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The three Dehn problems

LetG=(x1,...,Xn| N,-..,Im) be a finite presentation.
e Word Problem (WP): Given a word w(xy, ..., X,) decide whether
W =g 1.
e Conjugacy Problem (CP): Given two words u(xi, ..., X,) and
v(X1,...,Xn), decide whether u ~g v.

e Isomorphism Problem (IP): Given two finite presentations like
above, Gy and G, decide whether Gy ~ Go.

The three of them are known to be unsolvable in general.

Theorem (Novikov 1955, Boone 1957)
There exists a finitely presented group with unsolvable WP
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More algorithmic problems

e Membership problem (MP): Given G and h, hy, ..., h, € G,
decide whetherh e H= (hy, ..., hy) < G.

e Generation problem (GP): Given G and g4, ...,9n € G, decide
whether (g1, ..., gn) = G.

Theorem (Mihailova 1958)
The membership problem in Fo x F, is unsolvable.

Theorem (Miller 1971)
The generation problem in F, x F, is unsolvable.
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Orbit decidability

Definition
Let G be a f.g. group. A subgroup ' < Aut(G) is said to be orbit

decidable (O.D.) if there is an algorithm s.t., given u, v € G, it decides
whether v and «(u) are conjugate, for some a € T.

First examples: G = Z¢

Observation (folklore)
The full group Aut(Z°) = GL4(Z) is orbit decidable.

Proof. For u,v c 79, there exists A € GLy(Z) such that v = Au if and
only if ged(uy, . .., ug) = ged(vy, . .., Vq).
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... and orbit undecidable ones

Proposition (Bogopolski-Martino-V., 08)
Every finitely generated subgroup of GLy(Z) is O.D.

Does there exist an orbit undecidable subgroup of GL3(Z) ?

Proposition (Bogopolski-Martino-V., 08)

For d > 4, there exist f.g., orbit undecidable, subgroups ' < GL4(Z).
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Theorem (Sunic-V.)

The isomorphism problem is unsolvable within the family of
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Tree automorphisms

Let X be an alphabet on k letters, and let X* be the free monoid on
X, thought as a rooted k-ary tree:
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Definition

@ Every tree automorphism g decomposes as a root permutation
mg: X = X, and k sections gy, for x € X:

glxw) = mg(x)g|x(w).
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Automaton groups

@ A set of tree automorphisms is self-similar if it contains all
sections of all of its elements.

@ A finite automaton is a finite self-similar set (elements are called
states).

@ The group G(A) of tree automorphisms generated by an
automaton A is called an automaton group.

The Grigorchuk group: G = (1, a, 5, v, §), where

a=0c(1,1), B=1(a,7), v=1(a,9), 6 =1(1,5).
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Reduction to matrices

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Theorem (Sunic-V.)

The isomorphism problem is unsolvable within the family of
automaton groups.

Both results come from...

Theorem (Sunic-V.)

LetT < GL4(Z) be f.g. Then, Z9 x T is an automaton group.
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Theorem (Sunic-V.)
There exists T < GLy4(Z) f.g. such that Z9 x T has unsolvable
conjugacy problem.

Theorem (Sunic-V.)
GivenT, A < GL4(Z) f.g., it is undecidable whether Z.9 x T ~ 7.9 x A.
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Reduction to matrices

Theorem (Sunic-V.)

There exists T < GLy4(Z) f.g. such that Z9 x T has unsolvable
conjugacy problem.

Theorem (Sunic-V.)

GivenT, A < GL4(Z) f.g., it is undecidable whether Z.9 x T ~ 7.9 x A.

Corollary (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Corollary (Sunic-V.)

The isomorphism problem is unsolvable within the family of
automaton groups.
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Mihailova’s subgroup

LetU= (x1,...,Xn|H,-..,rm) be a finite presentation. The Mihailova
group corresponding to U is

MU) ={(v,w) e Fpx Fp | v=y w} =

={(X1,%1)s -y (Xns Xn), (1,11), ..., (1,rm)) < Fn x Fp.

Theorem (Mihailova 1958)
The membership problem in F, x F, is unsolvable.

Theorem (Grunewald 1978)

M(U) is finitely presented if and only if U is finite.
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Connection to orbit decidability

Proposition (Bogopolski-Martino-V. 2008)

Let G be a group, and let A < B < Aut(G) and v € G be such that
Bn Stab*(v) = 1. Then,

OD(A) solvable = MP(A, B) solvable.

Proof. Given ¢ € B < Aut(G), let w = v and
{p € B|vp=w}=Bn(Stab(v)-¢) = (Bn Stab(v)) - ¢ = {4}

{6 € B| v~ w}=Bn (Stab*(v) - p) = (BN Stab*(v)) - ¢ = {¢}.

So, deciding whether v can be mapped to w, up to conjugacy, by
somebody in A, is the same as deciding whether ¢ belongs to A.
Hence,

OD(A) = MP(A,B).00
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Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

For d > 4, there exist .g., orbit undecidable, subgroups ' < GL4(Z).

Proof. Consider Fy ~ (P — ( L) ) Q- ( 2 )> <04 GLo(Z).

° Stab(1,0):{M|(1,0)M:(1,0)}:{< e ) |nez}.

° <P,Q>m$tab(1,0):<( 0 )>.

@ Choose a free subgroup F> ~ (P', @) < (P, Q) such that
(P', Q') n Stab(1,0) = {/} and consider

- (71 (919): (). (418 ) <o

@ Note that B~ F> x Fo.

N
~
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@ Write v =(1,0,1,0). By construction, BN Stab(v) = {/}.

@ Take A < B ~ F> x F, with unsolvable membership problem.
@ By previous Proposition, A < GL4(Z) is orbit undecidable.

