Deciding endo-fixedness

E. Ventura

(Universitat Politècnica de Catalunya)

Lleida, July 22, 2008

Consider \mathbb{Z}^{n} and its automorphism group Aut $\left(\mathbb{Z}^{n}\right)=G L_{n}(\mathbb{Z})$.

Consider \mathbb{Z}^{n} and its automorphism group $\operatorname{Aut}\left(\mathbb{Z}^{n}\right)=G L_{n}(\mathbb{Z})$.
Given $M \in G L_{n}(\mathbb{Z})$,

$$
\operatorname{Fix}(M)=\left\{v \in \mathbb{Z}^{n} \mid M v=v\right\} \leqslant \mathbb{Z}^{n} .
$$

Consider \mathbb{Z}^{n} and its automorphism group $\operatorname{Aut}\left(\mathbb{Z}^{n}\right)=G L_{n}(\mathbb{Z})$.
Given $M \in G L_{n}(\mathbb{Z})$,

$$
\operatorname{Fix}(M)=\left\{v \in \mathbb{Z}^{n} \mid M v=v\right\} \leqslant \mathbb{Z}^{n} .
$$

Dually,

$$
H \leqslant \mathbb{Z}^{n} \text { is 1-auto-fixed } \Leftrightarrow H=\operatorname{Fix}(M) \text { for some } M \in G L_{n}(\mathbb{Z})
$$

Consider \mathbb{Z}^{n} and its automorphism group $\operatorname{Aut}\left(\mathbb{Z}^{n}\right)=G L_{n}(\mathbb{Z})$.
Given $M \in G L_{n}(\mathbb{Z})$,

$$
\operatorname{Fix}(M)=\left\{v \in \mathbb{Z}^{n} \mid M v=v\right\} \leqslant \mathbb{Z}^{n} .
$$

Dually,

$$
H \leqslant \mathbb{Z}^{n} \text { is 1-auto-fixed } \Leftrightarrow H=\operatorname{Fix}(M) \text { for some } M \in G L_{n}(\mathbb{Z}) .
$$

Easy to see that:

- $\lambda v \in \operatorname{Fix}(M) \quad \Rightarrow \quad v \in \operatorname{Fix}(M)$,

Consider \mathbb{Z}^{n} and its automorphism group $\operatorname{Aut}\left(\mathbb{Z}^{n}\right)=G L_{n}(\mathbb{Z})$.
Given $M \in G L_{n}(\mathbb{Z})$,

$$
\operatorname{Fix}(M)=\left\{v \in \mathbb{Z}^{n} \mid M v=v\right\} \leqslant \mathbb{Z}^{n} .
$$

Dually,

$$
H \leqslant \mathbb{Z}^{n} \text { is 1-auto-fixed } \Leftrightarrow H=\operatorname{Fix}(M) \text { for some } M \in G L_{n}(\mathbb{Z})
$$

Easy to see that:

- $\lambda v \in \operatorname{Fix}(M) \quad \Rightarrow \quad v \in \operatorname{Fix}(M)$,
- $\langle(1,0,0),(0,2,4)\rangle \leqslant \mathbb{Z}^{3}$ is not 1 -auto-fixed,

Consider \mathbb{Z}^{n} and its automorphism group $\operatorname{Aut}\left(\mathbb{Z}^{n}\right)=G L_{n}(\mathbb{Z})$.
Given $M \in G L_{n}(\mathbb{Z})$,

$$
\operatorname{Fix}(M)=\left\{v \in \mathbb{Z}^{n} \mid M v=v\right\} \leqslant \mathbb{Z}^{n} .
$$

Dually,

$$
H \leqslant \mathbb{Z}^{n} \text { is 1-auto-fixed } \Leftrightarrow H=\mathrm{Fix}(M) \text { for some } M \in G L_{n}(\mathbb{Z}) .
$$

Easy to see that:

- $\lambda v \in \operatorname{Fix}(M) \quad \Rightarrow \quad v \in \operatorname{Fix}(M)$,
- $\langle(1,0,0),(0,2,4)\rangle \leqslant \mathbb{Z}^{3}$ is not 1-auto-fixed,
- $H \leqslant \mathbb{Z}^{n}$ is 1 -auto-fixed $\Leftrightarrow \quad H$ is a direct summand of \mathbb{Z}^{n},

