The degree of commutativity of an infinite
group

Enric Ventura

Departament de Matematica Aplicada IlI
Universitat Politécnica de Catalunya

GAGTA-9, Lumini.

September 17th, 2015.



Outline

0 Motivation

© Main definition

© Finite index subgroups
© A Gromov-like theorem

© Generalizations



1. Motivation

Outline

0 Motivation



1. Motivation
e0

Motivation

(Joint work with Y. Antolin and A. Martino.)



1. Motivation
e0

Motivation

(Joint work with Y. Antolin and A. Martino.)

Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G
commute is bigger than 5/8, then G is abelian.




1. Motivation
e0

Motivation

(Joint work with Y. Antolin and A. Martino.)
Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G
commute is bigger than 5/8, then G is abelian.

Proof. Suppose G is not abelian. Then,

) _
[iw,v) € |GGL =l |G1|z 2 |Ce(u)] =

ueG

dc(G) =




1. Motivation
e0

Motivation

(Joint work with Y. Antolin and A. Martino.)
Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G
commute is bigger than 5/8, then G is abelian.

Proof. Suppose G is not abelian. Then,

{(u,v) € G*|uv =wu}|
aP - g7 Celv

ueG

dc(G) =

|G|2<|Z( MG+ > ICau)l) <

ueG\Z(G)




1. Motivation

e0

Motivation

(Joint work with Y. Antolin and A. Martino.)
Theorem (Gustafson, 1973)

Let G be a finite group. If the probability that two elements from G
commute is bigger than 5/8, then G is abelian.

Proof. Suppose G is not abelian. Then,

H(u,v) e G? | uv = i
aP ap 3 0e(0

ueG

dc(G) =

|G|2<|Z( MG+ > ICau)l) <
ueG\Z(G)

ae (1Ze@nal+ge - 12l ) -

<




1. Motivation
oe

Motivation

1 &y _
— gz (1z(@G1+ (6l - iz@lg ) -

_ |G|+ |Z(G)| _1 |Gl 1 1 5

< — = — = = o=y
2|Gl 2 4.2G) 28 8




1. Motivation
oce

Motivation

— |G1|2 <|Z(G)||G| +(1G] - 12( )|)|G|>

=W<1+ |G| 1 1 5

2|G] 2 ' 4.21G] 2 '8 &
because G/Z(G) cannot be cyclic and so, |Z (G)| <|Gl/4. O




1. Motivation
oe

Motivation

— |G1|2 <|Z(G)||G| +(1G] - 12( )|)|G|>

_ |G|+ |Z(G)| o 1 n |Gl 1 1 5

2|G] 2 ' 4.21G] 2 '8 &
because G/Z(G) cannot be cyclic and so, |Z (G)| <|Gl/4. O

Observation
The quaternion group has dc(Q) = 5/8.




1. Motivation
oe

Motivation

— gz (1z(@G1+ (6l - iz@lg ) -

_ |G|+ |Z(G)| o 1 n |Gl 1 1 5

2IGI T2 4.2IGl 2 8 @
because G/Z(G) cannot be cyclic and so, |[Z(G)| < |G|/4. O

Observation
The quaternion group has dc(Q) = 5/8.

“There is no live between 5/8 and 1"



1. Motivation
oe

Motivation

— gz (1z(@G1+ (6l - iz@lg ) -

_ |G|+ |Z(G)| o 1 n |Gl 1 1 5

2IGI T2 4.2IGl 2 8 @
because G/Z(G) cannot be cyclic and so, |[Z(G)| < |G|/4. O

Observation
The quaternion group has dc(Q) = 5/8.

“There is no live between 5/8 and 1"

Is there a version of dc for infinite groups ?
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X is

i > B x B =
dCX(G):hTfolipH(u v) € X(,Ivll)%x(n))f?(n)uv |

e [0,1],

where Bx(n) = {g € G| |9|x < n}.

Is this a real lim ? Does it depend on X ?

About limsup we have no idea:
@ No example where lim doesn't exist;
@ No proof it is always a real limit.
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Definition
A fg. group G = (X) is of

Bx(n+t)] _ 4.
Bl

@ polynomial growth (of degree d) if 0 < Cn® < [Bx(n)| < Dn°.

@ subexponential growth iflim,_ .

