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Gromov’s claim

Claim (Gromov ’87)
Most finite presentations of groups, present an hyperbolic infinite group.

Stated in his influential paper on hyperbolic groups:
“Essays in group theory”, 75-263, Springer, 1987,
no proof, only the idea,
the meaning of “most” is not precise,
statement made precise and proved, later by other authors.
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The meaning of “most”

Let X be an infinite set. What is the meaning of sentences like “most
elements in X have property P” ?

Define a notion of size, |·| : X → N, with finite preimages.
Define the balls: B(n) = {x ∈ X | |x | 6 n} (which are finite).

Count the proportion ρn = |{x∈B(n)|x satisfies P}|
|B(n)| = |P∩B(n)|

|B(n)| .

Define the density of P as ρ = limn→∞ ρn (∈ [0,1] if it exists).
P is generic (or generically many elements satisfy P) if ρ = 1.
P is negligible if ρ = 0.

Of course, everything depends on the chosen size function, i.e. on the
direction to infinity inside X .
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Classical example: visible points

Definition
A point (x1, . . . , xk ) ∈ Zk is visible if gcd(x1, . . . , xk ) = 1.

Theorem (Mertens, 1874 (case k = 2))
The density of visible points in Zk is 1/ζ(k), where ζ(k) =

∑∞
n=1

1
nk is the

Riemann zeta-function (with respect to ||·||∞).

In particular, visible points in the plane have density 6
π2 .

With artificial definitions of size, one can force it to be any α ∈ [0,1].
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Arzhantseva-Ol’shanskii’s proof

Fix r > 2 and k > 1.
Consider the free group FA = 〈a1, . . . ,ar | −〉.
In FA we have the natural notion of size and balls.
For w1, . . . ,wk ∈ FA, let Gw1,...,wk = 〈a1, . . . ,ar | w1, . . . ,wk 〉.

Theorem (Arzhantseva-Ol’shanskii, ’96)

∃ lim
n→∞

|{(w1, . . . ,wk ) ∈ B(n)k | Gw1,...,wk is infinite hyperbolic }|
|B(n)|k

= 1.

Hence, generically many presentations present an infinite hyperbolic
group.
The proof is a detailed counting, using the notion of small cancelation.
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Comments

This fits the algebraic intuition: the longer the relations are, the closest
will the group be to a free group.
Problem-1: this counts r -generated, k -related groups, with r and k fixed.
Problem-2: this counts presentations, not really groups !
maybe different k -tuples (w1, . . . ,wk ) 6= (w ′1, . . . ,w

′
k ) generate the same

subgroup 〈w1, . . . ,wk 〉 = 〈w ′1, . . . ,w ′k 〉.
maybe 〈w1, . . . ,wk 〉 6= 〈w ′1, . . . ,w ′k 〉, but they have the same normal
closure 〈〈w1, . . . ,wk 〉〉 = 〈〈w ′1, . . . ,w ′k 〉〉. .
maybe even 〈〈w1, . . . ,wk 〉〉 6= 〈〈w ′1, . . . ,w ′k 〉〉, but
〈a1, . . . ,ar | w1, . . . ,wk 〉 ' 〈a1, . . . ,ar | w ′1, . . . ,w ′k 〉.
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A new point of view

Observation
Let N = 〈w1, . . . ,wk 〉 6 FA. Then,

〈a1, . . . ,ar | w1, . . . ,wk 〉 ' 〈a1, . . . ,ar | N〉.

and let us count f.g. subgroups N of FA, instead of counting k -tuples of words.

Advantages:

r still fixed, but not k .
less redundancy.
it will be an equally natural way of counting.

... but with very different results... this is a very different direction to infinity.
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Outline

1 A claim due to Gromov

2 Arzhantseva-Ol’shanskii’s proof

3 A new point of view

4 Stallings’ graphs

5 Counting Stallings’ graphs: partial injections

6 Most groups are trivial
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Stallings automata

Definition
A Stallings automaton is a finite A-labeled oriented graph with a distinguished
vertex, (X , v), such that:

1- X is connected,
2- no vertex of degree 1 except possibly v (X is a core-graph),
3- no two edges with the same label go out of (or in to) the same vertex.

NO : •

a

��

b

��
• c // •

a
** •

b

XX

c

jj

YES : •

a

��

b

��
•

a
** •

b

XX

c

jj
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Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),
551-565,

Stallings (building on previous works) gave a bijection between finitely
generated subgroups of FA and Stallings automata:

{f.g. subgroups of FA} ←→ {Stallings automata over A},

which is crucial for the modern understanding of the lattice of subgroups of FA.
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Reading the subgroup from the automata

Definition
To any given (Stallings) automaton (X , v), we associate its fundamental
group:

π(X , v) = { labels of closed paths at v} 6 FA,

clearly, a subgroup of FA.

