Automata and Group Theory

Enric Ventura

Departament de Matemàtica Aplicada III
Universitat Politècnica de Catalunya

AutoMatha ABCD Workshop, Bratislava,
November 25, 2008

Outline

(1) The friendly and unfriendly free group
(2) The bijection between subgroups and automata
(3) Several algorithmic applications
4. Algebraic extensions and Takahasi's theorem

Outline

(1) The friendly and unfriendly free group
(2) The bijection between subgroups and automata
(3) Several algorithmic applications
4. Algebraic extensions and Takahasi's theorem

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- 1 denotes the empty word, and we have the notion of length.
- \sim is the eq. rel. generated by $a_{i} a_{i}^{-1} \sim a_{i}^{-1} a_{i} \sim 1$.
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo \sim).
- Every $w \in A^{*}$ has a unique reduced form, denoted \bar{w}, (clearly $w=\bar{w}$ in F_{A}, and \bar{w} is the shortest word with this property). We also say \bar{w} is a reduced word.
- Again 1 denotes the empty word, and
the (shortest) length in F_{A} : $|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3$,
$|u v| \leqslant|u|+|v|$.

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- 1 denotes the empty word, and we have the notion of length.
- \sim is the eq. rel. generated by $a_{i} a_{i}^{-1} \sim a_{i}^{-1} a_{i} \sim 1$
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo \sim).
- Every $w \in A^{*}$ has a unique reduced form, denoted \bar{w}, (clearly $w=\bar{w}$ in F_{A}, and \bar{w} is the shortest word with this property). We also say \bar{w} is a reduced word.
- Again 1 denotes the empty word, and $|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3$,

```
the (shortest) length in F}\mp@subsup{F}{A}{}\mathrm{ :
|uv|\leqslant |u|+|v|.
```


Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- 1 denotes the empty word, and we have the notion of length.
- \sim is the eq. rel. generated by $a_{i} a_{i}^{-1} \sim a_{i}^{-1} a_{i} \sim 1$.
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo \sim).
- Every $w \in A^{*}$ has a unique reduced form, denoted \bar{w}, (clearly $w=\bar{w}$ in F_{A}, and \bar{w} is the shortest word with this property). We also say \bar{w} is a reduced word.
- Again 1 denotes the empty word, and
$|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3$,
the (shortest) length in F_{A} :
$|u v| \leqslant|u|+|v|$.

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- 1 denotes the empty word, and we have the notion of length.
- \sim is the eq. rel. generated by $a_{i} a_{i}^{-1} \sim a_{i}^{-1} a_{i} \sim 1$
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo \sim).
- Every $w \in A^{*}$ has a unique reduced form, denoted \bar{w}, (clearly $w=\bar{w}$ in F_{A}, and \bar{w} is the shortest word with this property). We also say \bar{w} is a reduced word.
- Again 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_{A} :
$|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3, \quad|u v| \leqslant|u|+|v|$.

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- 1 denotes the empty word, and we have the notion of length.
- \sim is the eq. rel. generated by $a_{i} a_{i}^{-1}$
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo \sim).
- Every $w \in A^{*}$ has a unique reduced form, denoted \bar{w}, (clearly $w=\bar{w}$ in F_{A}, and \bar{w} is the shortest word with this property). We also say \bar{w} is a reduced word.

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- 1 denotes the empty word, and we have the notion of length.
- \sim is the eq. rel. generated by $a_{i} a_{i}^{-1} \sim a_{i}^{-1} a_{i} \sim 1$.
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo \sim).
- Every $w \in A^{*}$ has a unique reduced form, denoted \bar{w}, (clearly $w=\bar{w}$ in F_{A}, and \bar{w} is the shortest word with this property). We also say \bar{w} is a reduced word.

Again 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_{A}
$|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3, \quad|u v| \leqslant|u|+|v|$.

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- 1 denotes the empty word, and we have the notion of length.
- \sim is the eq. rel. generated by $a_{i} a_{i}^{-1} \sim a_{i}^{-1} a_{i} \sim 1$.
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo \sim).
- Every $W \in A^{*}$ has a unique reduced form, denoted \bar{W}, (clearly $w=\bar{W}$ in F_{A}, and \bar{w} is the shortest word with this property). We also say \bar{w} is a reduced word.
- Again 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_{A}
$|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3, \quad|u v| \leqslant|u|+|v|$.

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- 1 denotes the empty word, and we have the notion of length.
- \sim is the eq. rel. generated by $a_{i} a_{i}^{-1} \sim a_{i}^{-1} a_{i} \sim 1$.
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo \sim).
- Every $w \in A^{*}$ has a unique reduced form, denoted \bar{w}, (clearly $w=\bar{w}$ in F_{A}, and \bar{w} is the shortest word with this property). We also say \bar{w} is a reduced word.
- Again 1 denotes the empty word, and
$|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3$,

Definitions and notation

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite alphabet (n letters).
- $A^{ \pm 1}=A \cup A^{-1}=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$.
- Usually, $A=\{a, b, c\}$.
- $\left(A^{ \pm 1}\right)^{*}$ the free monoid on $A^{ \pm 1}$ (words on $A^{ \pm 1}$).
- 1 denotes the empty word, and we have the notion of length.
- \sim is the eq. rel. generated by $a_{i} a_{i}^{-1} \sim a_{i}^{-1} a_{i} \sim 1$.
- $F_{A}=\left(A^{ \pm 1}\right)^{*} / \sim$ is the free group on A (words on $A^{ \pm 1}$ modulo \sim).
- Every $w \in A^{*}$ has a unique reduced form, denoted \bar{w}, (clearly $w=\bar{w}$ in F_{A}, and \bar{w} is the shortest word with this property). We also say \bar{w} is a reduced word.
- Again 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_{A} : $|1|=0, \quad\left|a b a^{-1}\right|=\left|a b b b^{-1} a^{-1}\right|=3, \quad|u v| \leqslant|u|+|v|$.

The universal property

- The universal property: given a group G and a mapping $\varphi: A \rightarrow G$, there exists a unique group homomorphism $\Phi: F_{A} \rightarrow G$ such that the diagram

commutes (where ι is the inclusion map).
- Every group is a quotient of a free group

- So, the lattice of (normal) subgroups of F_{A} is very important.

The universal property

- The universal property: given a group G and a mapping $\varphi: A \rightarrow G$, there exists a unique group homomorphism $\Phi: F_{A} \rightarrow G$ such that the diagram

commutes (where ι is the inclusion map).
- Every group is a quotient of a free group

$$
G=\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{m}\right\rangle=F_{A} / \ll r_{1}, \ldots, r_{m} \gg .
$$

- So, the lattice of (normal) subgroups of F_{A} is very important.

The universal property

- The universal property: given a group G and a mapping $\varphi: A \rightarrow G$, there exists a unique group homomorphism $\Phi: F_{A} \rightarrow G$ such that the diagram

commutes (where ι is the inclusion map).
- Every group is a quotient of a free group

$$
G=\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{m}\right\rangle=F_{A} / \ll r_{1}, \ldots, r_{m} \gg .
$$

- So, the lattice of (normal) subgroups of F_{A} is very important.

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,
- --

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
> - (Nielsen-Schreier) Every subgroup of a free group is free,
- Not true,
- Very false: $F_{\aleph_{0}} \leqslant F_{2}$.
- The A-Stallings automata

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,
- -

\square

Steinitz Lemma,

- $F \leqslant E \Rightarrow \operatorname{dim} F \leqslant \operatorname{dim} E$,
- A basis

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
> - (Nielsen-Schreier) Every subgroup of a free group is free,
- Not true,

\author{

- The A-Stallings automata
}

Comparison with linear algebra

vector spaces
 free groups

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$
\qquad -
- F_{n} f.g. free group of a free group,
- Every group G is a quotient
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Not true,

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Not true
- $F \leqslant E \Rightarrow \operatorname{dim} F \leqslant \operatorname{dim} E$,
- A basis
- Very false: $F_{\mathbb{x}_{0}} \leqslant F_{2}$.
- The A-Stallings automata

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Steinitz Lemma,
- $F \leqslant E \Rightarrow \operatorname{dim} F \leqslant \operatorname{dim} E$,
- Very false: $F_{\aleph_{0}} \leqslant F_{2}$.
- The A-Stallings automata

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,
- Steinitz Lemma,

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- $F \leqslant E \Rightarrow \operatorname{dim} F \leqslant \operatorname{dim} E$,
- A basis
- Not true,
- Very false: $F_{\aleph_{0}} \leqslant F_{2}$.
- The A-Stallings automata

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Steinitz Lemma,
- $F \leqslant E \Rightarrow \operatorname{dim} F \leqslant \operatorname{dim} E$,- Not true,

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,
- --

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Steinitz Lemma,
- $F \leqslant E \Rightarrow \operatorname{dim} F \leqslant \operatorname{dim} E$,
- Not true,
- Very false: $F_{\aleph_{0}} \leqslant F_{2}$.
- The A-Stallings automata

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,
- -

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Steinitz Lemma,

- Not true,
- Very false: $F_{\aleph_{0}} \leqslant F_{2}$
- The A-Stallings automata

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Steinitz Lemma,

- A basis
- The A-Stallings automata

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,
- -

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Not true,
- Steinitz Lemma,
- $F \leqslant E \Rightarrow \operatorname{dim} F \leqslant \operatorname{dim} E$,
- A basis
- Very false: $F_{\aleph_{0}} \leqslant F_{2}$.
- The A-Stallings automata

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,
- -$-$
- Steinitz Lemma,
- $F \leqslant E \Rightarrow \operatorname{dim} F \leqslant \operatorname{dim} E$,
- A basis

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Not true,

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,
- -

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Not true,
- Very false: $F_{\aleph_{0}} \leqslant F_{2}$.

