
Algebraic extensions

in free groups
———————

E. Ventura

(Universitat Politècnica de Catalunya)
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〈(2,0,4), (3,3,6)〉 66 〈(1,0,2), (1,1,2)〉
6 〈(1,0,2), (1,1,2)〉 ⊕ 〈(0,0,1)〉
= Z3.
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Example: The fringe of H = 〈ab, acba〉 as a subgroup of F =

〈a, b, c〉 is

O(H) =


H1 = 〈ab, acba〉, H2 = 〈ab, ac, ba〉,
H3 = 〈ab, a2, acba〉, H4 = 〈ab, aca, acba〉,
H5 = 〈ab, a2, ab−1, ac〉, H6 = 〈a, b, c〉.





.
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• The notion of algebraicity over H is relative to K:

〈a2b2〉 6 〈a2, b2〉 6 〈a, b〉
→ in 〈a2, b2〉, a2 is transcendental over 〈a2b2〉 (in fact,

primitive),
→ in 〈a, b〉, a2 is algebraic over 〈a2b2〉.
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(a) H is contained in no proper free factor of K;

(b) every x ∈ K is K-algebraic over H;

(c) K = 〈H, k1, . . . , kt〉 for some ki’s K-algebraic over H.

In this case, we say that the extension H 6 K is algebraic, de-

noted H 6alg K.

The set of algebraic extensions of H is denoted AE(H).

Examples: • H 6fi K implies H 6alg K.

• 〈a, b−1ab〉 6alg 〈a, b〉 (in fact, (rk 2)6alg (rk 2)).

Theorem: For every extension H 6 K of f.g. subgroups of F (A)

there exists a unique L such that H 6alg L 6ff K. This is called

the algebraic K-closure of H.



Is AE(H) finite ? computable ?



Is AE(H) finite ? computable ? YES, OF COURSE !!



Is AE(H) finite ? computable ? YES, OF COURSE !!

Theorem: Let H 6fg F (A). Then,

(a) AE(H) ⊆ O(H);

(b) AE(H) is finite (i.e., H admits only finitely many algebraic

extensions);

(c) AE(H) is computable.



Is AE(H) finite ? computable ? YES, OF COURSE !!

Theorem: Let H 6fg F (A). Then,

(a) AE(H) ⊆ O(H);

(b) AE(H) is finite (i.e., H admits only finitely many algebraic

extensions);

(c) AE(H) is computable.

Proof: (a) Let H 6alg K 6 F (A). Then, H 6 Hi 6ff K for some

Hi ∈ O(H). But K is algebraic over H so, Hi = K.



Is AE(H) finite ? computable ? YES, OF COURSE !!

Theorem: Let H 6fg F (A). Then,

(a) AE(H) ⊆ O(H);

(b) AE(H) is finite (i.e., H admits only finitely many algebraic

extensions);

(c) AE(H) is computable.

Proof: (a) Let H 6alg K 6 F (A). Then, H 6 Hi 6ff K for some

Hi ∈ O(H). But K is algebraic over H so, Hi = K.

(b) Immediate.



Is AE(H) finite ? computable ? YES, OF COURSE !!

Theorem: Let H 6fg F (A). Then,

(a) AE(H) ⊆ O(H);

(b) AE(H) is finite (i.e., H admits only finitely many algebraic

extensions);

(c) AE(H) is computable.

Proof: (a) Let H 6alg K 6 F (A). Then, H 6 Hi 6ff K for some

Hi ∈ O(H). But K is algebraic over H so, Hi = K.

(b) Immediate.

(c) Given H, → compute Γ(H),
→ compute all quotients, O(H) = {H1, . . . , Hn},
→ clean Hi if H 6ff Hi (using Roig-V.-Weil in

polynomial time).
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An application

Let V be a pseudo-variety of finite groups (i.e. a class closed by

subgroups, quotients and finite direct products). One can define

the pro-V topology in F (A).

Proposition (Ribes-Zalesskii): Suppose V is extension closed,

and let H 6ff K 6 F (A). If K is V-closed then H is V-closed.

Corollary: The pro-V closure of H 6fg F (A), denoted clV(H), is

an algebraic extension of H, i.e. H 6alg clV(H).

Theorem (Ribes-Zalesskii, Margolis-Sapir-Weil) For every prime

p, there is an algorithm to compute the pro-p closure of f.g.

subgroups of F (A).
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Open problem: Compute pro-solvable closures.

This is open even knowing that clsol(H) ∈ AE(H) !!!

Estrange situation:

→ for V extension closed and H 6fg F (A), H 6alg clV(H),
→ there are countably many H’s,
→ there are uncountably many V’s,

So, there are uncountably many V’s which are indistinguishable

by means of closures of f.g. subgroups (!)



Thank you


