Algebraic extensions and computations of closures in free groups

Enric Ventura

Departament de Matemàtica Aplicada III

Universitat Politècnica de Catalunya

Oberseminar Computation Algebra and Number Theory, Düsseldorf.

May 27, 2009

Outline

- Algebraic extensions
- 2 The bijection between subgroups and automata
- Takahasi's theorem
- 4 The pro- \mathcal{V} topology

Outline

- Algebraic extensions
- The bijection between subgroups and automata
- Takahasi's theorem
- 4 The pro- \mathcal{V} topology

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.

In basic linear algebra:

$$U \leqslant V \leqslant K^n \quad \Rightarrow \quad V = U \oplus L.$$

• In \mathbb{Z}^n , the analog is almost true:

$$U \leqslant V \leqslant \mathbb{Z}^n \quad \Rightarrow \quad \exists \ U \leq_{fi} U' \leqslant V \text{ s.t. } V = U' \oplus L.$$

• In F(A), the analog is ...

far from true because $H \leqslant K \Rightarrow r(H) \leqslant r(K) \dots$

In basic linear algebra:

$$U \leqslant V \leqslant K^n \quad \Rightarrow \quad V = U \oplus L.$$

• In \mathbb{Z}^n , the analog is almost true:

$$U \leqslant V \leqslant \mathbb{Z}^n \quad \Rightarrow \quad \exists \ U \leq_{fi} U' \leqslant V \text{ s.t. } V = U' \oplus L.$$

• In F(A), the analog is ...

far from true because $H \leqslant K \Rightarrow r(H) \leqslant r(K) \dots$

In basic linear algebra:

$$U \leqslant V \leqslant K^n \quad \Rightarrow \quad V = U \oplus L.$$

• In \mathbb{Z}^n , the analog is almost true:

$$U \leqslant V \leqslant \mathbb{Z}^n \quad \Rightarrow \quad \exists \ U \leq_{fi} U' \leqslant V \text{ s.t. } V = U' \oplus L.$$

• In F(A), the analog is ...

far from true because $H \leqslant K \Rightarrow r(H) \leqslant r(K) \dots$

In basic linear algebra:

$$U \leqslant V \leqslant K^n \quad \Rightarrow \quad V = U \oplus L.$$

• In \mathbb{Z}^n , the analog is almost true:

$$U \leqslant V \leqslant \mathbb{Z}^n \quad \Rightarrow \quad \exists \ U \leq_{fi} U' \leqslant V \text{ s.t. } V = U' \oplus L.$$

• In F(A), the analog is ...

almost true again, ... in the sense of Takahasi.

Mimicking field theory...

Definition

Let $H \leqslant F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists 1 \neq e_H(x) \in H * \langle x \rangle$ such that $e_H(w) = 1$;
- transcendental over H otherwise.

Observation

```
w is transcendental over H \Longleftrightarrow \langle H, w \rangle \simeq H * \langle w \rangle \Leftrightarrow H is contained in a proper f.f. of \langle H, w \rangle.
```

Problem

 w_1, w_2 algebraic over $H \Rightarrow w_1 w_2$ algebraic over H.

 $H = \langle a, \overline{b}ab, \overline{c}ac \rangle \leqslant \langle a, b, c \rangle$, and $w_1 = b$, $w_2 = \overline{c}$

Mimicking field theory...

Definition

Let $H \leq F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists 1 \neq e_H(x) \in H * \langle x \rangle$ such that $e_H(w) = 1$;
- transcendental over H otherwise.

Observation

```
w is transcendental over H \Longleftrightarrow \langle H, w \rangle \simeq H * \langle w \rangle \iff H is contained in a proper f.f. of \langle H, w \rangle.
```

Problem

 w_1, w_2 algebraic over $H \Rightarrow w_1 w_2$ algebraic over H.

 $H = \langle a, \overline{b}ab, \overline{c}ac \rangle \leqslant \langle a, b, c \rangle$, and $w_1 = b$, $w_2 = \overline{c}$

Mimicking field theory...

Definition

Let $H \leqslant F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists \ 1 \neq e_H(x) \in H * \langle x \rangle$ such that $e_H(w) = 1$;
- transcendental over H otherwise.

Observation

```
w is transcendental over H \iff \langle H, w \rangle \simeq H * \langle w \rangle

\iff H \text{ is contained in a proper f.f. of } \langle H, w \rangle.
```

Problem

 w_1, w_2 algebraic over $H \Rightarrow w_1 w_2$ algebraic over H.

$$H = \langle a, \overline{b}ab, \overline{c}ac \rangle \leqslant \langle a, b, c \rangle$$
, and $w_1 = b$, $w_2 = \overline{c}$

Mimicking field theory...

Definition

Let $H \leq F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists 1 \neq e_H(x) \in H * \langle x \rangle$ such that $e_H(w) = 1$;
- transcendental over H otherwise.

Observation

```
w is transcendental over H \iff \langle H, w \rangle \simeq H * \langle w \rangle
\iff H \text{ is contained in a proper f.f. of } \langle H, w \rangle.
```

Problem

 w_1, w_2 algebraic over $H \Rightarrow w_1 w_2$ algebraic over H.

 $H = \langle a, \overline{b}ab, \overline{c}ac \rangle \leqslant \langle a, b, c \rangle$, and $w_1 = b$, $w_2 = \overline{c}$

Mimicking field theory...

Definition

Let $H \leq F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists 1 \neq e_H(x) \in H * \langle x \rangle$ such that $e_H(w) = 1$;
- transcendental over H otherwise.

Observation

```
w is transcendental over H \iff \langle H, w \rangle \simeq H * \langle w \rangle
\iff H \text{ is contained in a proper f.f. of } \langle H, w \rangle.
```

Problem

 w_1, w_2 algebraic over $H \not\Rightarrow w_1 w_2$ algebraic over H.

$$H = \langle a, \overline{b}ab, \overline{c}ac \rangle \leqslant \langle a, b, c \rangle$$
, and $w_1 = b$, $w_2 = \overline{c}$

Mimicking field theory...

Definition

Let $H \leq F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists 1 \neq e_H(x) \in H * \langle x \rangle$ such that $e_H(w) = 1$;
- transcendental over H otherwise.

Observation

```
w is transcendental over H \iff \langle H, w \rangle \simeq H * \langle w \rangle
\iff H \text{ is contained in a proper f.f. of } \langle H, w \rangle.
```

Problem

 w_1, w_2 algebraic over $H \not\Rightarrow w_1 w_2$ algebraic over H.

$$H = \langle a, \overline{b}ab, \overline{c}ac \rangle \leqslant \langle a, b, c \rangle$$
, and $w_1 = b$, $w_2 = \overline{c}$

A relative notion works better...

Definition

Let $H \leq K \leq F(A)$ and $w \in K$. We say that w is

- *K*-algebraic over *H* if \forall free factorization $K = K_1 * K_2$ with $H \leqslant K_1$, we have $w \in K_1$;
- K-transcendental over H otherwise.

Observation

w is algebraic over H if and only if it is $\langle H, w \rangle$ -algebraic over H.

Observation

If w_1 and w_2 are K-algebraic over H, then so is $w_1 w_2$.

A relative notion works better...

Definition

Let $H \leq K \leq F(A)$ and $w \in K$. We say that w is

- *K-algebraic over H* if \forall free factorization $K = K_1 * K_2$ with $H \leqslant K_1$, we have $w \in K_1$;
- K-transcendental over H otherwise.

Observation

w is algebraic over H if and only if it is $\langle H,w
angle$ -algebraic over H.

Observation

If w_1 and w_2 are K-algebraic over H, then so is w_1w_2 .

A relative notion works better...

Definition

Let $H \leq K \leq F(A)$ and $w \in K$. We say that w is

- *K-algebraic* over *H* if \forall free factorization $K = K_1 * K_2$ with $H \leqslant K_1$, we have $w \in K_1$;
- K-transcendental over H otherwise.

Observation

w is algebraic over H if and only if it is $\langle H, w \rangle$ -algebraic over H.

Observation

If w_1 and w_2 are K-algebraic over H, then so is $w_1 w_2$.

A relative notion works better...

Definition

Let $H \leq K \leq F(A)$ and $w \in K$. We say that w is

- *K-algebraic over H* if \forall free factorization $K = K_1 * K_2$ with $H \leqslant K_1$, we have $w \in K_1$;
- K-transcendental over H otherwise.

Observation

w is algebraic over H if and only if it is $\langle H, w \rangle$ -algebraic over H.

Observation

If w_1 and w_2 are K-algebraic over H, then so is w_1w_2 .

A relative notion works better...

Definition

Let $H \leq K \leq F(A)$ and $w \in K$. We say that w is

- *K-algebraic over H* if \forall free factorization $K = K_1 * K_2$ with $H \leqslant K_1$, we have $w \in K_1$;
- K-transcendental over H otherwise.

Observation

w is algebraic over H if and only if it is $\langle H, w \rangle$ -algebraic over H.

Observation

If w_1 and w_2 are K-algebraic over H, then so is w_1w_2 .

