Automata and algebraic extensions of free groups

Enric Ventura

Departament de Matemàtica Aplicada III
Universitat Politècnica de Catalunya

Lyon, December 3, 2008

Outline

(1) The friendly and unfriendly free group

2 The bijection between subgroups and automata
(3) Several algebraic applications

- First results
- Finite index subgroups
- Intersections

4. Algebraic extensions and Takahasi's theorem

- Takahasi's theorem
- Computing the set of algebraic extensions
- The algebraic closure
- Pro-V closures
- Other closures

Outline

(1) The friendly and unfriendly free group
(2) The bijection between subgroups and automata
(3) Several algebraic applications

- First results
- Finite index subgroups
- Intersections

4 Algebraic extensions and Takahasi's theorem

- Takahasi's theorem
- Computing the set of algebraic extensions
- The algebraic closure
- Pro-V closures
- Other closures

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}\right.$
$\left.a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$); 1 denotes the empty word.
- \sim is the equivalence relation generated by $a_{i} a_{i}^{-1} \sim a_{i}^{-1} a_{i} \sim 1$.
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo \sim).
- Every $w \in A^{*}$ has a unique reduced form, denoted \bar{w}, (clearly $w=\bar{w}$ in F_{A}, and \bar{w} is the shortest word with this property). We also say \bar{W} is a reduced word.
- Again, 1 denotes the (class of the) empty word, and $|\cdot|$ the (shortest) length in F_{A} :
$|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3, \quad|u v| \leqslant|u|+|v|$.

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$); 1 denotes the empty word.
- \sim is the equivalence relation generated by $a_{i} a_{i}^{-1} \sim a_{i}^{-1} a_{i} \sim 1$.
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo \sim).
- Every $w \in A^{*}$ has a unique reduced form, denoted \bar{w}, (clearly $w=\bar{w}$ in F_{A}, and \bar{w} is the shortest word with this property). We also say \bar{W} is a reduced word.
- Again, 1 denotes the (class of the) empty word, and $|\cdot|$ the (shortest) length in F_{A} :
$|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3, \quad|u v| \leqslant|u|+|v|$.

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- ($\left.A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$); 1 denotes the empty word.
- \sim is the equivalence relation generated by $a_{i} a_{i}^{-1} \sim a_{i}^{-1} a_{i} \sim 1$.
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo \sim).
- Every $w \in A^{*}$ has a unique reduced form, denoted \bar{w}, (clearly $w=\bar{w}$ in F_{A}, and \bar{w} is the shortest word with this property). We also say \bar{W} is a reduced word.
- Again, 1 denotes the (class of the) empty word, and $|\cdot|$ the (shortest) length in F_{A} :
$|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3, \quad|u v| \leqslant|u|+|v|$.

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$); 1 denotes the empty word.
- \sim is the equivalence relation generated by $a_{i} a_{i}^{-1} \sim a_{i}^{-1} a_{i} \sim 1$.

- Every $w \in A^{*}$ has a unique reduced form, denoted \bar{w}, (clearly $w=\bar{W}$ in F_{A}, and \bar{w} is the shortest word with this property). We also say W is a reduced word.
- Again, 1 denotes the (class of the) empty word, and $|\cdot|$ the (shortest) length in F_{A} :

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$); 1 denotes the empty word.
- \sim is the equivalence relation generated by $a_{i} a_{i}^{-1} \sim a_{i}^{-1} a_{i} \sim 1$.
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo \sim)
- Every $w \in A^{*}$ has a unique reduced form, denoted \bar{w}, (clearly $w=\bar{W}$ in F_{A}, and \bar{w} is the shortest word with this property). We also say \bar{W} is a reduced word.
- Again, 1 denotes the (class of the) empty word, and $|\cdot|$ the (shortest) length in F_{A} :

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$); 1 denotes the empty word.
- \sim is the equivalence relation generated by $a_{i} a_{i}^{-1} \sim a_{i}^{-1} a_{i} \sim 1$.
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo \sim).
- Every $w \in A^{*}$ has a unique reduced form, denoted \bar{w}, (clearly $w=\bar{W}$ in F_{A}, and \bar{W} is the shortest word with this property). We also say \bar{W} is a reduced word.
- Again, 1 denotes the (class of the) empty word, and |.| the (shortest) length in F_{A} :

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$); 1 denotes the empty word.
- \sim is the equivalence relation generated by $a_{i} a_{i}^{-1} \sim a_{i}^{-1} a_{i} \sim 1$.
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo \sim).
- Every $w \in A^{*}$ has a unique reduced form, denoted \bar{w}, (clearly $w=\bar{w}$ in F_{A}, and \bar{w} is the shortest word with this property). We also say \bar{W} is a reduced word.
- Again, 1 denotes the (class of the) empty word, and

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$); 1 denotes the empty word.
- \sim is the equivalence relation generated by $a_{i} a_{i}^{-1} \sim a_{i}^{-1} a_{i} \sim 1$.
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo \sim).
- Every $w \in A^{*}$ has a unique reduced form, denoted \bar{w}, (clearly $w=\bar{W}$ in F_{A}, and \bar{w} is the shortest word with this property). We also say \bar{W} is a reduced word.
- Again, 1 denotes the (class of the) empty word, and $|\cdot|$ the (shortest) length in F_{A} :

$$
|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3, \quad|u v| \leqslant|u|+|v| .
$$

The universal property

- The universal property: given a group G and a mapping $\varphi: A \rightarrow G$, there exists a unique group homomorphism $\Phi: F_{A} \rightarrow G$ such that the diagram

commutes (where ι is the inclusion map).
- Every group is a quotient of a free group
- So, the lattice of (normal) subgroups of F_{A} is very important.

The universal property

- The universal property: given a group G and a mapping $\varphi: A \rightarrow G$, there exists a unique group homomorphism $\Phi: F_{A} \rightarrow G$ such that the diagram

commutes (where ι is the inclusion map).
- Every group is a quotient of a free group

$$
G=\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{m}\right\rangle=F_{A} / \ll r_{1}, \ldots, r_{m} \gg .
$$

- So, the lattice of (normal) subgroups of F_{A} is very important.

The universal property

- The universal property: given a group G and a mapping $\varphi: A \rightarrow G$, there exists a unique group homomorphism $\Phi: F_{A} \rightarrow G$ such that the diagram

commutes (where ι is the inclusion map).
- Every group is a quotient of a free group

$$
G=\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{m}\right\rangle=F_{A} / \ll r_{1}, \ldots, r_{m} \gg .
$$

- So, the lattice of (normal) subgroups of F_{A} is very important.

Comparison with linear algebra

vector spaces

- Kn f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,
-
- Steinitz Lemma,
- $F \leqslant E \Rightarrow \operatorname{dim} F \leqslant \operatorname{dim} E$,
- A basis

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Not true,

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,
- -

,

- Steinitz Lemma,
- $F \leqslant E \Rightarrow \operatorname{dim} F \leqslant \operatorname{dim} E$,
- A basis

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Not true,

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$
©
- Steinitz Lemma,

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- $F \leqslant E \Rightarrow \operatorname{dim} F \leqslant \operatorname{dim} E$,
- A basis
- The A-Stallings automata

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,
-
-
- Steinitz Lemma,

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- $F \leqslant E \Rightarrow \operatorname{dim} F \leqslant \operatorname{dim} E$,
- A basis
- Not true,
- Very false: $F_{\aleph_{0}} \leqslant F_{2}$.

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Steinitz Lemma,

- Not true,
- Very false: $F_{\aleph_{0}} \leqslant F_{2}$.
- A basis

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- Steinitz Lemma,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Very false: $F_{\aleph_{0}} \leqslant F_{2}$.
- A basis

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Steinitz Lemma,

- Very false: $F_{\aleph_{0}} \leqslant F_{2}$.

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,
- -
- Steinitz Lemma,

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Very false: $F_{\aleph_{0}} \leqslant F_{2}$.
- The A-Stallings automata

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,
- -

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Steinitz Lemma,
- Not true

- Very false: $F_{\aleph_{0}} \leqslant F_{2}$.

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,
- --
free groups
- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Steinitz Lemma,

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,
- ---
free groups
- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Not true,
- Steinitz Lemma,
- Very false: $F_{\mathbb{K}_{0}} \leqslant F_{2}$.

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,
- --
- Steinitz Lemma,
- $F \leqslant E \Rightarrow \operatorname{dim} F \leqslant \operatorname{dim} E$,

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Not true,
- Very false: $F_{\aleph_{0}} \leqslant F_{2}$.

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,
- -$-$
- Steinitz Lemma,
- $F \leqslant E \Rightarrow \operatorname{dim} F \leqslant \operatorname{dim} E$,
free groups
- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Not true,
- Very false: $F_{\aleph_{0}} \leqslant F_{2}$.

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,
- -

正 -
free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Not true,
- Very false: $F_{\aleph_{0}} \leqslant F_{2}$.
- A basis

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,
- -

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Not true,
- Very false: $F_{\aleph_{0}} \leqslant F_{2}$.
- The A-Stallings automata

Outline

(1) The friendly and unfriendly free group

2 The bijection between subgroups and automata
(3) Several algebraic applications

- First results
- Finite index subgroups
- Intersections

4 Algebraic extensions and Takahasi's theorem

- Takahasi's theorem
- Computing the set of algebraic extensions
- The algebraic closure
- Pro-V closures
- Other closures

Stallings automata

Definition

A Stallings automata is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:
1- X is connected,
2- no vertex of degree 1 except possibly v (X is a core-graph),
3- no two edges with the same label go out of (or in to) the same vertex.

Stallings automata

Definition

A Stallings automata is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:
1- X is connected,
2- no vertex of degree 1 except possibly v (X is a core-graph),
3 - no two edges with the same label go out of (or in to) the same vertex.

NO :

Stallings automata

Definition

A Stallings automata is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:
1- X is connected,
2- no vertex of degree 1 except possibly v (X is a core-graph),
3 - no two edges with the same label go out of (or in to) the same vertex.

NO :

YES :

Stallings automata

In the influent paper
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_{A} and Stallings automata:
rf.g. subgrouns of $\left.F_{A}\right\} \quad\{\quad\{$ Stallings automata $\}$.
which is crucial for the modern understanding of the lattice of
subgroups of F_{A}.

Stallings automata

In the influent paper
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_{A} and Stallings automata:
\{f.g. subgroups of $\left.F_{A}\right\} \longleftrightarrow \quad$ \{Stallings automata\},
which is crucial for the modern understanding of the lattice of
subgroups of F_{A}.

Stallings automata

In the influent paper
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_{A} and Stallings automata:

$$
\text { \{f.g. subgroups of } \left.F_{A}\right\} \quad \longleftrightarrow \quad\{\text { Stallings automata }\}
$$

which is crucial for the modern understanding of the lattice of subgroups of F_{A}.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

Membership problem in $\pi(X, \bullet)$ is solvable.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A}
$$

clearly, a subgroup of F_{A}.

$$
\pi(X, \bullet)=\{1
$$

$$
\pi(X, \bullet) \not \nexists \quad b c^{-1} b c a a
$$

Membership problem in $\pi(X, \bullet)$ is solvable.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A}
$$

clearly, a subgroup of F_{A}.

$$
\pi(X, \bullet)=\{1, a,
$$

$$
\pi(X, \bullet) \not \not \quad b c^{-1} b c a a
$$

Membership problem in $\pi(X, \bullet)$ is solvable.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A}
$$

clearly, a subgroup of F_{A}.

$$
\pi(X, \bullet)=\left\{1, a, a^{-1}\right.
$$

$\pi(X, \bullet) \not \nexists \quad b c^{-1} b c a a$
Mem'bership prob'em in $\pi(X, 0)$ is solvable.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$$
\pi(X, \bullet)=\left\{1, a, a^{-1}, b a b\right.
$$

$$
\pi(X, \bullet) \not \nexists \quad b c^{-1} b c a a
$$

Membership problem in $\pi(X, \bullet)$ is solvable.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$\pi(X, \bullet)=\left\{1, a, a^{-1}, b a b, b c^{-1} b\right.$,
$\pi(X, \bullet) \not \nexists \quad b c^{-1} b c a a$
Membershin problem in $\pi(X, a)$ is solvable.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$$
\begin{aligned}
\pi(X, \bullet)= & \left\{1, a, a^{-1}, b a b, b c^{-1} b,\right. \\
& \left.b a b a b^{-1} c b^{-1}, \ldots\right\}
\end{aligned}
$$

$\pi(X, \bullet) \quad \nexists \quad b c^{-1}$ bcaa
Membership problem in $\pi(X, \bullet)$ is solvable.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$$
\begin{aligned}
\pi(X, \bullet)= & \left\{1, a, a^{-1}, b a b, b c^{-1} b\right. \\
& \left.b a b a b^{-1} c b^{-1}, \ldots\right\}
\end{aligned}
$$

$\pi(X, \bullet) \not \nexists \quad b c^{-1}$ bcaa
Membership problem in $\pi(X, \bullet)$ is solvable.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A}
$$

clearly, a subgroup of F_{A}.

$$
\begin{aligned}
& \pi(X, \bullet)=\left\{1, a, a^{-1}, b a b, b c^{-1} b,\right. \\
&\left.b a b a b^{-1} c b^{-1}, \ldots\right\} \\
& \pi(X, \bullet) \not \supset \quad b c^{-1} b c a a
\end{aligned}
$$

Membership problem in $\pi(X, \bullet)$ is solvable.

