The conjugacy problem for some extensions of groups

E. Ventura
(Universitat Politècnica Catalunya)
June 18th, 2008

Based on
O. Bogopolski, A. Martino, O. Maslakova, E.V. The conjugacy problem is solvable in free-by-cyclic groups, Bull. London Math. Soc. 38 (2006), 787-794.
and
O. Bogopolski, A. Martino, E.V. Orbit decidability and the conjugacy problem for some extensions of groups, to appear in Trans. AMS.

The conjugacy problem for groups

Let G be a finitely presented (f.p.) group, usually given as

$$
G=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle .
$$

The conjugacy problem for $G(\mathrm{CP}(G))$ consists on, given words $u=u\left(x_{1}, \ldots, x_{n}\right)$ and $v=v\left(x_{1}, \ldots, x_{n}\right)$ decide whether they are conjugate in G, denoted $u \sim v$, i.e. whether

$$
g^{-1} u g={ }_{G} v,
$$

for some $g=g\left(x_{1}, \ldots, x_{n}\right)$.

The conjugacy problem for groups

Let G be a finitely presented (f.p.) group, usually given as

$$
G=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle .
$$

The conjugacy problem for $G(\mathrm{CP}(G))$ consists on, given words $u=u\left(x_{1}, \ldots, x_{n}\right)$ and $v=v\left(x_{1}, \ldots, x_{n}\right)$ decide whether they are conjugate in G, denoted $u \sim v$, i.e. whether

$$
g^{-1} u g={ }_{G} v,
$$

for some $g=g\left(x_{1}, \ldots, x_{n}\right)$.
There are f.p. groups (Miller's groups, for example) where this problem is algorithmically unsolvable.

Free-by-cyclic groups

- Let $F_{n}=\left\langle x_{1}, \ldots, x_{n} \mid\right\rangle$ be the free group on $\left\{x_{1}, \ldots, x_{n}\right\}(n \geq 2)$.
- Let $\phi: F_{n} \rightarrow F_{n}$ be an automorphism ($w \mapsto w \phi$).
- The corresponding free-by-cyclic group is defined by

$$
\begin{aligned}
F_{n} \rtimes_{\phi} \mathbb{Z} & =\left\langle x_{1}, \ldots, x_{n}, t \mid t^{-1} w t=w \phi\right\rangle \\
& =\left\langle x_{1}, \ldots, x_{n}, t \mid w t=t(w \phi)\right\rangle .
\end{aligned}
$$

- Collecting t^{\prime} 's to the left, we have usual normal forms, $t^{r} w$, with $r \in \mathbb{Z}, w \in F_{n}$.
- Collecting t^{\prime} 's to the left, we have usual normal forms $t^{r} w$, with $r \in \mathbb{Z}, w \in F_{n}$.

Example. Consider $F_{3}=\langle a, b, c \mid\rangle$ and $\phi: F_{3} \rightarrow F_{3}$ given by $a \mapsto a, b \mapsto b a, c \mapsto b^{-2} c b a$. In $F_{3} \rtimes_{\phi} \mathbb{Z}$ we have

$$
\begin{aligned}
b^{-1} c b t^{-1} a c^{-1} t b^{-1} & = \\
& = \\
& = \\
& = \\
& = \\
& = \\
& = \\
& = \\
& =
\end{aligned}
$$

- Collecting t^{\prime} 's to the left, we have usual normal forms $t^{r} w$, with $r \in \mathbb{Z}, w \in F_{n}$.

Example. Consider $F_{3}=\langle a, b, c \mid\rangle$ and $\phi: F_{3} \rightarrow F_{3}$ given by $a \mapsto a, b \mapsto b a, c \mapsto b^{-2} c b a$. In $F_{3} \rtimes_{\phi} \mathbb{Z}$ we have

$$
\begin{aligned}
b^{-1} c b t^{-1} a c^{-1} t b^{-1} & =b^{-1} c t^{-1} b a^{-1} a c^{-1} t b^{-1} \\
& = \\
& = \\
& = \\
& = \\
& = \\
& =
\end{aligned}
$$

- Collecting t 's to the left, we have usual normal forms $t^{r} w$, with $r \in \mathbb{Z}, w \in F_{n}$.

Example. Consider $F_{3}=\langle a, b, c \mid\rangle$ and $\phi: F_{3} \rightarrow F_{3}$ given by $a \mapsto a, b \mapsto b a, c \mapsto b^{-2} c b a$. In $F_{3} \rtimes_{\phi} \mathbb{Z}$ we have

$$
\begin{aligned}
b^{-1} c b t^{-1} a c^{-1} t b^{-1} & =b^{-1} c t^{-1} b a^{-1} a c^{-1} t b^{-1} \\
& =b^{-1} c t^{-1} b c^{-1} t b^{-1} \\
& = \\
& = \\
& = \\
& = \\
& = \\
& =
\end{aligned}
$$

- Collecting t^{t} s to the left, we have usual normal forms $t^{r} w$, with $r \in \mathbb{Z}, w \in F_{n}$.

