Orbit decidability and the conjugacy problem

E. Ventura

(Universitat Politècnica Catalunya &

Centre de Recerca Matemàtica)

August 30, 2007

PART I: A positive solution to the conjugacy problem for free-by-cyclic groups.

(joint work with O. Bogopolski, A. Martino and O. Maslakova, published in Bull. London Math. Soc. **38**(5) (2006) 787-794)

PART II: Extension of the techniques to a bigger class of groups.

(joint work with O. Bogopolski and A. Martino)

PART I: A positive solution to the conjugacy problem for free-by-cyclic groups.

(joint work with O. Bogopolski, A. Martino and O. Maslakova, published in Bull. London Math. Soc. **38**(5) (2006) 787-794)

PART II: Extension of the techniques to a bigger class of groups.

(joint work with O. Bogopolski and A. Martino)

PART 0: The twisted conjugacy problem.

Let G be a f.p. group and $\phi \colon G \to G$ an automorphism (all given by gen's and rel's.)

Notation. - morphisms act on the right, $g \mapsto g\phi$ - conjugations: $\gamma_x : G \to G$, $g \mapsto x^{-1}gx$.

Let G be a f.p. group and $\phi \colon G \to G$ an automorphism (all given by gen's and rel's.)

```
Notation. - morphisms act on the right, g \mapsto g\phi - conjugations: \gamma_x : G \to G, g \mapsto x^{-1}gx.
```

Definition. Two elements $u, v \in G$ are said to be ϕ -twisted conjugated, denoted $u \sim_{\phi} v$, if $v = (g\phi)^{-1}ug$ for some $g \in G$.

Let G be a f.p. group and $\phi \colon G \to G$ an automorphism (all given by gen's and rel's.)

Notation. - morphisms act on the right, $g \mapsto g\phi$ - conjugations: $\gamma_x \colon G \to G$, $g \mapsto x^{-1}gx$.

Definition. Two elements $u, v \in G$ are said to be ϕ -twisted conjugated, denoted $u \sim_{\phi} v$, if $v = (g\phi)^{-1}ug$ for some $g \in G$.

Definition. The ϕ -twisted conjugacy problem for G, ϕ -TCP(G), and the twisted conjugacy problem for G, TCP(G), are defined in the natural ways.

Let G be a f.p. group and $\phi: G \to G$ an automorphism (all given by gen's and rel's.)

Notation. - morphisms act on the right, $g \mapsto g\phi$ - conjugations: $\gamma_x \colon G \to G, g \mapsto x^{-1}gx$.

Definition. Two elements $u, v \in G$ are said to be ϕ -twisted conjugated, denoted $u \sim_{\phi} v$, if $v = (g\phi)^{-1}ug$ for some $g \in G$.

Definition. The ϕ -twisted conjugacy problem for G, ϕ -TCP(G), and the twisted conjugacy problem for G, TCP(G), are defined in the natural ways.

$$TCP(G)$$
 solvable $\Longrightarrow CP(G)$ solvable $\biguplus WP(G)$ solvable

Proof. Let $\phi: G \to G$ and $u, v \in G$ be given. Then,

• Compute $x_1, \ldots, x_r \in G$ such that $G = x_1 H \sqcup \cdots \sqcup x_r H$, and consider the restriction $\phi_H \colon H \to H$ (all in terms of gen's).

Proof. Let $\phi: G \to G$ and $u, v \in G$ be given. Then,

- Compute $x_1, \ldots, x_r \in G$ such that $G = x_1 H \sqcup \cdots \sqcup x_r H$, and consider the restriction $\phi_H \colon H \to H$ (all in terms of gen's).
- Write $u = x_i h_u$ and $v = x_j h_v$ (with $h_u, h_v \in H$).

Proof. Let $\phi: G \to G$ and $u, v \in G$ be given. Then,

- Compute $x_1, \ldots, x_r \in G$ such that $G = x_1 H \sqcup \cdots \sqcup x_r H$, and consider the restriction $\phi_H \colon H \to H$ (all in terms of gen's).
- Write $u = x_i h_u$ and $v = x_j h_v$ (with $h_u, h_v \in H$).
- ϕ -conjugate u by each x_k , and check whether it belongs to same coset as v, say $(x_k\phi)^{-1}ux_k\in x_jH=Hx_jH$.