Consider \mathbb{Z}^{n} and its automorphism group $\operatorname{Aut}\left(\mathbb{Z}^{n}\right)=G L_{n}(\mathbb{Z})$.
Given $M \in G L_{n}(\mathbb{Z})$,

$$
\operatorname{Fix}(M)=\left\{v \in \mathbb{Z}^{n} \mid M v=v\right\} \leqslant \mathbb{Z}^{n} .
$$

Dually,

$$
H \leqslant \mathbb{Z}^{n} \text { is } 1 \text {-auto-fixed } \Leftrightarrow H=\mathrm{Fix}(M) \text { for some } M \in G L_{n}(\mathbb{Z}) .
$$

Easy to see that:

- $\lambda v \in \operatorname{Fix}(M) \quad \Rightarrow \quad v \in \operatorname{Fix}(M)$,
- $\langle(1,0,0),(0,2,4)\rangle \leqslant \mathbb{Z}^{3}$ is not 1 -auto-fixed,
- $H \leqslant \mathbb{Z}^{n}$ is 1 -auto-fixed $\Leftrightarrow \quad H$ is a direct summand of \mathbb{Z}^{n},
- All is easy from algorithmic point of view.

Consider the F_{n} the free group of rank n, and its automorphism group Aut (F_{n}).

Consider the F_{n} the free group of rank n, and its automorphism group Aut $\left(F_{n}\right)$.

Given $\varphi \in$ End $\left(F_{n}\right)$ and $S \subseteq$ End $\left(F_{n}\right)$,

$$
\operatorname{Fix}(\varphi)=\left\{w \in F_{n} \mid w \varphi=w\right\} \leqslant F_{n}
$$

$$
\operatorname{Fix}(S)=\left\{w \in F_{n} \mid w \varphi=w \forall \varphi \in S\right\}=\bigcap_{\varphi \in S} \operatorname{Fix}(\varphi) \leqslant F_{n}
$$

Consider the F_{n} the free group of rank n, and its automorphism group Aut $\left(F_{n}\right)$.

Given $\varphi \in$ End $\left(F_{n}\right)$ and $S \subseteq$ End $\left(F_{n}\right)$,

$$
\begin{gathered}
\operatorname{Fix}(\varphi)=\left\{w \in F_{n} \mid w \varphi=w\right\} \leqslant F_{n} \\
\operatorname{Fix}(S)=\left\{w \in F_{n} \mid w \varphi=w \forall \varphi \in S\right\}=\bigcap_{\varphi \in S} \operatorname{Fix}(\varphi) \leqslant F_{n}
\end{gathered}
$$

Dually,

- $H \leqslant F_{n}$ is 1 -auto-fixed $\Leftrightarrow H=\operatorname{Fix}(\varphi)$ for some $\varphi \in \operatorname{Aut}\left(F_{n}\right)$,
- $H \leqslant F_{n}$ is 1-endo-fixed $\Leftrightarrow H=\operatorname{Fix}(\varphi)$ for some $\varphi \in \operatorname{End}\left(F_{n}\right)$,
- $H \leqslant F_{n}$ is auto-fixed $\Leftrightarrow H=\operatorname{Fix}(S)$ for some $S \subseteq \operatorname{Aut}\left(F_{n}\right)$,
- $H \leqslant F_{n}$ is endo-fixed $\Leftrightarrow H=\operatorname{Fix}(S)$ for some \subseteq End $\left(F_{n}\right)$.

Easy to see that:

- $v^{r} \in \operatorname{Fix}(\varphi) \quad \Rightarrow \quad v \in \operatorname{Fix}(\varphi)$,

Easy to see that:

- $v^{r} \in \operatorname{Fix}(\varphi) \quad \Rightarrow \quad v \in \operatorname{Fix}(\varphi)$,
- H is a free factor of $F_{n} \underset{\nLeftarrow}{\nLeftarrow} H$ is 1-auto-fixed,

Easy to see that:

- $v^{r} \in \operatorname{Fix}(\varphi) \quad \Rightarrow \quad v \in \operatorname{Fix}(\varphi)$,
- H is a free factor of $F_{n} \underset{\nLeftarrow H \text { is } 1 \text {-auto-fixed, }}{\nLeftarrow}$
- All the rest (including decidability) is much more complicated.

Easy to see that:

- $v^{r} \in \operatorname{Fix}(\varphi) \quad \Rightarrow \quad v \in \operatorname{Fix}(\varphi)$,
- H is a free factor of $F_{n} \underset{\nLeftarrow H \text { is 1-auto-fixed, }}{\nRightarrow}$
- All the rest (including decidability) is much more complicated.

