The degree of commutativity of an infinite group

Enric Ventura

Departament de Matemàtica Aplicada III
Universitat Politècnica de Catalunya

GAGTA-9, Lumini.

September 17th, 2015.

Outline

(1) Motivation
(2) Main definition
(3) Finite index subgroups

4 A Gromov-like theorem
(5) Generalizations

Outline

(2) Main definition

3 Finite index subgroups

4 A Gromov-like theorem
(5) Generalizations

Motivation

(Joint work with Y. Antolín and A. Martino.)
Theorem (Gustaison, 1973)
Let G be a finite group. If the probability that two elements from G commute is bigger than $5 / 8$, then G is abelian.

Proof. Suppose G is not abelian. Then,

$$
\begin{aligned}
d c(G) & =\frac{\left|\left\{(u, v) \in G^{2} \mid u v=v u\right\}\right|}{|G|^{2}}=\frac{1}{|G|^{2}} \sum_{u \in G}\left|C_{G}(u)\right|= \\
& =\frac{1}{|G|^{2}}\left(|Z(G)||G|+\sum_{u \in G \backslash Z(G)}\left|C_{G}(u)\right|\right) \leqslant \\
& \leqslant \frac{1}{|G|^{2}}\left(|Z(G)||G|+(|G|-|Z(G)|) \frac{|G|}{2}\right)=
\end{aligned}
$$

Motivation

(Joint work with Y. Antolín and A. Martino.)

Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G commute is bigger than $5 / 8$, then G is abelian.

Proof. Suppose G is not abelian. Then,

$$
\begin{aligned}
& =\frac{1}{|G|^{2}}\left(|Z(G)||G|+\sum_{u \in G \backslash Z(G)}\left|C_{G}(u)\right|\right) \leqslant \\
& =\frac{1}{|G|^{2}}\left(|Z(G)||G|+(|G|-|Z(G)|) \frac{|G|}{2}\right)=
\end{aligned}
$$

Motivation

(Joint work with Y. Antolín and A. Martino.)

Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G commute is bigger than $5 / 8$, then G is abelian.

Proof. Suppose G is not abelian. Then,

$$
d c(G)=\frac{\left|\left\{(u, v) \in G^{2} \mid u v=v u\right\}\right|}{|G|^{2}}=\frac{1}{|G|^{2}} \sum_{u \in G}\left|C_{G}(u)\right|=
$$

Motivation

(Joint work with Y. Antolín and A. Martino.)

Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G commute is bigger than $5 / 8$, then G is abelian.

Proof. Suppose G is not abelian. Then,

$$
\begin{aligned}
d c(G) & =\frac{\left|\left\{(u, v) \in G^{2} \mid u v=v u\right\}\right|}{|G|^{2}}=\frac{1}{|G|^{2}} \sum_{u \in G}\left|C_{G}(u)\right|= \\
& =\frac{1}{|G|^{2}}\left(|Z(G)||G|+\sum_{u \in G \backslash Z(G)}\left|C_{G}(u)\right|\right) \leqslant
\end{aligned}
$$

Motivation

(Joint work with Y. Antolín and A. Martino.)

Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G commute is bigger than $5 / 8$, then G is abelian.

Proof. Suppose G is not abelian. Then,

$$
\begin{aligned}
d c(G) & =\frac{\left|\left\{(u, v) \in G^{2} \mid u v=v u\right\}\right|}{|G|^{2}}=\frac{1}{|G|^{2}} \sum_{u \in G}\left|C_{G}(u)\right|= \\
& =\frac{1}{|G|^{2}}\left(|Z(G)||G|+\sum_{u \in G \backslash Z(G)}\left|C_{G}(u)\right|\right) \leqslant \\
& \leqslant \frac{1}{|G|^{2}}\left(|Z(G)||G|+(|G|-|Z(G)|) \frac{|G|}{2}\right)=
\end{aligned}
$$

Motivation

$$
\begin{aligned}
& =\frac{1}{|G|^{2}}\left(|Z(G)||G|+(|G|-|Z(G)|) \frac{|G|}{2}\right)= \\
& =\frac{|G|+|Z(G)|}{2|G|} \leqslant \frac{1}{2}+\frac{|G|}{4 \cdot 2|G|}=\frac{1}{2}+\frac{1}{8}=\frac{5}{8}
\end{aligned}
$$

because $G / Z(G)$ cannot be cyclic and so, $|Z(G)| \leqslant|G| / 4$.

Observation

The quaternion group has $d c(Q)=5 / 8$.

$$
\text { "There is no live between } 5 / 8 \text { and 1" }
$$

(Goal)

Is there a version of dc for infinite groups?

Motivation

$$
\begin{aligned}
& =\frac{1}{|G|^{2}}\left(|Z(G)||G|+(|G|-|Z(G)|) \frac{|G|}{2}\right)= \\
& =\frac{|G|+|Z(G)|}{2|G|} \leqslant \frac{1}{2}+\frac{|G|}{4 \cdot 2|G|}=\frac{1}{2}+\frac{1}{8}=\frac{5}{8}
\end{aligned}
$$

because $G / Z(G)$ cannot be cyclic and so, $|Z(G)| \leqslant|G| / 4$. \square

Observation

The quaternion group has $d c(Q)=5 / 8$.
"There is no live between 5/8 and 1"

(Goal)

Is there a version of dc for infinite groups ?

Motivation

$$
\begin{aligned}
& =\frac{1}{|G|^{2}}\left(|Z(G)||G|+(|G|-|Z(G)|) \frac{|G|}{2}\right)= \\
& =\frac{|G|+|Z(G)|}{2|G|} \leqslant \frac{1}{2}+\frac{|G|}{4 \cdot 2|G|}=\frac{1}{2}+\frac{1}{8}=\frac{5}{8}
\end{aligned}
$$

because $G / Z(G)$ cannot be cyclic and so, $|Z(G)| \leqslant|G| / 4$. \square

Observation

The quaternion group has $d c(Q)=5 / 8$.

(Goal)

Is there a version of dc for infinite groups ?

Motivation

$$
\begin{aligned}
& =\frac{1}{|G|^{2}}\left(|Z(G)||G|+(|G|-|Z(G)|) \frac{|G|}{2}\right)= \\
& =\frac{|G|+|Z(G)|}{2|G|} \leqslant \frac{1}{2}+\frac{|G|}{4 \cdot 2|G|}=\frac{1}{2}+\frac{1}{8}=\frac{5}{8}
\end{aligned}
$$

because $G / Z(G)$ cannot be cyclic and so, $|Z(G)| \leqslant|G| / 4$. \square

Observation

The quaternion group has $d c(Q)=5 / 8$.
"There is no live between 5/8 and 1"

(Goal)

Is there a version of dc for infinite groups?

Motivation

$$
\begin{aligned}
& =\frac{1}{|G|^{2}}\left(|Z(G)||G|+(|G|-|Z(G)|) \frac{|G|}{2}\right)= \\
& =\frac{|G|+|Z(G)|}{2|G|} \leqslant \frac{1}{2}+\frac{|G|}{4 \cdot 2|G|}=\frac{1}{2}+\frac{1}{8}=\frac{5}{8}
\end{aligned}
$$

because $G / Z(G)$ cannot be cyclic and so, $|Z(G)| \leqslant|G| / 4 . \quad \square$

Observation

The quaternion group has $d c(Q)=5 / 8$.
"There is no live between 5/8 and 1"

(Goal)

Is there a version of dc for infinite groups ?

