# Algebraic extensions and computations of closures in free groups 

## Enric Ventura

Departament de Matemàtica Aplicada III
Universitat Politècnica de Catalunya

Oberseminar Computation Algebra and Number Theory, Düsseldorf.

May 27, 2009

## Outline

(1) Algebraic extensions

2 The bijection between subgroups and automata
(3) Takahasi's theorem
(4) The pro- $\mathcal{V}$ topology

## Outline

(1) Algebraic extensions

2 The bijection between subgroups and automata

3 Takahasi's theorem
(4) The pro- $\mathcal{V}$ topology

## Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet ( $n$ letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$ ).
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on $A$ (words on $A^{ \pm 1}$ modulo reduction).
- Every $w \in A^{*}$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in $F_{A}$ : $|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3, \quad|u v| \leqslant|u|+|v|$.


## Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet ( $n$ letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$ ).
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on $A$ (words on $A^{ \pm 1}$ modulo reduction).
- Every $w \in A^{*}$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in $F_{A}$ : $|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3, \quad|u v| \leqslant|u|+|v|$.


## Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet ( $n$ letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$ ).
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on $A$ (words on $A^{ \pm 1}$ modulo reduction).
- Every $w \in A^{*}$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in $F_{A}$ :


## Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet ( $n$ letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$ ).
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on $A$ (words on $A^{ \pm 1}$ modulo reduction).
- Every $w \in A^{*}$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in $F_{A}$ :


## Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet ( $n$ letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$ ).
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on $A$ (words on $A^{ \pm 1}$ modulo reduction).
- Every $w \in A^{*}$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in $F_{A}$ :


## Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet ( $n$ letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$ ).
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on $A$ (words on $A^{ \pm 1}$ modulo reduction).
- Every $w \in A^{*}$ has a unique reduced form,
- 1 denotes the empty word, and


## Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet ( $n$ letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$ ).
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on $A$ (words on $A^{ \pm 1}$ modulo reduction).
- Every $w \in A^{*}$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in $F_{A}$ : $|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3, \quad|u v| \leqslant|u|+|v|$.


## Motivation

- In basic linear algebra:

$$
U \leqslant V \leqslant K^{n} \quad \Rightarrow \quad V=U \oplus L
$$

- $\ln \mathbb{Z}^{n}$, the analog is almost true:

- In $F(A)$, the analog is ...
far from true because $H \leqslant K \nRightarrow r(H) \leqslant r(K) \ldots$


## Motivation

- In basic linear algebra:

$$
U \leqslant V \leqslant K^{n} \quad \Rightarrow \quad V=U \oplus L
$$

- In $\mathbb{Z}^{n}$, the analog is almost true:

$$
U \leqslant V \leqslant \mathbb{Z}^{n} \quad \Rightarrow \quad \exists U \leq_{f i} U^{\prime} \leqslant V \text { s.t. } V=U^{\prime} \oplus L
$$

## - In $F(A)$, the analog is ...

far from true because $H \leqslant K \nRightarrow r(H) \leqslant r(K)$..

## Motivation

- In basic linear algebra:

$$
U \leqslant V \leqslant K^{n} \quad \Rightarrow \quad V=U \oplus L
$$

- $\ln \mathbb{Z}^{n}$, the analog is almost true:

$$
U \leqslant V \leqslant \mathbb{Z}^{n} \quad \Rightarrow \quad \exists U \leq_{f i} U^{\prime} \leqslant V \text { s.t. } V=U^{\prime} \oplus L
$$

- In $F(A)$, the analog is ...
far from true because $H \leqslant K \nRightarrow r(H) \leqslant r(K) \ldots$


## Motivation

- In basic linear algebra:

$$
U \leqslant V \leqslant K^{n} \quad \Rightarrow \quad V=U \oplus L
$$

- In $\mathbb{Z}^{n}$, the analog is almost true:

$$
U \leqslant V \leqslant \mathbb{Z}^{n} \quad \Rightarrow \quad \exists U \leq_{f i} U^{\prime} \leqslant V \text { s.t. } V=U^{\prime} \oplus L .
$$

- In $F(A)$, the analog is ...
almost true again, ... in the sense of Takahasi.


## Algebraic and transcendental elements

Mimicking field theory...

## Definition

Let $H \leqslant F(A)$ and $w \in F(A)$. We say that $w$ is

- algebraic over $H$ if $\exists 1 \neq e_{H}(x) \in H *\langle x\rangle$ such that $e_{H}(w)=1$;
- transcendental over H otherwise.
$\square$
Observation
$w$ is transcendental over $H \Longleftrightarrow\langle H, w\rangle \simeq H *\langle w\rangle$ $\Longleftrightarrow H$ is contained in a proper f.f. of $\langle H, w\rangle$

Problem
$w_{1}, w_{2}$ algebraic over $H \nRightarrow w_{1} w_{2}$ algebraic over $H$
$H=\langle a, \bar{b} a b, \bar{c} a c\rangle \leqslant\langle a, b, c\rangle$, and $w_{1}=b, w_{2}=\bar{c}$

## Algebraic and transcendental elements

Mimicking field theory...

## Definition

Let $H \leqslant F(A)$ and $w \in F(A)$. We say that $w$ is

- algebraic over $H$ if $\exists 1 \neq e_{H}(x) \in H *\langle x\rangle$ such that $e_{H}(w)=1$;
- transcendental over H otherwise.

```
Observation
w}\mathrm{ is transcendental over H}\Longleftrightarrow\langleH,w\rangle\simeqH*\langlew
|H is contained in a proper f.f. of }\langleH,w
```

Problem
$\square$
$\square$
$H=\langle a, \bar{b} a b, \bar{c} a c\rangle \leqslant\langle a, b, c\rangle$, and $w_{1}=b, w_{2}=\bar{c}$

## Algebraic and transcendental elements

Mimicking field theory...

## Definition

Let $H \leqslant F(A)$ and $w \in F(A)$. We say that $w$ is

- algebraic over $H$ if $\exists 1 \neq e_{H}(x) \in H *\langle x\rangle$ such that $e_{H}(w)=1$;
- transcendental over $H$ otherwise.


## Observation

$w$ is transcendental over $H \Longleftrightarrow\langle H, w\rangle \simeq H *\langle w\rangle$

Problem
$w_{1}, w_{2}$ algebraic over $H \nRightarrow w_{1} w_{2}$ algebraic over $H$

## $H=\langle a, \bar{b} a b, \bar{c} a c\rangle \leqslant\langle a, b, c\rangle$, and $w_{1}=b, w_{2}=\bar{c}$

## Algebraic and transcendental elements

Mimicking field theory...

## Definition

Let $H \leqslant F(A)$ and $w \in F(A)$. We say that $w$ is

- algebraic over $H$ if $\exists 1 \neq e_{H}(x) \in H *\langle x\rangle$ such that $e_{H}(w)=1$;
- transcendental over $H$ otherwise.


## Observation

w is transcendental over $H \Longleftrightarrow\langle H, w\rangle \simeq H *\langle w\rangle$
$\Longleftrightarrow H$ is contained in a proper f.f. of $\langle H, w\rangle$.

Problem
$w_{1}, w_{2}$ algebraic over $H \nRightarrow w_{1} w_{2}$ algebraic over $H$
$H=\langle a, \bar{b} a b, \bar{c} a c\rangle \leqslant\langle a, b, c\rangle$, and $w_{1}=b, w_{2}=\bar{c}$

## Algebraic and transcendental elements

Mimicking field theory...

## Definition

Let $H \leqslant F(A)$ and $w \in F(A)$. We say that $w$ is

- algebraic over $H$ if $\exists 1 \neq e_{H}(x) \in H *\langle x\rangle$ such that $e_{H}(w)=1$;
- transcendental over $H$ otherwise.


## Observation

w is transcendental over $H \Longleftrightarrow\langle H, w\rangle \simeq H *\langle w\rangle$
$\Longleftrightarrow H$ is contained in a proper f.f. of $\langle H, w\rangle$.

## Problem

$w_{1}, w_{2}$ algebraic over $H \nRightarrow w_{1} w_{2}$ algebraic over $H$.
$H=\langle a, \bar{b} a b, \bar{c} a c\rangle \leqslant\langle a, b, c\rangle$, and $w_{1}=b, w_{2}=\bar{c}$

## Algebraic and transcendental elements

Mimicking field theory...

## Definition

Let $H \leqslant F(A)$ and $w \in F(A)$. We say that $w$ is

- algebraic over $H$ if $\exists 1 \neq e_{H}(x) \in H *\langle x\rangle$ such that $e_{H}(w)=1$;
- transcendental over $H$ otherwise.


## Observation

w is transcendental over $H \Longleftrightarrow\langle H, w\rangle \simeq H *\langle w\rangle$
$\Longleftrightarrow H$ is contained in a proper f.f. of $\langle H, w\rangle$.

## Problem

$w_{1}, w_{2}$ algebraic over $H \nRightarrow w_{1} w_{2}$ algebraic over $H$.
$H=\langle a, \bar{b} a b, \bar{c} a c\rangle \leqslant\langle a, b, c\rangle$, and $w_{1}=b, w_{2}=\bar{c}$

## Algebraic and free extensions

A relative notion works better...

```
Definition
Let H}\leqslant\leqslant\leqslantF(A)\mathrm{ and w }\inK\mathrm{ . We say that w is
- K-algebraic over H if }\forall\mathrm{ free factorization K = K K1* K}\mp@subsup{K}{2}{}\mathrm{ with H}\leqslant\mp@subsup{K}{1}{}\mathrm{ , we
have w }\in\mp@subsup{K}{1}{}\mathrm{ ;
- K-transcendental over H otherwise.
```


## Observation

w is algebraic over H if and only if it is $\langle H, w\rangle$-algebraic over $H$.

## Observation <br> If $w_{1}$ and $w_{2}$ are $K$-algebraic over $H$, then so is $w_{1} w_{2}$

## Algebraic and free extensions

A relative notion works better...

## Definition

Let $H \leqslant K \leqslant F(A)$ and $w \in K$. We say that $w$ is

- $K$-algebraic over $H$ if $\forall$ free factorization $K=K_{1} * K_{2}$ with $H \leqslant K_{1}$, we have $w \in K_{1}$;
- K-transcendental over H otherwise.


## Observation

w is algebraic over H if and only if it is $\langle H, w\rangle$-algebraic over H.

## Observation

If $w_{1}$ and $w_{2}$ are K-algebraic over $H$, then so is $w_{1} w_{2}$

## Algebraic and free extensions

A relative notion works better...

## Definition

Let $H \leqslant K \leqslant F(A)$ and $w \in K$. We say that $w$ is

- $K$-algebraic over $H$ if $\forall$ free factorization $K=K_{1} * K_{2}$ with $H \leqslant K_{1}$, we have $w \in K_{1}$;
- K-transcendental over $H$ otherwise.


## Observation

w is algebraic over H if and only if it is $\langle H, w\rangle$-algebraic over $H$.

## Observation

If $w_{1}$ and $w_{2}$ are $K$-algebraic over $H$, then so is $w_{1} w_{2}$

## Algebraic and free extensions

A relative notion works better...

## Definition

Let $H \leqslant K \leqslant F(A)$ and $w \in K$. We say that $w$ is

- $K$-algebraic over $H$ if $\forall$ free factorization $K=K_{1} * K_{2}$ with $H \leqslant K_{1}$, we have $w \in K_{1}$;
- K-transcendental over H otherwise.


## Observation

$w$ is algebraic over $H$ if and only if it is $\langle H, w\rangle$-algebraic over $H$.

Observation
If $w_{1}$ and $w_{2}$ are $K$-algebraic over $H$, then so is $w_{1} W_{2}$

## Algebraic and free extensions

A relative notion works better...

## Definition

Let $H \leqslant K \leqslant F(A)$ and $w \in K$. We say that $w$ is

- $K$-algebraic over $H$ if $\forall$ free factorization $K=K_{1} * K_{2}$ with $H \leqslant K_{1}$, we have $w \in K_{1}$;
- K-transcendental over H otherwise.


## Observation

$w$ is algebraic over $H$ if and only if it is $\langle H, w\rangle$-algebraic over $H$.

## Observation

If $w_{1}$ and $w_{2}$ are $K$-algebraic over $H$, then so is $w_{1} w_{2}$.

