Deciding endo-fixedness

E. Ventura

(Universitat Politècnica de Catalunya)

Lleida, July 22, 2008

Given $M \in GL_n(\mathbb{Z})$,

$$\mathsf{Fix}\,(M) = \{v \in \mathbb{Z}^n \mid Mv = v\} \leqslant \mathbb{Z}^n.$$

Given $M \in GL_n(\mathbb{Z})$,

$$\mathsf{Fix}\,(M) = \{v \in \mathbb{Z}^n \mid Mv = v\} \leqslant \mathbb{Z}^n.$$

Dually,

 $H \leqslant \mathbb{Z}^n$ is 1-auto-fixed $\Leftrightarrow H = \text{Fix}(M)$ for some $M \in GL_n(\mathbb{Z})$.

Given $M \in GL_n(\mathbb{Z})$,

$$\mathsf{Fix}\,(M) = \{v \in \mathbb{Z}^n \mid Mv = v\} \leqslant \mathbb{Z}^n.$$

Dually,

 $H \leqslant \mathbb{Z}^n$ is 1-auto-fixed $\Leftrightarrow H = \text{Fix}(M)$ for some $M \in GL_n(\mathbb{Z})$.

Easy to see that:

• $\lambda v \in \text{Fix}(M) \Rightarrow v \in \text{Fix}(M)$,

Given $M \in GL_n(\mathbb{Z})$,

$$\mathsf{Fix}\,(M) = \{v \in \mathbb{Z}^n \mid Mv = v\} \leqslant \mathbb{Z}^n.$$

Dually,

 $H \leqslant \mathbb{Z}^n$ is 1-auto-fixed $\Leftrightarrow H = \text{Fix}(M)$ for some $M \in GL_n(\mathbb{Z})$.

- $\lambda v \in \mathsf{Fix}(M) \Rightarrow v \in \mathsf{Fix}(M)$,
- $\langle (1,0,0),(0,2,4)\rangle \leqslant \mathbb{Z}^3$ is not 1-auto-fixed,

Given $M \in GL_n(\mathbb{Z})$,

$$\mathsf{Fix}\,(M) = \{v \in \mathbb{Z}^n \mid Mv = v\} \leqslant \mathbb{Z}^n.$$

Dually,

 $H \leqslant \mathbb{Z}^n$ is 1-auto-fixed $\Leftrightarrow H = \text{Fix}(M)$ for some $M \in GL_n(\mathbb{Z})$.

- $\lambda v \in \text{Fix}(M) \Rightarrow v \in \text{Fix}(M)$,
- $((1,0,0),(0,2,4)) \leq \mathbb{Z}^3$ is not 1-auto-fixed,
- ullet $H\leqslant \mathbb{Z}^n$ is 1-auto-fixed \Leftrightarrow H is a direct summand of \mathbb{Z}^n ,

Given $M \in GL_n(\mathbb{Z})$,

$$Fix(M) = \{v \in \mathbb{Z}^n \mid Mv = v\} \leqslant \mathbb{Z}^n.$$

Dually,

 $H \leqslant \mathbb{Z}^n$ is 1-auto-fixed $\Leftrightarrow H = \text{Fix}(M)$ for some $M \in GL_n(\mathbb{Z})$.

- $\lambda v \in \mathsf{Fix}(M) \Rightarrow v \in \mathsf{Fix}(M)$,
- $\langle (1,0,0),(0,2,4)\rangle \leqslant \mathbb{Z}^3$ is not 1-auto-fixed,
- ullet $H\leqslant \mathbb{Z}^n$ is 1-auto-fixed \Leftrightarrow H is a direct summand of \mathbb{Z}^n ,
- All is easy from algorithmic point of view.

Consider the F_n the free group of rank n, and its automorphism group $\operatorname{Aut}(F_n)$.

Consider the F_n the free group of rank n, and its automorphism group $\operatorname{Aut}(F_n)$.

Given $\varphi \in \text{End}(F_n)$ and $S \subseteq \text{End}(F_n)$,

$$\operatorname{Fix}(\varphi) = \{ w \in F_n \mid w\varphi = w \} \leqslant F_n,$$

$$\operatorname{Fix}(S) = \{ w \in F_n \mid w\varphi = w \ \forall \varphi \in S \} = \bigcap_{\varphi \in S} \operatorname{Fix}(\varphi) \leqslant F_n,$$

Consider the F_n the free group of rank n, and its automorphism group $\operatorname{Aut}(F_n)$.