Outline

(1) Motivation

(3) Finite index subgroups

4 A Gromov-like theorem
(5) Generalizations

Degree of commutativity

Definition

Let $G=\langle X\rangle$ be a f.g. group. The degree of commutativity of G w.r.t. X is

$$
d c_{X}(G)=\limsup _{n \rightarrow \infty} \frac{\left|\left\{(u, v) \in \mathbb{B}_{X}(n) \times \mathbb{B}_{X}(n) \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(n)\right|^{2}} \in[0,1],
$$

where $\mathbb{B}_{X}(n)=\left\{\left.g \in G| | g\right|_{x} \leqslant n\right\}$.

Question

Is this a real lim ? Does it depend on X ?

About limsup we have no idea:

- No example where lim doesn t exist;
- No proof it is always a real limit.

Degree of commutativity

Definition

Let $G=\langle X\rangle$ be a f.g. group. The degree of commutativity of G w.r.t. X is

$$
d c_{X}(G)=\limsup _{n \rightarrow \infty} \frac{\left|\left\{(u, v) \in \mathbb{B}_{X}(n) \times \mathbb{B}_{X}(n) \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(n)\right|^{2}} \in[0,1],
$$

where $\mathbb{B}_{X}(n)=\left\{\left.g \in G| | g\right|_{X} \leqslant n\right\}$.

Question

Is this a real lim?

About limsup we have no idea:

- No example where lim doesn't exist;
- No proof it is always a real limit.

Degree of commutativity

Definition

Let $G=\langle X\rangle$ be a f.g. group. The degree of commutativity of G w.r.t. X is

$$
d c_{X}(G)=\limsup _{n \rightarrow \infty} \frac{\left|\left\{(u, v) \in \mathbb{B}_{X}(n) \times \mathbb{B}_{X}(n) \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(n)\right|^{2}} \in[0,1],
$$

where $\mathbb{B}_{X}(n)=\left\{\left.g \in G| | g\right|_{X} \leqslant n\right\}$.

Question

Is this a real lim ? Does it depend on X ?

About limsup we have no idea:

- No example where lim doesn't exist;
- No proof it is always a real limit.

Degree of commutativity

Definition

Let $G=\langle X\rangle$ be a f.g. group. The degree of commutativity of G w.r.t. X is

$$
d c_{X}(G)=\limsup _{n \rightarrow \infty} \frac{\left|\left\{(u, v) \in \mathbb{B}_{X}(n) \times \mathbb{B}_{X}(n) \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(n)\right|^{2}} \in[0,1],
$$

where $\mathbb{B}_{X}(n)=\left\{\left.g \in G| | g\right|_{X} \leqslant n\right\}$.

Question

Is this a real lim ? Does it depend on X ?

About limsup we have no idea:

- No example where lim doesn't exist;
- No proof it is always a real limit.

Degree of commutativity

Definition

Let $G=\langle X\rangle$ be a f.g. group. The degree of commutativity of G w.r.t. X is

$$
d c_{X}(G)=\limsup _{n \rightarrow \infty} \frac{\left|\left\{(u, v) \in \mathbb{B}_{X}(n) \times \mathbb{B}_{X}(n) \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(n)\right|^{2}} \in[0,1],
$$

where $\mathbb{B}_{X}(n)=\left\{\left.g \in G| | g\right|_{X} \leqslant n\right\}$.

Question

Is this a real lim ? Does it depend on X ?

About limsup we have no idea:

- No example where lim doesn't exist;
- No proof it is always a real limit.

Independence on X

Definition
A f.g. group $G=\langle X\rangle$ is of

- subexponential growth if $\lim _{n \rightarrow \infty} \frac{\left|\mathbb{B}_{x}(n+1)\right|}{\left|\mathbb{B}_{x}(n)\right|}=1$;
- polynomial growth if $\left|\mathbb{B}_{X}(n)\right| \leqslant D n^{d}$.

Independence on X

Definition

A f.g. group $G=\langle X\rangle$ is of

- subexponential growth if $\lim _{n \rightarrow \infty} \frac{|\mathbb{B} x(n+1)|}{\left|\mathbb{B}_{x}(n)\right|}=1$;
- polynomial growth if $\left|\mathbb{B}_{X}(n)\right| \leqslant D n^{d}$.

Independence on X

Definition

A f.g. group $G=\langle X\rangle$ is of

- subexponential growth if $\lim _{n \rightarrow \infty} \frac{\left|\mathbb{B}_{x}(n+1)\right|}{\left|\mathbb{B}_{x}(n)\right|}=1$;
- polynomial growth (of degree d) if $0<C n^{d} \leqslant\left|\mathbb{B}_{X}(n)\right| \leqslant D n^{d}$.

Definition

Let $G=\langle X\rangle$. A map $f: G \rightarrow \mathbb{N}$ is an estimation of the X-metric if \exists
$K>0$ such that $\forall w \in G$

Example

It is well known that, for $G=\langle X\rangle=\langle Y\rangle,|\cdot| x$ is an estimation of the
Y-metric, and $|\cdot|_{\gamma}$ is an estimation of the X-metric.

Independence on X

Definition

A f.g. group $G=\langle X\rangle$ is of

- subexponential growth if $\lim _{n \rightarrow \infty} \frac{\left|\mathbb{B}_{x}(n+1)\right|}{\left|\mathbb{B}_{x}(n)\right|}=1$;
- polynomial growth (of degree d) if $0<C n^{d} \leqslant\left|\mathbb{B}_{X}(n)\right| \leqslant D n^{d}$.

Definition

Let $G=\langle X\rangle$. A map $f: G \rightarrow \mathbb{N}$ is an estimation of the X-metric if \exists $K>0$ such that $\forall w \in G$

$$
\frac{1}{K} f(w) \leqslant|w|_{X} \leqslant K f(w)
$$

Example
It is well known that, for $G=\langle X\rangle=\langle Y\rangle,|\cdot| x$ is an estimation of the
Y-metric, and $|\cdot|_{Y}$ is an estimation of the X-metric.

Independence on X

Definition

A f.g. group $G=\langle X\rangle$ is of

- subexponential growth if $\lim _{n \rightarrow \infty} \frac{\left|\mathbb{B}_{x}(n+1)\right|}{\left|\mathbb{B}_{x}(n)\right|}=1$;
- polynomial growth (of degree d) if $0<C n^{d} \leqslant\left|\mathbb{B}_{X}(n)\right| \leqslant D n^{d}$.

Definition

Let $G=\langle X\rangle$. A map $f: G \rightarrow \mathbb{N}$ is an estimation of the X-metric if \exists $K>0$ such that $\forall w \in G$

$$
\frac{1}{K} f(w) \leqslant|w|_{X} \leqslant K f(w)
$$

Example

It is well known that, for $G=\langle X\rangle=\langle Y\rangle,|\cdot| X$ is an estimation of the Y-metric, and $|\cdot|_{Y}$ is an estimation of the X-metric.