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,
- -

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Not true,
- Very false: $F_{\aleph_{0}} \leqslant F_{2}$.
- A basis

Comparison with linear algebra

vector spaces

- K^{n} f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^{n} \simeq K^{m} \Leftrightarrow n=m$,
- -

free groups

- F_{n} f.g. free group
- Every group G is a quotient of a free group,
- $F_{n} \simeq F_{m} \Leftrightarrow n=m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Not true,
- Very false: $F_{\aleph_{0}} \leqslant F_{2}$.
- The A-Stallings automata
- A basis
- Steinitz Lemma,
- $F \leqslant E \Rightarrow \operatorname{dim} F \leqslant \operatorname{dim} E$,

Outline

(1) The friendly and unfriendly free group

(2) The bijection between subgroups and automata
(3) Several algorithmic applications
4. Algebraic extensions and Takahasi's theorem

Stallings automata

Definition

A Stallings automata is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:
1- X is connected,
2- no vertex of degree 1 except possibly v (X is a core-graph),
3- no two edges with the same label go out of (or in to) the same vertex.

Stallings automata

Definition

A Stallings automata is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:
1- X is connected,
2- no vertex of degree 1 except possibly v (X is a core-graph),
3- no two edges with the same label go out of (or in to) the same vertex.

NO:

Stallings automata

Definition

A Stallings automata is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:
1- X is connected,
2- no vertex of degree 1 except possibly v (X is a core-graph),
3- no two edges with the same label go out of (or in to) the same vertex.
$N O$:

Stallings automata

In the influent paper
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_{A} and Stallings automata:
 $$
\left\{f . g . \text { subgroups of } F_{A}\right\} \quad \longleftrightarrow \quad\{\text { Stallings automata }\}
$$

which is crucial for the modern understanding of the lattice of subgroups of F_{A}.

Stallings automata

In the influent paper
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_{A} and Stallings automata:

$$
\text { \{f.g. subgroups of } \left.F_{A}\right\} \quad \longleftrightarrow \quad\{\text { Stallings automata }\}
$$

which is crucial for the modern understanding of the lattice of subgroups of F_{A}.

Stallings automata

In the influent paper
J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_{A} and Stallings automata:

$$
\text { \{f.g. subgroups of } \left.F_{A}\right\} \quad \longleftrightarrow \quad\{\text { Stallings automata }\}
$$

which is crucial for the modern understanding of the lattice of subgroups of F_{A}.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$$
\begin{array}{llll}
\hline \text { Enric Ventura (UPC) } & \text { Automata and Group Theory } & \text { November 25, 2008 } & 10 / 69
\end{array}
$$

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$\pi(X, \bullet) \not \ni \quad b c^{-1} b c a a$
Membership problem in $\pi(X, \circ)$ is solvable.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$$
\begin{aligned}
& \pi(X, \bullet)=\{1, \\
& \pi(X, \bullet) \not \supset \quad b c^{-1} b c a a \\
& \text { Membership problem in } \pi(X, \bullet) \text { is solvable. }
\end{aligned}
$$

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$$
\pi(X, \bullet)=\{1, a,
$$

$$
\pi(X, \bullet) \not \nexists \quad b c^{-1} b c a a
$$

Membership problem in $\pi(X, \bullet)$ is solvable.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$$
\pi(X, \bullet)=\left\{1, a, a^{-1}\right.
$$

$$
\pi(X, \bullet) \not \ni \quad b c^{-1} b c a a
$$

Membership problem in $\pi(X, \bullet)$ is solvable.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$$
\pi(X, \bullet)=\left\{1, a, a^{-1}, b a b\right.
$$

$$
\pi(X, \bullet) \not \nexists \quad b c^{-1} b c a a
$$

Membership problem in $\pi(X, \bullet)$ is solvable.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$$
\pi(X, \bullet)=\left\{1, a, a^{-1}, b a b, b c^{-1} b\right.
$$

$$
\pi(X, \bullet) \not \nexists \quad b c^{-1} b c a a
$$

Membership problem in $\pi(X, \bullet)$ is solvable.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$$
\begin{aligned}
\pi(X, \bullet)= & \left\{1, a, a^{-1}, b a b, b c^{-1} b,\right. \\
& \left.b a b a b^{-1} c b^{-1}, \ldots\right\}
\end{aligned}
$$

$\pi(X, \bullet) \not \supset \quad b c^{-1} b c a a$
Membership problem in $\pi(X, \bullet)$ is solvable.

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$$
\left.\begin{array}{rl}
\pi(X, \bullet)= & \left\{1, a, a^{-1}, b a b, b c^{-1} b\right. \\
& \left.b a b a b^{-1} c b^{-1}, \ldots\right\}
\end{array}\right]=\left\{\begin{aligned}
& \\
& \pi(X, \bullet) \nexists c^{-1} b c a a \\
& \text { Membership problem in } \pi(X, \bullet) \text { is solvable. }
\end{aligned}\right.
$$

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$
\pi(X, v)=\{\text { labels of closed paths at } v\} \leqslant F_{A},
$$

clearly, a subgroup of F_{A}.

$$
\begin{aligned}
& \pi(X, \bullet)=\left\{1, a, a^{-1}, b a b, b c^{-1} b,\right. \\
&\left.b a b a b^{-1} c b^{-1}, \ldots\right\} \\
& \pi(X, \bullet) \not \supset \quad b c^{-1} b c a a
\end{aligned}
$$

Membership problem in $\pi(X, \bullet)$ is solvable.

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, a]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And, $|E X-E T|$

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, i e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And, $|E X-E T|$

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And,

$E X-E T$

$=|E X|-|E T|$

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And,

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And,

A basis for $\pi(X, v)$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $r k(\pi(X, v))=1-|V X|+|E X|$.

Proof:

- Take a maximal tree T in X.
- Write $T[p, q]$ for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in E X-E T, x_{e}=\operatorname{label}(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\left\{x_{e} \mid e \in E X-E T\right\}$ is a basis for $\pi(X, v)$.
- And, $|E X-E T|=|E X|-|E T|$

$$
=|E X|-(|V T|-1)=1-|V X|+|E X| . \square
$$

Example

$H=\langle \rangle$

Example

$$
H=\langle a, \quad\rangle
$$

Example

$H=\langle a, b a b, \quad\rangle$

Example

$H=\left\langle a, b a b, b^{-1} c b^{-1}\right\rangle$

Example

$$
\begin{aligned}
& H=\left\langle a, b a b, b^{-1} c b^{-1}\right\rangle \\
& r k(H)=1-3+5=3 .
\end{aligned}
$$

Example-2

$$
F_{\aleph_{0}} \simeq H=\left\langle\ldots, b^{-2} a b^{2}, b^{-1} a b, a, b a b^{-1}, b^{2} a b^{-2}, \ldots\right\rangle \leqslant F_{2} .
$$

Constructing the automata from the subgroup

In any automaton containing the following situation, for $x \in A^{ \pm 1}$,

we can fold and identify vertices u and v to obtain

This operation, $(X, v) \rightsquigarrow\left(X^{\prime}, v\right)$, is called a Stallings folding.

Constructing the automata from the subgroup

In any automaton containing the following situation, for $x \in A^{ \pm 1}$,

we can fold and identify vertices u and v to obtain

$$
\bullet \xrightarrow{x} u=v .
$$

This operation, $(X, v) \rightsquigarrow\left(X^{\prime}, v\right)$, is called a Stallings folding.

Constructing the automata from the subgroup

In any automaton containing the following situation, for $x \in A^{ \pm 1}$,

we can fold and identify vertices u and v to obtain

$$
\bullet \xrightarrow{x} u=v \text {. }
$$

This operation, $(X, v) \rightsquigarrow\left(X^{\prime}, v\right)$, is called a Stallings folding.

Constructing the automata from the subgroup

Lemma (Stallings)

If $(X, v) \rightsquigarrow\left(X^{\prime}, v^{\prime}\right)$ is a Stallings folding then $\pi(X, v)=\pi\left(X^{\prime}, v^{\prime}\right)$.

Given a f.g. subgroup $H=\left\langle w_{1}, \ldots w_{m}\right\rangle \leqslant F_{A}$ (we assume w_{i} are reduced words), do the following:
1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Well defined?
Need to see that the output does not depend on the process...

Constructing the automata from the subgroup

Lemma (Stallings)

If $(X, v) \rightsquigarrow\left(X^{\prime}, v^{\prime}\right)$ is a Stallings folding then $\pi(X, v)=\pi\left(X^{\prime}, v^{\prime}\right)$.

Given a f.g. subgroup $H=\left\langle w_{1}, \ldots w_{m}\right\rangle \leqslant F_{A}$ (we assume w_{i} are reduced words), do the following:
1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Well defined?
Need to see that the output does not depend on the process.

