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The three Dehn problems

Let G = 〈x1, . . . , xn | r1, . . . , rm〉 be a finite presentation.
• Word Problem (WP): Given a word w(x1, . . . , xn) decide whether

w =G 1.
• Conjugacy Problem (CP): Given two words u(x1, . . . , xn) and

v(x1, . . . , xn), decide whether u ∼G v.
• Isomorphism Problem (IP): Given two finite presentations like

above, G1 and G2, decide whether G1 ' G2.

The three of them are known to be unsolvable in general.

Theorem (Novikov 1955, Boone 1957)

There exists a finitely presented group with unsolvable WP.
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More algorithmic problems

• Membership problem (MP): Given G and h, h1, . . . , hn ∈ G,
decide whether h ∈ H = 〈h1, . . . , hn〉 6 G.

• Generation problem (GP): Given G and g1, . . . , gn ∈ G, decide
whether 〈g1, . . . , gn〉 = G.

Theorem (Mihailova 1958)

The membership problem in F2 × F2 is unsolvable.

Theorem (Miller 1971)

The generation problem in F2 × F2 is unsolvable.
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Orbit decidability

Definition

Let G be a f.g. group. A subgroup Γ 6 Aut(G) is said to be orbit
decidable (O.D.) if there is an algorithm s.t., given u, v ∈ G, it decides
whether v and α(u) are conjugate, for some α ∈ Γ.

First examples: G = Zd

Observation (folklore)

The full group Aut(Zd ) = GLd (Z) is orbit decidable.

Proof. For u, v ∈ Zd , there exists A ∈ GLd (Z) such that v = Au if and
only if gcd(u1, . . . ,ud ) = gcd(v1, . . . , vd ).
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OD subgroups in GLd(Z)...

Proposition (linear algebra)

For A ∈ GLd (Z), the subgroup 〈A〉 6 GLd (Z) is O.D.

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of GLd (Z) are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of GL2(Z) is O.D.
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... and orbit undecidable ones

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of GL2(Z) is O.D.

Question

Does there exist an orbit undecidable subgroup of GL3(Z) ?

Proposition (Bogopolski-Martino-V., 08)

For d > 4, there exist f.g., orbit undecidable, subgroups Γ 6 GLd (Z).



1. Algorithmic problems 2. Automaton groups 3. Mihailova’s construction 4. Unsolvable IP

... and orbit undecidable ones

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of GL2(Z) is O.D.

Question

Does there exist an orbit undecidable subgroup of GL3(Z) ?

Proposition (Bogopolski-Martino-V., 08)

For d > 4, there exist f.g., orbit undecidable, subgroups Γ 6 GLd (Z).



1. Algorithmic problems 2. Automaton groups 3. Mihailova’s construction 4. Unsolvable IP

... and orbit undecidable ones

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of GL2(Z) is O.D.

Question

Does there exist an orbit undecidable subgroup of GL3(Z) ?

Proposition (Bogopolski-Martino-V., 08)

For d > 4, there exist f.g., orbit undecidable, subgroups Γ 6 GLd (Z).



1. Algorithmic problems 2. Automaton groups 3. Mihailova’s construction 4. Unsolvable IP

Outline

1 Algorithmic problems

2 Automaton groups

3 Mihailova’s construction and orbit undecidability

4 Unsolvability of IP



1. Algorithmic problems 2. Automaton groups 3. Mihailova’s construction 4. Unsolvable IP

Main results

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Easy: the word problem is solvable for all such groups.

Theorem (Sunic-V.)

The isomorphism problem is unsolvable within the family of
automaton groups.
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Tree automorphisms

Let X be an alphabet on k letters, and let X ∗ be the free monoid on
X , thought as a rooted k -ary tree:

∅

ww ''0

�� ��

1

�� ��
00 01 10 11

· · · · · · · · ·

Definition
Every tree automorphism g decomposes as a root permutation
πg : X → X, and k sections g|x , for x ∈ X:

g(xw) = πg(x)g|x (w).