Example. Consider $F_{3}=\langle a, b, c \mid\rangle$ and $\phi: F_{3} \rightarrow F_{3}$ given by $a \mapsto a, b \mapsto b a, c \mapsto b^{-2} c b a$. In $F_{3} \rtimes_{\phi} \mathbb{Z}$ we have

$$
\begin{aligned}
& b^{-1} c b t^{-1} a c^{-1} t b^{-1}=b^{-1} c t^{-1} b a^{-1} a c^{-1} t b^{-1} \\
& =b^{-1} c t^{-1} b c^{-1} t b^{-1} \\
& =b^{-1} c t^{-1} b t a^{-1} b^{-1} c^{-1} b^{2} b^{-1} \\
& = \\
& \text { E }
\end{aligned}
$$

$$
\begin{aligned}
& \text { E} \\
& =
\end{aligned}
$$

- Collecting t^{\prime} 's to the left, we have usual normal forms $t^{r} w$, with $r \in \mathbb{Z}, w \in F_{n}$.

Example. Consider $F_{3}=\langle a, b, c \mid\rangle$ and $\phi: F_{3} \rightarrow F_{3}$ given by $a \mapsto a, b \mapsto b a, c \mapsto b^{-2} c b a$. In $F_{3} \rtimes_{\phi} \mathbb{Z}$ we have

$$
\begin{aligned}
b^{-1} c b t^{-1} a c^{-1} t b^{-1} & =b^{-1} c t^{-1} b a^{-1} a c^{-1} t b^{-1} \\
& =b^{-1} c t^{-1} b c^{-1} t b^{-1} \\
& =b^{-1} c t^{-1} b t a^{-1} b^{-1} c^{-1} b^{2} b^{-1} \\
& =b^{-1} c t^{-1} b t a^{-1} b^{-1} c^{-1} b \\
& = \\
& = \\
& = \\
& = \\
& =
\end{aligned}
$$

- Collecting t^{\prime} 's to the left, we have usual normal forms $t^{r} w$, with $r \in \mathbb{Z}, w \in F_{n}$.

Example. Consider $F_{3}=\langle a, b, c \mid\rangle$ and $\phi: F_{3} \rightarrow F_{3}$ given by $a \mapsto a, b \mapsto b a, c \mapsto b^{-2} c b a$. In $F_{3} \rtimes_{\phi} \mathbb{Z}$ we have

$$
\begin{aligned}
b^{-1} c b t^{-1} a c^{-1} t b^{-1} & =b^{-1} c t^{-1} b a^{-1} a c^{-1} t b^{-1} \\
& =b^{-1} c t^{-1} b c^{-1} t b^{-1} \\
& =b^{-1} c t^{-1} b t a^{-1} b^{-1} c^{-1} b^{2} b^{-1} \\
& =b^{-1} c t^{-1} b t a^{-1} b^{-1} c^{-1} b \\
& =b^{-1} c t^{-1} t b a a^{-1} b^{-1} c^{-1} b \\
& = \\
& = \\
& = \\
& =
\end{aligned}
$$

- Collecting t 's to the left, we have usual normal forms $t^{r} w$, with $r \in \mathbb{Z}, w \in F_{n}$.

Example. Consider $F_{3}=\langle a, b, c \mid\rangle$ and $\phi: F_{3} \rightarrow F_{3}$ given by $a \mapsto a, b \mapsto b a, c \mapsto b^{-2} c b a$. In $F_{3} \rtimes_{\phi} \mathbb{Z}$ we have

$$
\begin{aligned}
b^{-1} c b t^{-1} a c^{-1} t b^{-1} & =b^{-1} c t^{-1} b a^{-1} a c^{-1} t b^{-1} \\
& =b^{-1} c t^{-1} b c^{-1} t b^{-1} \\
& =b^{-1} c t^{-1} b t a^{-1} b^{-1} c^{-1} b^{2} b^{-1} \\
& =b^{-1} c t^{-1} b t a^{-1} b^{-1} c^{-1} b \\
& =b^{-1} c t^{-1} t b a a^{-1} b^{-1} c^{-1} b \\
& =b^{-1} c b b^{-1} c^{-1} b \\
& = \\
& = \\
& =
\end{aligned}
$$

- Collecting t^{\prime} 's to the left, we have usual normal forms $t^{r} w$, with $r \in \mathbb{Z}, w \in F_{n}$.

Example. Consider $F_{3}=\langle a, b, c \mid\rangle$ and $\phi: F_{3} \rightarrow F_{3}$ given by $a \mapsto a, b \mapsto b a, c \mapsto b^{-2} c b a$. In $F_{3} \rtimes_{\phi} \mathbb{Z}$ we have

$$
\begin{aligned}
b^{-1} c b t^{-1} a c^{-1} t b^{-1} & =b^{-1} c t^{-1} b a^{-1} a c^{-1} t b^{-1} \\
& =b^{-1} c t^{-1} b c^{-1} t b^{-1} \\
& =b^{-1} c t^{-1} b t a^{-1} b^{-1} c^{-1} b^{2} b^{-1} \\
& =b^{-1} c t^{-1} b t a^{-1} b^{-1} c^{-1} b \\
& =b^{-1} c t^{-1} t b a a^{-1} b^{-1} c^{-1} b \\
& =b^{-1} c b b^{-1} c^{-1} b \\
& =b^{-1} c c^{-1} b \\
& =
\end{aligned}
$$

- Collecting t^{\prime} 's to the left, we have usual normal forms $t^{r} w$, with $r \in \mathbb{Z}, w \in F_{n}$.

