On the difficulty of inverting automorphisms of free groups

Enric Ventura

Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya

Groups in Galway, 2011

May 7th, 2011.

Outline

- Motivation
- 2 Free groups
- 3 Lower bounds: a good enough example
- 4 Upper bounds: outer space
- 5 The special case of rank 2

Outline

- Motivation
- 2 Free groups
- 3 Lower bounds: a good enough example
- Upper bounds: outer space
- 5 The special case of rank 2

(Joint work with P. Silva and M. Ladra.)

Find a group G where \cdot is "easy" but ()⁻¹ is "difficult".

```
\phi \psi : F_3 \rightarrow F_3
         a \mapsto bc^{-1}a^{-1}bc
```

(Joint work with P. Silva and M. Ladra.)

Find a group G where \cdot is "easy" but ()⁻¹ is "difficult".

$$F_{3} = \langle \textbf{\textit{a}}, \textbf{\textit{b}}, \textbf{\textit{c}} \mid \rangle.$$

$$\phi \colon F_{3} \to F_{3} \qquad \psi \colon F_{3} \to F_{3}$$

$$a \mapsto ab \qquad a \mapsto bc^{-1}$$

$$b \mapsto ab^{2}c \qquad b \mapsto a^{-1}bc$$

$$c \mapsto bc^{2} \qquad c \mapsto c^{-1}.$$

$$\phi \psi \colon F_{3} \to F_{3}$$

$$a \mapsto bc^{-1}a^{-1}bc$$

$$b \mapsto bc^{-1}a^{-1}bca^{-1}b$$

$$c \mapsto a^{-1}bc^{-1}.$$

(Joint work with P. Silva and M. Ladra.)

Find a group G where \cdot is "easy" but ()⁻¹ is "difficult".

$$F_{3} = \langle a, b, c \mid \rangle.$$

$$\phi \colon F_{3} \to F_{3} \qquad \psi \colon F_{3} \to F_{3}$$

$$a \mapsto ab \qquad a \mapsto bc^{-1}$$

$$b \mapsto ab^{2}c \qquad b \mapsto a^{-1}bc$$

$$c \mapsto bc^{2} \qquad c \mapsto c^{-1}.$$

$$\phi \psi \colon F_{3} \to F_{3}$$

$$a \mapsto bc^{-1}a^{-1}bc$$

$$b \mapsto bc^{-1}a^{-1}bca^{-1}b$$

$$c \mapsto a^{-1}bc^{-1}.$$

(Joint work with P. Silva and M. Ladra.)

Find a group G where \cdot is "easy" but ()⁻¹ is "difficult".

$$F_{3} = \langle a, b, c \mid \rangle.$$

$$\phi \colon F_{3} \to F_{3} \qquad \psi \colon F_{3} \to F_{3}$$

$$a \mapsto ab \qquad a \mapsto bc^{-1}$$

$$b \mapsto ab^{2}c \qquad b \mapsto a^{-1}bc$$

$$c \mapsto bc^{2} \qquad c \mapsto c^{-1}.$$

$$\phi \psi \colon F_{3} \to F_{3}$$

$$a \mapsto bc^{-1}a^{-1}bc$$

$$b \mapsto bc^{-1}a^{-1}bca^{-1}b$$

$$c \mapsto a^{-1}bc^{-1}.$$

(Joint work with P. Silva and M. Ladra.)

Find a group G where \cdot is "easy" but ()⁻¹ is "difficult".

$$F_{3} = \langle a, b, c \mid \rangle.$$

$$\phi \colon F_{3} \to F_{3} \qquad \psi \colon F_{3} \to F_{3}$$

$$a \mapsto ab \qquad a \mapsto bc^{-1}$$

$$b \mapsto ab^{2}c \qquad b \mapsto a^{-1}bc$$

$$c \mapsto bc^{2} \qquad c \mapsto c^{-1}.$$

$$\phi \psi \colon F_{3} \to F_{3}$$

$$a \mapsto bc^{-1}a^{-1}bc$$

$$b \mapsto bc^{-1}a^{-1}bca^{-1}b$$

$$c \mapsto a^{-1}bc^{-1}.$$

$$F_{5} = \langle a, b, c, d, e \mid \rangle.$$

$$\psi_{n} \colon F_{5} \to F_{5} \qquad \psi_{n}^{-1} \colon F_{4} \to F_{4}$$

$$a \mapsto a \qquad a \mapsto a$$

$$b \mapsto a^{n}b \qquad b \mapsto a^{-n}b$$

$$c \mapsto b^{n}c \qquad c \mapsto (b^{-1}a^{n})^{n}c$$

$$d \mapsto c^{n}d \qquad d \mapsto (c^{-1}(a^{-n}b)^{n})^{n}d$$

$$e \mapsto d^{n}e \qquad e \mapsto (d^{-1}((b^{-1}a^{n})^{n}c)^{n})^{n}e.$$

- We have formalized the situation.
- We have seen that inverting in $Aut(F_r)$ is not that bad.
- We now want to look for worse groups G.

$$F_{5} = \langle a, b, c, d, e \mid \rangle.$$

$$\psi_{n} \colon F_{5} \to F_{5} \qquad \psi_{n}^{-1} \colon F_{4} \to F_{4}$$

$$a \mapsto a$$

$$b \mapsto a^{n}b \qquad b \mapsto a^{-n}b$$

$$c \mapsto b^{n}c \qquad c \mapsto (b^{-1}a^{n})^{n}c$$

$$d \mapsto c^{n}d \qquad d \mapsto (c^{-1}(a^{-n}b)^{n})^{n}d$$

$$e \mapsto d^{n}e \qquad e \mapsto (d^{-1}((b^{-1}a^{n})^{n}c)^{n})^{n}e.$$

- We have formalized the situation.
- We have seen that inverting in $Aut(F_r)$ is not that bad.
- We now want to look for worse groups G.


```
F_{5} = \langle a, b, c, d, e \mid \rangle.
\psi_{n} \colon F_{5} \to F_{5} \qquad \psi_{n}^{-1} \colon F_{4} \to F_{4}
a \mapsto a \qquad a \mapsto a
b \mapsto a^{n}b \qquad b \mapsto a^{-n}b
c \mapsto b^{n}c \qquad c \mapsto (b^{-1}a^{n})^{n}c
d \mapsto c^{n}d \qquad d \mapsto (c^{-1}(a^{-n}b)^{n})^{n}d
e \mapsto d^{n}e \qquad e \mapsto (d^{-1}((b^{-1}a^{n})^{n}c)^{n})^{n}e.
```

- We have formalized the situation.
- We have seen that inverting in $Aut(F_r)$ is not that bad.
- We now want to look for worse groups G.


```
F_{5} = \langle a, b, c, d, e \mid \rangle.
\psi_{n} \colon F_{5} \to F_{5} \qquad \psi_{n}^{-1} \colon F_{4} \to F_{4}
a \mapsto a \qquad a \mapsto a
b \mapsto a^{n}b \qquad b \mapsto a^{-n}b
c \mapsto b^{n}c \qquad c \mapsto (b^{-1}a^{n})^{n}c
d \mapsto c^{n}d \qquad d \mapsto (c^{-1}(a^{-n}b)^{n})^{n}d
e \mapsto d^{n}e \qquad e \mapsto (d^{-1}((b^{-1}a^{n})^{n}c)^{n})^{n}e.
```

- We have formalized the situation.
- We have seen that inverting in Aut (F_r) is not that bad.
- We now want to look for worse groups G.

Definition

Let $A = \{a_1, \dots, a_r\}$ be a finite alphabet, and $G = \langle A \mid R \rangle$ be a finite presentation for a group G. We have the word metric:

for
$$g \in G$$
, $|g| = \min\{n \mid g = a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n}\}$.

Definition

For $\theta \in Aut(G)$, note θ is determined by $a_1\theta, \ldots, a_r\theta$ and define

$$||\theta||_1 = |a_1\theta| + \cdots + |a_r\theta|,$$

$$||\theta||_{\infty} = \max\{|a_1\theta|,\ldots,|a_r\theta|\}.$$

Observation

Definition

Let $A = \{a_1, \dots, a_r\}$ be a finite alphabet, and $G = \langle A \mid R \rangle$ be a finite presentation for a group G. We have the word metric:

for
$$g \in G$$
, $|g| = \min\{n \mid g = a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n}\}.$

Definition

For $\theta \in Aut(G)$, note θ is determined by $a_1\theta, \ldots, a_r\theta$ and define

$$||\theta||_1=|a_1\theta|+\cdots+|a_r\theta|,$$

$$||\theta||_{\infty} = \max\{|a_1\theta|,\ldots,|a_r\theta|\}.$$

Observation

Definition

Let $A = \{a_1, \dots, a_r\}$ be a finite alphabet, and $G = \langle A \mid R \rangle$ be a finite presentation for a group G. We have the word metric:

for
$$g \in G$$
, $|g| = \min\{n \mid g = a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n}\}$.