Example. (Stallings automorphism) Let

$$
\begin{aligned}
\varphi: F_{4} & \rightarrow F_{4} \\
a & \mapsto d a c \\
b & \mapsto c^{-1} a^{-1} d^{-1} a c \\
c & \mapsto c^{-1} a^{-1} b^{-1} a c \\
d & \mapsto c^{-1} a^{-1} b c
\end{aligned}
$$

Then $\operatorname{Fix}(\varphi)=\langle w\rangle$, where

$$
\begin{aligned}
w= & c^{-1} a^{-1} b d^{-1} c^{-1} a^{-1} d^{-1} a d^{-1} c^{-1} b^{-1} a c d a d a c d c d b c d a^{-1} a^{-1} d^{-1} a^{-1} \\
& d^{-1} c^{-1} a^{-1} d^{-1} c^{-1} b^{-1} d^{-1} c^{-1} d^{-1} c^{-1} \text { daabcdaccdb} b^{-1} a^{-1} .
\end{aligned}
$$

Then $\operatorname{Fix}(\varphi)=\langle w\rangle$, where
$\begin{aligned} w= & c^{-1} a^{-1} b d^{-1} c^{-1} a^{-1} d^{-1} a d^{-1} c^{-1} b^{-1} a c d a d a c d c d b c d a^{-1} a^{-1} d^{-1} a^{-1} \\ & d^{-1} c^{-1} a^{-1} d^{-1} c^{-1} b^{-1} d^{-1} c^{-1} d^{-1} c^{-1} \text { daabcdaccdb } b^{-1} a^{-1} .\end{aligned}$
Known results:

- [Bestvina-Handel, 1989] For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), r(\operatorname{Fix}(\varphi)) \leqslant n$.

Then $\operatorname{Fix}(\varphi)=\langle w\rangle$, where

$$
\begin{aligned}
w= & c^{-1} a^{-1} b d^{-1} c^{-1} a^{-1} d^{-1} a d^{-1} c^{-1} b^{-1} a c d a d a c d c d b c d a^{-1} a^{-1} d^{-1} a^{-1} \\
& d^{-1} c^{-1} a^{-1} d^{-1} c^{-1} b^{-1} d^{-1} c^{-1} d^{-1} c^{-1} \text { daabcdaccdb-1 } a^{-1} .
\end{aligned}
$$

Known results:

- [Bestvina-Handel, 1989] For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), r(\operatorname{Fix}(\varphi)) \leqslant n$.
- [Imrich-Turner, 1989] For every $\varphi \in \operatorname{End}\left(F_{n}\right), r(\operatorname{Fix}(\varphi)) \leqslant n$.

Then $\operatorname{Fix}(\varphi)=\langle w\rangle$, where

$$
\begin{aligned}
w= & c^{-1} a^{-1} b d^{-1} c^{-1} a^{-1} d^{-1} a d^{-1} c^{-1} b^{-1} a c d a d a c d c d b c d a^{-1} a^{-1} d^{-1} a^{-1} \\
& d^{-1} c^{-1} a^{-1} d^{-1} c^{-1} b^{-1} d^{-1} c^{-1} d^{-1} c^{-1} \text { daabcdaccdb} b^{-1} a^{-1} .
\end{aligned}
$$

Known results:

- [Bestvina-Handel, 1989] For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), r(\operatorname{Fix}(\varphi)) \leqslant n$.
- [Imrich-Turner, 1989] For every $\varphi \in$ End $\left(F_{n}\right), r(\operatorname{Fix}(\varphi)) \leqslant n$.
- [Dicks-V., 1996] For every $S \subseteq$ Aut $\left(F_{n}\right), r($ Fix $(S)) \leqslant n$.

Then $\operatorname{Fix}(\varphi)=\langle w\rangle$, where

$$
\begin{aligned}
w= & c^{-1} a^{-1} b d^{-1} c^{-1} a^{-1} d^{-1} a d^{-1} c^{-1} b^{-1} a c d a d a c d c d b c d a^{-1} a^{-1} d^{-1} a^{-1} \\
& d^{-1} c^{-1} a^{-1} d^{-1} c^{-1} b^{-1} d^{-1} c^{-1} d^{-1} c^{-1} \text { daabcdaccdb} b^{-1} a^{-1} .
\end{aligned}
$$

Known results:

- [Bestvina-Handel, 1989] For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), r(\operatorname{Fix}(\varphi)) \leqslant n$.
- [Imrich-Turner, 1989] For every $\varphi \in$ End $\left(F_{n}\right), r($ Fix $(\varphi)) \leqslant n$.
- [Dicks-V., 1996] For every $S \subseteq$ Aut $\left(F_{n}\right), r($ Fix $(S)) \leqslant n$.
- [Bergman, 1999] For every $S \subseteq$ End $\left(F_{n}\right), r($ Fix $(S)) \leqslant n$.