Example. Consider $F_{3}=\langle a, b, c \mid\rangle$ and $\phi: F_{3} \rightarrow F_{3}$ given by $a \mapsto a, b \mapsto b a, c \mapsto b^{-2} c b a$. In $F_{3} \rtimes_{\phi} \mathbb{Z}$ we have

$$
\begin{aligned}
b^{-1} c b t^{-1} a c^{-1} t b^{-1} & =b^{-1} c t^{-1} b a^{-1} a c^{-1} t b^{-1} \\
& =b^{-1} c t^{-1} b c^{-1} t b^{-1} \\
& =b^{-1} c t^{-1} b t a^{-1} b^{-1} c^{-1} b^{2} b^{-1} \\
& =b^{-1} c t^{-1} b t a^{-1} b^{-1} c^{-1} b \\
& =b^{-1} c t^{-1} t b a a^{-1} b^{-1} c^{-1} b \\
& =b^{-1} c b b^{-1} c^{-1} b \\
& =b^{-1} c c^{-1} b \\
& =b^{-1} b
\end{aligned}
$$

- Collecting t^{\prime} 's to the left, we have usual normal forms $t^{r} w$, with $r \in \mathbb{Z}, w \in F_{n}$.

Example. Consider $F_{3}=\langle a, b, c \mid\rangle$ and $\phi: F_{3} \rightarrow F_{3}$ given by $a \mapsto a, b \mapsto b a, c \mapsto b^{-2} c b a$. In $F_{3} \rtimes_{\phi} \mathbb{Z}$ we have

$$
\begin{aligned}
b^{-1} c b t^{-1} a c^{-1} t b^{-1} & =b^{-1} c t^{-1} b a^{-1} a c^{-1} t b^{-1} \\
& =b^{-1} c t^{-1} b c^{-1} t b^{-1} \\
& =b^{-1} c t^{-1} b t a^{-1} b^{-1} c^{-1} b^{2} b^{-1} \\
& =b^{-1} c t^{-1} b t a^{-1} b^{-1} c^{-1} b \\
& =b^{-1} c t^{-1} t b a a^{-1} b^{-1} c^{-1} b \\
& =b^{-1} c b b^{-1} c^{-1} b \\
& =b^{-1} c c^{-1} b \\
& =b^{-1} b \\
& =1
\end{aligned}
$$

Observation. If $T C P\left(F_{n}\right)$ solvable, then $C P\left(F_{n} \rtimes_{\phi} \mathbb{Z}\right)$ solvable.

Observation. If $T C P\left(F_{n}\right)$ solvable, then $C P\left(F_{n} \rtimes_{\phi} \mathbb{Z}\right)$ solvable.
Proof. Let $t^{r} u, t^{s} v, t^{k} g$ be arbitrary elements in $F_{n} \rtimes_{\phi} \mathbb{Z}$.

- $\left(g^{-1} t^{-k}\right)\left(t^{r} u\right)\left(t^{k} g\right)=g^{-1} t^{-k} t^{r} t^{k}\left(u \phi^{k}\right) g$

Observation. If $T C P\left(F_{n}\right)$ solvable, then $C P\left(F_{n} \rtimes_{\phi} \mathbb{Z}\right)$ solvable.
Proof. Let $t^{r} u, t^{s} v, t^{k} g$ be arbitrary elements in $F_{n} \rtimes_{\phi} \mathbb{Z}$.

- $\left(g^{-1} t^{-k}\right)\left(t^{r} u\right)\left(t^{k} g\right)=g^{-1} t^{r}\left(u \phi^{k}\right) g=t^{r}\left(g \phi^{r}\right)^{-1}\left(u \phi^{k}\right) g$.

Observation. If $T C P\left(F_{n}\right)$ solvable, then $C P\left(F_{n} \rtimes_{\phi} \mathbb{Z}\right)$ solvable.
Proof. Let $t^{r} u, t^{s} v, t^{k} g$ be arbitrary elements in $F_{n} \rtimes_{\phi} \mathbb{Z}$.

- $\left(g^{-1} t^{-k}\right)\left(t^{r} u\right)\left(t^{k} g\right)=g^{-1} t^{-k} t^{r} t^{k}\left(u \phi^{k}\right) g=t^{r}\left(g \phi^{r}\right)^{-1}\left(u \phi^{k}\right) g$.
- $\quad t^{r} u \sim t^{s} v \quad \Longleftrightarrow \quad \begin{aligned} & r=s \\ & v \sim_{\phi^{r}}\left(u \phi^{k}\right) \text { for some } k \in \mathbb{Z} .\end{aligned}$

Observation. If $T C P\left(F_{n}\right)$ solvable, then $C P\left(F_{n} \rtimes_{\phi} \mathbb{Z}\right)$ solvable.
Proof. Let $t^{r} u, t^{s} v, t^{k} g$ be arbitrary elements in $F_{n} \rtimes_{\phi} \mathbb{Z}$.