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, a]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And, $|E X-E T|$

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, c e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=$ label $(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And,

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.

- And,

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And,

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And, $|E X-E T|=|E X|-|E T|$

$$
=|E X|-(|V T|-1)=1-|V X|+|E X| . \square
$$

Example

$$
H=\langle \rangle
$$

Example

$H=\langle a, \quad\rangle$

Example

$H=\langle a, b a b, \quad\rangle$

Example

$$
H=\left\langle a, b a b, b^{-1} c b^{-1}\right\rangle
$$

Example

$$
H=\left\langle a, b a b, b^{-1} c b^{-1}\right\rangle, \quad r k(H)=1-3+5=3 .
$$

Example-2

$F_{\aleph_{0}} \simeq H=\left\langle\ldots, b^{-2} a b^{2}, b^{-1} a b, a, b a b^{-1}, b^{2} a b^{-2}, \ldots\right\rangle \leqslant F_{2}$.

Constructing the automata from the subgroup

In any automaton containing the following situation, for $x \in A^{ \pm 1}$,

we can fold and identify vertices u and v to obtain

This operation, $(X, v) \rightsquigarrow\left(X^{\prime}, v\right)$, is called a Stallings folding.

Constructing the automata from the subgroup

In any automaton containing the following situation, for $x \in A^{ \pm 1}$,

we can fold and identify vertices u and v to obtain

$$
\bullet \xrightarrow{x} u=v .
$$

This operation, $(X, v) \rightsquigarrow\left(X^{\prime}, v\right)$, is called a Stallings folding.

Constructing the automata from the subgroup

In any automaton containing the following situation, for $x \in A^{ \pm 1}$,

we can fold and identify vertices u and v to obtain

$$
\bullet \xrightarrow{x} u=v .
$$

This operation, $(X, v) \rightsquigarrow\left(X^{\prime}, v\right)$, is called a Stallings folding.

Constructing the automata from the subgroup

Lemma (Stallings)

If $(X, v) \rightsquigarrow\left(X^{\prime}, v^{\prime}\right)$ is a Stallings folding then $\pi(X, v)=\pi\left(X^{\prime}, v^{\prime}\right)$.

Given a f.g. subgroup $H=\left\langle w_{1}, \ldots w_{m}\right\rangle \leqslant F_{A}$ (we assume w_{i} are
reduced words), do the following:
1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Constructing the automata from the subgroup

Lemma (Stallings)

If $(X, v) \rightsquigarrow\left(X^{\prime}, v^{\prime}\right)$ is a Stallings folding then $\pi(X, v)=\pi\left(X^{\prime}, v^{\prime}\right)$.

Given a f.g. subgroup $H=\left\langle w_{1}, \ldots w_{m}\right\rangle \leqslant F_{A}$ (we assume w_{i} are reduced words), do the following:
1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Constructing the automata from the subgroup

Lemma (Stallings)

If $(X, v) \rightsquigarrow\left(X^{\prime}, v^{\prime}\right)$ is a Stallings folding then $\pi(X, v)=\pi\left(X^{\prime}, v^{\prime}\right)$.

Given a f.g. subgroup $H=\left\langle w_{1}, \ldots w_{m}\right\rangle \leqslant F_{A}$ (we assume w_{i} are reduced words), do the following:
1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Flower(H)

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Flower(H)

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#1

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#1.

Folding \#2.

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#2.

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#3.

$\Gamma(H)$

By Stallings Lemma, $\pi(\Gamma(H), \bullet)=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#3.

$\Gamma(H)$

By Stallings Lemma, $\pi(\Gamma(H), \bullet)=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#3.

$$
\Gamma(H)
$$

By Stallings Lemma, $\pi(\Gamma(H), \bullet)=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

$$
=\left\langle b, a b a^{-1}, a^{3}\right\rangle .
$$

Independence from the process

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.
Proofs can be made completely graphical and are not difficult.

This gives a very useful bijection:

Independence from the process

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.
Proofs can be made completely graphical and are not difficult.

This gives a very useful bijection:

Independence from the process

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.
Proofs can be made completely graphical and are not difficult.
This gives a very useful bijection:

Independence from the process

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.
Proofs can be made completely graphical and are not difficult.
This gives a very useful bijection:

$$
\begin{aligned}
\text { \{f.g. subgroups of } \left.F_{A}\right\} & \longleftrightarrow\{\text { Stallings automata }\} \\
H & \longrightarrow \Gamma(H) \\
\pi(X, v) & \leftarrow(X, v)
\end{aligned}
$$

Outline

(9)

The friendly and unfriendly free group

The bijection between subgroups and automata
(3) Several algebraic applications

- First results
- Finite index subgroups
- Intersections
(4) Algebraic extensions and Takahasi's theorem
- Takahasi's theorem
- Computing the set of algebraic extensions
- The algebraic closure
- Pro-V closures
- Other closures

Outline

(1) The friendly and unfriendly free group

2 The bijection between subgroups and automata
(3) Several algebraic applications

- First results
- Finite index subgroups
- Intersections

4. Algebraic extensions and Takahasi's theorem

- Takahasi's theorem
- Computing the set of algebraic extensions
- The algebraic closure
- Pro-V closures
- Other closures

Nielsen-Schreier Theorem

Theorem (Nielsen-Schreier)
Every subgroup of F_{A} is free.
Proof:

- Let $H=\left\langle w_{1}, \ldots, w_{p}\right\rangle \leqslant f . g . F_{A}$.
- By the bijection, we know that $H=\pi(\Gamma(H))$.
- By the previous observation, H is free.
- Everything extends easily to the infinitely generated case (considering infinite graphs). \square
- The original proof (1920's) was combinatorial and much more technical.

Nielsen-Schreier Theorem

Theorem (Nielsen-Schreier)

Every subgroup of F_{A} is free.

Proof:

- Let $H=\left\langle w_{1}, \ldots, w_{p}\right\rangle \leqslant f . g . F_{A}$.
- By the bijection, we know that $H=\pi(\Gamma(H))$.
- By the previous observation, H is free.
- Everything extends easily to the infinitely generated case (considering infinite graphs). \square
- The original proof (1920's) was combinatorial and much more technical.

Nielsen-Schreier Theorem

Theorem (Nielsen-Schreier)

Every subgroup of F_{A} is free.

Proof:

- Let $H=\left\langle w_{1}, \ldots, w_{p}\right\rangle \leqslant f . g . F_{A}$.
- By the bijection, we know that $H=\pi(\Gamma(H))$.
- By the previous observation, H is free.
- Everything extends easily to the infinitely generated case (considering infinite graphs). \square
- The original proof (1920's) was combinatorial and much more technical.

Nielsen-Schreier Theorem

Theorem (Nielsen-Schreier)

Every subgroup of F_{A} is free.

Proof:

- Let $H=\left\langle w_{1}, \ldots, w_{p}\right\rangle \leqslant f . g . F_{A}$.
- By the bijection, we know that $H=\pi(\Gamma(H))$.
- By the previous observation, H is free.
- Everything extends easily to the infinitely generated case (considering infinite graphs). \square
- The original proof (1920's) was combinatorial and much more technical.

Nielsen-Schreier Theorem

Theorem (Nielsen-Schreier)

Every subgroup of F_{A} is free.

Proof:

- Let $H=\left\langle w_{1}, \ldots, w_{p}\right\rangle \leqslant f . g . F_{A}$.
- By the bijection, we know that $H=\pi(\Gamma(H))$.
- By the previous observation, H is free.
- Everything extends easily to the infinitely generated case (considering infinite graphs).
- The original proof (1920's) was combinatorial and much more technical.

Nielsen-Schreier Theorem

Theorem (Nielsen-Schreier)

Every subgroup of F_{A} is free.

Proof:

- Let $H=\left\langle w_{1}, \ldots, w_{p}\right\rangle \leqslant f . g . F_{A}$.
- By the bijection, we know that $H=\pi(\Gamma(H))$.
- By the previous observation, H is free.
- Everything extends easily to the infinitely generated case (considering infinite graphs).
- The original proof (1920's) was combinatorial and much more technical.

Membership \& containment

(Membership)

Does w belong to $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$?

- Construct 「(H),
- Check whether w is readable as a closed path in $\Gamma(H)$ (at the basepoint).

(Containment)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$ and $K=\left\langle v_{1}, \ldots, v_{n}\right\rangle$, is $H \leqslant K$?

- Construct $\Gamma(K)$,
- Check whether all the wi's are readable as closed paths in $\Gamma(H)$ (at the basepoint).

Membership \＆containment

（Membership）

Does w belong to $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$ ？
－Construct 「 $\Gamma(H)$ ，
－Check whether w is readable as a closed path in $\Gamma(H)$（at the basepoint）．

（Containment）

Given $H=\left\langle w_{1}\right.$

- Construct 「（K），
- Check whether all the wi＇s are readable as closed paths in 「（H） （at the basepoint）．

Membership \& containment

(Membership)

Does w belong to $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$?

- Construct $\Gamma(H)$,
- Check whether w is readable as a closed path in $\Gamma(H)$ (at the basepoint).

(Containment)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$ and $K=\left\langle v_{1}, \ldots, v_{n}\right\rangle$, is $H \leqslant K$?

- Construct 「(K),- Check whether all the wi's are readable as closed paths in 「(H) (at the basepoint).

Membership \& containment

(Membership)

Does w belong to $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$?

- Construct 「 (H),
- Check whether w is readable as a closed path in $\Gamma(H)$ (at the basepoint).

(Containment)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$ and $K=\left\langle v_{1}, \ldots, v_{n}\right\rangle$, is $H \leqslant K$?

- Construct $\Gamma(K)$,
- Check whether all the w_{i} 's are readable as closed paths in $\Gamma(H)$ (at the basepoint).

Basis \& conjugacy

(Computing a basis)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$, find a basis for H.

- Construct $\Gamma(H)$,
- Choose a maximal tree,
- Read the corresponding basis.

(Conjugacy)

Given $H=\left\langle w_{1}, \ldots w_{m}\right\rangle$ and $K=\left\langle v_{1}, \ldots, v_{n}\right\rangle$, are they conjugate (i.e. $H^{x}=K$ for some $x \in F_{A}$)?

- Construct $\Gamma(H)$ and $\Gamma(K)$,
- Check whether they are "equal" up to the basepoint.
- Every path between the two basepoints spells a valid x.

Basis \& conjugacy

(Computing a basis)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$, find a basis for H.

- Construct $\Gamma(H)$,
- Choose a maximal tree,
- Read the corresponding basis.

(Conjugacy)

- Construct $\Gamma(H)$ and $\Gamma(K)$,
- Check whether they are "equal" up to the basepoint.
- Every path between the two basepoints spells a valid x.

Basis \& conjugacy

(Computing a basis)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$, find a basis for H.

- Construct $\Gamma(H)$,
- Choose a maximal tree,
- Read the corresponding basis.

(Conjugacy)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$ and $K=\left\langle v_{1}, \ldots, v_{n}\right\rangle$, are they conjugate (i.e. $H^{x}=K$ for some $\left.x \in F_{A}\right)$?

- Construct $\Gamma(H)$ and $\Gamma(K)$,
- Check whether they are "equal" up to the basepoint.
- Every path between the two basepoints spells a valid x

Basis \& conjugacy

(Computing a basis)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$, find a basis for H.

- Construct $\Gamma(H)$,
- Choose a maximal tree,
- Read the corresponding basis.

(Conjugacy)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$ and $K=\left\langle v_{1}, \ldots, v_{n}\right\rangle$, are they conjugate (i.e. $H^{x}=K$ for some $\left.x \in F_{A}\right)$?

- Construct $\Gamma(H)$ and $\Gamma(K)$,
- Check whether they are "equal" up to the basepoint.
- Every path between the two basepoints spells a valid x.

Outline

(1) The friendly and unfriendly free group

2 The bijection between subgroups and automata
(3) Several algebraic applications

- First results
- Finite index subgroups
- Intersections

4. Algebraic extensions and Takahasi's theorem

- Takahasi's theorem
- Computing the set of algebraic extensions
- The algebraic closure
- Pro-V closures
- Other closures

Finite index subgroups

(Finite index)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$, is $H \leqslant f . i . F_{A}$? If yes, find a set of coset representatives.

```
For }u\inV\Gamma(H)\mathrm{ , choose p (the label of) a path from & to }u\mathrm{ ; then,
{labels of paths from \bullet to }u}=\pi(\Gamma(H),\bullet)\cdotp=H\cdot
is a coset of F}\mp@subsup{F}{A}{}/H\mathrm{ H.
F
- Construct \(\Gamma(H)\),
- Check whether \(\Gamma(H)\) is complete (i.e. every letter going in and out of every vertex),
- Choose a maximal tree \(T\) in \(\Gamma(H)\),
- \(\{T[\bullet, v] \mid v \in V \Gamma(H)\}\) is a set of coset reps. for \(H \leqslant f, F_{A}\).
```


Finite index subgroups

(Finite index)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$, is $H \leqslant_{f . i .} F_{A}$? If yes, find a set of coset representatives.
\rightarrow For $u \in V \Gamma(H)$, choose p (the label of) a path from \bullet to u; then, $\{$ labels of paths from \bullet to $u\}=\pi(\Gamma(H), \bullet) \cdot p=H \cdot p$ is a coset of F_{A} / H.