Definition

```
Let H \le K \le F(A).

We say that H \le K is an algebraic extension, denoted H \le_{alg} K,

\iff every w \in K is K-algebraic over H,

\iff H is not contained in any proper free factor of K,

\iff H \le K_1 \le K_1 * K_2 = K implies K_2 = 1.

We say that H \le K is a free extension, denoted H \le_{ff} K,

\iff every w \in K is K-transcendental over H,
```

Definition

```
Let H \le K \le F(A).

We say that H \le K is an algebraic extension, denoted H \le_{alg} K,

\iff every w \in K is K-algebraic over H,

\iff H is not contained in any proper free factor of K,

\iff H \le K_1 \le K_1 * K_2 = K implies K_2 = 1.

We say that H \le K is a free extension, denoted H \le_{ff} K,

\iff every w \in K is K-transcendental over H,

\iff H \le H * L = K for some L.
```

Definition

```
Let H \leqslant K \leqslant F(A).

We say that H \leqslant K is an algebraic extension, denoted H \leq_{alg} K,

\iff every w \in K is K-algebraic over H,

\iff H is not contained in any proper free factor of K,

\iff H \leqslant K_1 \leqslant K_1 * K_2 = K implies K_2 = 1.

We say that H \leqslant K is a free extension, denoted H \leqslant_{R} K.
```

We say that $H \leqslant K$ is a free extension, denoted $H \le_{\mathsf{ff}} K$, \iff every $w \in K$ is K-transcendental over H, $\iff H \leqslant H * L = K$ for some L.

Definition

```
Let H \leqslant K \leqslant F(A).

We say that H \leqslant K is an algebraic extension, denoted H \leq_{alg} K,

\iff every w \in K is K-algebraic over H,

\iff H is not contained in any proper free factor of K,

\iff H \leqslant K_1 \leqslant K_1 \ast K_2 = K implies K_2 = 1.

We say that H \leqslant K is a free extension, denoted H \leq_{ff} K,

\iff every w \in K is K-transcendental over H,
```

Definition

```
Let H \leqslant K \leqslant F(A).

We say that H \leqslant K is an algebraic extension, denoted H \leq_{alg} K,

\iff every w \in K is K-algebraic over H,

\iff H is not contained in any proper free factor of K,

\iff H \leqslant K_1 \leqslant K_1 \ast K_2 = K implies K_2 = 1.

We say that H \leqslant K is a free extension, denoted H \leq_{ff} K,

\iff every w \in K is K-transcendental over H,

\iff H \leqslant H \ast L = K for some L.
```

- $\langle a \rangle \leqslant_{ff} \langle a, b \rangle \leqslant_{ff} \langle a, b, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \ \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leq_{ff} K \leq_{ff} L \text{ implies } H \leq_{ff} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

How many algebraic extensions does a given H have in F(A)?

Can we compute them all ?

- $\langle a \rangle \leqslant_{ff} \langle a, b \rangle \leqslant_{ff} \langle a, b, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leq_{ff} K \leq_{ff} L \text{ implies } H \leq_{ff} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

How many algebraic extensions does a given H have in F(A)?

Can we compute them all?

- $\langle a \rangle \leqslant_{ff} \langle a, b \rangle \leqslant_{ff} \langle a, b, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leq_{ff} K \leq_{ff} L \text{ implies } H \leq_{ff} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{\mathsf{ff}} L$ and $H \leq K \leq L$ imply $H \leq_{\mathsf{ff}} K$ but not necessarily $K \leq_{\mathsf{ff}} L$.

How many algebraic extensions does a given H have in F(A)?

Can we compute them all?

- $\langle a \rangle \leqslant_{ff} \langle a, \frac{b}{b} \rangle \leqslant_{ff} \langle a, \frac{b}{b}, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \ \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leqslant_{\mathit{ff}} K \leqslant_{\mathit{ff}} L \text{ implies } H \leqslant_{\mathit{ff}} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

How many algebraic extensions does a given H have in F(A)?

Can we compute them all?

- $\langle a \rangle \leqslant_{ff} \langle a, b \rangle \leqslant_{ff} \langle a, b, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leq_{ff} K \leq_{ff} L \text{ implies } H \leq_{ff} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{\mathsf{ff}} L$ and $H \leq K \leq L$ imply $H \leq_{\mathsf{ff}} K$ but not necessarily $K \leq_{\mathsf{ff}} L$.

How many algebraic extensions does a given H have in F(A)?

Can we compute them all?

- $\langle a \rangle \leqslant_{ff} \langle a, b \rangle \leqslant_{ff} \langle a, b, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \ \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leq_{ff} K \leq_{ff} L \text{ implies } H \leq_{ff} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

How many algebraic extensions does a given H have in F(A)?

Can we compute them all ?

Algebraic and free extensions

- $\langle a \rangle \leqslant_{ff} \langle a, \frac{b}{b} \rangle \leqslant_{ff} \langle a, \frac{b}{b}, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \ \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leq_{ff} K \leq_{ff} L \text{ implies } H \leq_{ff} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

How many algebraic extensions does a given H have in F(A)?

Can we compute them all?

Algebraic and free extensions

- $\langle a \rangle \leqslant_{ff} \langle a, b \rangle \leqslant_{ff} \langle a, b, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leq_{ff} K \leq_{ff} L \text{ implies } H \leq_{ff} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{ff} L$ and $H \leqslant K \leqslant L$ imply $H \leqslant_{ff} K$ but not necessarily $K \leqslant_{ff} L$.

How many algebraic extensions does a given H have in F(A)?

Can we compute them all?

Theorem (Takahasi, 1951)

For every $H \leq_{fg} F_A$, the set of algebraic extensions, denoted $\mathcal{AE}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical
- Modern proof, using Stallings automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).
- Additionally, AE(H) is computable.

Theorem (Takahasi, 1951)

For every $H \leq_{fg} F_A$, the set of algebraic extensions, denoted $\mathcal{AE}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- Modern proof, using Stallings automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).
- Additionally, AE(H) is computable.

Theorem (Takahasi, 1951)

For every $H \leq_{fg} F_A$, the set of algebraic extensions, denoted $\mathcal{AE}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- Modern proof, using Stallings automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).
- Additionally, AE(H) is computable.

Theorem (Takahasi, 1951)

For every $H \leq_{fg} F_A$, the set of algebraic extensions, denoted $\mathcal{AE}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- Modern proof, using Stallings automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).
- Additionally, $A\mathcal{E}(H)$ is computable.

Outline

- Algebraic extensions
- 2 The bijection between subgroups and automata
- Takahasi's theorem
- 4 The pro- \mathcal{V} topology

Definition

A Stallings automaton is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:

- 1- X is connected,
- 2- no vertex of degree 1 except possibly v (X is a core-graph),
- 3- no two edges with the same label go out of (or in to) the same vertex.

May 27, 2009

Definition

A Stallings automaton is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:

- 1- X is connected,
- 2- no vertex of degree 1 except possibly v (X is a core-graph),
- 3- no two edges with the same label go out of (or in to) the same vertex.

Definition

A Stallings automaton is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:

- 1- X is connected,
- 2- no vertex of degree 1 except possibly v (X is a core-graph),
- 3- no two edges with the same label go out of (or in to) the same vertex.

YES:

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565.

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

```
\{f.g. \text{ subgroups of } F_A\} \longleftrightarrow \{\text{Stallings automata}\}
```

which is crucial for the modern understanding of the lattice of subgroups of F_{A} .

In the influent paper

```
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565.
```

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

```
\{f.g. \text{ subgroups of } F_A\} \longleftrightarrow \{Stallings automata\},
```

which is crucial for the modern understanding of the lattice of subgroups of $F_{\!A}$.

In the influent paper

```
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565.
```

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

```
\{f.g. \text{ subgroups of } F_A\} \longleftrightarrow \{Stallings automata\},
```

which is crucial for the modern understanding of the lattice of subgroups of F_A .

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .

$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Membership problem in $\pi(X, \bullet)$ is solvable.

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .

$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .

$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .

$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .

$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .

$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .

$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .

$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .

$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .

$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Membership problem in $\pi(X, \bullet)$ is solvable.

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|.

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|.

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|.

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|.

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|.

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|. \square

$$H = \langle \rangle$$

$$H = \langle a, \rangle$$

$$H = \langle \mathbf{a}, \mathbf{bab}, \rangle$$

$$H = \langle a, bab, b^{-1}cb^{-1} \rangle$$

$$H = \langle a, bab, b^{-1}cb^{-1} \rangle$$

 $rk(H) = 1 - 3 + 5 = 3.$

$$F_{\aleph_0} \simeq H = \langle \dots, \, b^{-2}ab^2, \, b^{-1}ab, \, a, \, bab^{-1}, \, b^2ab^{-2}, \, \dots \rangle \leqslant F_2.$$

Constructing the automata from the subgroup

In any automaton containing the following situation, for $x \in A^{\pm 1}$,

we can fold and identify vertices *u* and *v* to obtain

$$\bullet \xrightarrow{X} U = V.$$

This operation, $(X, v) \rightsquigarrow (X', v)$, is called a Stallings folding.

In any automaton containing the following situation, for $x \in A^{\pm 1}$,

we can fold and identify vertices u and v to obtain

$$\bullet \xrightarrow{x} U = V.$$

This operation, $(X, v) \rightsquigarrow (X', v)$, is called a Stallings folding.

In any automaton containing the following situation, for $x \in A^{\pm 1}$,

we can fold and identify vertices u and v to obtain

$$\bullet \xrightarrow{X} U = V$$
.

This operation, $(X, v) \rightsquigarrow (X', v)$, is called a Stallings folding.