Definition
Let G = (X). Amap f: G — N is an estimation of the X-metric if 3
K > 0 such thatVw € G

%f(w) < |wlx < Kf(w).

Example

It is well known that, for G = (X) = (Y), | - |x is an estimation of the
Y -metric, and | - |y is an estimation of the X-metric.
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Corollary

If G = (X) = (Y) is of polynomial growth, then

dex(G) =0 <= dcy(G)=0.
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Independence on X

Definition

Let(Y) = H < G = (X). The subgroup H is undistorted if3 K > 0 s.t.
VheH, |hly/K < |hix < Klhly.

In this case, | - |x restricted to H is an estimation of the Y -metric for H.

Corollary

Let G = (X) be of polynomial growth, and (Y) = H < G be a
non-distorted subgroup. Then,

| A

dCx(H) =0 = dCy(H) =0.

A\
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Lemma (Burillo—Ventura, 2002)
If H <t G = (X) and G has subexponential growth then, for every

, . B NgH . B NH 1
g € G, there exists lim,_, % = liMp_ 00 W = G-
This is false in the free group: H = {even words} <, F;.

Proposition

Let (Y) = H <;; G = (X) be of polynomial growth. Then,

In particular, dcy(H) > 0 = dcx(H) > 0 = dcx(G) > 0.
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Therefore, given ¢ > 0, we have forn > 0

{(u, v) € Bx(m)? | uv = vu}| _
Bx(n)|2 -

|HNBx(n)[? Bx ()2

|22 — ([61:/41 ‘5)2’

|H N Bx(n
1 2
Taking limsups, dex(G) > dex(H) <[GH] — e) . And this is true
> — .
Ve > 0 so, dex(G) > (G A dex(H). O




3. Finite index subgroups
00@0

Finite index subgroups

Proposition (Gallagher, 1970)
Let G be a finite group and H < G. Then, dc(G) < dc(H) - de(G/H).




3. Finite index subgroups
00@0

Finite index subgroups

Proposition (Gallagher, 1970)
Let G be a finite group and H < G. Then, dc(G) < dc(H) - de(G/H).

Proposition

Let G = (X) be subexponentially growing. Then, for any finite
quotient G/N, we have dcx(G) < dc(G/N).




3. Finite index subgroups
00@0

Finite index subgroups

Proposition (Gallagher, 1970)
Let G be a finite group and H < G. Then, dc(G) < dc(H) - de(G/H).

Proposition

Let G = (X) be subexponentially growing. Then, for any finite
quotient G/N, we have dcx(G) < dc(G/N).

Proof. Let N < G with [G : N] = d.




3. Finite index subgroups
00@0

Finite index subgroups

Proposition (Gallagher, 1970)
Let G be a finite group and H < G. Then, dc(G) < dc(H) - de(G/H).

Proposition

Let G = (X) be subexponentially growing. Then, for any finite
quotient G/N, we have dcx(G) < dc(G/N).

Proof. Let N < G with [G: N] = d.
By B-V, Vg € Glim,_, [gN NBx(n)|/|Bx(n)| = 1/d, indep. X and g.




3. Finite index subgroups
00@0

Finite index subgroups

Proposition (Gallagher, 1970)
Let G be a finite group and H < G. Then, dc(G) < dc(H) - de(G/H).

Proposition

Let G = (X) be subexponentially growing. Then, for any finite
quotient G/N, we have dcx(G) < dc(G/N).

Proof. Let N < G with [G: N] = d.

By B-V, Vg € Glim,_,» |gN NBx(n)|/|Bx(n)| = 1/d, indep. X and g.
But |G/N| < oo, so this lim is uniform on g, i.e.,

Ve >0 dny VYn > ng and Vg € G,

(; - 5) IBx(n)| < [gN N Bx(n)| < (; +5) [Bx(n)l-




3. Finite index subgroups
00@0

Finite index subgroups

Proposition (Gallagher, 1970)
Let G be a finite group and H < G. Then, dc(G) < dc(H) - de(G/H).

Proposition

Let G = (X) be subexponentially growing. Then, for any finite
quotient G/N, we have dcx(G) < dc(G/N).

Proof. Let N < G with [G: N] = d.