- Construct $\Gamma(H)$,
- Check whether $\Gamma(H)$ is complete (i.e. every letter going in and out of every vertex),
- Choose a maximal tree T in $\Gamma(H)$,

Finite index subgroups

(Finite index)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$, is $H \leqslant f . i . F_{A}$? If yes, find a set of coset representatives.
\rightarrow For $u \in V \Gamma(H)$, choose p (the label of) a path from \bullet to u; then, $\{$ labels of paths from \bullet to $u\}=\pi(\Gamma(H), \bullet) \cdot p=H \cdot p$ is a coset of F_{A} / H.
$\rightarrow F_{A} / H$ is in bijection with the set of vertices of the "extended $\Gamma(H)$ "

- Construct $\Gamma(H)$,
- Check whether $\Gamma(H)$ is complete (i.e. every letter going in and out of every vertex),
- Choose a maximal tree T in $\Gamma(H)$,

Finite index subgroups

(Finite index)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$, is $H \leqslant_{f . i .} F_{A}$? If yes, find a set of coset representatives.
\rightarrow For $u \in V \Gamma(H)$, choose p (the label of) a path from \bullet to u; then, $\{$ labels of paths from \bullet to $u\}=\pi(\Gamma(H), \bullet) \cdot p=H \cdot p$ is a coset of F_{A} / H.
$\rightarrow F_{A} / H$ is in bijection with the set of vertices of the "extended $\Gamma(H)$ "

- Construct $\Gamma(H)$,
- Check whether $\Gamma(H)$ is complete (i.e. every letter going in and out of every vertex),
- Choose a maximal tree T in $\Gamma(H)$,
- $\{T[\bullet, v] \mid v \in V \Gamma(H)\}$ is a set of coset reps. for $H \leqslant$ f.i. F_{A}.

Example

$$
H=\left\langle b, a c, c^{-1} a, c a c^{-1}, c^{-1} b c^{-1}, c b c, c^{4}, c^{2} a c^{-2}, c^{2} b c^{-2}\right\rangle
$$

Example

$H=\left\langle b, a c, c^{-1} a, c a c^{-1}, c^{-1} b c^{-1}, c b c, c^{4}, c^{2} a c^{-2}, c^{2} b c^{-2}\right\rangle$

$F_{3}=H \sqcup H c \sqcup H a \sqcup H a c^{-1}$.

More on finite index

(Schreier index formula)
If $H \leqslant f, . F_{A}$ is of index $[F: H]$, then $r(H)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right)$.
Proof:

Theorem (M. Hall)
Every f.g. subgroup $H \leqslant 1 g F_{A}$ is a free factor of a finite index one, $H \leqslant f H * L \leqslant f, i . F_{A}$.

Proof:

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),
- Clearly, $H=\pi(\Gamma(H)) \leqslant_{f f} \pi(Y, v) \leqslant_{f . j} . F_{A} . \square$

More on finite index

(Schreier index formula)
If $H \leqslant$ f.i. F_{A} is of index $[F: H]$, then $r(H)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right)$.

Proof:

$$
\begin{aligned}
r(H) & =1-|V \Gamma(H)|+|E \Gamma(H)|=1-|V \Gamma(H)|+|A| \cdot|V \Gamma(H)| \\
& =1+|V \Gamma(H)| \cdot(|A|-1)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right) . \quad \square
\end{aligned}
$$

Theorem (M. Hall)

Everv f.a. subaroup $H \leqslant \leqslant_{g} F_{A}$ is a free factor of a finite index one,

Proof:

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),
- Clearly, $H=\pi(\Gamma(H))$

More on finite index

(Schreier index formula)
If $H \leqslant f, i$. F_{A} is of index $[F: H]$, then $r(H)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right)$.

Proof:

$$
\begin{aligned}
r(H) & =1-|V \Gamma(H)|+|E \Gamma(H)|=1-|V \Gamma(H)|+|A| \cdot|V \Gamma(H)| \\
& =1+|V \Gamma(H)| \cdot(|A|-1)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right) . \quad \square
\end{aligned}
$$

Theorem (M. Hall)

Every f.g. subgroup $H \leqslant_{f g} F_{A}$ is a free factor of a finite index one, $H \leqslant_{f f} H * L \leqslant_{f . i} . F_{A}$.

Proof:

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),
\square

More on finite index

(Schreier index formula)
If $H \leqslant f, i$. F_{A} is of index $[F: H]$, then $r(H)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right)$.

Proof:

$$
\begin{aligned}
r(H) & =1-|V \Gamma(H)|+|E \Gamma(H)|=1-|V \Gamma(H)|+|A| \cdot|V \Gamma(H)| \\
& =1+|V \Gamma(H)| \cdot(|A|-1)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right) . \quad \square
\end{aligned}
$$

Theorem (M. Hall)

Every f.g. subgroup $H \leqslant_{f g} F_{A}$ is a free factor of a finite index one, $H \leqslant_{f f} H * L \leqslant_{f . i .} F_{A}$.

Proof:

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),

More on finite index

(Schreier index formula)
If $H \leqslant$ f.i. F_{A} is of index $[F: H]$, then $r(H)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right)$.

Proof:

$$
\begin{aligned}
r(H) & =1-|V \Gamma(H)|+|E \Gamma(H)|=1-|V \Gamma(H)|+|A| \cdot|V \Gamma(H)| \\
& =1+|V \Gamma(H)| \cdot(|A|-1)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right) . \quad \square
\end{aligned}
$$

Theorem (M. Hall)

Every f.g. subgroup $H \leqslant_{f g} F_{A}$ is a free factor of a finite index one, $H \leqslant_{f f} H * L \leqslant_{f . i} . F_{A}$.

Proof:

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),

More on finite index

(Schreier index formula)

If $H \leqslant f, i$. F_{A} is of index $[F: H]$, then $r(H)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right)$.

Proof:

$$
\begin{aligned}
r(H) & =1-|V \Gamma(H)|+|E \Gamma(H)|=1-|V \Gamma(H)|+|A| \cdot|V \Gamma(H)| \\
& =1+|V \Gamma(H)| \cdot(|A|-1)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right) . \quad \square
\end{aligned}
$$

Theorem (M. Hall)

Every f.g. subgroup $H \leqslant_{f g} F_{A}$ is a free factor of a finite index one, $H \leqslant_{f f} H * L \leqslant_{f, i .} F_{A}$.

Proof:

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),

More on finite index

(Schreier index formula)

If $H \leqslant$ f.i. F_{A} is of index $[F: H]$, then $r(H)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right)$.

Proof:

$$
\begin{aligned}
r(H) & =1-|V \Gamma(H)|+|E \Gamma(H)|=1-|V \Gamma(H)|+|A| \cdot|V \Gamma(H)| \\
& =1+|V \Gamma(H)| \cdot(|A|-1)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right) . \quad \square
\end{aligned}
$$

Theorem (M. Hall)

Every f.g. subgroup $H \leqslant_{f g} F_{A}$ is a free factor of a finite index one, $H \leqslant_{f f} H * L \leqslant_{f . i} . F_{A}$.

Proof:

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),
- Clearly, $H=\pi(\Gamma(H)) \leqslant_{f f} \pi(Y, v) \leqslant_{f . i .} F_{A}$.

Example

$H=\left\langle b, c b c, c^{2} b c^{-2}\right\rangle$

$H \leqslant{ }_{f t} H *\langle \rangle$

Example

$H=\left\langle b, c b c, c^{2} b c^{-2}\right\rangle$

$H \leqslant f f *\langle a c\rangle$

Example

$H=\left\langle b, c b c, c^{2} b c^{-2}\right\rangle$

$H \leqslant{ }_{f f} H *\left\langle a c, c^{-1} a\right\rangle$

Example

$H=\left\langle b, c b c, c^{2} b c^{-2}\right\rangle$

$H \leqslant_{f f} H *\left\langle a c, c^{-1} a, c^{-1} b c^{-1}\right\rangle$

Example

$H=\left\langle b, c b c, c^{2} b c^{-2}\right\rangle$

$H \leqslant_{f} H *\left\langle a c, c^{-1} a, c^{-1} b c^{-1}, c^{4}\right\rangle$

Example

$H=\left\langle b, c b c, c^{2} b c^{-2}\right\rangle$

$H \leqslant_{f f} H *\left\langle a c, c^{-1} a, c^{-1} b c^{-1}, c^{4}, c^{2} a c^{-2}\right\rangle$

Example

$H=\left\langle b, c b c, c^{2} b c^{-2}\right\rangle$

$H \leqslant{ }_{f f} H *\left\langle a c, c^{-1} a, c^{-1} b c^{-1}, c^{4}, c^{2} a c^{-2}, c a c^{-1}\right\rangle$

Example

$H=\left\langle b, c b c, c^{2} b c^{-2}\right\rangle$

$H \leqslant \begin{array}{ll} & H *\left\langle a c, c^{-1} a, c^{-1} b c^{-1}, c^{4}, c^{2} a c^{-2}, c a c^{-1}\right\rangle \leqslant_{4} F_{3} .\end{array}$

Outline

(1) The friendly and unfriendly free group

2 The bijection between subgroups and automata
(3) Several algebraic applications

- First results
- Finite index subgroups
- Intersections

4. Algebraic extensions and Takahasi's theorem

- Takahasi's theorem
- Computing the set of algebraic extensions
- The algebraic closure
- Pro-V closures
- Other closures

Pull-back of automata

Definition

The pull-back of two Stallings automata, (X, v) and (Y, w), is the cartesian product $(X \times Y,(v, w))$ (respecting labels). This is not in general connected, neither without degree 1 vertices, but it is folded.

Theorem ((H. Neumann)-Stallings)

For every f.g. subgroups $H, K \leqslant_{f g} F_{A}, \Gamma(H \cap K)$ coincides with the connected component of $\Gamma(H) \times \Gamma(K)$ containing the basepoint, after trimming.

This gives a very nice and quick algorithm to compute intersections:

Pull-back of automata

Definition

The pull-back of two Stallings automata, (X, v) and (Y, w), is the cartesian product $(X \times Y,(v, w))$ (respecting labels). This is not in general connected, neither without degree 1 vertices, but it is folded.

Theorem ((H. Neumann)-Stallings)

For every f.g. subgroups $H, K \leqslant f g F_{A}, \Gamma(H \cap K)$ coincides with the connected component of $\Gamma(H) \times \Gamma(K)$ containing the basepoint, after trimming.

This gives a very nice and quick algorithm to compute intersections:

Pull-back of automata

Definition

The pull-back of two Stallings automata, (X, v) and (Y, w), is the cartesian product $(X \times Y,(v, w))$ (respecting labels). This is not in general connected, neither without degree 1 vertices, but it is folded.

Theorem ((H. Neumann)-Stallings)

For every f.g. subgroups $H, K \leqslant_{f g} F_{A}, \Gamma(H \cap K)$ coincides with the connected component of $\Gamma(H) \times \Gamma(K)$ containing the basepoint, after trimming.

This gives a very nice and quick algorithm to compute intersections:

Computing intersections: an example

Let $H=\left\langle a, b^{2}, b a b\right\rangle$ and $K=\left\langle b^{2}, b a^{2}\right\rangle$ be subgroups of F_{2}. To compute a basis for $H \cap K$:

Computing intersections: an example

Let $H=\left\langle a, b^{2}, b a b\right\rangle$ and $K=\left\langle b^{2}, b a^{2}\right\rangle$ be subgroups of F_{2}. To compute a basis for $H \cap K$:

$H \cap K=$? Clear that $b^{2} \in H$, but.... something else?

Computing intersections: an example

Let $H=\left\langle a, b^{2}, b a b\right\rangle$ and $K=\left\langle b^{2}, b a^{2}\right\rangle$ be subgroups of F_{2}. To compute a basis for $H \cap K$:

$H \cap K=$? Clear that $b^{2} \in H$, but.... something else?

