Orbit decidability and

the conjugacy problem

E. Ventura

(Universitat Politècnica Catalunya \&
Centre de Recerca Matemàtica)
August 30, 2007

PART I: A positive solution to the conjugacy problem for free-by-cyclic groups.
(joint work with O. Bogopolski, A. Martino and O. Maslakova, published in Bull. London Math. Soc. 38(5) (2006) 787-794)

PART II: Extension of the techniques to a bigger class of groups.
(joint work with O. Bogopolski and A. Martino)

PART I: A positive solution to the conjugacy problem for free-by-cyclic groups.
(joint work with O. Bogopolski, A. Martino and O. Maslakova, published in Bull. London Math. Soc. 38(5) (2006) 787-794)

PART II: Extension of the techniques to a bigger class of groups.
(joint work with O. Bogopolski and A. Martino)

PART 0: The twisted conjugacy problem.

PART 0: The twisted conjugacy problem.

Let G be a f.p. group and $\phi: G \rightarrow G$ an automorphism (all given by gen's and rel's.)

Notation. - morphisms act on the right, $g \mapsto g \phi$

- conjugations: $\gamma_{x}: G \rightarrow G, g \mapsto x^{-1} g x$.

PART 0: The twisted conjugacy problem.

Let G be a f.p. group and $\phi: G \rightarrow G$ an automorphism (all given by gen's and rel's.)

Notation. - morphisms act on the right, $g \mapsto g \phi$

$$
\text { - conjugations: } \gamma_{x}: G \rightarrow G, g \mapsto x^{-1} g x
$$

Definition. Two elements $u, v \in G$ are said to be ϕ-twisted conjugated, denoted $u \sim_{\phi} v$, if $v=(g \phi)^{-1} u g$ for some $g \in G$.

PART 0: The twisted conjugacy problem.

Let G be a f.p. group and $\phi: G \rightarrow G$ an automorphism (all given by gen's and rel's.)

Notation. - morphisms act on the right, $g \mapsto g \phi$

- conjugations: $\gamma_{x}: G \rightarrow G, g \mapsto x^{-1} g x$.

Definition. Two elements $u, v \in G$ are said to be ϕ-twisted conjugated, denoted $u \sim_{\phi} v$, if $v=(g \phi)^{-1} u g$ for some $g \in G$.

Definition. The ϕ-twisted conjugacy problem for $G, \phi-T C P(G)$, and the twisted conjugacy problem for $G, T C P(G)$, are defined in the natural ways.

PART 0: The twisted conjugacy problem.

Let G be a f.p. group and $\phi: G \rightarrow G$ an automorphism (all given by gen's and rel's.)

Notation. - morphisms act on the right, $g \mapsto g \phi$

- conjugations: $\gamma_{x}: G \rightarrow G, g \mapsto x^{-1} g x$.

Definition. Two elements $u, v \in G$ are said to be ϕ-twisted conjugated, denoted $u \sim_{\phi} v$, if $v=(g \phi)^{-1} u g$ for some $g \in G$.

Definition. The ϕ-twisted conjugacy problem for $G, \phi-T C P(G)$, and the twisted conjugacy problem for $G, T C P(G)$, are defined in the natural ways.
$T C P(G)$ solvable $\Longrightarrow C P(G)$ solvable $\underset{ }{\Longrightarrow} \neq W P(G)$ solvable

Proposition. Let $H \leq G$ be a characteristic, finite index subgroup of G. If $T C P(H)$ is solvable then $T C P(G)$ is solvable.

Proposition. Let $H \leq G$ be a characteristic, finite index subgroup of G. If $T C P(H)$ is solvable then $\operatorname{TCP}(G)$ is solvable.

Proof. Let $\phi: G \rightarrow G$ and $u, v \in G$ be given. Then,

- Compute $x_{1}, \ldots, x_{r} \in G$ such that $G=x_{1} H \sqcup \cdots \sqcup x_{r} H$, and consider the restriction $\phi_{H}: H \rightarrow H$ (all in terms of gen's).

Proposition. Let $H \leq G$ be a characteristic, finite index subgroup of G. If $T C P(H)$ is solvable then $T C P(G)$ is solvable.

Proof. Let $\phi: G \rightarrow G$ and $u, v \in G$ be given. Then,

- Compute $x_{1}, \ldots, x_{r} \in G$ such that $G=x_{1} H \sqcup \cdots \sqcup x_{r} H$, and consider the restriction $\phi_{H}: H \rightarrow H$ (all in terms of gen's).
- Write $u=x_{i} h_{u}$ and $v=x_{j} h_{v}$ (with $h_{u}, h_{v} \in H$).

