The conjugacy problem for some extensions of groups

E. Ventura

(Universitat Politècnica Catalunya)

June 18th, 2008

Based on

O. Bogopolski, A. Martino, O. Maslakova, E.V. *The conjugacy problem is solvable in free-by-cyclic groups*, **Bull. London Math. Soc. 38** (2006), 787-794.

and

O. Bogopolski, A. Martino, E.V. Orbit decidability and the conjugacy problem for some extensions of groups, to appear in **Trans. AMS**.

The conjugacy problem for groups

Let G be a finitely presented (f.p.) group, usually given as

$$G = \langle x_1, \dots, x_n \mid r_1, \dots, r_m \rangle.$$

The conjugacy problem for G (CP(G)) consists on, given words $u = u(x_1, ..., x_n)$ and $v = v(x_1, ..., x_n)$ decide whether they are conjugate in G, denoted $u \sim v$, i.e. whether

$$g^{-1}ug =_G v,$$

for some $g = g(x_1, \ldots, x_n)$.

The conjugacy problem for groups

Let G be a finitely presented (f.p.) group, usually given as

$$G = \langle x_1, \dots, x_n \mid r_1, \dots, r_m \rangle.$$

The conjugacy problem for G (CP(G)) consists on, given words $u = u(x_1, ..., x_n)$ and $v = v(x_1, ..., x_n)$ decide whether they are conjugate in G, denoted $u \sim v$, i.e. whether

$$g^{-1}ug =_G v,$$

for some $g = g(x_1, \ldots, x_n)$.

There are f.p. groups (Miller's groups, for example) where this problem is algorithmically unsolvable.

Free-by-cyclic groups

- Let $F_n = \langle x_1, \dots, x_n \mid \rangle$ be the free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$.
- Let $\phi \colon F_n \to F_n$ be an automorphism $(w \mapsto w\phi)$.
- The corresponding free-by-cyclic group is defined by

$$F_n \rtimes_{\phi} \mathbb{Z} = \langle x_1, \dots, x_n, t \mid t^{-1}wt = w\phi \rangle$$
$$= \langle x_1, \dots, x_n, t \mid wt = t(w\phi) \rangle.$$

• Collecting t's to the left, we have usual normal forms, $t^r w$, with $r \in \mathbb{Z}, w \in F_n$.

.