Given $\varphi \in \text{End}(F_n)$ and $S \subseteq \text{End}(F_n)$,

$$Fix (\varphi) = \{ w \in F_n \mid w\varphi = w \} \leqslant F_n,$$

$$\operatorname{Fix}(S) = \{ w \in F_n \mid w\varphi = w \ \forall \varphi \in S \} = \bigcap_{\varphi \in S} \operatorname{Fix}(\varphi) \leqslant F_n,$$

Dually,

- $H \leqslant F_n$ is 1-auto-fixed $\Leftrightarrow H = \text{Fix}(\varphi)$ for some $\varphi \in \text{Aut}(F_n)$,
- $H \leqslant F_n$ is 1-endo-fixed $\Leftrightarrow H = \text{Fix}(\varphi)$ for some $\varphi \in \text{End}(F_n)$,
- $H \leqslant F_n$ is auto-fixed $\Leftrightarrow H = Fix(S)$ for some $S \subseteq Aut(F_n)$,
- $H \leqslant F_n$ is *endo-fixed* $\Leftrightarrow H = \text{Fix}(S)$ for some $\subseteq \text{End}(F_n)$.

• $v^r \in \text{Fix}(\varphi) \implies v \in \text{Fix}(\varphi)$,

•
$$v^r \in \operatorname{Fix}(\varphi) \implies v \in \operatorname{Fix}(\varphi)$$
,

ullet H is a free factor of $F_n \buildrel \Rightarrow H$ is 1-auto-fixed,

- $v^r \in \text{Fix}(\varphi) \Rightarrow v \in \text{Fix}(\varphi)$,
- ullet H is a free factor of $F_n \buildrel \Rightarrow H$ is 1-auto-fixed,
- All the rest (including decidability) is much more complicated.

- $v^r \in \text{Fix}(\varphi) \implies v \in \text{Fix}(\varphi)$,
- \bullet H is a free factor of $F_n \not= H$ is 1-auto-fixed,
- All the rest (including decidability) is much more complicated.

Example. (Stallings automorphism) Let

$$\varphi \colon F_{4} \longrightarrow F_{4}$$

$$a \mapsto dac$$

$$b \mapsto c^{-1}a^{-1}d^{-1}ac$$

$$c \mapsto c^{-1}a^{-1}b^{-1}ac$$

$$d \mapsto c^{-1}a^{-1}bc$$

$$w = c^{-1}a^{-1}bd^{-1}c^{-1}a^{-1}d^{-1}ad^{-1}c^{-1}b^{-1}acdadacdcdbcda^{-1}a^{-1}d^{-1}a^{-1}d^{-1}c^{-1}d^{-1}c^{-1}d^{-1}c^{-1}daabcdaccdb^{-1}a^{-1}.$$

$$w = c^{-1}a^{-1}bd^{-1}c^{-1}a^{-1}d^{-1}ad^{-1}c^{-1}b^{-1}acdadacdcdbcda^{-1}a^{-1}d^{-1}a^{-1}d^{-1}c^{-1}d^{-1}c^{-1}d^{-1}c^{-1}daabcdaccdb^{-1}a^{-1}.$$

Known results:

• [Bestvina-Handel, 1989] For every $\varphi \in \text{Aut}(F_n)$, $r(\text{Fix}(\varphi)) \leqslant n$.

$$w = c^{-1}a^{-1}bd^{-1}c^{-1}a^{-1}d^{-1}ad^{-1}c^{-1}b^{-1}acdadacdcdbcda^{-1}a^{-1}d^{-1}a^{-1}$$
$$d^{-1}c^{-1}a^{-1}d^{-1}c^{-1}b^{-1}d^{-1}c^{-1}d^{-1}c^{-1}daabcdaccdb^{-1}a^{-1}.$$

- [Bestvina-Handel, 1989] For every $\varphi \in \text{Aut}(F_n)$, $r(\text{Fix}(\varphi)) \leqslant n$.
- [Imrich-Turner, 1989] For every $\varphi \in \text{End}(F_n)$, $r(\text{Fix}(\varphi)) \leqslant n$.