Proof. Let $\phi: G \to G$ and $u, v \in G$ be given. Then,

- Compute $x_1, \ldots, x_r \in G$ such that $G = x_1 H \sqcup \cdots \sqcup x_r H$, and consider the restriction $\phi_H \colon H \to H$ (all in terms of gen's).
- Write $u = x_i h_u$ and $v = x_j h_v$ (with $h_u, h_v \in H$).
- ϕ -conjugate u by each x_k , and check whether it belongs to same coset as v, say $(x_k\phi)^{-1}ux_k \in x_jH = Hx_jH$.
- ullet If there is no such k, then $u \not\sim_\phi v$.

 \bullet For each such k , want to know whether $\exists \ h \in H$ such that $(h\phi)^{-1}(x_k\phi)^{-1}ux_kh = v \in x_jH,$

$$(h\phi)^{-1}(x_k\phi)^{-1}ux_kh = v \in x_jH,$$
$$x_j^{-1}(h\phi)^{-1}x_j\left[x_j^{-1}(x_k\phi)^{-1}ux_k\right]h = x_j^{-1}v \in H,$$

$$(h\phi)^{-1}(x_k\phi)^{-1}ux_kh = v \in x_jH,$$

$$x_j^{-1}(h\phi)^{-1}x_j \left[x_j^{-1}(x_k\phi)^{-1}ux_k \right] h = x_j^{-1}v \in H,$$

$$(h\phi_H\gamma_{x_j})^{-1} \left[x_j^{-1}(x_k\phi)^{-1}ux_k \right] h = x_j^{-1}v \in H.$$

$$(h\phi)^{-1}(x_k\phi)^{-1}ux_kh = v \in x_jH,$$

$$x_j^{-1}(h\phi)^{-1}x_j \left[x_j^{-1}(x_k\phi)^{-1}ux_k \right] h = x_j^{-1}v \in H,$$

$$(h\phi_H\gamma_{x_j})^{-1} \left[x_j^{-1}(x_k\phi)^{-1}ux_k \right] h = x_j^{-1}v \in H.$$

•This is decidable by using the $\phi_H \gamma_{x_j} - TCP(H)$ applied to elements $x_j^{-1}(x_k \phi)^{-1}ux_k), x_j^{-1}v \in H$. \square

$$(h\phi)^{-1}(x_k\phi)^{-1}ux_kh = v \in x_jH,$$

$$x_j^{-1}(h\phi)^{-1}x_j \left[x_j^{-1}(x_k\phi)^{-1}ux_k \right] h = x_j^{-1}v \in H,$$

$$(h\phi_H\gamma_{x_j})^{-1} \left[x_j^{-1}(x_k\phi)^{-1}ux_k \right] h = x_j^{-1}v \in H.$$

•This is decidable by using the $\phi_H \gamma_{x_j} - TCP(H)$ applied to elements $x_j^{-1}(x_k \phi)^{-1} u x_k), x_j^{-1} v \in H$. \square

However, Collins-Miller (1977) gave an example $H \leq_2 G$ (so, H characteristic in G) with CP(H) solvable and CP(G) unsolvable.

$$(h\phi)^{-1}(x_k\phi)^{-1}ux_kh = v \in x_jH,$$

$$x_j^{-1}(h\phi)^{-1}x_j \left[x_j^{-1}(x_k\phi)^{-1}ux_k \right] h = x_j^{-1}v \in H,$$

$$(h\phi_H\gamma_{x_j})^{-1} \left[x_j^{-1}(x_k\phi)^{-1}ux_k \right] h = x_j^{-1}v \in H.$$

•This is decidable by using the $\phi_H \gamma_{x_j} - TCP(H)$ applied to elements $x_j^{-1}(x_k \phi)^{-1} u x_k$, $x_j^{-1} v \in H$. \square

However, Collins-Miller (1977) gave an example $H \leq_2 G$ (so, H characteristic in G) with CP(H) solvable and CP(G) unsolvable.