By B-V, Vg € Glim,_,» |gN NBx(n)|/|Bx(n)| = 1/d, indep. X and g.
But |G/N| < oo, so this lim is uniform on g, i.e.,

Ve >0 dny VYn > ng and Vg € G,

(; - 5) IBx(n)| < [gN N Bx(n)| < (; +5) [Bx(n)l-

Suppose dcx(G) > dc(G/N) and let us find a contradiction.
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35 > 0 s.t. |{(u, V) € (Bx(n))? | uv = vu}|/|Bx(n)? > de(G/N) + &
for infinitely many n’s.

In the above inequality, take £ > 0 small enough so that
2ed + €2d? < 6, and 3n > 0 such that

[{(u, v) € (Bx(n))? | uv = vu}|
dc(G/N) + 6 < \If;(x(n)lz

1 _ /1 2 »
< e (@) € (@/NR |77 =@ (G +2) Bl

U@V @M ITV=VT)] | o

< 7 + 2ed + £2aP

< dc(G/N) + 4, a contradiction. O
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The main result

Theorem

Let G = (X) be of subexponential growth and residually finite. Then,
(i) dex(G) > 5/8 = G is abelian;

(i) dex(G) > 0 < G is virtually abelian.

In particular, (i) and (ii) is true for polynomially growing groups.

Let G = (X) = (Y) be of subexponential growth and residually finite.
Then,

dCX(G) =0 <~ dCy(G) =0.
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Conjecture

For any finitely generated group G = (X),

dex(G) >0 <= G is virtually abelian.

Every finitely generated group G with super-polynomial growth has
dex(@G) = 0 for every X.

N,
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Proof of the main result

Theorem

Let G = (X) be of subexponential growth and residually finite. Then,
(i) dex(G) > 5/8 = G is abelian;

(i) dex(G) > 0 < G is virtually abelian.

Proof. (i). Suppose dcx(G) > 5/8. Then, dc(G/N) > 5/8 for every
N <, G. Hence, by Gustafson’s thm, every finite quotient of G is
abelian. Residual finiteness implies G abelian.
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N <, G. Hence, by Gustafson’s thm, every finite quotient of G is
abelian. Residual finiteness implies G abelian.

(i, <). Suppose G = (X) is virtually abelian, (Y) = H <;; G with H
abelian. Then G is polynomially growing and dcy(H) =1 > 0 so,
dex(G) > 0.

(i, = ). Suppose G is not virtually abelian and let us prove that
dex(G) = 0.
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Claim. If H is f.g., r.f., not virtually abelian then 3K <., H such that
i
H/K is (finite) not abelian.
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fi. fi. fi. fi. fi. fi.

such that Ki_1/K; is not abelian so, dc(Ki_1/K;) < 5/8 Vi.
Thenvi, K <G, (G/Ki)/(Ki-1/Ki) = G/Ki-1 and, by Gallagher,

de(G/K;) < de(Ki-1/K;) - de(G/Ki—1) < 5/8 - de(G/Ki—1).
By induction, dc(G/K;) < (5/8)" and so,

dex(G) < de(G/K;) < (5/8),

for every i. Therefore, dcx(G) =0. O
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Generalizations

e We can replace xy = yx by any system of equations.

e We can replace the uniform measures on balls to any sequence of
measures (random walks, etc).

Definition

Let{Xi,..., Xk} be a set of abstract variables and F the free group
on it. Think elements w € F as equations, w = 1, and subsets £ C F
as systems of equations. Define solutions on a group G in the
obvious way.

Definition

Given G = (X) and a system of equations & C F, we define the
degree of satisfiability of £ in G as

, Joaag B K Jooag . &
dsx(G,s):||rnnjolipH(91 9k) € ( xlg)v()()n)llk(w 90 S0l £} 4 4.
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Generalizations

Definition
Let G and £ be as before. Fix a collection of measures p, in G with
finite support, | Supp pn| < oo, and such that

Supp p1 € Supp iz € - -

and Unpen Supp pun = G. We define the degree of satisfiability of £ in G
w.r.t. un as

asx(G, &, {un}n) =
limsup X% ({(g1.--.,9x) € GX| (g1,--.,9k) sOl. £}) € [0,1].

n—oo
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Generalizations

Let G, &, and {un}n be as above, with u, “reasonable”. Then,

ds(G, &, {un}tn) > 0 <= €& is a virtual law in G.

4

Eisalawin Gifevery(gi,...,9«) € G is a solution of £ in G.

& is avirtual law in G if 3H <¢; G such that € is a law in H.

N,
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