$$w = c^{-1}a^{-1}bd^{-1}c^{-1}a^{-1}d^{-1}ad^{-1}c^{-1}b^{-1}acdadacdcdbcda^{-1}a^{-1}d^{-1}a^{-1}$$
$$d^{-1}c^{-1}a^{-1}d^{-1}c^{-1}b^{-1}d^{-1}c^{-1}d^{-1}c^{-1}daabcdaccdb^{-1}a^{-1}.$$

- [Bestvina-Handel, 1989] For every $\varphi \in \text{Aut}(F_n)$, $r(\text{Fix}(\varphi)) \leqslant n$.
- [Imrich-Turner, 1989] For every $\varphi \in \text{End}(F_n)$, $r(\text{Fix}(\varphi)) \leqslant n$.
- [Dicks-V., 1996] For every $S \subseteq \operatorname{Aut}(F_n)$, $r(\operatorname{Fix}(S)) \leqslant n$.

$$w = c^{-1}a^{-1}bd^{-1}c^{-1}a^{-1}d^{-1}ad^{-1}c^{-1}b^{-1}acdadacdcdbcda^{-1}a^{-1}d^{-1}a^{-1}$$
$$d^{-1}c^{-1}a^{-1}d^{-1}c^{-1}b^{-1}d^{-1}c^{-1}d^{-1}c^{-1}daabcdaccdb^{-1}a^{-1}.$$

- [Bestvina-Handel, 1989] For every $\varphi \in \text{Aut}(F_n)$, $r(\text{Fix}(\varphi)) \leqslant n$.
- [Imrich-Turner, 1989] For every $\varphi \in \text{End}(F_n)$, $r(\text{Fix}(\varphi)) \leqslant n$.
- [Dicks-V., 1996] For every $S \subseteq \operatorname{Aut}(F_n)$, $r(\operatorname{Fix}(S)) \leqslant n$.
- [Bergman, 1999] For every $S \subseteq \text{End}(F_n)$, $r(\text{Fix}(S)) \leqslant n$.

$$w = c^{-1}a^{-1}bd^{-1}c^{-1}a^{-1}d^{-1}ad^{-1}c^{-1}b^{-1}acdadacdcdbcda^{-1}a^{-1}d^{-1}a^{-1}d^{-1}c^{-1}d^{-1}c^{-1}d^{-1}c^{-1}daabcdaccdb^{-1}a^{-1}.$$

- [Bestvina-Handel, 1989] For every $\varphi \in \text{Aut}(F_n)$, $r(\text{Fix}(\varphi)) \leqslant n$.
- [Imrich-Turner, 1989] For every $\varphi \in \text{End}(F_n)$, $r(\text{Fix}(\varphi)) \leqslant n$.
- [Dicks-V., 1996] For every $S \subseteq \operatorname{Aut}(F_n)$, $r(\operatorname{Fix}(S)) \leqslant n$.
- [Bergman, 1999] For every $S \subseteq \text{End}(F_n)$, $r(\text{Fix}(S)) \leqslant n$.
- [Martino-V., 2004] Explicit description of 1-auto-fixed subgroups of F_n .

• [Martino-V.] If $\varphi \in \text{End}(F_3)$ fixes $[a,b] = a^{-1}b^{-1}ab$ and $[a,c] = a^{-1}c^{-1}ac$, then it must also fix a. Hence, $H = \langle [a,b], [a,c] \rangle$ is not endo-fixed.

• [Martino-V.] If $\varphi \in \text{End}(F_3)$ fixes $[a,b] = a^{-1}b^{-1}ab$ and $[a,c] = a^{-1}c^{-1}ac$, then it must also fix a. Hence, $H = \langle [a,b], [a,c] \rangle$ is not endo-fixed.

1-auto-fixed
$$\Rightarrow$$
 1-endo-fixed \downarrow \downarrow auto-fixed \Rightarrow endo-fixed

• [Martino-V.] If $\varphi \in \text{End}(F_3)$ fixes $[a,b] = a^{-1}b^{-1}ab$ and $[a,c] = a^{-1}c^{-1}ac$, then it must also fix a. Hence, $H = \langle [a,b], [a,c] \rangle$ is not endo-fixed.