Constructing the automata from the subgroup

Lemma (Stallings)

If $(X, v) \rightsquigarrow\left(X^{\prime}, v^{\prime}\right)$ is a Stallings folding then $\pi(X, v)=\pi\left(X^{\prime}, v^{\prime}\right)$.

Given a f.g. subgroup $H=\left\langle w_{1}, \ldots w_{m}\right\rangle \leqslant F_{A}$ (we assume w_{i} are reduced words), do the following:
1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Well defined?
Need to see that the output does not depend on the process.

Constructing the automata from the subgroup

Lemma (Stallings)

If $(X, v) \rightsquigarrow\left(X^{\prime}, v^{\prime}\right)$ is a Stallings folding then $\pi(X, v)=\pi\left(X^{\prime}, v^{\prime}\right)$.

Given a f.g. subgroup $H=\left\langle w_{1}, \ldots w_{m}\right\rangle \leqslant F_{A}$ (we assume w_{i} are reduced words), do the following:
1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Well defined?
Need to see that the output does not depend on the process..

Constructing the automata from the subgroup

Lemma (Stallings)

If $(X, v) \rightsquigarrow\left(X^{\prime}, v^{\prime}\right)$ is a Stallings folding then $\pi(X, v)=\pi\left(X^{\prime}, v^{\prime}\right)$.

Given a f.g. subgroup $H=\left\langle w_{1}, \ldots w_{m}\right\rangle \leqslant F_{A}$ (we assume w_{i} are reduced words), do the following:
1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Well defined?
Need to see that the output does not depend on the process...

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Flower(H)

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Flower(H)

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#1

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#1.

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#2.

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#2.

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#3.

$\Gamma(H)$

By Stallings Lemma, $\pi(\Gamma(H), \bullet)=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#3.
 $\Gamma(H)$

By Stallings Lemma, $\pi(\Gamma(H), \bullet)=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Example: $H=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$

Folding \#3.
 $\Gamma(H)$

By Stallings Lemma, $\pi(\Gamma(H), \bullet)=\left\langle b a b a^{-1}, a b a^{-1}, a b a^{2}\right\rangle$
$=\left\langle b, a b a^{-1}, a^{3}\right\rangle$

Local confluence

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings
Proof:

- Suppose $(X, v) \rightsquigarrow\left(X^{\prime}, v^{\prime}\right)$ is a single folding of 2 edges

with $q^{\prime}=r^{\prime}$).
- So, we get loca confluence:

Local confluence

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proof:

- Suppose $(X, v) \rightsquigarrow\left(X^{\prime}, v^{\prime}\right)$ is a single folding of 2 edges

\square
- So, we get local confluence:

Local confluence

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proof:

- Suppose $(X, v) \rightsquigarrow\left(X^{\prime}, v^{\prime}\right)$ is a single folding of 2 edges
- If $p \xrightarrow{x} q$ in (X, v), then $p^{\prime} \xrightarrow{x} q^{\prime}$ in $\left(X^{\prime}, v^{\prime}\right)$ (possibly

with $\left.q^{\prime}=r^{\prime}\right)$.
- So, we get local confluence:

Local confluence

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proof:

- Suppose $(X, v) \rightsquigarrow\left(X^{\prime}, v^{\prime}\right)$ is a single folding of 2 edges
- If $p \xrightarrow{x} q$ in (X, v), then $p^{\prime} \xrightarrow{x} q^{\prime}$ in $\left(X^{\prime}, v^{\prime}\right)$ (possibly

with $\left.q^{\prime}=r^{\prime}\right)$.
- So, we get local confluence:

$$
\begin{aligned}
& (X, v) \xrightarrow{\forall} \pi\left(X^{\prime}, v^{\prime}\right)
\end{aligned}
$$

The confluence grid

The confluence grid

The confluence grid

Confluence

- Hence, we have confluence:

$$
\begin{aligned}
& (X, v) \Longrightarrow \quad \forall \quad \pi\left(X^{\prime}, v^{\prime}\right)
\end{aligned}
$$

where \Rightarrow stands for an arbitrary sequence of foldings.

- Finally, edge-reducing + confluence implies unique output. \square

Confluence

- Hence, we have confluence:

$$
\begin{aligned}
& (X, v) \Longrightarrow \quad \forall \quad \pi\left(X^{\prime}, v^{\prime}\right)
\end{aligned}
$$

where \Rightarrow stands for an arbitrary sequence of foldings.

- Finally, edge-reducing + confluence implies unique output. \square

Independence from the generators

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Proof:

- Suppose $H=\left\langle w_{1}, \ldots, w_{p}\right\rangle=\left\langle w_{1}^{\prime}, \ldots, w_{q}^{\prime}\right\rangle$ and let $\Gamma(H)$ and $\Gamma^{\prime}(H)$ be the Stallings automata obtained from each set of generators.
- Consider the double flower

> whose fundamental group is $\left\langle w_{1}, \ldots, w_{p}, w_{1}^{\prime}, \ldots, w_{q}^{\prime}\right\rangle=H$.
> - Now, fold in the two natural ways:

Independence from the generators

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Proof:

- Suppose $H=\left\langle w_{1}, \ldots, w_{p}\right\rangle=\left\langle w_{1}^{\prime}, \ldots, w_{q}^{\prime}\right\rangle$ and let $\Gamma(H)$ and $\Gamma^{\prime}(H)$ be the Stallings automata obtained from each set of generators.

- Consider the double flower

whose fundamental group is $\left\langle w_{1}, \ldots, w_{p}, w_{1}^{\prime}, \ldots, w_{q}^{\prime}\right\rangle=H$.

- Now, fold in the two natural ways:

Independence from the generators

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Proof:

- Suppose $H=\left\langle w_{1}, \ldots, w_{p}\right\rangle=\left\langle w_{1}^{\prime}, \ldots, w_{q}^{\prime}\right\rangle$ and let $\Gamma(H)$ and $\Gamma^{\prime}(H)$ be the Stallings automata obtained from each set of generators.
- Consider the double flower

whose fundamental group is $\left\langle w_{1}, \ldots, w_{p}, w_{1}^{\prime}, \ldots, w_{q}^{\prime}\right\rangle=H$.
- Now, fold in the two natural ways:

Independence from the generators

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Proof:

- Suppose $H=\left\langle w_{1}, \ldots, w_{p}\right\rangle=\left\langle w_{1}^{\prime}, \ldots, w_{q}^{\prime}\right\rangle$ and let $\Gamma(H)$ and $\Gamma^{\prime}(H)$ be the Stallings automata obtained from each set of generators.
- Consider the double flower

whose fundamental group is $\left\langle w_{1}, \ldots, w_{p}, w_{1}^{\prime}, \ldots, w_{q}^{\prime}\right\rangle=H$.
- Now, fold in the two natural ways:

Independence from the generators

Independence from the generators

Lemma (Useless-w)

If $H \leqslant f g F_{A}$ and $w \in H$ then, attaching a petal labeled w to the basepoint of $\Gamma(H)$ and folding, we obtain again $\Gamma(H)$.

Independence from the generators

Lemma (Useless-w)

If $H \leqslant_{\text {fg }} F_{A}$ and $w \in H$ then, attaching a petal labeled w to the basepoint of $\Gamma(H)$ and folding, we obtain again $\Gamma(H)$.

The bijection

Theorem

The following is a bijection:

$$
\begin{aligned}
\left\{\text { f.g. subgroups of } F_{A}\right\} & \longleftrightarrow\{\text { Stallings automata }\} \\
H & \rightarrow \Gamma(H) \\
\pi(X, v) & \leftarrow(X, v)
\end{aligned}
$$

Proof:

- By Stallings Lemma, it is clear that $\pi(\Gamma(H))=H$.
- Let (X, v) be a Stallings automata, and $\pi(X, v)==\left\langle w_{1}, \ldots, w_{p}\right\rangle$
- Let (Y, v) be the automata obtained by attaching petals labeled w_{1}, \ldots, w_{p} to the vertex v of (X, v).
- By the useless-w Lemma, (Y, v) can be folded to both (X, v) and $\Gamma(\pi(X, v))$. And both are completely folded. Hence, $\Gamma(\pi(X, v))=(X, v)$.

The bijection

Theorem

The following is a bijection:

$$
\begin{aligned}
\left\{\text { f.g. subgroups of } F_{A}\right\} & \longleftrightarrow\{\text { Stallings automata }\} \\
H & \rightarrow \Gamma(H) \\
\pi(X, v) & \leftarrow(X, v)
\end{aligned}
$$

Proof:

- By Stallings Lemma, it is clear that $\pi(\Gamma(H))=H$.
- Let (X, v) be a Stallings automata, and $\pi(X, v)=\left\langle w_{1}, \ldots, w_{p}\right.$
- Let (Y, v) be the automata obtained by attaching petals labeled w_{1}, \ldots, w_{p} to the vertex v of (X, v).
- By the useless-w Lemma, (Y, v) can be folded to both (X, v) and $\Gamma(\pi(X, v))$. And both are completely folded. Hence, $\Gamma(\pi(X, v))=(X, v)$.