Definition

For $\theta \in Aut(G)$, note θ is determined by $a_1\theta, \ldots, a_r\theta$ and define

$$||\theta||_1=|a_1\theta|+\cdots+|a_r\theta|,$$

$$||\theta||_{\infty} = \max\{|a_1\theta|,\ldots,|a_r\theta|\}.$$

Observation

Definition

Let $A = \{a_1, \dots, a_r\}$ be a finite alphabet, and $G = \langle A \mid R \rangle$ be a finite presentation for a group G. We have the word metric:

for
$$g \in G$$
, $|g| = \min\{n \mid g = a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n}\}$.

Definition

For $\theta \in Aut(G)$, note θ is determined by $a_1\theta, \ldots, a_r\theta$ and define

$$||\theta||_1=|a_1\theta|+\cdots+|a_r\theta|,$$

$$||\theta||_{\infty} = \max\{|a_1\theta|,\ldots,|a_r\theta|\}.$$

Observation

Definition

Let $G = \langle A \mid R \rangle$ be a finite presentation for G. We define the function:

$$\alpha_{A}(n) = \max\{||\theta^{-1}||_{1} \mid \theta \in Aut(G), ||\theta||_{1} \leqslant n\}.$$

Clearly,
$$\alpha_A(n) \leqslant \alpha_A(n+1)$$
.

The bigger is α_A , the more "difficult" will be to invert automorphisms of G (with respect to the given set of generators A).

Question

Determine the asymptotic growth of the function α_A .

Definition

Let $G = \langle A \mid R \rangle$ be a finite presentation for G. We define the function:

$$\alpha_{A}(n) = \max\{||\theta^{-1}||_{1} \mid \theta \in Aut(G), ||\theta||_{1} \leqslant n\}.$$

Clearly,
$$\alpha_A(n) \leqslant \alpha_A(n+1)$$
.

The bigger is α_A , the more "difficult" will be to invert automorphisms of G (with respect to the given set of generators A).

Question

Determine the asymptotic growth of the function α_A .

Definition

Let $G = \langle A \mid R \rangle$ be a finite presentation for G. We define the function:

$$\alpha_{A}(n) = \max\{||\theta^{-1}||_{1} \mid \theta \in Aut(G), ||\theta||_{1} \leqslant n\}.$$

Clearly, $\alpha_A(n) \leqslant \alpha_A(n+1)$.

The bigger is α_A , the more "difficult" will be to invert automorphisms of G (with respect to the given set of generators A).

Question

Determine the asymptotic growth of the function α_A .

Outline

- Motivation
- 2 Free groups
- 3 Lower bounds: a good enough example
- 4 Upper bounds: outer space
- 5 The special case of rank 2

For the rest of the talk, $G = F_r = \langle a_1, \dots, a_r \mid \rangle$.

Definition

Every $w \in F_r$ has its length, |w|, and its cyclic length, |w|: $|a_1a_1^{-1}a_2| = |a_2| = |a_2| = 1$, $|a_1a_2a_1^{-2}| = 4$, $|a_1a_2a_1^{-2}| = |a_2a_1^{-1}| = 2$.

Observation

i) $|w^n| \le |n||w|$ and $|w^n| = |n||w|$; ii) $|vw| \le |v| + |w|$, but $|vw| \le |v| + |w|$ is not true in general.

For the rest of the talk, $G = F_r = \langle a_1, \dots, a_r \mid \rangle$.

Definition

Every
$$w \in F_r$$
 has its length, $|w|$, and its cyclic length, $|w|$: $|a_1a_1^{-1}a_2| = |a_2| = |a_2| = 1$, $|a_1a_2a_1^{-2}| = 4$, $|a_1a_2a_1^{-2}| = |a_2a_1^{-1}| = 2$.

Observation

```
i) |w^n| \le |n||w| and |w^n| = |n||w|;
ii) |vw| \le |v| + |w|, but |vw| \le |v| + |w| is not true in general.
```


For the rest of the talk, $G = F_r = \langle a_1, \dots, a_r \mid \rangle$.

Definition

Every
$$w \in F_r$$
 has its length, $|w|$, and its cyclic length, $|w|$: $|a_1a_1^{-1}a_2| = |a_2| = |a_2| = 1$, $|a_1a_2a_1^{-2}| = 4$, $|a_1a_2a_1^{-2}| = |a_2a_1^{-1}| = 2$.

Observation

i) $|w^n| \le |n||w|$ and $|w^n| = |n||w|$; ii) $|vw| \le |v| + |w|$, but $|vw| \le |v| + |w|$ is not true in general

For the rest of the talk, $G = F_r = \langle a_1, \dots, a_r \mid \rangle$.

Definition

Every
$$w \in F_r$$
 has its length, $|w|$, and its cyclic length, $|w|$: $|a_1a_1^{-1}a_2| = |a_2| = |a_2| = 1$, $|a_1a_2a_1^{-2}| = 4$, $|a_1a_2a_1^{-2}| = |a_2a_1^{-1}| = 2$.

Observation

```
i) |w^n| \le |n||w| and |w^n| = |n||w|;
ii) |vw| \le |v| + |w|, but |vw| \le |v| + |w| is not true in general.
```

Definition

For $\theta \in Aut(F_r)$, define

$$||\theta||_1=|a_1\theta|+\cdots+|a_r\theta|,$$

$$||\theta||_1 = |a_1\theta| + \cdots + |a_r\theta|,$$

$$|||\theta|||_1 = \min\{||\theta\gamma_v||_1 \mid v \in F_r\}.$$

Observation

 $||\theta||_1 \leq |||\theta|||_1 \leq ||\theta||_1$, but not equal in general.

Example

Definition

For $\theta \in Aut(F_r)$, define

$$||\theta||_1 = |a_1\theta| + \cdots + |a_r\theta|,$$

$$||\theta||_1 = |a_1\theta| + \cdots + |a_r\theta|,$$

$$|||\theta|||_1 = \min\{||\theta\gamma_v||_1 \mid v \in F_r\}.$$

Observation

 $||\theta||_1 \leq |||\theta|||_1 \leq ||\theta||_1$, but not equal in general.

Example

Definition

For $\theta \in Aut(F_r)$, define

$$||\theta||_1 = |\mathbf{a}_1\theta| + \cdots + |\mathbf{a}_r\theta|,$$

$$||\theta||_1 = |a_1\theta| + \cdots + |a_r\theta|,$$

$$|||\theta|||_1 = \min\{||\theta\gamma_v||_1 \mid v \in F_r\}.$$

Observation

 $||\theta||_1 \leq |||\theta|||_1 \leq ||\theta||_1$, but not equal in general.

Example

Definition

For $\theta \in Aut(F_r)$, define

$$||\theta||_1 = |a_1\theta| + \cdots + |a_r\theta|,$$

$$||\theta||_1 = |a_1\theta| + \cdots + |a_r\theta|,$$

$$|||\theta|||_1 = \min\{||\theta\gamma_v||_1 \mid v \in F_r\}.$$

Observation

 $||\theta||_1 \leq |||\theta|||_1 \leq ||\theta||_1$, but not equal in general.

Example

Definition

For $\theta \in Aut(F_r)$, define

$$||\theta||_1 = |a_1\theta| + \cdots + |a_r\theta|,$$

$$||\theta||_1 = |a_1\theta| + \cdots + |a_r\theta|,$$

$$|||\theta|||_1 = \min\{||\theta\gamma_v||_1 \mid v \in F_r\}.$$

Observation

 $||\theta||_1 \leq |||\theta|||_1 \leq ||\theta||_1$, but not equal in general.

Example

Definition

$$\alpha_{r}(n) = \max\{||\theta^{-1}||_{1} \mid \theta \in AutF_{r}, ||\theta||_{1} \leq n\},$$

$$\beta_{r}(n) = \max\{|||\theta^{-1}|||_{1} \mid \theta \in AutF_{r}, |||\theta|||_{1} \leq n\},$$

$$\gamma_{r}(n) = \max\{||\theta^{-1}||_{1} \mid \theta \in AutF_{r}, ||\theta||_{1} \leq n\}.$$

Question

Are these functions equal up to multiplicative constants?

 α_r and γ_r are not; β_r is not clear.

Definition

$$\alpha_{r}(n) = \max\{||\theta^{-1}||_{1} \mid \theta \in AutF_{r}, ||\theta||_{1} \leq n\},$$

$$\beta_{r}(n) = \max\{|||\theta^{-1}|||_{1} \mid \theta \in AutF_{r}, |||\theta|||_{1} \leq n\},$$

$$\gamma_{r}(n) = \max\{||\theta^{-1}||_{1} \mid \theta \in AutF_{r}, ||\theta||_{1} \leq n\}.$$

Question

Are these functions equal up to multiplicative constants?

