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The conjugacy problem for groups

Let G be a finitely presented (f.p.) group, usually given as
G=(x1,---,Tn|T1,---,Tm)-
The conjugacy problem for G (CP(G)) consists on, given words

v = u(xq,...,zn) and v = v(xq,...,zn) decide whether they are
conjugate in G, denoted u ~ v, i.e. whether

g tug =¢ v,
for some g = g(x1,...,xn).



The conjugacy problem for groups

Let G be a finitely presented (f.p.) group, usually given as
G=(x1,---Tn | T1,---,Tm)-
The conjugacy problem for G (CP(G)) consists on, given words

v = u(xy,...,zn) and v = v(xq,...,zn) decide whether they are
conjugate in GG, denoted u ~ v, i.e. whether

—1
g ug=—qGg?un,

for some g = g(x1,...,xn).

There are f.p. groups (Miller's groups, for example) where this
problem is algorithmically unsolvable.



Free-by-cyclic groups
o Let Fi, = (x1,...,xn | ) bethe free groupon {zq,...,xn}t (n > 2).
o Let ¢: F, — F,, be an automorphism (w — wao).

e [ he corresponding free-by-cyclic group is defined by

Fn Xy = (x1,...,Tn, t| t—lwt = we)
= (x1,...,%Tn, t | wt = t(we)).

e Collecting t's to the left, we have usual normal forms, t"w, with
T E Z, w E Fn
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e Collecting t's to the left, we have usual normal forms t"w, with
r e, we F,.

Example. Consider F3 = {(a,b,c | ) and ¢: F3 — F3 given by
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e Collecting t's to the left, we have usual normal forms t"w, with
r e, we F,.

Example. Consider F3 = {(a,b,c | ) and ¢: F3 — F3 given by
ar— a, b— ba, c— b 2cba. In F3 >4¢Z we have

b= let—lba—lac ltb1

b let—lpc— 11

b let—lbta— 1ol 1p2p—1
b= let—lbta— 111y

b let—Ytbaa—1b—1c— 10

b= Llebt—lac—Llep—1

— b lepb—le1p
= b Llee1p
= b1

1.
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Observation. If TCP(Fy) solvable, then CP(Fy x4 Z) solvable.

Proof. Let t"u, t°v, t*g be arbitrary elements in Fy, x, Z.

o (g7 Rt u)(tFg) = g MR tR (uph) g = t7(gp™) T (ud®)g.

r=3s:

T S
e |tu~tv < v ~vgr (ugh) for some k € Z.

where ¢-twisted conjugacy, denoted ~ b in a group G is

CESPFRTEEE (9¢) tug, for some g € G.

Note that: TCP(G) solvable CP(G) solvable.

——
Y=



e TO reduce to finitely many k's, note that u ~y u¢
(because u = (ud) L (ugp)u ) and so,

r=3:

T S ﬁ :
Purtv {v~¢r(ugbk)forsomekzo,...,r—l.

e Hence, CP(Fnx4Z) reduces to finitely many checks of TCP(Fy).
O



e [0 reduce to finitely many k's, note that « ~ ud
(because u = (ud) T (ugp)u ) and so,

r—3S

T S é :
Puntry {v~¢r(u¢k)forsomek:O,...,r—l.

e Hence, CP(FnxyZ) reduces to finitely many checks of TCP(Fy).
O

Theorem. (Bogopolski, Martino, Maslakova, V., 2006)
a) TCP(Fy) is solvable,
b) CP(Fn x4 Z) is solvable.



e ... except that the reduction is wrong for » = 0, where there
still is a parameter with infinitely many values:

u~v = kugbk for some k € Z.



e ... except that this is wrong for » = 0O, where there still is a
parameter with infinitely many values:

u~v = kuqﬁk for some k € Z.

e T his is precisely Brinkmann's result:

Theorem. Given ¢:. Fp, — F, and u,v € Fy, it is decidable
whether v ~ ugF for some k € Z.

proved using train tracks, and providing a complicated argument
and algorithm.
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T he central comment.

Armando: “the same will aprox. work for several stable letters”

Given ¢1,...,¢om € Aut(Fy), the free-by-free group is

Fn X, sbm Fm =(x1,...,Zn, t1,---,tm | ti_l’wti = wae;)
= (T1,...,Tn, t1,...,tm | wt; = t;(we;)).

Enric: “no!ll Miller’'s examples have unsolvable CP”

Theorem. (Miller, 1971) There are ¢1,...,p14 € Aut(F3) such
that CP(F3 X, .. ¢, F14) Is unsolvable.

Armando: “Ummm... Yes...ish”

He was almost right...