Proposition. Let $H \leq G$ be a characteristic, finite index subgroup of G. If $T C P(H)$ is solvable then $T C P(G)$ is solvable.

Proof. Let $\phi: G \rightarrow G$ and $u, v \in G$ be given. Then,

- Compute $x_{1}, \ldots, x_{r} \in G$ such that $G=x_{1} H \sqcup \cdots \sqcup x_{r} H$, and consider the restriction $\phi_{H}: H \rightarrow H$ (all in terms of gen's).
- Write $u=x_{i} h_{u}$ and $v=x_{j} h_{v}$ (with $h_{u}, h_{v} \in H$).
- ϕ-conjugate u by each x_{k}, and check whether it belongs to same coset as v, say $\left(x_{k} \phi\right)^{-1} u x_{k} \in x_{j} H=H x_{j} H$.

Proposition. Let $H \leq G$ be a characteristic, finite index subgroup of G. If $\operatorname{TCP}(H)$ is solvable then $\operatorname{TCP}(G)$ is solvable.

Proof. Let $\phi: G \rightarrow G$ and $u, v \in G$ be given. Then,

- Compute $x_{1}, \ldots, x_{r} \in G$ such that $G=x_{1} H \sqcup \cdots \sqcup x_{r} H$, and consider the restriction $\phi_{H}: H \rightarrow H$ (all in terms of gen's).
- Write $u=x_{i} h_{u}$ and $v=x_{j} h_{v}$ (with $\left.h_{u}, h_{v} \in H\right)$.
- ϕ-conjugate u by each x_{k}, and check whether it belongs to same coset as v, say $\left(x_{k} \phi\right)^{-1} u x_{k} \in x_{j} H=H x_{j} H$.
- If there is no such k, then $u \not \chi_{\phi} v$.
- For each such k, want to know whether $\exists h \in H$ such that

$$
(h \phi)^{-1}\left(x_{k} \phi\right)^{-1} u x_{k} h=v \in x_{j} H,
$$

- For each such k, want to know whether $\exists h \in H$ such that

$$
\begin{gathered}
(h \phi)^{-1}\left(x_{k} \phi\right)^{-1} u x_{k} h=v \in x_{j} H, \\
x_{j}^{-1}(h \phi)^{-1} x_{j}\left[x_{j}^{-1}\left(x_{k} \phi\right)^{-1} u x_{k}\right] h=x_{j}^{-1} v \in H,
\end{gathered}
$$

- For each such k, want to know whether $\exists h \in H$ such that

$$
\begin{aligned}
(h \phi)^{-1}\left(x_{k} \phi\right)^{-1} u x_{k} h=v & \in x_{j} H, \\
x_{j}^{-1}(h \phi)^{-1} x_{j}\left[x_{j}^{-1}\left(x_{k} \phi\right)^{-1} u x_{k}\right] h & =x_{j}^{-1} v \in H, \\
\left.\left(h \phi_{H} \gamma_{x_{j}}\right)^{-1}\left[x_{j}^{-1}\left(x_{k} \phi\right)^{-1} u x_{k}\right)\right] h & =x_{j}^{-1} v \in H .
\end{aligned}
$$

- For each such k, want to know whether $\exists h \in H$ such that

$$
\begin{aligned}
(h \phi)^{-1}\left(x_{k} \phi\right)^{-1} u x_{k} h=v & \in x_{j} H, \\
x_{j}^{-1}(h \phi)^{-1} x_{j}\left[x_{j}^{-1}\left(x_{k} \phi\right)^{-1} u x_{k}\right] h & =x_{j}^{-1} v \in H, \\
\left.\left(h \phi_{H} \gamma_{x_{j}}\right)^{-1}\left[x_{j}^{-1}\left(x_{k} \phi\right)^{-1} u x_{k}\right)\right] h & =x_{j}^{-1} v \in H .
\end{aligned}
$$

-This is decidable by using the $\phi_{H} \gamma_{x_{j}}-T C P(H)$ applied to elements $\left.x_{j}^{-1}\left(x_{k} \phi\right)^{-1} u x_{k}\right), x_{j}^{-1} v \in H$. \square

- For each such k, want to know whether $\exists h \in H$ such that

$$
\begin{aligned}
(h \phi)^{-1}\left(x_{k} \phi\right)^{-1} u x_{k} h=v & \in x_{j} H \\
x_{j}^{-1}(h \phi)^{-1} x_{j}\left[x_{j}^{-1}\left(x_{k} \phi\right)^{-1} u x_{k}\right] h & =x_{j}^{-1} v \in H \\
\left.\left(h \phi_{H} \gamma_{x_{j}}\right)^{-1}\left[x_{j}^{-1}\left(x_{k} \phi\right)^{-1} u x_{k}\right)\right] h & =x_{j}^{-1} v \in H
\end{aligned}
$$

-This is decidable by using the $\phi_{H} \gamma_{x_{j}}-T C P(H)$ applied to elements $\left.x_{j}^{-1}\left(x_{k} \phi\right)^{-1} u x_{k}\right), x_{j}^{-1} v \in H$.