Computing intersections: an example

Let $H=\left\langle a, b^{2}, b a b\right\rangle$ and $K=\left\langle b^{2}, b a^{2}\right\rangle$ be subgroups of F_{2}. To compute a basis for $H \cap K$:

$H \cap K=\left\langle b^{2}, \ldots(?) \ldots\right\rangle$

Computing intersections: an example

Let $H=\left\langle a, b^{2}, b a b\right\rangle$ and $K=\left\langle b^{2}, b a^{2}\right\rangle$ be subgroups of F_{2}. To compute a basis for $H \cap K$:

$H \cap K=\left\langle b^{2}, \quad\right\rangle$

Computing intersections: an example

Let $H=\left\langle a, b^{2}, b a b\right\rangle$ and $K=\left\langle b^{2}, b a^{2}\right\rangle$ be subgroups of F_{2}. To compute a basis for $H \cap K$:

$H \cap K=\left\langle b^{2}, a^{-2} b^{2} a^{2}, \quad\right\rangle$

Computing intersections: an example

Let $H=\left\langle a, b^{2}, b a b\right\rangle$ and $K=\left\langle b^{2}, b a^{2}\right\rangle$ be subgroups of F_{2}. To compute a basis for $H \cap K$:

$H \cap K=\left\langle b^{2}, a^{-2} b^{2} a^{2}, \quad\right\rangle$

Computing intersections: an example

Let $H=\left\langle a, b^{2}, b a b\right\rangle$ and $K=\left\langle b^{2}, b a^{2}\right\rangle$ be subgroups of F_{2}. To compute a basis for $H \cap K$:

$H \cap K=\left\langle b^{2}, a^{-2} b^{2} a^{2}, b a^{2} b a^{2}\right\rangle$
and nothing else.

Computing intersections: an example

Let $H=\left\langle a, b^{2}, b a b\right\rangle$ and $K=\left\langle b^{2}, b a^{2}\right\rangle$ be subgroups of F_{2}. To compute a basis for $H \cap K$:

$H \cap K=\left\langle b^{2}, a^{-2} b^{2} a^{2}, b a^{2} b a^{2}\right\rangle \quad \ldots$ and nothing else.

Rank of the intersection

Theorem (Howson)
 The intersection of finitely generated subgroups of F_{A} is again finitely generated.

But the intersection can have bigger rank: " $3=3 \cap 2 \leqslant 2$ "

Theorem (H. Neumann)

Conjecture (H. Neumann)

$\tilde{r}(H \cap K) \leqslant \tilde{r}(H) \tilde{r}(K)$

Rank of the intersection

Theorem (Howson)

The intersection of finitely generated subgroups of F_{A} is again finitely generated.

But the intersection can have bigger rank: " $3=3 \cap 2 \leqslant 2$ "

Theorem (H. Neumann)

$\tilde{r}(H \cap K) \leqslant 2 \tilde{r}(H) \tilde{r}(K)$, where $\tilde{r}(H)=\max \{0, r(H)-1\}$

Conjecture (H. Neumann)

$\tilde{r}(H \cap K) \leqslant \tilde{r}(H) \tilde{r}(K)$

Rank of the intersection

Theorem (Howson)

The intersection of finitely generated subgroups of F_{A} is again finitely generated.

But the intersection can have bigger rank: " $3=3 \cap 2 \leqslant 2$ "

Theorem (H. Neumann)

$\tilde{r}(H \cap K) \leqslant 2 \tilde{r}(H) \tilde{r}(K)$, where $\tilde{r}(H)=\max \{0, r(H)-1\}$.

Conjecture (H. Neumann)
$\tilde{r}(H \cap K) \leqslant \tilde{r}(H) \tilde{r}(K)$

In the example, $3-1 \leqslant(3-1)(2-1)$.

Rank of the intersection

Theorem (Howson)

The intersection of finitely generated subgroups of F_{A} is again finitely generated.

But the intersection can have bigger rank: " $3=3 \cap 2 \leqslant 2$ "

Theorem (H. Neumann)

$\tilde{r}(H \cap K) \leqslant 2 \tilde{r}(H) \tilde{r}(K)$, where $\tilde{r}(H)=\max \{0, r(H)-1\}$.

Conjecture (H. Neumann)
$\tilde{r}(H \cap K) \leqslant \tilde{r}(H) \tilde{r}(K)$.

In the example, $3-1 \leqslant(3-1)(2-1)$.

Rank of the intersection

Theorem (Howson)

The intersection of finitely generated subgroups of F_{A} is again finitely generated.

But the intersection can have bigger rank: " $3=3 \cap 2 \leqslant 2$ "

Theorem (H. Neumann)

$\tilde{r}(H \cap K) \leqslant 2 \tilde{r}(H) \tilde{r}(K)$, where $\tilde{r}(H)=\max \{0, r(H)-1\}$.

Conjecture (H. Neumann)
$\tilde{r}(H \cap K) \leqslant \tilde{r}(H) \tilde{r}(K)$.

In the example, $3-1 \leqslant(3-1)(2-1)$.

Status of Hanna Neumann Conjecture

- HNC holds if H (or K) has rank 1 (immediate),
- HNC holds for finite index subgroups (elementary),
- HNC holds if H has rank 2 (Tardös, 1992), (not easy),
- HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),
- HNC also holds if H is positively generated $(\Leftrightarrow \Gamma(H)$ is strongly connected), (Meakin-Weil, and Khan, 2002),
- HNC in general is an open problem (...and considered very hard).

Status of Hanna Neumann Conjecture

- HNC holds if H (or K) has rank 1 (immediate),
- HNC holds for finite index subgroups (elementary),
- HNC holds if H has rank 2 (Tardös, 1992), (not easy),
- HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),
- HNC also holds if H is positively generated $(\Leftrightarrow \Gamma(H)$ is strongly connected), (Meakin-Weil, and Khan, 2002),
- HNC in general is an open problem (...and considered very hard).

Status of Hanna Neumann Conjecture

- HNC holds if H (or K) has rank 1 (immediate),
- HNC holds for finite index subgroups (elementary),
- HNC holds if H has rank 2 (Tardös, 1992), (not easy),
- HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),
- HNC also holds if H is positively generated $(\Leftrightarrow \Gamma(H)$ is strongly connected), (Meakin-Weil, and Khan, 2002),
- HNC in general is an open problem (...and considered very hard).

Status of Hanna Neumann Conjecture

- HNC holds if H (or K) has rank 1 (immediate),
- HNC holds for finite index subgroups (elementary),
- HNC holds if H has rank 2 (Tardös, 1992), (not easy),
- HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),
- HNC also holds if H is positively generated $(\Leftrightarrow \Gamma(H)$ is strongly connected), (Meakin-Weil, and Khan, 2002),
- HNC in general is an open problem (...and considered very hard)

Status of Hanna Neumann Conjecture

- HNC holds if H (or K) has rank 1 (immediate),
- HNC holds for finite index subgroups (elementary),
- HNC holds if H has rank 2 (Tardös, 1992), (not easy),
- HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),
- HNC also holds if H is positively generated $(\Leftrightarrow \Gamma(H)$ is strongly connected), (Meakin-Weil, and Khan, 2002),
- HNC in general is an open problem (...and considered very hard)

Status of Hanna Neumann Conjecture

- HNC holds if H (or K) has rank 1 (immediate),
- HNC holds for finite index subgroups (elementary),
- HNC holds if H has rank 2 (Tardös, 1992), (not easy),
- HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),
- HNC also holds if H is positively generated $(\Leftrightarrow \Gamma(H)$ is strongly connected), (Meakin-Weil, and Khan, 2002),
- HNC in general is an open problem (...and considered very hard).

Outline

(9)

The friendly and unfriendly free group

The bijection between subgroups and automataSeveral algebraic applications- First results
- Finite index subgroups
- Intersections

4 Algebraic extensions and Takahasi's theorem

- Takahasi's theorem
- Computing the set of algebraic extensions
- The algebraic closure
- Pro-V closures
- Other closures

Outline

(1) The friendly and unfriendly free group

2 The bijection between subgroups and automata
(3) Several algebraic applications

- First results
- Finite index subgroups
- Intersections

4. Algebraic extensions and Takahasi's theorem

- Takahasi's theorem
- Computing the set of algebraic extensions
- The algebraic closure
- Pro-V closures
- Other closures

Takahasi's Theorem

In linear algebra,

$$
F \leqslant E \quad \Rightarrow \quad E=F \oplus L, \text { for some } L
$$

(every basis of F can be extended to a basis of E).

In free groups this is clearly false but ... almost true.

Theorem (Takahasi, 1951)

Every $H \leqslant f_{m} F_{A}$, has a finite set of extensions,
all of them finitely generated and computable, satisfying: for every

Let us reformulate this in a different way.

Takahasi's Theorem

In linear algebra,

$$
F \leqslant E \quad \Rightarrow \quad E=F \oplus L, \text { for some } L
$$

(every basis of F can be extended to a basis of E).
In free groups this is clearly false but almost true.

Theorem (Takahasi, 1951)

\square

\square m such that H

Let us reformulate this in a different way.

Takahasi's Theorem

In linear algebra,

$$
F \leqslant E \quad \Rightarrow \quad E=F \oplus L, \text { for some } L
$$

(every basis of F can be extended to a basis of E).
In free groups this is clearly false but ... almost true.
Theorem (Takahasi, 1951)
\square
all of them finitely generated and computable, satisfying: for every
\square
Let us reformulate this in a different way.

Takahasi's Theorem

In linear algebra,

$$
F \leqslant E \quad \Rightarrow \quad E=F \oplus L, \text { for some } L
$$

(every basis of F can be extended to a basis of E).
In free groups this is clearly false but ... almost true.

Theorem (Takahasi, 1951)

Every $H \leqslant_{\text {fg }} F_{A}$, has a finite set of extensions, $\left\{H_{0}=H, H_{1}, \ldots, H_{m}\right\}$, all of them finitely generated and computable, satisfying: for every $H \leqslant K \leqslant F_{A}, \exists i=0, \ldots, m$ such that $H \leqslant H_{i} \leqslant{ }_{H f} H_{i} * L=K$.

Let us reformulate this in a different way.

Takahasi's Theorem

In linear algebra,

$$
F \leqslant E \quad \Rightarrow \quad E=F \oplus L, \text { for some } L
$$

(every basis of F can be extended to a basis of E).
In free groups this is clearly false but ... almost true.

Theorem (Takahasi, 1951)

Every $H \leqslant_{\text {fg }} F_{A}$, has a finite set of extensions, $\left\{H_{0}=H, H_{1}, \ldots, H_{m}\right\}$, all of them finitely generated and computable, satisfying: for every $H \leqslant K \leqslant F_{A}, \exists i=0, \ldots, m$ such that $H \leqslant H_{i} \leqslant{ }_{H t} H_{i} * L=K$.

Let us reformulate this in a different way.

Free and algebraic extensions

Definition

And extension of subgroups $H \leqslant K$, in F_{A} is called

- a free extension if H is a free factor of K (i.e. $K=H * L$ for some $L \leqslant F_{A}$), denoted $H \leqslant \begin{aligned} & \text { f } \\ & \text {; }\end{aligned}$
- algebraic if H is not contained in any proper free factor of K (i.e. $H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$), denoted $H \leqslant$ alg K.

- $H \leqslant$ alg L and $H \leqslant K \leqslant L$ imply $K \leqslant$ alg L but not necessarily $H \leqslant$ alg K.
- $H \leqslant_{f f} L$ and $H \leqslant K \leqslant L$ imply $H \leqslant$ ff K but not necessarily $K \leqslant_{f f} L$.

Free and algebraic extensions

Definition

And extension of subgroups $H \leqslant K$, in F_{A} is called

- a free extension if H is a free factor of K (i.e. $K=H * L$ for some $L \leqslant F_{A}$), denoted $H \leqslant \begin{aligned} & \text {, } \\ & K \text {; }\end{aligned}$
- algebraic if H is not contained in any proper free factor of K (i.e. $H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$), denoted $H \leqslant$ alg K.
- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{a l g}\langle x\rangle, \forall x \in F_{A} \forall r \in \mathbb{Z}$.

- $H \leqslant a l g K \leqslant a l g L$ implies $H \leqslant a l g L$.
- $H \leqslant_{f f} K \leqslant_{f f} L$ implies $H \leqslant_{f f} L$.
- $H \leqslant$ alg L and $H \leqslant K \leqslant L$ imply $K \leqslant$ alg L but not necessarily $H \leqslant a l g K$.
- $H \leqslant_{f f} L$ and $H \leqslant K \leqslant L$ imply $H \leqslant_{f f} K$ but not necessarily $K \leqslant_{f f} L$.

Free and algebraic extensions

Definition

And extension of subgroups $H \leqslant K$, in F_{A} is called

- a free extension if H is a free factor of K (i.e. $K=H * L$ for some $\left.L \leqslant F_{A}\right)$, denoted $H \leqslant_{f f} K$;
- algebraic if H is not contained in any proper free factor of K (i.e. $H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$), denoted $H \leqslant$ alg K.
- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{\text {alg }}\langle x\rangle, \forall x \in F_{A} \forall r \in \mathbb{Z}$.

Free and algebraic extensions

Definition

And extension of subgroups $H \leqslant K$, in F_{A} is called

- a free extension if H is a free factor of K (i.e. $K=H * L$ for some $\left.L \leqslant F_{A}\right)$, denoted $H \leqslant_{f f} K$;
- algebraic if H is not contained in any proper free factor of K (i.e. $H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$), denoted $H \leqslant$ alg K.
- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant \operatorname{alg}\langle x\rangle, \forall x \in F_{A} \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg K.