Independence on X

Definition

Define the f -ball and the f -dc:

$$
\begin{gathered}
\mathbb{B}_{f}(n)=\{w \in G \mid f(w) \leqslant n\} \\
d c_{f}(G)=\limsup _{n \rightarrow \infty} \frac{\left|\left\{(u, v) \in \mathbb{B}_{f}(n) \times \mathbb{B}_{f}(n) \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{f}(n)\right|^{2}} .
\end{gathered}
$$

Proposition

Let $G=\langle X\rangle$ be of polynomial growth, and $f: G \rightarrow \mathbb{N}$ be an estimation of the X-metric. Then,

$$
d c_{X}(G)>0 \Longleftrightarrow d c_{f}(G)>0 .
$$

Proof. Clearly, $\mathbb{B}_{f}(n) \subseteq \mathbb{B}_{x}(K n) \subseteq \mathbb{B}_{f}\left(K^{2} n\right)$ so,

$$
\left|\left\{(u, v) \in\left(\mathbb{B}_{f}(n)\right)^{2} \mid u v=v u\right\}\right| \leqslant\left|\left\{(u, v) \in\left(\mathbb{B}_{x}(K n)\right)^{2} \mid u v=v u\right\}\right| .
$$

Independence on X

Definition

Define the f-ball and the f-dc:

$$
\begin{gathered}
\mathbb{B}_{f}(n)=\{w \in G \mid f(w) \leqslant n\} \\
d c_{f}(G)=\limsup _{n \rightarrow \infty} \frac{\left|\left\{(u, v) \in \mathbb{B}_{f}(n) \times \mathbb{B}_{f}(n) \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{f}(n)\right|^{2}} .
\end{gathered}
$$

Proposition

Let $G=\langle X\rangle$ be of polynomial growth, and $f: G \rightarrow \mathbb{N}$ be an estimation of the X-metric. Then,

$$
d c_{X}(G)>0 \Longleftrightarrow d c_{f}(G)>0
$$

Proof. Clearly, $\mathbb{B}_{f}(n) \subseteq \mathbb{B}_{X}(K n) \subseteq \mathbb{B}_{f}\left(K^{2} n\right)$ so,

$$
\left|\left\{(u, v) \in\left(\mathbb{B}_{f}(n)\right)^{2} \mid u v=v u\right\}\right| \leqslant\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(K n)\right)^{2} \mid u v=v u\right\}\right| .
$$

Independence on X

Definition

Define the f-ball and the f-dc:

$$
\begin{gathered}
\mathbb{B}_{f}(n)=\{w \in G \mid f(w) \leqslant n\} \\
d c_{f}(G)=\limsup _{n \rightarrow \infty} \frac{\left|\left\{(u, v) \in \mathbb{B}_{f}(n) \times \mathbb{B}_{f}(n) \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{f}(n)\right|^{2}} .
\end{gathered}
$$

Proposition

Let $G=\langle X\rangle$ be of polynomial growth, and $f: G \rightarrow \mathbb{N}$ be an estimation of the X-metric. Then,

$$
d c_{X}(G)>0 \Longleftrightarrow d c_{f}(G)>0
$$

Proof. Clearly, $\mathbb{B}_{f}(n) \subseteq \mathbb{B}_{X}(K n) \subseteq \mathbb{B}_{f}\left(K^{2} n\right)$ so,

Independence on X

Definition

Define the f-ball and the f-dc:

$$
\begin{gathered}
\mathbb{B}_{f}(n)=\{w \in G \mid f(w) \leqslant n\} \\
d c_{f}(G)=\limsup _{n \rightarrow \infty} \frac{\left|\left\{(u, v) \in \mathbb{B}_{f}(n) \times \mathbb{B}_{f}(n) \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{f}(n)\right|^{2}} .
\end{gathered}
$$

Proposition

Let $G=\langle X\rangle$ be of polynomial growth, and $f: G \rightarrow \mathbb{N}$ be an estimation of the X-metric. Then,

$$
d c_{X}(G)>0 \Longleftrightarrow d c_{f}(G)>0
$$

Proof. Clearly, $\mathbb{B}_{f}(n) \subseteq \mathbb{B}_{X}(K n) \subseteq \mathbb{B}_{f}\left(K^{2} n\right)$ so,

$$
\left|\left\{(u, v) \in\left(\mathbb{B}_{f}(n)\right)^{2} \mid u v=v u\right\}\right| \leqslant\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(K n)\right)^{2} \mid u v=v u\right\}\right| .
$$

Independence on X

$$
\begin{gathered}
\frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{f}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(K n)\right|^{2}} \leqslant \frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(K n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(K n)\right|^{2}} . \\
\left.\| \frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{f}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{f}(n)\right|^{2}}\right)\left(\frac{\left|\mathbb{B}_{f}(n)\right|}{\left|\mathbb{B}_{X}(K n)\right|}\right)^{2}
\end{gathered}
$$

$$
\text { So, } d c_{X}(G)=0 \Rightarrow d c_{f}(G)=0 \text {, because }
$$

Corollary

If $G=\langle X\rangle=\langle Y\rangle$ is of polynomial growth, then

Independence on X

$$
\begin{gathered}
\frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{f}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(K n)\right|^{2}} \leqslant \frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(K n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(K n)\right|^{2}} . \\
1 \mid \\
\left(\frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{f}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{f}(n)\right|^{2}}\right)\left(\frac{\left|\mathbb{B}_{f}(n)\right|}{\left|\mathbb{B}_{X}(K n)\right|}\right)^{2}
\end{gathered}
$$

So, $d c_{X}(G)=0 \quad \Rightarrow \quad d c_{f}(G)=0$, because

$$
\frac{\left|\mathbb{B}_{f}(n)\right|}{\left|\mathbb{B}_{X}(K n)\right|} \geqslant \frac{\left|\mathbb{B}_{X}(n / K)\right|}{\left|\mathbb{B}_{X}(K n)\right|} \geqslant \frac{C(n / K)^{d}}{D(K n)^{d}}=\frac{C}{D K^{2 d}}>0 .
$$

Corollary

If $G=\langle X\rangle=\langle Y\rangle$ is of polynomial growth, then

Independence on X

$$
\begin{gathered}
\frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{f}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(K n)\right|^{2}} \leqslant \frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(K n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(K n)\right|^{2}} . \\
\left.\| \frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{f}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{f}(n)\right|^{2}}\right)\left(\frac{\left|\mathbb{B}_{f}(n)\right|}{\left|\mathbb{B}_{X}(K n)\right|}\right)^{2}
\end{gathered}
$$

So, $d c_{X}(G)=0 \quad \Rightarrow \quad d c_{f}(G)=0$, because

$$
\frac{\left|\mathbb{B}_{f}(n)\right|}{\left|\mathbb{B}_{X}(K n)\right|} \geqslant \frac{\left|\mathbb{B}_{X}(n / K)\right|}{\left|\mathbb{B}_{X}(K n)\right|} \geqslant \frac{C(n / K)^{d}}{D(K n)^{d}}=\frac{C}{D K^{2 d}}>0 .
$$

Corollary
If $G=\langle X\rangle=\langle Y\rangle$ is of polynomial growth, then

$$
d c_{X}(G)=0 \quad \Longleftrightarrow \quad d c_{Y}(G)=0
$$

Independence on X

Definition

Let $\langle Y\rangle=H \leqslant G=\langle X\rangle$. The subgroup H is undistorted if $\exists K>0$ s.t. $\forall h \in H,|h|_{Y} / K \leqslant|h|_{X} \leqslant K|h|_{Y}$.
In this case, $|\cdot|_{x}$ restricted to H is an estimation of the Y-metric for H.
Corollary
Let $G=\langle X\rangle$ be of polynomial growth, and $\langle Y\rangle=H \leqslant G$ be a
non-distorted subgroup. Then,

Independence on X

Definition

Let $\langle Y\rangle=H \leqslant G=\langle X\rangle$. The subgroup H is undistorted if $\exists K>0$ s.t. $\forall h \in H,|h|_{Y} / K \leqslant|h|_{X} \leqslant K|h|_{Y}$.
In this case, $|\cdot|_{x}$ restricted to H is an estimation of the Y-metric for H.