Corollary. There exists a f.p. group H with CP(H) solvable but TCP(H) unsolvable.

(i) abelian

(ii)

(iii)

(iv)

- (i) abelian
- (ii) free
- (iii)
- (iv)

- (i) abelian
- (ii) free
- (iii) surface
- (iv)

- (i) abelian
- (ii) free
- (iii) surface
- (iv) polycyclic

Theorem. Every finitely generated, virtual

- (i) abelian
- (ii) free
- (iii) surface
- (iv) polycyclic

PART I: a positive solution to the conjugacy problem for free-by-cyclic groups.

The motivation to study this concept was that allowed us to solve the conjugacy problem for free-by-cyclic groups.

- Let $F_n = \langle x_1, \dots, x_n \rangle$ be the free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$.
- Let $M_{\phi} = \langle x_1, \dots, x_n, t \mid wt = t(w\phi) \rangle$ be the free-by-cyclic group defined by ϕ .

PART I: a positive solution to the conjugacy problem for free-by-cyclic groups.

The motivation to study this concept was that allowed us to solve the conjugacy problem for free-by-cyclic groups.

- Let $F_n = \langle x_1, \dots, x_n \rangle$ be the free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$.
- Let $M_{\phi} = \langle x_1, \dots, x_n, t \mid wt = t(w\phi) \rangle$ be the free-by-cyclic group defined by ϕ .
- Collecting t's to the left, we have usual normal forms $t^r w$, with $r \in \mathbb{Z}$, $w \in F_n$.

PART I: A positive solution to the conjugacy problem for free-by-cyclic groups.

The motivation to study this concept was that allowed us to solve the conjugacy problem for free-by-cyclic groups.

- Let $F_n = \langle x_1, \dots, x_n \rangle$ be the free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$.
- Let $M_{\phi} = \langle x_1, \dots, x_n, t \mid wt = t(w\phi) \rangle$ be the free-by-cyclic group defined by ϕ .
- Collecting t's to the left, we have usual normal forms $t^r w$, with $r \in \mathbb{Z}$, $w \in F_n$.

Proposition. (Bogopolski, Martino, Maslakova, V.) If $TCP(F_n)$ solvable, then $CP(M_{\phi})$ solvable.

Proposition. (Bogopolski, Martino, Maslakova, V.) If $TCP(F_n)$ solvable, then $CP(M_{\phi})$ solvable.

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in M_{ϕ} .

• $(g^{-1}t^{-k})(t^ru)(t^kg) = t^r(g\phi^r)^{-1}t^{-k}ut^kg = t^r(g\phi^r)^{-1}(u\phi^k)g$.

Proposition. (Bogopolski, Martino, Maslakova, V.) If $TCP(F_n)$ solvable, then $CP(M_{\phi})$ solvable.

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in M_{ϕ} .

•
$$(g^{-1}t^{-k})(t^ru)(t^kg) = t^r(g\phi^r)^{-1}t^{-k}ut^kg = t^r(g\phi^r)^{-1}(u\phi^k)g$$
.

Proposition. (Bogopolski, Martino, Maslakova, V.) If $TCP(F_n)$ solvable, then $CP(M_{\phi})$ solvable.

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in M_{ϕ} .

•
$$(g^{-1}t^{-k})(t^ru)(t^kg) = t^r(g\phi^r)^{-1}t^{-k}ut^kg = t^r(g\phi^r)^{-1}(u\phi^k)g$$
.

• To reduce to finitely many k's, note that $u \sim_{\phi} u \phi$ (because $u = (u\phi)^{-1}(u\phi)u$) and so,

• Hence, $CP(M_{\phi})$ reduces to finitely many checks of $TCP(F_n)$.