Then $\operatorname{Fix}(\varphi)=\langle w\rangle$, where

$$
\begin{aligned}
w= & c^{-1} a^{-1} b d^{-1} c^{-1} a^{-1} d^{-1} a d^{-1} c^{-1} b^{-1} a c d a d a c d c d b c d a^{-1} a^{-1} d^{-1} a^{-1} \\
& d^{-1} c^{-1} a^{-1} d^{-1} c^{-1} b^{-1} d^{-1} c^{-1} d^{-1} c^{-1} d a a b c d a c c d b^{-1} a^{-1}
\end{aligned}
$$

Known results:

- [Bestvina-Handel, 1989] For every $\varphi \in \operatorname{Aut}\left(F_{n}\right), r(\operatorname{Fix}(\varphi)) \leqslant n$.
- [Imrich-Turner, 1989] For every $\varphi \in \operatorname{End}\left(F_{n}\right), r(\operatorname{Fix}(\varphi)) \leqslant n$.
- [Dicks-V., 1996] For every $S \subseteq$ Aut $\left(F_{n}\right), r($ Fix $(S)) \leqslant n$.
- [Bergman, 1999] For every $S \subseteq$ End $\left(F_{n}\right), r(\operatorname{Fix}(S)) \leqslant n$.
- [Martino-V., 2004] Explicit description of 1-auto-fixed subgroups of F_{n}.
- [Martino-V.] If $\varphi \in$ End $\left(F_{3}\right)$ fixes $[a, b]=a^{-1} b^{-1} a b$ and $[a, c]=a^{-1} c^{-1} a c$, then it must also fix a. Hence, $H=\langle[a, b],[a, c]\rangle$ is not endo-fixed.
- [Martino-V.] If $\varphi \in \operatorname{End}\left(F_{3}\right)$ fixes $[a, b]=a^{-1} b^{-1} a b$ and $[a, c]=a^{-1} c^{-1} a c$, then it must also fix a. Hence, $H=\langle[a, b],[a, c]\rangle$ is not endo-fixed.

1-auto-fixed \Rightarrow 1-endo-fixed
\Downarrow
auto-fixed $\quad \Rightarrow \quad$ endo-fixed

- [Martino-V.] If $\varphi \in \operatorname{End}\left(F_{3}\right)$ fixes $[a, b]=a^{-1} b^{-1} a b$ and $[a, c]=a^{-1} c^{-1} a c$, then it must also fix a. Hence, $H=\langle[a, b],[a, c]\rangle$ is not endo-fixed.

$$
\text { 1-auto-fixed } \stackrel{\&}{\Rightarrow} \text { 1-endo-fixed }
$$

$$
\Downarrow \quad \Downarrow
$$

$$
\text { auto-fixed } \quad \stackrel{\&}{\Rightarrow} \quad \text { endo-fixed }
$$

[Martino-V.] In $F_{3}, H_{r, s, t}=\left\langle b, c a^{r} c b^{s} a^{t} b^{-s} c^{-1}\right\rangle$ is 1-endo-fixed; but it is 1 -auto-fixed if and only if $r s t=0$.

- [Martino-V.] If $\varphi \in \operatorname{End}\left(F_{3}\right)$ fixes $[a, b]=a^{-1} b^{-1} a b$ and $[a, c]=a^{-1} c^{-1} a c$, then it must also fix a. Hence, $H=\langle[a, b],[a, c]\rangle$ is not endo-fixed.

$$
\begin{array}{ccc}
1 \text {-auto-fixed } & \stackrel{\nLeftarrow}{\Rightarrow} & 1 \text {-endo-fixed } \\
\Downarrow \Uparrow ? & & \Downarrow \Uparrow ? \\
\text { auto-fixed } & \stackrel{\otimes}{\Rightarrow} & \text { endo-fixed }
\end{array}
$$

[Martino-V.] In $F_{3}, H_{r, s, t}=\left\langle b, c a^{r} c b^{s} a^{t} b^{-s} c^{-1}\right\rangle$ is 1-endo-fixed; but it is 1 -auto-fixed if and only if $r s t=0$.

Theorem. (Maslakova, 2003) Given $\varphi: F_{n} \rightarrow F_{n}$, a basis for Fix (φ) is algorithmically computable.