- $\left(g^{-1} t^{-k}\right)\left(t^{r} u\right)\left(t^{k} g\right)=g^{-1} t^{-k} t^{r} t^{k}\left(u \phi^{k}\right) g=t^{r}\left(g \phi^{r}\right)^{-1}\left(u \phi^{k}\right) g$.
- $t^{r} u \sim t^{s} v \quad \Longleftrightarrow \quad \begin{aligned} & r=s \\ & v \sim_{\phi^{r}}\left(u \phi^{k}\right) \text { for some } k \in \mathbb{Z} .\end{aligned}$
where ϕ-twisted conjugacy, denoted \sim_{ϕ}, in a group G is

$$
v \sim_{\phi} u \quad \Longleftrightarrow \quad v=(g \phi)^{-1} u g, \text { for some } g \in G .
$$

Observation. If $T C P\left(F_{n}\right)$ solvable, then $C P\left(F_{n} \rtimes_{\phi} \mathbb{Z}\right)$ solvable.
Proof. Let $t^{r} u, t^{s} v, t^{k} g$ be arbitrary elements in $F_{n} \rtimes_{\phi} \mathbb{Z}$.

- $\left(g^{-1} t^{-k}\right)\left(t^{r} u\right)\left(t^{k} g\right)=g^{-1} t^{-k} t^{r} t^{k}\left(u \phi^{k}\right) g=t^{r}\left(g \phi^{r}\right)^{-1}\left(u \phi^{k}\right) g$.
- $\quad t^{r} u \sim t^{s} v \quad \Longleftrightarrow \quad \begin{aligned} & r=s \\ & v \sim_{\phi^{r}}\left(u \phi^{k}\right) \text { for some } k \in \mathbb{Z} .\end{aligned}$
where ϕ-twisted conjugacy, denoted \sim_{ϕ}, in a group G is

$$
v \sim_{\phi} u \quad \Longleftrightarrow \quad v=(g \phi)^{-1} u g, \text { for some } g \in G .
$$

Note that: $\quad \mathrm{TCP}(G)$ solvable $\underset{\mathrm{CP}}{\Longrightarrow} \mathrm{CP}(G)$ solvable.

- To reduce to finitely many k 's, note that $u \sim_{\phi} u \phi$ (because $\left.u=(u \phi)^{-1}(u \phi) u\right)$ and so,

$$
t^{r} u \sim t^{s} v \Longleftrightarrow\left\{\begin{array}{l}
r=s \\
v \sim_{\phi^{r}}\left(u \phi^{k}\right) \text { for some } k=0, \ldots, r-1
\end{array}\right.
$$

- Hence, $C P\left(F_{n} \rtimes_{\phi} \mathbb{Z}\right)$ reduces to finitely many checks of $T C P\left(F_{n}\right)$.
- To reduce to finitely many k 's, note that $u \sim_{\phi} u \phi$ (because $\left.u=(u \phi)^{-1}(u \phi) u\right)$ and so,

$$
t^{r} u \sim t^{s} v \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
r=s \\
v \sim_{\phi^{r}}\left(u \phi^{k}\right) \text { for some } k=0, \ldots, r-1 .
\end{array}\right.
$$

- Hence, $C P\left(F_{n} \rtimes_{\phi} \mathbb{Z}\right)$ reduces to finitely many checks of $T C P\left(F_{n}\right)$.

Theorem. (Bogopolski, Martino, Maslakova, V., 2006)
a) $\operatorname{TCP}\left(F_{n}\right)$ is solvable,
b) $C P\left(F_{n} \rtimes_{\phi} \mathbb{Z}\right)$ is solvable.

- ... except that the reduction is wrong for $r=0$, where there still is a parameter with infinitely many values:

$$
u \sim v \quad \Longleftrightarrow \quad v \sim u \phi^{k} \text { for some } k \in \mathbb{Z}
$$

- ... except that this is wrong for $r=0$, where there still is a parameter with infinitely many values:

$$
u \sim v \quad \Longleftrightarrow \quad v \sim u \phi^{k} \text { for some } k \in \mathbb{Z}
$$

- This is precisely Brinkmann's result:

Theorem. Given $\phi: F_{n} \rightarrow F_{n}$ and $u, v \in F_{n}$, it is decidable whether $v \sim u \phi^{k}$ for some $k \in \mathbb{Z}$.
proved using train tracks, and providing a complicated argument and algorithm.

The central comment.

Armando: "the same will aprox. work for several stable letters"

Given $\phi_{1}, \ldots, \phi_{m} \in \operatorname{Aut}\left(F_{n}\right)$, the free-by-free group is

$$
\begin{aligned}
F_{n} \rtimes_{\phi_{1}, \ldots, \phi_{m}} F_{m} & =\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid t_{i}^{-1} w t_{i}=w \phi_{i}\right\rangle \\
& =\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid w t_{i}=t_{i}\left(w \phi_{i}\right)\right\rangle
\end{aligned}
$$

The central comment.

