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Main results

Consider the family of automaton groups.

Observation
The word problem is solvable for all automaton groups.

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Theorem (Sunic-V.)

The isomorphism problem is unsolvable within the family of
automaton groups.
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Reduction to matrices

Both results come from...

Theorem (Sunic-V.)

Let Γ 6 GLd (Z) be f.g. Then, Zd o Γ is an automaton group.

... by using

Theorem (Bogopolski-Martino-V.)

There exists Γ 6 GLd (Z) f.g. such that Zd o Γ has unsolvable
conjugacy problem.

Theorem (Sunic-V.)

Given Γ, ∆ 6 GLd (Z) f.g., it is undecidable whether Zd o Γ ' Zd o ∆.
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Tree automorphisms

Let X be an alphabet on k letters, and let X ∗ be the free monoid on
X , thought as a rooted k -ary tree:

∅

ww ''0

�� ��

1

�� ��
00 01 10 11

· · · · · · · · ·

Definition
Every tree automorphism g decomposes as a root permutation
πg : X → X, and k sections g|x , for x ∈ X:

g(xw) = πg(x)g|x (w).
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Automaton groups

Definition
A set of tree automorphisms is self-similar if it contains all
sections of all of its elements.
A finite automaton is a finite self-similar set (elements are called
states).
The group G(A) of tree automorphisms generated by an
automaton A is called an automaton group.

The Grigorchuk group: G = 〈1, α, β, γ, δ〉, where

α = σ(1,1), β = 1(α, γ), γ = 1(α, δ), δ = 1(1, β).
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Affinities of n-adic integers

Definition

LetM = {M1, . . . ,Mm} be integral d × d matrices with non-zero
determinants. Let n > 2 be relatively prime to all these determinants
(thus, Mi is invertible over the ring Zn of n-adic integers).

For an integral d × d matrix M and v ∈ Zd , consider the invertible
affine transformation vM : Zd

n → Zd
n , vM(u) = v + Mu.

Let
GM,n = 〈{vM | M ∈M, v ∈ Zd}〉 6 Affd (Zn).

Lemma

If, in addition, det Mi = ±1, then GM,n ∼= Zd o Γ, where
Γ = 〈M1, . . . ,Mm〉 6 GLd (Z).
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Affinities of n-adic integers

Proof. Denote the translation by τv : Zd
n → Zd

n , u 7→ u + v.
Since vM = τv 0M, we have GM,n generated by 0M for M ∈M, and
τei , where the ei ’s are the canonical vectors.

If M ∈ GLd (Z), then vM ∈ Affd (Zn) restricts to an integral bijective
affine transformation vM ∈ Affd (Z); hence, we can view
GM,n 6 Affd (Z) (and is independent from n; let’s denote it by GM).

They get multiplied as

vMv′M ′ : u −→ v′ + M ′u −→ v + M(v′ + M ′u) =
(v + Mv′) + MM ′u =

v+Mv′(MM ′)(u).

So, GM ∼= Zd o Γ, where Γ = 〈M1, . . . ,Mm〉 6 GLd (Z).
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GM is an automaton group

So, we have the groups GM,n (withM = {M1, . . . ,Mm} as before) and

det Mi = ±1 ⇒ GM,n ∼= Zd o Γ,

where Γ = 〈M1, . . . ,Mm〉 6 GLd (Z).

It only remains to prove that:

Proposition

GM,n is an automaton group.
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GM is an automaton group

Definition
Elements in Zn may be (uniquely) represented as right infinite words
over Yn = {0, . . . ,n − 1}:

y1y2y3 · · · ←→ y1 + n · y2 + n2 · y3 + · · · .

Similarly, elements of Zd
n (the free d-dimensional module, viewed as

column vectors), may be (uniquely) represented as right infinite words
over Xn = Y d

n = {(y1, . . . , yd )T | yi ∈ Yn}:

x1x2x3 · · · ←→ x1 + n · x2 + n2 · x3 + · · · .