However, Collins-Miller (1977) gave an example $H \leq_{2} G$ (so, H characteristic in G) with $C P(H)$ solvable and $C P(G)$ unsolvable.

- For each such k, want to know whether $\exists h \in H$ such that

$$
\begin{aligned}
(h \phi)^{-1}\left(x_{k} \phi\right)^{-1} u x_{k} h=v & \in x_{j} H, \\
x_{j}^{-1}(h \phi)^{-1} x_{j}\left[x_{j}^{-1}\left(x_{k} \phi\right)^{-1} u x_{k}\right] h & =x_{j}^{-1} v \in H, \\
\left.\left(h \phi_{H} \gamma_{x_{j}}\right)^{-1}\left[x_{j}^{-1}\left(x_{k} \phi\right)^{-1} u x_{k}\right)\right] h & =x_{j}^{-1} v \in H .
\end{aligned}
$$

- This is decidable by using the $\phi_{H} \gamma_{x_{j}}-T C P(H)$ applied to elements $\left.x_{j}^{-1}\left(x_{k} \phi\right)^{-1} u x_{k}\right), x_{j}^{-1} v \in H$. \square

However, Collins-Miller (1977) gave an example $H \leq_{2} G$ (so, H characteristic in G) with $C P(H)$ solvable and $C P(G)$ unsolvable.

Corollary. There exists a f.p. group H with $C P(H)$ solvable but $T C P(H)$ unsolvable.

Theorem. Every finitely generated
(i) abelian
(ii)
(iii)
(iv)
group has solvable twisted conjugacy problem.

Theorem. Every finitely generated
(i) abelian
(ii) free
(iii)
(iv)
group has solvable twisted conjugacy problem.

Theorem. Every finitely generated
(i) abelian
(ii) free
(iii) surface
(iv)
group has solvable twisted conjugacy problem.

Theorem. Every finitely generated
(i) abelian
(ii) free
(iii) surface
(iv) polycyclic
group has solvable twisted conjugacy problem.

Theorem. Every finitely generated, virtual
(i) abelian
(ii) free
(iii) surface
(iv) polycyclic
group has solvable twisted conjugacy problem.

PART I: a positive solution to the conjugacy problem for free-by-cyclic groups.

The motivation to study this concept was that allowed us to solve the conjugacy problem for free-by-cyclic groups.

- Let $F_{n}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be the free group on $\left\{x_{1}, \ldots, x_{n}\right\}(n \geq 2)$.
- Let $M_{\phi}=\left\langle x_{1}, \ldots, x_{n}, t \mid w t=t(w \phi)\right\rangle$ be the free-by-cyclic group defined by ϕ.

PART I: a positive solution to the conjugacy problem for free-by-cyclic groups.

The motivation to study this concept was that allowed us to solve the conjugacy problem for free-by-cyclic groups.

- Let $F_{n}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be the free group on $\left\{x_{1}, \ldots, x_{n}\right\}$ ($n \geq 2$).
- Let $M_{\phi}=\left\langle x_{1}, \ldots, x_{n}, t \mid w t=t(w \phi)\right\rangle$ be the free-by-cyclic group defined by ϕ.
- Collecting t^{\prime} 's to the left, we have usual normal forms $t^{r} w$, with $r \in \mathbb{Z}, w \in F_{n}$.

PART I: A positive solution to the conjugacy problem for free-by-cyclic groups.

The motivation to study this concept was that allowed us to solve the conjugacy problem for free-by-cyclic groups.

- Let $F_{n}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be the free group on $\left\{x_{1}, \ldots, x_{n}\right\}(n \geq 2)$.
- Let $M_{\phi}=\left\langle x_{1}, \ldots, x_{n}, t \mid w t=t(w \phi)\right\rangle$ be the free-by-cyclic group defined by ϕ.
- Collecting t^{\prime} 's to the left, we have usual normal forms $t^{r} w$, with $r \in \mathbb{Z}, w \in F_{n}$.