## Algebraic and free extensions

Definition
Let $H \leqslant K \leqslant F(A)$.
We say that $H \leqslant K$ is an algebraic extension, denoted $H \leq_{\text {alg }} K$, $\Longleftrightarrow$ every $w \in K$ is $K$-algebraic over $H$,
$\Longleftrightarrow H$ is not contained in any proper free factor of $K$, $\Longleftrightarrow H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$.
We say thai $\mathrm{H} \leqslant \mathrm{K}$ is a free exiension, denoied $\mathrm{H} \leq_{f f} K$, $\Longleftrightarrow$ every $w \in K$ is K-transcendental over $H$, $\Longleftrightarrow H \leqslant H * L=K$ for some $L$.

## Algebraic and free extensions

## Definition

Let $H \leqslant K \leqslant F(A)$.
We say that $H \leqslant K$ is an algebraic extension, denoted $H \leq_{\text {alg }} K$,
$\Longleftrightarrow$ every $w \in K$ is $K$-algebraic over $H$,
$\Longleftrightarrow H$ is not contained in any proper free factor of $K$,

We say that $H \leqslant K$ is a free extension, denoted $H \leq_{f f} K$, $\Longleftrightarrow$ every $w \in K$ is $K$-transcendental over $H$,

## Algebraic and free extensions

## Definition

Let $H \leqslant K \leqslant F(A)$.
We say that $H \leqslant K$ is an algebraic extension, denoted $H \leq_{\text {alg }} K$,
$\Longleftrightarrow$ every $w \in K$ is $K$-algebraic over $H$,
$\Longleftrightarrow H$ is not contained in any proper free factor of $K$,
$\Longleftrightarrow H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$.
We say that $H \leqslant K$ is a free extension, denoted $H \leq_{H} K$, $\Longleftrightarrow$ every $w \in K$ is $K$-transcendental over $H$,
$\Longleftrightarrow H \leqslant H * L=K$ for some $L$.

## Algebraic and free extensions

## Definition

Let $H \leqslant K \leqslant F(A)$.
We say that $H \leqslant K$ is an algebraic extension, denoted $H \leq_{\text {alg }} K$,
$\Longleftrightarrow$ every $w \in K$ is $K$-algebraic over $H$,
$\Longleftrightarrow H$ is not contained in any proper free factor of $K$, $\Longleftrightarrow H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$.

We say that $H \leqslant K$ is a free extension, denoted $H \leq_{f f} K$, $\Longleftrightarrow$ every $w \in K$ is $K$-transcendental over $H$,

## Algebraic and free extensions

## Definition

Let $H \leqslant K \leqslant F(A)$.
We say that $H \leqslant K$ is an algebraic extension, denoted $H \leq_{\text {alg }} K$,
$\Longleftrightarrow$ every $w \in K$ is $K$-algebraic over $H$, $\Longleftrightarrow H$ is not contained in any proper free factor of $K$, $\Longleftrightarrow H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$.

We say that $H \leqslant K$ is a free extension, denoted $H \leq_{f f} K$, $\Longleftrightarrow$ every $w \in K$ is $K$-transcendental over $H$, $\Longleftrightarrow H \leqslant H * L=K$ for some $L$.

## Algebraic and free extensions

- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{\text {alg }}\langle x\rangle, \forall x \in F_{A} \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg $K$.
- $H \leqslant$ alg $K \leqslant$ alg $L$ implies $H \leqslant$ alg $L$.
- $H \leqslant_{f t} K \leqslant_{H f} L$ implies $H \leqslant_{f f} L$.
- $H \leqslant$ alg $L$ and $H \leqslant K \leqslant L$ imply $K \leqslant a l g$ but not necessarily $H \leqslant a l g$.
- $H \leqslant_{f f} L$ and $H \leqslant K \leqslant L$ imply $H \leqslant_{f f} K$ but not necessarily $K \leqslant_{f f} L$.

How many algebraic extensions does a given $H$ have in $F(A)$ ?

## Can we compute them all?

## Algebraic and free extensions

- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{\text {alg }}\langle x\rangle, \forall x \in F_{A} \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg $K$.
- $H \leqslant$ alg $K \leqslant$ alg $L$ implies $H \leqslant$ alg $L$.
- $H \leqslant_{f f} K \leqslant_{f f} L$ implies $H \leqslant_{f f} L$.
- $H \leqslant$ alg $L$ and $H \leqslant K \leqslant L$ imply $K$ salg $L$ but not necessarily $H \leqslant$ salg $K$.
- $H \leqslant_{f f} L$ and $H \leqslant K \leqslant L$ imply $H \leqslant_{f} K$ but not necessarily $K \leqslant_{f f} L$.

How many algebraic extensions does a given $H$ have in $F(A)$ ?

## Can we compute them all?

## Algebraic and free extensions

- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{\text {alg }}\langle x\rangle, \forall x \in F_{A} \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg $K$.
- $H \leqslant$ alg $K \leqslant$ alg $L$ implies $H \leqslant$ alg $L$.
- $H \leqslant_{f f} K \leqslant_{f f} L$ implies $H \leqslant_{f f} L$.
- $H \leqslant$ alg $L$ and $H \leqslant K \leqslant L$ imply $K \leqslant$ alg $L$ but not necessarily $H \leqslant$ alg $K$.
- $H \leqslant_{f t} L$ and $H \leqslant K \leqslant L$ imply $H \leqslant_{f f} K$ but not necessarily $K \leqslant_{H} L$.

How many algebraic extensions does a given $H$ have in $F(A)$ ?

## Can we compute them all?

## Algebraic and free extensions

- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{\text {alg }}\langle x\rangle, \forall x \in F_{A} \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg $K$.
- $H \leqslant$ alg $K \leqslant$ alg $L$ implies $H \leqslant$ alg $L$.
- $H \leqslant_{f f} K \leqslant_{f f} L$ implies $H \leqslant_{f f} L$.
- $H \leqslant$ alg $L$ and $H \leqslant K \leqslant L$ imply $K \leqslant a l g L$ but not necessarily $H \leqslant a l g$.
- $H \leqslant_{f t} L$ and $H \leqslant K \leqslant L$ imply $H \leqslant_{f f} K$ but not necessarily $K \leqslant_{f f} L$.

How many algebraic extensions does a given $H$ have in $F(A)$ ?

## Can we compute them all?

## Algebraic and free extensions

- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{\text {alg }}\langle x\rangle, \forall x \in F_{A} \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg $K$.
- $H \leqslant_{\text {alg }} K \leqslant$ alg $L$ implies $H \leqslant$ alg $L$.
- $H \leqslant_{f f} K \leqslant_{f f} L$ implies $H \leqslant_{f f} L$.
- $H \leqslant$ alg $L$ and $H \leqslant K \leqslant L$ imply $K \leqslant a l g L$ but not necessarily $H \leqslant$ alg $K$.

How many algebraic extensions does a given $H$ have in $F(A)$ ?

## Can we compute them all?

## Algebraic and free extensions

- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{a l g}\langle x\rangle, \forall x \in F_{A} \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg $K$.
- $H \leqslant_{\text {alg }} K \leqslant$ alg $L$ implies $H \leqslant$ alg $L$.
- $H \leqslant_{f f} K \leqslant_{f f} L$ implies $H \leqslant_{f f} L$.
- $H \leqslant$ alg $L$ and $H \leqslant K \leqslant L$ imply $K \leqslant$ alg $L$ but not necessarily $H \leqslant$ alg $K$.
- $H \leqslant_{f t} L$ and $H \leqslant K \leqslant L$ imply $H \leqslant_{f f} K$ but not necessarily $K \leqslant_{f f} L$.

How many algebraic extensions does a given $H$ have in $F(A)$ ?

## Can we compute them all?

## Algebraic and free extensions

- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{a l g}\langle x\rangle, \forall x \in F_{A} \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg $K$.
- $H \leqslant$ alg $K \leqslant$ alg $L$ implies $H \leqslant$ alg $L$.
- $H \leqslant_{f f} K \leqslant_{f t} L$ implies $H \leqslant_{f f} L$.
- $H \leqslant$ alg $L$ and $H \leqslant K \leqslant L$ imply $K \leqslant$ alg $L$ but not necessarily $H \leqslant$ alg $K$.
- $H \leqslant_{f t} L$ and $H \leqslant K \leqslant L$ imply $H \leqslant_{f f} K$ but not necessarily $K \leqslant_{f f} L$.

How many algebraic extensions does a given $H$ have in $F(A)$ ?

## Can we compute them all?

## Algebraic and free extensions

- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{a l g}\langle x\rangle, \forall x \in F_{A} \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg $K$.
- $H \leqslant$ alg $K \leqslant$ alg $L$ implies $H \leqslant$ alg $L$.
- $H \leqslant_{f f} K \leqslant_{f f} L$ implies $H \leqslant_{f f} L$.
- $H \leqslant$ alg $L$ and $H \leqslant K \leqslant L$ imply $K \leqslant$ alg $L$ but not necessarily $H \leqslant$ alg $K$.
- $H \leqslant_{f t} L$ and $H \leqslant K \leqslant L$ imply $H \leqslant_{f} K$ but not necessarily $K \leqslant_{f f} L$.

How many algebraic extensions does a given $H$ have in $F(A)$ ?
Can we compute them all?

## Takahasi's Theorem

## Theorem (Takahasi, 1951)

For every $H \leqslant_{f g} F_{A}$, the set of algebraic extensions, denoted $\mathcal{A E}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- Modern proof, using Stallings automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).
- Additionally, $\mathcal{A E}(H)$ is computable.


## Takahasi's Theorem

## Theorem (Takahasi, 1951)

For every $H \leqslant_{f g} F_{A}$, the set of algebraic extensions, denoted $\mathcal{A E}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- Modern proof, using Stallings automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).
- Additionally, $\mathcal{A E}(H)$ is computable.


## Takahasi's Theorem

## Theorem (Takahasi, 1951)

For every $H \leqslant_{f g} F_{A}$, the set of algebraic extensions, denoted $\mathcal{A E}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- Modern proof, using Stallings automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).
- Additionally, $\mathcal{A E}(H)$ is computable.


## Takahasi's Theorem

## Theorem (Takahasi, 1951)

For every $H \leqslant_{f g} F_{A}$, the set of algebraic extensions, denoted $\mathcal{A E}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- Modern proof, using Stallings automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).
- Additionally, $\mathcal{A E}(H)$ is computable.


## Outline

## (1) Algebraic extensions

2 The bijection between subgroups and automata
(3) Takahasi's theorem
(4) The pro- $\mathcal{V}$ topology

## Stallings automata

## Definition

A Stallings automaton is a finite A-labeled oriented graph with a distinguished vertex, $(X, v)$, such that:
1- $X$ is connected,
2- no vertex of degree 1 except possibly $v$ ( $X$ is a core-graph),
3- no two edges with the same label go out of (or in to) the same vertex.

## Stallings automata

## Definition

A Stallings automaton is a finite A-labeled oriented graph with a distinguished vertex, $(X, v)$, such that:
1- $X$ is connected,
2- no vertex of degree 1 except possibly $v$ ( $X$ is a core-graph),
3- no two edges with the same label go out of (or in to) the same vertex.
$N O$ :


## Stallings automata

## Definition

A Stallings automaton is a finite A-labeled oriented graph with a distinguished vertex, $(X, v)$, such that:
1- $X$ is connected,
2- no vertex of degree 1 except possibly $v$ ( $X$ is a core-graph),
3- no two edges with the same label go out of (or in to) the same vertex.
$N O:$



## Stallings automata

In the influent paper
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

## Stallings (building on previous works) gave a bijection between finitely generated subgroups of $F_{A}$ and Stallings automata: <br> $$
\left\{f . g . \text { subgroups of } F_{A}\right\} \quad \longleftrightarrow \quad\{\text { Stallings automata }\}
$$

which is crucial for the modern understanding of the lattice of subgroups of $F_{A}$.

## Stallings automata

In the influent paper
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of $F_{A}$ and Stallings automata:

$$
\text { \{f.g. subgroups of } \left.F_{A}\right\} \quad \longleftrightarrow \quad\{\text { Stallings automata }\}
$$

which is crucial for the modern understanding of the lattice of subgroups of $F_{A}$.

## Stallings automata

In the influent paper
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of $F_{A}$ and Stallings automata:

$$
\text { \{f.g. subgroups of } \left.F_{A}\right\} \quad \longleftrightarrow \quad\{\text { Stallings automata }\}
$$

which is crucial for the modern understanding of the lattice of subgroups of $F_{A}$.