The bijection

Theorem

The following is a bijection:

$$
\begin{aligned}
\left\{\text { f.g. subgroups of } F_{A}\right\} & \longleftrightarrow\{\text { Stallings automata }\} \\
H & \rightarrow \Gamma(H) \\
\pi(X, v) & \leftarrow(X, v)
\end{aligned}
$$

Proof:

- By Stallings Lemma, it is clear that $\pi(\Gamma(H))=H$.
- Let (X, v) be a Stallings automata, and $\pi(X, v)==\left\langle w_{1}, \ldots, w_{p}\right\rangle$.
- Let (Y, v) be the automata obtained by attaching petals labeled w_{1}, \ldots, w_{p} to the vertex v of (X, v).
- By the useless-w Lemma, (Y, v) can be folded to both (X, v) and $\Gamma(\pi(X, v))$. And both are completely folded. Hence, $\Gamma(\pi(X, v))=(X, v)$.

The bijection

Theorem

The following is a bijection:

$$
\begin{aligned}
\left\{\text { f.g. subgroups of } F_{A}\right\} & \longleftrightarrow\{\text { Stallings automata }\} \\
H & \rightarrow \Gamma(H) \\
\pi(X, v) & \leftarrow(X, v)
\end{aligned}
$$

Proof:

- By Stallings Lemma, it is clear that $\pi(\Gamma(H))=H$.
- Let (X, v) be a Stallings automata, and $\pi(X, v)==\left\langle w_{1}, \ldots, w_{p}\right\rangle$.
- Let (Y, v) be the automata obtained by attaching petals labeled w_{1}, \ldots, w_{p} to the vertex v of (X, v).
- By the useless-w Lemma, (Y, v) can be folded to both (X, v) and $\Gamma(\pi(X, v))$. And both are completely folded. Hence, $\Gamma(\pi(X, v))=(X, v)$

The bijection

Theorem

The following is a bijection:

$$
\begin{aligned}
\text { \{f.g. subgroups of } \left.F_{A}\right\} & \longleftrightarrow\{\text { Stallings automata }\} \\
H & \rightarrow \Gamma(H) \\
\pi(X, v) & \leftarrow(X, v)
\end{aligned}
$$

Proof:

- By Stallings Lemma, it is clear that $\pi(\Gamma(H))=H$.
- Let (X, v) be a Stallings automata, and $\pi(X, v)==\left\langle w_{1}, \ldots, w_{p}\right\rangle$.
- Let (Y, v) be the automata obtained by attaching petals labeled w_{1}, \ldots, w_{p} to the vertex v of (X, v).
- By the useless- w Lemma, (Y, v) can be folded to both (X, v) and $\Gamma(\pi(X, v))$. And both are completely folded. Hence, $\Gamma(\pi(X, v))=(X, v)$. \square

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of F_{A} is free.

- We have proved the finitely generated case, but everything extends easily to the general case.
- The original proof (1920's) is combinatorial and much more technical.

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of F_{A} is free.

- We have proved the finitely generated case, but everything extends easily to the general case.
- The original proof (1920's) is combinatorial and much more technical.

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of F_{A} is free.

- We have proved the finitely generated case, but everything extends easily to the general case.
- The original proof (1920's) is combinatorial and much more technical.

Outline

(1) The friendly and unfriendly free group

2 The bijection between subgroups and automata
(3) Several algorithmic applications

(4) Algebraic extensions and Takahasi's theorem

Membership \& containment

(Membership)

Does w belong to $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$?

- Construct Г(H),
- Check whether w is readable as a closed path in $\Gamma(H)$ (at the basepoint).

(Containment)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$ and $K=\left\langle v_{1}, \ldots, v_{n}\right\rangle$, is $H \leqslant K$?

- Construct $\Gamma(K)$,
- Check whether all the wis are readable as closed paths in $\Gamma(H)$ (at the basepoint).

Membership \& containment

(Membership)

Does w belong to $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$?

- Construct $\Gamma(H)$,
- Check whether w is readable as a closed path in $\Gamma(H)$ (at the basepoint).

(Containment)

Given $H=\left\langle w_{1}\right.$

- Construct $\Gamma(K)$,
- Check whether all the wis are readable as closed paths in $\Gamma(H)$ (at the basepoint).

Membership \& containment

(Membership)

Does w belong to $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$?

- Construct 「 (H),
- Check whether w is readable as a closed path in $\Gamma(H)$ (at the basepoint).

(Containment)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$ and $K=\left\langle v_{1}, \ldots, v_{n}\right\rangle$, is $H \leqslant K$?

- Construct 「(K),
- Check whether all the wis are readable as closed paths in $\Gamma(H)$ (at the basepoint).

Membership \& containment

(Membership)

Does w belong to $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$?

- Construct $\Gamma(H)$,
- Check whether w is readable as a closed path in $\Gamma(H)$ (at the basepoint).

(Containment)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$ and $K=\left\langle v_{1}, \ldots, v_{n}\right\rangle$, is $H \leqslant K$?

- Construct $\Gamma(K)$,
- Check whether all the w_{i} 's are readable as closed paths in $\Gamma(H)$ (at the basepoint).

Basis \& conjugacy

(Computing a basis)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$, find a basis for H.

- Construct Г(H),
- Choose a maximal tree,
- Read the corresponding basis.

(Conjugacy)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$ and $K=\left\langle v_{1}, \ldots, v_{n}\right\rangle$, are they conjugate (i.e. $H^{x}=K$ for some $\left.x \in F_{A}\right)$?

- Construct $\Gamma(H)$ and $\Gamma(K)$,
- Check whether the are "equal" up to the basepoint.
- Every path between the two basepoints spells a valid x.

Basis \& conjugacy

(Computing a basis)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$, find a basis for H.

- Construct 「(H),
- Choose a maximal tree,
- Read the corresponding basis.

- Construct $\Gamma(H)$ and $\Gamma(K)$,
- Check whether the are "equa " up to the basepoint.
- Every path between the two basepoints spells a valid x.

Basis \& conjugacy

(Computing a basis)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$, find a basis for H.

- Construct $\Gamma(H)$,
- Choose a maximal tree,
- Read the corresponding basis.

(Conjugacy)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$ and $K=\left\langle v_{1}, \ldots, v_{n}\right\rangle$, are they conjugate (i.e. $H^{x}=K$ for some $\left.x \in F_{A}\right)$?

- Construct $\Gamma(H)$ and $\Gamma(K)$,
- Check whether the are "equal" up to the basepoint.
- Every path between the two basepoints spells a valid x

Basis \& conjugacy

(Computing a basis)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$, find a basis for H.

- Construct $\Gamma(H)$,
- Choose a maximal tree,
- Read the corresponding basis.

(Conjugacy)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$ and $K=\left\langle v_{1}, \ldots, v_{n}\right\rangle$, are they conjugate (i.e. $H^{x}=K$ for some $\left.x \in F_{A}\right)$?

- Construct $\Gamma(H)$ and $\Gamma(K)$,
- Check whether the are "equal" up to the basepoint.
- Every path between the two basepoints spells a valid x.

Finite index subgroups

(Finite index)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$, is $H \leqslant \begin{array}{r}\text { f.i. }\end{array} F_{A}$? If yes, find a set of coset representatives.

For $u \in V \Gamma(H)$, choose p (the label of) a path from \bullet to u; then,
$\{$ labels of paths from \circ to $u\}=\pi(\Gamma(H), 0) \cdot p=H \cdot p$
is a coset of F_{A} / H.
F_{A} / H is in bijection with the set of vertices of the "extended $\Gamma(H)$ "

- Construct $\Gamma(H)$,
- Check whether $\Gamma(H)$ is complete (i.e. every letter going in and out of every vertex),
- Choose a maximal tree T in $\Gamma(H)$,
- $\{T[0, v] \mid v \in V \Gamma(H)\}$ is a set of coset reps. for $H \leqslant f . F_{A}$.

Finite index subgroups

(Finite index)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$, is $H \leqslant$ f.i. F_{A} ? If yes, find a set of coset representatives.
\rightarrow For $u \in V \Gamma(H)$, choose p (the label of) a path from \bullet to u; then, $\{$ labels of paths from \bullet to $u\}=\pi(\Gamma(H), \bullet) \cdot p=H \cdot p$ is a coset of F_{A} / H.
F_{A} / H is in bijection with the set of vertices of the "extended $\Gamma(H)$ "

- Construct $\Gamma(H)$,
- Check whether $\Gamma(H)$ is complete (i.e. every letter going in and out of every vertex),
- Choose a maximal tree T in $\Gamma(H)$,
- $\{T[\bullet, v] \mid v \in V \Gamma(H)\}$ is a set of coset reps. for $H \leqslant f, F_{A}$.

