The first part of

Whitehead's

algorithm made

polynomial

(Joint work with A. Roig and P. Weil)

E. Ventura

(Universitat Politecnica Catalunya)

Whitehead Problem (WhP): For a given group
G, find an algorithm s.t. given u,v € GG decides
whether there exists ¢ € Aut(G) with up = v
(or up to conjugacy).

Observation: In Z" (and in any f.g. abelian
group) the WhP is solvable.

Theorem (Whitehead): WhP is solvable in F.

e First part: Reduce the cyclic length of u, v
as much as possible by applying autos:

/ /

U — Uy — - —u, V— U] — s — U

e Second part: Analyze who is image of who
by some auto, in the (finite!) sphere of given
radius n:

Sn={w € Fr | [[w]| = n}.

Let us concentrate on the first part.

Wh. Min. Problem (WhMP): Given u € Fy,
find ¢ € Aut(Fy) s.t. ||upl| is minimal.

Lemma (Whitehead): Let w € F,.. If ¢ €
Aut(Fr) s.t. |lup|| < ||u|| then 3 a “Whitehead
auto” a s.t. ||lual| < ||ul|.

Definition: Whitehead autos are those of the
form

Ffr — Ffr
x; +— x; (the multiplier)
0~1 0,1
T, #=x; +— x TxjmT.

(There are about 2r - 4"—1 such autos.)

Example:

~—

a: F3={a, b, c F3
ab
b

beb.

0 o R
1717 |

Classical Whitehead algorithm for WhMP:

o Keep applying Whitehead autos to the given
u € Fr until finding one that decreases its
cyclic length.

e Repeat until all Whitehead autos are non-
decreasing.

This is quadratic on the length of input, n =
|u||, but exponential on the ambient rank, r.

There are several theoretical, heuristic, proba-
bilistic recent results (see Haralick, Miasnikov,
Myasnikov) suggesting that Whitehead algo-
rithm is faster in practice.

Theorem (Roig, V., Weil): 3 algorithm which
solves WhMP for F, in time O(n?r3).

main idea: given u € F,, we find in polyno-
mial time one of the Whitehead autos that de-
creases [|u|| the most possible.

key point: how does a give Whitehead auto o
affect the length of a given word u ?

three ingredients:
1) codify u as its Whitehead graph (classic in
Group Theory),

2) codify « as a cut in this graph (= classic in
Group Theory),

3) use max-flow min-cut algorithm (classic in
Computer Science),

. put together and mix (new!).

First ingredient:
Given u € F, (cyclically reduced), its (unori-
ented) Whitehead graph, Wh(u), is:

- vertices: X*1

- edges: for every pair of (cycl.) consecutive
letters w = ---xzy--- put an edge between =x
and v,

Example: v = abacbbabe,

a b C
av C

(remark: Wh(u) does not remember u.)

Second ingredient:
Codify a Whitehead auto « as a

- specified letter z; (the multiplier), and
- the (x,,%;) — cut (i.e. a subset Y C X*1 with
x; €Y and z; € Y) given by

Y = {z;}U{letters multiplied on the right by z;}.

Example: The Wh. auto « is

. F3 —> F3 a b c
a +— ab —
b= b o a b c
c + beb. -

o) — Y ={a, b, ¢, ¢}.

Rephrasement of Wh. Lemma: Given a word
u € Fr and a Wh. auto «, think o« as a cut in
Wh(u). Then,

|luc|| — ||u|| = cap(cut) — deg(multiplier).
Proof: Analyzing cases (see Lyndon-Schupp).

Example: a and u as before,

a b C

/

— TS

[@

cap(a) = 7, deg(b) = 4 so, must be

lual = JJul]] =7 -4 =3.

In fact,
(abacbbabc)oae = ab- b pa-beb-b-b-ab- b- beb
— ababebbbabeb,
|lua|| — ||ul| = 12 — 9 = 3.

Thus, WhMP reduces to:

- run over all possible multipliers, say a,
(there are 2r),

- find an (a,a@) — cut with minimal possible ca-

pacity, i.e. a minimal (a,a) — cut.

This can be done using the classical max-flow
min-cut algorithm...

...which works in polynomial time on the num-
ber of edges of the graph (= ||u|| = n) and the
number of vertices (= 2r).