 \bullet ... except that this is wrong for r=0, where there still is a parameter with infinitely many values:

$$\begin{array}{ccc} u \text{ and } v \\ \text{conj. in } M_{\phi} \end{array} & \Longleftrightarrow & v \sim u \phi^k \text{ for some } k \in \mathbb{Z}. \end{array}$$

• ... except that this is wrong for r=0, where there still is a parameter with infinitely many values:

$$\begin{array}{ccc} u \text{ and } v \\ \text{conj. in } M_{\phi} \end{array} & \Longleftrightarrow & v \sim u \phi^k \text{ for some } k \in \mathbb{Z}. \end{array}$$

This is precisely Brinkmann's result:

Theorem. Given $\phi \colon F_n \to F_n$ and $u, v \in F_n$, it is decidable whether $v \sim u\phi^k$ for some $k \in \mathbb{Z}$.

proved using train tracks, and providing a complicated algorithm. This completes the proof. \Box

Proof. Let $\phi: F_n \to F_n$, and $u, v \in F_n$ be given.

Proof. Let $\phi \colon F_n \to F_n$, and $u, v \in F_n$ be given.

 $\bullet \text{ Extend } \phi \text{ to } \phi' \text{ as follows: } \phi' \colon F_n * \langle z \rangle \longrightarrow F_n * \langle z \rangle \ . \\ z \mapsto uzu^{-1}$

Proof. Let $\phi: F_n \to F_n$, and $u, v \in F_n$ be given.

- Extend ϕ to ϕ' as follows: $\phi' \colon F_n * \langle z \rangle \longrightarrow F_n * \langle z \rangle$. $z \mapsto uzu^{-1}$
- Claim: $u \sim_{\phi} v \Leftrightarrow Fix(\phi'\gamma_v)$ contains an element of the form $g^{-1}zg$ with $g \in F_n$. In this case, g is a valid twisted conjugator.

Proof. Let $\phi: F_n \to F_n$, and $u, v \in F_n$ be given.

- Extend ϕ to ϕ' as follows: $\phi' \colon F_n * \langle z \rangle \longrightarrow F_n * \langle z \rangle$. $z \mapsto uzu^{-1}$
- Claim: $u \sim_{\phi} v \Leftrightarrow Fix(\phi'\gamma_v)$ contains an element of the form $g^{-1}zg$ with $g \in F_n$. In this case, g is a valid twisted conjugator.

In fact, if $v = (g\phi)^{-1}ug$ for some $g \in F_n$, then

$$(g^{-1}zg)\phi'\gamma_v = v^{-1}(g\phi)^{-1}uzu^{-1}(g\phi)v$$

= $g^{-1}u^{-1}(g\phi)(g\phi)^{-1}uzu^{-1}(g\phi)(g\phi)^{-1}ug$
= $g^{-1}zg$.

- So the algorithm is as follows:
 - compute $\phi'\gamma_v$,
 - compute generators for $Fix(\phi'\gamma_v)$ (Maslakova, using train tracks again),
 - draw Stallings graph for $Fix(\phi'\gamma_v)$,
 - check whether \exists loop labelled z and connected to basepoint with a path not using z's. \Box

- So the algorithm is as follows:
 - compute $\phi'\gamma_v$,
 - compute generators for $Fix(\phi'\gamma_v)$ (Maslakova, using train tracks again),
 - draw Stallings graph for $Fix(\phi'\gamma_v)$,
 - check whether \exists loop labelled z and connected to basepoint with a path not using z's. \Box

Remark. Checking whether $Fix(\phi'\gamma_v)$ contains an element of the form $g^{-1}zg$ seems much easier (!?) than computing the full $Fix(\phi'\gamma_v)$.

PART II: Extension of the techniques to a bigger class of groups.

Consider an algorithmic short exact sequence of groups:

$$1 \longrightarrow F \stackrel{\alpha}{\longrightarrow} G \stackrel{\beta}{\longrightarrow} H \longrightarrow 1$$

- everything is given by gen's and rel's,
- can compute β -preimages in G,
- can compute lpha-preimages of elements in G mapping to $\mathbf{1}_H.$

For every $g \in G$, consider $\psi_g \colon F \to F$, $x \mapsto g^{-1}xg$.

The action subgroup is $A_G = \{ \psi_g \mid g \in G \} \leq Aut(F)$.