Finite index subgroups

(Finite index)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$, is $H \leqslant$ f.i. F_{A} ? If yes, find a set of coset representatives.
\rightarrow For $u \in V \Gamma(H)$, choose p (the label of) a path from \bullet to u; then, $\{$ labels of paths from \bullet to $u\}=\pi(\Gamma(H), \bullet) \cdot p=H \cdot p$ is a coset of F_{A} / H.
$\rightarrow F_{A} / H$ is in bijection with the set of vertices of the "extended $\Gamma(H)$ "

- Construct $\Gamma(H)$,
- Check whether $\Gamma(H)$ is complete (i.e. every letter going in and out of every vertex),
- Choose a maximal tree T in $\Gamma(H)$,
- $\{T[\bullet, v] \mid v \in V \Gamma(H)\}$ is a set of coset reps. for $H_{f, i} F_{A}$

Finite index subgroups

(Finite index)

Given $H=\left\langle w_{1}, \ldots, w_{m}\right\rangle$, is $H \leqslant$ f.i. F_{A} ? If yes, find a set of coset representatives.
\rightarrow For $u \in V \Gamma(H)$, choose p (the label of) a path from \bullet to u; then,
$\{$ labels of paths from \bullet to $u\}=\pi(\Gamma(H), \bullet) \cdot p=H \cdot p$
is a coset of F_{A} / H.
$\rightarrow F_{A} / H$ is in bijection with the set of vertices of the "extended $\Gamma(H)$ "

- Construct $\Gamma(H)$,
- Check whether $\Gamma(H)$ is complete (i.e. every letter going in and out of every vertex),
- Choose a maximal tree T in $\Gamma(H)$,
- $\{T[\bullet, v] \mid v \in V \Gamma(H)\}$ is a set of coset reps. for $H \leqslant$ f.i. F_{A}.

Example

$H=\left\langle b, a c, c^{-1} a, c a c^{-1}, c^{-1} b c^{-1}, c b c, c^{4}, c^{2} a c^{-2}, c^{2} b c^{-2}\right\rangle$

Example

$$
H=\left\langle b, a c, c^{-1} a, c a c^{-1}, c^{-1} b c^{-1}, c b c, c^{4}, c^{2} a c^{-2}, c^{2} b c^{-2}\right\rangle
$$

$F_{3}=H \sqcup H c \sqcup H a \sqcup H a c^{-1}$.

More on finite index

(Schreier index formula)
If $H \leqslant f, . F_{A}$ is of index $[F: H]$, then $r(H)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right)$.
Proof:

Theorem (M. Hall)

Every f.g. subgroup $H \leqslant$ fg F_{A} is a free factor of a finite index one,

Proof:

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),
- Clearly, $H=\pi(\Gamma(H)) \leqslant_{f t} \pi(Y, v) \leqslant_{f . i} . F_{A}$. \square

More on finite index

(Schreier index formula)

If $H \leqslant f, i . F_{A}$ is of index $[F: H]$, then $r(H)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right)$.

Proof:

$$
\begin{aligned}
r(H) & =1-|V \Gamma(H)|+|E \Gamma(H)|=1-|V \Gamma(H)|+|A| \cdot|V \Gamma(H)| \\
& =1+|V \Gamma(H)| \cdot(|A|-1)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right) . \quad \square
\end{aligned}
$$

Theorem (M. Hall)

Every f.g. subgroup $H \leqslant F_{\text {A }}$ is a free factor of a finite index one,

Proof:

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),

More on finite index

(Schreier index formula)

If $H \leqslant f, i . F_{A}$ is of index $[F: H]$, then $r(H)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right)$.

Proof:

$$
\begin{aligned}
r(H) & =1-|V \Gamma(H)|+|E \Gamma(H)|=1-|V \Gamma(H)|+|A| \cdot|V \Gamma(H)| \\
& =1+|V \Gamma(H)| \cdot(|A|-1)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right) . \quad \square
\end{aligned}
$$

Theorem (M. Hall)

Every f.g. subgroup $H \leqslant_{f g} F_{A}$ is a free factor of a finite index one, $H \leqslant_{f f} H * L \leqslant_{f, i .} F_{A}$.

Proof:

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),

More on finite index

(Schreier index formula)

If $H \leqslant f, i . F_{A}$ is of index $[F: H]$, then $r(H)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right)$.

Proof:

$$
\begin{aligned}
r(H) & =1-|V \Gamma(H)|+|E \Gamma(H)|=1-|V \Gamma(H)|+|A| \cdot|V \Gamma(H)| \\
& =1+|V \Gamma(H)| \cdot(|A|-1)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right) . \quad \square
\end{aligned}
$$

Theorem (M. Hall)

Every f.g. subgroup $H \leqslant_{f g} F_{A}$ is a free factor of a finite index one, $H \leqslant_{f f} H * L \leqslant_{f, i .} F_{A}$.

Proof:

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v)
- Clearly, $H=\pi(\Gamma(H)) \leqslant_{f f} \pi(Y, v) \leqslant_{f, i} . F_{A}$. \square

More on finite index

(Schreier index formula)

If $H \leqslant f, i . F_{A}$ is of index $[F: H]$, then $r(H)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right)$.

Proof:

$$
\begin{aligned}
r(H) & =1-|V \Gamma(H)|+|E \Gamma(H)|=1-|V \Gamma(H)|+|A| \cdot|V \Gamma(H)| \\
& =1+|V \Gamma(H)| \cdot(|A|-1)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right) . \quad \square
\end{aligned}
$$

Theorem (M. Hall)

Every f.g. subgroup $H \leqslant_{f g} F_{A}$ is a free factor of a finite index one, $H \leqslant_{f f} H * L \leqslant_{f, i .} F_{A}$.

Proof:

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v)
- Clearly, $H=\pi(\Gamma(H)) \leqslant_{f f} \pi(Y, v) \leqslant_{f, i .} F_{A}$. \square

More on finite index

(Schreier index formula)

If $H \leqslant f, . i$. F_{A} is of index $[F: H]$, then $r(H)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right)$.

Proof:

$$
\begin{aligned}
r(H) & =1-|V \Gamma(H)|+|E \Gamma(H)|=1-|V \Gamma(H)|+|A| \cdot|V \Gamma(H)| \\
& =1+|V \Gamma(H)| \cdot(|A|-1)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right) . \quad \square
\end{aligned}
$$

Theorem (M. Hall)

Every f.g. subgroup $H \leqslant_{f g} F_{A}$ is a free factor of a finite index one, $H \leqslant_{f f} H * L \leqslant_{f, i .} F_{A}$.

Proof:

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),

More on finite index

(Schreier index formula)

If $H \leqslant f, . i$. F_{A} is of index $[F: H]$, then $r(H)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right)$.

Proof:

$$
\begin{aligned}
r(H) & =1-|V \Gamma(H)|+|E \Gamma(H)|=1-|V \Gamma(H)|+|A| \cdot|V \Gamma(H)| \\
& =1+|V \Gamma(H)| \cdot(|A|-1)=1+[F: H] \cdot\left(r\left(F_{A}\right)-1\right) . \quad \square
\end{aligned}
$$

Theorem (M. Hall)

Every f.g. subgroup $H \leqslant_{f g} F_{A}$ is a free factor of a finite index one, $H \leqslant_{f f} H * L \leqslant_{f, i .} F_{A}$.

Proof:

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),
- Clearly, $H=\pi(\Gamma(H)) \leqslant_{f f} \pi(Y, v) \leqslant_{f . i \text {. }} F_{A}$. \square

Example

$$
H=\left\langle b, c b c, c^{2} b c^{-2}\right\rangle
$$

$H \leqslant_{H} H *\langle \rangle$

Example

$H=\left\langle b, c b c, c^{2} b c^{-2}\right\rangle$

$H \leqslant{ }_{f} H *\langle a c\rangle$

Example

$H=\left\langle b, c b c, c^{2} b c^{-2}\right\rangle$

$H \leqslant$| $H *\left\langle a c, c^{-1} a\right\rangle$ |
| :--- |

Example

$H=\left\langle b, c b c, c^{2} b c^{-2}\right\rangle$

$H \leqslant{ }_{f f} H *\left\langle a c, c^{-1} a, c^{-1} b c^{-1}\right\rangle$

Example

$H=\left\langle b, c b c, c^{2} b c^{-2}\right\rangle$

$H \leqslant \begin{array}{ll} & H *\left\langle a c, c^{-1} a, c^{-1} b c^{-1}, c^{4}\right\rangle\end{array}$

Example

$H=\left\langle b, c b c, c^{2} b c^{-2}\right\rangle$

$H \leqslant \# H *\left\langle a c, c^{-1} a, c^{-1} b c^{-1}, c^{4}, c^{2} a c^{-2}\right\rangle$

Example

$H=\left\langle b, c b c, c^{2} b c^{-2}\right\rangle$

$H \leqslant_{f} H *\left\langle a c, c^{-1} a, c^{-1} b c^{-1}, c^{4}, c^{2} a c^{-2}, c a c^{-1}\right\rangle$

Example

$H=\left\langle b, c b c, c^{2} b c^{-2}\right\rangle$

$H \leqslant_{H} H *\left\langle a c, c^{-1} a, c^{-1} b c^{-1}, c^{4}, c^{2} a c^{-2}, c a c^{-1}\right\rangle \leqslant_{4} F_{3}$.

Pull-back of automata

Definition

The pull-back of two Stallings automata, (X, v) and (Y, w), is the cartesian product $(X \times Y,(v, w))$ (respecting labels). This is not in general connected, neither without degree 1 vertices, but it is folded.

Theorem (H. Neumann-Stallings)
 For every f.g. subgroups $H, K \leqslant_{f g} F_{A}, \Gamma(H \cap K)$ coincides with the connected component of $\Gamma(H) \times \Gamma(K)$ containing the basepoint, after trimming.