$$b^{-1}cbt^{-1}ac^{-1}tb^{-1} =$$
 $=$
 $=$
 $=$
 $=$
 $=$
 $=$
 $=$
 $=$
 $=$

$$b^{-1}cbt^{-1}ac^{-1}tb^{-1} = b^{-1}ct^{-1}ba^{-1}ac^{-1}tb^{-1}$$

$$= b^{-1}ct^{-1}bc^{-1}tb^{-1}$$

$$= e^{-1}ct^{-1}bc^{-1}tb^{-1}$$

$$b^{-1}cbt^{-1}ac^{-1}tb^{-1} = b^{-1}ct^{-1}ba^{-1}ac^{-1}tb^{-1}$$

$$= b^{-1}ct^{-1}bc^{-1}tb^{-1}$$

$$= b^{-1}ct^{-1}bta^{-1}b^{-1}c^{-1}b^{2}b^{-1}$$

$$= b^{-1}ct^{-1}bta^{-1}b^{-1}c^{-1}b$$

$$= b^{-1}ct^{-1}bta^{-1}b^{-1}c^{-1}b$$

$$= b^{-1}ct^{-1}bta^{-1}b^{-1}c^{-1}b$$

$$= b^{-1}ct^{-1}bta^{-1}b^{-1}c^{-1}b^{-1}c^{-1}b$$

$$= b^{-1}ct^{-1}bta^{-1}b^{-1}c^{-1}$$

$$b^{-1}cbt^{-1}ac^{-1}tb^{-1} = b^{-1}ct^{-1}ba^{-1}ac^{-1}tb^{-1}$$

$$= b^{-1}ct^{-1}bc^{-1}tb^{-1}$$

$$= b^{-1}ct^{-1}bta^{-1}b^{-1}c^{-1}b^{2}b^{-1}$$

$$= b^{-1}ct^{-1}bta^{-1}b^{-1}c^{-1}b$$

$$= b^{-1}ct^{-1}tbaa^{-1}b^{-1}c^{-1}b$$

$$= b^{-1}ct^{-1}tbaa^{-1}b^{-1}c^{-1}b$$

$$= b^{-1}ct^{-1}tbaa^{-1}b^{-1}c^{-1}b$$

$$= b^{-1}ct^{-1}tbaa^{-1}b^{-1}c^{-1}b$$

$$= b^{-1}ct^{-1}tbaa^{-1}b^{-1}c^{-1}b$$

$$b^{-1}cbt^{-1}ac^{-1}tb^{-1} = b^{-1}ct^{-1}ba^{-1}ac^{-1}tb^{-1}$$

$$= b^{-1}ct^{-1}bc^{-1}tb^{-1}$$

$$= b^{-1}ct^{-1}bta^{-1}b^{-1}c^{-1}b^{2}b^{-1}$$

$$= b^{-1}ct^{-1}bta^{-1}b^{-1}c^{-1}b$$

$$= b^{-1}ct^{-1}tbaa^{-1}b^{-1}c^{-1}b$$

$$= b^{-1}cbb^{-1}c^{-1}b$$

$$= b^{-1}cbb^{-1}c^{-1}b$$

$$= b^{-1}cbb^{-1}c^{-1}b$$

$$b^{-1}cbt^{-1}ac^{-1}tb^{-1} = b^{-1}ct^{-1}ba^{-1}ac^{-1}tb^{-1}$$

$$= b^{-1}ct^{-1}bc^{-1}tb^{-1}$$

$$= b^{-1}ct^{-1}bta^{-1}b^{-1}c^{-1}b^{2}b^{-1}$$

$$= b^{-1}ct^{-1}bta^{-1}b^{-1}c^{-1}b$$

$$= b^{-1}ct^{-1}tbaa^{-1}b^{-1}c^{-1}b$$

$$= b^{-1}cb^{-1}c^{-1}b$$

$$= b^{-1}cc^{-1}b$$

$$= b^{-1}cc^{-1}b$$

$$= b^{-1}cc^{-1}b$$

$$\begin{array}{lll} b^{-1}cbt^{-1}ac^{-1}tb^{-1} & = & b^{-1}ct^{-1}ba^{-1}ac^{-1}tb^{-1} \\ & = & b^{-1}ct^{-1}bc^{-1}tb^{-1} \\ & = & b^{-1}ct^{-1}bta^{-1}b^{-1}c^{-1}b^{2}b^{-1} \\ & = & b^{-1}ct^{-1}bta^{-1}b^{-1}c^{-1}b \\ & = & b^{-1}ct^{-1}tbaa^{-1}b^{-1}c^{-1}b \\ & = & b^{-1}cbb^{-1}c^{-1}b \\ & = & b^{-1}cc^{-1}b \\ & = & b^{-1}b \\ & = & b^{-1}b \end{array}$$

$$\begin{array}{lll} b^{-1}cbt^{-1}ac^{-1}tb^{-1} & = & b^{-1}ct^{-1}ba^{-1}ac^{-1}tb^{-1} \\ & = & b^{-1}ct^{-1}bc^{-1}tb^{-1} \\ & = & b^{-1}ct^{-1}bta^{-1}b^{-1}c^{-1}b^{2}b^{-1} \\ & = & b^{-1}ct^{-1}bta^{-1}b^{-1}c^{-1}b \\ & = & b^{-1}ct^{-1}tbaa^{-1}b^{-1}c^{-1}b \\ & = & b^{-1}cbb^{-1}c^{-1}b \\ & = & b^{-1}cc^{-1}b \\ & = & b^{-1}b \\ & = & 1. \end{array}$$

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $F_n \rtimes_{\phi} \mathbb{Z}$.

•
$$(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^{-k}t^rt^k(u\phi^k)g$$

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $F_n \rtimes_{\phi} \mathbb{Z}$.

• $(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^r(u\phi^k)g = t^r(g\phi^r)^{-1}(u\phi^k)g$.

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $F_n \rtimes_{\phi} \mathbb{Z}$.