Lemma (Stallings)

If $(X, v) \rightsquigarrow (X', v')$ is a Stallings folding then $\pi(X, v) = \pi(X', v')$.

Given a f.g. subgroup $H = \langle w_1, \dots w_m \rangle \leqslant F_A$ (we assume w_i are reduced words), do the following:

- 1- Draw the flower automaton,
- 2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Lemma (Stallings)

If $(X, v) \rightsquigarrow (X', v')$ is a Stallings folding then $\pi(X, v) = \pi(X', v')$.

Given a f.g. subgroup $H = \langle w_1, \dots w_m \rangle \leqslant F_A$ (we assume w_i are reduced words), do the following:

- 1- Draw the flower automaton,
- 2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Lemma (Stallings)

If $(X, v) \rightsquigarrow (X', v')$ is a Stallings folding then $\pi(X, v) = \pi(X', v')$.

Given a f.g. subgroup $H = \langle w_1, \dots w_m \rangle \leqslant F_A$ (we assume w_i are reduced words), do the following:

- 1- Draw the flower automaton,
- 2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Flower(H)

Flower(H)

Folding #1

Folding #1.

Folding #2.

Folding #2.

Folding #3.

By Stallings Lemma, $\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^{2} \rangle$

Folding #3.

By Stallings Lemma, $\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^{2} \rangle$

By Stallings Lemma,
$$\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^{-1}, aba^2 \rangle = \langle b, aba^{-1}, a^3 \rangle$$

Local confluence

It can be shown that

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection:

```
\{f.g. \ subgroups \ of \ F_A\} \longleftrightarrow \{Stallings \ automata\} \ H \to \Gamma(H) \ \pi(X,v) \leftarrow (X,v)
```

Local confluence

It can be shown that

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection:

```
\{f.g. \ subgroups \ of \ F_A\} \longleftrightarrow \{Stallings \ automata\} \ H \to \Gamma(H) \ \pi(X,v) \leftarrow (X,v)
```

Local confluence

It can be shown that

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection:

```
 \begin{array}{cccc} \{\textit{f.g. subgroups of F}_A\} & \longleftrightarrow & \{\textit{Stallings automata}\} \\ & & H & \to & \Gamma(H) \\ & \pi(X,v) & \leftarrow & (X,v) \end{array}
```

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of F_A is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of F_A is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of F_A is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.

Outline

- Algebraic extensions
- The bijection between subgroups and automata
- Takahasi's theorem
- The pro-ν topology

Definition

Let $H \leqslant K \leqslant F(A)$. Then, $H \leqslant K$ is algebraic if and only if H is not contained in any proper free factor of K.

Theorem (Takahasi, 1951)

For every $H \leq_{fg} F_A$, the set of algebraic extensions, $A\mathcal{E}(H)$, is finite.

Proof (Ventura; Margolis-Sapir-Weil; Kapovich-Miasnikov):

- Consider $\tilde{\Gamma}(H)$, the result of attaching all possible (infinite) "hairs" to $\Gamma(H)$ (i.e. the covering of the bouquet corresponding to H).
- Given $H \leq K$ (both f.g.), we can obtain $\tilde{\Gamma}(K)$ from $\tilde{\Gamma}(H)$ by performing the appropriate identifications of vertices (plus subsequent foldings).

Definition

Let $H \leqslant K \leqslant F(A)$. Then, $H \leqslant K$ is algebraic if and only if H is not contained in any proper free factor of K.

Theorem (Takahasi, 1951)

For every $H \leq_{fq} F_A$, the set of algebraic extensions, $\mathcal{AE}(H)$, is finite.

Proof (Ventura; Margolis-Sapir-Weil; Kapovich-Miasnikov):

- Consider $\tilde{\Gamma}(H)$, the result of attaching all possible (infinite) "hairs" to $\Gamma(H)$ (i.e. the covering of the bouquet corresponding to H).
- Given $H \leq K$ (both f.g.), we can obtain $\tilde{\Gamma}(K)$ from $\tilde{\Gamma}(H)$ by performing the appropriate identifications of vertices (plus subsequent foldings).

Definition

Let $H \leqslant K \leqslant F(A)$. Then, $H \leqslant K$ is algebraic if and only if H is not contained in any proper free factor of K.

Theorem (Takahasi, 1951)

For every $H \leq_{fg} F_A$, the set of algebraic extensions, $\mathcal{AE}(H)$, is finite.

Proof (Ventura; Margolis-Sapir-Weil; Kapovich-Miasnikov):

- Consider $\tilde{\Gamma}(H)$, the result of attaching all possible (infinite) "hairs" to $\Gamma(H)$ (i.e. the covering of the bouquet corresponding to H).
- Given $H \leq K$ (both f.g.), we can obtain $\tilde{\Gamma}(K)$ from $\tilde{\Gamma}(H)$ by performing the appropriate identifications of vertices (plus subsequent foldings).

Definition

Let $H \leqslant K \leqslant F(A)$. Then, $H \leqslant K$ is algebraic if and only if H is not contained in any proper free factor of K.

Theorem (Takahasi, 1951)

For every $H \leqslant_{fg} F_A$, the set of algebraic extensions, $\mathcal{AE}(H)$, is finite.

Proof (Ventura; Margolis-Sapir-Weil; Kapovich-Miasnikov):

- Consider $\tilde{\Gamma}(H)$, the result of attaching all possible (infinite) "hairs" to $\Gamma(H)$ (i.e. the covering of the bouquet corresponding to H).
- Given $H \leq K$ (both f.g.), we can obtain $\tilde{\Gamma}(K)$ from $\tilde{\Gamma}(H)$ by performing the appropriate identifications of vertices (plus subsequent foldings).

- Hence, if H ≤ K (both f.g.) then Γ(K) contains as a subgraph either Γ(H)
 or some quotient of it (i.e. Γ(H) after some identifications of vertices,
 Γ(H)/ ~).
- The overgroups of H: $\mathcal{O}(H) = \{\pi(\Gamma(H)/\sim, \bullet) \mid \sim \text{ is a partition of } V\Gamma(H)\}.$
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant_{ff} K$.
- Thus, $A\mathcal{E}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

- Hence, if $H \leq K$ (both f.g.) then $\Gamma(K)$ contains as a subgraph either $\Gamma(H)$ or some quotient of it (i.e. $\Gamma(H)$ after some identifications of vertices, $\Gamma(H)/\sim$).
- The overgroups of H: $\mathcal{O}(H) = \{\pi(\Gamma(H)/\sim, \bullet) \mid \sim \text{ is a partition of } V\Gamma(H)\}.$
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant_{ff} K$.
- Thus, $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

- Hence, if H ≤ K (both f.g.) then Γ(K) contains as a subgraph either Γ(H)
 or some quotient of it (i.e. Γ(H) after some identifications of vertices,
 Γ(H)/ ~).
- The overgroups of H: $\mathcal{O}(H) = \{\pi(\Gamma(H)/\sim, \bullet) \mid \sim \text{ is a partition of } V\Gamma(H)\}.$
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant_{ff} K$.
- Thus, $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

- Hence, if H ≤ K (both f.g.) then Γ(K) contains as a subgraph either Γ(H) or some quotient of it (i.e. Γ(H) after some identifications of vertices, Γ(H)/ ~).
- The overgroups of H: $\mathcal{O}(H) = \{\pi(\Gamma(H)/\sim, \bullet) \mid \sim \text{ is a partition of } V\Gamma(H)\}.$
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant_{ff} K$.
- Thus, $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

Corollary

AE(H) is computable.

Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H)/\sim$ for all partitions \sim of $V\Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leqslant_{ff} K_2$ and deleting K_2 .
- The resulting set is $A\mathcal{E}(H)$. \square

For the cleaning step we need:

Corollary

AE(H) is computable.

Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H)/\sim$ for all partitions \sim of $V\Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leqslant_{ff} K_2$ and deleting K_2 .
- The resulting set is AE(H). \square

For the cleaning step we need:

Corollary

 $\mathcal{AE}(H)$ is computable.

Proof:

- Compute Γ(H),
- Compute $\Gamma(H)/\sim$ for all partitions \sim of $V\Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leqslant_{ff} K_2$ and deleting K_2 .
- The resulting set is AE(H). \square

For the cleaning step we need

Corollary

AE(H) is computable.

Proof:

- Compute Γ(H),
- Compute $\Gamma(H)/\sim$ for all partitions \sim of $V\Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leqslant_f K_2$ and deleting K_2 .
- The resulting set is $A\mathcal{E}(H)$. \square

For the cleaning step we need:

Corollary

 $\mathcal{AE}(H)$ is computable.

Proof:

- Compute Γ(H),
- Compute $\Gamma(H)/\sim$ for all partitions \sim of $V\Gamma(H)$,
- Compute O(H),
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leqslant_{ff} K_2$ and deleting K_2 .
- The resulting set is $A\mathcal{E}(H)$. \square

For the cleaning step we need

Corollary

 $\mathcal{AE}(H)$ is computable.

Proof:

- Compute Γ(*H*),
- Compute $\Gamma(H)/\sim$ for all partitions \sim of $V\Gamma(H)$,
- Compute O(H),
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leqslant_{ff} K_2$ and deleting K_2 .
- The resulting set is $\mathcal{AE}(H)$. \square

For the cleaning step we need

Corollary

 $\mathcal{AE}(H)$ is computable.