This gives a very nice and quick algorithm to compute intersections:

Pull-back of automata

Definition

The pull-back of two Stallings automata, (X, v) and (Y, w), is the cartesian product $(X \times Y,(v, w))$ (respecting labels). This is not in general connected, neither without degree 1 vertices, but it is folded.

Theorem (H. Neumann-Stallings)

For every f.g. subgroups $H, K \leqslant_{f g} F_{A}, \Gamma(H \cap K)$ coincides with the connected component of $\Gamma(H) \times \Gamma(K)$ containing the basepoint, after trimming.

This gives a very nice and quick algorithm to compute intersections:

Pull-back of automata

Definition

The pull-back of two Stallings automata, (X, v) and (Y, w), is the cartesian product $(X \times Y,(v, w))$ (respecting labels). This is not in general connected, neither without degree 1 vertices, but it is folded.

Theorem (H. Neumann-Stallings)

For every f.g. subgroups $H, K \leqslant_{f g} F_{A}, \Gamma(H \cap K)$ coincides with the connected component of $\Gamma(H) \times \Gamma(K)$ containing the basepoint, after trimming.

This gives a very nice and quick algorithm to compute intersections:

Computing intersections: an example

Let $H=\left\langle a, b^{2}, b a b\right\rangle$ and $K=\left\langle b^{2}, b a^{2}\right\rangle$ be subgroups of F_{2}. To compute a basis for $H \cap K$:
$H \cap K=$? Clear that $b^{2} \in H$, but.... something else?

Computing intersections: an example

Let $H=\left\langle a, b^{2}, b a b\right\rangle$ and $K=\left\langle b^{2}, b a^{2}\right\rangle$ be subgroups of F_{2}. To compute a basis for $H \cap K$:

$H \cap K=$? Clear that $b^{2} \in H$, but.... something else?

Computing intersections: an example

Let $H=\left\langle a, b^{2}, b a b\right\rangle$ and $K=\left\langle b^{2}, b a^{2}\right\rangle$ be subgroups of F_{2}. To compute a basis for $H \cap K$:

$H \cap K=$? Clear that $b^{2} \in H$, but.... something else?

Computing intersections: an example

Let $H=\left\langle a, b^{2}, b a b\right\rangle$ and $K=\left\langle b^{2}, b a^{2}\right\rangle$ be subgroups of F_{2}. To compute a basis for $H \cap K$:

(?) ...)

Computing intersections: an example

Let $H=\left\langle a, b^{2}, b a b\right\rangle$ and $K=\left\langle b^{2}, b a^{2}\right\rangle$ be subgroups of F_{2}. To compute a basis for $H \cap K$:

$H \cap K=\left\langle b^{2}, \quad\right\rangle$

Computing intersections: an example

Let $H=\left\langle a, b^{2}, b a b\right\rangle$ and $K=\left\langle b^{2}, b a^{2}\right\rangle$ be subgroups of F_{2}. To compute a basis for $H \cap K$:

$H \cap K=\left\langle b^{2}, a^{-2} b^{2} a^{2}, \quad\right\rangle$

Computing intersections: an example

Let $H=\left\langle a, b^{2}, b a b\right\rangle$ and $K=\left\langle b^{2}, b a^{2}\right\rangle$ be subgroups of F_{2}. To compute a basis for $H \cap K$:

$H \cap K=\left\langle b^{2}, a^{-2} b^{2} a^{2}, \quad\right\rangle$

Computing intersections: an example

Let $H=\left\langle a, b^{2}, b a b\right\rangle$ and $K=\left\langle b^{2}, b a^{2}\right\rangle$ be subgroups of F_{2}. To compute a basis for $H \cap K$:

$H \cap K=\left\langle b^{2}, a^{-2} b^{2} a^{2}, b a^{2} b a^{2}\right\rangle$ and nothing else.

Computing intersections: an example

Let $H=\left\langle a, b^{2}, b a b\right\rangle$ and $K=\left\langle b^{2}, b a^{2}\right\rangle$ be subgroups of F_{2}. To compute a basis for $H \cap K$:

$H \cap K=\left\langle b^{2}, a^{-2} b^{2} a^{2}, b a^{2} b a^{2}\right\rangle \quad \ldots$ and nothing else.

Rank of the intersection

Theorem (Howson)

The intersection of finitely generated subgroups of F_{A} is again finitely generated.

But the intersection can have bigger rank: " $3=3 \cap 2 \leqslant 2$ "

Theorem (H. Neumann)
$\tilde{r}(H \cap K) \leqslant 2 \tilde{r}(H) \tilde{r}(K)$, where $\tilde{r}(H)=\max \{0, r(H)-1\}$

Conjecture (H. Neumann)

Rank of the intersection

Theorem (Howson)

The intersection of finitely generated subgroups of F_{A} is again finitely generated.

But the intersection can have bigger rank: " $3=3 \cap 2 \leqslant 2$ "

Theorem (H. Neumann)

Conjecture (H. Neumann)

Rank of the intersection

Theorem (Howson)

The intersection of finitely generated subgroups of F_{A} is again finitely generated.

But the intersection can have bigger rank: " $3=3 \cap 2 \leqslant 2$ "

Theorem (H. Neumann)

$\tilde{r}(H \cap K) \leqslant 2 \tilde{r}(H) \tilde{r}(K)$, where $\tilde{r}(H)=\max \{0, r(H)-1\}$.

Conjecture (H. Neumann)

Rank of the intersection

Theorem (Howson)

The intersection of finitely generated subgroups of F_{A} is again finitely generated.

But the intersection can have bigger rank: " $3=3 \cap 2 \leqslant 2$ "

Theorem (H. Neumann)

$\tilde{r}(H \cap K) \leqslant 2 \tilde{r}(H) \tilde{r}(K)$, where $\tilde{r}(H)=\max \{0, r(H)-1\}$.

Conjecture (H. Neumann)

 $\tilde{r}(H \cap K) \leqslant \tilde{r}(H) \tilde{r}(K)$.

Rank of the intersection

Theorem (Howson)

The intersection of finitely generated subgroups of F_{A} is again finitely generated.

But the intersection can have bigger rank: " $3=3 \cap 2 \leqslant 2$ "

Theorem (H. Neumann)

$\tilde{r}(H \cap K) \leqslant 2 \tilde{r}(H) \tilde{r}(K)$, where $\tilde{r}(H)=\max \{0, r(H)-1\}$.

Conjecture (H. Neumann)

$\tilde{r}(H \cap K) \leqslant \tilde{r}(H) \tilde{r}(K)$.

In the example, $3-1 \leqslant(3-1)(2-1)$.

Status of Hanna Neumann Conjecture

- HNC holds if H (or K) has rank 1 (immediate),
- HNC holds for finite index subgroups (elementary),
- HNC holds if H has rank 2 (Tardös, 1992), (not easy),
- HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),
- HNC also holds if H is positively generated $(\Leftrightarrow \Gamma(H)$ is strongly connected), (Meakin-Weil, and Khan, 2002),
- HNC in general is an open problem (... and considered very hard).

Status of Hanna Neumann Conjecture

- HNC holds if H (or K) has rank 1 (immediate),
- HNC holds for finite index subgroups (elementary),
- HNC holds if H has rank 2 (Tardös, 1992), (not easy),
- HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),
- HNC also holds if H is positively generated $(\Leftrightarrow \Gamma(H)$ is strongly connected), (Meakin-Weil, and Khan, 2002),
- HNC in general is an open problem (...and considered very hard).

Status of Hanna Neumann Conjecture

- HNC holds if H (or K) has rank 1 (immediate),
- HNC holds for finite index subgroups (elementary),
- HNC holds if H has rank 2 (Tardös, 1992), (not easy),
- HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),
- HNC also holds if H is positively generated $(\Leftrightarrow \Gamma(H)$ is strongly connected), (Meakin-Weil, and Khan, 2002),
- HNC in general is an open problem (...and considered very hard).

Status of Hanna Neumann Conjecture

- HNC holds if H (or K) has rank 1 (immediate),
- HNC holds for finite index subgroups (elementary),
- HNC holds if H has rank 2 (Tardös, 1992), (not easy),
- HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),
- HNC also holds if H is positively generated $(\Leftrightarrow \Gamma(H)$ is strongly connected), (Meakin-Weil, and Khan, 2002),
- HNC in general is an open problem (...and considered very hard).

Status of Hanna Neumann Conjecture

- HNC holds if H (or K) has rank 1 (immediate),
- HNC holds for finite index subgroups (elementary),
- HNC holds if H has rank 2 (Tardös, 1992), (not easy),
- HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),
- HNC also holds if H is positively generated $(\Leftrightarrow \Gamma(H)$ is strongly connected), (Meakin-Weil, and Khan, 2002),
- HNC in general is an open problem (...and considered very hard).

Status of Hanna Neumann Conjecture

- HNC holds if H (or K) has rank 1 (immediate),
- HNC holds for finite index subgroups (elementary),
- HNC holds if H has rank 2 (Tardös, 1992), (not easy),
- HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),
- HNC also holds if H is positively generated $(\Leftrightarrow \Gamma(H)$ is strongly connected), (Meakin-Weil, and Khan, 2002),
- HNC in general is an open problem (...and considered very hard).

