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Definitions and notation

A = {a1, . . . , an} is a finite alphabet (n letters).
A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , an, a−1
n }.

Usually, A = {a, b, c}.
(A±1)∗ the free monoid on A±1 (words on A±1).
1 denotes the empty word, and we have the notion of length.
∼ is the eq. rel. generated by aia−1

i ∼ a−1
i ai ∼ 1.

FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo ∼).
Every w ∈ A∗ has a unique reduced form, denoted w , (clearly w = w in
FA, and w is the shortest word with this property). We also say w is a
reduced word.
Again 1 denotes the empty word, and | · | the (shortest) length in FA:
|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.
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The universal property

The universal property: given a group G and a mapping ϕ : A→ G, there
exists a unique group homomorphism Φ: FA → G such that the diagram

A
ϕ //

ι

��

G

FA

∃!Φ

>>~
~

~
~

commutes (where ι is the inclusion map).
Every group is a quotient of a free group

G = 〈a1, . . . , an | r1, . . . , rm〉 = FA/� r1, . . . , rm � .

So, the lattice of (normal) subgroups of FA is very important.
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Comparison with linear algebra

vector spaces free groups

• K n f.d. K -vector space • Fn f.g. free group

• Every f.d. K -vector
space is like this,

• Every group G is a quotient
of a free group,

• K n ' K m ⇔ n = m, • Fn ' Fm ⇔ n = m,

• – • (Nielsen-Schreier) Every subgroup
of a free group is free,

• Steinitz Lemma, • Not true,

• F 6 E ⇒ dim F 6 dim E , • Very false: Fℵ0 6 F2.

• A basis • The A-Stallings automata
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Stallings automata

Definition
A Stallings automata is a finite A-labeled oriented graph with a distinguished
vertex, (X , v), such that:

1- X is connected,
2- no vertex of degree 1 except possibly v (X is a core-graph),
3- no two edges with the same label go out of (or in to) the same vertex.

NO : •

a

��

b

����
��
��
��
��
��
�

• c // •
a

** •

b

XX0000000000000

c

jj

YES : •

a

��

b

����
��
��
��
��
��
�

•
a

** •

b

XX0000000000000

c

jj
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Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),
551-565,

Stallings (building on previous works) gave a bijection between finitely
generated subgroups of FA and Stallings automata:

{f.g. subgroups of FA} ←→ {Stallings automata},

which is crucial for the modern understanding of the lattice of subgroups of FA.
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Reading the subgroup from the automata

Definition
To any given (Stallings) automaton (X , v), we associate its fundamental
group:

π(X , v) = { labels of closed paths at v} 6 FA,

clearly, a subgroup of FA.

•

a

��

X= b

����
��
��
��
��
��
�

•
a

** •

b

XX0000000000000

c

jj

π(X , •) = {1, a, a−1, bab, bc−1b,
babab−1cb−1, . . .}

π(X , •) 63 bc−1bcaa

Membership problem in π(X , •) is solvable.
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group:

π(X , v) = { labels of closed paths at v} 6 FA,

clearly, a subgroup of FA.
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A basis for π(X , v)

Proposition
For every Stallings automaton (X , v), the group π(X , v) is free of rank
rk(π(X , v)) = 1− |VX |+ |EX |.

Proof:
Take a maximal tree T in X .
Write T [p, q] for the geodesic (i.e. the unique reduced path) in T from p
to q.
For every e ∈ EX − ET , xe = label(T [v , ιe] · e · T [τe, v ]) belongs to
π(X , v).
Not difficult to see that {xe | e ∈ EX − ET} is a basis for π(X , v).
And, |EX − ET | = |EX | − |ET |

= |EX | − (|VT | − 1) = 1− |VX |+ |EX |. �
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Example

•

a

��

b

���
�
�
�
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�

•
a

** •

b

XX0
0
0
0
0
0
0

c

jj

H = 〈a, bab, b−1cb−1〉
rk(H) = 1− 3 + 5 = 3.
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Example-2

· · · b // • b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
· · ·

Fℵ0 ' H = 〈. . . , b−2ab2, b−1ab, a, bab−1, b2ab−2, . . .〉 6 F2.
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Constructing the automata from the subgroup

In any automaton containing the following situation, for x ∈ A±1,

• x //

x
&&NNNNNNNNNNNNN u

v

we can fold and identify vertices u and v to obtain

• x // u = v .

This operation, (X , v) (X ′, v), is called a Stallings folding.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 18 / 69



Constructing the automata from the subgroup

In any automaton containing the following situation, for x ∈ A±1,

• x //

x
&&NNNNNNNNNNNNN u

v

we can fold and identify vertices u and v to obtain

• x // u = v .