Proposition. (Bogopolski, Martino, Maslakova, V.) If $T C P\left(F_{n}\right)$ solvable, then $C P\left(M_{\phi}\right)$ solvable.

Proposition. (Bogopolski, Martino, Maslakova, V.) If $\operatorname{TCP}\left(F_{n}\right)$ solvable, then $C P\left(M_{\phi}\right)$ solvable.

Proof. Let $t^{r} u, t^{s} v, t^{k} g$ be arbitrary elements in M_{ϕ}.

- $\left(g^{-1} t^{-k}\right)\left(t^{r} u\right)\left(t^{k} g\right)=t^{r}\left(g \phi^{r}\right)^{-1} t^{-k} u t^{k} g=t^{r}\left(g \phi^{r}\right)^{-1}\left(u \phi^{k}\right) g$.

Proposition. (Bogopolski, Martino, Maslakova, V.) If $\operatorname{TCP}\left(F_{n}\right)$ solvable, then $C P\left(M_{\phi}\right)$ solvable.

Proof. Let $t^{r} u, t^{s} v, t^{k} g$ be arbitrary elements in M_{ϕ}.

- $\left(g^{-1} t^{-k}\right)\left(t^{r} u\right)\left(t^{k} g\right)=t^{r}\left(g \phi^{r}\right)^{-1} t^{-k} u t^{k} g=t^{r}\left(g \phi^{r}\right)^{-1}\left(u \phi^{k}\right) g$.
$t^{r} u$ and $t^{s} v$
conj. in $M_{\phi}$$\Longleftrightarrow \quad \begin{aligned} & r=s \\ & v \sim_{\phi^{r}}\left(u \phi^{k}\right) \text { for some } k \in \mathbb{Z} .\end{aligned}$

Proposition. (Bogopolski, Martino, Maslakova, V.) If $T C P\left(F_{n}\right)$ solvable, then $C P\left(M_{\phi}\right)$ solvable.

Proof. Let $t^{r} u, t^{s} v, t^{k} g$ be arbitrary elements in M_{ϕ}.

- $\left(g^{-1} t^{-k}\right)\left(t^{r} u\right)\left(t^{k} g\right)=t^{r}\left(g \phi^{r}\right)^{-1} t^{-k} u t^{k} g=t^{r}\left(g \phi^{r}\right)^{-1}\left(u \phi^{k}\right) g$.
$t^{r} u$ and $t^{s} v$
conj. in $M_{\phi}$$\Longleftrightarrow \quad \begin{aligned} & r=s \\ & v \sim_{\phi^{r}}\left(u \phi^{k}\right) \text { for some } k \in \mathbb{Z} .\end{aligned}$
- To reduce to finitely many k 's, note that $u \sim_{\phi} u \phi$ (because $\left.u=(u \phi)^{-1}(u \phi) u\right)$ and so,

$$
\begin{aligned}
& t^{r} u \text { and } t^{s} v \\
& \text { conj. in } M_{\phi}
\end{aligned} \Longleftrightarrow \quad \begin{aligned}
& r=s \\
& v \sim_{\phi^{r}}\left(u \phi^{k}\right) \text { for some } k=0, \ldots, r-1 .
\end{aligned}
$$

- Hence, $C P\left(M_{\phi}\right)$ reduces to finitely many checks of $T C P\left(F_{n}\right)$.
- ... except that this is wrong for $r=0$, where there still is a parameter with infinitely many values:
u and v
conj. in M_{ϕ}

- ... except that this is wrong for $r=0$, where there still is a parameter with infinitely many values:

$$
\begin{gathered}
u \text { and } v \\
\text { conj. in } M_{\phi}
\end{gathered} \Longleftrightarrow \quad \Longleftrightarrow \sim u \phi^{k} \text { for some } k \in \mathbb{Z} \text {. }
$$

- This is precisely Brinkmann's result:

Theorem. Given $\phi: F_{n} \rightarrow F_{n}$ and $u, v \in F_{n}$, it is decidable whether $v \sim u \phi^{k}$ for some $k \in \mathbb{Z}$.
proved using train tracks, and providing a complicated algorithm. This completes the proof. \square

Theorem. (Bogopolski, Martino, Maslakova, V.)
$T C P\left(F_{n}\right)$ is solvable.

Theorem. (Bogopolski, Martino, Maslakova, V.)
$T C P\left(F_{n}\right)$ is solvable.
Proof. Let $\phi: F_{n} \rightarrow F_{n}$, and $u, v \in F_{n}$ be given.

Theorem. (Bogopolski, Martino, Maslakova, V.)
$T C P\left(F_{n}\right)$ is solvable.