- The proof and the algorithm are both very complicated.

Theorem. (Maslakova, 2003) Given $\varphi: F_{n} \rightarrow F_{n}$, a basis for Fix (φ) is algorithmically computable.

- The proof and the algorithm are both very complicated.
- Similar result not known for endomorphisms.

Theorem. (Maslakova, 2003) Given $\varphi: F_{n} \rightarrow F_{n}$, a basis for Fix (φ) is algorithmically computable.

- The proof and the algorithm are both very complicated.
- Similar result not known for endomorphisms.

Theorem. (V., 2008) Given $H \leqslant F_{n}$, it is algorithmically decidable whether
a) H is auto-fixed,
b) H is endo-fixed,
and in the affirmative, find $S \subseteq \operatorname{Aut}\left(F_{n}\right)$ or $S \subseteq \operatorname{End}\left(F_{n}\right)$.

Theorem. (Maslakova, 2003) Given $\varphi: F_{n} \rightarrow F_{n}$, a basis for Fix (φ) is algorithmically computable.

- The proof and the algorithm are both very complicated.
- Similar result not known for endomorphisms.

Theorem. (V., 2008) Given $H \leqslant F_{n}$, it is algorithmically decidable whether
a) H is auto-fixed,
b) H is endo-fixed, and in the affirmative, find $S \subseteq \operatorname{Aut}\left(F_{n}\right)$ or $S \subseteq \operatorname{End}\left(F_{n}\right)$.

- Similar result not known for 1-auto-fixedness or 1-endo-fixedness.

Theorem. (V., 2008) Given $H \leqslant F_{n}$, it is algorithmically decidable whether
a) H is auto-fixed,
b) H is endo-fixed,
and in the affirmative, find $S \subseteq \operatorname{Aut}\left(F_{n}\right)$ or $S \subseteq$ End $\left(F_{n}\right)$.
Idea of proof.

Theorem. (V., 2008) Given $H \leqslant F_{n}$, it is algorithmically decidable whether
a) H is auto-fixed,
b) H is endo-fixed, and in the affirmative, find $S \subseteq \operatorname{Aut}\left(F_{n}\right)$ or $S \subseteq$ End $\left(F_{n}\right)$.

Idea of proof. a) is easy because a classical result by McCool says that $\operatorname{Aut}_{H}\left(F_{n}\right)=\left\{\varphi \in \operatorname{Aut}\left(F_{n}\right) \mid H \leqslant \operatorname{Fix}(\varphi)\right\} \leqslant \operatorname{Aut}\left(F_{n}\right)$ is finitely generated and computable,

Theorem. (V., 2008) Given $H \leqslant F_{n}$, it is algorithmically decidable whether
a) H is auto-fixed,
b) H is endo-fixed, and in the affirmative, find $S \subseteq \operatorname{Aut}\left(F_{n}\right)$ or $S \subseteq$ End $\left(F_{n}\right)$.

Idea of proof. a) is easy because a classical result by McCool says that $\operatorname{Aut}_{H}\left(F_{n}\right)=\left\{\varphi \in \operatorname{Aut}\left(F_{n}\right) \mid H \leqslant \operatorname{Fix}(\varphi)\right\} \leqslant \operatorname{Aut}\left(F_{n}\right)$ is finitely generated and computable,

- Using McCool, compute $\varphi_{1}, \ldots, \varphi_{k}$ s.t. $\operatorname{Aut}_{H}\left(F_{n}\right)=\left\langle\varphi_{1}, \ldots, \varphi_{k}\right\rangle$,

Theorem. (V., 2008) Given $H \leqslant F_{n}$, it is algorithmically decidable whether
a) H is auto-fixed,
b) H is endo-fixed, and in the affirmative, find $S \subseteq \operatorname{Aut}\left(F_{n}\right)$ or $S \subseteq$ End $\left(F_{n}\right)$.