This operation, (X , v) (X ′, v), is called a Stallings folding.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 18 / 69



Constructing the automata from the subgroup

In any automaton containing the following situation, for x ∈ A±1,

• x //

x
&&NNNNNNNNNNNNN u

v

we can fold and identify vertices u and v to obtain

• x // u = v .

This operation, (X , v) (X ′, v), is called a Stallings folding.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 18 / 69



Constructing the automata from the subgroup

Lemma (Stallings)
If (X , v) (X ′, v ′) is a Stallings folding then π(X , v) = π(X ′, v ′).

Given a f.g. subgroup H = 〈w1, . . . wm〉 6 FA (we assume wi are reduced
words), do the following:

1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton,

denoted Γ(H).

Well defined?
Need to see that the output does not depend on the process...
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Example: H = 〈baba−1, aba−1, aba2〉

• a // •

b

��
• a // •

b

OO

a //

a

��?
??

??
??

??
??

??
??

?

a

��

a

����
��

��
��

��
��

��
��

•

•

a

??����������������
•

b
oo • •

b
oo

Flower(H)
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Example: H = 〈baba−1, aba−1, aba2〉
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Folding #3. Γ(H)

By Stallings Lemma, π(Γ(H), •) = 〈baba−1, aba−1, aba2〉
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Example: H = 〈baba−1, aba−1, aba2〉

• a //
b

.. •

a

����
��

��
��

��
��

��
��

b
pp

•

a

OO

Folding #3. Γ(H)

By Stallings Lemma, π(Γ(H), •) = 〈baba−1, aba−1, aba2〉
= 〈b, aba−1, a3〉
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Local confluence

Proposition
The automaton Γ(H) does not depend on the sequence of foldings

Proof:
Suppose (X , v) (X ′, v ′) is a single folding of 2 edges

If p x //

x
&&MMMMMMMMMMMMM q

r

in (X , v), then p′ x //

x
&&MMMMMMMMMMMMM q′

r ′

in (X ′, v ′) (possibly

with q′ = r ′).
So, we get local confluence:

(X , v)
∀ //

∀
��

π(X ′, v ′)

∃
���
�
�

π(X ′′, v ′′) ∃ //___ π(X ′′′, v ′′′)
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The confluence grid

π(X00, v) //

��

π(X01, v) //

���
�
�

. . . // π(X0p, v)

π(X10, v)

��

//___ π(X11, v)

...

��
π(Xq0, v)
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The confluence grid

π(X00, v) //

��

π(X01, v) //

���
�
�

. . . // π(X0p, v)

���
�
�

π(X10, v)

��

//___ π(X11, v)

���
�
�

//___ . . . //___ π(X1p, v)

���
�
�

...
...

...

�� ���
�
�

���
�
�

π(Xq0, v) //___ π(Xq1, v) //___ . . . //___ π(Xqp, v)
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Confluence

Hence, we have confluence:

(X , v)
∀ +3

∀
��

π(X ′, v ′)

∃
��
�
�
�

�
�
�

π(X ′′, v ′′) ∃ +3___ ___ π(X ′′′, v ′′′),

where⇒ stands for an arbitrary sequence of foldings.

Finally, edge-reducing + confluence implies unique output. �
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Independence from the generators

Proposition
The automaton Γ(H) does not depend on the generators of H.

Proof:
Suppose H = 〈w1, . . . , wp〉 = 〈w ′

1, . . . , w ′
q〉 and let Γ(H) and Γ′(H) be the

Stallings automata obtained from each set of generators.
Consider the double flower

•

w1

···

��

wp

��

w ′
1

...

NN

w ′
q

\\

whose fundamental group is 〈w1, . . . , wp, w ′
1, . . . , w ′

q〉 = H.
Now, fold in the two natural ways:
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Independence from the generators
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Lemma (Useless-w)
If H 6fg FA and w ∈ H then, attaching a petal labeled w to the basepoint of
Γ(H) and folding, we obtain again Γ(H).
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The bijection

Theorem
The following is a bijection:

{f.g. subgroups of FA} ←→ {Stallings automata}
H → Γ(H)

π(X , v) ← (X , v)

Proof:
By Stallings Lemma, it is clear that π(Γ(H)) = H.
Let (X , v) be a Stallings automata, and π(X , v) = = 〈w1, . . . , wp〉.
Let (Y , v) be the automata obtained by attaching petals labeled
w1, . . . , wp to the vertex v of (X , v).
By the useless-w Lemma, (Y , v) can be folded to both (X , v) and
Γ(π(X , v)). And both are completely folded. Hence, Γ(π(X , v)) = (X , v).
�
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Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)
Every subgroup of FA is free.