Extensions of groups.

Given a short exact sequence of groups
B

 Q— A NVE. H—1,

every g € G defines an action on F,
Vg ' — F,x — g_lxg.
(Note that ¢4 € Aut(F) is not in general in Inn(F).)

The action subgroup of the short exact sequence is

Ag={Yg | g € G} < Aut(F').



We have two natural examples:

1— Fp -% FuoxgZ 5 7 — 1,
Lj — Ly — 1
t — 1

with action subgroup A = (¢) - Inn(Fy) < Aut(Fy),

and

1 — Fy -% Foxg,. g Fn 5 Fn — 1,
xT; o x; — 1

with action subgroup A = (¢1,...,0m) - Inn(Fy) < Aut(Fy).



Orbit decidability.

A subgroup A < Aut(F) (or equivalently A - Inn(F) < Aut(F)) is
orbit decidable when one can algorithmically decide, given u,v €
F, whether v ~ uy for some ¢ € A.



Orbit decidability.

A subgroup A < Aut(F) (or equivalently A - Inn(F) < Aut(F)) is
orbit decidable when one can algorithmically decide, given u,v €
F, whether v ~ uy for some ¢ € A.

For example,

Theorem. (Brinkmann) Cyclic subgroups of Aut(Fy) are O.D.

il.e. given ¢: F, — Fyp and u,v € Fj,, one can decidable whether
v ~ udk for some k € Z.



Theorem. Let1 — F - G %5 H — 1 be a short exact
sequence of groups such that

(i) TCP(F) is solvable,

(ii) CP(H) is solvable, and

(iii) there is an algorithm which, given an input 1 #+ h € H,
computes a finite set of elements zp, 1, ..., zpt, € H such that

Cg(h) = (h)zp1U---U(h)zpy,
(in particular, (h) has finite index in Cg(h)).



Theorem. lLet1l — F 2. @G = S| be a short exact

sequence of groups such that

(i) TCP(F) is solvable,

(ii) CP(H) is solvable, and

(iii) there is an algorithm which, given an input 1 #= h € H,
computes a finite set of elements zp, 1, ..., zpt, € H such that

Cg(h) = (h)zp1U--U(h)zpye,

(in particular, (h) has finite index in Cg(h)).
T hen,

CP(G) is solvable <= Ag < Aut(F') is orbit decidable.
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- given u,v € F' decide whether they are conjugate in G: this is
orbit decidability of Ag < Aut(F).
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- given u,v € F decide whether they are conjugate in G: this is
orbit decidability of Ag < Aut(F).

- given g,q¢’ € G \ F' decide whether they are conjugate in G. Let
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e check whether ¢B3, ¢’3 are conjugate in H; if not, g,q’ are not
conjugate in G either.
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f € F such that ¢’ = ¢gf.



Proof. CP(G) splits into two subproblems:

- given u,v € F' decide whether they are conjugate in G: this is
orbit decidability of Ag < Aut(F).

- given g,¢' € G\ F decide whether they are conjugate in G. Let
us solve this using (i), (ii) and (iii):

e check whether g3, ¢’3 are conjugate in H; if not, ¢g,¢' are not
conjugate in G either.

e Otherwise, compute v € G such that (u8)~1(¢8)(uB) = ¢'3.

e Changing g to g%, we can assume g8 = ¢/8 # 1. Compute
f € F such that ¢’ = gf.

e Compute the centralizer of g8 = 1 in H, and preimages y1, ..., ys

in G: Cy(gB8) = (98)(y18) U ---U (g8)(yB).



e Compute p; € F such that yi_lgyi = gp; (g6 and y;8 commute
in H).



e Compute p; € F' such that yi_lgyi = gp; (g6 and y;8 commute
in H).

e All possible conjugators from g to ¢’ in G commute with g8 =
¢'Bin H, so they are of the form g"y;x, forsomerc Z,i=1,...,t
and x € F'. Now,

(e ry g™ g (¢ yix) = = 1 (y; Loy = = tgp



e Compute p; € F' such that y,i_lgyi = gp; (gB and y;8 commute
in H).

e All possible conjugators from g to ¢’ in G commute with g8 =
¢'Bin H, so they are of the form g"y,x, forsomerc Z,i=1,...,t
and x € F'. Now,

1 -1 — _ 1 _
(7 ty7 1o g (¢"yix) = = 1 (y; tgy)e = 2 tgpix

and
1 . -1..-1. ., —
rTogpix =gf < g "z gpix=f
(wtpg) " tpz = f
[~y Dis

which is finitely many checks of TCP(F"). O



This applies, for example, to short exact sequences
B

1 — F -4 @

H 1

where

- F'is virt. abelian, virt. free, virt. surface, virt. polycyclic

and

- H is torsion-free hyperbolic.