•

a

��

X= b

��
•

a
** •

b

XX

c

jj

π(X , •) = {1, a, a−1, bab, bc−1b,
babab−1cb−1, . . .}

π(X , •) 63 bc−1bcaa

Membership problem in π(X , •) is solvable.
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A basis for π(X , v)

Proposition
For every Stallings automaton (X , v), the group π(X , v) is free of rank
rk(π(X , v)) = 1− |VX |+ |EX |.

Proof:
Take a maximal tree T in X .
Write T [p,q] for the geodesic (i.e. the unique reduced path) in T from p
to q.
For every e ∈ EX − ET , xe = label(T [v , ιe] · e · T [τe, v ]) belongs to
π(X , v).
Not difficult to see that {xe | e ∈ EX − ET} is a basis for π(X , v).
And, |EX − ET | = |EX | − |ET |

= |EX | − (|VT | − 1) = 1− |VX |+ |EX |. �
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Example

•

a

��

b

��
•

a
** •

b

XX

c

jj

H = 〈 〉
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H = 〈a, 〉
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Example
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H = 〈a, bab, 〉
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Example

•

a

��

b

��
•

a
** •

b

XX

c

jj

H = 〈a, bab, b−1cb−1〉
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Example

•

a

��

b

��
•

a
** •

b

XX

c

jj

H = 〈a, bab, b−1cb−1〉
rk(H) = 1− 3 + 5 = 3.
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Example-2

· · · b // • b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
· · ·

Fℵ0 ' H = 〈. . . , b−2ab2, b−1ab, a, bab−1, b2ab−2, . . .〉 6 F2.
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Constructing the automata from the subgroup

In any automaton containing the following situation, for x ∈ A±1,

• x //

x
&&

u

v

we can fold and identify vertices u and v to obtain

• x // u = v .

This operation, (X , v) (X ′, v), is called a Stallings folding.
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Constructing the automata from the subgroup

Lemma (Stallings)
If (X , v) (X ′, v ′) is a Stallings folding then π(X , v) = π(X ′, v ′).

Given a f.g. subgroup H = 〈w1, . . .wm〉 6 FA (we assume wi are reduced
words), do the following:

1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton,

denoted Γ(H).
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Example: H = 〈baba−1,aba−1,aba2〉

• a // •

b

��
• a // •

b

OO

a //

a

��

a

��

a

��

•

•

a

??

•
b

oo • •
b

oo

Flower(H)

Enric Ventura (UPC) How are the majority of groups? It depends on the glasses in use... October 18th, 2012 25 / 46



Example: H = 〈baba−1,aba−1,aba2〉

• a // •

b

��
• a // •

b

OO

a
//

a

��

a

��

a

��

•

•

a

??

•
b

oo • •
b

oo

Flower(H)

Enric Ventura (UPC) How are the majority of groups? It depends on the glasses in use... October 18th, 2012 26 / 46



Example: H = 〈baba−1,aba−1,aba2〉
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b

��
•

b
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a // •

b

��

b
pp

•

a

OO

•a
oo

Folding #1
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Example: H = 〈baba−1,aba−1,aba2〉

•

a

��
•

b

OO

a // •

a

��

b
pp

•

a
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Folding #2.
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Example: H = 〈baba−1,aba−1,aba2〉
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Folding #2.
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Example: H = 〈baba−1,aba−1,aba2〉

• a //
b

.. •

a

��

b
pp

•

a

OO

Folding #3. Γ(H)

By Stallings Lemma, π(Γ(H), •) = 〈baba−1,aba−1,aba2〉
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Example: H = 〈baba−1,aba−1,aba2〉

• a //
b

.. •

a

��

b
pp

•

a

OO

Folding #3. Γ(H)

By Stallings Lemma, π(Γ(H), •) = 〈baba−1,aba−1,aba2〉
= 〈b,aba−1,a3〉

Enric Ventura (UPC) How are the majority of groups? It depends on the glasses in use... October 18th, 2012 32 / 46



Local confluence
It can be shown that

Proposition
The automaton Γ(H) does not depend on the sequence of foldings.

Proposition
The automaton Γ(H) does not depend on the generators of H.

Theorem
The following is a bijection:

{f.g. subgroups of FA} ←→ {Stallings automata}
H → Γ(H)

π(X , v) ← (X , v)
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Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)
Every subgroup of FA is free.

Finite automata work for the finitely generated case, but everything
extends easily to the general case (using infinite graphs).

The original proof (1920’s) is combinatorial and much more technical.
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2 Arzhantseva-Ol’shanskii’s proof

3 A new point of view
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5 Counting Stallings’ graphs: partial injections
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Counting Stallings graphs

From now on, let us think presentations as

〈a1, . . . ,ar | Γ〉,

where Γ is a Stallings graph.

The natural size function to consider is the number of vertices:

| · | : {Stallings graphs} → N,
Γ 7→ #V Γ.