## Reading the subgroup from the automata

## Definition

To any given (Stallings) automaton ( $X, v$ ), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of $F_{A}$.


## Reading the subgroup from the automata

## Definition

To any given (Stallings) automaton ( $X, v$ ), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of $F_{A}$.

$\pi(X, \bullet) \not \not \quad b c^{-1} b c a a$
Membership problem in $\pi$ ( $X, 0)$ is solvable.

## Reading the subgroup from the automata

## Definition

To any given (Stallings) automaton ( $X, v$ ), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of $F_{A}$.


$$
\begin{aligned}
& \pi(X, \bullet)=\{1, \\
& \pi(X, \bullet) \not \supset \quad b c^{-1} b c a a \\
& \text { Membership problem in } \pi(X, \bullet) \text { is solvable. }
\end{aligned}
$$

## Reading the subgroup from the automata

## Definition

To any given (Stallings) automaton ( $X, v$ ), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of $F_{A}$.


$$
\pi(X, \bullet)=\{1, a,
$$

$$
\pi(X, \bullet) \not \nexists \quad b c^{-1} b c a a
$$

Membership problem in $\pi(X, \bullet)$ is solvable.

## Reading the subgroup from the automata

## Definition

To any given (Stallings) automaton ( $X, v$ ), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of $F_{A}$.


$$
\pi(X, \bullet)=\left\{1, a, a^{-1}\right.
$$

$$
\pi(X, \bullet) \quad \ngtr \quad b c^{-1} b c a a
$$

Membership problem in $\pi(X, \bullet)$ is solvable.

## Reading the subgroup from the automata

## Definition

To any given (Stallings) automaton ( $X, v$ ), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of $F_{A}$.


$$
\begin{aligned}
& \pi(X, \bullet)=\left\{1, a, a^{-1}, b a b,\right. \\
& \pi(X, \bullet) \not \supset \quad b c^{-1} b c a a \\
& \text { Membership problem in } \pi(X, \bullet) \text { is solvable. }
\end{aligned}
$$

## Reading the subgroup from the automata

## Definition

To any given (Stallings) automaton ( $X, v$ ), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of $F_{A}$.


$$
\pi(X, \bullet)=\left\{1, a, a^{-1}, b a b, b c^{-1} b\right.
$$

$$
\pi(X, \bullet) \not \nexists \quad b c^{-1} b c a a
$$

Membership problem in $\pi(X, \bullet)$ is solvable.

## Reading the subgroup from the automata

## Definition

To any given (Stallings) automaton ( $X, v$ ), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of $F_{A}$.


$$
\begin{aligned}
\pi(X, \bullet)= & \left\{1, a, a^{-1}, b a b, b c^{-1} b,\right. \\
& \text { bababb-1} \left.c b^{-1}, \ldots\right\}
\end{aligned}
$$

$\pi(X, \bullet) \not \supset \quad b c^{-1} b c a a$
Membership problem in $\pi(X, \bullet)$ is solvable.

## Reading the subgroup from the automata

## Definition

To any given (Stallings) automaton ( $X, v$ ), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of $F_{A}$.


$$
\left.\begin{array}{rl}
\pi(X, \bullet)= & \left\{1, a, a^{-1}, b a b, b c^{-1} b\right. \\
& \left.b a b a b^{-1} c b^{-1}, \ldots\right\}
\end{array}\right]=\left\{\begin{aligned}
& \\
& \pi(X, \bullet) \not \supset \quad b c^{-1} b c a a
\end{aligned}\right.
$$

## Reading the subgroup from the automata

## Definition

To any given (Stallings) automaton ( $X, v$ ), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of $F_{A}$.


$$
\begin{aligned}
& \pi(X, \bullet)=\left\{1, a, a^{-1}, b a b, b c^{-1} b,\right. \\
&\left.b a b a b^{-1} c b^{-1}, \ldots\right\} \\
& \pi(X, \bullet) \not \supset \quad b c^{-1} b c a a
\end{aligned}
$$

Membership problem in $\pi(X, \bullet)$ is solvable.

## A basis for $\pi(X, v)$

## Proposition

For every Stallings automaton $(X, v)$, the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

## Proof:

- Take a maximal tree $T$ in $X$.
- Write $T[p, a]$ for the geodesic (i.e. the unique reduced path) in $T$ from $p$ to $q$.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And, $|E X-E T|$



## A basis for $\pi(X, v)$

## Proposition

For every Stallings automaton $(X, v)$, the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

## Proof:

- Take a maximal tree $T$ in $X$.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in $T$ from $p$ to $q$.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, i e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And, $|E X-E T|$



## A basis for $\pi(X, v)$

## Proposition

For every Stallings automaton $(X, v)$, the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

## Proof:

- Take a maximal tree $T$ in $X$.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in $T$ from $p$ to $q$.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.


## - And, $\mid E X-E T$



## A basis for $\pi(X, v)$

## Proposition

For every Stallings automaton $(X, v)$, the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

## Proof:

- Take a maximal tree $T$ in $X$.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in $T$ from $p$ to $q$.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And,



## A basis for $\pi(X, v)$

## Proposition

For every Stallings automaton $(X, v)$, the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

## Proof:

- Take a maximal tree $T$ in $X$.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in $T$ from $p$ to $q$.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And,



## A basis for $\pi(X, v)$

## Proposition

For every Stallings automaton $(X, v)$, the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

## Proof:

- Take a maximal tree $T$ in $X$.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in $T$ from $p$ to $q$.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And, $|E X-E T|=|E X|-|E T|$

$$
=|E X|-(|V T|-1)=1-|V X|+|E X| . \square
$$

## Example


$H=\langle \rangle$

## Example



$$
H=\langle a, \quad\rangle
$$

## Example


$H=\langle a, b a b, \quad\rangle$

## Example


$H=\left\langle a, b a b, b^{-1} c b^{-1}\right\rangle$

## Example



$$
\begin{aligned}
& H=\left\langle a, b a b, b^{-1} c b^{-1}\right\rangle \\
& r k(H)=1-3+5=3 .
\end{aligned}
$$

## Example-2



$$
F_{\aleph_{0}} \simeq H=\left\langle\ldots, b^{-2} a b^{2}, b^{-1} a b, a, b a b^{-1}, b^{2} a b^{-2}, \ldots\right\rangle \leqslant F_{2} .
$$

## Constructing the automata from the subgroup

In any automaton containing the following situation, for $x \in A^{ \pm 1}$,

we can fold and identify vertices $u$ and $v$ to obtain

This operation, $(X, v) \rightsquigarrow\left(X^{\prime}, v\right)$, is called a Stallings folding.

## Constructing the automata from the subgroup

In any automaton containing the following situation, for $x \in A^{ \pm 1}$,

we can fold and identify vertices $u$ and $v$ to obtain

$$
\bullet \xrightarrow{x} u=v .
$$

This operation, $(X, v) \rightsquigarrow\left(X^{\prime}, v\right)$, is called a Stallings folding.

## Constructing the automata from the subgroup

In any automaton containing the following situation, for $x \in A^{ \pm 1}$,

we can fold and identify vertices $u$ and $v$ to obtain


This operation, $(X, v) \rightsquigarrow\left(X^{\prime}, v\right)$, is called a Stallings folding.

## Constructing the automata from the subgroup

## Lemma (Stallings)

If $(X, v) \rightsquigarrow\left(X^{\prime}, v^{\prime}\right)$ is a Stallings folding then $\pi(X, v)=\pi\left(X^{\prime}, v^{\prime}\right)$.

Given a f.g. subgroup $H=\left\langle w_{1}, \ldots w_{m}\right\rangle \leqslant F_{A}$ (we assume $w_{i}$ are reduced words), do the following:
1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

## Constructing the automata from the subgroup

## Lemma (Stallings)

If $(X, v) \rightsquigarrow\left(X^{\prime}, v^{\prime}\right)$ is a Stallings folding then $\pi(X, v)=\pi\left(X^{\prime}, v^{\prime}\right)$.

Given a f.g. subgroup $H=\left\langle w_{1}, \ldots w_{m}\right\rangle \leqslant F_{A}$ (we assume $w_{i}$ are reduced words), do the following:
1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

## Constructing the automata from the subgroup

## Lemma (Stallings)

If $(X, v) \rightsquigarrow\left(X^{\prime}, v^{\prime}\right)$ is a Stallings folding then $\pi(X, v)=\pi\left(X^{\prime}, v^{\prime}\right)$.

Given a f.g. subgroup $H=\left\langle w_{1}, \ldots w_{m}\right\rangle \leqslant F_{A}$ (we assume $w_{i}$ are reduced words), do the following:
1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

## Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$



Flower(H)

## Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$



Flower(H)

## Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$



Folding \#1

## Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$



Folding \#1.

## Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$



Folding \#2.

## Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$



Folding \#2.

## Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#3.


By Stallings Lemma, $\pi(\Gamma(H), \bullet)=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

## Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#3.
 $\Gamma(H)$

By Stallings Lemma, $\pi(\Gamma(H), \bullet)=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

## Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#3.
 $\Gamma(H)$

By Stallings Lemma, $\pi(\Gamma(H), \bullet)=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$<br>$=\left\langle b, a b a^{-1}, a^{3}\right\rangle$

## Local confluence

It can be shown that

## Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

## Proposition

The automaton $\Gamma(H)$ does not depend on the generators of $H$.

## Theorem

The following is a bijection.


## Local confluence

It can be shown that

## Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

## Proposition

The automaton $\Gamma(H)$ does not depend on the generators of $H$.

Theorem
The followinc is a bijection:
$\begin{aligned}\left.\text { \{f.g. subgroups of } F_{A}\right\} & \longleftrightarrow \text { \{Stallings automata }\} \\ H & \longrightarrow \Gamma(H) \\ \pi(X, v) & \leftarrow(X, v)\end{aligned}$

## Local confluence

It can be shown that

## Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

## Proposition

The automaton $\Gamma(H)$ does not depend on the generators of $H$.

## Theorem

The following is a bijection:

$$
\begin{aligned}
\left\{\text { f.g. subgroups of } F_{A}\right\} & \longleftrightarrow\{\text { Stallings automata }\} \\
H & \rightarrow \Gamma(H) \\
\pi(X, v) & \leftarrow(X, v)
\end{aligned}
$$

## Nielsen-Schreier Theorem

## Corollary (Nielsen-Schreier)

Every subgroup of $F_{A}$ is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.


## Nielsen-Schreier Theorem

## Corollary (Nielsen-Schreier)

Every subgroup of $F_{A}$ is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.


## Nielsen-Schreier Theorem

## Corollary (Nielsen-Schreier)

Every subgroup of $F_{A}$ is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.


## Outline

(1) Algebraic extensions

2 The bijection between subgroups and automata
(3) Takahasi's theorem
(4) The pro- $\mathcal{V}$ topology

## Takahasi's theorem

## Definition

Let $H \leqslant K \leqslant F(A)$. Then, $H \leqslant K$ is algebraic if and only if $H$ is not contained in any proper free factor of $K$.

## Theorem (Takahasi, 1951)

For every $H \leqslant_{\text {fg }} F_{A}$, the set of algebraic extensions, $\mathcal{A} \mathcal{E}(H)$, is finite.
Proof (Ventura; Margolis-Sapir-Weil; Kapovich-Miasnikov):

- Consider $\tilde{\Gamma}(H)$, the result of attaching all possible (infinite) "hairs" to $\Gamma(H)$ (i.e. the covering of the bouquet corresponding to $H$ ).
- Given $H \leqslant K$ (both f.g.), we can obtain $\tilde{\Gamma}(K)$ from $\tilde{\Gamma}(H)$ by performing the appropriate identifications of vertices (plus subsequent foldings).


## Takahasi's theorem

## Definition

Let $H \leqslant K \leqslant F(A)$. Then, $H \leqslant K$ is algebraic if and only if $H$ is not contained in any proper free factor of $K$.

## Theorem (Takahasi, 1951)

For every $H \leqslant_{f g} F_{A}$, the set of algebraic extensions, $\mathcal{A E}(H)$, is finite.
Proof (Ventura; Margolis-Sapir-Weil; Kapovich-Miasnikov)

- Consider $\tilde{\Gamma}(H)$, the result of attaching all possible (infinite) "hairs" to $\Gamma(H)$ (i.e. the covering of the bouquet corresponding to $H$ ).
- Given $H \leqslant K$ (both f.g.), we can obtain $\tilde{\Gamma}(K)$ from $\tilde{\Gamma}(H)$ by performing the appropriate identifications of vertices (plus subsequent foldings).


