{\varphi\} .
\end{gathered}
$$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A. Hence,

$$
O D(A) \quad \Rightarrow \quad M P(A, B) . \square
$$

Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)
For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

Proof. Consider $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq_{24} G L_{2}(\mathbb{Z})$.

- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.
- $\langle P, Q\rangle \cap \operatorname{Stab}(1,0)=\left\langle\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right\rangle$
- Choose a free subgroup $F_{2} \simeq\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that $\left\langle P^{\prime}, Q^{\prime}\right\rangle \cap \operatorname{Stab}(1,0)=\{I\}$ and consider $B=\left\langle\left(\begin{array}{c|c}P^{\prime} & 0 \\ \hline 0 & I\end{array}\right),\left(\begin{array}{c|c}Q^{\prime} & 0 \\ \hline 0 & I\end{array}\right),\left(\begin{array}{c|c}I & 0 \\ \hline 0 & P^{\prime}\end{array}\right),\left(\begin{array}{c|c}I & 0 \\ \hline 0 & Q^{\prime}\end{array}\right)\right\rangle \leq G L_{4}(\mathbb{Z})$.
- Note that $B \simeq F_{2} \times F_{2}$.

Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)
For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

Proof. Consider $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq{ }_{24} G L_{2}(\mathbb{Z})$.

- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\{($
n
- $\langle P, Q\rangle \cap \operatorname{Stab}(1,0)=\left\langle\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right.$
- Choose a free subgroup $F_{2} \simeq\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that $\left\langle P^{\prime}, Q^{\prime}\right\rangle \cap \operatorname{Stab}(1,0)=\{/\}$ and consider

Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)
For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.
Proof. Consider $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq{ }_{24} G L_{2}(\mathbb{Z})$.

- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.
- Choose a free subgroup $F_{2} \simeq\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that $\left\langle P^{\prime}, Q^{\prime}\right\rangle \cap \operatorname{Stab}(1,0)=\{I\}$ and consider

[^0]
Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

$$
\text { Proof. Consider } F_{2} \simeq\left\langle P=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right), Q=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\right\rangle \leq_{24} G L_{2}(\mathbb{Z}) .
$$

$$
\text { - } \operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}
1 & 0 \\
n & \pm 1
\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\} .
$$

- $\langle P, Q\rangle \cap \operatorname{Stab}(1,0)=\left\langle\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right\rangle$.

- Choose a free subgroup $F_{2} \simeq\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that

 $\left\langle P^{\prime}, Q^{\prime}\right\rangle \cap \operatorname{Stab}(1,0)=\{I\}$ and consider

Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

Proof. Consider $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq_{24} G L_{2}(\mathbb{Z})$.

- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.
- $\langle P, Q\rangle \cap \operatorname{Stab}(1,0)=\left\langle\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right\rangle$.
- Choose a free subgroup $F_{2} \simeq\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that $\left\langle P^{\prime}, Q^{\prime}\right\rangle \cap \operatorname{Stab}(1,0)=\{I\}$ and consider

$$
B=\left\langle\left(\begin{array}{c|c}
P^{\prime} & 0 \\
\hline 0 & I
\end{array}\right),\left(\begin{array}{c|c}
Q^{\prime} & 0 \\
\hline 0 & I
\end{array}\right),\left(\begin{array}{c|c}
1 & 0 \\
\hline 0 & P^{\prime}
\end{array}\right),\left(\begin{array}{c|c}
I & 0 \\
\hline 0 & Q^{\prime}
\end{array}\right)\right\rangle \leq G L_{4}(\mathbb{Z}) .
$$

Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

Proof. Consider $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq{ }_{24} G L_{2}(\mathbb{Z})$.

- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.
- $\langle P, Q\rangle \cap \operatorname{Stab}(1,0)=\left\langle\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right\rangle$.
- Choose a free subgroup $F_{2} \simeq\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that $\left\langle P^{\prime}, Q^{\prime}\right\rangle \cap \operatorname{Stab}(1,0)=\{I\}$ and consider

$$
B=\left\langle\left(\begin{array}{c|c}
P^{\prime} & 0 \\
\hline 0 & I
\end{array}\right),\left(\begin{array}{c|c}
Q^{\prime} & 0 \\
\hline 0 & I
\end{array}\right),\left(\begin{array}{c|c}
1 & 0 \\
\hline 0 & P^{\prime}
\end{array}\right),\left(\begin{array}{c|c}
I & 0 \\
\hline 0 & Q^{\prime}
\end{array}\right)\right\rangle \leq G L_{4}(\mathbb{Z}) .
$$

- Note that $B \simeq F_{2} \times F_{2}$.

Orbit undecidable subgroups

- Write $v=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(v)=\{I\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \mathrm{GL}_{d}(\mathbb{Z}), d \geqslant 4$. \square

Question

Does there ϵ xist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Orbit undecidable subgroups

- Write $v=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(v)=\{I\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \mathrm{GL}_{d}(\mathbb{Z}), d \geqslant 4$. \square

Question

Does there exist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Orbit undecidable subgroups

- Write $v=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(v)=\{I\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.

Orbit undecidable subgroups

- Write $v=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(v)=\{I\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \mathrm{GL}_{d}(\mathbb{Z}), d \geqslant 4$. \square

Question

Orbit undecidable subgroups

- Write $v=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(v)=\{I\}$.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \mathrm{GL}_{d}(\mathbb{Z}), d \geqslant 4$. \square

Question

Does there exist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Connection to semidirect products

Observation (B-M-V)
Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $G=H \rtimes \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like $\left(h_{1}, \gamma_{1}\right) \cdot\left(h_{2}, \gamma_{2}\right)=\left(h_{1} \gamma_{1}\left(h_{2}\right), \gamma_{1} \gamma_{2}\right)$

For $h_{1}, h_{2} \in H \leqslant G$, we have $h_{1} \sim_{G} h_{2} \Leftrightarrow \exists(h, \gamma) \in H \rtimes \Gamma$ s.t.

$$
\begin{aligned}
\left(h_{2}, l d^{\prime}\right)= & (h, \gamma)^{-1} \cdot\left(h_{1}, l d\right) \cdot(h, \gamma) \\
& \left(\gamma^{-1}\left(h^{-1}\right), \gamma^{-1}\right) \cdot\left(h_{1} h, \gamma\right) \\
& \left(\gamma^{-1}\left(h^{-1} h_{1} h\right), l d\right)
\end{aligned}
$$

Hence, $h_{1} \sim_{G} h_{2} \Leftrightarrow \exists \gamma \in \Gamma$ and $h \in H$ s.t. $h_{1}=h \gamma\left(h_{2}\right) h^{-1} . \quad \square$

Connection to semidirect products

Observation (B-M-V)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $G=H \rtimes \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like

$$
\begin{gathered}
\left(h_{1}, \gamma_{1}\right) \cdot\left(h_{2}, \gamma_{2}\right)=\left(h_{1} \gamma_{1}\left(h_{2}\right), \gamma_{1} \gamma_{2}\right) \\
(h, \gamma)^{-1}=\left(\gamma^{-1}\left(h^{-1}\right), \gamma^{-1}\right) .
\end{gathered}
$$

For $h_{1}, h_{2} \in H \leqslant G$, we have $h_{1} \sim_{G} h_{2} \Leftrightarrow \exists(h, \gamma) \in H \rtimes \Gamma$ s.t.

Connection to semidirect products

Observation (B-M-V)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $G=H \rtimes \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like

$$
\begin{gathered}
\left(h_{1}, \gamma_{1}\right) \cdot\left(h_{2}, \gamma_{2}\right)=\left(h_{1} \gamma_{1}\left(h_{2}\right), \gamma_{1} \gamma_{2}\right) \\
(h, \gamma)^{-1}=\left(\gamma^{-1}\left(h^{-1}\right), \gamma^{-1}\right) .
\end{gathered}
$$

For $h_{1}, h_{2} \in H \leqslant G$, we have $h_{1} \sim_{G} h_{2} \Leftrightarrow \exists(h, \gamma) \in H \rtimes \Gamma$ s.t.