•
$$(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^{-k}t^rt^k(u\phi^k)g = t^r(g\phi^r)^{-1}(u\phi^k)g$$
.

•
$$t^r u \sim t^s v \iff \begin{aligned} r &= s \\ v \sim_{\phi^r} (u\phi^k) \text{ for some } k \in \mathbb{Z}. \end{aligned}$$

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $F_n \rtimes_{\phi} \mathbb{Z}$.

•
$$(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^{-k}t^rt^k(u\phi^k)g = t^r(g\phi^r)^{-1}(u\phi^k)g$$
.

where ϕ -twisted conjugacy, denoted \sim_{ϕ} , in a group G is $v \sim_{\phi} u \iff v = (g\phi)^{-1}ug$, for some $g \in G$.

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $F_n \rtimes_{\phi} \mathbb{Z}$.

•
$$(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^{-k}t^rt^k(u\phi^k)g = t^r(g\phi^r)^{-1}(u\phi^k)g$$
.

where ϕ -twisted conjugacy, denoted \sim_{ϕ} , in a group G is $v\sim_{\phi} u\iff v=(g\phi)^{-1}ug$, for some $g\in G$.

Note that: $\mathsf{TCP}(G)$ solvable $\stackrel{\Longrightarrow}{\not=}$ $\mathsf{CP}(G)$ solvable.

• To reduce to finitely many k's, note that $u \sim_{\phi} u\phi$ (because $u = (u\phi)^{-1}(u\phi)u$) and so,

$$t^r u \sim t^s v \iff \begin{cases} r = s \\ v \sim_{\phi^r} (u\phi^k) \text{ for some } k = 0, \dots, r - 1. \end{cases}$$

• Hence, $CP(F_n \rtimes_{\phi} \mathbb{Z})$ reduces to finitely many checks of $TCP(F_n)$.

• To reduce to finitely many k's, note that $u \sim_{\phi} u\phi$ (because $u = (u\phi)^{-1}(u\phi)u$) and so,

$$t^r u \sim t^s v \iff \begin{cases} r = s \\ v \sim_{\phi^r} (u\phi^k) \text{ for some } k = 0, \dots, r - 1. \end{cases}$$

• Hence, $CP(F_n \rtimes_{\phi} \mathbb{Z})$ reduces to finitely many checks of $TCP(F_n)$.

Theorem. (Bogopolski, Martino, Maslakova, V., 2006)

- a) $TCP(F_n)$ is solvable,
- b) $CP(F_n \rtimes_{\phi} \mathbb{Z})$ is solvable.

• ... except that the reduction is wrong for r=0, where there still is a parameter with infinitely many values:

 $u \sim v \iff v \sim u\phi^k \text{ for some } k \in \mathbb{Z}.$

• ... except that this is wrong for r=0, where there still is a parameter with infinitely many values:

$$u \sim v \iff v \sim u\phi^k \text{ for some } k \in \mathbb{Z}.$$

• This is precisely Brinkmann's result:

Theorem. Given $\phi \colon F_n \to F_n$ and $u, v \in F_n$, it is decidable whether $v \sim u\phi^k$ for some $k \in \mathbb{Z}$.

proved using train tracks, and providing a complicated argument and algorithm.

Armando: "the same will aprox. work for several stable letters"

Given $\phi_1, \ldots, \phi_m \in Aut(F_n)$, the free-by-free group is

$$F_n \rtimes_{\phi_1,...,\phi_m} F_m = \langle x_1,...,x_n, t_1,...,t_m \mid t_i^{-1}wt_i = w\phi_i \rangle$$

= $\langle x_1,...,x_n, t_1,...,t_m \mid wt_i = t_i(w\phi_i) \rangle$.

<u>Armando:</u> "the same will aprox. work for several stable letters"

Given $\phi_1, \ldots, \phi_m \in Aut(F_n)$, the free-by-free group is

$$F_n \rtimes_{\phi_1,...,\phi_m} F_m = \langle x_1,...,x_n, t_1,...,t_m \mid t_i^{-1}wt_i = w\phi_i \rangle$$

= $\langle x_1,...,x_n, t_1,...,t_m \mid wt_i = t_i(w\phi_i) \rangle$.

