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June 18th, 2008



Based on

O. Bogopolski, A. Martino, O. Maslakova, E.V. The conju-

gacy problem is solvable in free-by-cyclic groups, Bull. London

Math. Soc. 38 (2006), 787-794.

and

O. Bogopolski, A. Martino, E.V. Orbit decidability and the conju-

gacy problem for some extensions of groups, to appear in Trans.

AMS.



The conjugacy problem for groups

Let G be a finitely presented (f.p.) group, usually given as

G = 〈x1, . . . , xn | r1, . . . , rm〉.

The conjugacy problem for G (CP(G)) consists on, given words
u = u(x1, . . . , xn) and v = v(x1, . . . , xn) decide whether they are
conjugate in G, denoted u ∼ v, i.e. whether

g−1ug =G v,

for some g = g(x1, . . . , xn).
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G = 〈x1, . . . , xn | r1, . . . , rm〉.

The conjugacy problem for G (CP(G)) consists on, given words
u = u(x1, . . . , xn) and v = v(x1, . . . , xn) decide whether they are
conjugate in G, denoted u ∼ v, i.e. whether

g−1ug =G v,

for some g = g(x1, . . . , xn).

There are f.p. groups (Miller’s groups, for example) where this
problem is algorithmically unsolvable.



Free-by-cyclic groups

• Let Fn = 〈x1, . . . , xn | 〉 be the free group on {x1, . . . , xn} (n ≥ 2).

• Let φ : Fn → Fn be an automorphism (w 7→ wφ).

• The corresponding free-by-cyclic group is defined by

Fn oφ Z = 〈x1, . . . , xn, t | t−1wt = wφ〉
= 〈x1, . . . , xn, t | wt = t(wφ)〉.

• Collecting t’s to the left, we have usual normal forms, trw, with

r ∈ Z, w ∈ Fn.
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Observation. If TCP (Fn) solvable, then CP (Fn oφ Z) solvable.

Proof. Let tru, tsv, tkg be arbitrary elements in Fn oφ Z.

• (g−1t−k)(tru)(tkg) = g−1t−ktrtk(uφk)g = tr(gφr)−1(uφk)g.

• tru ∼ tsv ⇐⇒ r = s

v ∼φr (uφk) for some k ∈ Z.

where φ-twisted conjugacy, denoted ∼φ, in a group G is

v ∼φ u ⇐⇒ v = (gφ)−1ug, for some g ∈ G.

Note that: TCP(G) solvable
=⇒
6⇐=

CP(G) solvable.



• To reduce to finitely many k’s, note that u ∼φ uφ
(because u = (uφ)−1(uφ)u ) and so,

tru ∼ tsv ⇐⇒
{
r = s

v ∼φr (uφk) for some k = 0, . . . , r − 1.

• Hence, CP (FnoφZ) reduces to finitely many checks of TCP (Fn).
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Theorem. (Bogopolski, Martino, Maslakova, V., 2006)

a) TCP(Fn) is solvable,

b) CP(Fn oφ Z) is solvable.



• ... except that the reduction is wrong for r = 0, where there

still is a parameter with infinitely many values:

u ∼ v ⇐⇒ v ∼ uφk for some k ∈ Z.



• ... except that this is wrong for r = 0, where there still is a

parameter with infinitely many values:

u ∼ v ⇐⇒ v ∼ uφk for some k ∈ Z.

• This is precisely Brinkmann’s result:

Theorem. Given φ : Fn → Fn and u, v ∈ Fn, it is decidable

whether v ∼ uφk for some k ∈ Z.

proved using train tracks, and providing a complicated argument

and algorithm.
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The central comment.

Armando: “the same will aprox. work for several stable letters”

Given φ1, . . . , φm ∈ Aut(Fn), the free-by-free group is

Fn oφ1,...,φm Fm = 〈x1, . . . , xn, t1, . . . , tm | t−1
i wti = wφi〉

= 〈x1, . . . , xn, t1, . . . , tm | wti = ti(wφi)〉.