Note that |Yn| = n and |Xn| = nd .
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GM is an automaton group

Definition

For v ∈ Zd , define vectors Mod(v) ∈ Xn and Div(v) ∈ Zd s.t.
v = Mod(v) + n · Div(v).

Lemma

For every v ∈ Zd , and every x1x2x3 . . . ∈ Zd
n , we have

vM(x1x2x3 · · · ) = Mod(v + Mx1) + n ·Div(v+Mx1) M(x2x3x4 · · · ).

Proof.

vM(x1x2 · · · ) = v + Mx1x2 · · · = v + M(x1 + n · (x2x3 · · · ))
= v + Mx1 + n ·Mx2x3 · · ·
= Mod(v + Mx1) + n · Div(v + Mx1) + nMx2x3 · · ·
= Mod(v + Mx1) + n · (Div(v + Mx1) + Mx2x3 · · · )
= Mod(v + Mx1) + n ·Div(v+Mx1) M(x2x3 · · · ). �
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GM is an automaton group

vM(x1x2x3 · · · ) = Mod(v + Mx1) + n ·Div(v+Mx1) M(x2x3x4 · · · ).

Definition
For M ∈M, let VM be the set of integral vectors with coordinates
between −‖M‖ and ‖M‖ − 1 (note that |VM | = (2‖M‖)d ).

Definition
Construct the automaton AM,n:

Alphabet: Xn.
States: mv for v ∈ VM , with root permutation and sections

mv(x) = Mod(v + Mx), and mv|x = mDiv(v+Mx).

Straightforward to see that sections are again states.
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GM is an automaton group

Observation

The state mv ∈ AM,n acts on a vector u = x1x2x3 · · · ∈ Zd
n as

mv(u) = vM(u).

Definition
Construct the automaton AM,n as the disjoint union of the automata
AM1,n, . . . ,AMm,n.

Alphabet: Xn,
It has 2d ∑m

i=1 ||Mi ||d states.

Proposition

GM,n is an automaton group generated by the automaton AM,n (over
an alphabet of size nd , and having 2d ∑m

i=1 ||Mi ||d states).
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Orbit decidability

Definition

Let G be a f.g. group. A subgroup Γ 6 Aut(G) is said to be orbit
decidable (O.D.) if there is an algorithm s.t., given u, v ∈ G, it decides
whether there exists α ∈ Γ such that α(u) is conjugate to v.

First examples: G = Zd

Observation (folklore)

The full group Aut(Zd ) = GLd (Z) is orbit decidable.

Proof. For u, v ∈ Zd , there exists A ∈ GLd (Z) such that v = Au if and
only if gcd(u1, . . . ,ud ) = gcd(v1, . . . , vd ).
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subgroups of GLd(Z)

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of GL2(Z) is O.D.

Question

Does there exist an orbit undecidable subgroup of GL3(Z) ?

Proposition (Bogopolski-Martino-V., 08)

For d > 4, there exist f.g., orbit undecidable, subgroups Γ 6 GLd (Z).
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Mihailova’s subgroup

Definition

Let U = 〈x1, . . . , xn | r1, . . . , rm〉 be a finite presentation. The Mihailova
group corresponding to U is

M(U) = {(v ,w) ∈ Fn × Fn | v =U w} =

= 〈(x1, x1), . . . , (xn, xn), (1, r1), . . . , (1, rm)〉 6 Fn × Fn.

Theorem (Mihailova 1958)

The membership problem in F2 × F2 is unsolvable.

Theorem (Grunewald 1978)

If m > 1 (i.e. at least one relation) then:
M(U) is finitely presented if and only if U is finite.
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Connection with orbit decidability

Proposition (Bogopolski-Martino-V. 2008)

Let G be a group, and let A 6 B 6 Aut(G) and v ∈ G be such that
B ∩ Stab([v ]) = 1. Then,

OD(A) solvable ⇒ MP(A,B) solvable.

Proof. Given ϕ ∈ B ≤ Aut(G), let w = vϕ and

{φ ∈ B | vφ ∼ w} = B ∩ (Stab∗(v) · ϕ) = (B ∩ Stab∗(v)) · ϕ = {ϕ}.