Theorem. Let $1 \longrightarrow F \stackrel{\alpha}{\longrightarrow} G \stackrel{\beta}{\longrightarrow} H \longrightarrow 1$ be an algorithmic short exact sequence of groups such that

- (i) TCP(F) is solvable,
- (ii) CP(H) is solvable, and
- (iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h,1}, \ldots, z_{h,t_h} \in H$ such that

$$C_H(h) = \langle h \rangle z_{h,1} \sqcup \cdots \sqcup \langle h \rangle z_{h,t_h}$$

(in particular, $\langle h \rangle$ has finite index in $C_H(h)$). Then,

CP(G) is solvable \iff $A_G \leq Aut(F)$ is orbit decidable.

- given $u, v \in F$ decide whether they are conjugate in G: this is orbit decidability of $A_G \leq Aut(F)$.

- given $u, v \in F$ decide whether they are conjugate in G: this is orbit decidability of $A_G \leq Aut(F)$.
- given $g, g' \in G \setminus F$ decide whether they are conjugate in G. Let us solve this using (i)-(iii):

- given $u, v \in F$ decide whether they are conjugate in G: this is orbit decidability of $A_G \leq Aut(F)$.
- given $g, g' \in G \setminus F$ decide whether they are conjugate in G. Let us solve this using (i)-(iii):
- ullet check whether $g\beta, g'\beta$ are conjugate in H; if not, g,g' are not conjugate in G either.

- given $u, v \in F$ decide whether they are conjugate in G: this is orbit decidability of $A_G \leq Aut(F)$.
- given $g, g' \in G \setminus F$ decide whether they are conjugate in G. Let us solve this using (i)-(iii):
- check whether $g\beta, g'\beta$ are conjugate in H; if not, g, g' are not conjugate in G either.
- Otherwise, compute $u \in G$ such that $(u\beta)^{-1}(g\beta)(u\beta) = g'\beta$.

- given $u, v \in F$ decide whether they are conjugate in G: this is orbit decidability of $A_G \leq Aut(F)$.
- given $g, g' \in G \setminus F$ decide whether they are conjugate in G. Let us solve this using (i)-(iii):
- ullet check whether $g\beta, g'\beta$ are conjugate in H; if not, g,g' are not conjugate in G either.
- Otherwise, compute $u \in G$ such that $(u\beta)^{-1}(g\beta)(u\beta) = g'\beta$.
- Changing g to g^u , we can assume $g\beta = g'\beta \neq 1_H$. Compute $f \in F$ such that g' = gf.

- given $u, v \in F$ decide whether they are conjugate in G: this is orbit decidability of $A_G \leq Aut(F)$.
- given $g, g' \in G \setminus F$ decide whether they are conjugate in G. Let us solve this using (i)-(iii):
- ullet check whether $g\beta,g'\beta$ are conjugate in H; if not, g,g' are not conjugate in G either.
- Otherwise, compute $u \in G$ such that $(u\beta)^{-1}(g\beta)(u\beta) = g'\beta$.
- Changing g to g^u , we can assume $g\beta = g'\beta \neq 1_H$. Compute $f \in F$ such that g' = gf.
- Compute the centralizer of $g\beta \neq 1$ in H, and preimages y_1, \ldots, y_t in $G: C_H(g\beta) = \langle g\beta \rangle (y_1\beta) \sqcup \cdots \sqcup \langle g\beta \rangle (y_t\beta)$.

• Compute $p_i \in F$ such that $y_i^{-1}gy_i = gp_i$ $(g\beta \text{ and } y_i\beta \text{ commute in } H).$

- Compute $p_i \in F$ such that $y_i^{-1}gy_i = gp_i$ ($g\beta$ and $y_i\beta$ commute in H).
- All possible conjugators from g to g' in G commute with $g\beta = g'\beta$ in H, so they are of the form g^ry_ix , for some $r \in \mathbb{Z}$, $i = 1, \ldots, t$ and $x \in F$. Now,

$$(x^{-1}y_i^{-1}g^{-r})g(g^ry_ix) = x^{-1}(y_i^{-1}gy_i)x = x^{-1}gp_ix$$

- Compute $p_i \in F$ such that $y_i^{-1}gy_i = gp_i$ ($g\beta$ and $y_i\beta$ commute in H).
- All possible conjugators from g to g' in G commute with $g\beta = g'\beta$ in H, so they are of the form g^ry_ix , for some $r \in \mathbb{Z}$, $i=1,\ldots,t$ and $x \in F$. Now,