Free and algebraic extensions

Definition

And extension of subgroups $H \leqslant K$, in F_{A} is called

- a free extension if H is a free factor of K (i.e. $K=H * L$ for some $\left.L \leqslant F_{A}\right)$, denoted $H \leqslant_{f f} K$;
- algebraic if H is not contained in any proper free factor of K (i.e. $H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$), denoted $H \leqslant$ alg K.
- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant \operatorname{alg}\langle x\rangle, \forall x \in F_{A} \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg K.
- $H \leqslant$ alg $K \leqslant$ alg L implies $H \leqslant$ alg L.

Free and algebraic extensions

Definition

And extension of subgroups $H \leqslant K$, in F_{A} is called

- a free extension if H is a free factor of K (i.e. $K=H * L$ for some $\left.L \leqslant F_{A}\right)$, denoted $H \leqslant_{f f} K$;
- algebraic if H is not contained in any proper free factor of K (i.e. $H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$), denoted $H \leqslant$ alg K.
- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant \operatorname{alg}\langle x\rangle, \forall x \in F_{A} \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg K.
- $H \leqslant$ alg $K \leqslant$ alg L implies $H \leqslant$ alg L.
- $H \leqslant_{f f} K \leqslant_{f t} L$ implies $H \leqslant_{f f} L$.

Free and algebraic extensions

Definition

And extension of subgroups $H \leqslant K$, in F_{A} is called

- a free extension if H is a free factor of K (i.e. $K=H * L$ for some $\left.L \leqslant F_{A}\right)$, denoted $H \leqslant_{f f} K$;
- algebraic if H is not contained in any proper free factor of K (i.e. $H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$), denoted $H \leqslant$ alg K.
- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant \operatorname{alg}\langle x\rangle, \forall x \in F_{A} \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg K.
- $H \leqslant$ alg $K \leqslant$ alg L implies $H \leqslant$ alg L.
- $H \leqslant_{f f} K \leqslant_{f t} L$ implies $H \leqslant_{f t} L$.
- $H \leqslant$ alg L and $H \leqslant K \leqslant L$ imply $K \leqslant$ alg L but not necessarily $H \leqslant a l g K$.

Free and algebraic extensions

Definition

And extension of subgroups $H \leqslant K$, in F_{A} is called

- a free extension if H is a free factor of K (i.e. $K=H * L$ for some $L \leqslant F_{A}$), denoted $H \leqslant \begin{aligned} & \text {, } \\ & \text {; }\end{aligned}$
- algebraic if H is not contained in any proper free factor of K (i.e. $H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$), denoted $H \leqslant$ alg K.
- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{\text {alg }}\langle x\rangle, \forall x \in F_{A} \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg K.
- $H \leqslant$ alg $K \leqslant$ alg L implies $H \leqslant$ alg L.
- $H \leqslant_{f f} K \leqslant_{f t} L$ implies $H \leqslant_{f t} L$.
- $H \leqslant$ alg L and $H \leqslant K \leqslant L$ imply $K \leqslant$ alg L but not necessarily $H \leqslant a l g K$.
- $H \leqslant_{H f} L$ and $H \leqslant K \leqslant L$ imply $H \leqslant_{f t} K$ but not necessarily $K \leqslant \leqslant_{f f} L$.

Reformulation of Takahasi's theorem

Theorem (Takahasi, 1951)

For every $H \leqslant_{f g} F_{A}$, the set of algebraic extensions, denoted $\mathcal{A E}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- A modern \& much simpler graphical proof was given independently by,
- Ventura, Comm. Algebra (1997).
- Margolis-Sapir-Weil, Internat. J. Algebra Comput. (2001).
- Kapovich-Miasnikov, J. Algebra (2002).
- And unified later in Miasnikov-Ventura-Weil, Trends in Mathematics (2007).

Reformulation of Takahasi's theorem

Theorem (Takahasi, 1951)

For every $H \leqslant_{f g} F_{A}$, the set of algebraic extensions, denoted $\mathcal{A E}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- A modern \& much simpler graphical proof was given independently by,
- Ventura, Comm. Algebra (1997).
- Margolis-Sapir-Weil, Internat. J. Algebra Comput. (2001).
- Kapovich-Miasnikov, J. Algebra (2002).
- And unified later in Miasnikov-Ventura-Weil, Trends in Mathematics (2007).

Reformulation of Takahasi's theorem

Theorem (Takahasi, 1951)

For every $H \leqslant_{f g} F_{A}$, the set of algebraic extensions, denoted $\mathcal{A E}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- A modern \& much simpler graphical proof was given independently by,
- Ventura, Comm. Algebra (1997).
- Margolis-Sapir-Weil, Internat. J. Algebra Comput. (2001).
- Kapovich-Miasnikov, J. Algebra (2002),
- And unified later in Miasnikov-Ventura-Weil, Trends in Mathematics (2007).

Reformulation of Takahasi's theorem

Theorem (Takahasi, 1951)

For every $H \leqslant_{f g} F_{A}$, the set of algebraic extensions, denoted $\mathcal{A E}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- A modern \& much simpler graphical proof was given independently by,
- Ventura, Comm. Algebra (1997).
- Margolis-Sapir-Weil, Internat. J. Algebra Comput. (2001).
- Kapovich-Miasnikov, J. Algebra (2002),
- And unified later in Miasnikov-Ventura-Weil, Trends in Mathematics (2007).

Reformulation of Takahasi's theorem

Theorem (Takahasi, 1951)

For every $H \leqslant_{f g} F_{A}$, the set of algebraic extensions, denoted $\mathcal{A E}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- A modern \& much simpler graphical proof was given independently by,
- Ventura, Comm. Algebra (1997).
- Margolis-Sapir-Weil, Internat. J. Algebra Comput. (2001).
- Kapovich-Miasnikov, J. Algebra (2002).
- And unified later in Miasnikov-Ventura-Weil, Trends in Mathematics (2007).

Reformulation of Takahasi's theorem

Theorem (Takahasi, 1951)

For every $H \leqslant_{f g} F_{A}$, the set of algebraic extensions, denoted $\mathcal{A E}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- A modern \& much simpler graphical proof was given independently by,
- Ventura, Comm. Algebra (1997).
- Margolis-Sapir-Weil, Internat. J. Algebra Comput. (2001).
- Kapovich-Miasnikov, J. Algebra (2002).
- And unified later in Miasnikov-Ventura-Weil, Trends in Mathematics (2007).

The modern proof

Proof:

- Let us (temporarily) attach some "hairs" to $\Gamma(H)$ an denote the resulting (folded) automata by $\tilde{\Gamma}(H)$.
- Given $H \leqslant K$ (both f.g.), we can obtain $\Gamma(K)$ from $\Gamma(H)$ by 1) adding the appropriate hairs, 2) identifying several vertices to 3) folding; (note that adding extra hairs, the result will be the same if we 4) trim at the end').
- Hence, if $H \leqslant K$ (both f.g.) then $\Gamma(K)$ contains as a subgraph either $\Gamma(H)$ or some quotient of it (i.e. $\Gamma(H)$ after identifying several sets of vertices (\sim) and then folding, $\Gamma(H) / \sim$).
- The overgroups of H :
$\mathcal{O}(H)=\{\pi(\Gamma(H) / \sim, \bullet) \mid \sim$ is a partition of $V \Gamma(H)\}$.
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant_{f f} K$.
- Thus, $\mathcal{A E}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

The modern proof

Proof:

- Let us (temporarily) attach some "hairs" to $\Gamma(H)$ an denote the resulting (folded) automata by $\tilde{\Gamma}(H)$.
- Given $H \leqslant K$ (both f.g.), we can obtain $\Gamma(K)$ from $\Gamma(H)$ by 1) adding the appropriate hairs, 2) identifying several vertices to \bullet, 3) folding; (note that adding extra hairs, the result will be the same if we 4) trim at the end).

The modern proof

Proof:

- Let us (temporarily) attach some "hairs" to $\Gamma(H)$ an denote the resulting (folded) automata by $\tilde{\Gamma}(H)$.
- Given $H \leqslant K$ (both f.g.), we can obtain $\Gamma(K)$ from $\Gamma(H)$ by 1) adding the appropriate hairs, 2) identifying several vertices to \bullet, 3) folding; (note that adding extra hairs, the result will be the same if we 4) trim at the end).
- Hence, if $H \leqslant K$ (both f.g.) then $\Gamma(K)$ contains as a subgraph either $\Gamma(H)$ or some quotient of it (i.e. $\Gamma(H)$ after identifying several sets of vertices (\sim) and then folding, $\Gamma(H) / \sim)$.

The modern proof

Proof:

- Let us (temporarily) attach some "hairs" to $\Gamma(H)$ an denote the resulting (folded) automata by $\tilde{\Gamma}(H)$.
- Given $H \leqslant K$ (both f.g.), we can obtain $\Gamma(K)$ from $\Gamma(H)$ by 1) adding the appropriate hairs, 2) identifying several vertices to \bullet, 3) folding; (note that adding extra hairs, the result will be the same if we 4) trim at the end).
- Hence, if $H \leqslant K$ (both f.g.) then $\Gamma(K)$ contains as a subgraph either $\Gamma(H)$ or some quotient of it (i.e. $\Gamma(H)$ after identifying several sets of vertices (\sim) and then folding, $\Gamma(H) / \sim$).
- The overgroups of H :
$\mathcal{O}(H)=\{\pi(\Gamma(H) / \sim, \bullet) \mid \sim$ is a partition of $V \Gamma(H)\}$.
- Thus, $\mathcal{A E}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

The modern proof

Proof:

- Let us (temporarily) attach some "hairs" to $\Gamma(H)$ an denote the resulting (folded) automata by $\tilde{\Gamma}(H)$.
- Given $H \leqslant K$ (both f.g.), we can obtain $\Gamma(K)$ from $\Gamma(H)$ by 1) adding the appropriate hairs, 2) identifying several vertices to •, 3) folding; (note that adding extra hairs, the result will be the same if we 4) trim at the end).
- Hence, if $H \leqslant K$ (both f.g.) then $\Gamma(K)$ contains as a subgraph either $\Gamma(H)$ or some quotient of it (i.e. $\Gamma(H)$ after identifying several sets of vertices (\sim) and then folding, $\Gamma(H) / \sim$).
- The overgroups of H :
$\mathcal{O}(H)=\{\pi(\Gamma(H) / \sim, \bullet) \mid \sim$ is a partition of $V \Gamma(H)\}$.
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant_{f t} K$.

The modern proof

Proof:

- Let us (temporarily) attach some "hairs" to $\Gamma(H)$ an denote the resulting (folded) automata by $\tilde{\Gamma}(H)$.
- Given $H \leqslant K$ (both f.g.), we can obtain $\Gamma(K)$ from $\Gamma(H)$ by 1) adding the appropriate hairs, 2) identifying several vertices to •, 3) folding; (note that adding extra hairs, the result will be the same if we 4) trim at the end).
- Hence, if $H \leqslant K$ (both f.g.) then $\Gamma(K)$ contains as a subgraph either $\Gamma(H)$ or some quotient of it (i.e. $\Gamma(H)$ after identifying several sets of vertices (\sim) and then folding, $\Gamma(H) / \sim$).
- The overgroups of H :
$\mathcal{O}(H)=\{\pi(\Gamma(H) / \sim, \bullet) \mid \sim$ is a partition of $V \Gamma(H)\}$.
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant_{t} K$.
- Thus, $\mathcal{A E}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

Outline

(1) The friendly and unfriendly free group

2 The bijection between subgroups and automata
(3) Several algebraic applications

- First results
- Finite index subgroups
- Intersections

4. Algebraic extensions and Takahasi's theorem

- Takahasi's theorem
- Computing the set of algebraic extensions
- The algebraic closure
- Pro-V closures
- Other closures

Computing $\mathcal{A} \mathcal{E}(H)$

Corollary

$\mathcal{A E}(H)$ is computable.
Proof:

- Compute Г (H),
- Compute $\Gamma(H) / \sim$ for all partitions \sim of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant \begin{aligned} & f \\ & K_{2}\end{aligned}$ and deleting K_{2}.
- The resulting set is $\mathcal{A E}(H)$. \square

Computing $\mathcal{A E}(H)$

Corollary

$\mathcal{A E}(H)$ is computable.

Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions \sim of V「(H),
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{f f} K_{2}$ and deleting K_{2}.
- The resulting set is $\mathcal{A E}(H)$. \square

Computing $\mathcal{A E}(H)$

Corollary

$\mathcal{A E}(H)$ is computable.

Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions \sim of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{f f} K_{2}$ and deleting K_{2}.
- The resulting set is $\mathcal{A} \mathcal{E}(H)$. \square

Computing $\mathcal{A E}(H)$

Corollary

$\mathcal{A E}(H)$ is computable.

Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions \sim of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant f K_{2}$ and deleting K_{2}.
- The resulting set is $\mathcal{A E}(H)$. [

Computing $\mathcal{A E}(H)$

Corollary

$\mathcal{A E}(H)$ is computable.

Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions \sim of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{f f} K_{2}$ and deleting K_{2}.

Computing $\mathcal{A E}(H)$

Corollary

$\mathcal{A E}(H)$ is computable.

Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions \sim of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{f f} K_{2}$ and deleting K_{2}.
- The resulting set is $\mathcal{A E}(H)$. \square

Computing $\mathcal{A E}(H)$

Corollary

$\mathcal{A E}(H)$ is computable.

Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions \sim of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{f f} K_{2}$ and deleting K_{2}.
- The resulting set is $\mathcal{A E}(H)$. \square

For the cleaning step we need:

Deciding free-factorness

Proposition

Given $H, K \leqslant F_{A}$, it is algorithmically decidable whether $H \leqslant \begin{array}{ll} \\ K\end{array}$.

Proved by:

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time).

Deciding free-factorness

Proposition

Given $H, K \leqslant F_{A}$, it is algorithmically decidable whether $H \leqslant{ }_{\text {ff }} K$.

Proved by:

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time).

Deciding free-factorness

Proposition

Given $H, K \leqslant F_{A}$, it is algorithmically decidable whether $H \leqslant{ }_{\text {ff }} K$.

Proved by:

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time)

Deciding free-factorness

Proposition

Given $H, K \leqslant F_{A}$, it is algorithmically decidable whether $H \leqslant \begin{array}{ll} \\ K\end{array}$.

Proved by:

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time).

Example: $\mathcal{A E}\left(\left\langle a b a^{-1} b^{-1}\right\rangle\right)$

Example: $\mathcal{A E}\left(\left\langle a b a^{-1} b^{-1}\right\rangle\right)$

Example: $\mathcal{A E}\left(\left\langle a b a^{-1} b^{-1}\right\rangle\right)$

Example: $\mathcal{A E}\left(\left\langle a b a^{-1} b^{-1}\right\rangle\right)$

Example: $\mathcal{A E}\left(\left\langle a b a^{-1} b^{-1}\right\rangle\right)$

$$
\begin{aligned}
\mathcal{O}(H)=\{ & \left\langle a b a^{-1} b^{-1}\right\rangle,\left\langle a, b a b^{-1}\right\rangle,\left\langle b, a b a^{-1}\right\rangle,\langle b a, a b\rangle \\
& \left.\left\langle a b^{-1}, a b a^{-1} b^{-1}\right\rangle,\left\langle a b^{-1}, a^{2}, b^{2}\right\rangle,\langle a, b\rangle\right\}
\end{aligned}
$$

So, $\mathcal{A E}(H)=\left\{\left\langle a b a^{-1} b^{-1}\right\rangle,\langle a, b\rangle\right\}$, meaning that the element $a b a^{-1} b^{-1}$ is almost primitive.

Example: $\mathcal{A E}\left(\left\langle a b a^{-1} b^{-1}\right\rangle\right)$

$$
\begin{aligned}
\mathcal{O}(H)=\{ & \left\langle a b a^{-1} b^{-1}\right\rangle,\left\langle a, b a b^{-1}\right\rangle,\left\langle b, a b a^{-1}\right\rangle,\langle b a, a b\rangle \\
& \left.\left\langle a b^{-1}, a b a^{-1} b^{-1}\right\rangle,\left\langle a b^{-1}, a^{2}, b^{2}\right\rangle,\langle a, b\rangle\right\}
\end{aligned}
$$

But

$$
\left\langle a b a^{-1} b^{-1}\right\rangle \leqslant H\left\langle a, b a b^{-1}\right\rangle=\left\langle a, a b a^{-1} b^{-1}\right\rangle
$$

Example: $\mathcal{A E}\left(\left\langle a b a^{-1} b^{-1}\right\rangle\right)$

$$
\begin{aligned}
\mathcal{O}(H)=\{ & \left\langle a b a^{-1} b^{-1}\right\rangle,\left\langle a, b a b^{-1}\right\rangle,\left\langle b, a b a^{-1}\right\rangle,\langle b a, a b\rangle \\
& \left.\left\langle a b^{-1}, a b a^{-1} b^{-1}\right\rangle,\left\langle a b^{-1}, a^{2}, b^{2}\right\rangle,\langle a, b\rangle\right\}
\end{aligned}
$$

But

$$
\begin{aligned}
& \left\langle a b a^{-1} b^{-1}\right\rangle \leqslant A\left\langle a, b a b^{-1}\right\rangle=\left\langle a, a b a^{-1} b^{-1}\right\rangle \\
& \left\langle a b a^{-1} b^{-1}\right\rangle \leqslant A\left\langle b, a b a^{-1}\right\rangle=\left\langle b, a b a^{-1} b^{-1}\right\rangle
\end{aligned}
$$

So, $\mathcal{A E}(H)=\left\{\left\langle a b a^{-1} b^{-1}\right\rangle,\langle a, b\rangle\right\}$, meaning that the element

Example: $\mathcal{A E}\left(\left\langle a b a^{-1} b^{-1}\right\rangle\right)$

$$
\begin{aligned}
\mathcal{O}(H)=\{ & \left\langle a b a^{-1} b^{-1}\right\rangle,\left\langle a, b a b^{-1}\right\rangle,\left\langle b, a b a^{-1}\right\rangle,\langle b a, a b\rangle \\
& \left.\left\langle a b^{-1}, a b a^{-1} b^{-1}\right\rangle,\left\langle a b^{-1}, a^{2}, b^{2}\right\rangle,\langle a, b\rangle\right\}
\end{aligned}
$$

But

$$
\begin{aligned}
& \left\langle a b a^{-1} b^{-1}\right\rangle \leqslant A\left\langle a, b a b^{-1}\right\rangle=\left\langle a, a b a^{-1} b^{-1}\right\rangle \\
& \left\langle a b a^{-1} b^{-1}\right\rangle \leqslant A\left\langle b, a b a^{-1}\right\rangle=\left\langle b, a b a^{-1} b^{-1}\right\rangle \\
& \left\langle a b a^{-1} b^{-1}\right\rangle \leqslant A\langle b a, a b\rangle=\left\langle b a, a b a^{-1} b^{-1}\right\rangle
\end{aligned}
$$

So, $\mathcal{A E}(H)=\left\{\left\langle a b a^{-1} b^{-1}\right\rangle,\langle a, b\rangle\right\}$, meaning that the element

Example: $\mathcal{A E}\left(\left\langle a b a^{-1} b^{-1}\right\rangle\right)$

$$
\begin{aligned}
\mathcal{O}(H)=\{ & \left\langle a b a^{-1} b^{-1}\right\rangle,\left\langle a, b a b^{-1}\right\rangle,\left\langle b, a b a^{-1}\right\rangle,\langle b a, a b\rangle \\
& \left.\left\langle a b^{-1}, a b a^{-1} b^{-1}\right\rangle,\left\langle a b^{-1}, a^{2}, b^{2}\right\rangle,\langle a, b\rangle\right\}
\end{aligned}
$$

But

$$
\begin{aligned}
& \left\langle a b a^{-1} b^{-1}\right\rangle \leqslant f f\left\langle a, b a b^{-1}\right\rangle=\left\langle a, a b a^{-1} b^{-1}\right\rangle \\
& \left\langle a b a^{-1} b^{-1}\right\rangle \leqslant f f\left\langle b, a b a^{-1}\right\rangle=\left\langle b, a b a^{-1} b^{-1}\right\rangle \\
& \left\langle a b a^{-1} b^{-1}\right\rangle \leqslant f\langle b a, a b\rangle=\left\langle b a, a b a^{-1} b^{-1}\right\rangle \\
& \left\langle a b a^{-1} b^{-1}\right\rangle \leqslant f f\left\langle a b^{-1}, a b a^{-1} b^{-1}\right\rangle
\end{aligned}
$$

Example: $\mathcal{A E}\left(\left\langle a b a^{-1} b^{-1}\right\rangle\right)$

$$
\begin{aligned}
\mathcal{O}(H)=\{ & \left\langle a b a^{-1} b^{-1}\right\rangle,\left\langle a, b a b^{-1}\right\rangle,\left\langle b, a b a^{-1}\right\rangle,\langle b a, a b\rangle \\
& \left.\left\langle a b^{-1}, a b a^{-1} b^{-1}\right\rangle,\left\langle a b^{-1}, a^{2}, b^{2}\right\rangle,\langle a, b\rangle\right\}
\end{aligned}
$$

But

$$
\begin{aligned}
& \left\langle a b a^{-1} b^{-1}\right\rangle \leqslant H\left\langle a, b a b^{-1}\right\rangle=\left\langle a, a b a^{-1} b^{-1}\right\rangle \\
& \left\langle a b a^{-1} b^{-1}\right\rangle \leqslant H\left\langle b, a b a^{-1}\right\rangle=\left\langle b, a b a^{-1} b^{-1}\right\rangle \\
& \left\langle a b a^{-1} b^{-1}\right\rangle \leqslant H\langle b a, a b\rangle=\left\langle b a, a b a^{-1} b^{-1}\right\rangle \\
& \left\langle a b a^{-1} b^{-1}\right\rangle \leqslant H\left\langle a b^{-1}, a b a^{-1} b^{-1}\right\rangle \\
& \left\langle a b a^{-1} b^{-1}\right\rangle \leqslant H\left\langle a b^{-1}, a^{2}, b^{2}\right\rangle=\left\langle a b^{-1}, a^{2}, a b a^{-1} b^{-1}\right\rangle
\end{aligned}
$$

Example: $\mathcal{A E}\left(\left\langle a b a^{-1} b^{-1}\right\rangle\right)$

$$
\begin{aligned}
\mathcal{O}(H)=\{ & \left\langle a b a^{-1} b^{-1}\right\rangle,\left\langle a, b a b^{-1}\right\rangle,\left\langle b, a b a^{-1}\right\rangle,\langle b a, a b\rangle \\
& \left.\left\langle a b^{-1}, a b a^{-1} b^{-1}\right\rangle,\left\langle a b^{-1}, a^{2}, b^{2}\right\rangle,\langle a, b\rangle\right\}
\end{aligned}
$$

But

$$
\begin{aligned}
& \left\langle a b a^{-1} b^{-1}\right\rangle \leqslant f f\left\langle a, b a b^{-1}\right\rangle=\left\langle a, a b a^{-1} b^{-1}\right\rangle \\
& \left\langle a b a^{-1} b^{-1}\right\rangle \leqslant f f\left\langle b, a b a^{-1}\right\rangle=\left\langle b, a b a^{-1} b^{-1}\right\rangle \\
& \left\langle a b a^{-1} b^{-1}\right\rangle \leqslant f f\langle b a, a b\rangle=\left\langle b a, a b a^{-1} b^{-1}\right\rangle \\
& \left\langle a b a^{-1} b^{-1}\right\rangle \leqslant f f\left\langle a b^{-1}, a b a^{-1} b^{-1}\right\rangle \\
& \left\langle a b a^{-1} b^{-1}\right\rangle \leqslant f f\left\langle a b^{-1}, a^{2}, b^{2}\right\rangle=\left\langle a b^{-1}, a^{2}, a b a^{-1} b^{-1}\right\rangle
\end{aligned}
$$

So, $\mathcal{A E}(H)=\left\{\left\langle a b a^{-1} b^{-1}\right\rangle,\langle a, b\rangle\right\}$, meaning that the element $a b a^{-1} b^{-1}$ is almost primitive.

Outline

(1) The friendly and unfriendly free group

2 The bijection between subgroups and automata
(3) Several algebraic applications

- First results
- Finite index subgroups
- Intersections

4. Algebraic extensions and Takahasi's theorem

- Takahasi's theorem
- Computing the set of algebraic extensions
- The algebraic closure
- Pro-V closures
- Other closures

The algebraic closure

Lemma

If $H \leqslant$ alg K_{1} and $H \leqslant$ alg K_{2} then $H \leqslant$ alg $\left\langle K_{1} \cup K_{2}\right\rangle$.

Corollary

Let $H \leqslant f_{g} F_{A}$. For an intermediate extension $H \leqslant M \leqslant F_{A}$, TFAE:
(a) M is the smallest free factor of F_{A} containing H,
(b) M is the biggest algebraic extension of H in $F(A)$,
(c) M is a maximal element in $\mathcal{A E}(H)$,

The unique subgroup M satisfying these conditions is called the algebraic closure of H in F_{A}, and denoted $C l_{F_{A}}(H)$. In particular, $H \leqslant a l g C l_{F_{A}}(H) \leqslant_{f f} F_{A}$.

The algebraic closure

Lemma

If $H \leqslant$ alg K_{1} and $H \leqslant$ alg K_{2} then $H \leqslant$ alg $\left\langle K_{1} \cup K_{2}\right\rangle$.

