
The first part of

Whitehead’s

algorithm made

polynomial

(joint work with A. Roig and P. Weil)

E. Ventura

(Universitat Politècnica Catalunya)

Whitehead Problem (WhP): For a given group

G, find an algorithm s.t. given u, v ∈ G decides

whether there exists ϕ ∈ Aut(G) with uϕ = v

(or up to conjugacy).

Observation: In Zr (and in any f.g. abelian

group) the WhP is solvable.

Theorem (Whitehead): WhP is solvable in Fr.

• First part: Reduce the cyclic length of u, v

as much as possible by applying autos:

u→ u1 → · · · → u′, v → v1 → · · · → v′.

• Second part: Analyze who is image of who

by some auto, in the (finite!) sphere of given

radius n:

Sn = {w ∈ Fr | ‖w‖ = n}.

Let us concentrate on the first part.

Wh. Min. Problem (WhMP): Given u ∈ Fr,
find ϕ ∈ Aut(Fr) s.t. ‖uϕ‖ is minimal.

Lemma (Whitehead): Let u ∈ Fr. If ∃ϕ ∈
Aut(Fr) s.t. ‖uϕ‖ < ‖u‖ then ∃ a “Whitehead
auto” α s.t. ‖uα‖ < ‖u‖.

Definition: Whitehead autos are those of the
form

Fr −→ Fr

xi 7→ xi (the multiplier)

xi 6= xj 7→ x
0,−1
i xjx

0,1
i .

(There are about 2r · 4r−1 such autos.)

Example:

α : F3 = 〈a, b, c〉 −→ F3
a 7→ ab
b 7→ b
c 7→ bcb.

Classical Whitehead algorithm for WhMP:

• Keep applying Whitehead autos to the given

u ∈ Fr until finding one that decreases its

cyclic length.

• Repeat until all Whitehead autos are non-

decreasing.

This is quadratic on the length of input, n =

‖u‖, but exponential on the ambient rank, r.

There are several theoretical, heuristic, proba-

bilistic recent results (see Haralick, Miasnikov,

Myasnikov) suggesting that Whitehead algo-

rithm is faster in practice.

Theorem (Roig, V., Weil): ∃ algorithm which

solves WhMP for Fr in time O(n2r3).

main idea: given u ∈ Fr, we find in polyno-

mial time one of the Whitehead autos that de-

creases ‖u‖ the most possible.

key point: how does a give Whitehead auto α

affect the length of a given word u ?

three ingredients:

1) codify u as its Whitehead graph (classic in

Group Theory),

2) codify α as a cut in this graph (≈ classic in

Group Theory),

3) use max-flow min-cut algorithm (classic in

Computer Science),

... put together and mix (new!).

First ingredient:

Given u ∈ Fr (cyclically reduced), its (unori-

ented) Whitehead graph, Wh(u), is:

- vertices: X±1,

- edges: for every pair of (cycl.) consecutive

letters u = · · ·x y · · · put an edge between x

and y,

Example: u = aba cbbabc,

a b c

a b c

Wh(u)=

�
�

�
�

�
�

�
�

�
�

�
�Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
ZZ

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

ZZ�������������������������

(remark: Wh(u) does not remember u.)

Second ingredient:

Codify a Whitehead auto α as a

- specified letter xi (the multiplier), and

- the (xi, xi)− cut (i.e. a subset Y ⊆ X±1 with

xi ∈ Y and xi 6∈ Y) given by

Y = {xi}∪{letters multiplied on the right by xi}.

Example: The Wh. auto α is

α : F3 −→ F3
a 7→ ab
b 7→ b
c 7→ bcb.

←→
a b c

a b c

α ←→ Y = {a, b, c, c}.

Rephrasement of Wh. Lemma: Given a word

u ∈ Fr and a Wh. auto α, think α as a cut in

Wh(u). Then,

‖uα‖ − ‖u‖ = cap(cut)− deg(multiplier).

Proof: Analyzing cases (see Lyndon-Schupp).

Example: α and u as before,

a b c

a b c
�

�
�

�
�

�
�

�
�

�
�

�Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

ZZ

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

ZZ�������������������������

cap(α) = 7, deg(b) = 4 so, must be

‖uα‖ − ‖u‖ = 7− 4 = 3.

In fact,

(aba cbbabc)α = ab· 6 b· 6 ba · bcb · b · b · ab· 6 b· 6 bcb
= ababcbbbabcb,

‖uα‖ − ‖u‖ = 12− 9 = 3.

Thus, WhMP reduces to:

- run over all possible multipliers, say a,

(there are 2r),

- find an (a, a)− cut with minimal possible ca-

pacity, i.e. a minimal (a, a)− cut.

This can be done using the classical max-flow

min-cut algorithm...

...which works in polynomial time on the num-

ber of edges of the graph (= ‖u‖ = n) and the

number of vertices (= 2r).

Third ingredient: max-flow min-cut algorithm.

Given a graph X (unoriented and with weights

on edges), and two vertices s, t ∈ V X, find the

max flow from s to t:

s• 2

1

AA
AA

AA
AA

AA
AA

AA
AA

AA
AA

AA

cap. 3

ggggggggggggggggggggggggggggggggggggg

•

1 1

??
??

??
??

??
??

??
??

??
??