$$(x^{-1}y_i^{-1}g^{-r})g(g^ry_ix) = x^{-1}(y_i^{-1}gy_i)x = x^{-1}gp_ix$$

and

$$x^{-1}gp_ix = gf \iff g^{-1}x^{-1}gp_ix = f$$
$$(x\varphi_g)^{-1}p_ix = f$$
$$f \sim_{\varphi_g} p_i,$$

which is finitely many checks of TCP(F). \square

This applies, for example, to algorithmic short exact sequences

$$1 \longrightarrow F \stackrel{\alpha}{\longrightarrow} G \stackrel{\beta}{\longrightarrow} H \longrightarrow 1$$

where

- $\emph{\textbf{\emph{F}}}$ is virt. abelian, virt. free, virt. surface, virt. polycyclic and

- H is hyperbolic + torsion elements having finite centralizers.

Take $F = \langle x_1, \dots, x_n | \rangle$, $H = \langle t_1, \dots, t_m | \rangle$, $\varphi_1, \dots, \varphi_m \in Aut(F_n)$, and consider

$$1 \longrightarrow F \longrightarrow G = \langle x_1, \dots, x_n, t_1, \dots, t_m \mid x_i t_j = t_j(x_i \varphi_j) \rangle \longrightarrow H \longrightarrow 1$$

Take $F = \langle x_1, \dots, x_n | \rangle$, $H = \langle t_1, \dots, t_m | \rangle$, $\varphi_1, \dots, \varphi_m \in Aut(F_n)$, and consider

$$1 \longrightarrow F \longrightarrow G = \langle x_1, \dots, x_n, t_1, \dots, t_m \mid x_i t_j = t_j(x_i \varphi_j) \rangle \longrightarrow H \longrightarrow 1$$

$$CP(G)$$
 is solvable \iff $A_G = \langle \varphi_1, \dots, \varphi_m \rangle \leq Aut(F)$ is O.D.

Take $F = \langle x_1, \dots, x_n | \rangle$, $H = \langle t_1, \dots, t_m | \rangle$, $\varphi_1, \dots, \varphi_m \in Aut(F_n)$, and consider

$$1 \longrightarrow F \longrightarrow G = \langle x_1, \dots, x_n, t_1, \dots, t_m \mid x_i t_j = t_j(x_i \varphi_j) \rangle \longrightarrow H \longrightarrow 1$$

$$CP(G)$$
 is solvable \iff $A_G = \langle \varphi_1, \dots, \varphi_m \rangle \leq Aut(F)$ is O.D.

Theorem. (Brinkmann) Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary. Free-by-cyclic groups have solvable conjugacy problem.

Take $F = \langle x_1, \dots, x_n \mid \rangle$, $H = \langle t_1, \dots, t_m \mid \rangle$, $\varphi_1, \dots, \varphi_m \in Aut(F_n)$, and consider

$$1 \longrightarrow F \longrightarrow G = \langle x_1, \dots, x_n, t_1, \dots, t_m \mid x_i t_j = t_j(x_i \varphi_j) \rangle \longrightarrow H \longrightarrow 1$$

$$CP(G)$$
 is solvable \iff $A_G = \langle \varphi_1, \dots, \varphi_m \rangle \leq Aut(F)$ is O.D.

Theorem. (Brinkmann) Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary. Free-by-cyclic groups have solvable conjugacy problem.

Theorem. (Whitehead) The full $Aut(F_n)$ is O.D.

Corollary. If $\langle \varphi_1, \dots, \varphi_m \rangle = Aut(F_n)$ then G has solvable conjugacy problem.

Proposition. Every f.g. subgroup of $Aut(F_2)$ is O.D.

Corollary. Every F_2 -by-free group G has solvable conjugacy problem.

But...

Proposition. Every f.g. subgroup of $Aut(F_2)$ is O.D.

Corollary. Every F_2 -by-free group G has solvable conjugacy problem.

But...

Theorem. (Miller) There exists a free-by-free group G with CP(G) unsolvable.

Corollary. There exists a 14-generated subgroup $A \leq Aut(F_3)$ which is orbit <u>undecidable</u>.