1-auto-fixed
$$\stackrel{\not\Leftarrow}{\Rightarrow}$$
 1-endo-fixed \downarrow

auto-fixed $\stackrel{\not\Leftarrow}{\Rightarrow}$ endo-fixed

[Martino-V.] In F_3 , $H_{r,s,t} = \langle b, ca^rcb^sa^tb^{-s}c^{-1}\rangle$ is 1-endo-fixed; but it is 1-auto-fixed if and only if rst = 0.

• [Martino-V.] If $\varphi \in \text{End}(F_3)$ fixes $[a,b]=a^{-1}b^{-1}ab$ and $[a,c]=a^{-1}c^{-1}ac$, then it must also fix a. Hence, $H=\langle [a,b], [a,c] \rangle$ is not endo-fixed.

[Martino-V.] In F_3 , $H_{r,s,t} = \langle b, ca^rcb^sa^tb^{-s}c^{-1}\rangle$ is 1-endo-fixed; but it is 1-auto-fixed if and only if rst = 0.

• The proof and the algorithm are both very complicated.

- The proof and the algorithm are both very complicated.
- Similar result not known for endomorphisms.

- The proof and the algorithm are both very complicated.
- Similar result not known for endomorphisms.

Theorem. (V., 2008) Given $H \leq F_n$, it is algorithmically decidable whether

- a) H is auto-fixed,
- b) H is endo-fixed, and in the affirmative, find $S \subseteq Aut(F_n)$ or $S \subseteq End(F_n)$.

- The proof and the algorithm are both very complicated.
- Similar result not known for endomorphisms.

Theorem. (V., 2008) Given $H \leq F_n$, it is algorithmically decidable whether

- a) H is auto-fixed,
- b) H is endo-fixed, and in the affirmative, find $S \subseteq Aut(F_n)$ or $S \subseteq End(F_n)$.
- Similar result not known for 1-auto-fixedness or 1-endo-fixedness.

- a) H is auto-fixed,
- b) H is endo-fixed, and in the affirmative, find $S \subseteq \operatorname{Aut}(F_n)$ or $S \subseteq \operatorname{End}(F_n)$.

Idea of proof.

- a) H is auto-fixed,
- b) H is endo-fixed, and in the affirmative, find $S \subseteq \operatorname{Aut}(F_n)$ or $S \subseteq \operatorname{End}(F_n)$.

- a) H is auto-fixed,
- b) H is endo-fixed, and in the affirmative, find $S \subseteq Aut(F_n)$ or $S \subseteq End(F_n)$.

Idea of proof. a) is easy because a classical result by McCool says that $\operatorname{Aut}_H(F_n) = \{\varphi \in \operatorname{Aut}(F_n) \mid H \leqslant \operatorname{Fix}(\varphi)\} \leqslant \operatorname{Aut}(F_n)$ is finitely generated and computable,

• Using McCool, compute $\varphi_1, \ldots, \varphi_k$ s.t. $\operatorname{Aut}_H(F_n) = \langle \varphi_1, \ldots, \varphi_k \rangle$,

- a) H is auto-fixed,
- b) H is endo-fixed, and in the affirmative, find $S \subseteq \operatorname{Aut}(F_n)$ or $S \subseteq \operatorname{End}(F_n)$.

- Using McCool, compute $\varphi_1, \ldots, \varphi_k$ s.t. $\operatorname{Aut}_H(F_n) = \langle \varphi_1, \ldots, \varphi_k \rangle$,
- Using Maslakova, compute $Fix(\varphi_1), \ldots, Fix(\varphi_k)$,

- a) H is auto-fixed,
- b) H is endo-fixed, and in the affirmative, find $S \subseteq \operatorname{Aut}(F_n)$ or $S \subseteq \operatorname{End}(F_n)$.

- Using McCool, compute $\varphi_1, \ldots, \varphi_k$ s.t. $\operatorname{Aut}_H(F_n) = \langle \varphi_1, \ldots, \varphi_k \rangle$,
- Using Maslakova, compute $Fix(\varphi_1),...,Fix(\varphi_k)$,
- Using Stallings, compute $\overline{H} = \text{Fix}(\varphi_1) \cap \cdots \cap \text{Fix}(\varphi_k) \geqslant H$.