Proof. Let $\phi: F_{n} \rightarrow F_{n}$, and $u, v \in F_{n}$ be given.

- Extend ϕ to ϕ^{\prime} as follows: $\begin{aligned} \phi^{\prime}: F_{n} *\langle z\rangle & \longrightarrow F_{n} *\langle z\rangle . \\ z & \mapsto \\ & u z u^{-1}\end{aligned}$

Theorem. (Bogopolski, Martino, Maslakova, V.)
$T C P\left(F_{n}\right)$ is solvable.
Proof. Let $\phi: F_{n} \rightarrow F_{n}$, and $u, v \in F_{n}$ be given.

- Extend ϕ to ϕ^{\prime} as follows: $\begin{aligned} \phi^{\prime}: F_{n} *\langle z\rangle & \longrightarrow F_{n} *\langle z\rangle . \\ z & \mapsto u z u^{-1}\end{aligned}$
- Claim: $u \sim_{\phi} v \Leftrightarrow F i x\left(\phi^{\prime} \gamma_{v}\right)$ contains an element of the form $g^{-1} z g$ with $g \in F_{n}$. In this case, g is a valid twisted conjugator.

Theorem. (Bogopolski, Martino, Maslakova, V.) $T C P\left(F_{n}\right)$ is solvable.

Proof. Let $\phi: F_{n} \rightarrow F_{n}$, and $u, v \in F_{n}$ be given.

- Extend ϕ to ϕ^{\prime} as follows: $\phi^{\prime}: F_{n} *\langle z\rangle \longrightarrow F_{n} *\langle z\rangle$.

$$
z \quad \longmapsto \quad u z u^{-1}
$$

- Claim: $u \sim_{\phi} v \Leftrightarrow \operatorname{Fix}\left(\phi^{\prime} \gamma_{v}\right)$ contains an element of the form $g^{-1} z g$ with $g \in F_{n}$. In this case, g is a valid twisted conjugator.

In fact, if $v=(g \phi)^{-1} u g$ for some $g \in F_{n}$, then

$$
\begin{aligned}
\left(g^{-1} z g\right) \phi^{\prime} \gamma_{v} & =v^{-1}(g \phi)^{-1} u z u^{-1}(g \phi) v \\
& =g^{-1} u^{-1}(g \phi)(g \phi)^{-1} u z u^{-1}(g \phi)(g \phi)^{-1} u g \\
& =g^{-1} z g .
\end{aligned}
$$

- So the algorithm is as follows:
- compute $\phi^{\prime} \gamma_{v}$,
- compute generators for Fix $\left(\phi^{\prime} \gamma_{v}\right)$ (Maslakova, using train tracks again),
- draw Stallings graph for $\operatorname{Fix}\left(\phi^{\prime} \gamma_{v}\right)$,
- check whether \exists loop labelled z and connected to basepoint with a path not using z 's.
- So the algorithm is as follows:
- compute $\phi^{\prime} \gamma_{v}$,
- compute generators for Fix $\left(\phi^{\prime} \gamma_{v}\right)$ (Maslakova, using train tracks again),
- draw Stallings graph for $\operatorname{Fix}\left(\phi^{\prime} \gamma_{v}\right)$,
- check whether \exists loop labelled z and connected to basepoint with a path not using z^{\prime} s.

Remark. Checking whether Fix $\left(\phi^{\prime} \gamma_{v}\right)$ contains an element of the form $g^{-1} z g$ seems much easier (!?) than computing the full Fix $\left(\phi^{\prime} \gamma_{v}\right)$.

PART II: Extension of the techniques to a bigger class of groups.

Consider an algorithmic short exact sequence of groups:

$$
1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
$$

- everything is given by gen's and rel's,
- can compute β-preimages in G,
- can compute α-preimages of elements in G mapping to 1_{H}.

For every $g \in G$, consider $\psi_{g}: F \rightarrow F, x \mapsto g^{-1} x g$.
The action subgroup is $A_{G}=\left\{\psi_{g} \mid g \in G\right\} \leq \operatorname{Aut}(F)$.

Theorem. Let $1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1$ be an algorithmic short exact sequence of groups such that
(i) $T C P(F)$ is solvable,
(ii) $C P(H)$ is solvable, and
(iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h, 1}, \ldots, z_{h, t_{h}} \in H$ such that

$$
C_{H}(h)=\langle h\rangle z_{h, 1} \sqcup \cdots \sqcup\langle h\rangle z_{h, t_{h}}
$$

(in particular, $\langle h\rangle$ has finite index in $C_{H}(h)$).
Then,
$C P(G)$ is solvable $\Longleftrightarrow A_{G} \leq \operatorname{Aut}(F)$ is orbit decidable.