Corollary

Let $G=\langle X\rangle$ be of polynomial growth, and $\langle Y\rangle=H \leqslant G$ be a non-distorted subgroup. Then,

$$
d c_{X}(H)=0 \quad \Longleftrightarrow \quad d c_{Y}(H)=0
$$

Outline

(1) Motivation

(2) Main definition

(3) Finite index subgroups

4 A Gromov-like theorem
(5) Generalizations

Finite index subgroups

Lemma (Burillo-Ventura, 2002)

If $H \leqslant$ f.i. $G=\langle X\rangle$ and G has subexponential growth then, for every
$g \in G$, there exists $\lim _{n \rightarrow \infty} \frac{\left|\mathbb{B}_{X}(n) \cap g H\right|}{\left|\mathbb{B}_{X}(n)\right|}=\lim _{n \rightarrow \infty} \frac{\left|\mathbb{B}_{X}(n) \cap H g\right|}{\left|\mathbb{B}_{X}(n)\right|}=\frac{1}{\mid G: H]}$.

Remark

This is false in the free group: $H=\{$ even words $\}$

Proposition

Iet $\langle\boldsymbol{Y}\rangle=\mathrm{H} \leqslant$ fi. $\mathrm{G}=\langle X\rangle$ be of polynomial growth. Then,

In particular, $d c_{Y}(H)>0 \Rightarrow d c_{X}(H)>0 \Rightarrow d c_{X}(G)>0$

Finite index subgroups

Lemma (Burillo-Ventura, 2002)

If $H \leqslant$ f.i. $G=\langle X\rangle$ and G has subexponential growth then, for every
$g \in G$, there exists $\lim _{n \rightarrow \infty} \frac{\left|\mathbb{B}_{X}(n) \cap g H\right|}{\left|\mathbb{B}_{X}(n)\right|}=\lim _{n \rightarrow \infty} \frac{\left|\mathbb{B}_{X}(n) \cap H g\right|}{\left|\mathbb{B}_{X}(n)\right|}=\frac{1}{[G: H]}$.

Remark

This is false in the free group: $H=\{$ even words $\} \leqslant 2 F_{r}$.

Proposition

I et $\langle Y\rangle=H \leqslant$ fi. $G=\langle X\rangle$ be of polynomial growth. Then,

In particular, $d c_{Y}(H)>0 \Rightarrow d c_{X}(H)>0 \Rightarrow d c_{X}(G)>0$

Finite index subgroups

Lemma (Burillo-Ventura, 2002)

If $H \leqslant$ f.i. $G=\langle X\rangle$ and G has subexponential growth then, for every
$g \in G$, there exists $\lim _{n \rightarrow \infty} \frac{\left|\mathbb{B}_{X}(n) \cap g H\right|}{\left|\mathbb{B}_{X}(n)\right|}=\lim _{n \rightarrow \infty} \frac{\left|\mathbb{B}_{X}(n) \cap H g\right|}{\left|\mathbb{B}_{X}(n)\right|}=\frac{1}{[G: H]}$.

Remark

This is false in the free group: $H=\{$ even words $\} \leqslant 2 F_{r}$.

Proposition

Let $\langle Y\rangle=H \leqslant$ f.i. $G=\langle X\rangle$ be of polynomial growth. Then,

$$
d c_{X}(G) \geqslant \frac{1}{[G: H]^{2}} d c_{X}(H) .
$$

In particular, $d c_{Y}(H)>0 \Rightarrow d c_{X}(H)>0 \Rightarrow d c_{X}(G)>0$.

Finite index subgroups

Proof. Clearly,

$\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right| \geq\left|\left\{(u, v) \in\left(H \cap \mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right|$.
Therefore, given $\varepsilon>0$, we have for $n \gg 0$

Taking limsups, $d c_{x}(G) \geqslant d c_{x}(H)\left(\frac{1}{[G: H]}-\varepsilon\right)^{2}$. And this is true

Finite index subgroups

Proof. Clearly,

$$
\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right| \geq\left|\left\{(u, v) \in\left(H \cap \mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right| .
$$

Therefore, given $\varepsilon>0$, we have for $n \gg 0$

$$
\begin{gathered}
\frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(n)\right|^{2}} \geqslant \\
\frac{\left|\left\{(u, v) \in\left(H \cap \mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|H \cap \mathbb{B}_{X}(n)\right|^{2}} \cdot \frac{\left|H \cap \mathbb{B}_{X}(n)\right|^{2}}{\left|\mathbb{B}_{X}(n)\right|^{2}} \geqslant \\
\frac{\left|\left\{(u, v) \in\left(H \cap \mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|H \cap \mathbb{B}_{X}(n)\right|^{2}}\left(\frac{1}{[G: H]}-\varepsilon\right)^{2},
\end{gathered}
$$

Finite index subgroups

Proof. Clearly,
$\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right| \geq\left|\left\{(u, v) \in\left(H \cap \mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right|$. Therefore, given $\varepsilon>0$, we have for $n \gg 0$

$$
\begin{gathered}
\frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(n)\right|^{2}} \geqslant \\
\frac{\left|\left\{(u, v) \in\left(H \cap \mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|H \cap \mathbb{B}_{X}(n)\right|^{2}} \cdot \frac{\left|H \cap \mathbb{B}_{X}(n)\right|^{2}}{\left|\mathbb{B}_{X}(n)\right|^{2}} \geqslant \\
\frac{\left|\left\{(u, v) \in\left(H \cap \mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|H \cap \mathbb{B}_{X}(n)\right|^{2}}\left(\frac{1}{[G: H]}-\varepsilon\right)^{2},
\end{gathered}
$$

Taking limsups, $d c_{X}(G) \geqslant d c_{X}(H)\left(\frac{1}{[G: H]}-\varepsilon\right)^{2}$.

Finite index subgroups

Proof. Clearly,
$\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right| \geq\left|\left\{(u, v) \in\left(H \cap \mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right|$.
Therefore, given $\varepsilon>0$, we have for $n \gg 0$

$$
\begin{gathered}
\frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(n)\right|^{2}} \geqslant \\
\frac{\left|\left\{(u, v) \in\left(H \cap \mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|H \cap \mathbb{B}_{X}(n)\right|^{2}} \cdot \frac{\left|H \cap \mathbb{B}_{X}(n)\right|^{2}}{\left|\mathbb{B}_{X}(n)\right|^{2}} \geqslant \\
\frac{\left|\left\{(u, v) \in\left(H \cap \mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|H \cap \mathbb{B}_{X}(n)\right|^{2}}\left(\frac{1}{[G: H]}-\varepsilon\right)^{2},
\end{gathered}
$$

Taking limsups, $d c_{X}(G) \geqslant d c_{X}(H)\left(\frac{1}{[G: H]}-\varepsilon\right)^{2}$. And this is true $\forall \varepsilon>0$ so, $d c_{X}(G) \geqslant \frac{1}{[G: H]^{2}} d c_{X}(H)$.

Finite index subgroups

Proposition (Gallagher, 1970)

Let G be a finite group and $H \unlhd G$. Then, $d c(G) \leqslant d c(H) \cdot d c(G / H)$.

Proposition

Let $G=\langle X\rangle$ be subexponentially growing. Then, for any finite quotient G / N, we have $d_{x}(G) \leqslant d c(G / N)$.

Proof. Let $N \unlhd G$ with $[G: N]=d$.
By $B-V, \forall g \in G \lim _{n \rightarrow \infty}\left|g N \cap \mathbb{B}_{X}(n)\right| / / \mathbb{B}_{X}(n) \mid=1 / d$, indep. X and g. But $|G / N|<\infty$, so this lim is uniform on g, i.e.,
$\forall \varepsilon>0 \exists n_{0} \forall n \geqslant n_{0}$ and $\forall g \in G$,

$$
\left(\frac{1}{d}-\varepsilon\right)\left|\mathbb{B}_{X}(n)\right| \leqslant\left|g N \cap \mathbb{B}_{X}(n)\right| \leqslant\left(\frac{1}{d}+\varepsilon\right)\left|\mathbb{B}_{X}(n)\right| .
$$

Suppose $d c_{X}(G)>d c(G / N)$ and let us find a contradiction.