## Takahasi's theorem

## Definition

Let $H \leqslant K \leqslant F(A)$. Then, $H \leqslant K$ is algebraic if and only if $H$ is not contained in any proper free factor of $K$.

## Theorem (Takahasi, 1951)

For every $H \leqslant_{f g} F_{A}$, the set of algebraic extensions, $\mathcal{A E}(H)$, is finite.
Proof (Ventura; Margolis-Sapir-Weil; Kapovich-Miasnikov):

- Consider $\tilde{\Gamma}(H)$, the result of attaching all possible (infinite) "hairs" to $\Gamma(H)$ (i.e. the covering of the bouquet corresponding to $H$ ).

Given $H \leqslant K$ (both f.g.), we can obtain $\Gamma(K)$ from $\Gamma(H)$ by performing the appropriate identifications of vertices (plus subsequent foldings)

## Takahasi's theorem

## Definition

Let $H \leqslant K \leqslant F(A)$. Then, $H \leqslant K$ is algebraic if and only if $H$ is not contained in any proper free factor of $K$.

## Theorem (Takahasi, 1951)

For every $H \leqslant_{f g} F_{A}$, the set of algebraic extensions, $\mathcal{A E}(H)$, is finite.
Proof (Ventura; Margolis-Sapir-Weil; Kapovich-Miasnikov):

- Consider $\tilde{\Gamma}(H)$, the result of attaching all possible (infinite) "hairs" to $\Gamma(H)$ (i.e. the covering of the bouquet corresponding to $H$ ).
- Given $H \leqslant K$ (both f.g.), we can obtain $\tilde{\Gamma}(K)$ from $\tilde{\Gamma}(H)$ by performing the appropriate identifications of vertices (plus subsequent foldings).


## Takahasi's theorem

- Hence, if $H \leqslant K$ (both f.g.) then $\Gamma(K)$ contains as a subgraph either $\Gamma(H)$ or some quotient of it (i.e. $\Gamma(H)$ after some identifications of vertices, $\Gamma(H) / \sim)$.
- The overgroups of H :
$\mathcal{O}(H)=\{\pi(\Gamma(H) / \sim, \bullet) \mid \sim$ is a partition of $V \Gamma(H)\}$
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant \pi K$.
- Thus, $\mathcal{A} \mathcal{E}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. $\square$


## Takahasi's theorem

- Hence, if $H \leqslant K$ (both f.g.) then $\Gamma(K)$ contains as a subgraph either $\Gamma(H)$ or some quotient of it (i.e. $\Gamma(H)$ after some identifications of vertices, $\Gamma(H) / \sim)$.
- The overgroups of $H$ : $\mathcal{O}(H)=\{\pi(\Gamma(H) / \sim, \bullet) \mid \sim$ is a partition of $V \Gamma(H)\}$.
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant$ ff $K$.
- Thus, $\mathcal{A E}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. $\square$


## Takahasi's theorem

- Hence, if $H \leqslant K$ (both f.g.) then $\Gamma(K)$ contains as a subgraph either $\Gamma(H)$ or some quotient of it (i.e. $\Gamma(H)$ after some identifications of vertices, $\Gamma(H) / \sim)$.
- The overgroups of $H$ : $\mathcal{O}(H)=\{\pi(\Gamma(H) / \sim, \bullet) \mid \sim$ is a partition of $V \Gamma(H)\}$.
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant_{f f} K$.
- Thus, $\mathcal{A} \mathcal{E}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. $\square$


## Takahasi's theorem

- Hence, if $H \leqslant K$ (both f.g.) then $\Gamma(K)$ contains as a subgraph either $\Gamma(H)$ or some quotient of it (i.e. $\Gamma(H)$ after some identifications of vertices, $\Gamma(H) / \sim)$.
- The overgroups of $H$ : $\mathcal{O}(H)=\{\pi(\Gamma(H) / \sim, \bullet) \mid \sim$ is a partition of $V \Gamma(H)\}$.
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant_{f f} K$.
- Thus, $\mathcal{A E}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. $\square$


## Computing $\mathcal{A} \mathcal{E}(H)$

## Corollary

$\mathcal{A E}(H)$ is computable.
Proof:

- Compute Г(H),
- Compute $\Gamma(H) / \sim$ for all partitions $\sim$ of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{f f} K_{2}$ and deleting $K_{2}$.
- The resulting set is $\mathcal{A E}(H)$. $\square$

For the cleaning step we need:

## Computing $\mathcal{A} \mathcal{E}(H)$

## Corollary

$\mathcal{A E}(H)$ is computable.

## Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions $\sim$ of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{f f} K_{2}$ and deleting $K_{2}$.
- The resulting set is $\mathcal{A E}(H)$. $\square$


## For the cleaning step we need:

## Computing $\mathcal{A} \mathcal{E}(H)$

## Corollary

$\mathcal{A E}(H)$ is computable.

## Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions $\sim$ of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{f f} K_{2}$ and deleting $K_{2}$.
- The resulting set is $\mathcal{A E}(H)$. $\square$


## For the cleaning step we need:

## Computing $\mathcal{A} \mathcal{E}(H)$

## Corollary

$\mathcal{A E}(H)$ is computable.

## Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions $\sim$ of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{f f} K_{2}$ and deleting $K_{2}$.
- The resulting set is $\mathcal{A} \mathcal{E}(H)$. $\square$


## For the cleaning step we need:

## Computing $\mathcal{A E}(H)$

## Corollary

$\mathcal{A E}(H)$ is computable.

## Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions $\sim$ of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{f f} K_{2}$ and deleting $K_{2}$.
- The resulting set is $\mathcal{A E}(H)$. $\square$

For the cleaning step we need:

## Computing $\mathcal{A E}(H)$

## Corollary

$\mathcal{A E}(H)$ is computable.

## Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions $\sim$ of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{f f} K_{2}$ and deleting $K_{2}$.
- The resulting set is $\mathcal{A E}(H)$. $\square$


## For the cleaning step we need:

## Computing $\mathcal{A E}(H)$

## Corollary

$\mathcal{A E}(H)$ is computable.

## Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions $\sim$ of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{f f} K_{2}$ and deleting $K_{2}$.
- The resulting set is $\mathcal{A E}(H)$. $\square$

For the cleaning step we need:

## Deciding free-factorness

## Proposition

Given $H, K \leqslant F_{A}$, it is algorithmically decidable whether $H \leqslant_{f f} K$ or not.

## Proved by:

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time).


## Deciding free-factorness

## Proposition

Given $H, K \leqslant F_{A}$, it is algorithmically decidable whether $H \leqslant_{\text {ff }} K$ or not.

Proved by:

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time).


## Deciding free-factorness

## Proposition

Given $H, K \leqslant F_{A}$, it is algorithmically decidable whether $H \leqslant_{\text {ff }} K$ or not.

Proved by:

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time).


## Deciding free-factorness

## Proposition

Given $H, K \leqslant F_{A}$, it is algorithmically decidable whether $H \leqslant_{\text {ff }} K$ or not.

Proved by:

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time).


## The algebraic closure

## Observation

If $H \leqslant$ alg $K_{1}$ and $H \leqslant$ alg $K_{2}$ then $H \leqslant$ alg $\left\langle K_{1} \cup K_{2}\right\rangle$.

Corollary
For every $H \leqslant K \leqslant F_{A}$ (all f.g.), $\mathcal{A E}_{K}(H)$ has a unique maximal element, called the K-algebraic closure of $H$, and denoted $\mathrm{Cl}_{K}(H)$.

## Corollary

Every extension $H \leqslant K$ of f.g. subgroups of $F_{A}$ splits, in a unique way, in an algebraic part and a free part, $H \leqslant a l g l_{K}(H) \leqslant_{f f} K$.

## The algebraic closure

## Observation

If $H \leqslant$ alg $K_{1}$ and $H \leqslant$ alg $K_{2}$ then $H \leqslant$ alg $\left\langle K_{1} \cup K_{2}\right\rangle$.

## Corollary

For every $H \leqslant K \leqslant F_{A}$ (all f.g.), $\mathcal{A E}_{K}(H)$ has a unique maximal element, called the $K$-algebraic closure of H , and denoted $\mathrm{Cl}_{K}(\mathrm{H})$.

## Corollary

Every extension $H \leqslant K$ of f.g. subgroups of $F_{A}$ splits, in a unique way, in an algebraic part and a free part, $H \leqslant_{a l g} C I_{K}(H) \leqslant_{f f} K$

## The algebraic closure

## Observation

If $H \leqslant$ alg $K_{1}$ and $H \leqslant$ alg $K_{2}$ then $H \leqslant$ alg $\left\langle K_{1} \cup K_{2}\right\rangle$.

## Corollary

For every $H \leqslant K \leqslant F_{A}$ (all f.g.), $\mathcal{A} \mathcal{E}_{K}(H)$ has a unique maximal element, called the $K$-algebraic closure of $H$, and denoted $\mathrm{Cl}_{K}(H)$.

## Corollary

Every extension $H \leqslant K$ of f.g. subgroups of $F_{A}$ splits, in a unique way, in an algebraic part and a free part, $H \leqslant_{\text {alg }} \mathrm{Cl}_{K}(H) \leqslant_{f f} K$.

## Outline

## (1) Algebraic extensions

2 The bijection between subgroups and automata

3 Takahasi's theorem
(4) The pro- $\mathcal{V}$ topology

## Pseudo-varieties

## Definition

A pseudo-variety of groups $\mathcal{V}$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- $\mathcal{G}=$ all finite groups,
- $\mathcal{G}_{p}=$ all finite p-groups,
- $\mathcal{G}_{\text {nil }}=$ all finite nilpotent groups,
- $\mathcal{G}_{\text {sol }}=$ all finite soluble groups,
- $\mathcal{G}_{a b}=$ all finite abelian groups,
- for a finite group $V,[V]=$ all quotients of subgroups of $V^{k}, k \geqslant 1$.


## Definition

$\square$

## Pseudo-varieties

## Definition

A pseudo-variety of groups $\mathcal{V}$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- $\mathcal{G}=$ all finite groups,
- $\mathcal{G}_{p}=$ all finite p-groups,
- $\mathcal{G}_{\text {nil }}=$ all finite nilpotent groups,
- $\mathcal{G}_{\text {sol }}=$ all finite soluble groups,
- $\mathcal{G}_{a b}=$ all finite abelian groups,
- for a finite group $V,[V]=$ all quotients of subgroups of $V^{k}, k \geqslant 1$


## Definition

is extension-closed if $V \triangleleft W$ with $V, W / V \in \mathcal{V}$ imply $W \in \mathcal{V}$

## Pseudo-varieties

## Definition

A pseudo-variety of groups $\mathcal{V}$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- $\mathcal{G}=$ all finite groups,
- $\mathcal{G}_{p}=$ all finite $p$-groups,
- $\mathcal{G}_{\text {nil }}=$ all finite nilpotent groups,
- $\mathcal{G}_{\text {sol }}=$ all finite soluble groups,
- $\mathcal{G}_{a b}=$ all finite abelian groups,
- for a finite group $V,[V]=$ all quotients of subgroups of $V^{k}, k \geqslant 1$


## Definition

is extension-closed if $V \triangleleft W$ with $V, W / V \in \mathcal{V}$ imply $W \in \mathcal{V}$

## Pseudo-varieties

## Definition

A pseudo-variety of groups $\mathcal{V}$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- $\mathcal{G}=$ all finite groups,
- $\mathcal{G}_{p}=$ all finite p-groups,
- $\mathcal{G}_{\text {nil }}=$ all finite nilpotent groups,
- $\mathcal{G}_{\text {sol }}=$ all finite soluble groups,
- $\mathcal{G}_{a b}=$ all finite abelian groups,
- for a finite group $V,[V]=$ all quotients of subgroups of $V^{k}, k \geqslant 1$


## Definition

is extension-closed if $V \triangleleft W$ with $V, W / V \in \mathcal{V}$ imply $W \in \mathcal{V}$

## Pseudo-varieties

## Definition

A pseudo-variety of groups $\mathcal{V}$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- $\mathcal{G}=$ all finite groups,
- $\mathcal{G}_{p}=$ all finite $p$-groups,
- $\mathcal{G}_{\text {nil }}=$ all finite nilpotent groups,
- $\mathcal{G}_{\text {sol }}=$ all finite soluble groups,
- $\mathcal{G}_{a b}=$ all finite abelian groups,
- for a finite group $V,[V]=$ all quotients of subgroups of $V^{k}, k \geqslant 1$


## Definition

is extension-closed if $V \triangleleft W$ with $V, W / V \in \mathcal{V}$ imply $W \in \mathcal{V}$

## Pseudo-varieties

## Definition

A pseudo-variety of groups $\mathcal{V}$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- $\mathcal{G}=$ all finite groups,
- $\mathcal{G}_{p}=$ all finite $p$-groups,
- $\mathcal{G}_{\text {nil }}=$ all finite nilpotent groups,
- $\mathcal{G}_{\text {sol }}=$ all finite soluble groups,
- $\mathcal{G}_{\text {ab }}=$ all finite abelian groups,
- for a fin
is extension-closed if $V \triangleleft W$ with $V, W / V \in \mathcal{V}$ imply $W \in \mathcal{V}$


## Pseudo-varieties

## Definition

A pseudo-variety of groups $\mathcal{V}$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- $\mathcal{G}=$ all finite groups,
- $\mathcal{G}_{p}=$ all finite $p$-groups,
- $\mathcal{G}_{\text {nil }}=$ all finite nilpotent groups,
- $\mathcal{G}_{\text {sol }}=$ all finite soluble groups,
- $\mathcal{G}_{a b}=$ all finite abelian groups,
- for a finite group $V,[V]=$ all quotients of subgroups of $V^{k}, k \geqslant 1$.