Proof. $C P(G)$ splits into two subproblems:

- given $u, v \in F$ decide whether they are conjugate in G : this is orbit decidability of $A_{G} \leq \operatorname{Aut}(F)$.

Proof. $C P(G)$ splits into two subproblems:

- given $u, v \in F$ decide whether they are conjugate in G : this is orbit decidability of $A_{G} \leq \operatorname{Aut}(F)$.
- given $g, g^{\prime} \in G \backslash F$ decide whether they are conjugate in G. Let us solve this using (i)-(iii):

Proof. $C P(G)$ splits into two subproblems:

- given $u, v \in F$ decide whether they are conjugate in G : this is orbit decidability of $A_{G} \leq \operatorname{Aut}(F)$.
- given $g, g^{\prime} \in G \backslash F$ decide whether they are conjugate in G. Let us solve this using (i)-(iii):
- check whether $g \beta, g^{\prime} \beta$ are conjugate in H; if not, g, g^{\prime} are not conjugate in G either.

Proof. $C P(G)$ splits into two subproblems:

- given $u, v \in F$ decide whether they are conjugate in G : this is orbit decidability of $A_{G} \leq \operatorname{Aut}(F)$.
- given $g, g^{\prime} \in G \backslash F$ decide whether they are conjugate in G. Let us solve this using (i)-(iii):
- check whether $g \beta, g^{\prime} \beta$ are conjugate in H; if not, g, g^{\prime} are not conjugate in G either.
- Otherwise, compute $u \in G$ such that $(u \beta)^{-1}(g \beta)(u \beta)=g^{\prime} \beta$.

Proof. $C P(G)$ splits into two subproblems:

- given $u, v \in F$ decide whether they are conjugate in G : this is orbit decidability of $A_{G} \leq \operatorname{Aut}(F)$.
- given $g, g^{\prime} \in G \backslash F$ decide whether they are conjugate in G. Let us solve this using (i)-(iii):
- check whether $g \beta, g^{\prime} \beta$ are conjugate in H; if not, g, g^{\prime} are not conjugate in G either.
- Otherwise, compute $u \in G$ such that $(u \beta)^{-1}(g \beta)(u \beta)=g^{\prime} \beta$.
- Changing g to g^{u}, we can assume $g \beta=g^{\prime} \beta \neq 1_{H}$. Compute $f \in F$ such that $g^{\prime}=g f$.

Proof. $C P(G)$ splits into two subproblems:

- given $u, v \in F$ decide whether they are conjugate in G : this is orbit decidability of $A_{G} \leq \operatorname{Aut}(F)$.
- given $g, g^{\prime} \in G \backslash F$ decide whether they are conjugate in G. Let us solve this using (i)-(iii):
- check whether $g \beta, g^{\prime} \beta$ are conjugate in H; if not, g, g^{\prime} are not conjugate in G either.
- Otherwise, compute $u \in G$ such that $(u \beta)^{-1}(g \beta)(u \beta)=g^{\prime} \beta$.
- Changing g to g^{u}, we can assume $g \beta=g^{\prime} \beta \neq 1_{H}$. Compute $f \in F$ such that $g^{\prime}=g f$.
- Compute the centralizer of $g \beta \neq 1$ in H, and preimages y_{1}, \ldots, y_{t} in $G: C_{H}(g \beta)=\langle g \beta\rangle\left(y_{1} \beta\right) \sqcup \cdots \sqcup\langle g \beta\rangle\left(y_{t} \beta\right)$.
- Compute $p_{i} \in F$ such that $y_{i}^{-1} g y_{i}=g p_{i}$ ($g \beta$ and $y_{i} \beta$ commute in H).
- Compute $p_{i} \in F$ such that $y_{i}^{-1} g y_{i}=g p_{i}$ ($g \beta$ and $y_{i} \beta$ commute in H).
- All possible conjugators from g to g^{\prime} in G commute with $g \beta=$ $g^{\prime} \beta$ in H, so they are of the form $g^{r} y_{i} x$, for some $r \in \mathbb{Z}, i=1, \ldots, t$ and $x \in F$. Now,

$$
\left(x^{-1} y_{i}^{-1} g^{-r}\right) g\left(g^{r} y_{i} x\right)=x^{-1}\left(y_{i}^{-1} g y_{i}\right) x=x^{-1} g p_{i} x
$$