Finite index subgroups

Proposition (Gallagher, 1970)

Let G be a finite group and $H \unlhd G$. Then, $d c(G) \leqslant d c(H) \cdot d c(G / H)$.

Proposition

Let $G=\langle X\rangle$ be subexponentially growing. Then, for any finite quotient G / N, we have $d c_{X}(G) \leqslant d c(G / N)$.

```
Proof. Let N\unlhdG with [G:N]=d.
By B-V,\forallg\inG lim}n->\infty |gN\cap\mp@subsup{\mathbb{B}}{X}{}(n)|/|\mathbb{B}X(n)|=1/d, indep. X and g.
But }|G/N|<\infty\mathrm{ , so this lim is uniform on g, i.e.,
\forall\varepsilon>0 \exists\mp@subsup{n}{0}{}\foralln\geqslant\mp@subsup{n}{0}{}\mathrm{ and }\forallg\inG\mathrm{ ,}
```


Suppose $d c_{X}(G)>d c(G / N)$ and let us find a contradiction.

Finite index subgroups

Proposition (Gallagher, 1970)

Let G be a finite group and $H \unlhd G$. Then, $d c(G) \leqslant d c(H) \cdot d c(G / H)$.

Proposition

Let $G=\langle X\rangle$ be subexponentially growing. Then, for any finite quotient G / N, we have $d c_{X}(G) \leqslant d c(G / N)$.

Proof. Let $N \unlhd G$ with $[G: N]=d$.
By $B-V, \forall g \in G \lim _{n \rightarrow \infty}\left|g N \cap \mathbb{B}_{x}(n)\right| /\left|\mathbb{B}_{X}(n)\right|=1 / d$, indep. X and g. But $|G / N|<\infty$, so this lim is uniform on g, i.e., $0 \exists n_{0} \forall n \geqslant n_{0}$ and $\forall g \in G$,

Finite index subgroups

Proposition (Gallagher, 1970)

Let G be a finite group and $H \unlhd G$. Then, $d c(G) \leqslant d c(H) \cdot d c(G / H)$.

Proposition

Let $G=\langle X\rangle$ be subexponentially growing. Then, for any finite quotient G / N, we have $d c_{X}(G) \leqslant d c(G / N)$.

Proof. Let $N \unlhd G$ with $[G: N]=d$.
By $B-V, \forall g \in G \lim _{n \rightarrow \infty}\left|g N \cap \mathbb{B}_{X}(n)\right| /\left|\mathbb{B}_{X}(n)\right|=1 / d$, indep. X and g.

Finite index subgroups

Proposition (Gallagher, 1970)

Let G be a finite group and $H \unlhd G$. Then, $d c(G) \leqslant d c(H) \cdot d c(G / H)$.

Proposition

Let $G=\langle X\rangle$ be subexponentially growing. Then, for any finite quotient G / N, we have $d c_{X}(G) \leqslant d c(G / N)$.

Proof. Let $N \unlhd G$ with $[G: N]=d$.
By $B-V, \forall g \in G \lim _{n \rightarrow \infty}\left|g N \cap \mathbb{B}_{X}(n)\right| /\left|\mathbb{B}_{X}(n)\right|=1 / d$, indep. X and g. But $|G / N|<\infty$, so this lim is uniform on g, i.e., $\forall \varepsilon>0 \exists n_{0} \forall n \geqslant n_{0}$ and $\forall g \in G$,

$$
\left(\frac{1}{d}-\varepsilon\right)\left|\mathbb{B}_{X}(n)\right| \leqslant\left|g N \cap \mathbb{B}_{X}(n)\right| \leqslant\left(\frac{1}{d}+\varepsilon\right)\left|\mathbb{B}_{X}(n)\right| .
$$

Finite index subgroups

Proposition (Gallagher, 1970)

Let G be a finite group and $H \unlhd G$. Then, $d c(G) \leqslant d c(H) \cdot d c(G / H)$.

Proposition

Let $G=\langle X\rangle$ be subexponentially growing. Then, for any finite quotient G / N, we have $d c_{X}(G) \leqslant d c(G / N)$.

Proof. Let $N \unlhd G$ with $[G: N]=d$.
By $B-V, \forall g \in G \lim _{n \rightarrow \infty}\left|g N \cap \mathbb{B}_{X}(n)\right| /\left|\mathbb{B}_{X}(n)\right|=1 / d$, indep. X and g.
But $|G / N|<\infty$, so this lim is uniform on g, i.e.,
$\forall \varepsilon>0 \exists n_{0} \forall n \geqslant n_{0}$ and $\forall g \in G$,

$$
\left(\frac{1}{d}-\varepsilon\right)\left|\mathbb{B}_{X}(n)\right| \leqslant\left|g N \cap \mathbb{B}_{X}(n)\right| \leqslant\left(\frac{1}{d}+\varepsilon\right)\left|\mathbb{B}_{X}(n)\right| .
$$

Suppose $d c_{X}(G)>d c(G / N)$ and let us find a contradiction.

Finite index subgroups

$\exists \delta>0$ s.t. $\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right| /\left|\mathbb{B}_{X}(n)\right|^{2}>d c(G / N)+\delta$ for infinitely many n's.
In the above inequality, take $\varepsilon>0$ small enough so that $2 \varepsilon d+\varepsilon^{2} d^{2} \leqslant \delta$, and $\exists n \gg 0$ such that

Finite index subgroups

$\exists \delta>0$ s.t. $\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right| /\left|\mathbb{B}_{X}(n)\right|^{2}>d c(G / N)+\delta$ for infinitely many n's.
In the above inequality, take $\varepsilon>0$ small enough so that $2 \varepsilon d+\varepsilon^{2} d^{2} \leqslant \delta$, and $\exists n \gg 0$ such that

Finite index subgroups

$\exists \delta>0$ s.t. $\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right| /\left|\mathbb{B}_{X}(n)\right|^{2}>d c(G / N)+\delta$ for infinitely many n's.
In the above inequality, take $\varepsilon>0$ small enough so that $2 \varepsilon d+\varepsilon^{2} d^{2} \leqslant \delta$, and $\exists n \gg 0$ such that

$$
d c(G / N)+\delta<\frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(n)\right|^{2}}
$$

Finite index subgroups

$\exists \delta>0$ s.t. $\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right| /\left|\mathbb{B}_{X}(n)\right|^{2}>d c(G / N)+\delta$ for infinitely many n's.
In the above inequality, take $\varepsilon>0$ small enough so that $2 \varepsilon d+\varepsilon^{2} d^{2} \leqslant \delta$, and $\exists n \gg 0$ such that

$$
\begin{gathered}
d c(G / N)+\delta<\frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(n)\right|^{2}} \\
\leqslant \frac{1}{\left|\mathbb{B}_{X}(n)\right|^{2}}\left|\left\{(\bar{u}, \bar{v}) \in(G / N)^{2} \mid \bar{u} \bar{v}=\bar{v} \bar{u}\right\}\right|\left(\frac{1}{d}+\varepsilon\right)^{2}\left|\mathbb{B}_{X}(n)\right|^{2}
\end{gathered}
$$

Finite index subgroups

$$
\exists \delta>0 \text { s.t. }\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right| /\left|\mathbb{B}_{X}(n)\right|^{2}>d c(G / N)+\delta
$$ for infinitely many n's.

