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consider the restriction φH : H → H (all in terms of gen’s).
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• If there is no such k, then u 6∼φ v.
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−1uxk), x
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j v ∈ H. 2

However, Collins-Miller (1977) gave an example H ≤2 G (so, H

characteristic in G) with CP (H) solvable and CP (G) unsolvable.

Corollary. There exists a f.p. group H with CP (H) solvable

but TCP (H) unsolvable.
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If TCP (Fn) solvable, then CP (Mφ) solvable.

Proof. Let tru, tsv, tkg be arbitrary elements in Mφ.

• (g−1t−k)(tru)(tkg) = tr(gφr)−1t−kutkg = tr(gφr)−1(uφk)g.

• tru and tsv
conj. in Mφ

⇐⇒ r = s

v ∼φr (uφk) for some k ∈ Z.

• To reduce to finitely many k’s, note that u ∼φ uφ (because

u = (uφ)−1(uφ)u ) and so,

tru and tsv
conj. in Mφ

⇐⇒ r = s

v ∼φr (uφk) for some k = 0, . . . , r − 1.

• Hence, CP (Mφ) reduces to finitely many checks of TCP (Fn).
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• ... except that this is wrong for r = 0, where there still is a

parameter with infinitely many values:

u and v
conj. in Mφ

⇐⇒ v ∼ uφk for some k ∈ Z.

• This is precisely Brinkmann’s result:

Theorem. Given φ : Fn → Fn and u, v ∈ Fn, it is decidable

whether v ∼ uφk for some k ∈ Z.

proved using train tracks, and providing a complicated algorithm.

This completes the proof.2
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Proof. Let φ : Fn → Fn, and u, v ∈ Fn be given.

• Extend φ to φ′ as follows: φ′ : Fn ∗ 〈z〉 −→ Fn ∗ 〈z〉
z 7→ uzu−1

.

• Claim: u ∼φ v ⇔ Fix(φ′γv) contains an element of the form

g−1zg with g ∈ Fn. In this case, g is a valid twisted conjugator.

In fact, if v = (gφ)−1ug for some g ∈ Fn, then

(g−1zg)φ′γv = v−1(gφ)−1uzu−1(gφ)v
= g−1u−1(gφ)(gφ)−1uzu−1(gφ)(gφ)−1ug

= g−1zg.
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• So the algorithm is as follows:

- compute φ′γv,
- compute generators for Fix(φ′γv) (Maslakova, using train

tracks again),

- draw Stallings graph for Fix(φ′γv),
- check whether ∃ loop labelled z and connected to basepoint

with a path not using z’s. 2

Remark. Checking whether Fix(φ′γv) contains an element of

the form g−1zg seems much easier (!?) than computing the full

Fix(φ′γv).
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Consider an algorithmic short exact sequence of groups:

1 −→ F
α−→ G

β−→ H −→ 1

- everything is given by gen’s and rel’s,

- can compute β-preimages in G,

- can compute α-preimages of elements in G mapping to 1H.

For every g ∈ G, consider ψg : F → F , x 7→ g−1xg.

The action subgroup is AG = {ψg | g ∈ G} ≤ Aut(F ).
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- given g, g′ ∈ G \ F decide whether they are conjugate in G. Let

us solve this using (i)-(iii):

• check whether gβ, g′β are conjugate in H; if not, g, g′ are not

conjugate in G either.

• Otherwise, compute u ∈ G such that (uβ)−1(gβ)(uβ) = g′β.
• Changing g to gu, we can assume gβ = g′β 6= 1H. Compute

f ∈ F such that g′ = gf .

• Compute the centralizer of gβ 6= 1 in H, and preimages y1, . . . , yt
in G: CH(gβ) = 〈gβ〉(y1β) t · · · t 〈gβ〉(ytβ).
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• Compute pi ∈ F such that y−1
i gyi = gpi (gβ and yiβ commute

in H).

• All possible conjugators from g to g′ in G commute with gβ =

g′β in H, so they are of the form gryix, for some r ∈ Z, i = 1, . . . , t

and x ∈ F . Now,

(x−1y−1
i g−r) g (gryix) = x−1(y−1

i gyi)x = x−1gpix

and

x−1gpix = gf ⇐⇒ g−1x−1gpix = f

(xϕg)−1pix = f
f ∼ϕg pi,

which is finitely many checks of TCP (F ). 2



This applies, for example, to algorithmic short exact sequences
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and

- H is hyperbolic + torsion elements having finite centralizers.
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Take F = 〈x1, . . . , xn |〉, H = 〈t1, . . . , tm |〉, ϕ1, . . . , ϕm ∈ Aut(Fn),
and consider

1 −→ F −→ G = 〈x1, . . . , xn, t1, . . . , tm | xitj = tj(xiϕj)〉 −→ H −→ 1

CP (G) is solvable ⇐⇒ AG = 〈ϕ1, . . . , ϕm〉 ≤ Aut(F ) is O.D.

Theorem. (Brinkmann) Cyclic subgroups of Aut(Fn) are O.D.

Corollary. Free-by-cyclic groups have solvable conjugacy prob-
lem.

Theorem. (Whitehead) The full Aut(Fn) is O.D.

Corollary. If 〈ϕ1, . . . , ϕm〉 = Aut(Fn) then G has solvable conju-
gacy problem.
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Theorem. There exists a subgroup of GL4(Z) which is orbit

undecidable.

Proof. Consider F2 ' 〈P =

(
1 1
1 2

)
, Q =

(
2 1
1 1

)
〉 ≤24 GL2(Z).

• Stab(1,0) = {M | (1,0)M = (1,0)} = {
(

1 0
n ±1

)
| n ∈ Z}.

• 〈P,Q〉 ∩ Stab(1,0) = 〈
(

1 0
12 1

)
〉.

• Choose a free subgroup 〈P ′, Q′〉 ≤ 〈P,Q〉 such that

〈P,Q〉 ∩ Stab(1,0) = {I} and consider

B = 〈
(
P ′ 0
0 I

)
,

(
Q′ 0
0 I

)
,

(
I 0
0 P ′

)
,

(
I 0
0 Q′

)
〉 ≤ GL4(Z).

Note that B ' F2 × F2.
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• Write v = (1,0,1,0). By construction, B ∩ Stab(v) = {I}
• Take A ≤ B with unsolvable membership problem.

• Claim: A ≤ GL4(Z) is orbit undecidable.

In fact, given ϕ ∈ B ≤ GL4(Z) let w = vϕ and

{φ ∈ B | vφ = w} = B ∩ (Stab(v) · ϕ) = (B ∩ Stab(v)) · ϕ = {ϕ}.

So, orbit decidability for A would imply membership problem for

A ≤ B. 2
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Questions:

Question. Does there exist an orbit undecidable subgroup of

GL3(Z) ?

Question. Does there exist a Z3-by-free group G with CP (G)

unsolvable ?

Question. Find more groups with twisted conjugacy problem

Question. Can the twisted conjugacy problem be useful for

cryptography ?



THANKS