 α_r and γ_r are not; β_r is not clear

Definition

$$\alpha_{r}(n) = \max\{||\theta^{-1}||_{1} \mid \theta \in AutF_{r}, \ ||\theta||_{1} \leq n\},$$

$$\beta_{r}(n) = \max\{|||\theta^{-1}|||_{1} \mid \theta \in AutF_{r}, \ ||\theta|||_{1} \leq n\},$$

$$\gamma_{r}(n) = \max\{||\theta^{-1}||_{1} \mid \theta \in AutF_{r}, \ ||\theta||_{1} \leq n\}.$$

Question

Are these functions equal up to multiplicative constants?

 α_r and γ_r are not; β_r is not clear.

Theorem

For rank r = 2 we have

(i) for
$$n \ge 4$$
, $\alpha_2(n) \le \frac{(n-1)^2}{2}$,

(ii) for
$$n \geqslant n_0$$
, $\alpha_2(n) \geqslant \frac{n^2}{16}$

(iii) for
$$n \geqslant 1$$
, $\beta_2(n) = n$,

(iv) for
$$n \geqslant 1$$
, $\gamma_2(n) = n$.

Theorem

For $r \geqslant 3$ there exist K = K(r) and M = M(r) such that, for $n \geqslant 1$,

(i)
$$\alpha_r(n) \geqslant Kn^r$$

(ii)
$$\beta_r(n) \leqslant Kn^M$$
,

(iii)
$$\gamma_r(n) \geqslant Kn^{r-1}$$
.

Theorem

For rank r = 2 we have

- (i) for $n \ge 4$, $\alpha_2(n) \le \frac{(n-1)^2}{2}$,
- (ii) for $n \geqslant n_0$, $\alpha_2(n) \geqslant \frac{n^2}{16}$,
- (iii) for $n \geqslant 1$, $\beta_2(n) = n$,
- (iv) for $n \geqslant 1$, $\gamma_2(n) = n$.

Theorem

For $r \ge 3$ there exist K = K(r) and M = M(r) such that, for $n \ge 1$,

- (i) $\alpha_r(n) \geqslant Kn^r$
- (ii) $\beta_r(n) \leqslant Kn^M$,
- (iii) $\gamma_r(n) \geqslant Kn^{r-1}$.

Theorem

For rank r = 2 we have

- (i) for $n \ge 4$, $\alpha_2(n) \le \frac{(n-1)^2}{2}$,
- (ii) for $n \geqslant n_0$, $\alpha_2(n) \geqslant \frac{n^2}{16}$,
- (iii) for $n \geqslant 1$, $\beta_2(n) = n$,
- (iv) for $n \geqslant 1$, $\gamma_2(n) = n$.

Theorem

For $r \ge 3$ there exist K = K(r) and M = M(r) such that, for $n \ge 1$,

- (i) $\alpha_r(n) \geqslant Kn^r$
- (ii) $\beta_r(n) \leqslant Kn^M$,
- (iii) $\gamma_r(n) \geqslant Kn^{r-1}$.

Theorem

For rank r = 2 we have

- (i) for $n \ge 4$, $\alpha_2(n) \le \frac{(n-1)^2}{2}$,
- (ii) for $n \geqslant n_0$, $\alpha_2(n) \geqslant \frac{n^2}{16}$,
- (iii) for $n \geqslant 1$, $\beta_2(n) = n$,
- (iv) for $n \geqslant 1$, $\gamma_2(n) = n$.

Theorem

For $r \geqslant 3$ there exist K = K(r) and M = M(r) such that, for $n \geqslant 1$

- (i) $\alpha_r(n) \geqslant Kn^r$
- (ii) $\beta_r(n) \leqslant Kn^M$,
- (iii) $\gamma_r(n) \geqslant Kn^{r-1}$.

Main results

Theorem

For rank r = 2 we have

- (i) for $n \ge 4$, $\alpha_2(n) \le \frac{(n-1)^2}{2}$,
- (ii) for $n \geqslant n_0$, $\alpha_2(n) \geqslant \frac{n^2}{16}$,
- (iii) for $n \geqslant 1$, $\beta_2(n) = n$,
- (iv) for $n \ge 1$, $\gamma_2(n) = n$.

Theorem

For $r \ge 3$ there exist K = K(r) and M = M(r) such that, for $n \ge 1$,

- (i) $\alpha_r(n) \geqslant Kn^r$,
- (ii) $\beta_r(n) \leqslant Kn^M$,
- (iii) $\gamma_r(n) \geqslant Kn^{r-1}$.

Main results

Theorem

For rank r = 2 we have

- (i) for $n \ge 4$, $\alpha_2(n) \le \frac{(n-1)^2}{2}$,
- (ii) for $n \geqslant n_0$, $\alpha_2(n) \geqslant \frac{n^2}{16}$,
- (iii) for $n \geqslant 1$, $\beta_2(n) = n$,
- (iv) for $n \ge 1$, $\gamma_2(n) = n$.

Theorem

For $r \ge 3$ there exist K = K(r) and M = M(r) such that, for $n \ge 1$,

- (i) $\alpha_r(n) \geqslant Kn^r$,
- (ii) $\beta_r(n) \leqslant Kn^M$,
- (iii) $\gamma_r(n) \geqslant Kn^{r-1}$

Main results

Theorem

For rank r = 2 we have

- (i) for $n \ge 4$, $\alpha_2(n) \le \frac{(n-1)^2}{2}$,
- (ii) for $n \geqslant n_0$, $\alpha_2(n) \geqslant \frac{n^2}{16}$,
- (iii) for $n \geqslant 1$, $\beta_2(n) = n$,
- (iv) for $n \ge 1$, $\gamma_2(n) = n$.

Theorem

For $r \ge 3$ there exist K = K(r) and M = M(r) such that, for $n \ge 1$,

- (i) $\alpha_r(n) \geqslant Kn^r$,
- (ii) $\beta_r(n) \leqslant Kn^M$,
- (iii) $\gamma_r(n) \geqslant Kn^{r-1}$.

Outline

- Motivation
- 2 Free groups
- 3 Lower bounds: a good enough example
- Upper bounds: outer space
- 5 The special case of rank 2

Theorem

For
$$r \ge 2$$
, and $n \ge n_0$, we have $\gamma_r(n) \ge \frac{1}{2r^{r-1}}n^{r-1}$.

Proof: For $r \ge 2$ and $n \ge 1$, consider

A straightforward calculation shows that

$$\|\psi_{r,n}\|_1 = \|\psi_{r,n}\|_1 = (r-1)n + r$$
, and $\|\psi_{r,n}^{-1}\|_1 = \|\psi_{r,n}^{-1}\|_1 = n^{r-1} + 2n^{r-2} + \dots + (r-1)n + r \geqslant n^{r-1}$

Theorem

For
$$r \geqslant 2$$
, and $n \geqslant n_0$, we have $\gamma_r(n) \geqslant \frac{1}{2r^{r-1}}n^{r-1}$.

Proof: For $r \ge 2$ and $n \ge 1$, consider

A straightforward calculation shows that

$$\|\psi_{r,n}\|_1 = \|\psi_{r,n}\|_1 = (r-1)n + r$$
, and $\|\psi_{r,n}^{-1}\|_1 = \|\psi_{r,n}^{-1}\|_1 = n^{r-1} + 2n^{r-2} + \dots + (r-1)n + r \geqslant n^{r-1}$

Theorem

For
$$r \geqslant 2$$
, and $n \geqslant n_0$, we have $\gamma_r(n) \geqslant \frac{1}{2r^{r-1}}n^{r-1}$.

Proof: For $r \ge 2$ and $n \ge 1$, consider

A straightforward calculation shows that

$$||\psi_{r,n}||_1 = ||\psi_{r,n}||_1 = (r-1)n + r$$
, and $||\psi_{r,n}^{-1}||_1 = ||\psi_{r,n}^{-1}||_1 = n^{r-1} + 2n^{r-2} + \dots + (r-1)n + r \geqslant n^{r-1}$.

Hence, for $n \ge r$,

$$\gamma_r(rn) \geqslant \gamma_r((r-1)n+r) \geqslant n^{r-1}.$$

Now, for *n* big enough, take the closest multiple of *r* below,

$$n \geqslant rm > n - r$$
,

and

$$\gamma_r(n)\geqslant \gamma_r(rm)\geqslant m^{r-1}>\left(\frac{n-r}{r}\right)^{r-1}=\left(\frac{n}{r}-1\right)^{r-1}\geqslant \frac{1}{2r^{r-1}}n^{r-1}.\quad \Box$$

Finally, conjugating by an appropriate element, we shall win an extra unit in the exponent.

Hence, for $n \ge r$,

$$\gamma_r(rn) \geqslant \gamma_r((r-1)n+r) \geqslant n^{r-1}.$$

Now, for *n* big enough, take the closest multiple of *r* below,

$$n \geqslant rm > n - r$$
,

and

$$\gamma_r(n) \geqslant \gamma_r(rm) \geqslant m^{r-1} > \left(\frac{n-r}{r}\right)^{r-1} = \left(\frac{n}{r}-1\right)^{r-1} \geqslant \frac{1}{2r^{r-1}}n^{r-1}. \quad \Box$$

Finally, conjugating by an appropriate element, we shall win an extra unit in the exponent.