Armando: "the same will aprox. work for several stable letters"
Given $\phi_{1}, \ldots, \phi_{m} \in \operatorname{Aut}\left(F_{n}\right)$, the free-by-free group is

$$
\begin{aligned}
F_{n} \rtimes_{\phi_{1}, \ldots, \phi_{m}} F_{m} & =\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid t_{i}^{-1} w t_{i}=w \phi_{i}\right\rangle \\
& =\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid w t_{i}=t_{i}\left(w \phi_{i}\right)\right\rangle
\end{aligned}
$$

Enric: "no!!! Miller's examples have unsolvable CP"
Theorem. (Miller, 1971) There are $\phi_{1}, \ldots, \phi_{14} \in \operatorname{Aut}\left(F_{3}\right)$ such that $C P\left(F_{3} \rtimes_{\phi_{1}, \ldots, \phi_{14}} F_{14}\right)$ is unsolvable.

The central comment.

Armando: "the same will aprox. work for several stable letters"
Given $\phi_{1}, \ldots, \phi_{m} \in \operatorname{Aut}\left(F_{n}\right)$, the free-by-free group is

$$
\begin{aligned}
F_{n} \rtimes_{\phi_{1}, \ldots, \phi_{m}} F_{m} & =\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid t_{i}^{-1} w t_{i}=w \phi_{i}\right\rangle \\
& =\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid w t_{i}=t_{i}\left(w \phi_{i}\right)\right\rangle
\end{aligned}
$$

Enric: "no!!! Miller's examples have unsolvable CP"
Theorem. (Miller, 1971) There are $\phi_{1}, \ldots, \phi_{14} \in \operatorname{Aut}\left(F_{3}\right)$ such that $C P\left(F_{3} \rtimes_{\phi_{1}, \ldots, \phi_{14}} F_{14}\right)$ is unsolvable.

Armando: " Ummm... Yes...ish"

The central comment.

Armando: "the same will aprox. work for several stable letters"
Given $\phi_{1}, \ldots, \phi_{m} \in \operatorname{Aut}\left(F_{n}\right)$, the free-by-free group is

$$
\begin{aligned}
F_{n} \rtimes_{\phi_{1}, \ldots, \phi_{m}} F_{m} & =\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid t_{i}^{-1} w t_{i}=w \phi_{i}\right\rangle \\
& =\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid w t_{i}=t_{i}\left(w \phi_{i}\right)\right\rangle
\end{aligned}
$$

Enric: "no!!! Miller's examples have unsolvable CP"
Theorem. (Miller, 1971) There are $\phi_{1}, \ldots, \phi_{14} \in \operatorname{Aut}\left(F_{3}\right)$ such that $C P\left(F_{3} \rtimes_{\phi_{1}, \ldots, \phi_{14}} F_{14}\right)$ is unsolvable.

Armando: " Ummm... Yes...ish"
He was almost right...

Extensions of groups.

Given a short exact sequence of groups

$$
1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1,
$$

every $g \in G$ defines an action on F,

$$
\psi_{g}: F \rightarrow F, x \mapsto g^{-1} x g .
$$

(Note that $\psi_{g} \in \operatorname{Aut}(F)$ is not in general in $\operatorname{Inn}(F)$.)

The action subgroup of the short exact sequence is

$$
A_{G}=\left\{\psi_{g} \mid g \in G\right\} \leq \operatorname{Aut}(F)
$$

We have two natural examples:

\[

\]

with action subgroup $A=\langle\phi\rangle \cdot \operatorname{Inn}\left(F_{n}\right) \leqslant \operatorname{Aut}\left(F_{n}\right)$,
and

$$
1 \longrightarrow \begin{array}{ccccc}
F_{n} & \xrightarrow{\alpha} F_{n} \rtimes_{\phi_{1}, \ldots, \phi_{m}} F_{m} & \xrightarrow{\beta} F_{m} \longrightarrow 1, \\
x_{i} & \mapsto & x_{i} & \mapsto & 1 \\
& & t_{j} & \mapsto & t_{j}
\end{array}
$$

with action subgroup $A=\left\langle\phi_{1}, \ldots, \phi_{m}\right\rangle \cdot \operatorname{Inn}\left(F_{n}\right) \leqslant \operatorname{Aut}\left(F_{n}\right)$.

Orbit decidability.

A subgroup $A \leqslant \operatorname{Aut}(F)$ (or equivalently $A \cdot \operatorname{Inn}(F) \leqslant \operatorname{Aut}(F)$) is orbit decidable when one can algorithmically decide, given $u, v \in$ F, whether $v \sim u \psi$ for some $\psi \in A$.

Orbit decidability.

A subgroup $A \leqslant \operatorname{Aut}(F)$ (or equivalently $A \cdot \operatorname{Inn}(F) \leqslant \operatorname{Aut}(F)$) is orbit decidable when one can algorithmically decide, given $u, v \in$ F, whether $v \sim u \psi$ for some $\psi \in A$.

For example,

Theorem. (Brinkmann) Cyclic subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.
i.e. given $\phi: F_{n} \rightarrow F_{n}$ and $u, v \in F_{n}$, one can decidable whether $v \sim u \phi^{k}$ for some $k \in \mathbb{Z}$.