Outline

(1) The friendly and unfriendly free group

2 The bijection between subgroups and automata
(3) Several algorithmic applications
4. Algebraic extensions and Takahasi's theorem

Free and algebraic extensions

Definition

And extension of subgroups $H \leqslant K$, in F_{A} is called

- a free extension if H is a free factor of K (i.e. $K=H * L$ for some $L \leqslant F_{A}$), denoted $H \leqslant \begin{array}{ll} \\ K & \text {; }\end{array}$
- algebraic if H is not contained in any proper free factor of K (i.e. $H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$), denoted $H \leqslant$ alg K.
- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{a l g}\langle x\rangle, \forall x \in F_{A} \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg K.
- $H \leqslant$ alg $K \leqslant$ alg L implies $H \leqslant$ alg L.
- $H \leqslant_{f f} K \leqslant_{f f} L$ implies $H \leqslant_{f f} L$.
- $H \leqslant$ alg L and $H \leqslant K \leqslant L$ imply $K \leqslant$ alg L but not necessarily $H \leqslant a l g K$.
- $H \leqslant_{f f} L$ and $H \leqslant K \leqslant L$ imply $H \leqslant_{f f} K$ but not necessarily $K \leqslant_{f f} L$.

Free and algebraic extensions

Definition

And extension of subgroups $H \leqslant K$, in F_{A} is called

- a free extension if H is a free factor of K (i.e. $K=H * L$ for some $L \leqslant F_{A}$), denoted $H \leqslant_{f f} K$;
- algebraic if H is not contained in any proper free factor of K (i.e. $H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$), denoted $H \leqslant$ alg K.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg K.
- $H \leqslant$ alg $K \leqslant$ alg L implies $H \leqslant$ alg L.
- $H \leqslant_{f f} K \leqslant_{f f} L$ implies $H \leqslant_{f f} L$.
- $H \leqslant$ alg L and $H \leqslant K \leqslant L$ imply $K \leqslant$ alg L but not necessarily $H \leqslant$ alg K.
- $H \leqslant_{f t} L$ and $H \leqslant K \leqslant L$ imply $H \leqslant_{f f} K$ but not necessarily $K \leqslant_{f f} L$.

Free and algebraic extensions

Definition

And extension of subgroups $H \leqslant K$, in F_{A} is called

- a free extension if H is a free factor of K (i.e. $K=H * L$ for some $L \leqslant F_{A}$), denoted $H \leqslant_{f f} K$;
- algebraic if H is not contained in any proper free factor of K (i.e. $H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$), denoted $H \leqslant$ alg K.
- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{\text {alg }}\langle x\rangle, \forall x \in F_{A} \forall r \in \mathbb{Z}$.

Free and algebraic extensions

Definition

And extension of subgroups $H \leqslant K$, in F_{A} is called

- a free extension if H is a free factor of K (i.e. $K=H * L$ for some $L \leqslant F_{A}$), denoted $H \leqslant_{f f} K$;
- algebraic if H is not contained in any proper free factor of K (i.e. $H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$), denoted $H \leqslant$ alg K.
- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{\text {alg }}\langle x\rangle, \forall x \in F_{A} \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg K.
- $H \leqslant$ alg $K \leqslant$ alg L implies $H \leqslant$ alg L

- $H \leqslant$ alg L and $H \leqslant K \leqslant L$ imply $K \leqslant$ alg L but not necessarily $H \leqslant$ alg K - $H \leqslant_{H} L$ and $H \leqslant K \leqslant L$ imply $H \leqslant_{f f} K$ but not necessarily $K \leqslant_{H f} L$.

Free and algebraic extensions

Definition

And extension of subgroups $H \leqslant K$, in F_{A} is called

- a free extension if H is a free factor of K (i.e. $K=H * L$ for some $L \leqslant F_{A}$), denoted $H \leqslant_{f f} K$;
- algebraic if H is not contained in any proper free factor of K (i.e. $H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$), denoted $H \leqslant$ alg K.
- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{\text {alg }}\langle x\rangle, \forall x \in F_{A} \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg K.
- $H \leqslant$ alg $K \leqslant$ alg L implies $H \leqslant$ alg L.
- $H \leqslant$ alg L and $H \leqslant K \leqslant L$ imply K

Free and algebraic extensions

Definition

And extension of subgroups $H \leqslant K$, in F_{A} is called

- a free extension if H is a free factor of K (i.e. $K=H * L$ for some $L \leqslant F_{A}$), denoted $H \leqslant_{f f} K$;
- algebraic if H is not contained in any proper free factor of K (i.e. $H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$), denoted $H \leqslant$ alg K.
- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{\text {alg }}\langle x\rangle, \forall x \in F_{A} \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg K.
- $H \leqslant$ alg $K \leqslant$ alg L implies $H \leqslant$ alg L.
- $H \leqslant_{f f} K \leqslant_{f f} L$ implies $H \leqslant_{f f} L$.

Free and algebraic extensions

Definition

And extension of subgroups $H \leqslant K$, in F_{A} is called

- a free extension if H is a free factor of K (i.e. $K=H * L$ for some $L \leqslant F_{A}$), denoted $H \leqslant \begin{aligned} & \text { ff } \\ & K \text {; }\end{aligned}$
- algebraic if H is not contained in any proper free factor of K (i.e. $H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$), denoted $H \leqslant$ alg K.
- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{\text {alg }}\langle x\rangle, \forall x \in F_{A} \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg K.
- $H \leqslant$ alg $K \leqslant$ alg L implies $H \leqslant$ alg L.
- $H \leqslant_{f f} K \leqslant_{f f} L$ implies $H \leqslant_{f f} L$.
- $H \leqslant$ alg L and $H \leqslant K \leqslant L$ imply $K \leqslant$ alg L but not necessarily $H \leqslant$ alg K.

Free and algebraic extensions

Definition

And extension of subgroups $H \leqslant K$, in F_{A} is called

- a free extension if H is a free factor of K (i.e. $K=H * L$ for some $L \leqslant F_{A}$), denoted $H \leqslant \begin{aligned} & \text { ff } \\ & \text {; }\end{aligned}$
- algebraic if H is not contained in any proper free factor of K (i.e. $H \leqslant K_{1} \leqslant K_{1} * K_{2}=K$ implies $K_{2}=1$), denoted $H \leqslant$ alg K.
- $\langle a\rangle \leqslant_{f f}\langle a, b\rangle \leqslant_{f f}\langle a, b, c\rangle$, and $\left\langle x^{r}\right\rangle \leqslant_{\text {alg }}\langle x\rangle, \forall x \in F_{A} \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg K.
- $H \leqslant$ alg $K \leqslant$ alg L implies $H \leqslant$ alg L.
- $H \leqslant_{f f} K \leqslant_{f f} L$ implies $H \leqslant_{f f} L$.
- $H \leqslant$ alg L and $H \leqslant K \leqslant L$ imply $K \leqslant$ alg L but not necessarily $H \leqslant$ alg K.
- $H \leqslant_{f f} L$ and $H \leqslant K \leqslant L$ imply $H \leqslant_{f f} K$ but not necessarily $K \leqslant_{f f} L$.

Takahasi's Theorem

Theorem (Takahasi, 1951)

For every $H \leqslant f g F_{A}$, the set of algebraic extensions, denoted $\mathcal{A E}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- Modern proof, using Stallings automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).

Takahasi's Theorem

Theorem (Takahasi, 1951)

For every $H \leqslant f g F_{A}$, the set of algebraic extensions, denoted $\mathcal{A E}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- Modern proof, using Stallings automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).

Takahasi's Theorem

Theorem (Takahasi, 1951)

For every $H \leqslant f g F_{A}$, the set of algebraic extensions, denoted $\mathcal{A E}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- Modern proof, using Stallings automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).

The modern proof

Proof:

- Let us (temporarily) attach some "hairs" to $\Gamma(H)$ an denote the resulting (folded) automata by $\tilde{\Gamma}(H)$.
- Given $H \leqslant K$ (both f.g.), we can obtain $\Gamma(K)$ from $\Gamma(H)$ by 1) adding the appropriate hairs, 2) identifying several vertices to •, 3) folding; (note that adding extra hairs, the result will be the same if we 4) trim at the end).
- Hence, if $H \leqslant K$ (both f.g.) then $\Gamma(K)$ contains as a subgraph either $\Gamma(H)$ or some quotient of it (i.e. $\Gamma(H)$ after identifying several sets of vertices (\sim) and then folding, $\Gamma(H) / \sim)$.
- The overgroups of H :
$\mathcal{O}(H)=\{\pi(\Gamma(H) / \sim, \bullet) \mid \sim$ is a partition of $V \Gamma(H)\}$.
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant$ ff K.
- Thus, $\mathcal{A E}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

The modern proof

Proof:

- Let us (temporarily) attach some "hairs" to $\Gamma(H)$ an denote the resulting (folded) automata by $\tilde{\Gamma}(H)$.
- Given $H \leqslant K$ (both f.g.), we can obtain $\Gamma(K)$ from $\Gamma(H)$ by 1) adding the appropriate hairs, 2) identifying several vertices to \bullet, 3) folding; (note that adding extra hairs, the result will be the same if we 4) trim at the end).
- Hence, if $H \leqslant K$ (both f.g.) then $\Gamma(K)$ contains as a subgraph either $\Gamma(H)$ or some quotient of it (i.e. $\Gamma(H)$ after identifying several sets of vertices (\sim) and then folding, $\Gamma(H) / \sim)$
- The overgroups of H :
$\mathcal{O}(H)=\{\pi(\Gamma(H) / \sim, \bullet) \mid \sim$ is a partition of $V \Gamma(H)\}$
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant{ }_{f f} K$. - Thus, $\mathcal{A} \mathcal{E}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