## Definition

is extension-closed if $V \triangleleft W$ with $V, W / V \in \mathcal{V}$ imply $W \in \mathcal{V}$.

## Pseudo-varieties

## Definition

A pseudo-variety of groups $\mathcal{V}$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- $\mathcal{G}=$ all finite groups,
- $\mathcal{G}_{p}=$ all finite p-groups,
- $\mathcal{G}_{\text {nil }}=$ all finite nilpotent groups,
- $\mathcal{G}_{\text {sol }}=$ all finite soluble groups,
- $\mathcal{G}_{a b}=$ all finite abelian groups,
- for a finite group $V,[V]=$ all quotients of subgroups of $V^{k}, k \geqslant 1$.


## Definition

$\mathcal{V}$ is extension-closed if $V \triangleleft W$ with $V, W / V \in \mathcal{V}$ imply $W \in \mathcal{V}$.

## The pro-V topology

## Definition

Let $G$ be a group, and $\mathcal{V}$ be a pseudo-variety of finite groups. The pro-V topology on $G$ can be defined in several equivalent ways:

- it is the smallest topology making all the morphisms from $G$ into all $V \in \mathcal{V}$ (with the discrete topology) continuous,
- a basis of open sets is aiven bv $\varphi^{-1}(x), f o r$ all morphism $\varphi: G \rightarrow V \in \mathcal{V}$,
- the normal (finite index) subgroups $K \leq G$ such that $G / K \in \mathcal{V}$ form a basis of neighborhoods of 1 ,
- it is the topologv aiven by the pseudo-ultra-metric $d(x, y)=2^{-r(x, y)}$, where $r(x, y)=\min \{|V| \mid V \in \mathcal{V}$ and separates $x$ and $y\}$


## Observation

This topology is Hausdorf $\Longleftrightarrow d$ is an ultra-metric $\Longleftrightarrow G$ is residually- $\nu$

## The pro- $\mathcal{V}$ topology

## Definition

Let $G$ be a group, and $\mathcal{V}$ be a pseudo-variety of finite groups. The pro-V topology on $G$ can be defined in several equivalent ways:

- it is the smallest topology making all the morphisms from $G$ into all $V \in \mathcal{V}$ (with the discrete topology) continuous,
- a basis of open sets is given by $\varphi^{-1}(x)$, for all morphism $\varphi: G \rightarrow V \in \mathcal{V}$
- the normal (finite index) subgroups $K \unlhd G$ such that $G / K \in \mathcal{V}$ form a basis of neighborhoods of 1 ,
- it is the topology given by the pseudo-ultra-metric $d(x, y)=2^{-r(x, y)}$, where $r(x, y)=\min \{|V| \mid V \in \mathcal{V}$ and separates $x$ and $y$


## Observation

This topology is Hausdorf $\Longleftrightarrow d$ is an ultra-metric $\Longleftrightarrow G$ is residually-v

## The pro- $\mathcal{V}$ topology

## Definition

Let $G$ be a group, and $\mathcal{V}$ be a pseudo-variety of finite groups. The pro-V topology on $G$ can be defined in several equivalent ways:

- it is the smallest topology making all the morphisms from $G$ into all $V \in \mathcal{V}$ (with the discrete topology) continuous,
- a basis of open sets is given by $\varphi^{-1}(x)$, for all morphism $\varphi: G \rightarrow V \in \mathcal{V}$,
- the normal (finite index) subgroups $K \unlhd G$ such that $G / K \in \mathcal{V}$ form a basis of neighborhoods of 1 ,
- it is the topoloav aiven by the pseudo-ultra-metric $d(x, y)=2^{-}$ where $r(x, y)=\min \{|V| \mid V \in \mathcal{V}$ and separates $x$ and $y\}$


## Observation

This topology is Hausdorf $\Longleftrightarrow d$ is an ultra-metric $\Longleftrightarrow G$ is residually- $\nu$.

## The pro-V topology

## Definition

Let $G$ be a group, and $\mathcal{V}$ be a pseudo-variety of finite groups. The pro-V topology on $G$ can be defined in several equivalent ways:

- it is the smallest topology making all the morphisms from $G$ into all $V \in \mathcal{V}$ (with the discrete topology) continuous,
- a basis of open sets is given by $\varphi^{-1}(x)$, for all morphism $\varphi: G \rightarrow V \in \mathcal{V}$,
- the normal (finite index) subgroups $K \unlhd G$ such that $G / K \in \mathcal{V}$ form a basis of neighborhoods of 1 ,
- it is the topology given by the pseudo-ultra-metric $d(x, y)=2^{-1}$ where $r(x, y)=\min \{|V| \mid V \in \mathcal{V}$ and separates $x$ and $y\}$


## Observation

This topology is Hausdorf $\Longleftrightarrow d$ is an ultra-metric $\Longleftrightarrow G$ is residually- $\mathcal{V}$.

## The pro-V topology

## Definition

Let $G$ be a group, and $\mathcal{V}$ be a pseudo-variety of finite groups. The pro-V topology on $G$ can be defined in several equivalent ways:

- it is the smallest topology making all the morphisms from $G$ into all $V \in \mathcal{V}$ (with the discrete topology) continuous,
- a basis of open sets is given by $\varphi^{-1}(x)$, for all morphism $\varphi: G \rightarrow V \in \mathcal{V}$,
- the normal (finite index) subgroups $K \unlhd G$ such that $G / K \in \mathcal{V}$ form a basis of neighborhoods of 1 ,
- it is the topology given by the pseudo-ultra-metric $d(x, y)=2^{-r(x, y)}$, where $r(x, y)=\min \{|V| \mid V \in \mathcal{V}$ and separates $x$ and $y\}$.


## Observation

This topology is Hausdorf $\Longleftrightarrow d$ is an ultra-metric $\Longleftrightarrow G$ is residually-v

## The pro-V topology

## Definition

Let $G$ be a group, and $\mathcal{V}$ be a pseudo-variety of finite groups. The pro-V topology on $G$ can be defined in several equivalent ways:

- it is the smallest topology making all the morphisms from $G$ into all $V \in \mathcal{V}$ (with the discrete topology) continuous,
- a basis of open sets is given by $\varphi^{-1}(x)$, for all morphism $\varphi: G \rightarrow V \in \mathcal{V}$,
- the normal (finite index) subgroups $K \unlhd G$ such that $G / K \in \mathcal{V}$ form a basis of neighborhoods of 1 ,
- it is the topology given by the pseudo-ultra-metric $d(x, y)=2^{-r(x, y)}$, where $r(x, y)=\min \{|V| \mid V \in \mathcal{V}$ and separates $x$ and $y\}$.


## Observation

This topology is Hausdorf $\Longleftrightarrow d$ is an ultra-metric $\Longleftrightarrow G$ is residually-V.

## The $\mathcal{V}$-closure

## Proposition

Let $G$ be a group equipped with the pro-V topology, and let $H \leq G$. Then, TFAE:

- H is open
- H is clopen (i.e. open and closed)
- $H \leq_{f i} G$ and $G / H_{G} \in \mathcal{V}$

Furthermore,


## Corollary

Assume that $\mathcal{V}$ has a finite free object over $A$, say $F_{A}(\mathcal{V})$, and let $\sigma: F_{A} \rightarrow F_{A}(\mathcal{V})$ be the natural projection. Then, for every subset $X \subseteq F_{A}$, $c \nu(X)=\sigma^{-1}(\sigma(X))$.

## The $\mathcal{V}$-closure

## Proposition

Let $G$ be a group equipped with the pro- $\mathcal{\nu}$ topology, and let $H \leq G$. Then, TFAE:

- H is open
- H is clopen (i.e. open and closed)
- $H \leq_{f i} G$ and $G / H_{G} \in \mathcal{V}$

Furthermore,


## Corollary

Assume that $\mathcal{V}$ has a finite free object over $A$, say $F_{A}(\mathcal{V})$, and let $\sigma: F_{A} \rightarrow F_{A}(\mathcal{V})$ be the natural projection. Then, for every subset $X \subseteq F_{A}$, $c \operatorname{co}(X)=\sigma^{-1}(\sigma(X))$

## The $\mathcal{V}$-closure

## Proposition

Let $G$ be a group equipped with the pro-V topology, and let $H \leq G$. Then, TFAE:

- H is open
- H is clopen (i.e. open and closed)
- $H \leq_{f i} G$ and $G / H_{G} \in \mathcal{V}$.


## Furthermore,



## Corollary

Assume that $\mathcal{V}$ has a finite free object over $A$, say $F_{A}(\mathcal{V})$, and let
 $c \downarrow(X)=\sigma^{-1}(\sigma(X))$

## The $\mathcal{V}$-closure

## Proposition

Let $G$ be a group equipped with the pro-V topology, and let $H \leq G$. Then, TFAE:

- H is open
- H is clopen (i.e. open and closed)
- $H \leq_{f i} G$ and $G / H_{G} \in \mathcal{V}$.

Furthermore,

$$
c / v(H)=\bigcap_{H \leqslant K, \text { open }} K=\bigcap_{\varphi: G \rightarrow V \in \mathcal{V}} \varphi^{-1}(\varphi(H)) .
$$

Corollary
Assume that $\mathcal{V}$ has a finite free object over $A$, say $F_{A}(\mathcal{V})$, and let $\sigma: F_{A} \rightarrow F_{A}(\mathcal{V})$ be the natural projection. Then, for every subset $X \subseteq F_{A}$, $c h(X)=\sigma^{-1}(\sigma(X))$

## The $\mathcal{V}$-closure

## Proposition

Let $G$ be a group equipped with the pro-V topology, and let $H \leq G$. Then, TFAE:

- H is open
- H is clopen (i.e. open and closed)
- $H \leq_{f i} G$ and $G / H_{G} \in \mathcal{V}$.

Furthermore,

$$
c / v(H)=\bigcap_{H \leqslant K, \text { open }} K=\bigcap_{\varphi: G \rightarrow V \in \mathcal{V}} \varphi^{-1}(\varphi(H)) .
$$

## Corollary

Assume that $\mathcal{V}$ has a finite free object over $A$, say $F_{A}(\mathcal{V})$, and let $\sigma: F_{A} \rightarrow F_{A}(\mathcal{V})$ be the natural projection. Then, for every subset $X \subseteq F_{A}$, $\operatorname{clv}(X)=\sigma^{-1}(\sigma(X))$.

## The extension-closed case

## Proposition (Ribes, Zaleskiĩ)

Let $\mathcal{V}$ be an extension-closed pseudo-variety, and consider $F_{A}$ the free group on $A$ with the pro- $\mathcal{V}$ topology. For a given $H \leq_{f g} F_{A}$,
$H$ is closed $\Longleftrightarrow H$ is a free factor of a clopen subgroup.