Proof:

- Compute Γ(*H*),
- Compute $\Gamma(H)/\sim$ for all partitions \sim of $V\Gamma(H)$,
- Compute O(H),
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leqslant_f K_2$ and deleting K_2 .
- The resulting set is $\mathcal{AE}(H)$. \square

For the cleaning step we need:

Proposition

Given $H, K \leq F_A$, it is algorithmically decidable whether $H \leq_{ff} K$ or not.

Proved by

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time).

Proposition

Given $H, K \leq F_A$, it is algorithmically decidable whether $H \leq_{ff} K$ or not.

Proved by:

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time).

39 / 53

Proposition

Given $H, K \leq F_A$, it is algorithmically decidable whether $H \leq_{ff} K$ or not.

Proved by:

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time).

Proposition

Given $H, K \leq F_A$, it is algorithmically decidable whether $H \leq_{ff} K$ or not.

Proved by:

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time).

The algebraic closure

Observation

If $H \leqslant_{alg} K_1$ and $H \leqslant_{alg} K_2$ then $H \leqslant_{alg} \langle K_1 \cup K_2 \rangle$.

Corollary

For every $H \leq K \leq F_A$ (all f.g.), $\mathcal{AE}_{\kappa}(H)$ has a unique maximal element, called the K-algebraic closure of H, and denoted $Cl_K(H)$.

Corollary

Every extension $H \le K$ of f.g. subgroups of F_A splits, in a unique way, in an algebraic part and a free part, $H \le_{alg} Cl_K(H) \le_{ff} K$.

40 / 53

The algebraic closure

Observation

If $H \leqslant_{alg} K_1$ and $H \leqslant_{alg} K_2$ then $H \leqslant_{alg} \langle K_1 \cup K_2 \rangle$.

Corollary

For every $H \leqslant K \leqslant F_A$ (all f.g.), $\mathcal{AE}_{\kappa}(H)$ has a unique maximal element, called the K-algebraic closure of H, and denoted $Cl_K(H)$.

Corollary

Every extension $H \leqslant K$ of f.g. subgroups of F_A splits, in a unique way, in an algebraic part and a free part, $H \leqslant_{alg} Cl_K(H) \leqslant_{ff} K$.

The algebraic closure

Observation

If $H \leqslant_{alg} K_1$ and $H \leqslant_{alg} K_2$ then $H \leqslant_{alg} \langle K_1 \cup K_2 \rangle$.

Corollary

For every $H \leqslant K \leqslant F_A$ (all f.g.), $\mathcal{AE}_{\kappa}(H)$ has a unique maximal element, called the K-algebraic closure of H, and denoted $Cl_K(H)$.

Corollary

Every extension $H \leqslant K$ of f.g. subgroups of F_A splits, in a unique way, in an algebraic part and a free part, $H \leqslant_{alg} Cl_K(H) \leqslant_{ff} K$.

Outline

- Algebraic extensions
- 2 The bijection between subgroups and automata
- Takahasi's theorem
- 4 The pro- \mathcal{V} topology

Definition

A pseudo-variety of groups $\mathcal V$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- G = all finite groups,
- $\mathcal{G}_p = all \ finite \ p$ -groups,
- $G_{nil} = all \ finite \ nilpotent \ groups,$
- $G_{sol} = all finite soluble groups,$
- $G_{ab} = all finite abelian groups,$
- for a finite group V, [V] = all quotients of subgroups of V^k , $k \ge 1$.
-

Definition

V is extension-closed if $V \triangleleft W$ with $V, W/V \in V$ imply $W \in V$.

Definition

A pseudo-variety of groups $\mathcal V$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- G = all finite groups,
- $\mathcal{G}_p = all \ finite \ p$ -groups,
- $G_{nil} = all finite nilpotent groups,$
- $G_{sol} = all finite soluble groups,$
- $G_{ab} = all$ finite abelian groups,
- for a finite group V, [V] =all quotients of subgroups of V^k , $k \ge 1$.
- . . .

Definition

 $\mathcal V$ is extension-closed if $V \lhd W$ with $V, W/V \in \mathcal V$ imply $W \in \mathcal V$.

Definition

A pseudo-variety of groups $\mathcal V$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- G = all finite groups,
- $\mathcal{G}_p = all \ finite \ p$ -groups,
- $G_{nil} = all finite nilpotent groups,$
- $G_{sol} = all finite soluble groups,$
- $G_{ab} = all$ finite abelian groups,
- for a finite group V, [V] =all quotients of subgroups of V^k , $k \ge 1$.
- . . .

Definition

 \mathcal{V} is extension-closed if $V \lhd W$ with $V, W/V \in \mathcal{V}$ imply $W \in \mathcal{V}$.

Definition

A pseudo-variety of groups $\mathcal V$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- G = all finite groups,
- $\mathcal{G}_p = \text{all finite } p\text{-groups},$
- $G_{nil} = all$ finite nilpotent groups,
- $G_{sol} = all finite soluble groups,$
- $G_{ab} = all$ finite abelian groups,
- for a finite group V, [V] =all quotients of subgroups of V^k , $k \ge 1$.
- · · · ·

Definition

 \mathcal{V} is extension-closed if $V \triangleleft W$ with $V, W/V \in \mathcal{V}$ imply $W \in \mathcal{V}$.

Definition

A pseudo-variety of groups $\mathcal V$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- G = all finite groups,
- $G_p = all finite p-groups$,
- $\mathcal{G}_{nil} = all \ finite \ nilpotent \ groups,$
- $G_{sol} = all$ finite soluble groups,
- $G_{ab} = all finite abelian groups,$
- for a finite group V, [V] =all quotients of subgroups of V^k , $k \ge 1$.
- . . .

Definition

 \mathcal{V} is extension-closed if $V \triangleleft W$ with $V, W/V \in \mathcal{V}$ imply $W \in \mathcal{V}$.

Definition

A pseudo-variety of groups $\mathcal V$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- G = all finite groups,
- $\mathcal{G}_p = all \ finite \ p$ -groups,
- $G_{nil} = all$ finite nilpotent groups,
- $G_{sol} = all$ finite soluble groups,
- G_{ab} = all finite abelian groups,
- for a finite group V, [V] =all quotients of subgroups of V^k , $k \ge 1$.
- . . .

Definition

V is extension-closed if $V \triangleleft W$ with $V, W/V \in V$ imply $W \in V$.

Definition

A pseudo-variety of groups $\mathcal V$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- G = all finite groups,
- $\mathcal{G}_p = all \ finite \ p$ -groups,
- $G_{nil} = all$ finite nilpotent groups,
- $G_{sol} = all$ finite soluble groups,
- G_{ab} = all finite abelian groups,
- for a finite group V, [V] = all quotients of subgroups of V^k , $k \ge 1$.
- ...

Definition

 \mathcal{V} is extension-closed if $V \triangleleft W$ with $V, W/V \in \mathcal{V}$ imply $W \in \mathcal{V}$.

Definition

A pseudo-variety of groups $\mathcal V$ is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- G = all finite groups,
- $\mathcal{G}_p = all \ finite \ p$ -groups,
- $G_{nil} = all$ finite nilpotent groups,
- G_{sol} = all finite soluble groups,
- G_{ab} = all finite abelian groups,
- for a finite group V, [V] = all quotients of subgroups of V^k , $k \ge 1$.
- ...

Definition

 $\mathcal V$ is extension-closed if $V \lhd W$ with $V, W/V \in \mathcal V$ imply $W \in \mathcal V$.

The pro- \mathcal{V} topology

Definition

Let G be a group, and V be a pseudo-variety of finite groups. The pro-V topology on G can be defined in several equivalent ways:

- it is the smallest topology making all the morphisms from G into all $V \in \mathcal{V}$ (with the discrete topology) continuous,
- a basis of open sets is given by $\varphi^{-1}(x)$, for all morphism $\varphi \colon G \to V \in \mathcal{V}$,
- the normal (finite index) subgroups $K \subseteq G$ such that $G/K \in V$ form a basis of neighborhoods of 1.
- it is the topology given by the pseudo-ultra-metric $d(x, y) = 2^{-r(x, y)}$, where $r(x, y) = \min\{|V| \mid V \in \mathcal{V} \text{ and separates } x \text{ and } y \}$.

Observation

This topology is Hausdorf \iff d is an ultra-metric \iff G is residually- $\mathcal V$.

The pro- ${\cal V}$ topology

Definition

Let G be a group, and V be a pseudo-variety of finite groups. The pro-V topology on G can be defined in several equivalent ways:

- it is the smallest topology making all the morphisms from G into all $V \in \mathcal{V}$ (with the discrete topology) continuous,
- a basis of open sets is given by $\varphi^{-1}(x)$, for all morphism $\varphi \colon G \to V \in \mathcal{V}$,
- the normal (finite index) subgroups $K \subseteq G$ such that $G/K \in V$ form a basis of neighborhoods of 1,
- it is the topology given by the pseudo-ultra-metric $d(x, y) = 2^{-r(x, y)}$, where $r(x, y) = \min\{|V| \mid V \in \mathcal{V} \text{ and separates } x \text{ and } y \}$.