Idea of proof. a) is easy because a classical result by McCool says that $\operatorname{Aut}_{H}\left(F_{n}\right)=\left\{\varphi \in \operatorname{Aut}\left(F_{n}\right) \mid H \leqslant \operatorname{Fix}(\varphi)\right\} \leqslant \operatorname{Aut}\left(F_{n}\right)$ is finitely generated and computable,

- Using McCool, compute $\varphi_{1}, \ldots, \varphi_{k}$ s.t. $\operatorname{Aut}_{H}\left(F_{n}\right)=\left\langle\varphi_{1}, \ldots, \varphi_{k}\right\rangle$,
- Using Maslakova, compute Fix $\left(\varphi_{1}\right), \ldots$, Fix $\left(\varphi_{k}\right)$,

Theorem. (V., 2008) Given $H \leqslant F_{n}$, it is algorithmically decidable whether
a) H is auto-fixed,
b) H is endo-fixed,
and in the affirmative, find $S \subseteq \operatorname{Aut}\left(F_{n}\right)$ or $S \subseteq$ End $\left(F_{n}\right)$.
Idea of proof. a) is easy because a classical result by McCool says that $\operatorname{Aut}_{H}\left(F_{n}\right)=\left\{\varphi \in \operatorname{Aut}\left(F_{n}\right) \mid H \leqslant \operatorname{Fix}(\varphi)\right\} \leqslant \operatorname{Aut}\left(F_{n}\right)$ is finitely generated and computable,

- Using McCool, compute $\varphi_{1}, \ldots, \varphi_{k}$ s.t. Aut $_{H}\left(F_{n}\right)=\left\langle\varphi_{1}, \ldots, \varphi_{k}\right\rangle$,
- Using Maslakova, compute Fix $\left(\varphi_{1}\right), \ldots$, Fix $\left(\varphi_{k}\right)$,
- Using Stallings, compute $\bar{H}=\operatorname{Fix}\left(\varphi_{1}\right) \cap \cdots \cap \operatorname{Fix}\left(\varphi_{k}\right) \geqslant H$.

Theorem. (V., 2008) Given $H \leqslant F_{n}$, it is algorithmically decidable whether
a) H is auto-fixed,
b) H is endo-fixed,
and in the affirmative, find $S \subseteq \operatorname{Aut}\left(F_{n}\right)$ or $S \subseteq$ End $\left(F_{n}\right)$.
Idea of proof. a) is easy because a classical result by McCool says that $\operatorname{Aut}_{H}\left(F_{n}\right)=\left\{\varphi \in \operatorname{Aut}\left(F_{n}\right) \mid H \leqslant \operatorname{Fix}(\varphi)\right\} \leqslant \operatorname{Aut}\left(F_{n}\right)$ is finitely generated and computable,

- Using McCool, compute $\varphi_{1}, \ldots, \varphi_{k}$ s.t. Aut $_{H}\left(F_{n}\right)=\left\langle\varphi_{1}, \ldots, \varphi_{k}\right\rangle$,
- Using Maslakova, compute Fix $\left(\varphi_{1}\right), \ldots$, Fix $\left(\varphi_{k}\right)$,
- Using Stallings, compute $\bar{H}=\operatorname{Fix}\left(\varphi_{1}\right) \cap \cdots \cap \operatorname{Fix}\left(\varphi_{k}\right) \geqslant H$.
- Clearly, H is auto-fixed $\Leftrightarrow \bar{H}=H$.
b) is more complicated because, in general,

$$
\operatorname{End}_{H}\left(F_{n}\right)=\left\{\varphi \in \operatorname{End}\left(F_{n}\right) \mid H \leqslant \operatorname{Fix}(\varphi)\right\}
$$

is not finitely generated as submonoid of End $\left(F_{n}\right)$.
b) is more complicated because, in general,

$$
\operatorname{End}_{H}\left(F_{n}\right)=\left\{\varphi \in \operatorname{End}\left(F_{n}\right) \mid H \leqslant \operatorname{Fix}(\varphi)\right\}
$$

is not finitely generated as submonoid of End $\left(F_{n}\right)$.

Definition. The auto-closure and endo-closure of H in F_{n} are

$$
\begin{aligned}
& a-C l_{F_{n}}(H)=\operatorname{Fix}\left(\operatorname{Aut}_{H}\left(F_{n}\right)\right) \geqslant H, \\
& e-C l_{F_{n}}(H)=\operatorname{Fix}\left(\operatorname{End}_{H}\left(F_{n}\right)\right) \geqslant H .
\end{aligned}
$$

b) is more complicated because, in general,

$$
\operatorname{End}_{H}\left(F_{n}\right)=\left\{\varphi \in \operatorname{End}\left(F_{n}\right) \mid H \leqslant \operatorname{Fix}(\varphi)\right\}
$$

is not finitely generated as submonoid of End $\left(F_{n}\right)$.