## Corollary

For an extension-closed $\mathcal{v}$ and a $H \leq_{f g} F_{A}$, we have $H \leq_{\text {alg }} \mathrm{Clv}(H)$
Furthermore, it can also be proven that

## Proposition (Ribes, ZaleskiĬ)

In this situation, $r(c h,(H)) \leqslant r(H)$

## The extension-closed case

## Proposition (Ribes, Zaleskiĩ)

Let $\mathcal{V}$ be an extension-closed pseudo-variety, and consider $F_{A}$ the free group on $A$ with the pro- $\mathcal{V}$ topology. For a given $H \leq_{f g} F_{A}$,
$H$ is closed $\Longleftrightarrow H$ is a free factor of a clopen subgroup.

## Corollary

For an extension-closed $\mathcal{V}$ and a $H \leq_{f g} F_{A}$, we have $H \leq \operatorname{alg} c_{V}(H)$.
Furthermore, it can also be proven that
Proposition (Ribes, ZaleskiĬ)
In this situation, $r\left(\operatorname{clv}_{\mathcal{V}}(H)\right) \leqslant r(H)$

## The extension-closed case

## Proposition (Ribes, Zaleskiĩ)

Let $\mathcal{V}$ be an extension-closed pseudo-variety, and consider $F_{A}$ the free group on $A$ with the pro- $\mathcal{V}$ topology. For a given $H \leq_{f g} F_{A}$,
$H$ is closed $\Longleftrightarrow H$ is a free factor of a clopen subgroup.

## Corollary

For an extension-closed $\mathcal{V}$ and a $H \leq_{f g} F_{A}$, we have $H \leq_{\text {alg }} c l v_{\mathcal{V}}(H)$.
Furthermore, it can also be proven that

## Proposition (Ribes, Zaleskiĭ)

In this situation, $r\left(c_{\mathcal{V}}(H)\right) \leqslant r(H)$.

## Containment of pseudo-varieties

## Proposition

For an extension-closed $\mathcal{V}$ and a $H \leq_{\text {fg }} F_{A}$, the pro- $\mathcal{V}$ topology in $H$ coincides with the restriction to $H$ of the pro- $\mathcal{V}$ topology in $F_{A}$.

```
Proposition
Let }\mathcal{V}\subseteq\mathcal{W}\mathrm{ be two pseudo-varieties, and let H Stg FA.Then,
    - if H}\mathrm{ is V}\mathrm{ -closed then H}\mathrm{ is also }\mathcal{W}\mathrm{ -closed,
    - clww (H)\leqslant clv}(H)\mathrm{ ,
    - if H}\mathrm{ is }\mathcal{W}\mathrm{ -dense then H}\mathrm{ is also V}\mathrm{ -dense.
```


## Containment of pseudo-varieties

## Proposition

For an extension-closed $\mathcal{V}$ and a $H \leq_{\text {fg }} F_{A}$, the pro- $\mathcal{V}$ topology in $H$ coincides with the restriction to $H$ of the pro- $\mathcal{V}$ topology in $F_{A}$.

## Proposition

Let $\mathcal{V} \subseteq \mathcal{W}$ be two pseudo-varieties, and let $H \leq_{f g} F_{A}$. Then,

- if H is $\mathcal{V}$-closed then H is also $\mathcal{W}$-closed, - if $H$ is $\mathcal{W}$-dense then $H$ is also $\mathcal{V}$-dense.


## Containment of pseudo-varieties

## Proposition

For an extension-closed $\mathcal{V}$ and a $H \leq_{\text {fg }} F_{A}$, the pro- $\mathcal{V}$ topology in $H$ coincides with the restriction to $H$ of the pro- $\mathcal{V}$ topology in $F_{A}$.

## Proposition

Let $\mathcal{V} \subseteq \mathcal{W}$ be two pseudo-varieties, and let $H \leq_{f g} F_{A}$. Then,

- if $H$ is $\mathcal{V}$-closed then $H$ is also $\mathcal{W}$-closed,
- $c_{\mathcal{W}}(H) \leqslant c_{V}(H)$,
- if $H$ is $\mathcal{W}$-dense then $H$ is also $\mathcal{V}$-dense.


## Containment of pseudo-varieties

## Proposition

For an extension-closed $\mathcal{V}$ and a $H \leq_{\text {fg }} F_{A}$, the pro- $\mathcal{V}$ topology in $H$ coincides with the restriction to $H$ of the pro- $\mathcal{V}$ topology in $F_{A}$.

## Proposition

Let $\mathcal{V} \subseteq \mathcal{W}$ be two pseudo-varieties, and let $H \leq_{f g} F_{A}$. Then,

- if $H$ is $\mathcal{V}$-closed then $H$ is also $\mathcal{W}$-closed,
- $c_{\mathcal{W}}(H) \leqslant c_{V}(H)$,
- if H is $\mathcal{W}$-dense then H is also $\mathcal{V}$-dense.


## Basic idea (Margolis-Sapir-Weil)

$\mathcal{G}_{p}$ is extension-closed, so $H \leq{ }_{\text {alg }} C l_{p}(H)$.
Given $H \leqslant F_{A}$

- compute $\Gamma(H)$,
- (( compute $\mathcal{O}(H)$, ))
- (( clean and compute $\left.\left.\mathcal{A} \mathcal{E}(H)=\left\{H_{0}, \ldots . H_{n}\right\},\right)\right)$
- decide which $H_{i}$ equals $c_{p}(H)$ using


## Proposition

Given $H \leqslant F_{A}$ we can algorithmically decide whether $H$ is p-dense, or otherwise computes an $H \leq$ alg $H_{i} \neq F_{A}$ which is $p$-closed.

## Basic idea (Margolis-Sapir-Weil)

$\mathcal{G}_{p}$ is extension-closed, so $H \leq{ }_{\text {alg }} C l_{p}(H)$.
Given $H \leqslant F_{A}$

- compute $\Gamma(H)$,
- (( compute O(H), ))
- ((clean and compute $\left.\left.\mathcal{A E}(H)=\left\{H_{0}, \ldots, H_{n}\right\},\right)\right)$
- decide which $H_{i}$ equals $c_{p}(H)$ using


## Proposition

Given $H \leqslant F_{A}$ we can algorithmically decide whether $H$ is p-dense, or otherwise computes an $H \leq$ alg $H_{i} \neq F_{A}$ which is p-closed.

## Basic idea (Margolis-Sapir-Weil)

$\mathcal{G}_{p}$ is extension-closed, so $H \leq_{\text {alg }} C l_{p}(H)$.
Given $H \leqslant F_{A}$

- compute $\Gamma(H)$,
- (( compute $\mathcal{O}(H)$, ))
- ((clean and compute $\left.\left.\mathcal{A} \mathcal{E}(H)=\left\{H_{0}, \ldots, H_{n}\right\},\right)\right)$
- decide which $H_{i}$ equals $\mathrm{cl}_{p}(H)$ using


## Proposition

Given $H \leqslant F_{A}$ we can algorithmically decide whether $H$ is $p$-dense, or otherwise computes an $H \leq$ alg $H_{i} \neq F_{A}$ which is p-closed.

## Basic idea (Margolis-Sapir-Weil)

$\mathcal{G}_{p}$ is extension-closed, so $H \leq{ }_{\text {alg }} \mathrm{Cl}_{p}(H)$.
Given $H \leqslant F_{A}$

- compute $\Gamma(H)$,
- (( compute $\mathcal{O}(H)$, ))
- (( clean and compute $\left.\left.\mathcal{A E}(H)=\left\{H_{0}, \ldots, H_{n}\right\},\right)\right)$
- decide which $H_{i}$ equals $c_{p}(H)$ using


## Proposition

Given $H \leqslant F_{A}$ we can algorithmically decide whether $H$ is $p$-dense, or otherwise computes an $H \leq$ alg $H_{i} \neq F_{A}$ which is p-closed.

## Basic idea (Margolis-Sapir-Weil)

$\mathcal{G}_{p}$ is extension-closed, so $H \leq_{\text {alg }} C l_{p}(H)$.
Given $H \leqslant F_{A}$

- compute $\Gamma(H)$,
- (( compute $\mathcal{O}(H)$, ))
- (( clean and compute $\left.\left.\mathcal{A E}(H)=\left\{H_{0}, \ldots, H_{n}\right\},\right)\right)$
- decide which $H_{i}$ equals $c_{p}(H)$ using ...


## Proposition

Given $H \leqslant F_{A}$ we can algorithmically decide whether $H$ is $p$-dense, or otherwise computes an $H \leq_{\text {alg }} H_{i} \neq F_{A}$ which is p-closed.

## Basic idea (Margolis-Sapir-Weil)

$\mathcal{G}_{p}$ is extension-closed, so $H \leq_{\text {alg }} \mathrm{Cl}_{p}(H)$.
Given $H \leqslant F_{A}$

- compute $\Gamma(H)$,
- (( compute $\mathcal{O}(H)$, ))
- (( clean and compute $\left.\left.\mathcal{A E}(H)=\left\{H_{0}, \ldots, H_{n}\right\},\right)\right)$
- decide which $H_{i}$ equals $c_{p}(H)$ using ...


## Proposition

Given $H \leqslant F_{A}$ we can algorithmically decide whether $H$ is $p$-dense, or otherwise computes an $H \leq_{\text {alg }} H_{i} \neq F_{A}$ which is p-closed.

## Deciding p-denseness (Margolis-Sapir-Weil)

Key property: In a finite p-group, every maximal proper subgroup is normal of index $p$.

## Lemma

If $H$ is a proper $p$-clopen subgroup of $F_{A}$ then $\exists \psi: F_{A} \rightarrow \mathbb{Z} / p \mathbb{Z}$ which is onto and $H \leqslant \operatorname{ker} \psi$.

Let $\sigma: F_{A} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{A}$ be the natural projection.

```
Corollary
For H}\mp@subsup{\leq}{fa}{}\mp@subsup{F}{A}{
    - H is p-dense,
    - H is [\mathbb{Z}/p\mathbb{Z}]-dense,
    - }\mp@subsup{\sigma}{}{-1}(\sigma(H))=\mp@subsup{F}{A}{}\mathrm{ ,
    - }\sigma(H)=(\mathbb{Z}/p\mathbb{Z}\mp@subsup{)}{}{A}\mathrm{ .
```


## Deciding p-denseness (Margolis-Sapir-Weil)

Key property: In a finite p-group, every maximal proper subgroup is normal of index $p$.

## Lemma

If $H$ is a proper p-clopen subgroup of $F_{A}$ then $\exists \psi: F_{A} \rightarrow \mathbb{Z} / p \mathbb{Z}$ which is onto and $H \leqslant \operatorname{ker} \psi$.

Let $\sigma: F_{A} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{A}$ be the natural projection.

```
Corollary
For H\leqfa FA, TFAE
    - H is p-dense,
    - H is [\mathbb{Z}/p\mathbb{Z}]-dense,
    - }\mp@subsup{\sigma}{}{-1}(\sigma(H))=\mp@subsup{F}{A}{}\mathrm{ ,
    - }\sigma(H)=(\mathbb{Z}/p\mathbb{Z}\mp@subsup{)}{}{A}\mathrm{ .
```


## Deciding p-denseness (Margolis-Sapir-Weil)

Key property: In a finite p-group, every maximal proper subgroup is normal of index $p$.

## Lemma

If $H$ is a proper p-clopen subgroup of $F_{A}$ then $\exists \psi: F_{A} \rightarrow \mathbb{Z} / p \mathbb{Z}$ which is onto and $H \leqslant \operatorname{ker} \psi$.

Let $\sigma: F_{A} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{A}$ be the natural projection.

```
Corolary
For H\leqfg FA, TFAE
    - H is p-dense,
    - H is [\mathbb{Z}/p\mathbb{Z}]-dense,
    - }\mp@subsup{\sigma}{}{-1}(\sigma(H))=\mp@subsup{F}{A}{}\mathrm{ ,
    - }\sigma(H)=(\mathbb{Z}/p\mathbb{Z}\mp@subsup{)}{}{A}
```


## Deciding p-denseness (Margolis-Sapir-Weil)

Key property: In a finite p-group, every maximal proper subgroup is normal of index $p$.

## Lemma

If $H$ is a proper p-clopen subgroup of $F_{A}$ then $\exists \psi: F_{A} \rightarrow \mathbb{Z} / p \mathbb{Z}$ which is onto and $H \leqslant \operatorname{ker} \psi$.

Let $\sigma: F_{A} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{A}$ be the natural projection.