In the above inequality, take $\varepsilon>0$ small enough so that $2 \varepsilon d+\varepsilon^{2} d^{2} \leqslant \delta$, and $\exists n \gg 0$ such that

$$
\begin{gathered}
d c(G / N)+\delta<\frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(n)\right|^{2}} \\
\leqslant \frac{1}{\left|\mathbb{B}_{X}(n)\right|^{2}}\left|\left\{(\bar{u}, \bar{v}) \in(G / N)^{2} \mid \bar{u} \bar{v}=\bar{v} \bar{u}\right\}\right|\left(\frac{1}{d}+\varepsilon\right)^{2}\left|\mathbb{B}_{X}(n)\right|^{2} \\
=\frac{\left|\left\{(\bar{u}, \bar{v}) \in(G / N)^{2} \mid \bar{u} \bar{v}=\bar{v} \bar{u}\right\}\right|}{d^{2}}(1+\varepsilon d)^{2}
\end{gathered}
$$

Finite index subgroups

$$
\exists \delta>0 \text { s.t. }\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right| /\left|\mathbb{B}_{X}(n)\right|^{2}>d c(G / N)+\delta
$$ for infinitely many n's.

In the above inequality, take $\varepsilon>0$ small enough so that $2 \varepsilon d+\varepsilon^{2} d^{2} \leqslant \delta$, and $\exists n \gg 0$ such that

$$
\begin{gathered}
d c(G / N)+\delta<\frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(n)\right|^{2}} \\
\leqslant \frac{1}{\left|\mathbb{B}_{X}(n)\right|^{2}}\left|\left\{(\bar{u}, \bar{v}) \in(G / N)^{2} \mid \bar{u} \bar{v}=\bar{v} \bar{u}\right\}\right|\left(\frac{1}{d}+\varepsilon\right)^{2}\left|\mathbb{B}_{X}(n)\right|^{2} \\
=\frac{\left|\left\{(\bar{u}, \bar{v}) \in(G / N)^{2} \mid \bar{u} \bar{v}=\bar{v} \bar{u}\right\}\right|}{d^{2}}(1+\varepsilon d)^{2} \\
\leqslant \frac{\left|\left\{(\bar{u}, \bar{v}) \in(G / N)^{2} \mid \bar{u} \bar{v}=\bar{v} \bar{u}\right\}\right|}{d^{2}}+2 \varepsilon d+\varepsilon^{2} d^{2}
\end{gathered}
$$

Finite index subgroups

$\exists \delta>0$ s.t. $\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right| /\left|\mathbb{B}_{X}(n)\right|^{2}>d c(G / N)+\delta$ for infinitely many n's.
In the above inequality, take $\varepsilon>0$ small enough so that $2 \varepsilon d+\varepsilon^{2} d^{2} \leqslant \delta$, and $\exists n \gg 0$ such that

$$
\begin{gathered}
d c(G / N)+\delta<\frac{\left|\left\{(u, v) \in\left(\mathbb{B}_{X}(n)\right)^{2} \mid u v=v u\right\}\right|}{\left|\mathbb{B}_{X}(n)\right|^{2}} \\
\leqslant \frac{1}{\left|\mathbb{B}_{X}(n)\right|^{2}}\left|\left\{(\bar{u}, \bar{v}) \in(G / N)^{2} \mid \bar{u} \bar{v}=\bar{v} \bar{u}\right\}\right|\left(\frac{1}{d}+\varepsilon\right)^{2}\left|\mathbb{B}_{X}(n)\right|^{2} \\
=\frac{\left|\left\{(\bar{u}, \bar{v}) \in(G / N)^{2} \mid \bar{u} \bar{v}=\bar{v} \bar{u}\right\}\right|}{d^{2}}(1+\varepsilon d)^{2} \\
\leqslant \frac{\left|\left\{(\bar{u}, \bar{v}) \in(G / N)^{2} \mid \bar{u} \bar{v}=\bar{v} \bar{u}\right\}\right|}{d^{2}}+2 \varepsilon d+\varepsilon^{2} d^{2} \\
\leqslant d c(G / N)+\delta, \quad \text { a contradiction. }
\end{gathered}
$$

Outline

(1)
 Motivation

(2) Main definition

3 Finite index subgroups

4 A Gromov-like theorem
(5) Generalizations

The main result

Theorem

Let $G=\langle X\rangle$ be of subexponential growth and residually finite. Then, (i) $d c_{X}(G)>5 / 8 \Rightarrow G$ is abelian; (ii) $d c_{X}(G)>0 \Leftrightarrow G$ is virtually abelian. In particular, (i) and (ii) is true for polisnomially growing groups.

Corollary

Let $G=\langle X\rangle=\langle Y\rangle$ be of subexponential growth and residually finite. Then,

The main result

Theorem

Let $G=\langle X\rangle$ be of subexponential growth and residually finite. Then, (i) $d c_{X}(G)>5 / 8 \Rightarrow G$ is abelian;
(ii) $d c_{x}(G)>0 \Leftrightarrow G$ is virtually abelian.

In particular, (i) and (ii) is true for polynomially growing groups.

Corollary

Let $G=\langle X\rangle=\langle Y\rangle$ be of subexponential growth and residually finite. Then,

The main result

Theorem

Let $G=\langle X\rangle$ be of subexponential growth and residually finite. Then,
(i) $d c_{X}(G)>5 / 8 \Rightarrow G$ is abelian;
(ii) $d c_{X}(G)>0 \Leftrightarrow G$ is virtually abelian.

In particular, (i) and (ii) is true for polynomially growing groups.
Corollary
Let $G=\langle X\rangle=\langle Y\rangle$ be of subexponential growth and residually finite. Then,

The main result

Theorem

Let $G=\langle X\rangle$ be of subexponential growth and residually finite. Then,
(i) $d c_{X}(G)>5 / 8 \Rightarrow G$ is abelian;
(ii) $d c_{X}(G)>0 \Leftrightarrow G$ is virtually abelian.

In particular, (i) and (ii) is true for polynomially growing groups.

Corollary

Let $G=\langle X\rangle=\langle Y\rangle$ be of subexponential growth and residually finite. Then,

The main result

Theorem

Let $G=\langle X\rangle$ be of subexponential growth and residually finite. Then,
(i) $d c_{X}(G)>5 / 8 \Rightarrow G$ is abelian;
(ii) $d c_{X}(G)>0 \Leftrightarrow G$ is virtually abelian.

In particular, (i) and (ii) is true for polynomially growing groups.

Corollary

Let $G=\langle X\rangle=\langle Y\rangle$ be of subexponential growth and residually finite. Then,

$$
d c_{X}(G)=0 \quad \Longleftrightarrow \quad d c_{Y}(G)=0
$$

Conjecture

Conjecture

For any finitely generated group $G=\langle X\rangle$,

$$
d c_{X}(G)>0 \Longleftrightarrow G \text { is virtually abelian. }
$$

Conjecture

Every finitely generated group G with super-polynomial growth has $d_{x}(G)=0$ for every X.

Conjecture

Conjecture

For any finitely generated group $G=\langle X\rangle$,

$$
d c_{X}(G)>0 \quad \Longleftrightarrow \quad G \text { is virtually abelian. }
$$

Conjecture

Every finitely generated group G with super-polynomial growth has $d c_{X}(G)=0$ for every X.

Proof of the main result

Theorem

Let $G=\langle X\rangle$ be of subexponential growth and residually finite. Then, (i) $d c_{X}(G)>5 / 8 \Rightarrow G$ is abelian; (ii) $d c_{X}(G)>0 \Leftrightarrow G$ is virtually abelian.