Enric: “no!!! Miller’s examples have unsolvable CP”

Theorem. (Miller, 1971) There are φ1, . . . , φ14 ∈ Aut(F3) such
that CP(F3 oφ1,...,φ14

F14) is unsolvable.

Armando: “ Ummm... Yes...ish”

He was almost right...



Extensions of groups.

Given a short exact sequence of groups

1 −→ F
α−→ G

β−→ H −→ 1,

every g ∈ G defines an action on F ,

ψg : F → F, x 7→ g−1xg.

(Note that ψg ∈ Aut(F ) is not in general in Inn(F ).)

The action subgroup of the short exact sequence is

AG = {ψg | g ∈ G} ≤ Aut(F ).



We have two natural examples:

1 −→ Fn
α−→ Fn oφ Z β−→ Z −→ 1,

xi 7→ xi 7→ 1
t 7→ t

with action subgroup A = 〈φ〉 · Inn(Fn) 6 Aut(Fn),

and

1 −→ Fn
α−→ Fn oφ1,...,φm Fm

β−→ Fm −→ 1,
xi 7→ xi 7→ 1

tj 7→ tj

with action subgroup A = 〈φ1, . . . , φm〉 · Inn(Fn) 6 Aut(Fn).



Orbit decidability.

A subgroup A 6 Aut(F ) (or equivalently A · Inn(F ) 6 Aut(F )) is

orbit decidable when one can algorithmically decide, given u, v ∈
F , whether v ∼ uψ for some ψ ∈ A.



Orbit decidability.

A subgroup A 6 Aut(F ) (or equivalently A · Inn(F ) 6 Aut(F )) is

orbit decidable when one can algorithmically decide, given u, v ∈
F , whether v ∼ uψ for some ψ ∈ A.

For example,

Theorem. (Brinkmann) Cyclic subgroups of Aut(Fn) are O.D.

i.e. given φ : Fn → Fn and u, v ∈ Fn, one can decidable whether

v ∼ uφk for some k ∈ Z.



Theorem. Let 1 −→ F
α−→ G

β−→ H −→ 1 be a short exact

sequence of groups such that

(i) TCP (F ) is solvable,

(ii) CP (H) is solvable, and

(iii) there is an algorithm which, given an input 1 6= h ∈ H,

computes a finite set of elements zh,1, . . . , zh,th ∈ H such that

CH(h) = 〈h〉zh,1 t · · · t 〈h〉zh,th
(in particular, 〈h〉 has finite index in CH(h)).
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(i) TCP (F ) is solvable,

(ii) CP (H) is solvable, and

(iii) there is an algorithm which, given an input 1 6= h ∈ H,

computes a finite set of elements zh,1, . . . , zh,th ∈ H such that

CH(h) = 〈h〉zh,1 t · · · t 〈h〉zh,th
(in particular, 〈h〉 has finite index in CH(h)).

Then,

CP (G) is solvable ⇐⇒ AG ≤ Aut(F ) is orbit decidable.
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Proof. CP (G) splits into two subproblems:

- given u, v ∈ F decide whether they are conjugate in G: this is

orbit decidability of AG ≤ Aut(F ).

- given g, g′ ∈ G \ F decide whether they are conjugate in G. Let

us solve this using (i), (ii) and (iii):

• check whether gβ, g′β are conjugate in H; if not, g, g′ are not

conjugate in G either.

• Otherwise, compute u ∈ G such that (uβ)−1(gβ)(uβ) = g′β.
• Changing g to gu, we can assume gβ = g′β 6= 1H. Compute

f ∈ F such that g′ = gf .

• Compute the centralizer of gβ 6= 1 in H, and preimages y1, . . . , yt
in G: CH(gβ) = 〈gβ〉(y1β) t · · · t 〈gβ〉(ytβ).



• Compute pi ∈ F such that y−1
i gyi = gpi (gβ and yiβ commute

in H).



• Compute pi ∈ F such that y−1
i gyi = gpi (gβ and yiβ commute

in H).