1. Algorithmic problems 2. Automaton groups 3. Mihailova’s construction 4. Unsolvable IP

Tree automorphisms

Let X be an alphabet on k letters, and let X ∗ be the free monoid on
X , thought as a rooted k -ary tree:

∅

ww ''0

�� ��

1

�� ��
00 01 10 11

· · · · · · · · ·

Definition
Every tree automorphism g decomposes as a root permutation
πg : X → X, and k sections g|x , for x ∈ X:

g(xw) = πg(x)g|x (w).



1. Algorithmic problems 2. Automaton groups 3. Mihailova’s construction 4. Unsolvable IP

Automaton groups

Definition
A set of tree automorphisms is self-similar if it contains all
sections of all of its elements.
A finite automaton is a finite self-similar set (elements are called
states).
The group G(A) of tree automorphisms generated by an
automaton A is called an automaton group.

The Grigorchuk group: G = 〈α, β, γ, δ〉, where

α = σ(1,1), β = 1(α, γ), γ = 1(α, δ), δ = 1(1, β).
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Reduction to matrices

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Theorem (Sunic-V.)

The isomorphism problem is unsolvable within the family of
automaton groups.

Both results come from...

Theorem (Sunic-V.)

Let Γ 6 GLd (Z) be f.g. Then, Zd o Γ is an automaton group.
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Reduction to matrices

Theorem (Sunic-V.)

There exists Γ 6 GLd (Z) f.g. such that Zd o Γ has unsolvable
conjugacy problem.

Theorem (Sunic-V.)

Given Γ, ∆ 6 GLd (Z) f.g., it is undecidable whether Zd o Γ ' Zd o ∆.

Corollary (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Corollary (Sunic-V.)

The isomorphism problem is unsolvable within the family of
automaton groups.
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Mihailova’s subgroup

Definition

Let U = 〈x1, . . . , xn | r1, . . . , rm〉 be a finite presentation. The Mihailova
group corresponding to U is

M(U) = {(v ,w) ∈ Fn × Fn | v =U w} =

= 〈(x1, x1), . . . , (xn, xn), (1, r1), . . . , (1, rm)〉 6 Fn × Fn.

Theorem (Mihailova 1958)

The membership problem in F2 × F2 is unsolvable.

Theorem (Grunewald 1978)

M(U) is finitely presented if and only if U is finite.
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Connection to orbit decidability

Proposition (Bogopolski-Martino-V. 2008)

Let G be a group, and let A 6 B 6 Aut(G) and v ∈ G be such that
B ∩ Stab∗(v) = 1. Then,

OD(A) solvable ⇒ MP(A,B) solvable.

Proof. Given ϕ ∈ B ≤ Aut(G), let w = vϕ and

{φ ∈ B | vφ = w} = B ∩ (Stab(v) · ϕ) = (B ∩ Stab(v)) · ϕ = {ϕ}.

{φ ∈ B | vφ ∼ w} = B ∩ (Stab∗(v) · ϕ) = (B ∩ Stab∗(v)) · ϕ = {ϕ}.

So, deciding whether v can be mapped to w, up to conjugacy, by
somebody in A, is the same as deciding whether ϕ belongs to A.
Hence,

OD(A) ⇒ MP(A,B).�
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Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

For d > 4, there exist f.g., orbit undecidable, subgroups Γ 6 GLd (Z).

Proof. Consider F2 ' 〈P =

(
1 1
1 2

)
, Q =

(
2 1
1 1

)
〉 ≤24 GL2(Z).

Stab(1,0) = {M | (1,0)M = (1,0)} = {
(

1 0
n ±1

)
| n ∈ Z}.

〈P,Q〉 ∩ Stab(1,0) = 〈
(

1 0
12 1

)
〉.