Goal: Count (estimate) the number of Stallings graphs with 6 n vertices,
satisfying a certain property P.
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Stallings’ graphs as partial injections

Definition
Let Γ be a Stallings graph. Every letter in A determines a partial injection of

the set of vertices V Γ: a(i) = j iff i a // j .

1

a

��

Γ= b

��
2

a
++ 3

b

WW

c

kk

a : V → V
1 7→ 1
2 7→ 3
3

b : V → V
1 7→ 2
2
3 7→ 1

c : V → V
1
2
3 7→ 2

Observation
And the r partial injections a1, . . . ,ar determine back the graph Γ.
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Stallings’ graphs as partial injections

Definition
Let In be the set of partial injections of [n] = {1,2, . . . ,n} (this is a monoid
containing the symmetric group Sn).

A Stallings graph (over A) with n vertices can be thought as a r-tuple of partial
injections on the set [n] (taking 1 as the base-point), σ ∈ Ir

n, such that
the corresponding graph Γ(σ) is connected,
and without degree 1 vertices, except possibly the base-point.

Observation
There are at most |In|r Stallings graphs with n vertices (over A).
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Stallings’ graphs as partial injections

Theorem (Bassino, Nicaud, Weil, 2008)

a) |{Γ(σ) | σ∈Inr}|
|In|r tends to 1.

b) |{σ∈Inr | Γ(σ) not connected }|
|In|r = O( 1

nr−1 ).

c) |{σ∈Inr | Γ(σ) has a deg. 1 vertex 6= bspt.}|
|In|r = o(1).

Corollary
Generically, a Stallings graph (over A) with n vertices is just a r -tuple of partial
injections on [n], σ ∈ Inr .

Hence, counting Stallings graphs reduces to count partial injections: a purely
combinatorial matter.
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Malnormality

With the word-based distribution malnormality is exponentially generic ...

Proposition

∃ lim
n→∞

|{(w1, . . . ,wk ) ∈ B(n)k | 〈w1, . . . ,wk 〉 is malnormal in F (A)}|
|B(n)|k

= 1

exponentially fast.

... but in the graph-based distribution it is (exponentially?) negligible ...

Proposition
|{σ ∈ Ir

n | π(Γ(σ)) is malnormal in F (A)}|
|Ik

n |
= O(n−r/2).
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Outline

1 A claim due to Gromov

2 Arzhantseva-Ol’shanskii’s proof

3 A new point of view

4 Stallings’ graphs

5 Counting Stallings’ graphs: partial injections

6 Most groups are trivial
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Permutations and fragmented permutations

Observation
Any partial injection σ ∈ In decomposes in orbits of two types: closed and
open (i.e. cycles and segments).

Definition
A partial injection σ ∈ In is called a

permutation if all its orbits are closed,
fragmented permutation if all its orbits are open.

Let Sn and Jn, resp., be the sets of permutations and fragmented
permutations in In.

Observation
Every partial injection is the disjoint union of a permutation and a fragmented
permutation. In particular, |In| =

∑n
k=0

(n
k

)
|Sk ||Jn−k | =

∑n
k=0

n!
(n−k)! |Jn−k |.
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Permutations and fragmented permutations

Definition
a) The EGS for partial injections: I(z) =

∑∞
n=0

|In|
n! zn.

b) The EGS for permutations: S(z) =
∑∞

n=0
|Sn|
n! zn =

∑∞
n=0 zn = 1

1−z .
c) The EGS for fragmented permutations: J(z) =

∑∞
n=0

|Jn|
n! zn.

Theorem
a) I(z) = 1

1−z e
z

1−z = 1 + 2z + 7
2 z2 + 17

3 z3 + · · · .
b) |In|n! = e2

√
n

2
√
πe n−

1
4 (1 + o(1)).

Theorem
a) J(z) = e

z
1−z = 1 + z + 3

2 z2 + 13
6 z3 + · · · .

b) |Jn|
n! = e2

√
n

2
√
πe n−

3
4 (1 + o(1)).

Hence, |Jn|
|In| = O( 1

n1/2 ).
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Most groups are trivial

Definition
Let σ ∈ In. Define gcd(σ) as the gcd of the lengths of the closed orbits of σ (if
σ ∈ Jn, put gcd(σ) =∞).

Key observation
Let σ = (σ1, . . . , σr ) ∈ Inr , let Γ(σ) be the corresponding (Stallings) graph, and
let G = 〈a1, . . . ,ar | π(Γ(σ))〉. We have,

if gcd(σi ) = 1 then ai = 1 in G,
if gcd(σ1) = · · · = gcd(σr ) = 1 then G = 1.
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Most groups are trivial

Theorem (Bassino, Martino, Nicaud, V., Weil, 2010)
|{σ ∈ In | gcd(σ) > 1}|

|In|
= O(

1
n1/6 )

Corollary (Bassino, Martino, Nicaud, V., Weil, 2010)
|{σ ∈ Inr | Γ(σ) St. gr. & G 6= 1}|

|Ir
n|

= O(
1

n1/6 ).
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Thanks
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