Definition. The auto-closure and endo-closure of H in F_{n} are

$$
\begin{aligned}
& a-C l_{F_{n}}(H)=\operatorname{Fix}\left(\operatorname{Aut}_{H}\left(F_{n}\right)\right) \geqslant H \\
& e-C l_{F_{n}}(H)=\operatorname{Fix}\left(\operatorname{End}_{H}\left(F_{n}\right)\right) \geqslant H
\end{aligned}
$$

Claim: Bases for $a-C l_{F_{n}}(H)$ and $e-C l_{F_{n}}(H)$ are algorithmically computable.
b) is more complicated because, in general,

$$
\operatorname{End}_{H}\left(F_{n}\right)=\left\{\varphi \in \operatorname{End}\left(F_{n}\right) \mid H \leqslant \operatorname{Fix}(\varphi)\right\}
$$

is not finitely generated as submonoid of End $\left(F_{n}\right)$.

Definition. The auto-closure and endo-closure of H in F_{n} are

$$
\begin{aligned}
& a-C l_{F_{n}}(H)=\operatorname{Fix}\left(\operatorname{Aut}_{H}\left(F_{n}\right)\right) \geqslant H \\
& e-C I_{F_{n}}(H)=\operatorname{Fix}\left(\operatorname{End}_{H}\left(F_{n}\right)\right) \geqslant H
\end{aligned}
$$

Claim: Bases for $a-C l_{F_{n}}(H)$ and $e-C l_{F_{n}}(H)$ are algorithmically computable.

- We have already computed $\bar{H}=a-C l_{F_{n}}(H)$.
- For computing endo-closures, we need more ingredients:
- For computing endo-closures, we need more ingredients:

Definition. Let $H \leqslant K \leqslant F_{n}$. The extension $H \leqslant K$ is algebraic if H is not contained in any proper free factor of K.

- For computing endo-closures, we need more ingredients:

Definition. Let $H \leqslant K \leqslant F_{n}$. The extension $H \leqslant K$ is algebraic if H is not contained in any proper free factor of K.

Theorem. (Takahasi, 1951; 3 indep. others, ~ 2000) If $H \leqslant F_{n}$ is finitely generated, then its set of algebraic extensions, $\mathcal{A E}(H)$, is non-empty, finite and computable.

- For computing endo-closures, we need more ingredients:

Definition. Let $H \leqslant K \leqslant F_{n}$. The extension $H \leqslant K$ is algebraic if H is not contained in any proper free factor of K.

Theorem. (Takahasi, 1951; 3 indep. others, ~ 2000) If $H \leqslant F_{n}$ is finitely generated, then its set of algebraic extensions, $\mathcal{A E}(H)$, is non-empty, finite and computable.

Definition. Let $H \leqslant K \leqslant F_{n}$. One says that H is a retract of K if the identity $H \rightarrow H$ extends to an (idempotent) morphism $\rho: K \rightarrow H$.

- For computing endo-closures, we need more ingredients:

Definition. Let $H \leqslant K \leqslant F_{n}$. The extension $H \leqslant K$ is algebraic if H is not contained in any proper free factor of K.

Theorem. (Takahasi, 1951; 3 indep. others, ~ 2000) If $H \leqslant F_{n}$ is finitely generated, then its set of algebraic extensions, $\mathcal{A E}(H)$, is non-empty, finite and computable.

Definition. Let $H \leqslant K \leqslant F_{n}$. One says that H is a retract of K if the identity $H \rightarrow H$ extends to an (idempotent) morphism $\rho: K \rightarrow H$.

Theorem. (Turner) Given $H \leqslant F_{n}$ finitely generated, it is algorithmically decidable whether H is a retract of F_{n}.

Technical Lemma. Let $H \leqslant F_{n}$, and $\mathcal{A E}_{\text {ret }}(H)=\left\{H_{0}=H, \ldots, H_{s}\right\}$ be the set of algebraic extensions of H where H is a retract. Then,

$$
e-C l_{F_{n}}(H)=a-C l_{H_{0}}(H) \cap \cdots \cap a-C l_{H_{s}}(H)
$$

Technical Lemma. Let $H \leqslant F_{n}$, and $\mathcal{A E}_{r e t}(H)=\left\{H_{0}=H, \ldots, H_{s}\right\}$ be the set of algebraic extensions of H where H is a retract.
Then,

$$
e-C l_{F_{n}}(H)=a-C l_{H_{0}}(H) \cap \cdots \cap a-C l_{H_{s}}(H)
$$

Algorithm for computing the endo-cloure of H :