So, deciding whether v can be mapped to w, up to conjugacy, by
somebody in A, is the same as deciding whether ϕ belongs to A.
Hence,

OD(A) ⇒ MP(A,B).�
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Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

For d > 4, there exist f.g., orbit undecidable, subgroups Γ 6 GLd (Z).

Proof.
Take a copy of F2 = 〈P, Q〉 inside GL2(Z).
Take F2 × F2 ' B 6 GL4(Z).
The technical condition can be satisfied.
Take A ≤ B ' F2 × F2 with unsolvable membership problem.
By previous Proposition, A 6 GL4(Z) is orbit undecidable.
Similarly for A 6 GLd (Z), d > 4. �

Question

Does there exist an orbit undecidable subgroup of GL3(Z) ?
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Connection to semidirect products

Observation (Bogopolski-Martino-V.)

Let H be f.g., and Γ 6 Aut(H) f.g. If H o Γ has solvable CP, then
Γ 6 Aut(H) is orbit decidable.

Proof. OD(Γ) is exactly the CP in G applied to u, v ∈ H.�

Corollary (Bogopolski-Martino-V.)

There exists Γ 6 GLd (Z) f.g. such that Zd o Γ has unsolvable
conjugacy problem.

Corollary (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.
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A construction due to Gordon

Let U = 〈x1, . . . , xn |R〉 be fin. pres. For w = w(x1, . . . , xn), consider

Hw =

〈
X , a, b, c | R

a−1ba = c−1b−1cbc
a−2b−1aba2 = c−2b−1cbc2

a−3[w ,b]a3 = c−3bc3

a−(3+i)xiba3+i = c−(3+i)bc3+i , i > 1

〉

Lemma
1) If w 6=U 1 then U embeds in Hw .
2) If w =U 1 then Hw = {1}.
3) Hw is two generated (by b and ca−1).

Theorem (Adian-Rabin)

The isomorphism problem, the triviality problem, the finite problem
are all unsolvable.
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The generation problem

Take U with unsolvable WP (in particular |U| =∞), consider the
presentations Hw as above, and consider the Mihailova group
corresponding to Hw :

Lw = M(Hw ) = {(u, v) ∈ F2 × F2 | u =Hw v} 6 F2 × F2.

Observe that

Lw = F2 × F2 ⇔ u =Hw v ∀u, v ∈ F2
⇔ Hw = {1}
⇔ w =U 1.

Theorem (Miller 1971)

The generation problem in F2 × F2 is unsolvable.
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Towards IP...

• take F2 6 GL2(Z), and F2 × F2 6 GL2(Z)×GL2(Z) 6 GL4(Z).
• Take Lw 6 F2 × F2 6 GL4(Z).
• Consider Gw = Zd o Lw and G1 = Z4 o (F2 × F2).
• Observe that

w =U 1⇒ Lw = F2 × F2 ⇒ Lw f.p.⇒ Gw = G1 f.p.

w 6=U 1⇒ U ↪→ Hw ⇒ |Hw | =∞⇒ Lw not f.p.⇒ Gw not f.p.

Theorem (Sunic-V.)

Given Γ, ∆ 6 GLd (Z) f.g., it is undecidable whether Zd o Γ ' Zd o ∆.

Corollary (Sunic-V.)

The isomorphism problem is unsolvable within the family of
automaton groups.
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• Observe that

w =U 1⇒ Lw = F2 × F2 ⇒ Lw f.p.⇒ Gw = G1 f.p.

w 6=U 1⇒ U ↪→ Hw ⇒ |Hw | =∞⇒ Lw not f.p.⇒ Gw not f.p.

Theorem (Sunic-V.)

Given Γ, ∆ 6 GLd (Z) f.g., it is undecidable whether Zd o Γ ' Zd o ∆.

Corollary (Sunic-V.)

The isomorphism problem is unsolvable within the family of
automaton groups.
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