Choose a free subgroup F2 ' 〈P ′,Q′〉 ≤ 〈P,Q〉 such that
〈P ′,Q′〉 ∩ Stab(1,0) = {I} and consider

B = 〈
(

P ′ 0
0 I

)
,

(
Q′ 0
0 I

)
,

(
I 0
0 P ′

)
,

(
I 0
0 Q′

)
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Orbit undecidable subgroups

Write v = (1,0,1,0). By construction, B ∩ Stab(v) = {I}.
Take A ≤ B ' F2 × F2 with unsolvable membership problem.
By previous Proposition, A 6 GL4(Z) is orbit undecidable.
Similarly for A 6 GLd (Z), d > 4. �

Question

Does there exist an orbit undecidable subgroup of GL3(Z) ?
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Connection to semidirect products

Observation (B-M-V)

Let H be f.g., and Γ 6 Aut(H) f.g. If H o Γ has solvable CP, then
Γ 6 Aut(H) is orbit decidable.

Proof. G = H o Γ contains elements (h, γ) ∈ H × Γ operated like

(h1, γ1) · (h2, γ2) = (h1γ1(h2), γ1γ2)

(h, γ)−1 = (γ−1(h−1), γ−1).

For h1, h2 ∈ H 6 G, we have h1 ∼G h2 ⇔ ∃(h, γ) ∈ H o Γ s.t.

(h2, Id) = (h, γ)−1 · (h1, Id) · (h, γ)
(γ−1(h−1), γ−1) · (h1h, γ)
(γ−1(h−1h1h), Id).

Hence, h1 ∼G h2 ⇔ ∃γ ∈ Γ and h ∈ H s.t. h1 = hγ(h2)h−1. �
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unsolvable CP

Corollary (Sunic-V.)

There exists Γ 6 GLd (Z) f.g. such that Zd o Γ has unsolvable
conjugacy problem.

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.
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A construction due to Gordon

Let X = {x1, . . . , xn} and U = 〈X |R〉 be a finite presentation. For
w = w(x1, . . . , xn) consider

Hw =

〈
X , a, b, c | R

a−1ba = c−1b−1cbc
a−2b−1aba2 = c−2b−1cbc2

a−3[w ,b]a3 = c−3bc3

a−(3+i)xiba3+i = c−(3+i)bc3+i , i > 1

〉

Lemma
1) If w 6=U 1 then U embeds in Hw .
2) If w =U 1 then Hw = 1.

Theorem
The isomorphism problem, the triviality problem, the finite problem
are all unsolvable.
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The generation problem

Take U with unsolvable WP (in particular |U| =∞), consider the
presentations Hw as above, and consider the Mihailova group
corresponding to Hw :

Lw = M(Hw ) = {(u, v) ∈ Fn+3 × Fn+3 | u =Hw v} 6 Fn+3 × Fn+3.

Observe that

Lw = Fn+3 × Fn+3 ⇔ u =Hw v ∀u, v ∈ Fn+3
⇔ Hw = {1}
⇔ w =U 1.

Theorem (Miller 1971)

The generation problem in F2 × F2 is unsolvable.
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Towards IP...

• take Fn+3 6 GL2(Z), and
Fn+3 × Fn+3 6 GL2(Z)×GL2(Z) 6 GL4(Z).

• Take Lw 6 Fn+3 × Fn+3 6 GL4(Z).
• Consider G1 = Z4 o (Fn+3 × Fn+3) and Gw = Zd o Lw .
• Observe that

w =U 1⇒ Lw = Fn+3 × Fn+3 ⇒ Lw f.p.⇒ Gw = G1 f.p.

w 6=U 1⇒ U ↪→ Hw ⇒ |Hw | =∞⇒ Lw not f.p.⇒ Gw not f.p.

Theorem (Sunic-V.)

Given Γ, ∆ 6 GLd (Z) f.g., it is undecidable whether Zd o Γ ' Zd o ∆.

Corollary (Sunic-V.)

The isomorphism problem is unsolvable within the family of
automaton groups.
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