Theorem. Let $1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1$ be a short exact sequence of groups such that
(i) $T C P(F)$ is solvable,
(ii) $C P(H)$ is solvable, and
(iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h, 1}, \ldots, z_{h, t_{h}} \in H$ such that

$$
C_{H}(h)=\langle h\rangle z_{h, 1} \sqcup \cdots \sqcup\langle h\rangle z_{h, t_{h}}
$$

(in particular, $\langle h\rangle$ has finite index in $C_{H}(h)$).

Theorem. Let $1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1$ be a short exact sequence of groups such that
(i) $\operatorname{TCP}(F)$ is solvable,
(ii) $C P(H)$ is solvable, and
(iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h, 1}, \ldots, z_{h, t_{h}} \in H$ such that

$$
C_{H}(h)=\langle h\rangle z_{h, 1} \sqcup \cdots \sqcup\langle h\rangle z_{h, t_{h}}
$$

(in particular, $\langle h\rangle$ has finite index in $C_{H}(h)$).
Then,
$C P(G)$ is solvable $\Longleftrightarrow A_{G} \leq \operatorname{Aut}(F)$ is orbit decidable.

Proof. $C P(G)$ splits into two subproblems:

- given $u, v \in F$ decide whether they are conjugate in G : this is orbit decidability of $A_{G} \leq \operatorname{Aut}(F)$.

Proof. $C P(G)$ splits into two subproblems:

- given $u, v \in F$ decide whether they are conjugate in G : this is orbit decidability of $A_{G} \leq \operatorname{Aut}(F)$.
- given $g, g^{\prime} \in G \backslash F$ decide whether they are conjugate in G. Let us solve this using (i), (ii) and (iii):

Proof. $C P(G)$ splits into two subproblems:

- given $u, v \in F$ decide whether they are conjugate in G : this is orbit decidability of $A_{G} \leq \operatorname{Aut}(F)$.
- given $g, g^{\prime} \in G \backslash F$ decide whether they are conjugate in G. Let us solve this using (i), (ii) and (iii):
- check whether $g \beta, g^{\prime} \beta$ are conjugate in H; if not, g, g^{\prime} are not conjugate in G either.

Proof. $C P(G)$ splits into two subproblems:

- given $u, v \in F$ decide whether they are conjugate in G : this is orbit decidability of $A_{G} \leq \operatorname{Aut}(F)$.
- given $g, g^{\prime} \in G \backslash F$ decide whether they are conjugate in G. Let us solve this using (i), (ii) and (iii):
- check whether $g \beta, g^{\prime} \beta$ are conjugate in H; if not, g, g^{\prime} are not conjugate in G either.
- Otherwise, compute $u \in G$ such that $(u \beta)^{-1}(g \beta)(u \beta)=g^{\prime} \beta$.

Proof. $C P(G)$ splits into two subproblems:

- given $u, v \in F$ decide whether they are conjugate in G : this is orbit decidability of $A_{G} \leq \operatorname{Aut}(F)$.
- given $g, g^{\prime} \in G \backslash F$ decide whether they are conjugate in G. Let us solve this using (i), (ii) and (iii):
- check whether $g \beta, g^{\prime} \beta$ are conjugate in H; if not, g, g^{\prime} are not conjugate in G either.
- Otherwise, compute $u \in G$ such that $(u \beta)^{-1}(g \beta)(u \beta)=g^{\prime} \beta$.
- Changing g to g^{u}, we can assume $g \beta=g^{\prime} \beta \neq 1_{H}$. Compute $f \in F$ such that $g^{\prime}=g f$.

Proof. $C P(G)$ splits into two subproblems:

- given $u, v \in F$ decide whether they are conjugate in G : this is orbit decidability of $A_{G} \leq \operatorname{Aut}(F)$.
- given $g, g^{\prime} \in G \backslash F$ decide whether they are conjugate in G. Let us solve this using (i), (ii) and (iii):
- check whether $g \beta, g^{\prime} \beta$ are conjugate in H; if not, g, g^{\prime} are not conjugate in G either.
- Otherwise, compute $u \in G$ such that $(u \beta)^{-1}(g \beta)(u \beta)=g^{\prime} \beta$.
- Changing g to g^{u}, we can assume $g \beta=g^{\prime} \beta \neq 1_{H}$. Compute $f \in F$ such that $g^{\prime}=g f$.
- Compute the centralizer of $g \beta \neq 1$ in H, and preimages y_{1}, \ldots, y_{t} in $G: C_{H}(g \beta)=\langle g \beta\rangle\left(y_{1} \beta\right) \sqcup \cdots \sqcup\langle g \beta\rangle\left(y_{t} \beta\right)$.
- Compute $p_{i} \in F$ such that $y_{i}^{-1} g y_{i}=g p_{i}$ ($g \beta$ and $y_{i} \beta$ commute in H).
- Compute $p_{i} \in F$ such that $y_{i}^{-1} g y_{i}=g p_{i}$ ($g \beta$ and $y_{i} \beta$ commute in H).
- All possible conjugators from g to g^{\prime} in G commute with $g \beta=$ $g^{\prime} \beta$ in H, so they are of the form $g^{r} y_{i} x$, for some $r \in \mathbb{Z}, i=1, \ldots, t$ and $x \in F$. Now,

$$
\left(x^{-1} y_{i}^{-1} g^{-r}\right) g\left(g^{r} y_{i} x\right)=x^{-1}\left(y_{i}^{-1} g y_{i}\right) x=x^{-1} g p_{i} x
$$