$$
\begin{aligned}
\left(h_{2}, I d\right)= & (h, \gamma)^{-1} \cdot\left(h_{1}, I d\right) \cdot(h, \gamma) \\
& \left(\gamma^{-1}\left(h^{-1}\right), \gamma^{-1}\right) \cdot\left(h_{1} h, \gamma\right) \\
& \left(\gamma^{-1}\left(h^{-1} h_{1} h\right), I d\right) .
\end{aligned}
$$

Connection to semidirect products

Observation (B-M-V)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $G=H \rtimes \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like

$$
\begin{gathered}
\left(h_{1}, \gamma_{1}\right) \cdot\left(h_{2}, \gamma_{2}\right)=\left(h_{1} \gamma_{1}\left(h_{2}\right), \gamma_{1} \gamma_{2}\right) \\
(h, \gamma)^{-1}=\left(\gamma^{-1}\left(h^{-1}\right), \gamma^{-1}\right) .
\end{gathered}
$$

For $h_{1}, h_{2} \in H \leqslant G$, we have $h_{1} \sim_{G} h_{2} \Leftrightarrow \exists(h, \gamma) \in H \rtimes \Gamma$ s.t.

$$
\begin{aligned}
\left(h_{2}, I d\right)= & (h, \gamma)^{-1} \cdot\left(h_{1}, I d\right) \cdot(h, \gamma) \\
& \left(\gamma^{-1}\left(h^{-1}\right), \gamma^{-1}\right) \cdot\left(h_{1} h, \gamma\right) \\
& \left(\gamma^{-1}\left(h^{-1} h_{1} h\right), I d\right)
\end{aligned}
$$

Hence, $h_{1} \sim_{G} h_{2} \Leftrightarrow \exists \gamma \in \Gamma$ and $h \in H$ s.t. $h_{1}=h \gamma\left(h_{2}\right) h^{-1}$.

unsolvable CP

Corollary (Sunic-V.)

There exists $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g. such that $\mathbb{Z}^{d} \rtimes \Gamma$ has unsolvable conjugacy problem.

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

unsolvable CP

Corollary (Sunic-V.)

There exists $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g. such that $\mathbb{Z}^{d} \rtimes \Gamma$ has unsolvable conjugacy problem.

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Outline

(1) Algorithmic problems

2 Automaton groups

3 Mihailova's construction and orbit undecidability

4 Unsolvability of IP

A construction due to Gordon

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $U=\langle X \mid R\rangle$ be a finite presentation. For $w=w\left(x_{1}, \ldots, x_{n}\right)$ consider

$$
\begin{aligned}
H_{w}=\langle X, a, b, c| & R \\
& a^{-1} b a=c^{-1} b^{-1} c b c \\
& a^{-2} b^{-1} a b a^{2}=c^{-2} b^{-1} c b c^{2} \\
& a^{-3}[w, b] a^{3}=c^{-3} b c^{3} \\
& a^{-(3+i)} x_{i} b a^{3+i}=c^{-(3+i)} b c^{3+i}, i \geqslant 1
\end{aligned}
$$

Theorem

The isomorrhism problem, the triviality problem, the finite problem are all unsolvable.

A construction due to Gordon

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $U=\langle X \mid R\rangle$ be a finite presentation. For $w=w\left(x_{1}, \ldots, x_{n}\right)$ consider

$$
\begin{aligned}
H_{w}=\langle X, a, b, c| & R \\
& a^{-1} b a=c^{-1} b^{-1} c b c \\
& a^{-2} b^{-1} a b a^{2}=c^{-2} b^{-1} c b c^{2} \\
& a^{-3}[w, b] a^{3}=c^{-3} b c^{3} \\
& a^{-(3+i)} x_{i} b a^{3+i}=c^{-(3+i)} b c^{3+i}, i \geqslant 1
\end{aligned}
$$

Lemma

1) If $w \neq u 1$ then U embeds in H_{w}.
2) If $w=u 1$ then $H_{w}=1$.