## Corollary

For $H \leq_{f g} F_{A}$, TFAE

- $H$ is $p$-dense,



## Deciding p-denseness (Margolis-Sapir-Weil)

Key property: In a finite p-group, every maximal proper subgroup is normal of index $p$.

## Lemma

If $H$ is a proper p-clopen subgroup of $F_{A}$ then $\exists \psi: F_{A} \rightarrow \mathbb{Z} / p \mathbb{Z}$ which is onto and $H \leqslant \operatorname{ker} \psi$.

Let $\sigma: F_{A} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{A}$ be the natural projection.

## Corollary

For $H \leq_{f g} F_{A}$, TFAE

- $H$ is $p$-dense,
- $H$ is $[\mathbb{Z} / p \mathbb{Z}]$-dense,


## Deciding p-denseness (Margolis-Sapir-Weil)

Key property: In a finite p-group, every maximal proper subgroup is normal of index $p$.

## Lemma

If $H$ is a proper p-clopen subgroup of $F_{A}$ then $\exists \psi: F_{A} \rightarrow \mathbb{Z} / p \mathbb{Z}$ which is onto and $H \leqslant \operatorname{ker} \psi$.

Let $\sigma: F_{A} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{A}$ be the natural projection.

## Corollary

For $H \leq_{f g} F_{A}$, TFAE

- $H$ is $p$-dense,
- $H$ is $[\mathbb{Z} / p \mathbb{Z}]$-dense,
- $\sigma^{-1}(\sigma(H))=F_{A}$,


## Deciding p-denseness (Margolis-Sapir-Weil)

Key property: In a finite p-group, every maximal proper subgroup is normal of index $p$.

## Lemma

If $H$ is a proper p-clopen subgroup of $F_{A}$ then $\exists \psi: F_{A} \rightarrow \mathbb{Z} / p \mathbb{Z}$ which is onto and $H \leqslant \operatorname{ker} \psi$.

Let $\sigma: F_{A} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{A}$ be the natural projection.

## Corollary

For $H \leq_{f g} F_{A}$, TFAE

- $H$ is $p$-dense,
- $H$ is $[\mathbb{Z} / p \mathbb{Z}]$-dense,
- $\sigma^{-1}(\sigma(H))=F_{A}$,
- $\sigma(H)=(\mathbb{Z} / p \mathbb{Z})^{A}$.


## Deciding p-denseness (Margolis-Sapir-Weil)

So, given $H=\left\langle h_{1}, \ldots, h_{r}\right\rangle \leq_{f g} F_{A}$,

- compute the vectors $\sigma\left(h_{1}\right), \ldots, \sigma\left(h_{r}\right) \in(\mathbb{Z} / p \mathbb{Z})^{A}$ and arrange them as rows in a matrix, say $M_{p}(H)$,
- if $r\left(M_{p}(H)\right)=|A|$ then $H$ is $p$-dense,
- otherwise, $c_{[\mathbb{Z} / p \mathbb{Z}]}(H)=\sigma^{-1}(\sigma(H))$ and so, this is a p-closed proper subgroup of $F_{A}$ containing $H$.
- maybe $K=c_{[\mathbb{Z} / p \mathbb{Z}]}(H)$ does not belong to $\mathcal{A E}(H)$ but, by Takahasi's theorem, $\exists L \in \mathcal{A} \mathcal{E}(H)$ such that $H \leq_{\text {alg }} L \leq_{f f} K$; and $L$ is $p$-closed as well.

Now, we can compute this $L$

- choose a maximal tree $T$ in $\Gamma(H)$,
- for every vertex $u$, let $t_{u}=T[1, u]$,
- for every pair of vertices $u, v$ check whether $t_{u} t_{v}^{-1} \in \sigma^{-1}(\sigma(H))$, i.e. whether $\sigma\left(t_{u} t_{v}^{-1}\right) \in \sigma(H)$,
- identify $u$ and $v$ if and only if $\sigma\left(t_{u} t_{v}^{-1}\right) \in \sigma(H)$,


## Deciding p-denseness (Margolis-Sapir-Weil)

So, given $H=\left\langle h_{1}, \ldots, h_{r}\right\rangle \leq_{f g} F_{A}$,

- compute the vectors $\sigma\left(h_{1}\right), \ldots, \sigma\left(h_{r}\right) \in(\mathbb{Z} / p \mathbb{Z})^{A}$ and arrange them as rows in a matrix, say $M_{p}(H)$,
- if $r\left(M_{p}(H)\right)=|A|$ then $H$ is p-dense,
- otherwise, $c_{[\mathbb{Z} / p \mathbb{Z}]}(H)=\sigma^{-1}(\sigma(H))$ and so, this is a p-closed proper subgroup of $F_{A}$ containing $H$.
- maybe $K=c_{\mathbb{\mathbb { Z } / p \mathbb { Z } 1}(H) \text { does not belong to } \mathcal{A} \mathcal{E}(H) \text { but, by Takahasi's }}^{1(H)}$ theorem, $\exists L \in \mathcal{A E}(H)$ such that $H \leq_{\text {alg }} L \leq_{f f} K$; and $L$ is p-closed as well.

Now, we can compute this $L$

- choose a maximal tree $T$ in $\Gamma(H)$,
- for every vertex $u$, let $t_{u}=T[1, u]$,
- for every pair of vertices $u, v$ check whether $t_{u} t_{v}^{-1} \in \sigma^{-1}(\sigma(H))$, i.e. whether $\sigma\left(t_{u} t_{v}^{-1}\right) \in \sigma(H)$,
- identify $u$ and $v$ if and only if $\sigma\left(t_{u} t_{v}^{-1}\right) \in \sigma(H)$,


## Deciding p-denseness (Margolis-Sapir-Weil)

So, given $H=\left\langle h_{1}, \ldots, h_{r}\right\rangle \leq_{f g} F_{A}$,

- compute the vectors $\sigma\left(h_{1}\right), \ldots, \sigma\left(h_{r}\right) \in(\mathbb{Z} / p \mathbb{Z})^{A}$ and arrange them as rows in a matrix, say $M_{p}(H)$,
- if $r\left(M_{p}(H)\right)=|A|$ then $H$ is $p$-dense,
- otherwise, $c_{[\mathbb{Z} / p \mathbb{Z}]}(H)=\sigma^{-1}(\sigma(H))$ and so, this is a p-closed proper subgroup of $F_{A}$ containing $H$.
- maybe $K=c_{[\mathbb{Z} / p \mathbb{Z}]}(H)$ does not belong to $\mathcal{A E}(H)$ but, by Takahasi's theorem, $\exists L \in \mathcal{A} \mathcal{E}(H)$ such that $H \leq_{\text {alg }} L \leq_{f f} K$; and $L$ is p-closed as well.

Now, we can compute this $L$

- choose a maximal tree $T$ in $\Gamma(H)$,
- for every vertex $u$, let $t_{u}=T[1, u]$,
- for every pair of vertices $u, v$ check whether $t_{u} t_{v}^{-1} \in \sigma^{-1}(\sigma(H))$, i.e. whether $\sigma\left(t_{u} t_{v}^{-1}\right) \in \sigma(H)$,
- identify $u$ and $v$ if and only if $\sigma\left(t_{u} t_{v}^{-1}\right) \in \sigma(H)$,


## Deciding p-denseness (Margolis-Sapir-Weil)

So, given $H=\left\langle h_{1}, \ldots, h_{r}\right\rangle \leq_{f g} F_{A}$,

- compute the vectors $\sigma\left(h_{1}\right), \ldots, \sigma\left(h_{r}\right) \in(\mathbb{Z} / p \mathbb{Z})^{A}$ and arrange them as rows in a matrix, say $M_{p}(H)$,
- if $r\left(M_{p}(H)\right)=|A|$ then $H$ is $p$-dense,
- otherwise, $c_{[\mathbb{Z} / p \mathbb{Z}]}(H)=\sigma^{-1}(\sigma(H))$ and so, this is a p-closed proper subgroup of $F_{A}$ containing $H$.
- maybe $K=c_{[\mathbb{Z} / p \mathbb{Z}]}(H)$ does not belong to $\mathcal{A E}(H)$ but, by Takahasi's theorem, $\exists L \in \mathcal{A E}(H)$ such that $H \leq_{a l g} L \leq_{f f} K$; and $L$ is $p$-closed as well.

Now, we can compute this $L$

- choose a maximal tree $T$ in $\Gamma(H)$,
- for every vertex $u$, let $t_{u}=T[1, u]$,
- for every pair of vertices $u, v$ check whether $t_{u} t_{v}^{-1} \in \sigma^{-1}(\sigma(H))$, i.e. whether $\sigma\left(t_{u} t_{v}^{-1}\right) \in \sigma(H)$,
- identify $u$ and $v$ if and only if $\sigma\left(t_{u} t_{v}^{-1}\right) \in \sigma(H)$,


## Deciding p-denseness (Margolis-Sapir-Weil)

So, given $H=\left\langle h_{1}, \ldots, h_{r}\right\rangle \leq_{f g} F_{A}$,

- compute the vectors $\sigma\left(h_{1}\right), \ldots, \sigma\left(h_{r}\right) \in(\mathbb{Z} / p \mathbb{Z})^{A}$ and arrange them as rows in a matrix, say $M_{p}(H)$,
- if $r\left(M_{p}(H)\right)=|A|$ then $H$ is $p$-dense,
- otherwise, $c_{[\mathbb{Z} / p \mathbb{Z}]}(H)=\sigma^{-1}(\sigma(H))$ and so, this is a p-closed proper subgroup of $F_{A}$ containing $H$.
- maybe $K=c_{[\mathbb{Z} / p \mathbb{Z}]}(H)$ does not belong to $\mathcal{A E}(H)$ but, by Takahasi's theorem, $\exists L \in \mathcal{A E}(H)$ such that $H \leq_{\text {alg }} L \leq_{f f} K$; and $L$ is $p$-closed as well.

Now, we can compute this $L \ldots$

- choose a maximal tree $T$ in $\Gamma(H)$,
- for every pair of vertices $u, v$ check whether $t_{u} t_{v}^{-1} \in \sigma^{-1}(\sigma(H))$, i.e.


## Deciding p-denseness (Margolis-Sapir-Weil)

So, given $H=\left\langle h_{1}, \ldots, h_{r}\right\rangle \leq_{f g} F_{A}$,

- compute the vectors $\sigma\left(h_{1}\right), \ldots, \sigma\left(h_{r}\right) \in(\mathbb{Z} / p \mathbb{Z})^{A}$ and arrange them as rows in a matrix, say $M_{p}(H)$,
- if $r\left(M_{p}(H)\right)=|A|$ then $H$ is $p$-dense,
- otherwise, $c_{[\mathbb{Z} / p \mathbb{Z}]}(H)=\sigma^{-1}(\sigma(H))$ and so, this is a p-closed proper subgroup of $F_{A}$ containing $H$.
- maybe $K=c_{[\mathbb{Z} / p \mathbb{Z}]}(H)$ does not belong to $\mathcal{A E}(H)$ but, by Takahasi's theorem, $\exists L \in \mathcal{A E}(H)$ such that $H \leq_{\text {alg }} L \leq_{f f} K$; and $L$ is $p$-closed as well.

Now, we can compute this $L$...

- choose a maximal tree $T$ in $\Gamma(H)$,
- for every vertex $u$, let $t_{u}=T[1, u]$,


## Deciding p-denseness (Margolis-Sapir-Weil)

So, given $H=\left\langle h_{1}, \ldots, h_{r}\right\rangle \leq_{f g} F_{A}$,

- compute the vectors $\sigma\left(h_{1}\right), \ldots, \sigma\left(h_{r}\right) \in(\mathbb{Z} / p \mathbb{Z})^{A}$ and arrange them as rows in a matrix, say $M_{p}(H)$,
- if $r\left(M_{p}(H)\right)=|A|$ then $H$ is $p$-dense,
- otherwise, $c_{[\mathbb{Z} / p \mathbb{Z}]}(H)=\sigma^{-1}(\sigma(H))$ and so, this is a p-closed proper subgroup of $F_{A}$ containing $H$.
- maybe $K=c_{[\mathbb{Z} / p \mathbb{Z}]}(H)$ does not belong to $\mathcal{A E}(H)$ but, by Takahasi's theorem, $\exists L \in \mathcal{A E}(H)$ such that $H \leq_{a l g} L \leq_{f f} K$; and $L$ is $p$-closed as well.