The modern proof

Proof:

- Let us (temporarily) attach some "hairs" to $\Gamma(H)$ an denote the resulting (folded) automata by $\tilde{\Gamma}(H)$.
- Given $H \leqslant K$ (both f.g.), we can obtain $\Gamma(K)$ from $\Gamma(H)$ by 1) adding the appropriate hairs, 2) identifying several vertices to $\bullet, 3$) folding; (note that adding extra hairs, the result will be the same if we 4) trim at the end).
- Hence, if $H \leqslant K$ (both f.g.) then $\Gamma(K)$ contains as a subgraph either $\Gamma(H)$ or some quotient of it (i.e. $\Gamma(H)$ after identifying several sets of vertices (\sim) and then folding, $\Gamma(H) / \sim)$.
- The overgroups of H
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant_{f f} K$.
- Thus, $\mathcal{A E}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

The modern proof

Proof:

- Let us (temporarily) attach some "hairs" to $\Gamma(H)$ an denote the resulting (folded) automata by $\tilde{\Gamma}(H)$.
- Given $H \leqslant K$ (both f.g.), we can obtain $\Gamma(K)$ from $\Gamma(H)$ by 1) adding the appropriate hairs, 2) identifying several vertices to \bullet, 3) folding; (note that adding extra hairs, the result will be the same if we 4) trim at the end).
- Hence, if $H \leqslant K$ (both f.g.) then $\Gamma(K)$ contains as a subgraph either $\Gamma(H)$ or some quotient of it (i.e. $\Gamma(H)$ after identifying several sets of vertices (\sim) and then folding, $\Gamma(H) / \sim)$.
- The overgroups of H : $\mathcal{O}(H)=\{\pi(\Gamma(H) / \sim, \bullet) \mid \sim$ is a partition of $V \Gamma(H)\}$.
- Thus, $\mathcal{A E}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

The modern proof

Proof:

- Let us (temporarily) attach some "hairs" to $\Gamma(H)$ an denote the resulting (folded) automata by $\tilde{\Gamma}(H)$.
- Given $H \leqslant K$ (both f.g.), we can obtain $\Gamma(K)$ from $\Gamma(H)$ by 1) adding the appropriate hairs, 2) identifying several vertices to $\bullet, 3$) folding; (note that adding extra hairs, the result will be the same if we 4) trim at the end).
- Hence, if $H \leqslant K$ (both f.g.) then $\Gamma(K)$ contains as a subgraph either $\Gamma(H)$ or some quotient of it (i.e. $\Gamma(H)$ after identifying several sets of vertices (\sim) and then folding, $\Gamma(H) / \sim)$.
- The overgroups of H :
$\mathcal{O}(H)=\{\pi(\Gamma(H) / \sim, \bullet) \mid \sim$ is a partition of $V \Gamma(H)\}$.
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant_{f f} K$.
- Thus, $\mathcal{A} \mathcal{E}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

The modern proof

Proof:

- Let us (temporarily) attach some "hairs" to $\Gamma(H)$ an denote the resulting (folded) automata by $\tilde{\Gamma}(H)$.
- Given $H \leqslant K$ (both f.g.), we can obtain $\Gamma(K)$ from $\Gamma(H)$ by 1) adding the appropriate hairs, 2) identifying several vertices to $\bullet, 3$) folding; (note that adding extra hairs, the result will be the same if we 4) trim at the end).
- Hence, if $H \leqslant K$ (both f.g.) then $\Gamma(K)$ contains as a subgraph either $\Gamma(H)$ or some quotient of it (i.e. $\Gamma(H)$ after identifying several sets of vertices (\sim) and then folding, $\Gamma(H) / \sim)$.
- The overgroups of H : $\mathcal{O}(H)=\{\pi(\Gamma(H) / \sim, \bullet) \mid \sim$ is a partition of $V \Gamma(H)\}$.
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant{ }_{\text {ff }} K$.
- Thus, $\mathcal{A E}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

Computing $\mathcal{A} \mathcal{E}(H)$

Corollary

$\mathcal{A E}(H)$ is computable.
Proof:

- Compute Г(H),
- Compute $\Gamma(H) / \sim$ for all partitions \sim of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{f f} K_{2}$ and deleting K_{2}.
- The resulting set is $\mathcal{A E}(H)$. \square

For the cleaning step we need:

Computing $\mathcal{A} \mathcal{E}(H)$

Corollary

$\mathcal{A E}(H)$ is computable.

Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions \sim of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant f t K_{2}$ and deleting K_{2}.
- The resulting set is $\mathcal{A E}(H)$. \square

For the cleaning step we need:

Computing $\mathcal{A} \mathcal{E}(H)$

Corollary

$\mathcal{A E}(H)$ is computable.

Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions \sim of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{f f} K_{2}$ and deleting K_{2}.
- The resulting set is $\mathcal{A E}(H)$. \square

For the cleaning step we need:

Computing $\mathcal{A} \mathcal{E}(H)$

Corollary

$\mathcal{A E}(H)$ is computable.

Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions \sim of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{f f} K_{2}$ and deleting K_{2}.
- The resulting set is $\mathcal{A} \mathcal{E}(H)$. \square

For the cleaning step we need:

Computing $\mathcal{A E}(H)$

Corollary

$\mathcal{A E}(H)$ is computable.

Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions \sim of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{f f} K_{2}$ and deleting K_{2}.
- The resulting set is $\mathcal{A E}(H)$. \square

For the cleaning step we need:

Computing $\mathcal{A E}(H)$

Corollary

$\mathcal{A E}(H)$ is computable.

Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions \sim of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{f f} K_{2}$ and deleting K_{2}.
- The resulting set is $\mathcal{A E}(H)$. \square

For the cleaning step we need:

Computing $\mathcal{A E}(H)$

Corollary

$\mathcal{A E}(H)$ is computable.

Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H) / \sim$ for all partitions \sim of $V \Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_{1}, K_{2} \in \mathcal{O}(H)$ such that $K_{1} \leqslant_{f f} K_{2}$ and deleting K_{2}.
- The resulting set is $\mathcal{A E}(H)$. \square

For the cleaning step we need:

Deciding free-factorness

Proposition

Given $H, K \leqslant F_{A}$, it is algorithmically decidable whether $H \leqslant_{f f} K$ or not.

Proved by:

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time).

Deciding free-factorness

Proposition

Given $H, K \leqslant F_{A}$, it is algorithmically decidable whether $H \leqslant_{\text {ff }} K$ or not.

Proved by:

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time).

Deciding free-factorness

Proposition

Given $H, K \leqslant F_{A}$, it is algorithmically decidable whether $H \leqslant_{\text {ff }} K$ or not.

Proved by:

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time).

Deciding free-factorness

Proposition

Given $H, K \leqslant F_{A}$, it is algorithmically decidable whether $H \leqslant_{\text {ff }} K$ or not.

Proved by:

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time).

The algebraic closure

Observation

If $H \leqslant$ alg K_{1} and $H \leqslant$ alg K_{2} then $H \leqslant$ alg $\left\langle K_{1} \cup K_{2}\right\rangle$.

Corollary
For every $H \leqslant K \leqslant F_{A}$ (all f.g.), $\mathcal{A E}_{K}(H)$ has a unique maximal element, called the K-algebraic closure of H, and denoted $\mathrm{Cl}_{K}(H)$.

Corollary

Every extension $H \leqslant K$ of f.g. subgroups of F_{A} splits, in a unique way, in an algebraic part and a free factor part, $H \leqslant a l g ~ C l(H) \leqslant f f ~ K$.

The algebraic closure

Observation

If $H \leqslant$ alg K_{1} and $H \leqslant$ alg K_{2} then $H \leqslant$ alg $\left\langle K_{1} \cup K_{2}\right\rangle$.

Corollary

For every $H \leqslant K \leqslant F_{A}$ (all f.g.), $\mathcal{A E}_{K}(H)$ has a unique maximal element, called the K-algebraic closure of H , and denoted $\mathrm{Cl}_{K}(\mathrm{H})$.

Corollary
 Every extension $H \leqslant K$ of f.g. subgroups of F_{A} splits, in a unique way, in an algebraic part and a free factor part, $H \leqslant a l g ~ C I(H) \leqslant t f$.

The algebraic closure

Observation

If $H \leqslant$ alg K_{1} and $H \leqslant$ alg K_{2} then $H \leqslant$ alg $\left\langle K_{1} \cup K_{2}\right\rangle$.

Corollary

For every $H \leqslant K \leqslant F_{A}$ (all f.g.), $\mathcal{A} \mathcal{E}_{K}(H)$ has a unique maximal element, called the K-algebraic closure of H, and denoted $\mathrm{Cl}_{K}(H)$.

Corollary

Every extension $H \leqslant K$ of f.g. subgroups of F_{A} splits, in a unique way, in an algebraic part and a free factor part, $H \leqslant$ alg $C l(H) \leqslant_{f f} K$.

THANKS