Enric: "no!!! Miller's examples have unsolvable CP"

Theorem. (Miller, 1971) There are $\phi_1, \ldots, \phi_{14} \in Aut(F_3)$ such that $CP(F_3 \rtimes_{\phi_1, \ldots, \phi_{14}} F_{14})$ is unsolvable.

Armando: "the same will aprox. work for several stable letters"

Given $\phi_1, \ldots, \phi_m \in Aut(F_n)$, the free-by-free group is

$$F_n \rtimes_{\phi_1,...,\phi_m} F_m = \langle x_1,...,x_n, t_1,...,t_m \mid t_i^{-1} w t_i = w \phi_i \rangle$$

= $\langle x_1,...,x_n, t_1,...,t_m \mid w t_i = t_i (w \phi_i) \rangle$.

Enric: "no!!! Miller's examples have unsolvable CP"

Theorem. (Miller, 1971) There are $\phi_1, \ldots, \phi_{14} \in Aut(F_3)$ such that $CP(F_3 \rtimes_{\phi_1, \ldots, \phi_{14}} F_{14})$ is unsolvable.

Armando: "Ummm... Yes...ish"

Armando: "the same will aprox. work for several stable letters"

Given $\phi_1, \ldots, \phi_m \in Aut(F_n)$, the free-by-free group is

$$F_n \rtimes_{\phi_1,...,\phi_m} F_m = \langle x_1,...,x_n, t_1,...,t_m \mid t_i^{-1} w t_i = w \phi_i \rangle$$

= $\langle x_1,...,x_n, t_1,...,t_m \mid w t_i = t_i (w \phi_i) \rangle$.

Enric: "no!!! Miller's examples have unsolvable CP"

Theorem. (Miller, 1971) There are $\phi_1, \ldots, \phi_{14} \in Aut(F_3)$ such that $CP(F_3 \rtimes_{\phi_1, \ldots, \phi_{14}} F_{14})$ is unsolvable.

Armando: "Ummm... Yes...ish"

He was almost right...

Extensions of groups.

Given a short exact sequence of groups

$$1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1,$$

every $g \in G$ defines an action on F,

$$\psi_g \colon F \to F, x \mapsto g^{-1}xg.$$

(Note that $\psi_g \in Aut(F)$ is not in general in Inn(F).)

The action subgroup of the short exact sequence is

$$A_G = \{ \psi_g \mid g \in G \} \le Aut(F).$$

We have two natural examples:

with action subgroup $A = \langle \phi \rangle \cdot Inn(F_n) \leqslant Aut(F_n)$,

and

with action subgroup $A = \langle \phi_1, \dots, \phi_m \rangle \cdot Inn(F_n) \leqslant Aut(F_n)$.

Orbit decidability.

A subgroup $A \leqslant Aut(F)$ (or equivalently $A \cdot Inn(F) \leqslant Aut(F)$) is orbit decidable when one can algorithmically decide, given $u, v \in F$, whether $v \sim u\psi$ for some $\psi \in A$.

Orbit decidability.

A subgroup $A \leqslant Aut(F)$ (or equivalently $A \cdot Inn(F) \leqslant Aut(F)$) is orbit decidable when one can algorithmically decide, given $u, v \in F$, whether $v \sim u\psi$ for some $\psi \in A$.

For example,

Theorem. (Brinkmann) Cyclic subgroups of $Aut(F_n)$ are O.D.

i.e. given $\phi \colon F_n \to F_n$ and $u, v \in F_n$, one can decidable whether $v \sim u\phi^k$ for some $k \in \mathbb{Z}$.

Theorem. Let $1 \longrightarrow F \stackrel{\alpha}{\longrightarrow} G \stackrel{\beta}{\longrightarrow} H \longrightarrow 1$ be a short exact sequence of groups such that

- (i) TCP(F) is solvable,
- (ii) CP(H) is solvable, and
- (iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h,1}, \ldots, z_{h,t_h} \in H$ such that

$$C_H(h) = \langle h \rangle z_{h,1} \sqcup \cdots \sqcup \langle h \rangle z_{h,t_h}$$

(in particular, $\langle h \rangle$ has finite index in $C_H(h)$).