• All possible conjugators from g to g′ in G commute with gβ =

g′β in H, so they are of the form gryix, for some r ∈ Z, i = 1, . . . , t
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• Compute pi ∈ F such that y−1
i gyi = gpi (gβ and yiβ commute

in H).

• All possible conjugators from g to g′ in G commute with gβ =

g′β in H, so they are of the form gryix, for some r ∈ Z, i = 1, . . . , t

and x ∈ F . Now,

(x−1y−1
i g−r) g (gryix) = x−1(y−1

i gyi)x = x−1gpix

and

x−1gpix = gf ⇐⇒ g−1x−1gpix = f

(xψg)−1pix = f
f ∼ψg pi,

which is finitely many checks of TCP (F ). 2



This applies, for example, to short exact sequences

1 −→ F
α−→ G

β−→ H −→ 1

where

- F is virt. abelian, virt. free, virt. surface, virt. polycyclic

and

- H is torsion-free hyperbolic.

But, let us concentrate on the free-by-free, and free abelian-by-

free cases.



The free-by-free case.

Take F = 〈x1, . . . , xn | 〉, H = 〈t1, . . . , tm | 〉, φ1, . . . , φm ∈ Aut(Fn),
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The free-by-free case.

Take F = 〈x1, . . . , xn | 〉, H = 〈t1, . . . , tm | 〉, φ1, . . . , φm ∈ Aut(Fn),
and consider

1 −→ F −→ G = 〈x1, . . . , xn, t1, . . . , tm | xitj = tj(xiφj)〉 −→ H −→ 1

CP (G) is solvable ⇐⇒ AG = 〈φ1, . . . , φm〉 ≤ Aut(F ) is O.D.

Theorem. (Brinkmann) Cyclic subgroups of Aut(Fn) are O.D.

Corollary. (B.M.M.V.) Free-by-cyclic groups have solvable con-
jugacy problem.

Theorem. (Whitehead) The full Aut(Fn) is O.D.

Corollary. If 〈φ1, . . . , φm〉 = Aut(Fn) then G has solvable conju-
gacy problem.
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Corollary. Every Z2-by-free group G has CP (G) solvable.
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12 1

)
〉.



Theorem. There exists a subgroup of GL4(Z) which is orbit

undecidable.

Proof. Consider F2 ' 〈P =

(
1 1
1 2

)
, Q =

(
2 1
1 1

)
〉 ≤24 GL2(Z).

• Stab(1,0) = {M | (1,0)M = (1,0)} = {
(

1 0
n ±1

)
| n ∈ Z}.

• 〈P,Q〉 ∩ Stab(1,0) = 〈
(

1 0
12 1

)
〉.

• Choose a free subgroup F2 ' 〈P ′, Q′〉 ≤ 〈P,Q〉 such that

〈P ′, Q′〉 ∩ Stab(1,0) = {I} and consider

B = 〈
(
P ′ 0
0 I

)
,

(
Q′ 0
0 I

)
,

(
I 0
0 P ′

)
,

(
I 0
0 Q′

)
〉 ≤ GL4(Z).

Note that B ' F2 × F2.
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• Write v = (1,0,1,0). By construction, B ∩ Stab(v) = {I}
• Take A ≤ B ' F2 × F2 with unsolvable membership problem.

• Claim: A ≤ GL4(Z) is orbit undecidable.

In fact, given ϕ ∈ B ≤ GL4(Z) let w = vϕ and

{φ ∈ B | vφ = w} = B ∩ (Stab(v) · ϕ) = (B ∩ Stab(v)) · ϕ = {ϕ}.

So, orbit decidability for A would imply membership problem for

A ≤ B. 2
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Questions:

Question. Does there exist an orbit undecidable subgroup of

GL3(Z) ?

Question. Does there exist a Z3-by-free group G with CP (G)

unsolvable ?

Question. Find more groups with solvable TCP.

Question. Can the twisted conjugacy problem or orbit decid-

ability be useful for cryptography ?



THANKS