Observation

This topology is Hausdorf \Longleftrightarrow d is an ultra-metric \Longleftrightarrow G is residually- ${\mathcal V}.$

The pro- ${\cal V}$ topology

Definition

Let G be a group, and V be a pseudo-variety of finite groups. The pro-V topology on G can be defined in several equivalent ways:

- it is the smallest topology making all the morphisms from G into all $V \in \mathcal{V}$ (with the discrete topology) continuous,
- a basis of open sets is given by $\varphi^{-1}(x)$, for all morphism $\varphi \colon G \to V \in \mathcal{V}$,
- the normal (finite index) subgroups $K \subseteq G$ such that $G/K \in V$ form a basis of neighborhoods of 1,
- it is the topology given by the pseudo-ultra-metric $d(x, y) = 2^{-r(x, y)}$, where $r(x, y) = \min\{|V| \mid V \in \mathcal{V} \text{ and separates } x \text{ and } y \}$.

Observation

This topology is Hausdorf \Longleftrightarrow d is an ultra-metric \Longleftrightarrow G is residually- \mathcal{V} .

The pro- \mathcal{V} topology

Definition

Let G be a group, and V be a pseudo-variety of finite groups. The pro-V topology on G can be defined in several equivalent ways:

- it is the smallest topology making all the morphisms from G into all $V \in \mathcal{V}$ (with the discrete topology) continuous,
- a basis of open sets is given by $\varphi^{-1}(x)$, for all morphism $\varphi \colon G \to V \in \mathcal{V}$,
- the normal (finite index) subgroups $K \subseteq G$ such that $G/K \in V$ form a basis of neighborhoods of 1,
- it is the topology given by the pseudo-ultra-metric $d(x, y) = 2^{-r(x, y)}$, where $r(x, y) = \min\{|V| \mid V \in \mathcal{V} \text{ and separates } x \text{ and } y \}$.

Observation

This topology is Hausdorf \Longleftrightarrow d is an ultra-metric \Longleftrightarrow G is residually- ${\mathcal V}$.

The pro- \mathcal{V} topology

Definition

Let G be a group, and V be a pseudo-variety of finite groups. The pro-V topology on G can be defined in several equivalent ways:

- it is the smallest topology making all the morphisms from G into all $V \in \mathcal{V}$ (with the discrete topology) continuous,
- a basis of open sets is given by $\varphi^{-1}(x)$, for all morphism $\varphi \colon G \to V \in \mathcal{V}$,
- the normal (finite index) subgroups $K \subseteq G$ such that $G/K \in V$ form a basis of neighborhoods of 1,
- it is the topology given by the pseudo-ultra-metric $d(x, y) = 2^{-r(x, y)}$, where $r(x, y) = \min\{|V| \mid V \in \mathcal{V} \text{ and separates } x \text{ and } y \}$.

Observation

This topology is Hausdorf \Longleftrightarrow d is an ultra-metric \Longleftrightarrow G is residually- \mathcal{V} .

The pro- ${\cal V}$ topology

Definition

Let G be a group, and V be a pseudo-variety of finite groups. The pro-V topology on G can be defined in several equivalent ways:

- it is the smallest topology making all the morphisms from G into all $V \in \mathcal{V}$ (with the discrete topology) continuous,
- a basis of open sets is given by $\varphi^{-1}(x)$, for all morphism $\varphi \colon G \to V \in \mathcal{V}$,
- the normal (finite index) subgroups $K \subseteq G$ such that $G/K \in V$ form a basis of neighborhoods of 1,
- it is the topology given by the pseudo-ultra-metric $d(x, y) = 2^{-r(x, y)}$, where $r(x, y) = \min\{|V| \mid V \in \mathcal{V} \text{ and separates } x \text{ and } y \}$.

Observation

This topology is Hausdorf \iff d is an ultra-metric \iff G is residually- \mathcal{V} .

Proposition

Let G be a group equipped with the pro- $\mathcal V$ topology, and let $H \leq G$. Then, TFAE:

- H is open
- H is clopen (i.e. open and closed)
- $H \leq_{fi} G$ and $G/H_G \in \mathcal{V}$.

Furthermore

$$\operatorname{Ch}_{\mathcal{V}}(H) = \bigcap_{H \leqslant K, \text{ open}} K = \bigcap_{\varphi \colon G \to V \in \mathcal{V}} \varphi^{-1}(\varphi(H))$$

Corollary

Proposition

Let G be a group equipped with the pro- $\mathcal V$ topology, and let $H \leq G$. Then, TFAE:

- H is open
- H is clopen (i.e. open and closed)
- $H \leq_{fi} G$ and $G/H_G \in \mathcal{V}$.

Furthermore,

$$\operatorname{Ch}_{\mathcal{V}}(H) = \bigcap_{H \leqslant K, \text{ open}} K = \bigcap_{\varphi \colon G \to V \in \mathcal{V}} \varphi^{-1}(\varphi(H))$$

Corollary

Proposition

Let G be a group equipped with the pro- $\mathcal V$ topology, and let $H \leq G$. Then, TFAE:

- H is open
- H is clopen (i.e. open and closed)
- $H \leq_{fi} G$ and $G/H_G \in \mathcal{V}$.

Furthermore

$$\operatorname{Ch}_{\mathcal{V}}(H) = \bigcap_{H \leqslant K, \text{ open}} K = \bigcap_{\varphi \colon G \to V \in \mathcal{V}} \varphi^{-1}(\varphi(H))$$

Corollary

Proposition

Let G be a group equipped with the pro- $\mathcal V$ topology, and let $H \leq G$. Then, TFAE:

- H is open
- H is clopen (i.e. open and closed)
- $H \leq_{fi} G$ and $G/H_G \in \mathcal{V}$.

Furthermore,

$$\operatorname{\mathit{Ch}}_{\mathcal{V}}(H) = \bigcap_{H \leqslant K, \ \operatorname{open}} K = \bigcap_{\varphi \colon G \to V \in \mathcal{V}} \varphi^{-1}(\varphi(H)).$$

Corollary

Proposition

Let G be a group equipped with the pro- $\mathcal V$ topology, and let $H \leq G$. Then, TFAE:

- H is open
- H is clopen (i.e. open and closed)
- $H \leq_{fi} G$ and $G/H_G \in \mathcal{V}$.

Furthermore,

$$\mathit{Cl}_{\mathcal{V}}(H) = \bigcap_{H \leqslant K, \; \mathit{open}} K = \bigcap_{\varphi \colon G \to V \in \mathcal{V}} \varphi^{-1}(\varphi(H)).$$

Corollary

The extension-closed case

Proposition (Ribes, Zaleskiĭ)

Let V be an extension-closed pseudo-variety, and consider F_A the free group on A with the pro-V topology. For a given $H \leq_{fg} F_A$,

H is closed \iff H is a free factor of a clopen subgroup.

Corollary

For an extension-closed V and a $H \leq_{fg} F_A$, we have $H \leq_{alg} cl_{\mathcal{V}}(H)$

Furthermore, it can also be proven that

Proposition (Ribes, Zaleskii)

In this situation, $r(cl_{\mathcal{V}}(H)) \leq r(H)$.

The extension-closed case

Proposition (Ribes, Zaleskiĭ)

Let V be an extension-closed pseudo-variety, and consider F_A the free group on A with the pro-V topology. For a given $H \leq_{fg} F_A$,

H is closed \iff H is a free factor of a clopen subgroup.

Corollary

For an extension-closed $\mathcal V$ and a $H \leq_{\mathit{fg}} F_A$, we have $H \leq_{\mathit{alg}} \mathit{cl}_{\mathcal V}(H)$.

Furthermore, it can also be proven that

Proposition (Ribes, Zaleskii)

In this situation, $r(cl_{\mathcal{V}}(H)) \leqslant r(H)$.

The extension-closed case

Proposition (Ribes, Zaleskiĭ)

Let V be an extension-closed pseudo-variety, and consider F_A the free group on A with the pro-V topology. For a given $H \leq_{fg} F_A$,

H is closed ←⇒ H is a free factor of a clopen subgroup.

Corollary

For an extension-closed V and a $H \leq_{fg} F_A$, we have $H \leq_{alg} cl_{V}(H)$.

Furthermore, it can also be proven that

Proposition (Ribes, Zaleskiĭ)

In this situation, $r(cl_{\mathcal{V}}(H)) \leqslant r(H)$.

Proposition

For an extension-closed $\mathcal V$ and a $H \leq_{fg} F_A$, the pro- $\mathcal V$ topology in H coincides with the restriction to H of the pro- $\mathcal V$ topology in F_A .

Proposition

Let $V \subseteq W$ be two pseudo-varieties, and let $H \leq_{fg} F_A$. Then

- if H is V-closed then H is also W-closed,
- $cl_{\mathcal{W}}(H) \leqslant cl_{\mathcal{V}}(H)$,
- if H is W-dense then H is also V-dense.

Proposition

For an extension-closed $\mathcal V$ and a $H \leq_{fg} F_A$, the pro- $\mathcal V$ topology in H coincides with the restriction to H of the pro- $\mathcal V$ topology in F_A .

Proposition

Let $V \subseteq W$ be two pseudo-varieties, and let $H \leq_{fg} F_A$. Then,

- if H is V-closed then H is also W-closed,
- $cl_{\mathcal{W}}(H) \leqslant cl_{\mathcal{V}}(H)$,
- if H is W-dense then H is also V-dense.

Proposition

For an extension-closed $\mathcal V$ and a $H \leq_{fg} F_A$, the pro- $\mathcal V$ topology in H coincides with the restriction to H of the pro- $\mathcal V$ topology in F_A .