Theorem. Let $1 \longrightarrow F \stackrel{\alpha}{\longrightarrow} G \stackrel{\beta}{\longrightarrow} H \longrightarrow 1$ be a short exact sequence of groups such that

- (i) TCP(F) is solvable,
- (ii) CP(H) is solvable, and
- (iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h,1}, \ldots, z_{h,t_h} \in H$ such that

$$C_H(h) = \langle h \rangle z_{h,1} \sqcup \cdots \sqcup \langle h \rangle z_{h,t_h}$$

(in particular, $\langle h \rangle$ has finite index in $C_H(h)$). Then,

CP(G) is solvable \iff $A_G \leq Aut(F)$ is orbit decidable.

Proof. CP(G) splits into two subproblems:

- given $u, v \in F$ decide whether they are conjugate in G: this is orbit decidability of $A_G \leq Aut(F)$.

- given $u, v \in F$ decide whether they are conjugate in G: this is orbit decidability of $A_G \leq Aut(F)$.
- given $g, g' \in G \setminus F$ decide whether they are conjugate in G. Let us solve this using (i), (ii) and (iii):

- given $u, v \in F$ decide whether they are conjugate in G: this is orbit decidability of $A_G \leq Aut(F)$.
- given $g, g' \in G \setminus F$ decide whether they are conjugate in G. Let us solve this using (i), (ii) and (iii):
- ullet check whether $g\beta,g'\beta$ are conjugate in H; if not, g,g' are not conjugate in G either.

- given $u, v \in F$ decide whether they are conjugate in G: this is orbit decidability of $A_G \leq Aut(F)$.
- given $g, g' \in G \setminus F$ decide whether they are conjugate in G. Let us solve this using (i), (ii) and (iii):
- check whether $g\beta, g'\beta$ are conjugate in H; if not, g, g' are not conjugate in G either.
- Otherwise, compute $u \in G$ such that $(u\beta)^{-1}(g\beta)(u\beta) = g'\beta$.

- given $u, v \in F$ decide whether they are conjugate in G: this is orbit decidability of $A_G \leq Aut(F)$.
- given $g, g' \in G \setminus F$ decide whether they are conjugate in G. Let us solve this using (i), (ii) and (iii):
- ullet check whether $g\beta, g'\beta$ are conjugate in H; if not, g,g' are not conjugate in G either.
- Otherwise, compute $u \in G$ such that $(u\beta)^{-1}(g\beta)(u\beta) = g'\beta$.
- Changing g to g^u , we can assume $g\beta = g'\beta \neq 1_H$. Compute $f \in F$ such that g' = gf.

- given $u, v \in F$ decide whether they are conjugate in G: this is orbit decidability of $A_G \leq Aut(F)$.
- given $g, g' \in G \setminus F$ decide whether they are conjugate in G. Let us solve this using (i), (ii) and (iii):
- check whether $g\beta, g'\beta$ are conjugate in H; if not, g, g' are not conjugate in G either.
- Otherwise, compute $u \in G$ such that $(u\beta)^{-1}(g\beta)(u\beta) = g'\beta$.
- Changing g to g^u , we can assume $g\beta = g'\beta \neq 1_H$. Compute $f \in F$ such that g' = gf.
- Compute the centralizer of $g\beta \neq 1$ in H, and preimages y_1, \ldots, y_t in $G: C_H(g\beta) = \langle g\beta \rangle (y_1\beta) \sqcup \cdots \sqcup \langle g\beta \rangle (y_t\beta)$.