Now, we can compute this $L$...

- choose a maximal tree $T$ in $\Gamma(H)$,
- for every vertex $u$, let $t_{u}=T[1, u]$,
- for every pair of vertices $u, v$ check whether $t_{u} t_{v}^{-1} \in \sigma^{-1}(\sigma(H))$, i.e. whether $\sigma\left(t_{u} t_{v}^{-1}\right) \in \sigma(H)$,


## Deciding p-denseness (Margolis-Sapir-Weil)

So, given $H=\left\langle h_{1}, \ldots, h_{r}\right\rangle \leq_{f g} F_{A}$,

- compute the vectors $\sigma\left(h_{1}\right), \ldots, \sigma\left(h_{r}\right) \in(\mathbb{Z} / p \mathbb{Z})^{A}$ and arrange them as rows in a matrix, say $M_{p}(H)$,
- if $r\left(M_{p}(H)\right)=|A|$ then $H$ is $p$-dense,
- otherwise, $c_{[\mathbb{Z} / p \mathbb{Z}]}(H)=\sigma^{-1}(\sigma(H))$ and so, this is a p-closed proper subgroup of $F_{A}$ containing $H$.
- maybe $K=c_{[\mathbb{Z} / p \mathbb{Z}]}(H)$ does not belong to $\mathcal{A E}(H)$ but, by Takahasi's theorem, $\exists L \in \mathcal{A E}(H)$ such that $H \leq_{a l g} L \leq_{f f} K$; and $L$ is $p$-closed as well.

Now, we can compute this $L \ldots$

- choose a maximal tree $T$ in $\Gamma(H)$,
- for every vertex $u$, let $t_{u}=T[1, u]$,
- for every pair of vertices $u, v$ check whether $t_{u} t_{v}^{-1} \in \sigma^{-1}(\sigma(H))$, i.e. whether $\sigma\left(t_{u} t_{v}^{-1}\right) \in \sigma(H)$,
- identify $u$ and $v$ if and only if $\sigma\left(t_{u} t_{v}^{-1}\right) \in \sigma(H)$,
- the resulting graph is $\Gamma(L)$,
- choose a maximal tree in $\Gamma(L)$, and compute a basis for $L$.


## Proposition

The complexity is $n^{5}$, where $n$ is the sum of lengths of given generators for H .

- the resulting graph is $\Gamma(L)$,
- choose a maximal tree in $\Gamma(L)$, and compute a basis for $L$.


## Proposition

The complexity is $n^{5}$, where $n$ is the sum of lengths of given generators for H .

- the resulting graph is $\Gamma(L)$,
- choose a maximal tree in $\Gamma(L)$, and compute a basis for $L$.


## Proposition

The complexity is $n^{5}$, where $n$ is the sum of lengths of given generators for H .

## Example

## Example

Let us compute the p-closure of

$$
H=\left\langle a^{2}, a b^{2} a^{-1}, a b a^{2} b^{-1} a^{-1}, a b a b a^{-1} b^{-1}, b a b a^{-1} b^{-1} a^{-1}, b a^{2} b^{-1}, b^{2}\right\rangle
$$ in $F_{\{a, b\}}$, for every prime $p$.

For $p \neq 2, H$ is $p$-dense in $F_{\{a, b\}} ;$ so, $p-c l(H)=\langle a, b\rangle$
For $p=2$,

- $\sigma(H)=\langle a+b\rangle$
- $K=\left\langle a^{2}, a b, a b^{-1}\right\rangle$ is 2-closed and contains $H$;
- writing $H$ in terms of the generators of $K\left(x=a^{2}, y=a b, z=a b^{-1}\right)$,

$$
H=\left\langle x, y z, y x y^{-1}, y^{2} x^{-1} z^{-1}, z x z y^{-1}, z x z^{-1}, 1, z y\right\rangle\langle\langle x, y, z\rangle
$$

- which is 2 -dense in $K=\langle x, y, z\rangle$; so, $2-c \mid(H)=K=\left\langle a^{2}, a b, a b^{-1}\right\rangle$


## Example

## Example

Let us compute the p-closure of

$$
H=\left\langle a^{2}, a b^{2} a^{-1}, a b a^{2} b^{-1} a^{-1}, a b a b a^{-1} b^{-1}, b a b a^{-1} b^{-1} a^{-1}, b a^{2} b^{-1}, b^{2}\right\rangle
$$ in $F_{\{a, b\}}$, for every prime $p$.

For $p \neq 2, H$ is $p$-dense in $F_{\{a, b\}}$; so, $p-c l(H)=\langle a, b\rangle$.

- $\sigma(H)=\langle a+b\rangle$
- $K=\left\langle a^{2}, a b, a b^{-1}\right\rangle$ is 2 -closed and contains $H$;
- writing $H$ in terms of the generators of $K\left(x=a^{2}, y=a b, z=a b^{-1}\right)$, $H=\left\langle x, y z, y x y^{-1}, y^{2} x^{-1} z^{-1}, z x z y^{-1}, z x z^{-1}, 1, z y\right\rangle \leqslant\langle x, y, z\rangle$
- which is 2-dense in $K=\langle x, y, z\rangle$; so, $2-c \mid(H)=K=\left\langle a^{2}, a b, a b^{-}\right.$


## Example

## Example

Let us compute the p-closure of

$$
H=\left\langle a^{2}, a b^{2} a^{-1}, a b a^{2} b^{-1} a^{-1}, a b a b a^{-1} b^{-1}, b a b a^{-1} b^{-1} a^{-1}, b a^{2} b^{-1}, b^{2}\right\rangle
$$

in $F_{\{a, b\}}$, for every prime $p$.
For $p \neq 2, H$ is $p$-dense in $F_{\{a, b\}} ;$ so, $p-c l(H)=\langle a, b\rangle$.
For $p=2$,

- $\sigma(H)=\langle a+b\rangle$
- $K=\left\langle a^{2}, a b, a b^{-1}\right\rangle$ is 2-closed and contains $H$;
- writing $H$ in terms of the generators of $K\left(x=a^{2}, y=a b, z=a b^{-1}\right)$,


[^0]
## Example

## Example

Let us compute the p-closure of

$$
H=\left\langle a^{2}, a b^{2} a^{-1}, a b a^{2} b^{-1} a^{-1}, a b a b a^{-1} b^{-1}, b a b a^{-1} b^{-1} a^{-1}, b a^{2} b^{-1}, b^{2}\right\rangle
$$

in $F_{\{a, b\}}$, for every prime $p$.
For $p \neq 2, H$ is $p$-dense in $F_{\{a, b\}}$; so, $p-c l(H)=\langle a, b\rangle$.
For $p=2$,

- $\sigma(H)=\langle a+b\rangle$
- $K=\left\langle a^{2}, a b, a b^{-1}\right\rangle$ is 2-closed and contains $H$;
- writing $H$ in terms of the generators of $K\left(x=a^{2}, y=a b, z=a b^{-1}\right)$,

- which is 2 -dense in $K=\langle x, y, z\rangle$; so, $2-c l(H)=K=\left\langle a^{2}\right.$, ab, ab


## Example

## Example

Let us compute the p-closure of

$$
H=\left\langle a^{2}, a b^{2} a^{-1}, a b a^{2} b^{-1} a^{-1}, a b a b a^{-1} b^{-1}, b a b a^{-1} b^{-1} a^{-1}, b a^{2} b^{-1}, b^{2}\right\rangle
$$

in $F_{\{a, b\}}$, for every prime $p$.
For $p \neq 2, H$ is $p$-dense in $F_{\{a, b\}}$; so, $p-c l(H)=\langle a, b\rangle$.
For $p=2$,

- $\sigma(H)=\langle a+b\rangle$
- $K=\left\langle a^{2}, a b, a b^{-1}\right\rangle$ is 2-closed and contains $H$;
- writing $H$ in terms of the generators of $K\left(x=a^{2}, y=a b, z=a b^{-1}\right)$,

$$
H=\left\langle x, y z, y x y^{-1}, y^{2} x^{-1} z^{-1}, z x z y^{-1}, z x z^{-1}, 1, z y\right\rangle \leqslant\langle x, y, z\rangle
$$

- which is 2-dense in $K=\langle x, y, z\rangle$; so, $2-c l(H)=K=\left\langle a^{2}, a b, a b^{-}\right.$


## Example

## Example

Let us compute the p-closure of

$$
H=\left\langle a^{2}, a b^{2} a^{-1}, a b a^{2} b^{-1} a^{-1}, a b a b a^{-1} b^{-1}, b a b a^{-1} b^{-1} a^{-1}, b a^{2} b^{-1}, b^{2}\right\rangle
$$

in $F_{\{a, b\}}$, for every prime $p$.
For $p \neq 2, H$ is $p$-dense in $F_{\{a, b\}}$; so, $p-c l(H)=\langle a, b\rangle$.
For $p=2$,

- $\sigma(H)=\langle a+b\rangle$
- $K=\left\langle a^{2}, a b, a b^{-1}\right\rangle$ is 2-closed and contains $H$;
- writing $H$ in terms of the generators of $K\left(x=a^{2}, y=a b, z=a b^{-1}\right)$,

$$
H=\left\langle x, y z, y x y^{-1}, y^{2} x^{-1} z^{-1}, z x z y^{-1}, z x z^{-1}, 1, z y\right\rangle \leqslant\langle x, y, z\rangle
$$

- which is 2-dense in $K=\langle x, y, z\rangle$; so, $2-c l(H)=K=\left\langle a^{2}, a b, a b^{-1}\right\rangle$.


## More consequences (Margolis-Sapir-Weil)

## Proposition

Let $H \leqslant K \leqslant F_{A}$ be f.g. subgroups. Then,

- the set of primes $p$ for which $H$ is $p$-dense in $K$ is either empty or co-finite,
- the set of primes $p$ for which $H$ is p-closed is either finite or co-finite,


## and both effectively computable.

## Proposition

The nil-closure of H is the intersection, over all primes, of the p -closure of H .

## Corollary

The nil-closure of $H \leq_{f g} F_{A}$ is effectively computable.

## More consequences (Margolis-Sapir-Weil)

## Proposition

Let $H \leqslant K \leqslant F_{A}$ be f.g. subgroups. Then,

- the set of primes $p$ for which $H$ is $p$-dense in $K$ is either empty or co-finite,
- the set of primes $p$ for which $H$ is $p$-closed is either finite or co-finite,


## and both effectively computable.

## Proposition

The nil-closure of H is the intersection, over all primes, of the p -closure of H .

## Corollary

The nil-closure of $H \leq_{f g} F_{A}$ is effectively computable.

## More consequences (Margolis-Sapir-Weil)

## Proposition

Let $H \leqslant K \leqslant F_{A}$ be f.g. subgroups. Then,

- the set of primes $p$ for which $H$ is $p$-dense in $K$ is either empty or co-finite,
- the set of primes $p$ for which $H$ is $p$-closed is either finite or co-finite, and both effectively computable.


## Proposition

The nil-closure of H is the intersection, over all primes, of the p-closure of H .

## Corollary

The nil-closure of $H \leq_{f g} F_{A}$ is effectively computable.

## More consequences (Margolis-Sapir-Weil)

## Proposition

Let $H \leqslant K \leqslant F_{A}$ be f.g. subgroups. Then,

- the set of primes $p$ for which $H$ is $p$-dense in $K$ is either empty or co-finite,
- the set of primes $p$ for which $H$ is $p$-closed is either finite or co-finite, and both effectively computable.


## Proposition

The nil-closure of $H$ is the intersection, over all primes, of the $p$-closure of $H$.

Corollary
The nil-closure of $H \leq_{f g} F_{A}$ is effectively computable.

## More consequences (Margolis-Sapir-Weil)

## Proposition

Let $H \leqslant K \leqslant F_{A}$ be f.g. subgroups. Then,

- the set of primes $p$ for which $H$ is $p$-dense in $K$ is either empty or co-finite,
- the set of primes $p$ for which $H$ is $p$-closed is either finite or co-finite, and both effectively computable.


## Proposition

The nil-closure of $H$ is the intersection, over all primes, of the p-closure of $H$.

## Corollary

The nil-closure of $H \leq_{f g} F_{A}$ is effectively computable.

## THANKS


[^0]:    - which is 2-dense in $K=\langle x, y, z\rangle ;$ so, $2-c \mid(H)=K=\left\langle a^{2}, a b, a b\right.$