- Compute $p_{i} \in F$ such that $y_{i}^{-1} g y_{i}=g p_{i}$ ($g \beta$ and $y_{i} \beta$ commute in H).
- All possible conjugators from g to g^{\prime} in G commute with $g \beta=$ $g^{\prime} \beta$ in H, so they are of the form $g^{r} y_{i} x$, for some $r \in \mathbb{Z}, i=1, \ldots, t$ and $x \in F$. Now,

$$
\left(x^{-1} y_{i}^{-1} g^{-r}\right) g\left(g^{r} y_{i} x\right)=x^{-1}\left(y_{i}^{-1} g y_{i}\right) x=x^{-1} g p_{i} x
$$

and

$$
\begin{aligned}
x^{-1} g p_{i} x=g f \Longleftrightarrow & g^{-1} x^{-1} g p_{i} x=f \\
& \left(x \varphi_{g}\right)^{-1} p_{i} x=f \\
& f \sim_{\varphi_{g}} p_{i},
\end{aligned}
$$

which is finitely many checks of $T C P(F)$.

This applies, for example, to algorithmic short exact sequences

$$
1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
$$

where

- F is virt. abelian, virt. free, virt. surface, virt. polycyclic and
- H is hyperbolic + torsion elements having finite centralizers.

The free-by-free case

Take $F=\left\langle x_{1}, \ldots, x_{n} \mid\right\rangle, H=\left\langle t_{1}, \ldots, t_{m} \mid\right\rangle, \varphi_{1}, \ldots, \varphi_{m} \in \operatorname{Aut}\left(F_{n}\right)$, and consider
$1 \longrightarrow F \longrightarrow G=\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid x_{i} t_{j}=t_{j}\left(x_{i} \varphi_{j}\right)\right\rangle \longrightarrow H \longrightarrow 1$

The free-by-free case

Take $F=\left\langle x_{1}, \ldots, x_{n} \mid\right\rangle, H=\left\langle t_{1}, \ldots, t_{m} \mid\right\rangle, \varphi_{1}, \ldots, \varphi_{m} \in \operatorname{Aut}\left(F_{n}\right)$, and consider
$1 \longrightarrow F \longrightarrow G=\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid x_{i} t_{j}=t_{j}\left(x_{i} \varphi_{j}\right)\right\rangle \longrightarrow H \longrightarrow 1$
$C P(G)$ is solvable $\Longleftrightarrow A_{G}=\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \leq \operatorname{Aut}(F)$ is O.D.

The free-by-free case

Take $F=\left\langle x_{1}, \ldots, x_{n} \mid\right\rangle, H=\left\langle t_{1}, \ldots, t_{m} \mid\right\rangle, \varphi_{1}, \ldots, \varphi_{m} \in \operatorname{Aut}\left(F_{n}\right)$, and consider
$1 \longrightarrow F \longrightarrow G=\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid x_{i} t_{j}=t_{j}\left(x_{i} \varphi_{j}\right)\right\rangle \longrightarrow H \longrightarrow 1$
$C P(G)$ is solvable $\Longleftrightarrow A_{G}=\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \leq A u t(F)$ is O.D.

Theorem. (Brinkmann) Cyclic subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.

Corollary. Free-by-cyclic groups have solvable conjugacy problem.

The free-by-free case

Take $F=\left\langle x_{1}, \ldots, x_{n} \mid\right\rangle, H=\left\langle t_{1}, \ldots, t_{m} \mid\right\rangle, \varphi_{1}, \ldots, \varphi_{m} \in \operatorname{Aut}\left(F_{n}\right)$, and consider
$1 \longrightarrow F \longrightarrow G=\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid x_{i} t_{j}=t_{j}\left(x_{i} \varphi_{j}\right)\right\rangle \longrightarrow H \longrightarrow 1$
$C P(G)$ is solvable $\Longleftrightarrow A_{G}=\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle \leq A u t(F)$ is O.D.

Theorem. (Brinkmann) Cyclic subgroups of $A u t\left(F_{n}\right)$ are O.D.

Corollary. Free-by-cyclic groups have solvable conjugacy problem.

Theorem. (Whitehead) The full $\operatorname{Aut}\left(F_{n}\right)$ is O.D.

Corollary. If $\left\langle\varphi_{1}, \ldots, \varphi_{m}\right\rangle=\operatorname{Aut}\left(F_{n}\right)$ then G has solvable conjugacy problem.

Proposition. Every f.g. subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Corollary. Every F_{2}-by-free group G has solvable conjugacy problem.

But...

Proposition. Every f.g. subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Corollary. Every F_{2}-by-free group G has solvable conjugacy problem.