Technical Lemma. Let $H \leqslant F_{n}$, and $\mathcal{A E}_{r e t}(H)=\left\{H_{0}=H, \ldots, H_{s}\right\}$ be the set of algebraic extensions of H where H is a retract.
Then,

$$
e-C l_{F_{n}}(H)=a-C l_{H_{0}}(H) \cap \cdots \cap a-C l_{H_{s}}(H)
$$

Algorithm for computing the endo-cloure of H :

- By Takahasi, compute $\mathcal{A E}(H)=\left\{H_{0}=H, \ldots, H_{r}\right\}$,

Technical Lemma. Let $H \leqslant F_{n}$, and $\mathcal{A E}_{r e t}(H)=\left\{H_{0}=H, \ldots, H_{s}\right\}$ be the set of algebraic extensions of H where H is a retract.
Then,

$$
e-C l_{F_{n}}(H)=a-C l_{H_{0}}(H) \cap \cdots \cap a-C l_{H_{s}}(H)
$$

Algorithm for computing the endo-cloure of H :

- By Takahasi, compute $\mathcal{A E}(H)=\left\{H_{0}=H, \ldots, H_{r}\right\}$,
- By Turner, choose those H_{i} where H is a retract, $\mathcal{A E}_{\text {ret }}(H)=\left\{H_{0}=H, \ldots, H_{s}\right\}, s \leqslant r$,

Technical Lemma. Let $H \leqslant F_{n}$, and $\mathcal{A E}_{r e t}(H)=\left\{H_{0}=H, \ldots, H_{s}\right\}$ be the set of algebraic extensions of H where H is a retract.
Then,

$$
e-C l_{F_{n}}(H)=a-C l_{H_{0}}(H) \cap \cdots \cap a-C l_{H_{s}}(H)
$$

Algorithm for computing the endo-cloure of H :

- By Takahasi, compute $\mathcal{A E}(H)=\left\{H_{0}=H, \ldots, H_{r}\right\}$,
- By Turner, choose those H_{i} where H is a retract, $\mathcal{A E}_{\text {ret }}(H)=\left\{H_{0}=H, \ldots, H_{s}\right\}, s \leqslant r$,
- By comp. of auto-closures, compute $a-\mathrm{Cl}_{H_{0}}(H), \ldots, a-\mathrm{Cl}_{H_{s}}(H)$,

Technical Lemma. Let $H \leqslant F_{n}$, and $\mathcal{A E}_{r e t}(H)=\left\{H_{0}=H, \ldots, H_{s}\right\}$ be the set of algebraic extensions of H where H is a retract.
Then,

$$
e-C l_{F_{n}}(H)=a-C l_{H_{0}}(H) \cap \cdots \cap a-C l_{H_{s}}(H)
$$

Algorithm for computing the endo-cloure of H :

- By Takahasi, compute $\mathcal{A E}(H)=\left\{H_{0}=H, \ldots, H_{r}\right\}$,
- By Turner, choose those H_{i} where H is a retract, $\mathcal{A E}_{\text {ret }}(H)=\left\{H_{0}=H, \ldots, H_{s}\right\}, s \leqslant r$,
- By comp. of auto-closures, compute $a-\mathrm{Cl}_{H_{0}}(H), \ldots, a-\mathrm{Cl}_{H_{s}}(H)$,
- By Stallings, compute $a-\mathrm{Cl}_{H_{0}}(H) \cap \cdots \cap a-\mathrm{Cl}_{H_{s}}(H)$,

Technical Lemma. Let $H \leqslant F_{n}$, and $\mathcal{A E}_{r e t}(H)=\left\{H_{0}=H, \ldots, H_{s}\right\}$ be the set of algebraic extensions of H where H is a retract.
Then,

$$
e-C l_{F_{n}}(H)=a-C l_{H_{0}}(H) \cap \cdots \cap a-C l_{H_{s}}(H)
$$

Algorithm for computing the endo-cloure of H :

- By Takahasi, compute $\mathcal{A E}(H)=\left\{H_{0}=H, \ldots, H_{r}\right\}$,
- By Turner, choose those H_{i} where H is a retract, $\mathcal{A E}_{\text {ret }}(H)=\left\{H_{0}=H, \ldots, H_{s}\right\}, s \leqslant r$,
- By comp. of auto-closures, compute $a-\mathrm{Cl}_{H_{0}}(H), \ldots, a-\mathrm{Cl}_{H_{s}}(H)$,
- By Stallings, compute $a-\mathrm{Cl}_{H_{0}}(H) \cap \cdots \cap a-\mathrm{Cl}_{H_{s}}(H)$,
- By the Technical Lemma, this equals $e-$ Cl $_{F_{n}}(H)$.

THANKS