Proof. (i). Suppose $d c_{X}(G)>5 / 8$. Then, $d c(G / N)>5 / 8$ for every $N \unlhd_{\text {f.i. }}$ G. Hence, by Gustafson's thm, every finite quotient of G is abelian. Residual finiteness implies G abelian.
(ii, \Leftarrow). Suppose $G=\langle X\rangle$ is virtually abelian, $\langle Y\rangle=H \leqslant_{\text {f.i. }} G$ with H abelian. Then G is polynomially growing and $d c_{Y}(H)=1>0$ so, $d c_{X}(G)>0$.
(ii, \Rightarrow). Suppose G is not virtually abelian and let us prove that $d c_{X}(G)=0$.

Proof of the main result

Theorem

Let $G=\langle X\rangle$ be of subexponential growth and residually finite. Then, (i) $d c_{X}(G)>5 / 8 \Rightarrow G$ is abelian;
(ii) $d c_{X}(G)>0 \Leftrightarrow G$ is virtually abelian.

```
Proof. (i). Suppose dc}\mp@subsup{c}{X}{}(G)>5/8. Then, dc(G/N)>5/8 for every 
    Hence, by Gustafson's thm, every finite quotient of G is
abelian. Residual finiteness implies G abelian.
(ii, \Leftarrow). Suppose G = \langleX\rangle is virtually abelian, }\langleY\rangle=H\leqslant\mathrm{ f.i. G with H
abelian. Then G is polynomially growing and dcy (H)=1>0 so,
dcx (G)>0.
(ii, =>). Suppose G is not virtually abelian and let us prove that
dcx}(G)=0
```


Proof of the main result

Theorem

Let $G=\langle X\rangle$ be of subexponential growth and residually finite. Then, (i) $d c_{X}(G)>5 / 8 \Rightarrow G$ is abelian;
(ii) $d c_{X}(G)>0 \Leftrightarrow G$ is virtually abelian.

Proof of the main result

Theorem

Let $G=\langle X\rangle$ be of subexponential growth and residually finite. Then, (i) $d c_{X}(G)>5 / 8 \Rightarrow G$ is abelian;
(ii) $d c_{X}(G)>0 \Leftrightarrow G$ is virtually abelian.

Proof. (i). Suppose $d c_{x}(G)>5 / 8$. Then, $d c(G / N)>5 / 8$ for every $N \unlhd_{f . i}$ G. Hence, by Gustafson's thm, every finite quotient of G is abelian. Residual finiteness implies G abelian.
(ii, \Leftarrow). Suppose $G=\langle X\rangle$ is virtually abelian, $\langle Y\rangle=H \leqslant_{\text {f.i. }} G$ with H abelian. Then G is polynomially growing and $d c_{Y}(H)=1>0$ so, $d c_{X}(G)>0$.
(ii, \Rightarrow). Suppose G is not virtually abelian and let us prove that $d c_{X}(G)=0$.

Proof of the main result

Theorem

Let $G=\langle X\rangle$ be of subexponential growth and residually finite. Then, (i) $d c_{X}(G)>5 / 8 \Rightarrow G$ is abelian;
(ii) $d c_{X}(G)>0 \Leftrightarrow G$ is virtually abelian.

Proof. (i). Suppose $d c_{x}(G)>5 / 8$. Then, $d c(G / N)>5 / 8$ for every $N \unlhd_{\text {fi. }}$ G. Hence, by Gustafson's thm, every finite quotient of G is abelian. Residual finiteness implies G abelian.
(ii, \Leftarrow). Suppose $G=\langle X\rangle$ is virtually abelian, $\langle Y\rangle=H \leqslant_{\text {f.i. }} G$ with H abelian. Then G is polynomially growing and $d c_{Y}(H)=1>0$ so, $d c_{X}(G)>0$.
(ii, \Rightarrow). Suppose G is not virtually abelian and let us prove that $d c_{X}(G)=0$.

Proof of the main result

Theorem

Let $G=\langle X\rangle$ be of subexponential growth and residually finite. Then, (i) $d c_{X}(G)>5 / 8 \Rightarrow G$ is abelian;
(ii) $d c_{X}(G)>0 \Leftrightarrow G$ is virtually abelian.

Proof. (i). Suppose $d c_{x}(G)>5 / 8$. Then, $d c(G / N)>5 / 8$ for every $N \unlhd_{\text {fi. }}$ G. Hence, by Gustafson's thm, every finite quotient of G is abelian. Residual finiteness implies G abelian.
(ii, \Leftarrow). Suppose $G=\langle X\rangle$ is virtually abelian, $\langle Y\rangle=H \leqslant$ fi.i. G with H abelian. Then G is polynomially growing and $d c_{Y}(H)=1>0$ so, $d c_{X}(G)>0$.
(ii, \Rightarrow). Suppose G is not virtually abelian and let us prove that $d c_{X}(G)=0$.

Proof of the main result

Theorem

Let $G=\langle X\rangle$ be of subexponential growth and residually finite. Then, (i) $d c_{X}(G)>5 / 8 \Rightarrow G$ is abelian;
(ii) $d c_{X}(G)>0 \Leftrightarrow G$ is virtually abelian.

Proof. (i). Suppose $d c_{X}(G)>5 / 8$. Then, $d c(G / N)>5 / 8$ for every $N \unlhd_{\text {fi. }}$ G. Hence, by Gustafson's thm, every finite quotient of G is abelian. Residual finiteness implies G abelian.
(ii, \Leftarrow). Suppose $G=\langle X\rangle$ is virtually abelian, $\langle Y\rangle=H \leqslant$ f.i. G with H abelian. Then G is polynomially growing and $d c_{Y}(H)=1>0$ so, $d c_{X}(G)>0$.
(ii, \Rightarrow). Suppose G is not virtually abelian and let us prove that $d c_{X}(G)=0$.

Proof of the main result

Claim. If H is f.g., r.f., not virtually abelian then $\exists K \unlhd_{\text {ch., }} H$ such that H / K is (finite) not abelian.

Proof of the main result

Claim. If H is f.g., r.f., not virtually abelian then $\exists K \unlhd_{\substack{\text { ch. } \\ f i .}} H$ such that H / K is (finite) not abelian.

$$
K_{0}=G,
$$

Proof of the main result

Claim. If H is f.g., r.f., not virtually abelian then $\exists K \unlhd_{\substack{\text { ch. } \\ \text { ti. }}} H$ such that H / K is (finite) not abelian.

$$
K_{1} \unlhd_{\substack{\text { f.i. }}} K_{0}=G,
$$

Proof of the main result

Claim. If H is f.g., r.f., not virtually abelian then $\exists K \unlhd_{\substack{\text { ch.i. } \\ \text { fi }}} H$ such that H / K is (finite) not abelian.

$$
K_{2} \unlhd_{\substack{\text { ch. } \\ f . i .}} K_{1} \unlhd_{\substack{\text { ch. } \\ f . i .}} K_{0}=G,
$$

Proof of the main result

Claim. If H is f.g., r.f., not virtually abelian then $\exists K \unlhd_{\substack{\text { ch.i. } \\ f . i}} H$ such that H / K is (finite) not abelian.

$$
\cdots \underset{\substack{\text { ch. } i .}}{ }, K_{i} \unlhd_{\substack{\text { ch. } \\ f . i .}} K_{i-1} \unlhd_{\substack{\text { ch. } \\ f, i .}} \cdots \unlhd_{\substack{\text { ch. } \\ \text { f.i. }}}, K_{2} \unlhd_{\substack{\text { ch, } \\ \text { f.i. }}} K_{1} \unlhd_{\substack{\text { ch. } \\ \text { f.i. }}} K_{0}=G,
$$

Proof of the main result

Claim. If H is f.g., r.f., not virtually abelian then $\exists K \underset{\substack{\text { ch.i. } \\ \text { f.i. }}}{ } H$ such that H / K is (finite) not abelian.
such that K_{i-1} / K_{i} is not abelian so, dc $\left(K_{i-1} / K_{i}\right) \leqslant 5 / 8 \quad \forall i$.