@ Similarly for A< GL4(Z), d > 4. O

Does there exist an orbit undecidable subgroup of GL3(Z) ?
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Connection to semidirect products

Observation (B-M-V)

LetH be f.g., andT < Aut(H) f.g. If H x T has solvable CP, then
I < Aut(H) is orbit decidable.

Proof. G = H x T contains elements (h, v) € H x T operated like
(M, 1) - (h2, 72) = (h171(h2), v172)
(h N =071, Y.
For hy, ho € H< G, we have hy ~g ho < 3(h,v) € HxT s.t.

(ho, Id) = (h,7)~"(hy, Id) - (h, ~)
(YN (A, 7 - (b, )
(v-1(h~"hh), Id).

Hence, hy ~g ho < 3ycTandhec Hs.t hy = hy(h)h='. O
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unsolvable CP

Corollary (Sunic-V.)

There exists I < GL4(Z) f.g. such that Z9 x T has unsolvable
conjugacy problem.

Theorem (Sunic-V.)
There exist automaton groups with unsolvable conjugacy problem.




4. Unsolvable IP
Outline

@ Unsolvability of IP



A construction due to Gordon

4. Unsolvable IP
[ Je]ele]

Let X = {x1,...,x,} and U = (X | R) be a finite presentation. For
w = w(X1, ..., Xn) consider

HW:<X7a7b,C R >
a'ba=c'b~'chc

a2b'aba® = ¢ 2b'cbc?
a“3[w,bla® = c3bc?
a_(3+i)X/b33+i _ C—(3—H)b03+i7 i 2 1




4. Unsolvable IP
[ Je]ele]

A construction due to Gordon

Let X = {x1,...,x,} and U = (X | R) be a finite presentation. For
w = w(X1, ..., Xn) consider

HW:<X7a7b,C| R >
a'ba=c'b~'chc

a2b'aba® = ¢ 2b'cbc?
a“3[w,bla® = c3bc?
a_(3+i)X/b33+i _ C—(3—H)bC3+i7 i 2 1

Lemma

1) Ifw #y 1 then U embeds in Hy,.
2) Ifw=y1thenH, =1.




4. Unsolvable IP
[ Je]ele]

A construction due to Gordon

Let X = {x1,...,x,} and U = (X | R) be a finite presentation. For
w = w(X1, ..., Xn) consider

HW:<X7a7b,C| R >
a'ba=c'b~'chc

a2b'aba® = ¢ 2b'cbc?
a“3[w,bla® = c3bc?
a_(3+i)X/b33+i _ C—(3—H)bC3+i7 i 2 1

Lemma

1) Ifw #y 1 then U embeds in Hy,.
2) Ifw=y1thenH, =1.

Theorem

The isomorphism problem, the triviality problem, the finite problem
are all unsolvable.
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[e] Jole]

The generation problem

Take U with unsolvable WP (in particular |U| = ~o), consider the
presentations H,, as above, and consider the Mihailova group
corresponding to Hy,:

LW:M(HW):{(U, V) G Fn+3 X Fn+3 | U:HW V} < Fn+3 X Fn+3.

Observe that

Ly =Fnisx Fpys & U=p, Vv YU,V e Fus
< Hy,={1}
&S w=yl.

Theorem (Miller 1971)
The generation problem in F, x F, is unsolvable.
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Towards IP...

lake Fpi 3 < GLo(Z), and
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Take LW < Fn+3 X Fn+3 < GL4(Z)
Consider Gy = 7Z* x (Fpy3 x Fpi3) and Gy = 79 x Ly,.
Observe that

w=y1l=Ly=Fn3xFuns=Lyfp.= Gy= G fp.

w#y 1= U< Hy, = |Hy| = 00 = Ly not f.p.
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Fris x Fhiz < GLg(Z) X GL2(Z) < GL4(Z)

Take LW < Fn+3 X Fn+3 < GL4(Z)
Consider Gy = 7Z* x (Fpy3 x Fpi3) and Gy = 79 x Ly,.
Observe that

w=y1l=Ly=Fn3xFuns=Lyfp.= Gy= G fp.

w#y 1= U< Hy, = |Hy| =0 = Ly, notfp.= Gy, notfp.
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Towards IP...

lake Fpi 3 < GLo(Z), and
Fris x Fhiz < GLg(Z) X GL2(Z) < GL4(Z)

Take LW < Fn+3 X Fn+3 < GL4(Z)
Consider Gy = 7Z* x (Fpy3 x Fpi3) and Gy = 79 x Ly,.
Observe that

w=y1l=Ly=Fn3xFuns=Lyfp.= Gy= G fp.

w#y 1= U< Hy, = |Hy| =0 = Ly, notfp.= Gy, notfp.

Theorem (Sunic-V.)
GivenT, A < GLy(Z) f.g., it is undecidable whether Z.¢ x T ~ 7.9 x A.




4. Unsolvable IP
[e]e] o]

Towards IP...

lake Fpi 3 < GLo(Z), and
Fris x Fhiz < GLg(Z) X GL2(Z) < GL4(Z)

Take LW < Fn+3 X Fn+3 < GL4(Z)
Consider Gy = 7Z* x (Fpy3 x Fpi3) and Gy = 79 x Ly,.
Observe that

w=y1l=Ly=Fn3xFuns=Lyfp.= Gy= G fp.

w#y 1= U< Hy, = |Hy| =0 = Ly, notfp.= Gy, notfp.

Theorem (Sunic-V.)
GivenT, A < GLy(Z) f.g., it is undecidable whether Z.¢ x T ~ 7.9 x A.

Corollary (Sunic-V.)
The isomornhism problem is unsolvable within the familv of
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