- a) H is auto-fixed,
- b) H is endo-fixed, and in the affirmative, find $S \subseteq \operatorname{Aut}(F_n)$ or $S \subseteq \operatorname{End}(F_n)$.

- Using McCool, compute $\varphi_1, \ldots, \varphi_k$ s.t. $\operatorname{Aut}_H(F_n) = \langle \varphi_1, \ldots, \varphi_k \rangle$,
- Using Maslakova, compute $Fix(\varphi_1), \ldots, Fix(\varphi_k)$,
- Using Stallings, compute $\overline{H} = \text{Fix}(\varphi_1) \cap \cdots \cap \text{Fix}(\varphi_k) \geqslant H$.
- Clearly, H is auto-fixed $\Leftrightarrow \overline{H} = H$.

b) is more complicated because, in general,

$$\operatorname{End}_{H}(F_{n}) = \{ \varphi \in \operatorname{End}(F_{n}) \mid H \leqslant \operatorname{Fix}(\varphi) \}$$

is not finitely generated as submonoid of End (F_n) .

b) is more complicated because, in general,

$$\operatorname{End}_{H}(F_{n}) = \{ \varphi \in \operatorname{End}(F_{n}) \mid H \leqslant \operatorname{Fix}(\varphi) \}$$

is not finitely generated as submonoid of End (F_n) .

Definition. The auto-closure and endo-closure of H in F_n are

$$a\text{-}Cl_{F_n}(H) = Fix(Aut_H(F_n)) \geqslant H,$$

$$e\text{-}Cl_{F_n}(H) = Fix(End_H(F_n)) \geqslant H.$$

b) is more complicated because, in general,

$$\operatorname{End}_{H}(F_{n}) = \{ \varphi \in \operatorname{End}(F_{n}) \mid H \leqslant \operatorname{Fix}(\varphi) \}$$

is not finitely generated as submonoid of End (F_n) .

Definition. The auto-closure and endo-closure of H in F_n are

$$a\text{-}CI_{F_n}(H) = Fix(Aut_H(F_n)) \geqslant H,$$

$$e$$
- $Cl_{F_n}(H) = Fix(End_H(F_n)) \geqslant H.$

Claim: Bases for a- $Cl_{F_n}(H)$ and e- $Cl_{F_n}(H)$ are algorithmically computable.

b) is more complicated because, in general,

$$\operatorname{End}_{H}(F_{n}) = \{ \varphi \in \operatorname{End}(F_{n}) \mid H \leqslant \operatorname{Fix}(\varphi) \}$$

is not finitely generated as submonoid of End (F_n) .

Definition. The auto-closure and endo-closure of H in F_n are

$$a\text{-}CI_{F_n}(H) = Fix(Aut_H(F_n)) \geqslant H,$$

$$e$$
- $Cl_{F_n}(H) = Fix(End_H(F_n)) \geqslant H.$

Claim: Bases for a- $Cl_{F_n}(H)$ and e- $Cl_{F_n}(H)$ are algorithmically computable.

• We have already computed $\overline{H} = a - Cl_{F_n}(H)$.

For computing	endo-closures,	we need	more ingredients:	

• For computing endo-closures, we need more ingredients:

Definition. Let $H \leq K \leq F_n$. The extension $H \leq K$ is algebraic if H is not contained in any proper free factor of K.

• For computing endo-closures, we need more ingredients:

Definition. Let $H \leq K \leq F_n$. The extension $H \leq K$ is algebraic if H is not contained in any proper free factor of K.

Theorem. (Takahasi, 1951; 3 indep. others, \sim 2000) If $H \leq F_n$ is finitely generated, then its set of algebraic extensions, $\mathcal{AE}(H)$, is non-empty, finite and computable.

For computing endo-closures, we need more ingredients:

Definition. Let $H \leq K \leq F_n$. The extension $H \leq K$ is algebraic if H is not contained in any proper free factor of K.

Theorem. (Takahasi, 1951; 3 indep. others, \sim 2000) If $H \leq F_n$ is finitely generated, then its set of algebraic extensions, $\mathcal{AE}(H)$, is non-empty, finite and computable.