Corollary

Let $H \leqslant f g F_{A}$. For an intermediate extension $H \leqslant M \leqslant F_{A}$, TFAE:
(a) M is the smallest free factor of F_{A} containing H,
(b) M is the biggest algebraic extension of H in $F(A)$,
(c) M is a maximal element in $\mathcal{A E}(H)$,

The unique subgroup M satisfying these conditions is called the algebraic closure of H in F_{A}, and denoted $C l_{F_{A}}(H)$. In particular, $H \leqslant \begin{array}{ll}\text { alg } & l_{F_{A}}(H)\end{array} \leqslant_{f f} F_{A}$.

The algebraic closure

For an arbitrary extension of f.g. subgroups $F \leqslant K \leqslant F_{A}$, we can do the same relative to K and get:

Corollary
Every extension $H \leqslant K$ of f.g. subgroups of F_{A} splits, in a unique way, in an algebraic part and a free factor part, $H \leqslant_{\text {alg }} C l_{K}(H) \leqslant_{f f} K$.

One can define the notions of algebraically closed and algebraically dense subgroups, in a similar way as in field theory.

Some properties are similar, some other are different...

The algebraic closure

For an arbitrary extension of f.g. subgroups $F \leqslant K \leqslant F_{A}$, we can do the same relative to K and get:

Corollary

Every extension $H \leqslant K$ of f.g. subgroups of F_{A} splits, in a unique way, in an algebraic part and a free factor part, $H \leqslant_{\text {alg }} \mathrm{Cl}_{K}(H) \leqslant_{f t} K$.

One can define the notions of algebraically closed and algebraically dense subgroups, in a similar way as in field theory.

Some properties are similar, some other are different.

The algebraic closure

For an arbitrary extension of f.g. subgroups $F \leqslant K \leqslant F_{A}$, we can do the same relative to K and get:

Corollary

Every extension $H \leqslant K$ of f.g. subgroups of F_{A} splits, in a unique way, in an algebraic part and a free factor part, $H \leqslant_{\text {alg }} \mathrm{Cl}_{K}(H) \leqslant_{t t} K$.

One can define the notions of algebraically closed and algebraically dense subgroups, in a similar way as in field theory.

Some properties are similar, some other are different...

Outline

(1) The friendly and unfriendly free group

2 The bijection between subgroups and automata
(3) Several algebraic applications

- First results
- Finite index subgroups
- Intersections

4. Algebraic extensions and Takahasi's theorem

- Takahasi's theorem
- Computing the set of algebraic extensions
- The algebraic closure
- Pro-V closures
- Other closures

Varieties of finite groups

Definition
A variety \mathcal{V} of finite groups is a family of finite groups closed under taking subgroups, quotients, and finite direct products. \mathcal{V} is extension-closed if, for every short exact sequence $1 \rightarrow G_{1} \rightarrow G_{2} \rightarrow G_{3} \rightarrow 1, \quad G_{1}, G_{3} \in \mathcal{V}$ implies $G_{2} \in \mathcal{V}$.

Examples:

- $\mathcal{V}=$ all finite groups, (it is ext. closed),
- $\mathcal{V}=$ the p-groups, where p a prime number (it is ext. closed),
- $\mathcal{V}=$ the P-groups, where P is a set of primes (it is ext. closed),
- $\mathcal{V}=$ the nilpotent groups (it is not ext. closed),
- $\mathcal{V}=$ the solvable groups (it is ext. closed),
- $\mathcal{V}=$ the abelian groups (it is not ext. closed),

Varieties of finite groups

Definition

A variety \mathcal{V} of finite groups is a family of finite groups closed under taking subgroups, quotients, and finite direct products. \mathcal{V} is extension-closed if, for every short exact sequence $1 \rightarrow G_{1} \rightarrow G_{2} \rightarrow G_{3} \rightarrow 1, \quad G_{1}, G_{3} \in \mathcal{V}$ implies $G_{2} \in \mathcal{V}$.

Examples:

- $\mathcal{V}=$ all finite groups, (it is ext. closed),
- $\mathcal{V}=$ the p-groups, where p a prime number (it is ext. closed),
- $\mathcal{V}=$ the P-groups, where P is a set of primes (it is ext. closed),
- $\mathcal{V}=$ the nilpotent aroups (it is not ext. closed),
- $\mathcal{V}=$ the solvable groups (it is ext. closed),
- $\mathcal{V}=$ the abelian groups (it is not ext. closed),

Varieties of finite groups

Definition

A variety \mathcal{V} of finite groups is a family of finite groups closed under taking subgroups, quotients, and finite direct products. \mathcal{V} is extension-closed if, for every short exact sequence $1 \rightarrow G_{1} \rightarrow G_{2} \rightarrow G_{3} \rightarrow 1, \quad G_{1}, G_{3} \in \mathcal{V}$ implies $G_{2} \in \mathcal{V}$.

Examples:

- $\mathcal{V}=$ all finite groups, (it is ext. closed),
- $\mathcal{V}=$ the p-groups, where p a prime number (it is ext. closed),
- $\mathcal{V}=$ the P-groups, where P is a set of primes (it is ext. closed),
- $\mathcal{V}=$ the nilpotent groups (it is not ext. closed),
- $\mathcal{V}=$ the solvable groups (it is ext. closed).
- $\mathcal{V}=$ the abelian groups (it is not ext. closed),

Varieties of finite groups

Definition

A variety \mathcal{V} of finite groups is a family of finite groups closed under taking subgroups, quotients, and finite direct products. \mathcal{V} is extension-closed if, for every short exact sequence $1 \rightarrow G_{1} \rightarrow G_{2} \rightarrow G_{3} \rightarrow 1, \quad G_{1}, G_{3} \in \mathcal{V}$ implies $G_{2} \in \mathcal{V}$.

Examples:

- $\mathcal{V}=$ all finite groups, (it is ext. closed),
- $\mathcal{V}=$ the p-groups, where p a prime number (it is ext. closed),
- $\mathcal{V}=$ the P-groups, where P is a set of primes (it is ext. closed),
- $\mathcal{V}=$ the nilpotent groups (it is not ext. closed),
- $\mathcal{V}=$ the solvable groups (it is ext. closed),
- $\mathcal{V}=$ the abelian aroups (it is not ext. closed)

Varieties of finite groups

Definition

A variety \mathcal{V} of finite groups is a family of finite groups closed under taking subgroups, quotients, and finite direct products. \mathcal{V} is extension-closed if, for every short exact sequence $1 \rightarrow G_{1} \rightarrow G_{2} \rightarrow G_{3} \rightarrow 1, \quad G_{1}, G_{3} \in \mathcal{V}$ implies $G_{2} \in \mathcal{V}$.

Examples:

- $\mathcal{V}=$ all finite groups, (it is ext. closed),
- $\mathcal{V}=$ the p-groups, where p a prime number (it is ext. closed),
- $\mathcal{V}=$ the P-groups, where P is a set of primes (it is ext. closed),
- $\mathcal{V}=$ the nilpotent groups (it is not ext. closed),
- $\mathcal{V}=$ the solvable groups (it is ext. closed),
- $\mathcal{V}=$ the abelian groups (it is not ext. closed),

Varieties of finite groups

Definition

A variety \mathcal{V} of finite groups is a family of finite groups closed under taking subgroups, quotients, and finite direct products. \mathcal{V} is extension-closed if, for every short exact sequence $1 \rightarrow G_{1} \rightarrow G_{2} \rightarrow G_{3} \rightarrow 1, \quad G_{1}, G_{3} \in \mathcal{V}$ implies $G_{2} \in \mathcal{V}$.

Examples:

- $\mathcal{V}=$ all finite groups, (it is ext. closed),
- $\mathcal{V}=$ the p-groups, where p a prime number (it is ext. closed),
- $\mathcal{V}=$ the P-groups, where P is a set of primes (it is ext. closed),
- $\mathcal{V}=$ the nilpotent groups (it is not ext. closed),
- $\mathcal{V}=$ the solvable groups (it is ext. closed),
- $\mathcal{V}=$ the abelian groups (it is not ext. closed),

Varieties of finite groups

Definition

A variety \mathcal{V} of finite groups is a family of finite groups closed under taking subgroups, quotients, and finite direct products. \mathcal{V} is extension-closed if, for every short exact sequence $1 \rightarrow G_{1} \rightarrow G_{2} \rightarrow G_{3} \rightarrow 1, \quad G_{1}, G_{3} \in \mathcal{V}$ implies $G_{2} \in \mathcal{V}$.

Examples:

- $\mathcal{V}=$ all finite groups, (it is ext. closed),
- $\mathcal{V}=$ the p-groups, where p a prime number (it is ext. closed),
- $\mathcal{V}=$ the P-groups, where P is a set of primes (it is ext. closed),
- $\mathcal{V}=$ the nilpotent groups (it is not ext. closed),
- $\mathcal{V}=$ the solvable groups (it is ext. closed),
- $\mathcal{V}=$ the abelian groups (it is not ext. closed),

Varieties of finite groups

Definition

A variety \mathcal{V} of finite groups is a family of finite groups closed under taking subgroups, quotients, and finite direct products. \mathcal{V} is extension-closed if, for every short exact sequence $1 \rightarrow G_{1} \rightarrow G_{2} \rightarrow G_{3} \rightarrow 1, \quad G_{1}, G_{3} \in \mathcal{V}$ implies $G_{2} \in \mathcal{V}$.

Examples:

- $\mathcal{V}=$ all finite groups, (it is ext. closed),
- $\mathcal{V}=$ the p-groups, where p a prime number (it is ext. closed),
- $\mathcal{V}=$ the P-groups, where P is a set of primes (it is ext. closed),
- $\mathcal{V}=$ the nilpotent groups (it is not ext. closed),
- $\mathcal{V}=$ the solvable groups (it is ext. closed),
- $\mathcal{V}=$ the abelian groups (it is not ext. closed),
- ...

The pro- \mathcal{V} topology

Definition

Let \mathcal{V} be a variety of finite groups. We can define the pro-V topology in F_{A} in either of the following equivalent ways:

- the smallest topology for which all morphisms $F_{A} \rightarrow G \in \mathcal{V}$ are continuous,
- the topology for which the normal subgroups $N \leqslant F_{A}$ with $F / N \in \mathcal{V}$ form a basis of neighborhoods of the unit,
- the topology induced by the metric $d(x, y)=2^{-s(x, y)}$, where $s(x, y)=\min \left\{\# G \mid G \in \mathcal{V}, \exists \varphi: F_{A} \rightarrow G\right.$ such that $\left.\varphi(x) \neq \varphi(y)\right\}$.

This topology is interesting for the study of other aspects of the free group.

The pro- \mathcal{V} topology

Definition

Let \mathcal{V} be a variety of finite groups. We can define the pro-V topology in F_{A} in either of the following equivalent ways:

- the smallest topology for which all morphisms $F_{A} \rightarrow G \in \mathcal{V}$ are continuous,
- the topology for which the normal subgroups $N \leqslant F_{A}$ with $F / N \in \mathcal{V}$ form a basis of neighborhoods of the unit,

This topology is interesting for the study of other aspects of the free group.

The pro- \mathcal{V} topology

Definition

Let \mathcal{V} be a variety of finite groups. We can define the pro-V topology in F_{A} in either of the following equivalent ways:

- the smallest topology for which all morphisms $F_{A} \rightarrow G \in \mathcal{V}$ are continuous,
- the topology for which the normal subgroups $N \leqslant F_{A}$ with $F / N \in \mathcal{V}$ form a basis of neighborhoods of the unit,
- the topology induced by the metric $d(x, y)=2^{-s(x, y)}$, where $s(x, y)=\min \left\{\# G \mid G \in \mathcal{V}, \exists \varphi: F_{A} \rightarrow G\right.$ such that $\left.\varphi(x) \neq \varphi(y)\right\}$.

This topology is interesting for the study of other aspects of the free group.

The pro- \mathcal{V} topology

Definition

Let \mathcal{V} be a variety of finite groups. We can define the pro-V topology in F_{A} in either of the following equivalent ways:

- the smallest topology for which all morphisms $F_{A} \rightarrow G \in \mathcal{V}$ are continuous,
- the topology for which the normal subgroups $N \leqslant F_{A}$ with $F / N \in \mathcal{V}$ form a basis of neighborhoods of the unit,
- the topology induced by the metric $d(x, y)=2^{-s(x, y)}$, where $s(x, y)=\min \left\{\# G \mid G \in \mathcal{V}, \exists \varphi: F_{A} \rightarrow G\right.$ such that $\left.\varphi(x) \neq \varphi(y)\right\}$.

This topology is interesting for the study of other aspects of the free group.

Computing some pro- \mathcal{V} closures

Theorem (Ribes-Zalesskiĭ)

If \mathcal{V} is an extension-closed variety then, in the pro- \mathcal{V} topology, every free factor of a closed subgroup of F_{A} is again closed.

Corollary

If \mathcal{V} is extension-closed then, for every $H \leqslant{ }_{f q} F_{A}, H \leqslant \operatorname{slg} C l v(H)$. In particular, $\mathrm{Cl} \nu(H)$ is again finitely generated.