? •

7

• 5 • 4

cap. 4
�����������

• 50

3

~~~~~~~~~~~~~~~~~~~~~~

•t

Observation:

maximal (s→ t)-flow ≤ cap. of any (s, t)-cut.

Theorem:

max. (s→ t)-flow = cap. of min. (s, t)-cut,

and it is possible to find both in polynomial

time w.r.t. the size of the graph.



Example: Find one of the best Whitehead
autos for u = bab a b a ababa.

Wh. graph =

a oo 1 //
OO

1

��

bb

4

""EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE aOO

1

��

b
||

4

<<yyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

b

• Choose first multiplier, say a;
• Choose an augmenting path from a to a:

a 1 // a ;

• Total flow: residual graph:

a 1 // a

b b

a oo 2
OO

1

��

bb

4

""EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE aOO

1

��

b
||

4

<<yyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

b

• Choose another augm. path from a to a:

a 1 // b 1 // a ;



• Total flow: residual graph:

a 1 //

1

��

a

b
||

1

<<yyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

b

a oo 2
OO

2

bb

4

""EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE aOO

1

��

b

3yyyyyyyyyyyyyyyyyyyyy

<<yyyyyyy

||

5yyyyyyyyyyyyyyyyyyy

yyyyyyyyy

b

• Choose another augm. path from a to a:

a 1 // b
1 // a ;

• Total flow: residual graph:

a 1 //

1

��

1

""EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE a

b

1

<<yyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

b

1

OO a oo 2
OO

2
3

EE
EE

EE
EE

E

""EEEEEEEEEEEEEEEEEEE

bb

5
EE

EE
EE

EE
E

EEEEEEEEEEEEEEEEEEE

a

2

��

b

3yyyyyyyyyyyyyyyyyyyyy

<<yyyyyyy

||

5yyyyyyyyyyyyyyyyyyy

yyyyyyyyy

b

• No paths from a to a, so STOP.



The total flow carried from a to a is 3 and
corresponds to the cut

Y = {v | ∃ path a→ v in res. graph}.

a oo 1 //
OO

1

��

bb

4

""EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE aOO

1

��

b ee

4

UU

b

; cap({a, b}) = 3.

So, the Whitehead auto

Y = {a, b} ≡ a
α7→ a

b 7→ ab

satisfies ‖uα‖ − ‖u‖ = 3− 6 = −3.

• Repeat for multiplier b (and get less).

u = bab a b a ababa 7→ (6 ab)a(b6 a)6 a(b6 a)6 a a(ab)6 a(6 ab)6 a
∼ bab ba abb

‖u‖ = 11 , ‖uα‖ = 8.



An extension to subgroups

A cyclically reduced word can be thought as a
circular graph:

u = abaabab ↔ 〈abaabab〉

0

1

2

34

5

6

H
HHH

HHj

a

C
C
C
C
C
CCW

b

�
�

�
�

�
�/

a

�

a

S
S

S
S

S
Sw

b

�
�
�
�
�
���

a

�
����

�*
b

and Wh(u) just describes the in-links of the
vertices:

b→ ·
0

a← a→ ·
1

b← b→ ·
2

a← a→ ·
3

a←

a→ ·
4

b← b→ ·
5

a← a→ ·
6

b←



Any f.g. subgroup H ≤ Fr has a (unique) rep-

resentation as a core-graph labeled by gener-

ators (think about covering spaces over the

bouquet):

H = 〈a2b, ab3, abab2〉 ≤ F2

Γ(H) =

1 b //

a

""FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 3

b

��

a
��

0

a

OO

2
b

oo

Looking at the in-links of vertices,

b→ ·
0

a← a→ 1·
↑a

b← b→ 2·
↑a

b← b→
↓a·
↑b

a←

we can built the Whitehead hypergraph Wh(H):

V Wh(H) = {a, a, b, b},

EWh(H) = {{a, b}, {a, a, b}, {a, b, b}, {a, a, b, b}}.



Extension of Wh. Lemma: Given a f.g. sub-
group H ≤ Fr and a Wh. auto α, think α as a
cut in Wh(H). Then,

‖Hα‖ − ‖H‖ = cap(cut)− deg(multiplier),

where ‖ · ‖ means number of vertices of Γ(H).

Theorem: There is an algorithm which, given a
f.g. H ≤ Fr, finds ϕ ∈ Aut(Fr) s.t. the number
of vertices in Hϕ is minimal. It works in time
O(n3r4).

Why?... Unfortunately flows for hypergraphs
make no sense, but it is still possible to find
min-cuts in polynomial time:

Definition: Let V be a finite set. A map
f : P(V )→ R is called submodular if

f(A∪B)+ f(A∩B) ≤ f(A)+ f(B), ∀A, B ⊆ V.

Observation: For a f.g. H ≤ Fr, W = Wh(H),
the map P(X±1)→ N, Y 7→ capW (Y ) is sub-
modular.



Efficient minimization of submodular functions

f is an active research topic in computer sci-

ence, and there are several known algorithms

for this, making a polynomial number of oracle

calls (queries to evaluate f).

So, we have the result like in the word case.

Corollary: There is a polynomial time algo-

rithm to decide, given two f.g. subgroups H ≤
K ≤ Fr, whether H is a free factor of K.

(note that r(H) and r(K) can be arbitrarily

bigger than r).



Open questions

1) Any algebraic interpretation of “flow” ?

2) Cut-vertices:

u is primitive ⇒Wh(u) has a cut vertex

H is a f.f. of Fr
?⇒Wh(H) has a cut vertex

3) Can also the second part of Whitehead al-

gorithm be made polynomial ?

→ Miasnikov-Shpilrain: yes for r = 2.

→ Lee: yes for fix r under a technical condi-

tion on the original word.

4) What about minimizing (and counting) the

number of Whitehead autos used ?



Thank you