• Compute $p_i \in F$ such that $y_i^{-1}gy_i = gp_i$ $(g\beta \text{ and } y_i\beta \text{ commute in } H).$

- Compute $p_i \in F$ such that $y_i^{-1}gy_i = gp_i$ ($g\beta$ and $y_i\beta$ commute in H).
- All possible conjugators from g to g' in G commute with $g\beta = g'\beta$ in H, so they are of the form g^ry_ix , for some $r \in \mathbb{Z}$, $i = 1, \ldots, t$ and $x \in F$. Now,

$$(x^{-1}y_i^{-1}g^{-r})g(g^ry_ix) = x^{-1}(y_i^{-1}gy_i)x = x^{-1}gp_ix$$

- Compute $p_i \in F$ such that $y_i^{-1}gy_i = gp_i$ ($g\beta$ and $y_i\beta$ commute in H).
- All possible conjugators from g to g' in G commute with $g\beta = g'\beta$ in H, so they are of the form g^ry_ix , for some $r \in \mathbb{Z}$, $i = 1, \ldots, t$ and $x \in F$. Now,

$$(x^{-1}y_i^{-1}g^{-r})g(g^ry_ix) = x^{-1}(y_i^{-1}gy_i)x = x^{-1}gp_ix$$

and

$$x^{-1}gp_ix = gf \iff g^{-1}x^{-1}gp_ix = f$$
$$(x\psi_g)^{-1}p_ix = f$$
$$f \sim_{\psi_g} p_i,$$

which is finitely many checks of TCP(F). \square

This applies, for example, to short exact sequences

$$1 \longrightarrow F \stackrel{\alpha}{\longrightarrow} G \stackrel{\beta}{\longrightarrow} H \longrightarrow 1$$

where

- $\emph{\textbf{\textit{F}}}$ is virt. abelian, virt. free, virt. surface, virt. polycyclic and

- *H* is torsion-free hyperbolic.

But, let us concentrate on the free-by-free, and free abelian-by-free cases.

Take $F = \langle x_1, \dots, x_n \mid \rangle$, $H = \langle t_1, \dots, t_m \mid \rangle$, $\phi_1, \dots, \phi_m \in Aut(F_n)$, and consider

$$1 \longrightarrow F \longrightarrow G = \langle x_1, \dots, x_n, t_1, \dots, t_m \mid x_i t_j = t_j(x_i \phi_j) \rangle \longrightarrow H \longrightarrow 1$$

Take $F = \langle x_1, \dots, x_n \mid \rangle$, $H = \langle t_1, \dots, t_m \mid \rangle$, $\phi_1, \dots, \phi_m \in Aut(F_n)$, and consider

$$1 \longrightarrow F \longrightarrow G = \langle x_1, \dots, x_n, t_1, \dots, t_m \mid x_i t_j = t_j(x_i \phi_j) \rangle \longrightarrow H \longrightarrow 1$$

$$CP(G)$$
 is solvable \iff $A_G = \langle \phi_1, \dots, \phi_m \rangle \leq Aut(F)$ is O.D.

Take $F = \langle x_1, \dots, x_n \mid \rangle$, $H = \langle t_1, \dots, t_m \mid \rangle$, $\phi_1, \dots, \phi_m \in Aut(F_n)$, and consider

$$1 \longrightarrow F \longrightarrow G = \langle x_1, \dots, x_n, t_1, \dots, t_m \mid x_i t_j = t_j(x_i \phi_j) \rangle \longrightarrow H \longrightarrow 1$$

$$CP(G)$$
 is solvable \iff $A_G = \langle \phi_1, \dots, \phi_m \rangle \leq Aut(F)$ is O.D.

Theorem. (Brinkmann) Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary. (B.M.M.V.) Free-by-cyclic groups have solvable conjugacy problem.

Take $F = \langle x_1, \dots, x_n \mid \rangle$, $H = \langle t_1, \dots, t_m \mid \rangle$, $\phi_1, \dots, \phi_m \in Aut(F_n)$, and consider

$$1 \longrightarrow F \longrightarrow G = \langle x_1, \dots, x_n, t_1, \dots, t_m \mid x_i t_j = t_j(x_i \phi_j) \rangle \longrightarrow H \longrightarrow 1$$

$$CP(G)$$
 is solvable \iff $A_G = \langle \phi_1, \dots, \phi_m \rangle \leq Aut(F)$ is O.D.

Theorem. (Brinkmann) Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary. (B.M.M.V.) Free-by-cyclic groups have solvable conjugacy problem.

Theorem. (Whitehead) The full $Aut(F_n)$ is O.D.

Corollary. If $\langle \phi_1, \dots, \phi_m \rangle = Aut(F_n)$ then G has solvable conjugacy problem.