Hence, for $n \ge r$,

$$\gamma_r(rn) \geqslant \gamma_r((r-1)n+r) \geqslant n^{r-1}.$$

Now, for *n* big enough, take the closest multiple of *r* below,

$$n \geqslant rm > n - r$$
,

and

$$\gamma_r(n) \geqslant \gamma_r(rm) \geqslant m^{r-1} > \left(\frac{n-r}{r}\right)^{r-1} = \left(\frac{n}{r}-1\right)^{r-1} \geqslant \frac{1}{2r^{r-1}}n^{r-1}. \quad \Box$$

Finally, conjugating by an appropriate element, we shall win an extra unit in the exponent.

A lower bound for α_r

Theorem

For
$$r \geqslant 2$$
, and $n \geqslant n_0$, we have $\alpha_r(n) \geqslant \frac{(r-1)^{r-1}}{2r^{2r-1}}n^r$.

Proof: For $r \geqslant 2$ and $n \geqslant 1$, consider $\psi_{r,n}\gamma_{a_r^{-m}a_1^{-1}}$, where $m = \lceil \frac{n}{2r-2} \rceil$. Writing $N = ||\psi_{r,n}\gamma_{a_r^{-m}a_1^{-1}}||_1$, straightforward calculations show that, for $n \geqslant n_0$,

$$||\gamma_{a_1a_r^m}\psi_{r,n}^{-1}||_1 = ||\psi_{r,n}^{-1}\gamma_{(a_1a_r^m)\psi_{r,n}^{-1}}||_1 \geqslant \frac{(r-1)^{r-1}}{2r^{2r-1}}N^r.$$

Hence,
$$\alpha_r(n) \geqslant \frac{(r-1)^{r-1}}{2r^{2r-1}}n^r$$
.

A lower bound for α_r

Theorem

For
$$r \geqslant 2$$
, and $n \geqslant n_0$, we have $\alpha_r(n) \geqslant \frac{(r-1)^{r-1}}{2r^{2r-1}}n^r$.

Proof: For $r\geqslant 2$ and $n\geqslant 1$, consider $\psi_{r,n}\gamma_{a_r^{-m}a_1^{-1}}$, where $m=\lceil \frac{n}{2r-2}\rceil$. Writing $N=||\psi_{r,n}\gamma_{a_r^{-m}a_1^{-1}}||_1$, straightforward calculations show that, for $n\geqslant n_0$,

$$||\gamma_{a_1a_r^m}\psi_{r,n}^{-1}||_1 = ||\psi_{r,n}^{-1}\gamma_{(a_1a_r^m)\psi_{r,n}^{-1}}||_1 \geqslant \frac{(r-1)^{r-1}}{2r^{2r-1}}N^r.$$

Hence,
$$\alpha_r(n) \geqslant \frac{(r-1)^{r-1}}{2r^{2r-1}}n^r$$
.

A lower bound for α_r

Theorem

For
$$r \geqslant 2$$
, and $n \geqslant n_0$, we have $\alpha_r(n) \geqslant \frac{(r-1)^{r-1}}{2r^{2r-1}}n^r$.

Proof: For $r\geqslant 2$ and $n\geqslant 1$, consider $\psi_{r,n}\gamma_{a_r^{-m}a_1^{-1}}$, where $m=\lceil \frac{n}{2r-2}\rceil$. Writing $N=||\psi_{r,n}\gamma_{a_r^{-m}a_1^{-1}}||_1$, straightforward calculations show that, for $n\geqslant n_0$,

$$||\gamma_{a_1a_r^m}\psi_{r,n}^{-1}||_1 = ||\psi_{r,n}^{-1}\gamma_{(a_1a_r^m)\psi_{r,n}^{-1}}||_1 \geqslant \frac{(r-1)^{r-1}}{2r^{2r-1}}N^r.$$

Hence,
$$\alpha_r(n) \geqslant \frac{(r-1)^{r-1}}{2r^{2r-1}}n^r$$
. \square

Outline

- Motivation
- 2 Free groups
- 3 Lower bounds: a good enough example
- 4 Upper bounds: outer space
- 5 The special case of rank 2

To prove the upper bound

(ii)
$$\beta_r(n) \leqslant Kn^M$$
,

we'll need to use the recently discovered metric in the outer space \mathcal{X}_r .

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell \colon E\Gamma \to [0,1]$ such that $\sum_{e \in E\Gamma} \ell(e) = 1$, and $\{e \in E\Gamma \mid \ell(e) = 0\}$ is a forest.
- For a graph Γ, Σ_Γ = {metrics on Γ} = a simplex with missing faces.
- If $\Gamma' = \Gamma/$ forest, then we identify points in $\Sigma_{\Gamma'}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_r \to \Gamma$.

To prove the upper bound

(ii)
$$\beta_r(n) \leqslant Kn^M$$
,

we'll need to use the recently discovered metric in the outer space \mathcal{X}_r .

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell \colon E\Gamma \to [0,1]$ such that $\sum_{e \in E\Gamma} \ell(e) = 1$, and $\{e \in E\Gamma \mid \ell(e) = 0\}$ is a forest.
- For a graph Γ, Σ_Γ = {metrics on Γ} = a simplex with missing faces.
- If $\Gamma' = \Gamma/$ forest, then we identify points in $\Sigma_{\Gamma'}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_r \to \Gamma$.

To prove the upper bound

(ii)
$$\beta_r(n) \leqslant Kn^M$$
,

we'll need to use the recently discovered metric in the outer space \mathcal{X}_r .

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell \colon E\Gamma \to [0,1]$ such that $\sum_{e \in E\Gamma} \ell(e) = 1$, and $\{e \in E\Gamma \mid \ell(e) = 0\}$ is a forest.
- For a graph Γ, Σ_Γ = {metrics on Γ} = a simplex with missing faces.
- If $\Gamma' = \Gamma/$ forest, then we identify points in $\Sigma_{\Gamma'}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_r \to \Gamma$.

To prove the upper bound

(ii)
$$\beta_r(n) \leqslant Kn^M$$
,

we'll need to use the recently discovered metric in the outer space \mathcal{X}_r .

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell \colon E\Gamma \to [0,1]$ such that $\sum_{e \in E\Gamma} \ell(e) = 1$, and $\{e \in E\Gamma \mid \ell(e) = 0\}$ is a forest.
- For a graph Γ, Σ_Γ = {metrics on Γ} = a simplex with missing faces.
- If $\Gamma' = \Gamma/$ forest, then we identify points in $\Sigma_{\Gamma'}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_r \to \Gamma$.

To prove the upper bound

(ii)
$$\beta_r(n) \leqslant Kn^M$$
,

we'll need to use the recently discovered metric in the outer space \mathcal{X}_r .

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map $\ell \colon E\Gamma \to [0,1]$ such that $\sum_{e \in E\Gamma} \ell(e) = 1$, and $\{e \in E\Gamma \mid \ell(e) = 0\}$ is a forest.
- For a graph Γ, Σ_Γ = {metrics on Γ} = a simplex with missing faces.
- If $\Gamma' = \Gamma/$ forest, then we identify points in $\Sigma_{\Gamma'}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_r \to \Gamma$.

To prove the upper bound

(ii)
$$\beta_r(n) \leqslant Kn^M$$
,

we'll need to use the recently discovered metric in the outer space \mathcal{X}_r .

- By graf Γ we mean a finite, connected graph of rank r, with no vertices of degree 1 or 2.
- A metric on Γ is a map ℓ: EΓ → [0,1] such that ∑_{e∈EΓ} ℓ(e) = 1, and {e ∈ EΓ | ℓ(e) = 0} is a forest.
- For a graph Γ, Σ_Γ = {metrics on Γ} = a simplex with missing faces.
- If $\Gamma' = \Gamma/$ forest, then we identify points in $\Sigma_{\Gamma'}$ with the corresponding points in Σ_{Γ} by assigning length 0 to the collapsed edges.
- A marking on Γ is a homotopy equivalence $f: R_r \to \Gamma$.

Definition

The outer space \mathcal{X}_r is

$$\mathcal{X}_r = \{ (\Gamma, f, \ell) \} / \sim$$

(where \sim is an equivalence relation).

Definition

There is a natural action of $Aut(F_r)$ on \mathcal{X}_r , given by

$$\phi \cdot (\Gamma, f, \ell) = (\Gamma, \phi f, \ell)$$

(thinking $\phi \colon R_r \to R_r$). In fact, this is an action of $Out(F_r)$.

Definition

The outer space \mathcal{X}_r is

$$\mathcal{X}_r = \{ (\Gamma, f, \ell) \} / \sim$$

(where \sim is an equivalence relation).