But, let us concentrate on the free-by-free, and free abelian-by-
free cases.



The free-by-free case.

Take F = (x1,...,zn|), H={(t1,...,tm|), &1,...,m € Aut(Fp),
and consider

1 —F—G=(x1,...,Zn,t1,...,tm | x;t; = t;(z;¢;)) — H — 1



T he free-by-free case.

Take F = (z1,...,zn | ), H={(t1,...,tm |, &1,...,0m € Aut(Fy),
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1 —F —G=(x1,...,Tn,t1,...,tm | xit; = tj(2;0;)) — H — 1

CP(G) is solvable <= Ag={(¢1,.--,0m) < Aut(F) is O.D.
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The free-by-free case.

Take F = (z1,...,zn | ), H=(1,...,tm |, &1,...,0m € Aut(Fy),
and consider

1 —F—G=(x1,...,Zn,t1,...,tm | z;t; = t;(z;¢;)) — H — 1

CP(G) is solvable <= Ag={(¢1,.---,0m) < Aut(F) is O.D.

Theorem. (Brinkmann) Cyclic subgroups of Aut(Fy) are O.D.

Corollary. (B.M.M.V.) Free-by-cyclic groups have solvable con-
jugacy problem.

Theorem. (Whitehead) The full Aut(Fy) is O.D.

Corollary. If (¢1,...,¢m) = Aut(Fp) then G has solvable conju-
gacy problem.
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Corollary. Every F>-by-free group G has solvable conjugacy
problem.

But...



Proposition. Every f.g. subgroup of Aut(F») is O.D.

Corollary. Every F>-by-free group G has solvable conjugacy
problem.

But...

Theorem. (Miller) There exists a free-by-free group G with
CP(G) unsolvable.

Corollary. There exists a 14-generated subgroup A < Aut(F3)
which is orbit undecidable.




The free abelian-by-free case.

1l —-F=72"—G—H=F,—1
Proposition. Every f.g. subgroup of Aut(Z->) = GL~(7Z) is O.D.

Corollary. Every Z?-by-free group G has CP(G) solvable.

But...



he free abelian-by-free case.

1 ——F=72"—G—H=F, —1
Proposition. Every f.g. subgroup of Aut(Z->) = GL~(Z) is O.D.
Corollary. Every Z?-by-free group G has CP(G) solvable.
But...

Theorem. There exists a subgroup of GL4(Z) which is orbit
undecidable.

Corollary. There exists a Z*-by-free group G with CP(G) unsolvable.



Theorem. There exists a subgroup of GL4(Z) which is orbit
undecidable.




Theorem. There exists a subgroup of GL4(Z) which is orbit
undecidable.

Proof. Consider Fp ~ (P = ( i é ) , Q= < i 1 )) <os4 GL>(Z).

o Stab(1,0) = {M | (1,0)M = (1,0)} = {(Tll iol ) neZ}
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Theorem. There exists a subgroup of GL4(Z) which is orbit
undecidable.

Proof. Consider Fp ~ (P = ( 1 ; > , Q= ( f 1 >> <54 GL>(Z).

O

e Stab(1,0) = {M | (1,0)M = (1,0)} :{(i e ) 'n € 7).

o (P,Q) N Stab(1,0) = (( 112 Cl) ))

e Choose a free subgroup F> ~ (P, Q" < (P,Q) such that
(P, Q'Y N Stab(1,0) = {I} and consider

o= (512)-(519): (42 () seneo

Note that B ~ F> X F5.



e Write v =(1,0,1,0). By construction, BN Stab(v) = {I}



e Write v =(1,0,1,0). By construction, BN Stab(v) = {I}
e Take A < B ~ F» x F» with unsolvable membership problem.



e Write v =(1,0,1,0). By construction, BN Stab(v) = {I}
e Take A < B ~ F» x IF» with unsolvable membership problem.
e Claim: A < GL4(Z) is orbit undecidable.

In fact, given o € B < GLy4(Z) let w = vy and

{p € B|ved =w} = BnN(Stab(v) - ¢) = (BN Stab(v)) - p = {p}.

So, orbit decidability for A would imply membership problem for
A< B. O
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Questions:

Question. Does there exist an orbit undecidable subgroup of
GL3(Z) 7

Question. Does there exist a 73-by-free group G with CP(G)
unsolvable 7

Question. Find more groups with solvable T CP.

Question. Can the twisted conjugacy problem or orbit decid-
ability be useful for cryptography 7
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