Proposition. Every f.g. subgroup of $Aut(F_2)$ is O.D.

Corollary. Every F_2 -by-free group G has solvable conjugacy problem.

But...

Proposition. Every f.g. subgroup of $Aut(F_2)$ is O.D.

Corollary. Every F_2 -by-free group G has solvable conjugacy problem.

But...

Theorem. (Miller) There exists a free-by-free group G with CP(G) unsolvable.

Corollary. There exists a 14-generated subgroup $A \leq Aut(F_3)$ which is orbit <u>undecidable</u>.

The free abelian-by-free case.

$$1 \longrightarrow F = \mathbb{Z}^n \longrightarrow G \longrightarrow H = F_n \longrightarrow 1$$

Proposition. Every f.g. subgroup of $Aut(\mathbb{Z}_2) = GL_2(\mathbb{Z})$ is O.D.

Corollary. Every \mathbb{Z}^2 -by-free group G has CP(G) solvable.

But...

The free abelian-by-free case.

$$1 \longrightarrow F = \mathbb{Z}^n \longrightarrow G \longrightarrow H = F_n \longrightarrow 1$$

Proposition. Every f.g. subgroup of $Aut(\mathbb{Z}_2) = GL_2(\mathbb{Z})$ is O.D.

Corollary. Every \mathbb{Z}^2 -by-free group G has CP(G) solvable.

But...

Theorem. There exists a subgroup of $GL_4(\mathbb{Z})$ which is orbit undecidable.

Corollary. There exists a \mathbb{Z}^4 -by-free group G with CP(G) <u>unsolvable</u>.

Theorem. There exists a subgroup of $GL_4(\mathbb{Z})$ which is orbit undecidable.

Theorem. There exists a subgroup of $GL_4(\mathbb{Z})$ which is orbit undecidable.

Proof. Consider
$$F_2 \simeq \langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \rangle \leq_{24} GL_2(\mathbb{Z}).$$
• $Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$$

Theorem. There exists a subgroup of $GL_4(\mathbb{Z})$ which is orbit undecidable.

Proof. Consider
$$F_2 \simeq \langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \rangle \leq_{24} GL_2(\mathbb{Z}).$$
• $Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$$

•
$$\langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle$$
.

There exists a subgroup of $GL_4(\mathbb{Z})$ which is orbit undecidable.

Proof. Consider
$$F_2 \simeq \langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \rangle \leq_{24} GL_2(\mathbb{Z}).$$
• $Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$

- $\langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle$.
- Choose a free subgroup $F_2 \simeq \langle P', Q' \rangle \leq \langle P, Q \rangle$ such that $\langle P', Q' \rangle \cap Stab(1,0) = \{I\}$ and consider

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

Note that $B \simeq F_2 \times F_2$.

• Write v = (1, 0, 1, 0). By construction, $B \cap Stab(v) = \{I\}$

- Write v = (1, 0, 1, 0). By construction, $B \cap Stab(v) = \{I\}$
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.

- Write v = (1,0,1,0). By construction, $B \cap Stab(v) = \{I\}$
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- Claim: $A \leq GL_4(\mathbb{Z})$ is orbit undecidable.

In fact, given $\varphi \in B \leq GL_4(\mathbb{Z})$ let $w = v\varphi$ and

$$\{\phi \in B \mid v\phi = w\} = B \cap (Stab(v) \cdot \varphi) = (B \cap Stab(v)) \cdot \varphi = \{\varphi\}.$$

So, orbit decidability for A would imply membership problem for $A \leq B$. \square

Question. Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$?

Question. Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$?

Question. Does there exist a \mathbb{Z}^3 -by-free group G with CP(G) unsolvable ?

Question. Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$?

Question. Does there exist a \mathbb{Z}^3 -by-free group G with CP(G) unsolvable ?

Question. Find more groups with solvable TCP.

Question. Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$?

Question. Does there exist a \mathbb{Z}^3 -by-free group G with CP(G) unsolvable?

Question. Find more groups with solvable TCP.

Question. Can the twisted conjugacy problem or orbit decidability be useful for cryptography?

THANKS