Theorem

The isomorphism problem, the triviality problem, the finite problem are all unsolvable.

A construction due to Gordon

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $U=\langle X \mid R\rangle$ be a finite presentation. For $w=w\left(x_{1}, \ldots, x_{n}\right)$ consider

$$
\begin{aligned}
H_{w}=\langle X, a, b, c| & R \\
& a^{-1} b a=c^{-1} b^{-1} c b c \\
& a^{-2} b^{-1} a b a^{2}=c^{-2} b^{-1} c b c^{2} \\
& a^{-3}[w, b] a^{3}=c^{-3} b c^{3} \\
& a^{-(3+i)} x_{i} b a^{3+i}=c^{-(3+i)} b c^{3+i}, i \geqslant 1
\end{aligned}
$$

Lemma

1) If $w \neq u 1$ then U embeds in H_{w}.
2) If $w=u 1$ then $H_{w}=1$.

Theorem

The isomorphism problem, the triviality problem, the finite problem are all unsolvable.

The generation problem

Take U with unsolvable WP (in particular $|\boldsymbol{U}|=\infty$), consider the presentations H_{w} as above, and consider the Mihailova group corresponding to H_{w} :

$$
L_{w}=M\left(H_{w}\right)=\left\{(u, v) \in F_{n+3} \times F_{n+3} \mid u=H_{w} v\right\} \leqslant F_{n+3} \times F_{n+3} .
$$

Observe that

$$
\begin{aligned}
L_{W}=F_{n+3} \times F_{n+3} & \Leftrightarrow u=H_{w} v \quad \forall u, v \in F_{n+3} \\
& \Leftrightarrow H_{w}=\{1\} \\
& \Leftrightarrow W=U 1 .
\end{aligned}
$$

Theorem (Miller 1971)

The generation problem in $F_{2} \times F_{2}$ is unsolvable.

The generation problem

Take U with unsolvable WP (in particular $|U|=\infty$), consider the presentations H_{w} as above, and consider the Mihailova group
corresponding to H_{w} :

Observe that

Theorem (Miller 1971)
The generation problem in $F_{2} \times F_{2}$ is unsolvable.

The generation problem

Take U with unsolvable WP (in particular $|U|=\infty$), consider the presentations H_{w} as above, and consider the Mihailova group corresponding to H_{w} :

$$
L_{w}=M\left(H_{w}\right)=\left\{(u, v) \in F_{n+3} \times F_{n+3} \mid u=H_{w} v\right\} \leqslant F_{n+3} \times F_{n+3} .
$$

Observe that

Theorem (Miller 1971)
The generation problem in $F_{2} \times F_{2}$ is unsolvable.

The generation problem

Take U with unsolvable WP (in particular $|U|=\infty$), consider the presentations H_{w} as above, and consider the Mihailova group corresponding to H_{w} :

$$
L_{w}=M\left(H_{w}\right)=\left\{(u, v) \in F_{n+3} \times F_{n+3} \mid u=H_{w} v\right\} \leqslant F_{n+3} \times F_{n+3} .
$$

Observe that

$$
\begin{aligned}
L_{w}=F_{n+3} \times F_{n+3} & \Leftrightarrow u=H_{w} v \quad \forall u, v \in F_{n+3} \\
& \Leftrightarrow H_{w}=\{1\} \\
& \Leftrightarrow w=u 1 .
\end{aligned}
$$

Theorem (Miller 1971)
The generation problem in $F_{2} \times F_{2}$ is unsolvable.

The generation problem

Take U with unsolvable WP (in particular $|U|=\infty$), consider the presentations H_{w} as above, and consider the Mihailova group corresponding to H_{w} :

$$
L_{w}=M\left(H_{w}\right)=\left\{(u, v) \in F_{n+3} \times F_{n+3} \mid u=H_{w} v\right\} \leqslant F_{n+3} \times F_{n+3} .
$$

Observe that

$$
\begin{aligned}
L_{w}=F_{n+3} \times F_{n+3} & \Leftrightarrow u=H_{w} v \quad \forall u, v \in F_{n+3} \\
& \Leftrightarrow H_{w}=\{1\} \\
& \Leftrightarrow w=u 1 .
\end{aligned}
$$

Theorem (Miller 1971)

The generation problem in $F_{2} \times F_{2}$ is unsolvable.