Proposition

There is an algorithm to compute the

- pro-p closure,
- pro-P closure,
- pro-nilpotent closure,
of finitely generated subgroups of F_{A}.
But no algorithm is known for computing pro-solvableq fêloșures.

Computing some pro- \mathcal{V} closures

Theorem (Ribes-Zalesskiĭ)

If \mathcal{V} is an extension-closed variety then, in the pro- \mathcal{V} topology, every free factor of a closed subgroup of F_{A} is again closed.

Corollary

If \mathcal{V} is extension-closed then, for every $H \leqslant f g F_{A}, H \leqslant \operatorname{sig} C l V_{V}(H)$. In particular, $\mathrm{Cl}_{\nu}(H)$ is again finitely generated.

Proposition

There is an algorithm to compute the

- pro-p closure,
- pro-P closure,
- pro-nilpotent closure,
of finitely generated subgroups of F_{A}.
But no algorithm is known for computing pro-solvableq.

Computing some pro- \mathcal{V} closures

Theorem (Ribes-Zalesskiĭ)

If \mathcal{V} is an extension-closed variety then, in the pro- \mathcal{V} topology, every free factor of a closed subgroup of F_{A} is again closed.

Corollary

If \mathcal{V} is extension-closed then, for every $H \leqslant f g F_{A}, H \leqslant \operatorname{sig} C l V_{V}(H)$. In particular, $\mathrm{Cl}_{\nu}(H)$ is again finitely generated.

Proposition

There is an algorithm to compute the

- pro-p closure,
- pro-P closure,
- pro-nilpotent closure,
of finitelv aenerated subaroups of F_{A}.

Computing some pro- \mathcal{V} closures

Theorem (Ribes-Zalesskiĭ)

If \mathcal{V} is an extension-closed variety then, in the pro- \mathcal{V} topology, every free factor of a closed subgroup of F_{A} is again closed.

Corollary

If \mathcal{V} is extension-closed then, for every $H \leqslant f g F_{A}, H \leqslant \operatorname{sig} C l V_{V}(H)$. In particular, $\mathrm{Cl}_{\nu}(H)$ is again finitely generated.

Proposition

There is an algorithm to compute the

- pro-p closure,
- pro-P closure,
- pro-nilpotent closure
of finitely generated subgroups of F_{A}.

But no algorithm is known for computing pro-solvapleq ء्plosuresere

Computing some pro- \mathcal{V} closures

Theorem (Ribes-Zalesskiĭ)

If \mathcal{V} is an extension-closed variety then, in the pro- \mathcal{V} topology, every free factor of a closed subgroup of F_{A} is again closed.

Corollary

If \mathcal{V} is extension-closed then, for every $H \leqslant f g F_{A}, H \leqslant a l g C l_{V}(H)$. In particular, $\mathrm{Cl}_{\nu}(H)$ is again finitely generated.

Proposition

There is an algorithm to compute the

- pro-p closure,
- pro-P closure,
- pro-nilpotent closure,
of finitely generated subgroups of F_{A}.

Computing some pro- \mathcal{V} closures

Theorem (Ribes-Zalesskiĭ)

If \mathcal{V} is an extension-closed variety then, in the pro- \mathcal{V} topology, every free factor of a closed subgroup of F_{A} is again closed.

Corollary

If \mathcal{V} is extension-closed then, for every $H \leqslant f g F_{A}, H \leqslant \operatorname{slg} C l v_{V}(H)$. In particular, $\mathrm{Cl}_{\nu}(H)$ is again finitely generated.

Proposition

There is an algorithm to compute the

- pro-p closure,
- pro-P closure,
- pro-nilpotent closure,
of finitely generated subgroups of F_{A}.
But no algorithm is known for computing pro-solvable closures...

Outline

(1) The friendly and unfriendly free group

2 The bijection between subgroups and automata
(3) Several algebraic applications

- First results
- Finite index subgroups
- Intersections

4. Algebraic extensions and Takahasi's theorem

- Takahasi's theorem
- Computing the set of algebraic extensions
- The algebraic closure
- Pro-V closures
- Other closures

The malnormal closure

Definition

A subgroup $H \leqslant F_{A}$ is called malnormal if, for every $x \in F_{A}, H^{x} \cap H$ equals either H or 1.

```
Proposition
    - It is algorithmically decidable wether a given H\leqslant FA is
        malnormal.
    - H},\mp@subsup{H}{2}{}\leqslant\mp@subsup{F}{A}{}\mathrm{ malnormal }=>\mp@subsup{H}{1}{}\cap\mp@subsup{H}{2}{}\mathrm{ malnormal.
    0 H}\mp@subsup{\leqslant}{ff}{}K\leqslant\mp@subsup{F}{A}{}\mathrm{ , and K malnormal }=>H\mathrm{ malnormal.
```


Corollary

The malnorrnal closure of H (i.e. the smallest extension $H \leqslant K$ being malnormal) is an algebraic extension of H and it is computable.

The malnormal closure

Definition

A subgroup $H \leqslant F_{A}$ is called malnormal if, for every $x \in F_{A}, H^{x} \cap H$ equals either H or 1.

Proposition

- It is algorithmically decidable wether a given $H \leqslant F_{A}$ is malnormal.
- $H_{1}, H_{2} \leqslant F_{A}$ malnormal $\Rightarrow H_{1} \cap H_{2}$ malnormal.
- $H \leqslant f \leqslant F_{A}$, and K malnormal $\Rightarrow H$ malnormal.

Corollary

The malnormal closure of H (i.e. the smallest extension $H \leqslant K$ being malnormal) is an algebraic extension of H and it is computable.

The malnormal closure

Definition

A subgroup $H \leqslant F_{A}$ is called malnormal if, for every $x \in F_{A}, H^{x} \cap H$ equals either H or 1 .

Proposition

- It is algorithmically decidable wether a given $H \leqslant F_{A}$ is malnormal.
- $H_{1}, H_{2} \leqslant F_{A}$ malnormal $\Rightarrow H_{1} \cap H_{2}$ malnormal.

Corollary

The malnormal closure of H (i.e. the smallest extension $H \leqslant K$ being malnormal) is an algebraic extension of H and it is computable.

The malnormal closure

Definition

A subgroup $H \leqslant F_{A}$ is called malnormal if, for every $x \in F_{A}, H^{x} \cap H$ equals either H or 1 .

Proposition

- It is algorithmically decidable wether a given $H \leqslant F_{A}$ is malnormal.
- $H_{1}, H_{2} \leqslant F_{A}$ malnormal $\Rightarrow H_{1} \cap H_{2}$ malnormal.
- $H \leqslant{ }_{H} K \leqslant F_{A}$, and K malnormal $\Rightarrow H$ malnormal.

Corollary

The malnormal closure of H (i.e. the smallest extension $H \leqslant K$ being malnormal) is an algebraic extension of H and it is computable.

The malnormal closure

Definition

A subgroup $H \leqslant F_{A}$ is called malnormal if, for every $x \in F_{A}, H^{x} \cap H$ equals either H or 1 .

Proposition

- It is algorithmically decidable wether a given $H \leqslant F_{A}$ is malnormal.
- $H_{1}, H_{2} \leqslant F_{A}$ malnormal $\Rightarrow H_{1} \cap H_{2}$ malnormal.
- $H \leqslant{ }_{f f} K \leqslant F_{A}$, and K malnormal $\Rightarrow H$ malnormal.

Corollary

The malnormal closure of H (i.e. the smallest extension $H \leqslant K$ being malnormal) is an algebraic extension of H and it is computable.

The pure closure

Definition

A subgroup $H \leqslant F_{A}$ is called pure if $x^{r} \in H$ implies $x \in H$.

Proposition

- It is algorithmically decidable wether a given $H \leqslant F_{A}$ is pure.
- $H_{1}, H_{2} \leqslant F_{A}$ pure $\Rightarrow H_{1} \cap H_{2}$ pure.
- $H \leqslant_{f t} K \leqslant F_{A}$, and K pure $\Rightarrow H$ pure.

Corollary

The pure closure of H (i.e. the smallest extension $H \leqslant K$ being pure) is an algebraic extension of H and it is computable.

The pure closure

Definition

A subgroup $H \leqslant F_{A}$ is called pure if $x^{r} \in H$ implies $x \in H$.

Proposition

- It is algorithmically decidable wether a given $H \leqslant F_{A}$ is pure.

Corollary

The pure closure of H (i.e. the smallest extension $H \leqslant K$ being pure) is an algebraic extension of H and it is computable.

The pure closure

Definition

A subgroup $H \leqslant F_{A}$ is called pure if $x^{r} \in H$ implies $x \in H$.

Proposition

- It is algorithmically decidable wether a given $H \leqslant F_{A}$ is pure.
- $H_{1}, H_{2} \leqslant F_{A}$ pure $\Rightarrow H_{1} \cap H_{2}$ pure.
- $H \leqslant_{f f} K \leqslant F_{A \text {, and }} K$ pure $\Rightarrow H$ pure.

Corollary

The pure closure of H (i.e. the smallest extension $H \leqslant K$ being pure) is an algebraic extension of H and it is computable.

The pure closure

Definition

A subgroup $H \leqslant F_{A}$ is called pure if $x^{r} \in H$ implies $x \in H$.

Proposition

- It is algorithmically decidable wether a given $H \leqslant F_{A}$ is pure.
- $H_{1}, H_{2} \leqslant F_{A}$ pure $\Rightarrow H_{1} \cap H_{2}$ pure.
- $H \leqslant{ }_{f t} K \leqslant F_{A}$, and K pure $\Rightarrow H$ pure.

Corollary

The pure closure of H (i.e. the smallest extension $H \leqslant K$ being pure) is an algebraic extension of H and it is computable.

The pure closure

Definition

A subgroup $H \leqslant F_{A}$ is called pure if $x^{r} \in H$ implies $x \in H$.

Proposition

- It is algorithmically decidable wether a given $H \leqslant F_{A}$ is pure.
- $H_{1}, H_{2} \leqslant F_{A}$ pure $\Rightarrow H_{1} \cap H_{2}$ pure.
- $H \leqslant_{f t} K \leqslant F_{A}$, and K pure $\Rightarrow H$ pure.

Corollary

The pure closure of H (i.e. the smallest extension $H \leqslant K$ being pure) is an algebraic extension of H and it is computable.

The inert closure

Definition

A subgroup $H \leqslant F_{A}$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_{A}$.

Proposition

- $H_{1}, H_{2} \leqslant F_{A}$ inert $\Rightarrow H_{1} \cap H_{2}$ inert.
- $H \leqslant_{H} K \leqslant F_{A}$, and K inert $\Rightarrow H$ inert.

Question

- Is the inert closure of H (i.e. the smallest extension H K K being inert) computable?
- Is it algorithmically decidable wether a given $H \leqslant F_{A}$ is inert?

The inert closure

Definition

A subgroup $H \leqslant F_{A}$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_{A}$.

Proposition

- $H_{1}, H_{2} \leqslant F_{A}$ inert $\Rightarrow H_{1} \cap H_{2}$ inert.

- $H \leqslant f t K \leqslant F_{A}$, and K inert $\Rightarrow H$ inert.

Question

- Is the inert closure of H (i.e. the smallest extension $H \leqslant K$ being inert) computable?
- Is it algorithmically decidable wether a given $H \leqslant F_{A}$ is inert?

The inert closure

Definition

A subgroup $H \leqslant F_{A}$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_{A}$.

Proposition

- $H_{1}, H_{2} \leqslant F_{A}$ inert $\Rightarrow H_{1} \cap H_{2}$ inert.
- $H \leqslant_{f t} K \leqslant F_{A}$, and K inert $\Rightarrow H$ inert.

Question

- Is the inert closure of H (i.e. the smallest extension $H \leqslant K$ being inert) computable?
- Is it algorithmically decidable wether a given $H \leqslant F_{A}$ is inert?

The inert closure

Definition

A subgroup $H \leqslant F_{A}$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_{A}$.

Proposition

- $H_{1}, H_{2} \leqslant F_{A}$ inert $\Rightarrow H_{1} \cap H_{2}$ inert.
- $H \leqslant_{f t} K \leqslant F_{A}$, and K inert $\Rightarrow H$ inert.

Question

- Is the inert closure of H (i.e. the smallest extension $H \leqslant K$ being inert) computable?
- Is it algorithmically decidable wether a given $H \leqslant F_{A}$ is inert?

The inert closure

Definition

A subgroup $H \leqslant F_{A}$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_{A}$.

Proposition

- $H_{1}, H_{2} \leqslant F_{A}$ inert $\Rightarrow H_{1} \cap H_{2}$ inert.
- $H \leqslant{ }_{f t} K \leqslant F_{A}$, and K inert $\Rightarrow H$ inert.

Question

- Is the inert closure of H (i.e. the smallest extension $H \leqslant K$ being inert) computable?
- Is it algorithmically decidable wether a given $H \leqslant F_{A}$ is inert?

THANKS