- Compute $p_{i} \in F$ such that $y_{i}^{-1} g y_{i}=g p_{i}$ ($g \beta$ and $y_{i} \beta$ commute in H).
- All possible conjugators from g to g^{\prime} in G commute with $g \beta=$ $g^{\prime} \beta$ in H, so they are of the form $g^{r} y_{i} x$, for some $r \in \mathbb{Z}, i=1, \ldots, t$ and $x \in F$. Now,

$$
\left(x^{-1} y_{i}^{-1} g^{-r}\right) g\left(g^{r} y_{i} x\right)=x^{-1}\left(y_{i}^{-1} g y_{i}\right) x=x^{-1} g p_{i} x
$$

and

$$
\begin{aligned}
& x^{-1} g p_{i} x=g f \Longleftrightarrow g^{-1} x^{-1} g p_{i} x=f \\
&\left(x \psi_{g}\right)^{-1} p_{i} x=f \\
& f \sim_{\psi_{g}} p_{i},
\end{aligned}
$$

which is finitely many checks of $T C P(F)$.

This applies, for example, to short exact sequences

$$
1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1
$$

where

- F is virt. abelian, virt. free, virt. surface, virt. polycyclic and
- H is torsion-free hyperbolic.

But, let us concentrate on the free-by-free, and free abelian-byfree cases.

The free-by-free case.

Take $F=\left\langle x_{1}, \ldots, x_{n} \mid\right\rangle, H=\left\langle t_{1}, \ldots, t_{m} \mid\right\rangle, \phi_{1}, \ldots, \phi_{m} \in \operatorname{Aut}\left(F_{n}\right)$, and consider
$1 \longrightarrow F \longrightarrow G=\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid x_{i} t_{j}=t_{j}\left(x_{i} \phi_{j}\right)\right\rangle \longrightarrow H \longrightarrow 1$

The free-by-free case.

Take $F=\left\langle x_{1}, \ldots, x_{n} \mid\right\rangle, H=\left\langle t_{1}, \ldots, t_{m} \mid\right\rangle, \phi_{1}, \ldots, \phi_{m} \in \operatorname{Aut}\left(F_{n}\right)$, and consider
$1 \longrightarrow F \longrightarrow G=\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid x_{i} t_{j}=t_{j}\left(x_{i} \phi_{j}\right)\right\rangle \longrightarrow H \longrightarrow 1$
$C P(G)$ is solvable $\Longleftrightarrow A_{G}=\left\langle\phi_{1}, \ldots, \phi_{m}\right\rangle \leq \operatorname{Aut}(F)$ is O.D.

The free-by-free case.

Take $F=\left\langle x_{1}, \ldots, x_{n} \mid\right\rangle, H=\left\langle t_{1}, \ldots, t_{m} \mid\right\rangle, \phi_{1}, \ldots, \phi_{m} \in \operatorname{Aut}\left(F_{n}\right)$, and consider
$1 \longrightarrow F \longrightarrow G=\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid x_{i} t_{j}=t_{j}\left(x_{i} \phi_{j}\right)\right\rangle \longrightarrow H \longrightarrow 1$
$C P(G)$ is solvable $\Longleftrightarrow A_{G}=\left\langle\phi_{1}, \ldots, \phi_{m}\right\rangle \leq \operatorname{Aut}(F)$ is O.D.

Theorem. (Brinkmann) Cyclic subgroups of $\operatorname{Aut}\left(F_{n}\right)$ are O.D.

Corollary. (B.M.M.V.) Free-by-cyclic groups have solvable conjugacy problem.

The free-by-free case.

Take $F=\left\langle x_{1}, \ldots, x_{n} \mid\right\rangle, H=\left\langle t_{1}, \ldots, t_{m} \mid\right\rangle, \phi_{1}, \ldots, \phi_{m} \in \operatorname{Aut}\left(F_{n}\right)$, and consider
$1 \longrightarrow F \longrightarrow G=\left\langle x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m} \mid x_{i} t_{j}=t_{j}\left(x_{i} \phi_{j}\right)\right\rangle \longrightarrow H \longrightarrow 1$
$C P(G)$ is solvable $\Longleftrightarrow A_{G}=\left\langle\phi_{1}, \ldots, \phi_{m}\right\rangle \leq A u t(F)$ is O.D.

Theorem. (Brinkmann) Cyclic subgroups of $A u t\left(F_{n}\right)$ are O.D.

Corollary. (B.M.M.V.) Free-by-cyclic groups have solvable conjugacy problem.

Theorem. (Whitehead) The full $\operatorname{Aut}\left(F_{n}\right)$ is O.D.

Corollary. If $\left\langle\phi_{1}, \ldots, \phi_{m}\right\rangle=\operatorname{Aut}\left(F_{n}\right)$ then G has solvable conjugacy problem.