Towards IP...

- take $F_{n+3} \leqslant G L_{2}(\mathbb{Z})$, and
$F_{n+3} \times F_{n+3} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z})$.
- Take $L_{w} \leqslant F_{n+3} \times F_{n+3} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{n+3} \times F_{n+3}\right)$ and $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$.
- Observe that

$$
\begin{gathered}
w=u 1 \Rightarrow L_{w}=F_{n+3} \times F_{n+3} \Rightarrow L_{w} \text { f.p. } \Rightarrow G_{w}=G_{1} \text { f.p. } \\
w \neq u 1 \Rightarrow U \hookrightarrow H_{w} \Rightarrow\left|H_{w}\right|=\infty \Rightarrow L_{w} \text { not f.p. } \Rightarrow G_{w} \text { not f.p. }
\end{gathered}
$$

Theorem (Sunic-V.)

\square

Corollary (Sunic-V.)

Towards IP...

- take $F_{n+3} \leqslant G L_{2}(\mathbb{Z})$, and

$$
F_{n+3} \times F_{n+3} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z}) .
$$

- Take $L_{w} \leqslant F_{n+3} \times F_{n+3} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{n+3} \times F_{n+3}\right)$ and $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$.
- Observe that

$$
\begin{gathered}
w={ }^{1} \Rightarrow L_{w}=F_{n+3} \times F_{n+3} \Rightarrow L_{w} f . p . \Rightarrow G_{w}=G_{1} \text { f.p. } \\
w \neq u 1 \Rightarrow U \hookrightarrow H_{w} \Rightarrow\left|H_{w}\right|=\infty \Rightarrow L_{w} \text { not f.p. } \Rightarrow G_{w} \text { not f.p. }
\end{gathered}
$$

Theorem (Sunic-V.)

\square

Corollary (Sunic-V.)

The isomorphism problem is unsolvable within the familv of

Towards IP...

- take $F_{n+3} \leqslant G L_{2}(\mathbb{Z})$, and

$$
F_{n+3} \times F_{n+3} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z}) .
$$

- Take $L_{w} \leqslant F_{n+3} \times F_{n+3} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{n+3} \times F_{n+3}\right)$ and $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$.
- Observe that

Theorem (Sunic-V.)

\square
Corollary (Sunic-V.)

Towards IP...

- take $F_{n+3} \leqslant G L_{2}(\mathbb{Z})$, and

$$
F_{n+3} \times F_{n+3} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z}) .
$$

- Take $L_{w} \leqslant F_{n+3} \times F_{n+3} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{n+3} \times F_{n+3}\right)$ and $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$.
- Observe that

$$
w=u 1 \Rightarrow L_{w}=F_{n+3} \times F_{n+3} \Rightarrow L_{w} f . p . \Rightarrow G_{w}=G_{1} \text { f.p. }
$$

Theorem (Sunic-V.)

\square

Towards IP...

- take $F_{n+3} \leqslant G L_{2}(\mathbb{Z})$, and

$$
F_{n+3} \times F_{n+3} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z}) .
$$

- Take $L_{w} \leqslant F_{n+3} \times F_{n+3} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{n+3} \times F_{n+3}\right)$ and $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$.
- Observe that

$$
w=u 1 \Rightarrow L_{w}=F_{n+3} \times F_{n+3} \Rightarrow L_{w} f . p . \Rightarrow G_{w}=G_{1} \text { f.p. }
$$

Theorem (Sunic-V.)

\square
Corollary (Sunic-V.)

Towards IP...

- take $F_{n+3} \leqslant G L_{2}(\mathbb{Z})$, and

$$
F_{n+3} \times F_{n+3} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z}) .
$$

- Take $L_{w} \leqslant F_{n+3} \times F_{n+3} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{n+3} \times F_{n+3}\right)$ and $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$.
- Observe that

$$
w=u 1 \Rightarrow L_{w}=F_{n+3} \times F_{n+3} \Rightarrow L_{w} \text { f.p. }
$$

Theorem (Sunic-V.)