Proposition

Let $V \subseteq W$ be two pseudo-varieties, and let $H \leq_{fg} F_A$. Then,

- if H is V-closed then H is also W-closed,
- $cl_{\mathcal{W}}(H) \leqslant cl_{\mathcal{V}}(H)$,
- if H is W-dense then H is also V-dense.

Proposition

For an extension-closed $\mathcal V$ and a $H \leq_{fg} F_A$, the pro- $\mathcal V$ topology in H coincides with the restriction to H of the pro- $\mathcal V$ topology in F_A .

Proposition

Let $V \subseteq W$ be two pseudo-varieties, and let $H \leq_{fg} F_A$. Then,

- if H is V-closed then H is also W-closed,
- $cl_{\mathcal{W}}(H) \leqslant cl_{\mathcal{V}}(H)$,
- if H is W-dense then H is also V-dense.

Basic idea (Margolis-Sapir-Weil)

 \mathcal{G}_p is extension-closed, so $H \leq_{alg} cl_p(H)$.

Given $H \leqslant F_A$

- compute $\Gamma(H)$,
- ((compute O(H),))
- ((clean and compute $\mathcal{AE}(H) = \{H_0, \dots, H_n\},)$)
- decide which H_i equals $cl_p(H)$ using ...

Proposition

Given $H \leqslant F_A$ we can algorithmically decide whether H is p-dense, or otherwise computes an $H \leq_{alg} H_i \neq F_A$ which is p-closed.

Basic idea (Margolis-Sapir-Weil)

 \mathcal{G}_p is extension-closed, so $H \leq_{alg} cl_p(H)$.

Given $H \leqslant F_A$

- compute $\Gamma(H)$,
- ((compute O(H),))
- ((clean and compute $\mathcal{AE}(H) = \{H_0, \dots, H_n\},)$)
- decide which H_i equals $cl_p(H)$ using ...

Proposition

Given $H \leqslant F_A$ we can algorithmically decide whether H is p-dense, or otherwise computes an $H \leq_{alg} H_i \neq F_A$ which is p-closed.

47 / 53

 \mathcal{G}_p is extension-closed, so $H \leq_{alg} cl_p(H)$.

Given $H \leqslant F_A$

- compute $\Gamma(H)$,
- ((compute O(H),))
- ((clean and compute $\mathcal{AE}(H) = \{H_0, \dots, H_n\},)$)
- decide which H_i equals $cl_p(H)$ using ...

Proposition

Given $H \leq F_A$ we can algorithmically decide whether H is p-dense, or otherwise computes an $H \leq_{alg} H_i \neq F_A$ which is p-closed.

 \mathcal{G}_p is extension-closed, so $H \leq_{alg} cl_p(H)$.

Given $H \leqslant F_A$

- compute $\Gamma(H)$,
- ((compute O(H),))
- ((clean and compute $\mathcal{AE}(H) = \{H_0, \dots, H_n\},)$)
- decide which H_i equals $cl_p(H)$ using ...

Proposition

Given $H \leqslant F_A$ we can algorithmically decide whether H is p-dense, or otherwise computes an $H \leq_{alg} H_i \neq F_A$ which is p-closed.

 \mathcal{G}_p is extension-closed, so $H \leq_{alg} cl_p(H)$.

Given $H \leqslant F_A$

- compute $\Gamma(H)$,
- ((compute O(H),))
- ((clean and compute $\mathcal{AE}(H) = \{H_0, \dots, H_n\}$,))
- decide which H_i equals $cl_p(H)$ using ...

Proposition

Given $H \leqslant F_A$ we can algorithmically decide whether H is p-dense, or otherwise computes an $H \leq_{alg} H_i \neq F_A$ which is p-closed.

 \mathcal{G}_p is extension-closed, so $H \leq_{alg} cl_p(H)$.

Given $H \leqslant F_A$

- compute $\Gamma(H)$,
- ((compute O(H),))
- ((clean and compute $\mathcal{AE}(H) = \{H_0, \dots, H_n\}$,))
- decide which H_i equals $cl_p(H)$ using ...

Proposition

Given $H \leq F_A$ we can algorithmically decide whether H is p-dense, or otherwise computes an $H \leq_{alg} H_i \neq F_A$ which is p-closed.

Key property: In a finite p-group, every maximal proper subgroup is normal of index p.

Lemma

If H is a proper p-clopen subgroup of F_A then $\exists \ \psi \colon F_A \to \mathbb{Z}/p\mathbb{Z}$ which is onto and $H \leqslant \ker \psi$.

Let $\sigma \colon F_A \to (\mathbb{Z}/p\mathbb{Z})^A$ be the natural projection.

Corollary

For $H \leq_{fg} F_A$, TFAE

- H is p-dense,
- H is $[\mathbb{Z}/p\mathbb{Z}]$ -dense,
- $\bullet \ \sigma^{-1}(\sigma(H)) = F_A,$
- $\sigma(H) = (\mathbb{Z}/p\mathbb{Z})^A$.

Key property: In a finite p-group, every maximal proper subgroup is normal of index p.

Lemma

If H is a proper p-clopen subgroup of F_A then $\exists \psi \colon F_A \to \mathbb{Z}/p\mathbb{Z}$ which is onto and $H \leqslant \ker \psi$.

Let $\sigma \colon F_A \to (\mathbb{Z}/p\mathbb{Z})^A$ be the natural projection.

Corollary

For $H \leq_{fg} F_A$, TFAE

- H is p-dense,
- H is $[\mathbb{Z}/p\mathbb{Z}]$ -dense,
- $\bullet \ \sigma^{-1}(\sigma(H)) = F_A,$
- $\sigma(H) = (\mathbb{Z}/p\mathbb{Z})^A$.

Key property: In a finite p-group, every maximal proper subgroup is normal of index p.

Lemma

If H is a proper p-clopen subgroup of F_A then $\exists \psi \colon F_A \to \mathbb{Z}/p\mathbb{Z}$ which is onto and $H \leqslant \ker \psi$.

Let $\sigma \colon F_A \to (\mathbb{Z}/p\mathbb{Z})^A$ be the natural projection.

Corollary

For $H \leq_{fg} F_A$, TFAE

- H is p-dense,
- H is $[\mathbb{Z}/p\mathbb{Z}]$ -dense,
- $\bullet \ \sigma^{-1}(\sigma(H)) = F_A,$
- $\sigma(H) = (\mathbb{Z}/p\mathbb{Z})^A$.

Key property: In a finite p-group, every maximal proper subgroup is normal of index p.

Lemma

If H is a proper p-clopen subgroup of F_A then $\exists \ \psi \colon F_A \to \mathbb{Z}/p\mathbb{Z}$ which is onto and $H \leqslant \ker \psi$.

Let $\sigma: F_A \to (\mathbb{Z}/p\mathbb{Z})^A$ be the natural projection.

Corollary

For $H \leq_{fq} F_A$, TFAE

- H is p-dense,
- H is $[\mathbb{Z}/p\mathbb{Z}]$ -dense,
- $\bullet \ \sigma^{-1}(\sigma(H)) = F_A,$

Key property: In a finite p-group, every maximal proper subgroup is normal of index p.

Lemma

If H is a proper p-clopen subgroup of F_A then $\exists \psi \colon F_A \to \mathbb{Z}/p\mathbb{Z}$ which is onto and $H \leqslant \ker \psi$.

Let $\sigma \colon F_A \to (\mathbb{Z}/p\mathbb{Z})^A$ be the natural projection.

Corollary

For $H \leq_{fa} F_A$, TFAE

- H is p-dense,
- H is $[\mathbb{Z}/p\mathbb{Z}]$ -dense,
- $\bullet \ \sigma^{-1}(\sigma(H)) = F_A,$

Key property: In a finite p-group, every maximal proper subgroup is normal of index p.

Lemma

If H is a proper p-clopen subgroup of F_A then $\exists \psi \colon F_A \to \mathbb{Z}/p\mathbb{Z}$ which is onto and $H \leqslant \ker \psi$.

Let $\sigma \colon F_A \to (\mathbb{Z}/p\mathbb{Z})^A$ be the natural projection.

Corollary

For $H \leq_{fa} F_A$, TFAE

- H is p-dense,
- H is $[\mathbb{Z}/p\mathbb{Z}]$ -dense,
- $\bullet \ \sigma^{-1}(\sigma(H)) = F_A,$

Key property: In a finite p-group, every maximal proper subgroup is normal of index p.

Lemma

If H is a proper p-clopen subgroup of F_A then $\exists \ \psi \colon F_A \to \mathbb{Z}/p\mathbb{Z}$ which is onto and $H \leqslant \ker \psi$.

Let $\sigma: F_A \to (\mathbb{Z}/p\mathbb{Z})^A$ be the natural projection.

Corollary

For $H \leq_{fa} F_A$, TFAE

- H is p-dense,
- H is $[\mathbb{Z}/p\mathbb{Z}]$ -dense,
- $\bullet \ \sigma^{-1}(\sigma(H)) = F_A,$

So, given $H = \langle h_1, \ldots, h_r \rangle \leq_{\mathit{fg}} F_{A}$,

- compute the vectors $\sigma(h_1), \ldots, \sigma(h_r) \in (\mathbb{Z}/p\mathbb{Z})^A$ and arrange them as rows in a matrix, say $M_p(H)$,
- if $r(M_p(H)) = |A|$ then H is p-dense,
- otherwise, $cl_{\mathbb{Z}/p\mathbb{Z}}(H) = \sigma^{-1}(\sigma(H))$ and so, this is a p-closed proper subgroup of F_A containing H.
- maybe $K = cl_{\mathbb{Z}/p\mathbb{Z}}(H)$ does not belong to $\mathcal{AE}(H)$ but, by Takahasi's theorem, $\exists L \in \mathcal{AE}(H)$ such that $H \leq_{alg} L \leq_{ff} K$; and L is p-closed as well.