Proposition. Every f.g. subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Corollary. Every F_{2}-by-free group G has solvable conjugacy problem.

But...

Proposition. Every f.g. subgroup of $\operatorname{Aut}\left(F_{2}\right)$ is O.D.

Corollary. Every F_{2}-by-free group G has solvable conjugacy problem.

But...

Theorem. (Miller) There exists a free-by-free group G with $C P(G)$ unsolvable.

Corollary. There exists a 14-generated subgroup $A \leq A u t\left(F_{3}\right)$ which is orbit undecidable.

The free abelian-by-free case.

$$
1 \longrightarrow F=\mathbb{Z}^{n} \longrightarrow G \longrightarrow H=F_{n} \longrightarrow 1
$$

Proposition. Every f.g. subgroup of $\operatorname{Aut}\left(\mathbb{Z}_{2}\right)=G L_{2}(\mathbb{Z})$ is O.D.

Corollary. Every \mathbb{Z}^{2}-by-free group G has $C P(G)$ solvable.

But...

The free abelian-by-free case.

$$
1 \longrightarrow F=\mathbb{Z}^{n} \longrightarrow G \longrightarrow H=F_{n} \longrightarrow 1
$$

Proposition. Every f.g. subgroup of $\operatorname{Aut}\left(\mathbb{Z}_{2}\right)=G L_{2}(\mathbb{Z})$ is O.D.

Corollary. Every \mathbb{Z}^{2}-by-free group G has $C P(G)$ solvable.

But...

Theorem. There exists a subgroup of $G L_{4}(\mathbb{Z})$ which is orbit undecidable.

Corollary. There exists a \mathbb{Z}^{4}-by-free group G with $C P(G)$ unsolvable.

Theorem. There exists a subgroup of $G L_{4}(\mathbb{Z})$ which is orbit undecidable.

Theorem. There exists a subgroup of $G L_{4}(\mathbb{Z})$ which is orbit undecidable.

Proof. Consider $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq 24 G L_{2}(\mathbb{Z})$.

- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.

Theorem. There exists a subgroup of $G L_{4}(\mathbb{Z})$ which is orbit undecidable.

Proof. Consider $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq 24 G L_{2}(\mathbb{Z})$.

- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.
- $\langle P, Q\rangle \cap \operatorname{Stab}(1,0)=\left\langle\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right\rangle$.

Theorem. There exists a subgroup of $G L_{4}(\mathbb{Z})$ which is orbit undecidable.

Proof. Consider $F_{2} \simeq\left\langle P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\right\rangle \leq 24 G L_{2}(\mathbb{Z})$.

- $\operatorname{Stab}(1,0)=\{M \mid(1,0) M=(1,0)\}=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ n & \pm 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$.
- $\langle P, Q\rangle \cap \operatorname{Stab}(1,0)=\left\langle\left(\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right)\right\rangle$.
- Choose a free subgroup $F_{2} \simeq\left\langle P^{\prime}, Q^{\prime}\right\rangle \leq\langle P, Q\rangle$ such that $\left\langle P^{\prime}, Q^{\prime}\right\rangle \cap \operatorname{Stab}(1,0)=\{I\}$ and consider

$$
B=\left\langle\left(\begin{array}{c|c}
P^{\prime} & 0 \\
\hline 0 & I
\end{array}\right),\left(\begin{array}{c|c}
Q^{\prime} & 0 \\
\hline 0 & I
\end{array}\right),\left(\begin{array}{c|c}
I & 0 \\
\hline 0 & P^{\prime}
\end{array}\right),\left(\begin{array}{c|c}
I & 0 \\
\hline 0 & Q^{\prime}
\end{array}\right)\right\rangle \leq G L_{4}(\mathbb{Z}) .
$$

Note that $B \simeq F_{2} \times F_{2}$.

- Write $v=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(v)=\{I\}$
- Write $v=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(v)=\{I\}$
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- Write $v=(1,0,1,0)$. By construction, $B \cap \operatorname{Stab}(v)=\{I\}$
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- Claim: $A \leq G L_{4}(\mathbb{Z})$ is orbit undecidable.

In fact, given $\varphi \in B \leq G L_{4}(\mathbb{Z})$ let $w=v \varphi$ and

$$
\{\phi \in B \mid v \phi=w\}=B \cap(\operatorname{Stab}(v) \cdot \varphi)=(B \cap \operatorname{Stab}(v)) \cdot \varphi=\{\varphi\} .
$$

So, orbit decidability for A would imply membership problem for $A \leq B$.

Questions:

Question. Does there exist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Questions:

Question. Does there exist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Question. Does there exist a \mathbb{Z}^{3}-by-free group G with $C P(G)$ unsolvable ?

Questions:

Question. Does there exist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Question. Does there exist a \mathbb{Z}^{3}-by-free group G with $C P(G)$ unsolvable ?

Question. Find more groups with solvable TCP.

Questions:

Question. Does there exist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Question. Does there exist a \mathbb{Z}^{3}-by-free group G with $C P(G)$ unsolvable ?

Question. Find more groups with solvable TCP.

Question. Can the twisted conjugacy problem or orbit decidability be useful for cryptography ?

THANKS