\square
Corollary (Sunic-V.)

Towards IP...

- take $F_{n+3} \leqslant G L_{2}(\mathbb{Z})$, and

$$
F_{n+3} \times F_{n+3} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z}) .
$$

- Take $L_{w} \leqslant F_{n+3} \times F_{n+3} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{n+3} \times F_{n+3}\right)$ and $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$.
- Observe that

$$
w=u 1 \Rightarrow L_{w}=F_{n+3} \times F_{n+3} \Rightarrow L_{w} \text { f.p. } \Rightarrow G_{w}=G_{1} \text { f.p. }
$$

Theorem (Sunic-V.)
Given $\Gamma, \Delta \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether \mathbb{Z}^{d}
Corollary (Sunic-V.)
The isomorphism problem is unsolvable within the family of

Towards IP...

- take $F_{n+3} \leqslant G L_{2}(\mathbb{Z})$, and

$$
F_{n+3} \times F_{n+3} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z}) .
$$

- Take $L_{w} \leqslant F_{n+3} \times F_{n+3} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{n+3} \times F_{n+3}\right)$ and $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$.
- Observe that

$$
\begin{gathered}
w=u 1 \Rightarrow L_{w}=F_{n+3} \times F_{n+3} \Rightarrow L_{w} \text { f.p. } \Rightarrow G_{w}=G_{1} \text { f.p. } \\
w \neq u 1 \Rightarrow U \hookrightarrow H_{w} \Rightarrow\left|H_{w}\right|=\infty \Rightarrow L_{w} \text { not f.p. } \Rightarrow G_{w} \text { not f.p. }
\end{gathered}
$$

Theorem (Sunic-V.)

Given $\Gamma, \Delta \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether \mathbb{Z}^{d}
Corollary (Sunic-V.)
The isomorphism problem is unsolvable within the family of

Towards IP...

- take $F_{n+3} \leqslant G L_{2}(\mathbb{Z})$, and

$$
F_{n+3} \times F_{n+3} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z}) .
$$

- Take $L_{w} \leqslant F_{n+3} \times F_{n+3} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{n+3} \times F_{n+3}\right)$ and $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$.
- Observe that

$$
\begin{gathered}
w=u 1 \Rightarrow L_{w}=F_{n+3} \times F_{n+3} \Rightarrow L_{w} \text { f.p. } \Rightarrow G_{w}=G_{1} \text { f.p. } \\
w \neq u 1 \Rightarrow U \hookrightarrow H_{w} \Rightarrow\left|H_{w}\right|=\infty \Rightarrow L_{w} \text { not f.p. } \Rightarrow G_{w} \text { not f.p. }
\end{gathered}
$$

Theorem (Sunic-V.)

Given $\Gamma, \Delta \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether \mathbb{Z}^{d}
Corollary (Sunic-V.)

Towards IP...

- take $F_{n+3} \leqslant G L_{2}(\mathbb{Z})$, and

$$
F_{n+3} \times F_{n+3} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z}) .
$$

- Take $L_{w} \leqslant F_{n+3} \times F_{n+3} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{n+3} \times F_{n+3}\right)$ and $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$.
- Observe that

$$
\begin{gathered}
w=u 1 \Rightarrow L_{w}=F_{n+3} \times F_{n+3} \Rightarrow L_{w} \text { f.p. } \Rightarrow G_{w}=G_{1} \text { f.p. } \\
w \neq u 1 \Rightarrow U \hookrightarrow H_{w} \Rightarrow\left|H_{w}\right|=\infty \Rightarrow L_{w} \text { not f.p. } \Rightarrow G_{w} \text { not f.p. }
\end{gathered}
$$

Theorem (Sunic-V.)

Given $\Gamma, \Delta \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether \mathbb{Z}^{d}
Corollary (Sunic-V.)

Towards IP...