The abelian-by-free case

$$1 \longrightarrow F = \mathbb{Z}^n \longrightarrow G \longrightarrow H = F_n \longrightarrow 1$$

Proposition. Every f.g. subgroup of $Aut(\mathbb{Z}_2) = GL_2(\mathbb{Z})$ is O.D.

Corollary. Every \mathbb{Z}^2 -by-free group G has CP(G) solvable.

But...

The abelian-by-free case

$$1 \longrightarrow F = \mathbb{Z}^n \longrightarrow G \longrightarrow H = F_n \longrightarrow 1$$

Proposition. Every f.g. subgroup of $Aut(\mathbb{Z}_2) = GL_2(\mathbb{Z})$ is O.D.

Corollary. Every \mathbb{Z}^2 -by-free group G has CP(G) solvable.

But...

Theorem. There exists a subgroup of $GL_4(\mathbb{Z})$ which is orbit undecidable.

Corollary. There exists a \mathbb{Z}^4 -by-free group G with CP(G) <u>unsolvable</u>.

Theorem. There exists a subgroup of $GL_4(\mathbb{Z})$ which is orbit undecidable.

Theorem. There exists a subgroup of $GL_4(\mathbb{Z})$ which is orbit undecidable.

Proof. Consider
$$F_2 \simeq \langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \rangle \leq_{24} GL_2(\mathbb{Z}).$$
• $Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$$

Theorem. There exists a subgroup of $GL_4(\mathbb{Z})$ which is orbit undecidable.

Proof. Consider
$$F_2 \simeq \langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \rangle \leq_{24} GL_2(\mathbb{Z}).$$
• $Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$$

•
$$\langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle$$
.

There exists a subgroup of $GL_4(\mathbb{Z})$ which is orbit undecidable.

Proof. Consider
$$F_2 \simeq \langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \rangle \leq_{24} GL_2(\mathbb{Z}).$$
• $Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$$

•
$$\langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle$$
.

• Choose a free subgroup $\langle P', Q' \rangle \leq \langle P, Q \rangle$ such that $\langle P,Q\rangle\cap Stab(1,0)=\{I\}$ and consider

$$B = \langle \begin{pmatrix} P' & 0 \\ \hline 0 & I \end{pmatrix}, \begin{pmatrix} Q' & 0 \\ \hline 0 & I \end{pmatrix}, \begin{pmatrix} I & 0 \\ \hline 0 & P' \end{pmatrix}, \begin{pmatrix} I & 0 \\ \hline 0 & Q' \end{pmatrix} \rangle \leq GL_4(\mathbb{Z}).$$

Note that $B \simeq F_2 \times F_2$.

• Write v = (1, 0, 1, 0). By construction, $B \cap Stab(v) = \{I\}$

- Write v = (1, 0, 1, 0). By construction, $B \cap Stab(v) = \{I\}$
- ullet Take $A \leq B$ with unsolvable membership problem.

- Write v = (1,0,1,0). By construction, $B \cap Stab(v) = \{I\}$
- Take $A \leq B$ with unsolvable membership problem.
- Claim: $A \leq GL_4(\mathbb{Z})$ is orbit undecidable.

In fact, given $\varphi \in B \leq GL_4(\mathbb{Z})$ let $w = v\varphi$ and

$$\{\phi \in B \mid v\phi = w\} = B \cap (Stab(v) \cdot \varphi) = (B \cap Stab(v)) \cdot \varphi = \{\varphi\}.$$

So, orbit decidability for A would imply membership problem for $A \leq B$. \square

Question. Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$?

Question. Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$?

Question. Does there exist a \mathbb{Z}^3 -by-free group G with CP(G) unsolvable ?

Question. Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$?

Question. Does there exist a \mathbb{Z}^3 -by-free group G with CP(G) unsolvable ?

Question. Find more groups with twisted conjugacy problem

Question. Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$?

Question. Does there exist a \mathbb{Z}^3 -by-free group G with CP(G) unsolvable ?

Question. Find more groups with twisted conjugacy problem

Question. Can the twisted conjugacy problem be useful for cryptography?

THANKS