- choose a maximal tree T in $\Gamma(H)$,
- for every vertex u, let $t_u = T[1, u]$,
- for every pair of vertices u, v check whether $t_u t_v^{-1} \in \sigma^{-1}(\sigma(H))$, i.e. whether $\sigma(t_u t_v^{-1}) \in \sigma(H)$,
- identify u and v if and only if $\sigma(t_ut_v^{-1}) \in \sigma(H)$,

So, given $H = \langle h_1, \ldots, h_r \rangle \leq_{fg} F_A$,

- compute the vectors $\sigma(h_1), \ldots, \sigma(h_r) \in (\mathbb{Z}/p\mathbb{Z})^A$ and arrange them as rows in a matrix, say $M_p(H)$,
- if $r(M_p(H)) = |A|$ then H is p-dense,
- otherwise, $cl_{\mathbb{Z}/p\mathbb{Z}}(H) = \sigma^{-1}(\sigma(H))$ and so, this is a p-closed proper subgroup of F_A containing H.
- maybe $K = cl_{\mathbb{Z}/p\mathbb{Z}}(H)$ does not belong to $\mathcal{AE}(H)$ but, by Takahasi's theorem, $\exists L \in \mathcal{AE}(H)$ such that $H \leq_{alg} L \leq_{ff} K$; and L is p-closed as well.

- choose a maximal tree T in $\Gamma(H)$,
- for every vertex u, let $t_u = T[1, u]$,
- for every pair of vertices u, v check whether $t_u t_v^{-1} \in \sigma^{-1}(\sigma(H))$, i.e. whether $\sigma(t_u t_v^{-1}) \in \sigma(H)$,
- identify u and v if and only if $\sigma(t_ut_v^{-1}) \in \sigma(H)$,

```
So, given H = \langle h_1, \ldots, h_r \rangle \leq_{fg} F_A,
```

- compute the vectors $\sigma(h_1), \ldots, \sigma(h_r) \in (\mathbb{Z}/p\mathbb{Z})^A$ and arrange them as rows in a matrix, say $M_p(H)$,
- if $r(M_p(H)) = |A|$ then H is p-dense,
- otherwise, $cl_{\mathbb{Z}/p\mathbb{Z}}(H) = \sigma^{-1}(\sigma(H))$ and so, this is a p-closed proper subgroup of F_A containing H.
- maybe $K = cl_{\mathbb{Z}/p\mathbb{Z}}(H)$ does not belong to $\mathcal{AE}(H)$ but, by Takahasi's theorem, $\exists L \in \mathcal{AE}(H)$ such that $H \leq_{alg} L \leq_{ff} K$; and L is p-closed as well.

- choose a maximal tree T in $\Gamma(H)$,
- for every vertex u, let $t_u = T[1, u]$,
- for every pair of vertices u, v check whether $t_u t_v^{-1} \in \sigma^{-1}(\sigma(H))$, i.e. whether $\sigma(t_u t_v^{-1}) \in \sigma(H)$,
- identify u and v if and only if $\sigma(t_ut_v^{-1}) \in \sigma(H)$,

```
So, given H = \langle h_1, \ldots, h_r \rangle \leq_{fg} F_A,
```

- compute the vectors $\sigma(h_1), \ldots, \sigma(h_r) \in (\mathbb{Z}/p\mathbb{Z})^A$ and arrange them as rows in a matrix, say $M_p(H)$,
- if $r(M_p(H)) = |A|$ then H is p-dense,
- otherwise, $cl_{\mathbb{Z}/p\mathbb{Z}}(H) = \sigma^{-1}(\sigma(H))$ and so, this is a p-closed proper subgroup of F_A containing H.
- maybe $K = cl_{\mathbb{Z}/p\mathbb{Z}}(H)$ does not belong to $\mathcal{AE}(H)$ but, by Takahasi's theorem, $\exists L \in \mathcal{AE}(H)$ such that $H \leq_{alg} L \leq_{ff} K$; and L is p-closed as well.

- choose a maximal tree T in Γ(H),
- for every vertex u, let $t_u = T[1, u]$,
- for every pair of vertices u, v check whether $t_u t_v^{-1} \in \sigma^{-1}(\sigma(H))$, i.e. whether $\sigma(t_u t_v^{-1}) \in \sigma(H)$,
- identify u and v if and only if $\sigma(t_ut_v^{-1}) \in \sigma(H)$,

```
So, given H = \langle h_1, \dots, h_r \rangle \leq_{\mathit{fg}} F_{A},
```

- compute the vectors $\sigma(h_1), \ldots, \sigma(h_r) \in (\mathbb{Z}/p\mathbb{Z})^A$ and arrange them as rows in a matrix, say $M_p(H)$,
- if $r(M_p(H)) = |A|$ then H is p-dense,
- otherwise, $cl_{\mathbb{Z}/p\mathbb{Z}}(H) = \sigma^{-1}(\sigma(H))$ and so, this is a p-closed proper subgroup of F_A containing H.
- maybe $K = cl_{\mathbb{Z}/p\mathbb{Z}}(H)$ does not belong to $\mathcal{AE}(H)$ but, by Takahasi's theorem, $\exists L \in \mathcal{AE}(H)$ such that $H \leq_{alg} L \leq_{ff} K$; and L is p-closed as well.

- choose a maximal tree T in $\Gamma(H)$,
- for every vertex u, let $t_u = T[1, u]$,
- for every pair of vertices u, v check whether $t_u t_v^{-1} \in \sigma^{-1}(\sigma(H))$, i.e. whether $\sigma(t_u t_v^{-1}) \in \sigma(H)$,
- identify u and v if and only if $\sigma(t_ut_v^{-1}) \in \sigma(H)$,

```
So, given H = \langle h_1, \dots, h_r \rangle \leq_{\mathit{fg}} F_{A},
```

- compute the vectors $\sigma(h_1), \ldots, \sigma(h_r) \in (\mathbb{Z}/p\mathbb{Z})^A$ and arrange them as rows in a matrix, say $M_p(H)$,
- if $r(M_p(H)) = |A|$ then H is p-dense,
- otherwise, $cl_{\mathbb{Z}/p\mathbb{Z}}(H) = \sigma^{-1}(\sigma(H))$ and so, this is a p-closed proper subgroup of F_A containing H.
- maybe $K = cl_{\mathbb{Z}/p\mathbb{Z}}(H)$ does not belong to $\mathcal{AE}(H)$ but, by Takahasi's theorem, $\exists L \in \mathcal{AE}(H)$ such that $H \leq_{alg} L \leq_{ff} K$; and L is p-closed as well.

- choose a maximal tree T in $\Gamma(H)$,
- for every vertex u, let $t_u = T[1, u]$,
- for every pair of vertices u, v check whether $t_u t_v^{-1} \in \sigma^{-1}(\sigma(H))$, i.e. whether $\sigma(t_u t_v^{-1}) \in \sigma(H)$,
- identify u and v if and only if $\sigma(t_u t_v^{-1}) \in \sigma(H)$,

```
So, given H = \langle h_1, \dots, h_r \rangle \leq_{\mathit{fg}} F_{A},
```

- compute the vectors $\sigma(h_1), \ldots, \sigma(h_r) \in (\mathbb{Z}/p\mathbb{Z})^A$ and arrange them as rows in a matrix, say $M_p(H)$,
- if $r(M_p(H)) = |A|$ then H is p-dense,
- otherwise, $cl_{\mathbb{Z}/p\mathbb{Z}}(H) = \sigma^{-1}(\sigma(H))$ and so, this is a p-closed proper subgroup of F_A containing H.
- maybe $K = cl_{\mathbb{Z}/p\mathbb{Z}}(H)$ does not belong to $\mathcal{AE}(H)$ but, by Takahasi's theorem, $\exists L \in \mathcal{AE}(H)$ such that $H \leq_{alg} L \leq_{ff} K$; and L is p-closed as well.

- choose a maximal tree T in Γ(H),
- for every vertex u, let $t_u = T[1, u]$,
- for every pair of vertices u, v check whether $t_u t_v^{-1} \in \sigma^{-1}(\sigma(H))$, i.e. whether $\sigma(t_u t_v^{-1}) \in \sigma(H)$,
- identify u and v if and only if $\sigma(t_u t_v^{-1}) \in \sigma(H)$

```
So, given H = \langle h_1, \dots, h_r \rangle \leq_{\mathit{fg}} F_{A},
```

- compute the vectors $\sigma(h_1), \ldots, \sigma(h_r) \in (\mathbb{Z}/p\mathbb{Z})^A$ and arrange them as rows in a matrix, say $M_p(H)$,
- if $r(M_p(H)) = |A|$ then H is p-dense,
- otherwise, $cl_{\mathbb{Z}/p\mathbb{Z}}(H) = \sigma^{-1}(\sigma(H))$ and so, this is a p-closed proper subgroup of F_A containing H.
- maybe $K = cl_{\mathbb{Z}/p\mathbb{Z}}(H)$ does not belong to $\mathcal{AE}(H)$ but, by Takahasi's theorem, $\exists L \in \mathcal{AE}(H)$ such that $H \leq_{alg} L \leq_{ff} K$; and L is p-closed as well.