Definition

There is a natural action of $Aut(F_r)$ on \mathcal{X}_r , given by

$$\phi \cdot (\Gamma, f, \ell) = (\Gamma, \phi f, \ell),$$

(thinking $\phi: R_r \to R_r$). In fact, this is an action of Out(F_r).

Definition

Let $x, x' \in \mathcal{X}_r$, $x = (\Gamma, f, \ell)$, $x' = (\Gamma', f', \ell')$. A difference of markings is a map $\alpha \colon \Gamma \to \Gamma'$, which is linear over edges and $f\alpha \simeq f'$.

For such an α , define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

 \mathcal{X}_r admits the following "metric":

$$d(x, x') = \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings }\}.$$

This minimum is achieved by Arzela-Ascoli's theorem.

Definition

Let $x, x' \in \mathcal{X}_r$, $x = (\Gamma, f, \ell)$, $x' = (\Gamma', f', \ell')$. A difference of markings is a map $\alpha \colon \Gamma \to \Gamma'$, which is linear over edges and $f\alpha \simeq f'$. For such an α , define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

 \mathcal{X}_r admits the following "metric":

$$d(x, x') = \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings }\}.$$

This minimum is achieved by Arzela-Ascoli's theorem.

Definition

Let $x, x' \in \mathcal{X}_r$, $x = (\Gamma, f, \ell)$, $x' = (\Gamma', f', \ell')$. A difference of markings is a map $\alpha \colon \Gamma \to \Gamma'$, which is linear over edges and $f\alpha \simeq f'$. For such an α , define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

 \mathcal{X}_r admits the following "metric":

$$d(x, x') = \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings }\}.$$

This minimum is achieved by Arzela-Ascoli's theorem.

Definition

Let $x, x' \in \mathcal{X}_r$, $x = (\Gamma, f, \ell)$, $x' = (\Gamma', f', \ell')$. A difference of markings is a map $\alpha \colon \Gamma \to \Gamma'$, which is linear over edges and $f\alpha \simeq f'$. For such an α , define $\sigma(\alpha)$ to be its maximum slope over edges.

Definition

 \mathcal{X}_r admits the following "metric":

$$d(x, x') = \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings }\}.$$

This minimum is achieved by Arzela-Ascoli's theorem.

Proposition

(i)
$$d(x, y) \geqslant 0$$
, and $= 0 \Leftrightarrow x = y$.

(ii)
$$d(x,z) \leqslant d(x,y) + d(y,z)$$
.

(iii) Out(
$$F_r$$
) acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y) = d(x, y)$.

(iv) But...
$$d(x,y) \neq d(y,x)$$
 in general.

Definition

$$\mathcal{X}_r(\epsilon) = \{(\Gamma, f, \ell) \in \mathcal{X}_r \mid \ell(p) \geqslant \epsilon \ \forall \ \textit{closed path } p \neq 1 \}$$

Proposition

(i)
$$d(x, y) \ge 0$$
, and $= 0 \Leftrightarrow x = y$.

(ii)
$$d(x,z) \leqslant d(x,y) + d(y,z)$$
.

(iii) Out(F_r) acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y) = d(x, y)$.

(iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

$$\mathcal{X}_r(\epsilon) = \{(\Gamma, f, \ell) \in \mathcal{X}_r \mid \ell(p) \geqslant \epsilon \ \forall \ \textit{closed path } p \neq 1 \}$$

Proposition

(i)
$$d(x, y) \ge 0$$
, and $= 0 \Leftrightarrow x = y$.

(ii)
$$d(x,z) \leqslant d(x,y) + d(y,z)$$
.

(iii) Out(
$$F_r$$
) acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y) = d(x, y)$.

(iv) But... $d(x,y) \neq d(y,x)$ in general.

Definition

$$\mathcal{X}_r(\epsilon) = \{(\Gamma, f, \ell) \in \mathcal{X}_r \mid \ell(p) \geqslant \epsilon \ \forall \ \textit{closed path } p \neq 1 \}$$

Proposition

- (i) $d(x, y) \ge 0$, and $= 0 \Leftrightarrow x = y$.
- (ii) $d(x,z) \leqslant d(x,y) + d(y,z)$.
- (iii) Out(F_r) acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y) = d(x, y)$.
- (iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

$$\mathcal{X}_r(\epsilon) = \{(\Gamma, f, \ell) \in \mathcal{X}_r \mid \ell(p) \geqslant \epsilon \ \forall \ \textit{closed path } p \neq 1 \}$$

Proposition

- (i) $d(x, y) \geqslant 0$, and $= 0 \Leftrightarrow x = y$.
- (ii) $d(x,z) \leqslant d(x,y) + d(y,z)$.
- (iii) Out(F_r) acts by isometries, i.e. $d(\phi \cdot x, \phi \cdot y) = d(x, y)$.
- (iv) But... $d(x, y) \neq d(y, x)$ in general.

Definition

$$\mathcal{X}_r(\epsilon) = \{ (\Gamma, f, \ell) \in \mathcal{X}_r \mid \ell(p) \geqslant \epsilon \ \forall \ \textit{closed path } p \neq 1 \}$$

Bestvina-AlgomKfir theorem

Theorem (Bestvina-AlgomKfir)

For any $\epsilon > 0$ there is constant $M = M(r, \epsilon)$ such that for all $x, y \in \mathcal{X}_r(\epsilon)$,

$$d(x,y) \leqslant M \cdot d(y,x).$$

Corollary

For $r \geqslant 2$, there exists M = M(r) such that

$$\beta_r(n) \leqslant r n^M$$

Bestvina-AlgomKfir theorem

Theorem (Bestvina-AlgomKfir)

For any $\epsilon > 0$ there is constant $M = M(r, \epsilon)$ such that for all $x, y \in \mathcal{X}_r(\epsilon)$,

$$d(x,y) \leqslant M \cdot d(y,x).$$

Corollary

For $r \geqslant 2$, there exists M = M(r) such that

$$\beta_r(n) \leqslant r n^M$$
.

Proof

Remind
$$\beta_r(n) = \max\{|||\theta^{-1}|||_1 \mid \theta \in Aut F_r, |||\theta|||_1 \le n\}.$$

Proof. Given $\phi \in \text{Aut}(F_r)$, consider $x = (R_r, id, \ell_0) \in \mathcal{X}_r$, and $\phi \cdot x = (R_r, \phi, \ell_0) \in \mathcal{X}_r$, where ℓ_0 is the uniform metric.

$$\begin{array}{ll} \textit{d}(\textit{x},\,\phi\cdot\textit{x}) &=& \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings}\}\\ &=& \log\big(\min\{\sigma(\phi\gamma_w\gamma_p) \mid \textit{w} \in \textit{F}_r,\, p = \text{ "half petal"}\}\big)\\ &\sim& \log\big(\min\{\sigma(\phi\gamma_w) \mid \textit{w} \in \textit{F}_r\}\big)\\ &=& \log\big(\min\{||\phi\gamma_w||_\infty \mid \textit{w} \in \textit{F}_r\}\big)\\ &=& \log(|||\phi|||_\infty)\\ &\sim& \log(|||\phi|||_1). \end{array}$$

Now, using Bestvina-AlgomKfir theorem,

$$\log(|||\phi^{-1}|||_1) = d(x,\phi^{-1} \cdot x) = d(\phi \cdot x,x) \leqslant Md(x,\phi \cdot x) = M\log(|||\phi|||_1).$$

Hence, for every $\phi \in \operatorname{Aut}(F_r)$, $|||\phi^{-1}|||_1 \leqslant r |||\phi|||_1^M$. \square

Proof

Remind
$$\beta_r(n) = \max\{|||\theta^{-1}|||_1 \mid \theta \in Aut F_r, |||\theta|||_1 \le n\}.$$

Proof. Given $\phi \in \text{Aut}(F_r)$, consider $x = (R_r, id, \ell_0) \in \mathcal{X}_r$, and $\phi \cdot x = (R_r, \phi, \ell_0) \in \mathcal{X}_r$, where ℓ_0 is the uniform metric.

$$\begin{array}{ll} \textit{d}(\textit{x}, \phi \cdot \textit{x}) &=& \min \{ \log(\sigma(\alpha)) \mid \alpha \text{ diff. markings} \} \\ &=& \log \left(\min \{ \sigma(\phi \gamma_w \gamma_p) \mid w \in F_r, \, p = \text{ "half petal"} \} \right) \\ &\sim& \log \left(\min \{ \sigma(\phi \gamma_w) \mid w \in F_r \} \right) \\ &=& \log \left(\min \{ ||\phi \gamma_w||_{\infty} \mid w \in F_r \} \right) \\ &=& \log(||\phi|||_{\infty}) \\ &\sim& \log(||\phi|||_1). \end{array}$$

Now, using Bestvina-AlgomKfir theorem,

$$\log(|||\phi^{-1}|||_1) = d(x, \phi^{-1} \cdot x) = d(\phi \cdot x, x) \leqslant Md(x, \phi \cdot x) = M\log(|||\phi|||_1).$$

Hence, for every $\phi \in \text{Aut}(F_r)$, $|||\phi^{-1}|||_1 \leq r |||\phi|||_1^M$.