- take $F_{n+3} \leqslant G L_{2}(\mathbb{Z})$, and

$$
F_{n+3} \times F_{n+3} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z})
$$

- Take $L_{w} \leqslant F_{n+3} \times F_{n+3} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{n+3} \times F_{n+3}\right)$ and $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$.
- Observe that

$$
\begin{gathered}
w=u 1 \Rightarrow L_{w}=F_{n+3} \times F_{n+3} \Rightarrow L_{w} \text { f.p. } \Rightarrow G_{w}=G_{1} \text { f.p. } \\
w \neq u 1 \Rightarrow U \hookrightarrow H_{w} \Rightarrow\left|H_{w}\right|=\infty \Rightarrow L_{w} \text { not f.p. } \Rightarrow G_{w} \text { not }
\end{gathered}
$$

Theorem (Sunic-V.)
Given $\Gamma, \Delta \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether \mathbb{Z}^{d}

Towards IP...

- take $F_{n+3} \leqslant G L_{2}(\mathbb{Z})$, and

$$
F_{n+3} \times F_{n+3} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z})
$$

- Take $L_{w} \leqslant F_{n+3} \times F_{n+3} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{n+3} \times F_{n+3}\right)$ and $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$.
- Observe that

$$
\begin{gathered}
w=u 1 \Rightarrow L_{w}=F_{n+3} \times F_{n+3} \Rightarrow L_{w} \text { f.p. } \Rightarrow G_{w}=G_{1} \text { f.p. } \\
w \neq u 1 \Rightarrow U \hookrightarrow H_{w} \Rightarrow\left|H_{w}\right|=\infty \Rightarrow L_{w} \text { not f.p. } \Rightarrow G_{w} \text { not f.p. }
\end{gathered}
$$

Theorem (Sunic-V.)

Given $\Gamma, \Delta \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether \mathbb{Z}^{d}
Corollary (Sunic-V.)

Towards IP...

- take $F_{n+3} \leqslant G L_{2}(\mathbb{Z})$, and

$$
F_{n+3} \times F_{n+3} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z})
$$

- Take $L_{w} \leqslant F_{n+3} \times F_{n+3} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{n+3} \times F_{n+3}\right)$ and $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$.
- Observe that

$$
\begin{gathered}
w=u 1 \Rightarrow L_{w}=F_{n+3} \times F_{n+3} \Rightarrow L_{w} \text { f.p. } \Rightarrow G_{w}=G_{1} \text { f.p. } \\
w \neq u 1 \Rightarrow U \hookrightarrow H_{w} \Rightarrow\left|H_{w}\right|=\infty \Rightarrow L_{w} \text { not f.p. } \Rightarrow G_{w} \text { not f.p. }
\end{gathered}
$$

Theorem (Sunic-V.)

Given $\Gamma, \Delta \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^{d} \rtimes \Gamma \simeq \mathbb{Z}^{d} \rtimes \Delta$.
Corollary (Sunic-V.)

Towards IP...

- take $F_{n+3} \leqslant G L_{2}(\mathbb{Z})$, and

$$
F_{n+3} \times F_{n+3} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z}) .
$$

- Take $L_{w} \leqslant F_{n+3} \times F_{n+3} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{n+3} \times F_{n+3}\right)$ and $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$.
- Observe that

$$
\begin{gathered}
w=u 1 \Rightarrow L_{w}=F_{n+3} \times F_{n+3} \Rightarrow L_{w} \text { f.p. } \Rightarrow G_{w}=G_{1} \text { f.p. } \\
w \neq u 1 \Rightarrow U \hookrightarrow H_{w} \Rightarrow\left|H_{w}\right|=\infty \Rightarrow L_{w} \text { not f.p. } \Rightarrow G_{w} \text { not f.p. }
\end{gathered}
$$

Theorem (Sunic-V.)

Given $\Gamma, \Delta \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^{d} \rtimes \Gamma \simeq \mathbb{Z}^{d} \rtimes \Delta$.
Corollary (Sunic-V.)
The isomorphism problem is unsolvable within the family of

THANKS

[^0]: - Note that $B \simeq F_{2} \times F_{2}$.