Third ingredient: max-flow min-cut algorithm.

Given a graph X (unoriented and with weights
on edges), and two vertices s,t € VX, find the
max flow from s to t:

Se—= @ °
1 1 3
1 7
cap. 4
cap. 3
° 5 ° 4 ° 50 ol

Observation:
maximal (s — t)-flow < cap. of any (s,t)-cut.

T heorem:
max. (s — t)-flow = cap. of min. (s,t)-cut,

and it is possible to find both in polynomial
time w.r.t. the size of the graph.

Example: Find one of the best Whitehead
autos for u = bababa ababa.

Wh. graph

=
o

b
e Choose first multiplier, say a;
e Choose an augmenting path from a to a:

S

1

a a.
° Total flow: residual graph:
a 1 a a 2 a
4 4
1 1
b b b b

e Choose another augm. path from a to a:

1

1 — .
a b a ;

° Total flow: residual graph:

1

a a a a
1 4 53//4

1 2 1

b b b b

e Choose another augm. path from a to a:

1 - 1 .
a b a,

° Total flow: residual graph:

a

N

3
Q/&Q
b |

b

Q|

b

e NO paths from a to @, so STOP.

The total flow carried from a to a is 3 and
corresponds to the cut

Y = {v |3 path a — v in res. graph}.

1

1 x ; cap({a,b}) = 3.

\
\

b b |
\j4

So, the Whitehead auto

a

(87
Y = b — @ = a
ta, b} b — ab
satisfies |[ual| — ||u|| =3 — 6 = —3.

e Repeat for multiplier b (and get less).

~ babbaabb

Jul[=11, flual| = 8.

u = bababaababa — (@Gb)a(bb)d(bb)Ea(ab)hEb)k

An extension to subgroups

A cyclically reduced word can be thought as a
circular graph:

u = abaabab <+ (abaabab)

b e

6 1

A

5 2
x %
4 3
a

and Wh(u) just describes the in-links of the
vertices:

Any f.g. subgroup H < F, has a (unique) rep-
resentation as a core-graph labeled by gener-

ators (think about covering spaces over the
bouquet):

H = (a®b, ab>, abab?) < F5

r(H) = a

0 5 2

Looking at the in-links of vertices,

b a a 1 b b 2 b b la
— . — — = v — —

0 i& Ta %B
we can built the Whitehead hypergraph Wh(H):

a
«—

VWh(H) = {a, @, b, b},

EWh(H) = {{a, b}, {a, @, b}, {a, b, b}, {a, @, b, b}}.

Extension of Wh. Lemma: Given a f.g. sub-
group H < F,r and a Wh. auto «, think o as a
cut in Wh(H). Then,

|Ha|| — ||H|| = cap(cut) — deg(multiplier),
where || - || means number of vertices of N'(H).

Theorem: Thereis an algorithm which, given a
f.g. H < F, finds o € Aut(Fy) s.t. the number
of vertices in Hyp is minimal. It works in time
O(n3r?).

Why?... Unfortunately flows for hypergraphs
make no sense, but it is still possible to find
min-cuts in polynomial time:

Definition: Let V be a finite set. A map
f:P(V) — R is called submodular if
f(AUB)+ f(ANB) < f(A)+ f(B), VA, BCV.

Observation: For a f.g. H < F,, W = Wh(H),
the map P(X*1) - N, Y — capy (YY) is sub-
modular.

Efficient minimization of submodular functions
f is an active research topic in computer sci-
ence, and there are several known algorithms
for this, making a polynomial number of oracle
calls (queries to evaluate f).

So, we have the result like in the word case.

Corollary: There is a polynomial time algo-
rithm to decide, given two f.g. subgroups H <
K < Fr, whether H is a free factor of K.
(note that r(H) and r(K) can be arbitrarily
bigger than r).

Open questions
1) Any algebraic interpretation of ‘“flow” ?

2) Cut-vertices:

u is primitive = Wh(u) has a cut vertex

H is a f.f. of F; £ Wh(H) has a cut vertex

3) Can also the second part of Whitehead al-
gorithm be made polynomial ?

— Miasnikov-Shpilrain: yes for r = 2.
— Lee: yes for fix r under a technical condi-
tion on the original word.

4) What about minimizing (and counting) the
number of Whitehead autos used ?

Thank you