Definition. Let $H \le K \le F_n$. One says that H is a retract of K if the identity $H \to H$ extends to an (idempotent) morphism $\rho \colon K \to H$.

For computing endo-closures, we need more ingredients:

Definition. Let $H \leq K \leq F_n$. The extension $H \leq K$ is algebraic if H is not contained in any proper free factor of K.

Theorem. (Takahasi, 1951; 3 indep. others, \sim 2000) If $H \leq F_n$ is finitely generated, then its set of algebraic extensions, $\mathcal{AE}(H)$, is non-empty, finite and computable.

Definition. Let $H \le K \le F_n$. One says that H is a retract of K if the identity $H \to H$ extends to an (idempotent) morphism $\rho \colon K \to H$.

Theorem. (Turner) Given $H \leq F_n$ finitely generated, it is algorithmically decidable whether H is a retract of F_n .

$$e\text{-}Cl_{F_n}(H) = a\text{-}Cl_{H_0}(H) \cap \cdots \cap a\text{-}Cl_{H_s}(H)$$

$$e$$
- $Cl_{F_n}(H) = a$ - $Cl_{H_0}(H) \cap \cdots \cap a$ - $Cl_{H_s}(H)$

$$e$$
- $Cl_{F_n}(H) = a$ - $Cl_{H_0}(H) \cap \cdots \cap a$ - $Cl_{H_s}(H)$

Algorithm for computing the endo-cloure of H:

• By Takahasi, compute $\mathcal{AE}(H) = \{H_0 = H, \dots, H_r\}$,

$$e$$
- $Cl_{F_n}(H) = a$ - $Cl_{H_0}(H) \cap \cdots \cap a$ - $Cl_{H_s}(H)$

- By Takahasi, compute $\mathcal{AE}(H) = \{H_0 = H, \dots, H_r\}$,
- By Turner, choose those H_i where H is a retract, $\mathcal{AE}_{ret}(H) = \{H_0 = H, \dots, H_s\}, s \leqslant r$,

$$e$$
- $Cl_{F_n}(H) = a$ - $Cl_{H_0}(H) \cap \cdots \cap a$ - $Cl_{H_s}(H)$

- By Takahasi, compute $\mathcal{AE}(H) = \{H_0 = H, \dots, H_r\}$,
- By Turner, choose those H_i where H is a retract, $\mathcal{AE}_{ret}(H) = \{H_0 = H, \dots, H_s\}, s \leqslant r$,
- ullet By comp. of auto-closures, compute $a\text{-}Cl_{H_0}(H),\ldots,a\text{-}Cl_{H_s}(H)$,

$$e\text{-}Cl_{F_n}(H) = a\text{-}Cl_{H_0}(H) \cap \cdots \cap a\text{-}Cl_{H_s}(H)$$

- By Takahasi, compute $\mathcal{AE}(H) = \{H_0 = H, \dots, H_r\}$,
- By Turner, choose those H_i where H is a retract, $\mathcal{AE}_{ret}(H) = \{H_0 = H, \dots, H_s\}, s \leqslant r$,
- ullet By comp. of auto-closures, compute $a\text{-}Cl_{H_0}(H),\ldots,a\text{-}Cl_{H_s}(H)$,
- By Stallings, compute $a-Cl_{H_0}(H)\cap \cdots \cap a-Cl_{H_s}(H)$,

$$e$$
- $Cl_{F_n}(H) = a$ - $Cl_{H_0}(H) \cap \cdots \cap a$ - $Cl_{H_s}(H)$

- By Takahasi, compute $\mathcal{AE}(H) = \{H_0 = H, \dots, H_r\}$,
- By Turner, choose those H_i where H is a retract, $\mathcal{AE}_{ret}(H) = \{H_0 = H, \dots, H_s\}, s \leqslant r$,
- ullet By comp. of auto-closures, compute $a\text{-}\mathit{Cl}_{H_0}(H),\ldots,a\text{-}\mathit{Cl}_{H_s}(H)$,
- By Stallings, compute $a-Cl_{H_0}(H)\cap \cdots \cap a-Cl_{H_s}(H)$,
- ullet By the Technical Lemma, this equals $e\text{-}Cl_{F_n}(H)$.

THANKS