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• H 6 Zn is 1-auto-fixed ⇔ H is a direct summand of Zn,

• All is easy from algorithmic point of view.
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Example. (Stallings automorphism) Let

ϕ : F4 → F4
a 7→ dac

b 7→ c−1a−1d−1ac

c 7→ c−1a−1b−1ac

d 7→ c−1a−1bc
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• [Martino-V., 2004] Explicit description of 1-auto-fixed sub-
groups of Fn.
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• We have already computed H = a-Cl Fn(H).
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Definition. Let H 6 K 6 Fn. The extension H 6 K is algebraic

if H is not contained in any proper free factor of K.

Theorem. (Takahasi, 1951; 3 indep. others, ∼ 2000)

If H 6 Fn is finitely generated, then its set of algebraic extensions,

AE(H), is non-empty, finite and computable.

Definition. Let H 6 K 6 Fn. One says that H is a retract of

K if the identity H → H extends to an (idempotent) morphism

ρ : K → H.

Theorem. (Turner) Given H 6 Fn finitely generated, it is al-

gorithmically decidable whether H is a retract of Fn.
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