Proof

Remind
$$\beta_r(n) = \max\{|||\theta^{-1}|||_1 \mid \theta \in Aut F_r, |||\theta|||_1 \le n\}.$$

Proof. Given $\phi \in \text{Aut}(F_r)$, consider $x = (R_r, id, \ell_0) \in \mathcal{X}_r$, and $\phi \cdot x = (R_r, \phi, \ell_0) \in \mathcal{X}_r$, where ℓ_0 is the uniform metric.

$$\begin{array}{ll} \textit{d}(\textit{x}, \phi \cdot \textit{x}) &=& \min \{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings}\} \\ &=& \log \left(\min \{\sigma(\phi \gamma_w \gamma_p) \mid w \in \textit{F}_r, \, p = \text{ "half petal"}\}\right) \\ &\sim& \log \left(\min \{\sigma(\phi \gamma_w) \mid w \in \textit{F}_r\}\right) \\ &=& \log \left(\min \{||\phi \gamma_w||_{\infty} \mid w \in \textit{F}_r\}\right) \\ &=& \log(||\phi|||_{\infty}) \\ &\sim& \log(||\phi|||_1). \end{array}$$

Now, using Bestvina-AlgomKfir theorem,

$$\log(|||\phi^{-1}|||_1) = d(x, \phi^{-1} \cdot x) = d(\phi \cdot x, x) \leqslant Md(x, \phi \cdot x) = M\log(|||\phi|||_1).$$

Hence, for every $\phi \in \operatorname{Aut}(F_r)$, $|||\phi^{-1}|||_1 \leq r |||\phi|||_1^M$. \square

Remind
$$\beta_r(n) = \max\{|||\theta^{-1}|||_1 \mid \theta \in Aut F_r, |||\theta|||_1 \le n\}.$$

Proof. Given $\phi \in \text{Aut}(F_r)$, consider $x = (R_r, id, \ell_0) \in \mathcal{X}_r$, and $\phi \cdot x = (R_r, \phi, \ell_0) \in \mathcal{X}_r$, where ℓ_0 is the uniform metric.

$$\begin{array}{ll} \textit{d}(\textit{x}, \phi \cdot \textit{x}) &=& \min \{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings}\} \\ &=& \log \big(\min \{\sigma(\phi \gamma_w \gamma_p) \mid \textit{w} \in \textit{F}_r, \textit{p} = \text{ "half petal"}\}\big) \\ &\sim& \log \big(\min \{\sigma(\phi \gamma_w) \mid \textit{w} \in \textit{F}_r\}\big) \\ &=& \log \big(\min \{||\phi \gamma_w||_{\infty} \mid \textit{w} \in \textit{F}_r\}\big) \\ &=& \log(|||\phi|||_{\infty}) \\ &\sim& \log(|||\phi|||_1). \end{array}$$

Now, using Bestvina-AlgomKfir theorem,

$$\log(|||\phi^{-1}|||_1) = d(x, \phi^{-1} \cdot x) = d(\phi \cdot x, x) \leqslant Md(x, \phi \cdot x) = M \log(|||\phi|||_1).$$

Remind
$$\beta_r(n) = \max\{|||\theta^{-1}|||_1 \mid \theta \in Aut F_r, |||\theta|||_1 \le n\}.$$

Proof. Given $\phi \in \text{Aut}(F_r)$, consider $x = (R_r, id, \ell_0) \in \mathcal{X}_r$, and $\phi \cdot x = (R_r, \phi, \ell_0) \in \mathcal{X}_r$, where ℓ_0 is the uniform metric.

$$\begin{array}{ll} \textit{d}(\textit{x},\,\phi\cdot\textit{x}) &=& \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings}\}\\ &=& \log\big(\min\{\sigma(\phi\gamma_w\gamma_p) \mid \textit{w} \in \textit{F}_r,\, p = \text{ "half petal"}\}\big)\\ &\sim& \log\big(\min\{\sigma(\phi\gamma_w) \mid \textit{w} \in \textit{F}_r\}\big)\\ &=& \log\big(\min\{||\phi\gamma_w||_\infty \mid \textit{w} \in \textit{F}_r\}\big)\\ &=& \log(|||\phi|||_\infty)\\ &\sim& \log(|||\phi|||_1). \end{array}$$

Now, using Bestvina-AlgomKfir theorem,

$$\log(|||\phi^{-1}|||_1) = d(x, \phi^{-1} \cdot x) = d(\phi \cdot x, x) \leqslant Md(x, \phi \cdot x) = M\log(|||\phi|||_1).$$

Remind
$$\beta_r(n) = \max\{|||\theta^{-1}|||_1 \mid \theta \in Aut F_r, |||\theta|||_1 \le n\}.$$

Proof. Given $\phi \in \text{Aut}(F_r)$, consider $x = (R_r, id, \ell_0) \in \mathcal{X}_r$, and $\phi \cdot x = (R_r, \phi, \ell_0) \in \mathcal{X}_r$, where ℓ_0 is the uniform metric.

$$\begin{array}{ll} \textit{d}(\textit{x},\,\phi \cdot \textit{x}) &=& \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings}\} \\ &=& \log\big(\min\{\sigma(\phi\gamma_w\gamma_p) \mid \textit{w} \in \textit{F}_r,\, p = \text{ "half petal"}\}\big) \\ &\sim& \log\big(\min\{\sigma(\phi\gamma_w) \mid \textit{w} \in \textit{F}_r\}\big) \\ &=& \log\big(\min\{||\phi\gamma_w||_\infty \mid \textit{w} \in \textit{F}_r\}\big) \\ &=& \log(|||\phi|||_\infty) \\ &\sim& \log(|||\phi|||_1). \end{array}$$

Now, using Bestvina-AlgomKfir theorem,

$$\log(|||\phi^{-1}|||_1) = d(x, \phi^{-1} \cdot x) = d(\phi \cdot x, x) \leqslant Md(x, \phi \cdot x) = M\log(|||\phi|||_1).$$

Remind
$$\beta_r(n) = \max\{|||\theta^{-1}|||_1 \mid \theta \in Aut F_r, |||\theta|||_1 \le n\}.$$

Proof. Given $\phi \in \text{Aut}(F_r)$, consider $x = (R_r, id, \ell_0) \in \mathcal{X}_r$, and $\phi \cdot x = (R_r, \phi, \ell_0) \in \mathcal{X}_r$, where ℓ_0 is the uniform metric.

$$\begin{array}{ll} \textit{d}(\textit{x},\,\phi \cdot \textit{x}) &=& \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings}\} \\ &=& \log \big(\min\{\sigma(\phi\gamma_w\gamma_p) \mid \textit{w} \in \textit{F}_r,\, p = \text{ "half petal"}\}\big) \\ &\sim& \log \big(\min\{\sigma(\phi\gamma_w) \mid \textit{w} \in \textit{F}_r\}\big) \\ &=& \log \big(\min\{||\phi\gamma_w||_{\infty} \mid \textit{w} \in \textit{F}_r\}\big) \\ &=& \log(|||\phi|||_{\infty}) \\ &\sim& \log(|||\phi|||_1). \end{array}$$

Now, using Bestvina-AlgomKfir theorem,

$$\log(|||\phi^{-1}|||_1) = d(x, \phi^{-1} \cdot x) = d(\phi \cdot x, x) \leqslant Md(x, \phi \cdot x) = M\log(|||\phi|||_1).$$

1. Motivation

Remind
$$\beta_r(n) = \max\{|||\theta^{-1}|||_1 \mid \theta \in Aut F_r, |||\theta|||_1 \le n\}.$$

Proof. Given $\phi \in \text{Aut}(F_r)$, consider $x = (R_r, id, \ell_0) \in \mathcal{X}_r$, and $\phi \cdot x = (R_r, \phi, \ell_0) \in \mathcal{X}_r$, where ℓ_0 is the uniform metric.

$$\begin{array}{ll} \textit{d}(\textit{x},\,\phi\cdot\textit{x}) &=& \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings}\}\\ &=& \log\big(\min\{\sigma(\phi\gamma_w\gamma_p) \mid \textit{w} \in \textit{F}_r,\, p = \text{ "half petal"}\}\big)\\ &\sim& \log\big(\min\{\sigma(\phi\gamma_w) \mid \textit{w} \in \textit{F}_r\}\big)\\ &=& \log\big(\min\{||\phi\gamma_w||_\infty \mid \textit{w} \in \textit{F}_r\}\big)\\ &=& \log(|||\phi|||_\infty)\\ &\sim& \log(|||\phi|||_1). \end{array}$$