We have proved the finitely generated case, but everything extends easily
to the general case.

The original proof (1920’s) is combinatorial and much more technical.
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Outline

1 The friendly and unfriendly free group

2 The bijection between subgroups and automata

3 Several algorithmic applications

4 Algebraic extensions and Takahasi’s theorem
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Membership & containment

(Membership)
Does w belong to H = 〈w1, . . . , wm〉 ?

Construct Γ(H),
Check whether w is readable as a closed path in Γ(H) (at the basepoint).

(Containment)
Given H = 〈w1, . . . , wm〉 and K = 〈v1, . . . , vn〉, is H 6 K ?

Construct Γ(K ),
Check whether all the wi ’s are readable as closed paths in Γ(H) (at the
basepoint).
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Basis & conjugacy

(Computing a basis)
Given H = 〈w1, . . . , wm〉, find a basis for H.

Construct Γ(H),
Choose a maximal tree,
Read the corresponding basis.

(Conjugacy)
Given H = 〈w1, . . . , wm〉 and K = 〈v1, . . . , vn〉, are they conjugate (i.e. Hx = K
for some x ∈ FA) ?

Construct Γ(H) and Γ(K ),
Check whether the are “equal" up to the basepoint.
Every path between the two basepoints spells a valid x .
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Finite index subgroups

(Finite index)
Given H = 〈w1, . . . , wm〉, is H 6f .i. FA ? If yes, find a set of coset
representatives.

→ For u ∈ VΓ(H), choose p (the label of) a path from • to u; then,

{labels of paths from • to u} = π(Γ(H), •) · p = H · p

is a coset of FA/H.
→ FA/H is in bijection with the set of vertices of the “extended Γ(H)”

Construct Γ(H),
Check whether Γ(H) is complete (i.e. every letter going in and out of
every vertex),
Choose a maximal tree T in Γ(H),
{T [•, v ] | v ∈ VΓ(H)} is a set of coset reps. for H 6f .i. FA.
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Example

H = 〈b, ac, c−1a, cac−1, c−1bc−1, cbc, c4, c2ac−2, c2bc−2〉

Γ(H) = •
b ## a

**

c

��0
00

00
00

00
00

00
•

a

jj

b

��

c

��
•

a

�� b
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c

99tttttttttttttttttttttt

a

NN
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F3 = H t Hc t Ha t Hac−1.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 44 / 69



More on finite index

(Schreier index formula)
If H 6f .i. FA is of index [F : H], then r(H) = 1 + [F : H] · (r(FA)− 1).

Proof:

r(H) = 1− |VΓ(H)|+ |EΓ(H)| = 1− |VΓ(H)|+ |A| · |VΓ(H)|
= 1 + |VΓ(H)| · (|A| − 1) = 1 + [F : H] · (r(FA)− 1). �

Theorem (M. Hall)
Every f.g. subgroup H 6fg FA is a free factor of a finite index one,
H 6ff H ∗ L 6f .i. FA.

Proof:
Compute Γ(H) from a generating set,
Locate the “missing” heads and tails of edges (in equal number for every
letter),
Add new edges until having a complete automata (Y , v),
Clearly, H = π(Γ(H)) 6ff π(Y , v) 6f .i. FA. �
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Example

H = 〈b, cbc, c2bc−2〉

Γ(H) = •
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H 6ff H ∗ 〈 〉
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Example
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Pull-back of automata

Definition
The pull-back of two Stallings automata, (X , v) and (Y , w), is the cartesian
product (X × Y , (v , w)) (respecting labels). This is not in general connected,
neither without degree 1 vertices, but it is folded.

Theorem (H. Neumann-Stallings)
For every f.g. subgroups H, K 6fg FA, Γ(H ∩ K ) coincides with the connected
component of Γ(H)× Γ(K ) containing the basepoint, after trimming.

This gives a very nice and quick algorithm to compute intersections:
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Computing intersections: an example

Let H = 〈a, b2, bab〉 and K = 〈b2, ba2〉 be subgroups of F2.
To compute a basis for H ∩ K :

• a // •
b

(( •
b

hh

a

��

•a
$$

b
��
•a

$$
b

GG

H ∩ K =? Clear that b2 ∈ H, but.... something else?
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Rank of the intersection

Theorem (Howson)
The intersection of finitely generated subgroups of FA is again finitely
generated.

But the intersection can have bigger rank: “3 = 3 ∩ 2 6 2”

Theorem (H. Neumann)
r̃(H ∩ K ) 6 2r̃(H)r̃(K ), where r̃(H) = max{0, r(H)− 1}.