But...

Theorem. (Miller) There exists a free-by-free group G with $C P(G)$ unsolvable.

Corollary. There exists a 14-generated subgroup $A \leq A u t\left(F_{3}\right)$ which is orbit undecidable.

The abelian-by-free case

$$
1 \longrightarrow F=\mathbb{Z}^{n} \longrightarrow G \longrightarrow H=F_{n} \longrightarrow 1
$$

Proposition. Every f.g. subgroup of $\operatorname{Aut}\left(\mathbb{Z}_{2}\right)=G L_{2}(\mathbb{Z})$ is O.D.
Corollary. Every \mathbb{Z}^{2}-by-free group G has $C P(G)$ solvable. But...

The abelian-by-free case

$$
1 \longrightarrow F=\mathbb{Z}^{n} \longrightarrow G \longrightarrow H=F_{n} \longrightarrow 1
$$

Proposition. Every f.g. subgroup of Aut $\left(\mathbb{Z}_{2}\right)=G L_{2}(\mathbb{Z})$ is O.D.

Corollary. Every \mathbb{Z}^{2}-by-free group G has $C P(G)$ solvable.

But...

Theorem. There exists a subgroup of $G L_{4}(\mathbb{Z})$ which is orbit undecidable.

Corollary. There exists a \mathbb{Z}^{4}-by-free group G with $C P(G) \underline{\text { unsolvable. }}$

Theorem. There exists a subgroup of $G L_{4}(\mathbb{Z})$ which is orbit undecidable.

Theorem. There exists a subgroup of $G L_{4}(\mathbb{Z})$ which is orbit undecidable.

Proof. Consider $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq 24 G L_{2}(\mathbb{Z})$.

- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.

Theorem. There exists a subgroup of $G L_{4}(\mathbb{Z})$ which is orbit undecidable.

Proof. Consider $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq 24 G L_{2}(\mathbb{Z})$.

- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.
- $\langle P, Q\rangle \cap \operatorname{Stab}(1,0)=\left\langle\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right\rangle$.

Theorem. There exists a subgroup of $G L_{4}(\mathbb{Z})$ which is orbit undecidable.

Proof. Consider $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq 24 G L_{2}(\mathbb{Z})$.

- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.
- $\langle P, Q\rangle \cap \operatorname{Stab}(1,0)=\left\langle\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right\rangle$.
- Choose a free subgroup $\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that $\langle P, Q\rangle \cap \operatorname{Stab}(1,0)=\{I\}$ and consider

$$
B=\left\langle\left(\begin{array}{c|c}
P^{\prime} & 0 \\
\hline 0 & I
\end{array}\right),\left(\begin{array}{c|c}
Q^{\prime} & 0 \\
\hline 0 & I
\end{array}\right),\left(\begin{array}{c|c}
I & 0 \\
\hline 0 & P^{\prime}
\end{array}\right),\left(\begin{array}{c|c}
I & 0 \\
\hline 0 & Q^{\prime}
\end{array}\right)\right\rangle \leq G L_{4}(\mathbb{Z}) .
$$

Note that $B \simeq F_{2} \times F_{2}$.

- Write $v=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(v)=\{I\}$
- Write $v=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(v)=\{I\}$
- Take $A \leq B$ with unsolvable membership problem.
- Write $v=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(v)=\{I\}$
- Take $A \leq B$ with unsolvable membership problem.
- Claim: $A \leq G L_{4}(\mathbb{Z})$ is orbit undecidable.

In fact, given $\varphi \in B \leq G L_{4}(\mathbb{Z})$ let $w=v \varphi$ and

$$
\{\phi \in B \mid v \phi=w\}=B \cap(\operatorname{Stab}(v) \cdot \varphi)=(B \cap \operatorname{Stab}(v)) \cdot \varphi=\{\varphi\} .
$$

So, orbit decidability for A would imply membership problem for $A \leq B$.

Questions:

Question. Does there exist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Questions:

Question. Does there exist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Question. Does there exist a \mathbb{Z}^{3}-by-free group G with $C P(G)$ unsolvable ?

Questions:

Question. Does there exist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Question. Does there exist a \mathbb{Z}^{3}-by-free group G with $C P(G)$ unsolvable ?

Question. Find more groups with twisted conjugacy problem

Questions:

Question. Does there exist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Question. Does there exist a \mathbb{Z}^{3}-by-free group G with $C P(G)$ unsolvable ?

Question. Find more groups with twisted conjugacy problem

Question. Can the twisted conjugacy problem be useful for cryptography?

THANKS