Now, using Bestvina-AlgomKfir theorem,

$$\log(|||\phi^{-1}|||_1) = d(x, \phi^{-1} \cdot x) = d(\phi \cdot x, x) \leqslant Md(x, \phi \cdot x) = M \log(|||\phi|||_1).$$

Remind
$$\beta_r(n) = \max\{|||\theta^{-1}|||_1 \mid \theta \in Aut F_r, |||\theta|||_1 \le n\}.$$

Proof. Given $\phi \in \text{Aut}(F_r)$, consider $x = (R_r, id, \ell_0) \in \mathcal{X}_r$, and $\phi \cdot x = (R_r, \phi, \ell_0) \in \mathcal{X}_r$, where ℓ_0 is the uniform metric.

$$\begin{array}{ll} \textit{d}(\textit{x},\,\phi\cdot\textit{x}) &=& \min\{\log(\sigma(\alpha)) \mid \alpha \text{ diff. markings}\}\\ &=& \log\big(\min\{\sigma(\phi\gamma_w\gamma_p) \mid \textit{w} \in \textit{F}_r,\, p = \text{ "half petal"}\}\big)\\ &\sim& \log\big(\min\{\sigma(\phi\gamma_w) \mid \textit{w} \in \textit{F}_r\}\big)\\ &=& \log\big(\min\{||\phi\gamma_w||_\infty \mid \textit{w} \in \textit{F}_r\}\big)\\ &=& \log(|||\phi|||_\infty)\\ &\sim& \log(|||\phi|||_1). \end{array}$$

Now, using Bestvina-AlgomKfir theorem,

$$\log(|||\phi^{-1}|||_1) = d(x, \phi^{-1} \cdot x) = d(\phi \cdot x, x) \leqslant Md(x, \phi \cdot x) = M \log(|||\phi|||_1).$$

Outline

- Motivation
- 2 Free groups
- 3 Lower bounds: a good enough example
- Upper bounds: outer space
- The special case of rank 2

The rank 2 case

These functions for $Aut(F_2)$ are much easier to understand due to the following technical lemmas.

Lemma

Let $\varphi \in Aut(F_2)$ be positive. Then φ^{-1} is cyclically reduced and $||\varphi^{-1}||_1 = ||\varphi||_1$.

Lemma

For every $\theta \in Aut(F_2)$, there exist two letter permuting autos $\psi_1, \ \psi_2 \in Aut(F_2)$, a positive one $\varphi \in Aut^+(F_2)$, and an element $g \in F_2$, such that $\theta = \psi_1 \varphi \psi_2 \lambda_{\sigma}$ and $||\varphi||_1 + 2|g| \leqslant ||\theta||_1$.

The rank 2 case

These functions for $Aut(F_2)$ are much easier to understand due to the following technical lemmas.

Lemma

Let $\varphi \in Aut(F_2)$ be positive. Then φ^{-1} is cyclically reduced and $||\varphi^{-1}||_1 = ||\varphi||_1$.

Lemma

For every $\theta \in Aut(F_2)$, there exist two letter permuting autos $\psi_1, \ \psi_2 \in Aut(F_2)$, a positive one $\varphi \in Aut^+(F_2)$, and an element $g \in F_2$, such that $\theta = \psi_1 \varphi \psi_2 \lambda_{\sigma}$ and $||\varphi||_1 + 2|g| \leqslant ||\theta||_1$.

The rank 2 case

These functions for $Aut(F_2)$ are much easier to understand due to the following technical lemmas.

Lemma

Let $\varphi \in Aut(F_2)$ be positive. Then φ^{-1} is cyclically reduced and $||\varphi^{-1}||_1 = ||\varphi||_1$.

Lemma

For every $\theta \in Aut(F_2)$, there exist two letter permuting autos ψ_1 , $\psi_2 \in Aut(F_2)$, a positive one $\varphi \in Aut^+(F_2)$, and an element $g \in F_2$, such that $\theta = \psi_1 \varphi \psi_2 \lambda_g$ and $||\varphi||_1 + 2|g| \leq ||\theta||_1$.

Theorem

For every
$$\theta \in Aut(F_2)$$
, $||\theta^{-1}||_1 = ||\theta||_1$. Hence, $\gamma_2(n) = n$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then

$$||\theta||_1 = ||\psi_1 \varphi \psi_2 \lambda_g||_1 = ||\psi_1 \varphi \psi_2||_1 = ||\varphi||_1 = ||\varphi||_1.$$

$$\|\theta^{-1}\|_{1} = \|\lambda_{g^{-1}}\psi_{2}^{-1}\varphi^{-1}\psi_{1}^{-1}\|_{1} = \|\psi_{2}^{-1}\varphi^{-1}\psi_{1}^{-1}\|_{1} =$$

$$= \|\varphi^{-1}\|_{1} = \|\varphi^{-1}\|_{1} = \|\varphi\|_{1}. \quad \Box$$

Theorem

For every
$$\theta \in Aut(F_2)$$
, $||\theta^{-1}||_1 = ||\theta||_1$. Hence, $\gamma_2(n) = n$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then,

$$||\theta||_1 = ||\psi_1 \varphi \psi_2 \lambda_g||_1 = ||\psi_1 \varphi \psi_2||_1 = ||\varphi||_1 = ||\varphi||_1.$$

$$\begin{aligned} \|\theta^{-1}\|_1 &= \|\lambda_{g^{-1}}\psi_2^{-1}\varphi^{-1}\psi_1^{-1}\|_1 = \|\psi_2^{-1}\varphi^{-1}\psi_1^{-1}\|_1 = \\ &= \|\varphi^{-1}\|_1 = \|\varphi^{-1}\|_1 = \|\varphi\|_1. \quad \Box \end{aligned}$$

Theorem

For every
$$\theta \in Aut(F_2)$$
, $||\theta^{-1}||_1 = ||\theta||_1$. Hence, $\gamma_2(n) = n$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then,

$$||\theta||_1 = ||\psi_1 \varphi \psi_2 \lambda_g||_1 = ||\psi_1 \varphi \psi_2||_1 = ||\varphi||_1 = ||\varphi||_1.$$

$$\begin{aligned} \|\theta^{-1}\|_1 &= \|\lambda_{g^{-1}}\psi_2^{-1}\varphi^{-1}\psi_1^{-1}\|_1 = \|\psi_2^{-1}\varphi^{-1}\psi_1^{-1}\|_1 = \\ &= \|\varphi^{-1}\|_1 = \|\varphi^{-1}\|_1 = \|\varphi\|_1. \quad \Box \end{aligned}$$

Theorem

For every
$$\theta \in Aut(F_2)$$
, $||\theta^{-1}||_1 = ||\theta||_1$. Hence, $\gamma_2(n) = n$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then,

$$||\theta||_1 = ||\psi_1 \varphi \psi_2 \lambda_g||_1 = ||\psi_1 \varphi \psi_2||_1 = ||\varphi||_1 = ||\varphi||_1.$$

$$\begin{aligned} \|\theta^{-1}\|_{1} &= \|\lambda_{g^{-1}}\psi_{2}^{-1}\varphi^{-1}\psi_{1}^{-1}\|_{1} = \|\psi_{2}^{-1}\varphi^{-1}\psi_{1}^{-1}\|_{1} = \\ &= \|\varphi^{-1}\|_{1} = \|\varphi^{-1}\|_{1} = \|\varphi\|_{1}. \quad \Box \end{aligned}$$

Theorem

For every
$$\theta \in Aut(F_2)$$
, $|||\theta^{-1}|||_1 = |||\theta|||$. Hence, $\beta_2(n) = n$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then

$$|||\theta||| = |||\psi_1 \varphi \psi_2 \lambda_g||| = |||\psi_1 \varphi \psi_2|||_1 = |||\varphi||| = ||\varphi||_1.$$

$$\begin{aligned} |||\theta^{-1}|||_1 &= |||\lambda_{g^{-1}}\psi_2^{-1}\varphi^{-1}\psi_1^{-1}|||_1 &= |||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}|||_1 &= \\ &= |||\varphi^{-1}|||_1 &= ||\varphi^{-1}||_1 &= ||\varphi||_1. \quad \Box \end{aligned}$$

Theorem

For every
$$\theta \in Aut(F_2)$$
, $|||\theta^{-1}|||_1 = |||\theta|||$. Hence, $\beta_2(n) = n$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then,

$$|||\theta||| = |||\psi_1 \varphi \psi_2 \lambda_g||| = |||\psi_1 \varphi \psi_2|||_1 = |||\varphi||| = ||\varphi||_1$$

$$\begin{split} |||\theta^{-1}|||_1 &= |||\lambda_{g^{-1}}\psi_2^{-1}\varphi^{-1}\psi_1^{-1}|||_1 = |||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}|||_1 = \\ &= |||\varphi^{-1}|||_1 = ||\varphi^{-1}||_1 = ||\varphi||_1. \quad \Box \end{split}$$