- choose a maximal tree T in Γ(H),
- for every vertex u, let $t_u = T[1, u]$,
- for every pair of vertices u, v check whether $t_u t_v^{-1} \in \sigma^{-1}(\sigma(H))$, i.e. whether $\sigma(t_u t_v^{-1}) \in \sigma(H)$,
- identify u and v if and only if $\sigma(t_u t_v^{-1}) \in \sigma(H)$,

- the resulting graph is $\Gamma(L)$,
- choose a maximal tree in $\Gamma(L)$, and compute a basis for L.

Proposition

The complexity is n^5 , where n is the sum of lengths of given generators for H.

- the resulting graph is $\Gamma(L)$,
- choose a maximal tree in $\Gamma(L)$, and compute a basis for L.

Proposition

The complexity is n^5 , where n is the sum of lengths of given generators for H.

- the resulting graph is $\Gamma(L)$,
- choose a maximal tree in $\Gamma(L)$, and compute a basis for L.

Proposition

The complexity is n^5 , where n is the sum of lengths of given generators for H.

Example

Let us compute the p-closure of

$$H = \langle \textit{a}^2, \, \textit{ab}^2 \textit{a}^{-1}, \, \textit{aba}^2 \textit{b}^{-1} \textit{a}^{-1}, \, \textit{ababa}^{-1} \textit{b}^{-1}, \, \textit{baba}^{-1} \textit{b}^{-1} \textit{a}^{-1}, \, \textit{ba}^2 \textit{b}^{-1}, \, \textit{b}^2 \rangle$$

in $F_{\{a,b\}}$, for every prime p.

For $p \neq 2$, H is p-dense in $F_{\{a,b\}}$; so, $p - cl(H) = \langle a, b \rangle$ For p = 2,

- $K = \langle a^2, ab, ab^{-1} \rangle$ is 2-closed and contains H;
- writing *H* in terms of the generators of K ($x = a^2$, y = ab, $z = ab^{-1}$),

$$H = \langle x, yz, yxy^{-1}, y^2x^{-1}z^{-1}, zxzy^{-1}, zxz^{-1}, 1, zy \rangle \leqslant \langle x, y, z \rangle$$

Example

Let us compute the p-closure of

$$H=\langle a^2,\,ab^2a^{-1},\,aba^2b^{-1}a^{-1},\,ababa^{-1}b^{-1},\,baba^{-1}b^{-1}a^{-1},\,ba^2b^{-1},\,b^2\rangle$$

in $F_{\{a,b\}}$, for every prime p.

For $p \neq 2$, H is p-dense in $F_{\{a,b\}}$; so, $p - cl(H) = \langle a, b \rangle$.

- \bullet $\sigma(H) = \langle a + b \rangle$
- $K = \langle a^2, ab, ab^{-1} \rangle$ is 2-closed and contains H:
- writing H in terms of the generators of $K(x = a^2, y = ab, z = ab^{-1})$,

$$H = \langle x, yz, yxy^{-1}, y^2x^{-1}z^{-1}, zxzy^{-1}, zxz^{-1}, 1, zy \rangle \leqslant \langle x, y, z \rangle$$

• which is 2-dense in $K = \langle x, y, z \rangle$; so, $2 - cl(H) = K = \langle a^2, ab, ab^{-1} \rangle$.

May 27, 2009

Example

Let us compute the p-closure of

$$H = \langle a^2, \ ab^2a^{-1}, \ aba^2b^{-1}a^{-1}, \ ababa^{-1}b^{-1}, \ baba^{-1}b^{-1}a^{-1}, \ ba^2b^{-1}, \ b^2\rangle$$

in $F_{\{a,b\}}$, for every prime p.

For $p \neq 2$, H is p-dense in $F_{\{a,b\}}$; so, $p - cl(H) = \langle a, b \rangle$. For p = 2,

Enric Ventura (UPC)

- $K = \langle a^2, ab, ab^{-1} \rangle$ is 2-closed and contains H;
- writing *H* in terms of the generators of $K(x = a^2, y = ab, z = ab^{-1})$,

$$H = \langle x, yz, yxy^{-1}, y^2x^{-1}z^{-1}, zxzy^{-1}, zxz^{-1}, 1, zy \rangle \leqslant \langle x, y, z \rangle$$

• which is 2-dense in $K = \langle x, y, z \rangle$; so, $2 - cl(H) = K = \langle a^2, ab, ab^{-1} \rangle$.

Algebraic extensions and closures

May 27, 2009

Example

Let us compute the p-closure of

$$H = \langle a^2, \ ab^2a^{-1}, \ aba^2b^{-1}a^{-1}, \ ababa^{-1}b^{-1}, \ baba^{-1}b^{-1}a^{-1}, \ ba^2b^{-1}, \ b^2\rangle$$

in $F_{\{a,b\}}$, for every prime p.

For $p \neq 2$, H is p-dense in $F_{\{a,b\}}$; so, $p - cl(H) = \langle a, b \rangle$. For p = 2,

- $\sigma(H) = \langle a + b \rangle$
- $K = \langle a^2, ab, ab^{-1} \rangle$ is 2-closed and contains H;
- writing *H* in terms of the generators of $K(x = a^2, y = ab, z = ab^{-1})$,

$$H = \langle x, yz, yxy^{-1}, y^2x^{-1}z^{-1}, zxzy^{-1}, zxz^{-1}, 1, zy \rangle \leqslant \langle x, y, z \rangle$$

Example

Let us compute the p-closure of

$$H = \langle a^2, \ ab^2a^{-1}, \ aba^2b^{-1}a^{-1}, \ ababa^{-1}b^{-1}, \ baba^{-1}b^{-1}a^{-1}, \ ba^2b^{-1}, \ b^2\rangle$$

in $F_{\{a,b\}}$, for every prime p.

For $p \neq 2$, H is p-dense in $F_{\{a,b\}}$; so, $p - cl(H) = \langle a, b \rangle$. For p = 2,

- $K = \langle a^2, ab, ab^{-1} \rangle$ is 2-closed and contains H;
- writing H in terms of the generators of K ($x = a^2$, y = ab, $z = ab^{-1}$),

$$H = \langle x, yz, yxy^{-1}, y^2x^{-1}z^{-1}, zxzy^{-1}, zxz^{-1}, 1, zy \rangle \leqslant \langle x, y, z \rangle$$

Example

Let us compute the p-closure of

$$H = \langle a^2, \ ab^2a^{-1}, \ aba^2b^{-1}a^{-1}, \ ababa^{-1}b^{-1}, \ baba^{-1}b^{-1}a^{-1}, \ ba^2b^{-1}, \ b^2\rangle$$

in $F_{\{a,b\}}$, for every prime p.

For $p \neq 2$, H is p-dense in $F_{\{a,b\}}$; so, $p - cl(H) = \langle a, b \rangle$. For p = 2,

- $K = \langle a^2, ab, ab^{-1} \rangle$ is 2-closed and contains H;
- writing H in terms of the generators of K ($x = a^2$, y = ab, $z = ab^{-1}$),

$$H = \langle x, yz, yxy^{-1}, y^2x^{-1}z^{-1}, zxzy^{-1}, zxz^{-1}, 1, zy \rangle \leqslant \langle x, y, z \rangle$$

Proposition

Let $H \leq K \leq F_A$ be f.g. subgroups. Then,

- the set of primes p for which H is p-dense in K is either empty or co-finite,
- the set of primes p for which H is p-closed is either finite or co-finite, and both effectively computable.

Proposition

The nil-closure of H is the intersection, over all primes, of the p-closure of H.

Corollary

Proposition

Let $H \leq K \leq F_A$ be f.g. subgroups. Then,

- the set of primes p for which H is p-dense in K is either empty or co-finite,
- the set of primes p for which H is p-closed is either finite or co-finite,

and both effectively computable.

Proposition

The nil-closure of H is the intersection, over all primes, of the p-closure of H.

Corollary

Proposition

Let $H \leq K \leq F_A$ be f.g. subgroups. Then,

- the set of primes p for which H is p-dense in K is either empty or co-finite,
- the set of primes p for which H is p-closed is either finite or co-finite, and both effectively computable.

Proposition

The nil-closure of H is the intersection, over all primes, of the p-closure of H.

Corollary

Proposition

Let $H \leq K \leq F_A$ be f.g. subgroups. Then,

- the set of primes p for which H is p-dense in K is either empty or co-finite,
- the set of primes p for which H is p-closed is either finite or co-finite, and both effectively computable.

Proposition

The nil-closure of H is the intersection, over all primes, of the p-closure of H.

Corollary

The nil-closure of $H \leq_{fa} F_A$ is effectively computable.

Proposition

Let $H \leq K \leq F_A$ be f.g. subgroups. Then,

- the set of primes p for which H is p-dense in K is either empty or co-finite,
- the set of primes p for which H is p-closed is either finite or co-finite, and both effectively computable.

Proposition

The nil-closure of H is the intersection, over all primes, of the p-closure of H.

Corollary

THANKS