Conjecture (H. Neumann)
r̃(H ∩ K ) 6 r̃(H)r̃(K ).

In the example, 3− 1 6 (3− 1)(2− 1).
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Status of Hanna Neumann Conjecture

HNC holds if H (or K ) has rank 1 (immediate),

HNC holds for finite index subgroups (elementary),

HNC holds if H has rank 2 (Tardös, 1992), (not easy),

HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),

HNC also holds if H is positively generated (⇔ Γ(H) is strongly
connected), (Meakin-Weil, and Khan, 2002),

HNC in general is an open problem (...and considered very hard).
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Outline

1 The friendly and unfriendly free group

2 The bijection between subgroups and automata

3 Several algorithmic applications

4 Algebraic extensions and Takahasi’s theorem
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Free and algebraic extensions

Definition
And extension of subgroups H 6 K , in FA is called

a free extension if H is a free factor of K (i.e. K = H ∗ L for some L 6 FA),
denoted H 6ff K ;
algebraic if H is not contained in any proper free factor of K (i.e.
H 6 K1 6 K1 ∗ K2 = K implies K2 = 1), denoted H 6alg K .

〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ FA ∀r ∈ Z.
if r(H) > 2 and r(K ) 6 2 then H 6alg K .
H 6alg K 6alg L implies H 6alg L.
H 6ff K 6ff L implies H 6ff L.
H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily H 6alg K .
H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily K 6ff L.
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Takahasi’s Theorem

Theorem (Takahasi, 1951)
For every H 6fg FA, the set of algebraic extensions, denoted AE(H), is finite.

Original proof by Takahasi was combinatorial and technical,

Modern proof, using Stallings automata, is much simpler, and due
independently to Ventura (1997), Margolis-Sapir-Weil (2001) and
Kapovich-Miasnikov (2002).
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The modern proof

Proof:
Let us (temporarily) attach some “hairs" to Γ(H) an denote the resulting
(folded) automata by Γ̃(H).
Given H 6 K (both f.g.), we can obtain Γ(K ) from Γ(H) by 1) adding the
appropriate hairs, 2) identifying several vertices to •, 3) folding; (note that
adding extra hairs, the result will be the same if we 4) trim at the end).
Hence, if H 6 K (both f.g.) then Γ(K ) contains as a subgraph either Γ(H)
or some quotient of it (i.e. Γ(H) after identifying several sets of vertices
(∼) and then folding, Γ(H)/ ∼).
The overgroups of H:
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Computing AE(H)

Corollary
AE(H) is computable.

Proof:
Compute Γ(H),
Compute Γ(H)/ ∼ for all partitions ∼ of VΓ(H),
Compute O(H),
Clean O(H) by detecting all pairs K1, K2 ∈ O(H) such that K1 6ff K2 and
deleting K2.
The resulting set is AE(H). �

For the cleaning step we need:
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Deciding free-factorness

Proposition
Given H, K 6 FA, it is algorithmically decidable whether H 6ff K or not.

Proved by:
Whitehead 1930’s (classical and exponential),
Silva-Weil 2006 (graphical algorithm, faster but still exponential),
Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial
time).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 67 / 69



Deciding free-factorness

Proposition
Given H, K 6 FA, it is algorithmically decidable whether H 6ff K or not.

Proved by:
Whitehead 1930’s (classical and exponential),
Silva-Weil 2006 (graphical algorithm, faster but still exponential),
Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial
time).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 67 / 69



Deciding free-factorness

Proposition
Given H, K 6 FA, it is algorithmically decidable whether H 6ff K or not.

Proved by:
Whitehead 1930’s (classical and exponential),
Silva-Weil 2006 (graphical algorithm, faster but still exponential),
Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial
time).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 67 / 69



Deciding free-factorness

Proposition
Given H, K 6 FA, it is algorithmically decidable whether H 6ff K or not.

Proved by:
Whitehead 1930’s (classical and exponential),
Silva-Weil 2006 (graphical algorithm, faster but still exponential),
Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial
time).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 67 / 69



The algebraic closure

Observation
If H 6alg K1 and H 6alg K2 then H 6alg 〈K1 ∪ K2〉.

Corollary
For every H 6 K 6 FA (all f.g.), AEK (H) has a unique maximal element, called
the K -algebraic closure of H, and denoted ClK (H).

Corollary
Every extension H 6 K of f.g. subgroups of FA splits, in a unique way, in an
algebraic part and a free factor part, H 6alg Cl(H) 6ff K .
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