Theorem

For every
$$\theta \in Aut(F_2)$$
, $|||\theta^{-1}|||_1 = |||\theta|||$. Hence, $\beta_2(n) = n$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then,

$$|||\theta||| = |||\psi_1 \varphi \psi_2 \lambda_g||| = |||\psi_1 \varphi \psi_2|||_1 = |||\varphi||| = ||\varphi||_1.$$

$$\begin{aligned} |||\theta^{-1}|||_1 &= |||\lambda_{g^{-1}}\psi_2^{-1}\varphi^{-1}\psi_1^{-1}|||_1 &= |||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}|||_1 &= \\ &= |||\varphi^{-1}|||_1 &= ||\varphi^{-1}||_1 &= ||\varphi||_1. \quad \Box \end{aligned}$$

Theorem

For every
$$\theta \in Aut(F_2)$$
, $|||\theta^{-1}|||_1 = |||\theta|||$. Hence, $\beta_2(n) = n$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then,

$$|||\theta||| = |||\psi_1 \varphi \psi_2 \lambda_g||| = |||\psi_1 \varphi \psi_2|||_1 = |||\varphi||| = ||\varphi||_1.$$

$$\begin{aligned} |||\theta^{-1}|||_1 &= |||\lambda_{g^{-1}}\psi_2^{-1}\varphi^{-1}\psi_1^{-1}|||_1 &= |||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}|||_1 &= \\ &= |||\varphi^{-1}|||_1 &= ||\varphi^{-1}||_1 &= ||\varphi||_1. \quad \Box \end{aligned}$$

Theorem

1. Motivation

For
$$n \geqslant 4$$
 we have $\alpha_2(n) \leqslant \frac{(n-1)^2}{2}$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then, $\theta^{-1} = \lambda_{g^{-1}} \psi_2^{-1} \varphi^{-1} \psi_1^{-1}$ and

$$||\theta^{-1}||_1 \leqslant 4|g| \cdot ||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}||_{\infty} = 4|g| \cdot ||\varphi^{-1}||_{\infty} \leqslant$$

$$\leq 4|g|(||\varphi^{-1}||_1-1)=4|g|(||\varphi||_1-1).$$

Now from $||arphi||_1+2|g|\leqslant || heta||_1=n$, we deduce $|g|\leqslant rac{n-||arphi||_1}{2}$ and so,

$$\|\theta^{-1}\|_1 \leq 2(n - \|\varphi\|_1)(\|\varphi\|_1 - 1)$$

$$||\theta^{-1}||_1 \leqslant 2(n-||\varphi||_1)(||\varphi||_1-1) \leqslant 2(n-\frac{n+1}{2})(\frac{n+1}{2}-1) = \frac{(n-1)^2}{2}$$

Theorem

1. Motivation

For
$$n \geqslant 4$$
 we have $\alpha_2(n) \leqslant \frac{(n-1)^2}{2}$.

Proof. Let $\theta \in \operatorname{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then, $\theta^{-1} = \lambda_{g^{-1}} \psi_2^{-1} \varphi^{-1} \psi_1^{-1}$ and

$$||\theta^{-1}||_1 \le 4|g| \cdot ||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}||_{\infty} = 4|g| \cdot ||\varphi^{-1}||_{\infty} \le$$

$$\leq 4|g|(||\varphi^{-1}||_1-1)=4|g|(||\varphi||_1-1).$$

Now from $||\varphi||_1 + 2|g| \leqslant ||\theta||_1 = n$, we deduce $|g| \leqslant \frac{n - ||\varphi||_1}{2}$ and so,

$$\|\theta^{-1}\|_1 \leq 2(n-\|\varphi\|_1)(\|\varphi\|_1-1).$$

$$||\theta^{-1}||_1 \leqslant 2(n-||\varphi||_1)(||\varphi||_1-1) \leqslant 2(n-\frac{n+1}{2})(\frac{n+1}{2}-1) = \frac{(n-1)^2}{2}.$$

Theorem

1. Motivation

For
$$n \geqslant 4$$
 we have $\alpha_2(n) \leqslant \frac{(n-1)^2}{2}$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then, $\theta^{-1} = \lambda_{g^{-1}} \psi_2^{-1} \varphi^{-1} \psi_1^{-1}$ and

$$||\theta^{-1}||_1 \leqslant 4|g| \cdot ||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}||_{\infty} = 4|g| \cdot ||\varphi^{-1}||_{\infty} \leqslant$$

$$\leq 4|g|(||\varphi^{-1}||_1-1)=4|g|(||\varphi||_1-1).$$

Now from $||arphi||_1+2|g|\leqslant || heta||_1=n$, we deduce $|g|\leqslant rac{n-||arphi||_1}{2}$ and so,

$$\|\theta^{-1}\|_1 \leq 2(n-\|\varphi\|_1)(\|\varphi\|_1-1).$$

$$||\theta^{-1}||_1 \leqslant 2(n-||\varphi||_1)(||\varphi||_1-1) \leqslant 2(n-\frac{n+1}{2})(\frac{n+1}{2}-1) = \frac{(n-1)^2}{2}.$$

Theorem

1. Motivation

For
$$n \geqslant 4$$
 we have $\alpha_2(n) \leqslant \frac{(n-1)^2}{2}$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then, $\theta^{-1} = \lambda_{g^{-1}} \psi_2^{-1} \varphi^{-1} \psi_1^{-1}$ and

$$||\theta^{-1}||_1 \leqslant 4|g| \cdot ||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}||_{\infty} = 4|g| \cdot ||\varphi^{-1}||_{\infty} \leqslant$$

$$\leq 4|g|(||\varphi^{-1}||_1-1)=4|g|(||\varphi||_1-1).$$

Now from $||\varphi||_1 + 2|g| \leqslant ||\theta||_1 = n$, we deduce $|g| \leqslant \frac{n-||\varphi||_1}{2}$ and so,

$$\|\theta^{-1}\|_1 \leq 2(n-\|\varphi\|_1)(\|\varphi\|_1-1).$$

$$||\theta^{-1}||_1 \leqslant 2(n-||\varphi||_1)(||\varphi||_1-1) \leqslant 2\left(n-\frac{n+1}{2}\right)\left(\frac{n+1}{2}-1\right) = \frac{(n-1)^2}{2}.$$

Theorem

1. Motivation

For
$$n \geqslant 4$$
 we have $\alpha_2(n) \leqslant \frac{(n-1)^2}{2}$.

Proof. Let $\theta \in \text{Aut}(F_2)$, decomposed as above, $\theta = \psi_1 \varphi \psi_2 \lambda_g$. Then, $\theta^{-1} = \lambda_{g^{-1}} \psi_2^{-1} \varphi^{-1} \psi_1^{-1}$ and

$$||\theta^{-1}||_1 \le 4|g| \cdot ||\psi_2^{-1}\varphi^{-1}\psi_1^{-1}||_{\infty} = 4|g| \cdot ||\varphi^{-1}||_{\infty} \le$$

$$\leq 4|g|(||\varphi^{-1}||_1-1)=4|g|(||\varphi||_1-1).$$

Now from $||\varphi||_1 + 2|g| \leqslant ||\theta||_1 = n$, we deduce $|g| \leqslant \frac{n - ||\varphi||_1}{2}$ and so,

$$\|\theta^{-1}\|_1 \leq 2(n-\|\varphi\|_1)(\|\varphi\|_1-1).$$

$$||\theta^{-1}||_1 \leqslant 2(n-||\varphi||_1)(||\varphi||_1-1) \leqslant 2\left(n-\frac{n+1}{2}\right)\left(\frac{n+1}{2}-1\right) = \frac{(n-1)^2}{2}. \quad \Box$$

Theorem

For $n \geqslant n_0$ we have $\alpha_2(n) \geqslant \frac{n^2}{16}$.

So, the global known picture is

(i)
$$\frac{n^2}{16} \leqslant \alpha_2(n) \leqslant \frac{(n-1)^2}{2}$$

(ii)
$$\beta_2(n) = n$$
,

(iii)
$$\gamma_2(n) = n$$
,

(iv)
$$Kn^r \leqslant \alpha_r(n)$$
,

(v)
$$\beta_r(n) \leq Kn^M$$

(iii)
$$Kn^{r-1} \leqslant \gamma_r(n)$$
.

for some constants K = K(r), M = M(r), and for $n \ge n_0$

Theorem

For $n \geqslant n_0$ we have $\alpha_2(n) \geqslant \frac{n^2}{16}$.

So, the global known picture is

(i)
$$\frac{n^2}{16} \leqslant \alpha_2(n) \leqslant \frac{(n-1)^2}{2}$$
,

(ii)
$$\beta_2(n) = n$$
,

(iii)
$$\gamma_2(n) = n$$
,

(iv)
$$Kn^r \leqslant \alpha_r(n)$$
,

(v)
$$\beta_r(n) \leqslant Kn^M$$
,

(iii)
$$Kn^{r-1} \leqslant \gamma_r(n)$$
.

for some constants K = K(r), M = M(r), and for $n \ge n_0$.

THANKS