Proof of the main result

Claim. If H is f.g., r.f., not virtually abelian then $\exists K \underset{\substack{\text { ch.i. } \\ \text { f.i. }}}{ } H$ such that H / K is (finite) not abelian.
such that K_{i-1} / K_{i} is not abelian so, dc $\left(K_{i-1} / K_{i}\right) \leqslant 5 / 8 \quad \forall i$. Then $\forall i, \quad K_{i} \unlhd G, \quad\left(G / K_{i}\right) /\left(K_{i-1} / K_{i}\right)=G / K_{i-1}$ and, by Gallagher,

$$
d c\left(G / K_{i}\right) \leqslant d c\left(K_{i-1} / K_{i}\right) \cdot d c\left(G / K_{i-1}\right) \leqslant 5 / 8 \cdot d c\left(G / K_{i-1}\right) .
$$

Proof of the main result

Claim. If H is f.g., r.f., not virtually abelian then $\exists K \underset{\substack{\text { ch.i. } \\ \text { f.i }}}{ } H$ such that H / K is (finite) not abelian.
such that K_{i-1} / K_{i} is not abelian so, dc $\left(K_{i-1} / K_{i}\right) \leqslant 5 / 8 \quad \forall i$. Then $\forall i, \quad K_{i} \unlhd G, \quad\left(G / K_{i}\right) /\left(K_{i-1} / K_{i}\right)=G / K_{i-1}$ and, by Gallagher,

$$
d c\left(G / K_{i}\right) \leqslant d c\left(K_{i-1} / K_{i}\right) \cdot d c\left(G / K_{i-1}\right) \leqslant 5 / 8 \cdot d c\left(G / K_{i-1}\right) .
$$

By induction, $d c\left(G / K_{i}\right) \leqslant(5 / 8)^{i}$ and so,

$$
d c_{X}(G) \leqslant d c\left(G / K_{i}\right) \leqslant(5 / 8)^{i}
$$

for every i. Therefore, $d c_{x}(G)=0$.

Outline

(1)
 Motivation

(2) Main definition

3 Finite index subgroups

4 A Gromov-like theorem
(5) Generalizations

Generalizations

- We can replace $x y=y x$ by any system of equations.
- We can replace the uniform measures on balls to any sequence of measures (random walks, etc).

Definition

Let $\left\{X_{1}, \ldots, X_{k}\right\}$ be a set of abstract variables and \mathcal{F} the free group on it. Think elements $w \in \mathcal{F}$ as equations, $w=1$, and subsets $\mathcal{E} \subseteq \mathcal{F}$ as systems of equations. Define solutions on a group G in the obvious way.

Definition

Given $G=\langle X\rangle$ and a system of equations $\mathcal{\mathcal { E }} \subseteq \mathcal{F}$, we define the degree of satisfiability of \mathcal{E} in G as

Generalizations

- We can replace $x y=y x$ by any system of equations.
- We can replace the uniform measures on balls to any sequence of measures (random walks, etc).

Definition

Let $\left\{X_{1}, \ldots, X_{k}\right\}$ be a set of abstract variables and \mathcal{F} the free group
on it. Think elements $w \in \mathcal{F}$ as equations, $w=1$, and subsets $\mathcal{E} \subseteq \mathcal{F}$ as systems of equations. Define solutions on a group G in the obvious way.

Definition

Given $G=\langle X\rangle$ and a system of equations $\mathcal{\mathcal { E }} \subseteq \mathcal{F}$, we define the degree of satisfiability of \mathcal{E} in G as

Generalizations

- We can replace $x y=y x$ by any system of equations.
- We can replace the uniform measures on balls to any sequence of measures (random walks, etc).

Definition

Let $\left\{X_{1}, \ldots, X_{k}\right\}$ be a set of abstract variables and \mathcal{F} the free group on it. Think elements $w \in \mathcal{F}$ as equations, $w=1$, and subsets $\mathcal{E} \subseteq \mathcal{F}$ as systems of equations. Define solutions on a group G in the obvious way.

Definition
Given $G=\langle X\rangle$ and a system of equations $\mathcal{E} \subseteq \mathcal{F}$, we define the
degree of satisfiability of \mathcal{E} in G as

Generalizations

- We can replace $x y=y x$ by any system of equations.
- We can replace the uniform measures on balls to any sequence of measures (random walks, etc).

Definition

Let $\left\{X_{1}, \ldots, X_{k}\right\}$ be a set of abstract variables and \mathcal{F} the free group on it. Think elements $w \in \mathcal{F}$ as equations, $w=1$, and subsets $\mathcal{E} \subseteq \mathcal{F}$ as systems of equations. Define solutions on a group G in the obvious way.

Definition

Given $G=\langle X\rangle$ and a system of equations $\mathcal{E} \subseteq \mathcal{F}$, we define the degree of satisfiability of \mathcal{E} in G as

$$
d s_{X}(G, \mathcal{E})=\limsup _{n \rightarrow \infty} \frac{\mid\left\{\left(g_{1}, \ldots, g_{k}\right) \in\left(\mathbb{B}_{X}(n)\right)^{k} \mid\left(g_{1}, \ldots, g_{k}\right) \text { sol. } \mathcal{E}\right\} \mid}{\left|\mathbb{B}_{X}(n)\right|^{k}} \in[0,1] .
$$

Generalizations

Definition

Let G and \mathcal{E} be as before. Fix a collection of measures μ_{n} in G with finite support, $\left|\operatorname{Supp} \mu_{n}\right|<\infty$, and such that

$$
\text { Supp } \mu_{1} \subseteq \operatorname{Supp} \mu_{2} \subseteq \cdots
$$

and $\cup_{n \in \mathbb{N}} \operatorname{Supp} \mu_{n}=G$. We define the degree of satisfiability of \mathcal{E} in G w.r.t. μ_{n} as

$$
d s_{X}\left(G, \mathcal{E},\left\{\mu_{n}\right\}_{n}\right)=
$$

$$
\limsup _{n \rightarrow \infty} \mu_{n}^{\times k}\left(\left\{\left(g_{1}, \ldots, g_{k}\right) \in G^{k} \mid\left(g_{1}, \ldots, g_{k}\right) \text { sol. } \mathcal{E}\right\}\right) \in[0,1]
$$

Generalizations

Conjecture

Let \mathcal{G}, \mathcal{E}, and $\left\{\mu_{n}\right\}_{n}$ be as above, with μ_{n} "reasonable". Then,

$$
d s\left(G, \mathcal{E},\left\{\mu_{n}\right\}_{n}\right)>0 \Longleftrightarrow \mathcal{E} \text { is a virtual law in } G .
$$

Definition

\mathcal{E} is a law in G if every $\left(g_{1}, \ldots, g_{k}\right) \in G^{k}$ is a solution of \mathcal{E} in G. \mathcal{E} is a virtual law in G if $\exists H \leqslant$ ti. G such that \mathcal{E} is a law in H.

Generalizations

Conjecture

Let G, \mathcal{E}, and $\left\{\mu_{n}\right\}_{n}$ be as above, with μ_{n} "reasonable". Then,

$$
d s\left(G, \mathcal{E},\left\{\mu_{n}\right\}_{n}\right)>0 \Longleftrightarrow \mathcal{E} \text { is a virtual law in } G .
$$

Definition

\mathcal{E} is a law in G if every $\left(g_{1}, \ldots, g_{k}\right) \in G^{k}$ is a solution of \mathcal{E} in G.
\mathcal{E} is a virtual law in G if $\exists H \leqslant$ f.i. G such that \mathcal{E} is a law in H.

THANKS

